

Microsoft Enterprise Library 5.0

Develop Enterprise applications using reusable software
components of Microsoft Enterprise Library 5.0

Sachin Joshi

P U B L I S H I N G

professional expert ise dist i l led

Microsoft Enterprise Library 5.0

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2010

Production Reference: 1041110

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849680-90-5

www.packtpub.com

Cover Image by Dorota Feifer (dfeifer@hotmail.com)

Credits

Author
Sachin Joshi

Reviewers
Nikos Anastopoulos

Anand Narayanswamy

Acquisition Editor
Rashmi Phadnis

Development Editor
Reshma Sundaresan

Technical Editor
Neha Damle

Indexers
Monica Ajmera Mehta

Rekha Nair

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Leena Purkait

Proofreader
Chris Smith

Graphics
Geetanjali Sawant

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Sachin Joshi holds a Master's Degree in Computer Applications and a Bachelor's
Degree in Business Administration. He is a Microsoft Certified Professional
Developer in ASP.NET and Microsoft Certified Technology Specialist in WCF
and .NET 3.5 Windows. He has over five years of industry experience developing
enterprise applications with Microsoft .NET and related technologies. Sachin was
performing a juggling act between his college degree and running his own optical
business for around five years before joining the IT industry.

Sachin is currently working as a Consultant in a well reputed software company in
Hyderabad, India. He has several years of experience in designing and architecting
solutions for various domains and he has been involved with several complex
engagements. His technical strengths include C, C++, C#, VB.NET, Microsoft .NET,
AJAX, Design Patterns, SQL Server, JavaScript, and so on. His current passion is Vala
(http://live.gnome.org/Vala) a new programming language with C#-like syntax
with the power of C.

Sachin blogs at http://fuzzydev.com and spends most of his time reading books
and playing with different technologies. When not at work, Sachin spends time with
his family, watching movies and playing video games. He and his wife have not only
pledged but are working towards spreading awareness of the noble cause of organ
donation. Sachin has a dream of opening a library for students who are economically
disadvantaged, to enable them to grow. In the technology arena, Sachin is currently
working on an open source project code named Apocalypse – lifting of the veil, a CMS
based on ASP.NET 4.0.

Life is not about winning or losing, it's not about battles or competitions, it's not
about mistakes or missed opportunities, it's about realizing the true meaning of
life, it's about freeing your mind & soul of dust, life is about your own definition of
success. YOUR LIFE IS BEAUTIFUL, YOU ARE ALWAYS SUCCESSFUL
PERIOD

— Sachin Joshi

Acknowledgement

No book is the product of just the author, he just happens to be the one with his
name on the cover.

A number of people contributed to the success of this book, and it would take more
space than I have to thank each one individually.

I am greatly indebted to Rashmi Phadnis, Acquisition Editor at Packt Publishing, for
accepting my proposal and also for her support and guidance from the beginning.
I am thankful to Reshma Sundaresan, Development Editor at Packt Publishing, for
the valuable advice at every stage through e-mails that encouraged me a lot. I am
also thankful to Leena Purkait, Project Coordinator at Packt Publishing, for all the
support and help in keeping me on schedule and also managing the schedule so
professionally. I'm grateful to Nikos Anastopoulos and Anand Narayanswamy—
thank you for reviewing the book and providing valuable and insightful feedback.
Also, thanks to Dorota Feifer for the lovely cover image.

Special mention goes to David Barnes, Acquisition Editor at Packt Publishing, with
whom I had the initial interaction. Thank you David for inspiring me during our
interaction and with your blog posts (http://davidbarneswork.posterous.com).
Also, a big thank you to the entire Packt Publishing team, for working so diligently
to help bring out a high quality product.

I must also thank the talented team of developers who have contributed to the
Enterprise Library project. This product truly helps in taking the complexity out
of enterprise application development and allows developers to focus on the crux
of the requirements.

http://davidbarneswork.posterous.com

About the Reviewers

Nikos Anastopoulos has a BSc and MSc in Software Engineering, from Coventry
University, UK, and an MBA from Athens University of Economics and Business.

He has worked at Microsoft Hellas for 10 years, as a Platform Solutions Specialist for
3.5 years and as a Senior Consultant for 6.5 years at Microsoft Consulting Services.
He has worked in many development projects in Greece, mostly in the Banking
sector and Telcos, using Microsoft's development products, servers, and technologies
like: .NET, C# (ASP.NET), SQL Server 200x, BizTalk Server 200x, and SharePoint
Portal Server 200x. In all his engagements, he has extensively used Microsoft's
Enterprise Library, since its very early releases.

Before joining Microsoft he worked as a developer in ISVs for two years working on
client/server and Internet applications.

I would like to thank my family; my wife, Eirini, and my two lovely
daughters, Kallia and Stavrianna, for their support over these years.

Anand Narayanaswamy is a Microsoft Most Valuable Professional (MVP) based
in Trivandrum, India. He works as a freelance technical writer besides devoting
time for blogging and tweeting. He also works as a technical editor for ASPAlliance.
com. He had worked as a technical editor/reviewer for various publishers such as
Sams, Addison-Wesley, McGraw Hill, and Packt. He is the author of Community
Server Quickly (www.packtpub.com/community-server/book) published by Packt
Publishing and runs www.learnxpress.com and www.dotnetalbum.com.

First, I would like to thank the Almighty for giving me the strength
and energy to work every day. I specially thank my father,
mother, and brother for providing valuable help, support, and
encouragement. I also thank Leena Purkait, Project Coordinator,
Packt Publishing, and Sachin Joshi for their assistance, cooperation,
and understanding throughout the review process of this book.

http://www.packtpub.com/community-server/book
http://www.learnxpress.com/
http://www.dotnetalbum.com

This book is dedicated to:

My parents, Pravin and Geeta Joshi. They have dedicated their entire life
towards making me what I am today. I Love You, You Rock!!!

Thanks to my beautiful wife, Nisha, for her love, support, and patience.
I Love You, you make me complete.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Table of Contents
Preface 1
Chapter 1: Getting Started with Enterprise Library 5

Introducing Enterprise Library 6
Wiring Application Blocks 7

Unity Application Block 7
Policy Injection Application Block 7

Functional Application Blocks 7
Data Access Application Block 8
Logging Application Block 8
Exception Handling Application Block 8
Caching Application Block 9
Validation Application Block 9
Security Application Block 9
Cryptography Application Block 10

Functional Application Block Dependency 10
System requirements 12
Installing Enterprise Library 13

Enterprise Library Binaries 13
Configuration Editor for Visual Studio 13
Source Code of Enterprise Library 14

Summary 17
Chapter 2: Data Access Application Block 19

Working of Data Access Application Block 20
Developing an application 21

Referencing the required assemblies 22
Adding Data Access Settings 23
Adding a namespace 27
Understanding the Database class 28

Table of Contents

[ii]

SqlDatabase class 29
SqlCeDatabase class 30
OracleDatabase class 31
GenericDatabase class 31

Creating a Database instance 32
Using the DatabaseFactory class 32
Using Unity service locator 33
Using Unity container directly 33

Retrieving records using ExecuteReader 34
Retrieving records using DataSet 35
Retrieving a record as an object 35

Parameter mappers 36
Output mappers 38

Default row mappers 38
Row mapping using MapBuilder 38
Row mapping using IRowMapper<TResult> 38
Result Set mappers 39

Data Accessors 40
Creating and executing Accessors 41

Retrieving multiple records as an object collection 42
Retrieving records as XML 43
Executing a command using ExecuteNonQuery 44
Retrieving scalar values 45
Updating records using DataSet 46
Working with transactions 48
Summary 50

Chapter 3: Logging Application Block 51
Developing an application 53

Referencing assemblies 53
Adding Logging Settings 55
Adding namespaces 57
Writing a log message 58

Exploring design elements 60
LogEntry 60
Logger 64

Using Logger 66
LogWriter 66
Adding trace source categories 69

Configuring special categories 70
Configuring log categories 71

Configuring trace listeners 72
Configuring Event Log Trace Listener 74
Configuring Flat File Trace Listener 75

Table of Contents

[iii]

Configuring Rolling Flat File Trace Listener 77
Configuring XML Trace Listener 78
Configuring Database Trace Listener 79
Configuring to send log messages to an e-mail address 81
Configuring System Diagnostics Trace Listener 83
Configuring Message Queuing Trace Listener 84
Configuring WMI Trace Listener 87
Configuring custom trace listeners 87

Configuring log message formatters 88
Configuring logging filters 90

Adding a category filter 91
Adding a logging enabled filter 92
Adding a priority filter 93

TraceManager and Tracer 94
Tracing activities 94

Customizing Logging block elements 96
Implementing a custom trace listener 96
Implementing a custom log formatter 98
Implementing a custom log filter 100

Summary 102
Chapter 4: Exception Handling Application Block 103

Developing an application 104
Referencing required assemblies 105
Adding initial Exception Handling settings 106
Adding namespaces 108
Understanding the Exception Handling block 108

Exception policy 108
Exception types 109
Exception handler 109
Exception Manager class 111

Stitching together: Exception Policy/Type/Handler 113
Creating an Exception Handling block object 113

Using the ExceptionPolicy class 114
Using Unity service locator 114
Using Unity container directly 115

Wrapping an exception using Wrap handler 115
Configuring a Wrap exception handler 116

Replacing an exception using Replace handler 118
Configuring a Replace handler 118

Logging an exception using Logging handler 121
Configuring a Logging handler 122

WCF fault contract exception handler 124
Generic fault contract creation 124
Configuring a fault contract exception handler 125

Table of Contents

[iv]

Applying the ExceptionShielding attribute 126
Exception handling: WCF Service consumer 126

Implementing custom exception handler 127
Configuring custom exception handler 128

Summary 129
Chapter 5: Caching Application Block 131

Developing an application 133
Referencing the required assemblies 134
Adding the initial Caching Settings 135
Adding namespaces 137
Creating the CacheManager instance 137

Using the static factory class 138
Using the Unity Service Locator 139
Using the Unity container directly 139

Configuring the in-memory backing store 140
Adding items to cache 141

Understanding the expiration process 142
Expiration policies 143

Understanding the Scavenging process 143
Reading cached items 144
Removing cached items 145
Flushing cached items 145

Reloading expired items 145
Configuring Isolated Cache Storage Backing Store 146
Configuring Database Cache Storage 148
Configuring and encrypting cached data 149

Configuration steps 150
Summary 154

Chapter 6: Validation Application Block 155
Validation Application Block features 156
Developing an application 157

Referencing the required assemblies 158
Adding namespaces 160

Understanding Validators 161
Value Validators 161
Object Validators 163
Single Member Validators 163
Composite Validators 164

Understanding Rule Sets 165
Understanding ValidatorFactory 165
Understanding ValidationResults 166

Table of Contents

[v]

Validating objects using attributes 167
Validating values programmatically 169
Validating objects using self-validation 170
Validating objects using configuration 171
Integrating with Windows Forms-based applications 179

Steps to leverage ValidationProvider 180
Integrating the Validation block with ASP.NET 183
Implementing a Custom Validator 184
Summary 186

Chapter 7: Security Application Block 187
Developing an application 189

Referencing required/optional assemblies 190
Adding initial security settings 191
Adding namespaces 193
Creating security application block objects 194

Using the static factory class 194
Using Unity service locator 194
Using Unity container directly 195

Understanding Authorization Providers 196
Authorization Rule Provider 197
AzMan Authorization Provider 202

Understanding Security Cache Provider 203
CachingStoreProvider class 204
Configuring Security Cache Provider 204
Caching and generating a token for an authenticated user 205

Associating a token with User Identity, Principal and Profile objects 206
Retrieving User Identity, User Principal, and Profile objects 207
Expiring User Identity, User Principal, and Profile objects 208

Implementing a custom Authorization Provider 210
Custom XML Authorization Provider 211

Summary 211
Chapter 8: Cryptography Application Block 213

Developing an application 215
Referencing required and optional assemblies 216
Adding namespaces 216
Adding initial cryptography settings 217

Working of Hash Provider 219
Creating CryptographyManager and IHashProvider instances 220

Using the static facade 221
Using Unity service locator 221
Using Unity container directly 221

Table of Contents

[vi]

Configuring Hash Provider 222
Generating a hash value 224
Comparing hash values 224
Implementing a custom Hash Provider 225

Configuring a Custom Hash Provider 226
Working of symmetric cryptography providers 228

Creating CryptographyManager and ISymmetricCryptoProvider instances 230
Using the static facade 230
Using Unity service locator 230
Using Unity container directly 230

Configuring the symmetric cryptography provider 231
Exporting the key 235
Encrypting data 236
Decrypting data 236
Implementing a custom symmetric provider 237

Configuring the custom symmetric provider 238
Summary 239

Index 241

Preface
This book covers the fundamental elements of each application block so that you get
a good understanding of its concepts. This is followed by referencing the required
and optional assemblies and then initial configuration of that block using the
configuration editor. Finally, it leverages the application block features to achieve
goals of enterprise application development.

What this book covers
Chapter 1, Getting Started with Enterprise Library, introduces us to the Enterprise
Library and explores various application blocks such as Unity, Policy Injection, Data
Access block, Logging block, Exception Handling block, Caching block, Validation
block, Security block, and Cryptography block.

Chapter 2, Data Access Application Block, explores the fundamental elements of the
Data Access Application Block such as Database, SqlDatabase, OracleDatabase,
SqlCeDatabase, GenericDatabase, Parameter Mapper, and Output Mappers.

Chapter 3, Logging Application Block, explores the fundamental elements of the
Logging Application Block such as Log Category, Special Category, Logging Trace
Listeners, Log Formatters, Logging Filters, Logger, LogWriter, LogEntry, and so on.
We also learn about the various required and optional assemblies and learn to set up
the initial configuration.

Chapter 4, Exception Handling Application Block, introduces us to the fundamental
elements of the Exception Handling Application Block such as Exception Policy,
Exception Types, and Exception Handler. We also learn about the required and
optional assemblies, the initial infrastructure configuration, and the individual
feature-level configuration.

Preface

[2]

Chapter 5, Caching Application Block, teaches us the fundamental elements of the
Caching Application Block. We further learn to configure an encryption provider to
encrypt cached data while using a persistent backing store.

Chapter 6, Validation Application Block, teaches us to validate objects using various
approaches such as using an attribute, self-validation, programmatically, and
through configuration. We also learn how the Validation Application Block can be
integrated with Windows Forms-based applications and ASP.NET web applications.

Chapter 7, Security Application Block, introduces us to the key features of the Security
Application Block and explores the elements of Authorization and Security Cache
Providers. We also learn about the various required and optional assemblies.

Chapter 8, Cryptography Application Block, introduces us to the fundamental
elements of the Cryptography Application Block such as IHashProvider,
ISymmetricCryptoProvider, CryptographyManager, and so on. We also learn
to generate hash, compare hash, and implement a custom hash provider. We
also explore encryption and decryption of data and understand the basics of
implementing a custom symmetric cryptography provider.

What you need for this book
To use this book you will need Microsoft Enterprise Library 5.0.

Who this book is for
If you are a programmer, consultant, or an associate architect, who is interested
in developing Enterprise applications, this book is for you. We assume that you
already have a good knowledge of Microsoft .NET framework and the C#
programming language.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

Preface

[3]

A block of code is set as follows:

var container = new UnityContainer();
container.AddNewExtension<EnterpriseLibraryCoreExtension>();
Database database = container.Resolve<Database>();

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

var container = new UnityContainer();
container.AddNewExtension<EnterpriseLibraryCoreExtension>();
Database database = container.Resolve<Database>();

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Getting Started with
Enterprise Library

While developing enterprise-scale applications, developers often find themselves
focusing on mundane and repeated tasks generally referred to as cross-cutting
concerns: tasks such as writing repeated data access code, logging exceptions, handling
and managing exceptions, caching data, validating user input, and so on. Although
these tasks are important, developers often spend a lot of time implementing and
debugging these cross-cutting concerns rather than channeling their efforts towards
the core business requirements of customers. Developing this functionality in-house, as
flexible and customizable reusable components, is one option but it involves time and
money, not to mention the testing and bug-fixing effort.

This book will give you insight into Microsoft Enterprise Library, show you how
to leverage the individual functional application blocks, and equip you with the
knowledge to be productive in your work. Before embarking on the learning journey,
read this chapter to get introduced to Enterprise Library; all other chapters are self
contained so it doesn't matter whether you read the book sequentially or flip to a
specific functional application block chapter with the intent to quickly get up to
speed and leverage that specific functional application block.

In this chapter, you will:

•	 Receive an overview of Enterprise Library
•	 Receive a brief introduction to functional application blocks
•	 Learn about the dependencies between the functional application blocks
•	 Learn the system requirements
•	 Learn to install Enterprise Library

Getting Started with Enterprise Library

[6]

Introducing Enterprise Library
Enterprise Library (EntLib) is a collection of reusable software components or
application blocks designed to assist software developers with common enterprise
development challenges. Each application block addresses a specific cross-cutting
concern and provides highly configurable features, which results in higher developer
productivity. EntLib is implemented and provided by Microsoft patterns & practices
group, a dedicated team of professionals who work on solving these cross-cutting
concerns with active participation from the developer community. This is an open
source project and thus freely available under the Microsoft Public License (Ms-
PL) at the CodePlex open source community site (http://entlib.codeplex.com),
basically granting us a royalty-free copyright license to reproduce its contribution,
build derivative works, and distribute them.

More information can be found at the Enterprise Library
community site http://www.codeplex.com/entlib.

Enterprise Library consists of nine application blocks; two are concerned with wiring
up stuff together and the remaining seven are functional application blocks. This
book focuses on the seven functional blocks and we have separate chapters in this
book devoted to each functional application block.

The following is the complete list of application blocks; these are briefly discussed in
the next sections.

•	 Wiring Blocks
	° Unity Dependency Injection
	° Policy Injection Application Block

•	 Functional Blocks
	° Data Access Application Block
	° Logging Application Block
	° Exception Handling Application Block
	° Caching Application Block
	° Validation Application Block
	° Security Application Block
	° Cryptography Application Block

Chapter 1

[7]

Wiring Application Blocks
Wiring blocks provides mechanisms to build highly flexible, loosely coupled, and
maintainable systems. These blocks are mainly about wiring or plugging together
different functionalities. The following two blocks fall under this category:

•	 Unity Dependency Injection
•	 Policy Injection Application Block

Unity Application Block
The Unity Application Block is a lightweight, flexible, and extensible dependency
injection container that supports interception and various injection mechanisms such
as constructor, property, and method call injection. The Unity Block is a standalone
open source project, which can be leveraged in our application. This block allows
us to develop loosely coupled, maintainable, and testable applications. Enterprise
Library leverages this block for wiring the configured objects. More information on
the Unity block is available at http://unity.codeplex.com; the Unity block is not
covered in this book.

Policy Injection Application Block
The Policy Injection Application Block is included in this release of Enterprise Library
for backwards compatibility and policy injection is implemented using the Unity
interception mechanism. This block provides a mechanism to change object behavior
by inserting code between the client and the target object without modifying the code
of the target object. The Policy Injection block is not covered in this book.

Functional Application Blocks
Enterprise Library consists of the following functional application blocks, which can
be used individually or can be grouped together to address a specific cross-cutting
concern. This book contains dedicated chapters for each of these functional application
blocks; in each chapter we will explore the application block in detail.

•	 Data Access Application Block
•	 Logging Application Block
•	 Exception Handling Application Block
•	 Caching Application Block
•	 Validation Application Block

Getting Started with Enterprise Library

[8]

•	 Security Application Block
•	 Cryptography Application Block

Data Access Application Block
Developing an application that stores/retrieves data in/from some kind of a
relational database is quite common; this involves performing CRUD (Create, Read,
Update, Delete) operations on the database by executing T-SQL or stored procedure
commands. But we often end up writing the plumbing code over and over again
to perform these operations: plumbing code such as creating a connection object,
opening and closing a connection, parameter caching, and so on.

The following are the key benefits of the Data Access block:

•	 The Data Access Application Block (DAAB) abstracts developers from the
underlying database technology by providing a common interface to perform
database operations.

•	 DAAB also takes care of the ordinary tasks like creating a connection object,
opening and closing a connection, parameter caching, and so on.

•	 It helps in bringing consistency to the application and allows changing of
database type by modifying the configuration.

We will further dive deep into the Data Access block in Chapter 2, Data Access
Application Block.

Logging Application Block
Logging is an essential activity, which is required to understand what's happening
behind the scene while the application is running. This is especially helpful in
identifying issues and tracing the source of the problem without debugging. The
Logging Application Block provides a very simple, flexible, standard, and consistent
way to log messages. Administrators have the power to change the log destination
(file, database, e-mail, and so on), modify message format, decide on which category
is turned on/off, and so on. The Logging block is further discussed in Chapter 3,
Logging Application Block.

Exception Handling Application Block
Handling exceptions appropriately and allowing the user to either continue or exit
gracefully is essential for any application to avoid user frustration. The Exception
Handling Application Block adapts the policy-driven approach to allow developers/
administrators to define how to handle exceptions.

Chapter 1

[9]

The following are the key benefits of the Exception Handling Block:

•	 It provides the ability to log exception messages using the Logging
Application Block.

•	 It provides a mechanism to replace the original exception with another
exception, which prevents disclosure of sensitive information.

•	 It provides mechanism to wrap the original exception inside another
exception to maintain the contextual information.

We will dive deep into Exception Handling Block in Chapter 4, Exception Handling
Application Block.

Caching Application Block
Caching in general is a good practice for data that has a long life span; caching is
recommended if the possibility of data being changed at the source is low and the
change doesn't have significant impact on the application. The Caching Application
Block allows us to cache data locally in our application; it also gives us the flexibility
to cache the data in-memory, in a database or in an isolated storage. The Caching
block is discussed in detail in Chapter 5, Caching Application Block.

Validation Application Block
The Validation Application Block (VAB) provides various mechanisms to validate
user inputs. As a rule of thumb always assume user input is not valid unless proven
to be valid. The Validation block allows us to perform validation in three different
ways; we can use configuration, attributes, or code to provide validation rules.
Additionally it also includes adapters specifically targeting ASP.NET, Windows
Forms, and Windows Communication Foundation (WCF). We will explore the
Validation block in detail in Chapter 6, Validation Application Block.

Security Application Block
The Security Application Block simplifies authorization based on rules and provides
caching of the user's authorization and authentication data. Authorization can be
done against Microsoft Active Directory Service, Authorization Manager (AzMan),
Active Directory Application Mode (ADAM), and Custom Authorization Provider.
Decoupling of the authorization code from the authorization provider allows
administrators to change the provider in the configuration without changing the
code. The Security block is explored in detail in Chapter 7, Security Application Block.

Getting Started with Enterprise Library

[10]

Cryptography Application Block
The Cryptography Application Block provides a common API to perform basic
cryptography operations without inclining towards any specific cryptography
provider and the provider is configurable. Using this application block we can
perform encryption/decryption, hashing, & validate whether the hash matches some
text. We will discuss the Cryptography block in detail in Chapter 8, Cryptography
Application Block.

Functional Application Block
Dependency
Several functional application blocks provide features that depends on other blocks;
these dependencies are listed below.

Application Block Dependencies Condition
Logging Application
Block

Data Access Application
Block

If the messages have to be logged
in database.

Exceptional Handling
Application Block

Logging Application Block If exception information has to be
logged.

Data Access Application
Block

If exception information has to be
logged to database.

Caching Application
Block

Data Access Application
Block

If data has to be cached in
database.

Cryptography Application
Block

If cached data has to be encrypted.

Security Application
Block

Caching Application Block If credentials have to be cached.
Cryptography Application
Block

If cached credentials have to be
encrypted.

Data Access Application
Block

If credentials have to be cached in
database.

Chapter 1

[11]

Following is the graphical representation of the dependencies between the functional
application blocks:

Except the Validation block, all other application blocks are dependent on other
blocks to provide additional features that are part of the respective application
blocks. For example, the Exception Handling block is dependent on the Logging
block to provide message logging functionality; additionally the Data Access block
is also required if the message needs to be logged in database.

Getting Started with Enterprise Library

[12]

System requirements
Minimum requirements for Enterprise Library core features and the configuration
tool are given below.

•	 Supported Architectures: x86 and x64
•	 Operating System:

	° Microsoft Windows® 7 Professional, Enterprise or Ultimate
	° Windows Server 2003 R2
	° Windows Server 2008 with Service Pack 2
	° Windows Server 2008 R2.
	° Windows Vista with Service Pack 2

•	 Microsoft .NET Framework 3.5 with Service Pack 1 or Microsoft .NET
Framework 4.0

•	 Recommended Development Environment: Any of the following
development systems:

	° Microsoft Visual Studio® 2008 Development System with Service
Pack 1 (any edition)

	° Microsoft Visual Studio® 2010 Development System (any edition)
•	 Required for Data Access Application Block: A database server running a

database that is supported by a .NET Framework 3.5 with Service Pack 1 or
.NET Framework 4.0 data provider; data providers for OLE DB or ODBC are
also supported. Below is the list for reference:

	° SQL Server 2000 or later
	° SQL Server 2005 Compact Edition
	° Oracle 9i or later

•	 Required for Logging Application Block: While using the Message Queuing
(MSMQ) Trace Listener to store log messages, you need the Microsoft
Message Queuing (MSMQ) components installed. Access to a database server
is required to store log messages to database while using the Database Trace
Listener. Access to an SMTP server is required to send e-mail, while using the
E-mail Trace Listener to e-mail log messages.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1

[13]

•	 Unit Testing Requirements: To run the unit tests provided as part of the
Enterprise Library source code installation we require the following:

	° Microsoft Visual Studio 2008 Professional or Visual Studio 2008
Team Edition or Visual Studio 2010 Premium or Visual Studio 2010
Professional, or Visual Studio 2010 Ultimate edition

	° Moq v3.1 assemblies, which can be downloaded from http://code.
google.com/p/moq/

Installing Enterprise Library
Before we start exploring the individual application blocks, let us download and
install Enterprise Library first. We can download the latest release of the Enterprise
Library available at http://msdn.microsoft.com/entlib/ from MSDN site;
alternatively the download link is also available on the home page of the community
site at http://entlib.codeplex.com. Click on the link Enterprise Library 5.0 -
April 2010 from the list of active releases and download the Microsoft Installer (MSI)
package file from the download section. Now follow the steps given below to install
the library. It is recommended to install the features given below.

Enterprise Library Binaries
This section provides options to selectively install specific application blocks; it is
recommended that you install all the application blocks to avoid running the installer
multiple times to add other blocks.

Configuration Editor for Visual Studio
Visual Studio integration of the configuration editor helps us in editing Enterprise
Library configuration settings from within the development environment. This
comes quite handy instead of switching between the standalone configuration editor
and Visual studio IDE.

Getting Started with Enterprise Library

[14]

Source Code of Enterprise Library
It is recommended to install the source code of Enterprise Library; the source code
gives lot of insight in to the how each application is implemented and the best
practices adopted by the Enterprise Library team.

1. Double-click the installation file to run Microsoft Enterprise Library 5.0
Setup. The following screenshot with the welcome message will be loaded;
click Next to move to the next step of the wizard.

2. The End-User License Agreement screen is displayed as shown in the
following screenshot. It is important and a good practice to read and fully
understand the license agreement of any software we use to develop
applications. Once we are satisfied with the license terms, we may click Next
to move forward to the next installation step.

Chapter 1

[15]

3. The following step in the installation wizard displays the system
requirements and comes in quite handy to verify whether the system satisfies
the minimum requirements. Click Next to move to the next installation step.

4. Once we click Next we are presented with a feature selection screen as shown
in the following screenshot. The installer provides control over installation
of the binaries of each individual application block; for the purposes of this
demonstration we will install all the features.

Getting Started with Enterprise Library

[16]

5. Once we click Next, we will be presented with the Ready to install Microsoft
Enterprise Library 5.0 screen as shown in the following screenshot. Clicking
on the Install button will initiate the installation process.

6. After the installation is completed the following screen will be shown; we
may install the source code of Enterprise Library by selecting the checkbox
Launch Microsoft Enterprise Library 5.0 Source Installer and clicking on
the Finish button. Provide the appropriate install location for the source
code and the installer will copy the source code and additionally build the
assemblies if we choose.

Chapter 1

[17]

Summary
In this chapter we got introduced to the Enterprise Library and explored various
application blocks: the Unity, Policy Injection, Data Access, Logging, Exception
Handling, Caching, Validation, Security, and Cryptography blocks. We discussed the
dependencies between the functional application blocks. We understood the system
requirements and explored the installation steps of Enterprise Library. In the next
chapter we will explore the Data Access block in detail.

Data Access Application
Block

A Relational Database Management System (RDBMS) is the most common
and preferred storage mechanism for enterprise applications. ADO.NET is the
cornerstone while working with databases on the .NET platform; it provides the
framework and implementations for several databases. Developers leveraging ADO.
NET often have to write boilerplate code over and over again. While performing
database operations, this might lead to lower productivity, inefficient code,
connection leakage, and so on.

The Data Access Application Block abstracts developers from the underlying
database technology by providing a common interface to perform database
operations. It simplifies common data access functionality by taking care of the
mundane tasks like creating a connection object, opening and closing a connection,
parameter caching, and so on. The Data Access block supports all the features
supported by ADO.NET; it goes a step further by bringing consistency and
simplifying the common database tasks.

The benefits of the Data Access block are as follows:

•	 It reduces the plumbing code to perform common tasks.
•	 It builds on top of the functionality provided by ADO.NET, so both ADO.

NET's and application block's functionality are available at our disposal.
•	 It allows changing the database type without changing or re-compiling the

application code.
•	 It provides parameter caching for all databases and implements simple

connection pooling for SQL CE as well.
•	 It increases developer productivity through its rich set of methods, which

reduces the data access code considerably.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Data Access Application Block

[20]

In this chapter, you will:

•	 Get to know the key elements of the Data Access block
•	 Reference the required and optional assemblies
•	 Configure Data Access settings using the configuration editor
•	 Add a namespace for convenience
•	 Create Data Access block objects
•	 Retrieve records using ExecuteReader and ExecuteDataSet
•	 Retrieve a record as an Object
•	 Retrieve multiple records as an Object Collection
•	 Retrieve records as XML using ExecuteXmlReader
•	 Execute a command using ExecuteNonQuery
•	 Leverage output parameters
•	 Access a scalar result using ExecuteScalar
•	 Update records using DataSet
•	 Work with Transactions

Working of Data Access Application
Block
It takes two to tango, and in this case it takes configuration and application code.
We configure the database connection string and set the provider name attribute;
this attribute is mandatory for the Data Access block to work. Optionally, we
may also set the default database instance attribute part of the Database Settings.
In the application code, there are several elements involved in making the Data
Access block work, but it all begins with a class called Database. The Database
class abstracts us from the underlying database technology and provides us with
a simple model to perform various actions against the configured database. It
internally leverages the ADO.NET provider factory model (DbProviderFactory);
an instance of Database contains a reference to a concrete DbProviderFactory
object, which exposes common ADO.NET objects such as DbConnection, DbCommand,
DbDataAdapter, DbDataReader, and so on. The DbProviderFactory class is an
abstract class, part of the System.Data.Common namespace.

Chapter 2

[21]

The following is a partial list of concrete implementations of DbProviderFactory.

Provider name Provider Factory Implementation
System.Data.SqlClient SqlClientFactory

System.Data.SqlServerCe.3.5 SqlCeProviderFactory

System.Data.OracleClient OracleClientFactory

System.Data.EntityClient EntityProviderFactory

System.Data.OleDb OleDbFactory

System.Data.Odbc OdbcFactory

Ever noticed an attribute called providerName in the connection string entry? This
information is used to construct the appropriate provider factory object and that's
the reason it is a required attribute as far the Data Access block is concerned. Data
Access block configuration code contains default mappings for the data providers.
System.Data.SqlClient data provider maps with SqlDatabase, System.Data.
OracleClient data provider maps with OracleDatabase, and GenericDatabase is
used for all other data providers.

There is an active community called "EntLib Contrib" developing a
library of extensions for Enterprise Library. Many third-party providers
are available such as SQLite, Oracle (ODP.NET), MySql, IBM DB2, and
PostgreSQL databases. Visit http://entlibcontrib.codeplex.com
for more information.

Developing an application
We will explore each individual Data Access block feature and along the way we will
understand the concepts behind the individual elements. This will help us to get up
to speed with the basics. To get started, we will do the following:

•	 Reference the Data Access block assemblies
•	 Configure Data Access settings
•	 Add the required Namespace
•	 Create an instance of Database
•	 Perform actions using the Database instance

Data Access Application Block

[22]

To complement the concepts and sample code of this book and allow you to gain
quick hands-on experience of different features of the Data Access block, we have
created a sample demonstration application. The following is a screenshot of the
sample application:

Referencing the required assemblies
For the purposes of this demonstration we will be referencing non-strong-named
assemblies but based on individual requirements, Microsoft strong-named
assemblies or a modified set of custom assemblies can be referenced as well.

The following table lists the required assemblies:

Assembly Required/Optional
Microsoft.Practices.EnterpriseLibrary.Common.dll Required
Microsoft.Practices.Unity.dll Required
Microsoft.Practices.Unity.Interception.dll Required
Microsoft.Practices.ServiceLocation.dll Required
Microsoft.Practices.EnterpriseLibrary.Data.dll Required

Chapter 2

[23]

Adding Data Access Settings
Before we can leverage the features of the Data Access block we have to add the
initial Data Access Settings to the configuration. The following steps will add the
settings to the configuration file.

1. Open the Enterprise Library configuration editor either using the shortcut
available in Start | All Programs | Microsoft patterns & practices |
Enterprise Library 5.0 | Enterprise Library Configuration or by just
right-click the configuration file in the Solution Explorer window of
Visual Studio IDE.

2. Next click on Edit Enterprise Library V5 Configuration. Initially, we will
have a blank configuration file with default Application Settings and
Database Settings.

The following screenshot shows the default configuration settings:

Database Settings configuration is already loaded and consists of three sections:
Database Instances, Oracle Connections, and Custom Databases. Let us go ahead
and configure the connection string in the Database Instances section.

1 Click on the plus symbol provided on the top right corner of the Database
Instances section and click on the Add Database Connection String
menu item.

The following screenshot shows the menu option Add Database Connection String:

Data Access Application Block

[24]

2. Once we click on the Add Database Connection String, the configuration
editor will add a new connection string as shown in the following screenshot:

3. The configuration editor has added a connection string section with Name as
Database Connection String and an empty value and database provider.

4. Change the Name property to the name of your choice. The Name property
can be used to create an instance of Database.

5. Next click on the ellipsis button provided against the Connection String
property. This action will pop up a small Edit Text Value dialog as shown in
the following screenshot. Enter the database connection string you wish to
connect to while leveraging the Data Access Application Block.

Chapter 2

[25]

6. Next select the appropriate Database Provider from the drop-down list of
providers. For the purposes of this demonstration, we will be using SQL Server
database and so we will select System.Data.SqlClient database provider.

7. The following screenshot shows the selected Database Provider:

Although this step is optional, it helps in creating an instance of Database without
providing the database instance name for the object construction. This basically
means creating a default Database instance.

1. Click on the arrow (representing expand/collapse) provided on the right
side of the Database Settings; this will allow us to configure the Default
Database Instance property.

2. Next, select the Default Database Instance you wish to configure from the
drop-down list.

Data Access Application Block

[26]

The following screenshot shows the selection of the Default Database Instance
configuration option:

The following screenshot shows the selected Default Database Instance:

The configuration editor generates the corresponding XML in the configuration
file. The following is the output of the configuration; certain values are truncated
for readability.

[XML Configuration]
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="dataConfiguration" type="Microsoft.Practices.
EnterpriseLibrary.Data.Configuration.DatabaseSettings, Microsoft.
Practices.EnterpriseLibrary.Data, Version=5.0.414.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" requirePermission="true" />
 </configSections>
 <dataConfiguration defaultDatabase="EntLibBook-DataAccess" />
 <connectionStrings>

Chapter 2

[27]

 <add name="EntLibBook-DataAccess" connectionString="server=.\
SQLEXPRESS;database=EntLibBook-DataAccess;Integrated Security=true;"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
</configuration>

Adding a namespace
We definitely don't want to get bored by fully qualifying the type on every instance of
its usage, so to make our life easy we can add the namespace given below to the source
code file to use the Data Access block elements without fully qualifying the reference.
Although we will be using EnterpriseLibraryContainer to instantiate objects (so we
will also add Microsoft.Practices.EnterpriseLibrary.Common.Configuration
namespace to the source file), the Unity Namespace section is listed to make you aware
of the availability of the alternate approach of instantiating objects.

Core Namespace:

•	 Microsoft.Practices.EnterpriseLibrary.Data

Common Data Related Namespace:

•	 System.Data
•	 System.Data.Common

Configuration Namespace (Optional): Required while using the
EnterpriseLibraryContainer to instantiate objects.

•	 Microsoft.Practices.EnterpriseLibrary.Common.Configuration

Unity Namespace (Optional): Required while instantiating objects using the
Unity container.

•	 System.Configuration

•	 Microsoft.Practices.Unity

•	 Microsoft.Practices.Unity.Configuration

Data Access Application Block

[28]

Understanding the Database class
Database is an abstract class part of Microsoft.Practices.EnterpriseLibrary.
Data namespace, this class is in the heart of the action. When we generate an
instance of this class based on the configuration, we get the respective concrete
implementation. This class provides several virtual (Overridable in Visual Basic)
properties and methods, default behavior/logic is implemented, and this provides
flexibility to derived classes to override the behavior/logic based on the individual
requirements. It exposes several utility methods such as CreateConnection,
CreateParameter, GetDataAdapter, GetParameterValue, GetSqlStringCommand,
GetStoredProcCommand, and so on; these methods have several helpful overloads
as well. Apart from these, it also provides methods such as ExecuteReader,
ExecuteNonQuery, ExecuteDataSet, ExecuteScalar, LoadDataSet, UpdateDataSet,
and so on to perform CRUD (Create, Read, Update, Delete) operations.

The following diagram shows the Database class and the derived classes:

The Data Access block provides parameter caching services for stored procedures;
while executing the command more than once, parameter caching eliminates the
round trip to the database to get the parameters and types. The ParameterCache
class is internally used by the abstract Database class to cache parameters.
CachingMechanism is an internal class, which provides the actual caching
functionality to the ParameterCache class.

The following class diagram shows the methods exposed by the ParameterCache class:

Chapter 2

[29]

SqlDatabase class
The SqlDatabase class inherits from the Database class and is part of the
Microsoft.Practices.EnterpriseLibrary.Data.Sql namespace. This class
represents an SQL Server database and uses SQL Server .NET managed provider
System.Data.SqlClient to connect and perform operations on an SQL Server
database. This class overrides several properties and methods and provides
implementation specific to SQL Server database. Properties such as SupportsAsync
(returns true), ParameterToken (returns @), SupportsParemeterDiscovery
(returns true), and so on are overridden. Also it overrides methods such as
BeginExecuteNonQuery, BeginExecuteReader, BeginExecuteScalar, and
corresponding "End" methods to leverage asynchronous execution. Additionally,
it adds methods such as ExecuteXmlReader, BeginExecuteXmlReader, and
EndExecuteXmlReader to expose functionality specific to SQL Server database.

The following class diagram shows the properties and methods exposed by the
SqlDatabase class:

Data Access Application Block

[30]

SqlCeDatabase class
The SqlCeDatabase class inherits from the Database class and is part of the
Microsoft.Practices.EnterpriseLibrary.Data.SqlCe namespace. This class
provides implementation to work with SQL Server Compact Edition database. SQL
Server CE doesn't provide any connection pooling and so the cost of opening the initial
connection is high; this class provides a simple connection pooling implementation
to improve the performance. The implementation overrides several methods and
provides its own logic specific to SQL Server CE database. It is to be noted that since
SQL Server CE doesn't support stored procedures, all the methods related to stored
procedures will throw an exception of type NotImplementedException. Instead, use
the methods ending with Sql such as ExecuteDataSetSql, ExecuteNonQuerySql,
ExecuteReaderSql, ExecuteScalarSql, and so on. This class also adds additional
utility methods such as CreateFile, CloseSharedConnection, and so on.

The following class diagram shows the properties and methods exposed by the
SqlCeDatabase class:

Chapter 2

[31]

OracleDatabase class
The OracleDatabase class inherits from the Database class and is part of the
Microsoft.Practices.EnterpriseLibrary.Data.Oracle namespace. This class
provides implementation to access and perform CRUD operations on an Oracle
database. It internally leverages Oracle .NET Managed Provider System.Data.
OracleClient to connect and perform operations on an Oracle 9i database.

The following class diagram shows the properties and methods exposed by the
OracleDatabase class:

GenericDatabase class
The GenericDatabase class also inherits from the Database class and is part of
the Microsoft.Practices.EnterpriseLibrary.Data namespace. This class
doesn't provide any specific behavior and is used when none of the other concrete
implementations of Database maps to the specific data provider. It overrides only
one method; the protected DeriveParameters method is overridden and it throws
an exception of type NotSupportedException. Being a generic implementation,
there is obviously no generic way and support for parameter discovery.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Data Access Application Block

[32]

The following class diagram shows the methods exposed by GenericDatabase class:

Creating a Database instance
We have several options at hand while creating a Database object such as using
the static DatabaseFactory class, using Unity Service Locator, and using Unity
container directly. A few approaches such as configuring the container through
configuration file or code are not listed here but the recommended approach is
either to use the Unity Service Locator for applications with few dependencies or
create objects using Unity container directly to leverage the benefits of this approach.
Use of the static factory class is not recommended.

More information on Unity Container and Service Locator
is available at http://msdn.microsoft.com/en-us/
library/ff664535(PandP.50).aspx.

Using the DatabaseFactory class
DatabaseFactory is a static class and is part of the Microsoft.Practices.
EnterpriseLibrary.Data namespace. This class contains factory methods
for creating Database objects; it exposes a method called CreateDatabase
with an overload accepting the connection string name. Internally, it leverages
EnterpriseLibraryContainer, which is part of the Microsoft.Practices.
EnterpriseLibrary.Common.Configuration namespace; this class is an entry
point for the container infrastructure for Enterprise Library.

The following class diagram shows the methods exposed by the
DatabaseFactory class:

Chapter 2

[33]

Static factory classes were the default approach to creating objects with versions
prior to 5.0. This approach is no longer recommended and is still available for
backward compatibility.

The following is the syntax to create a deafult instance of Database using the
DatabaseFactory class:

Database db = DatabaseFactory.CreateDatabase();

The following is the syntax to create a named instance of Database using the
DatabaseFactory class:

Database db = DatabaseFactory.CreateDatabase
 ("EntLibBook-DataAccess");

Using Unity service locator
This approach is recommended for applications with few dependencies. The
EnterpriseLibraryContainer class exposes a static property called Current of
type IServiceLocator, which resolves and gets an instance of the specified type.

The following is the syntax to create a deafult instance of Database using Unity
service locator:

Database db = EnterpriseLibraryContainer.Current.
GetInstance<Database>();

The following is the syntax to create a named instance of Database using Unity
service locator:

Database db = EnterpriseLibraryContainer.Current.GetInstance<Database>
("EntLibBook-DataAccess");

Using Unity container directly
Larger complex applications demand looser coupling. This approach leverages
the dependency injection mechanism to create objects instead of explicitly creating
instances of concrete implementations. Unity container resolves objects using type
registrations and mappings; these can be configured programmatically or through
a configuration file and based on the configuration it resolves the appropriate type
whenever requested. The following example instantiates a new Unity container object
and adds the Enterprise Library Core Extension. This loads the configuration and
makes registrations and mappings of Enterprise Library available.

Data Access Application Block

[34]

The following is the syntax to create a default Database instance directly using Unity
container:

var container = new UnityContainer();
container.AddNewExtension<EnterpriseLibraryCoreExtension>();
Database database = container.Resolve<Database>();

The following is the syntax to create a named Database instance directly using
Unity container:

var container = new UnityContainer();
container.AddNewExtension<EnterpriseLibraryCoreExtension>();
Database database = container.Resolve<Database>("EntLibBook-
DataAccess");

Retrieving records using ExecuteReader
Retrieving records is one of the most common database operations and the Data
Access block provides several different ways to retrieve data. The ExecuteReader
method allows us to execute a database command and returns an object implementing
the IDataReader interface. This provides us a way to read records as a read-only and
forward-only stream of rows.

The following code block shows records retrieval using ExecuteReader:

//Step 1: Create Default Database instance
Database db = EnterpriseLibraryContainer.Current.
GetInstance<Database>();

//Step 2: Create Database Command - SQL String
DbCommand dbCommand = db.GetSqlStringCommand("SELECT CustomerID,
FirstName, LastName FROM Customers WHERE CustomerID = @CustomerID");

//Step 3: Add Input Parameters
db.AddInParameter(dbCommand, "CustomerID", DbType.Int32, 1);

//Step 4: Execute Query
using (IDataReader reader = db.ExecuteReader(dbCommand))
{
 // Read Data and map to business entity
}

Chapter 2

[35]

We created an instance of Database using EnterpriseLibraryContainer. Since
we are executing a query with parameters we created DbCommand object using the
GetSqlStringCommand method of Database. Next, we added the input parameter
using the AddInParameter method of Database, then we took the final step of
executing the command using the ExecuteReader method. This method returns
IDataReader. The data reader will be closed as it is wrapped with a using statement
and the connection will be closed automatically.

Retrieving records using DataSet
Records can be retrieved as a DataSet by invoking the ExecuteDataSet method of
the Database; also LoadDataSet can be used to load the data to an existing DataSet.

The following code block shows record retrieval using ExecuteDataSet:

//Step 1: Create Default Database instance
Database db = EnterpriseLibraryContainer.Current.
GetInstance<Database>();

//Step 2: Create Database Command - SQL String
DbCommand dbCommand = db.GetSqlStringCommand("SELECT CustomerID,
FirstName, LastName FROM Customers");

//Step 3: Execute Query
DataSet categoryDataSet = db.ExecuteDataSet(dbCommand);

The given code block demonstrates retrieving a DataSet from the Customers table
using a simple SQL query and executing against the configured database.

Retrieving a record as an object
While working with data it is quite common to retrieve data and store it in a
business/data entity. Generally, this is achieved by looping through the records
and mapping each column with the corresponding property of the business/data
entity. The Database class provides two methods, ExecuteSprocAccessor and
ExecuteSqlAccessor, to return the result as an object. The accessor can also be
created separately using the CreateSprocAccessor and CreateSqlStringAccessor
methods and executed by calling its Execute method. The accessor uses a parameter
mapper to map parameters and an output mapper to map the columns to the
properties of the specified object.

Data Access Application Block

[36]

Parameter mappers
The Database class exposes several methods that accept a stored procedure name
and an object[] for parameter values. These methods construct a DbParameter
object using the parameter value and the information obtained by executing the
ADO.NET DeriveParameters method to discover the parameters required by the
procedure. Default mapping uses the position to map stored procedure parameters
to the values in the object[].

The following are the methods that accept the parameter values as object[]:

public virtual DataSet ExecuteDataSet(string storedProcedureName,
params object[] parameterValues);

public virtual DataSet ExecuteDataSet(DbTransaction transaction,
string storedProcedureName,params object[] parameterValues);

public virtual int ExecuteNonQuery(string storedProcedureName, params
object[] parameterValues);

public virtual int ExecuteNonQuery(DbTransaction transaction, string
storedProcedureName, params object[] parameterValues);

public IDataReader ExecuteReader(string storedProcedureName, params
object[] parameterValues);

public IDataReader ExecuteReader(DbTransaction transaction, string
storedProcedureName, params object[] parameterValues);

public virtual object ExecuteScalar(string storedProcedureName, params
object[] parameterValues);

public virtual object ExecuteScalar(DbTransaction transaction, string
storedProcedureName, params object[] parameterValues);

public virtual DbCommand GetStoredProcCommand(string
storedProcedureName, params object[] parameterValues);

public virtual void LoadDataSet(string storedProcedureName, DataSet
dataSet, string[] tableNames, params object[] parameterValues);

public virtual void LoadDataSet(DbTransaction transaction, string
storedProcedureName, DataSet dataSet, string[] tableNames, params
object[] parameterValues);

Chapter 2

[37]

public virtual IAsyncResult BeginExecuteNonQuery(string
storedProcedureName, AsyncCallback callback, object state, params
object[] parameterValues);

public virtual IAsyncResult BeginExecuteNonQuery(DbTransaction
transaction, string storedProcedureName, AsyncCallback callback,
object state, params object[] parameterValues);

public virtual IAsyncResult BeginExecuteReader(string
storedProcedureName, AsyncCallback callback, object state, params
object[] parameterValues);

public virtual IAsyncResult BeginExecuteReader(DbTransaction
transaction, string storedProcedureName, AsyncCallback callback,
object state, params object[] parameterValues);

public virtual IAsyncResult BeginExecuteScalar(string
storedProcedureName, AsyncCallback callback, object state, params
object[] parameterValues);

public virtual IAsyncResult BeginExecuteScalar(DbTransaction
transaction, string storedProcedureName, AsyncCallback callback,
object state, params object[] parameterValues);

While default mapping is useful, there might be circumstances where we might want
to create a custom mapping. We can create a custom parameter mapper by inheriting
from the IParameterMapper interface; we have to provide implementation for the
AssignParameters method, which holds the logic for custom parameter mapping.

The following code block shows a simple implementation of a custom
parameter mapper:

public class CustomerParameterMapper : IParameterMapper
{
 public void AssignParameters(DbCommand command, object[]
parameterValues)
 {
 DbParameter parameter = command.CreateParameter();
 parameter.ParameterName = "@CustomerID";
 parameter.Value = parameterValues[0];
 command.Parameters.Add(parameter);
 }
}

Data Access Application Block

[38]

The following class diagram shows the method exposed by the
IParameterMapper interface:

Output mappers
The output mapper is a very useful feature that allows us to map the columns of a
record from database to the property of an object. We have several options to map
the record(s) to object(s) such as the default row mapper, custom row mapping using
the MapBuilder class, custom row mapping using IRowMapper<TResult>, and using
IResultSetMapper<TResult> for mapping a hierarchy of objects.

Default row mappers
The default row mapper simply matches each property of the provided object type
with the columns on the retrieved result. This is done based on the names of the
column and property; hence, this approach requires the column and property names
to be the same.

Row mapping using MapBuilder
The Database Access block provides a class called MapBuilder that makes it very
easy to create custom output mapping. It has several methods that help in mapping
column names with property names; this information is used to create entity objects.

The following is a sample mapping to demonstrate the power of this approach:

IRowMapper<Customer> rowMapper = MapBuilder<Customer>.

MapNoProperties().Map(c => c.ID).ToColumn("CustomerID").Build();

Row mapping using IRowMapper<TResult>
We can write a mapping class by inheriting from the IRowMapper<TResult>
interface; this interface provides a MapRow method, which will be called by the Data
Access block during the mapping process. We have to provide our mapping logic in
the MapRow method and return the object.

Chapter 2

[39]

The following is a simple Customer class mapping implementation:

public class CustomerRowMapper : IRowMapper<Customer>
{
 public Customer MapRow(IDataRecord row)
 {
 Customer customer = new Customer();
 customer.ID = (int)row["CustomerID"];
 customer.FirstName = row["FirstName"] as string;
 customer.LastName = row["LastName"] as string;

 return customer;
 }
}

The following class diagram shows the method exposed by the IRowMapper interface:

Result Set mappers
Row mapping generates a single instance of the object type; there might be
scenarios in which we want to create an entire object hierarchy of a simple
or complex graph. For this very purpose, the Data Access block provides the
IResultSetMapper<TResult> interface, which has a MapSet method. We have
to provide custom mapping logic in the MapSet method and return the object.

The following class diagram shows the method exposed by the
IResultSetMapper interface:

Data Access Application Block

[40]

Data Accessors
Accessors is the means through which we leverage the parameter and output
mapper functionality. It executes the specified query using the parameter values and
an optional parameter mapper and returns the result as an object of the specified
type. The Database Access block provides two types of accessors: SQL String
Accessor and Stored Procedure Accessor.

The following class diagram shows Data Accessor-related classes, inheritance
hierarchy, and the methods exposed by each class:

Chapter 2

[41]

Creating and executing Accessors
The following code snippet creates a row mapper that maps the properties of
the Book class to the columns retrieved by the stored procedure. This definition
gives enough information to the Data Access block to generate an object of type
Book. Once the IRowMapper object is ready, we create an accessor object using the
CreateSprocAccessor (CreateSqlStringAccessor for an SQL string) method
of Database. While creating this object, we are specifying the stored procedure
name and passing the IRowMapper object. Parameter mapping information is
not explicitly passed but other overloaded methods of CreateSprocAccessor
(CreateSqlStringAccessor for an SQL string) accept an IParameterMapper
object. Finally, we use the accessor object and execute it while passing the
parameter value of BookID.

The following code block shows the usage of IRowMapper with MapBuilder to
map column name with properties of the class and finally retrieve object using
CreateSprocAccessor method:

Book book = null;

//Step 1: Create Default Database instance
Database db = EnterpriseLibraryContainer.Current.
GetInstance<Database>();

//Step 2: Create Row Mapper
IRowMapper<Book> rowMapper = MapBuilder<Book>.MapNoProperties()
 .Map(b => b.BookID).ToColumn("BookID")
 .Map(b => b.ISBN).ToColumn("ISBN")
 .Map(b => b.Title).ToColumn("Title")
 .Map(b => b.PublicationDate).
ToColumn("PublicationDate")
 .Build();

//Step 3: Create Accessor
var accessor = db.CreateSprocAccessor<Book>("usp_get_Book",
rowMapper);

//Step 4: Execute
book = accessor.Execute(id).SingleOrDefault();

Data Access Application Block

[42]

Retrieving multiple records as an object
collection
While a row mapper is used to generate a single instance of the object type specified
for each row, there are situations where we want to map a complex hierarchy
of objects. A custom result set mapper class can be written for this purpose by
implementing the IResultSetMapper interface. The following code snippet is for a
result set mapper of type Book. We just need to implement the mapping logic in the
MapSet method; we are mapping the properties of the Book object with the columns
of the DataReader.

The following code block shows the custom implementation of result set mapper by
implementing IResultSetMapper interface:

class BookResultSetMapper : IResultSetMapper<Book>
{
 public IEnumerable<Book> MapSet(IDataReader reader)
 {
 List<Book> bookList = new List<Book>();

 while (reader.Read())
 {
 Book book = new Book();
 book.BookID = reader.GetInt32
 (reader.GetOrdinal("BookID"));
 book.ISBN = reader.GetString(reader.GetOrdinal("ISBN"));
 book.Title = reader.GetString(reader.GetOrdinal("Title"));
 book.PublicationDate = reader.GetDateTime
 (reader.GetOrdinal("PublicationDate"));

 bookList.Add(book);
 }

 return bookList;
 }
}

Chapter 2

[43]

The following code snippet demonstrates the usage of the BookResultSetMapper
class. We create the accessor by passing the SQL string and an instance of
BookResultSetMapper. Next, we invoke the Execute method of the accessor to
execute the query and generate the output of type IEnumerable<Book>.

string sqlString = "SELECT BookID, ISBN, Title, PublicationDate FROM
Books";

//Step 1: Create Default Database instance
Database db = EnterpriseLibraryContainer.Current.
GetInstance<Database>();

//Step 2: Create Accessor
var accessor = db.CreateSqlStringAccessor<Book>(sqlString, new
BookResultSetMapper());

//Step 3: Execute
var books = accessor.Execute();

Retrieving records as XML
Application requirements challenge developers in the least expected ways and there
might be a scenario in which we need to retrieve data from the database as XML.
SQL Server supports retrieval of data in XML format through a mechanism called
SQLXML. As this feature is limited to SQL Server, the functionality is only exposed
as part of SqlDatabase and hence we have to cast the Database as SqlDatabase to
execute the ExecuteXmlReader method.

The following code snippet shows the retrieval of records as XML using the
ExecuteXmlReader method:

//Step 1: Create Default Database instance
SqlDatabase db = EnterpriseLibraryContainer.Current.
GetInstance<Database>() as SqlDatabase;

//Step 2: Create Database Command - SQL String
DbCommand dbCommand = db.GetSqlStringCommand("SELECT BookID, ISBN,
Title, PublicationDate FROM Books FOR XML AUTO");

try
{
 //Step 3: Execute Query
 using (XmlReader reader = db.ExecuteXmlReader(dbCommand))
 {
 // Read Data and map to business entity

Data Access Application Block

[44]

 while (!reader.EOF)
 {
 // Read/Process Data
 }
 }
}
finally
{
 //Step 4: Close Connection
 if (dbCommand.Connection != null)
 {
 dbCommand.Connection.Close();
 }
}

This code block executes an SQL statement containing the FOR XML statement;
ExecuteXmlReader returns an XmlReader object. Unlike other execute methods that
set the command behavior to close the connection when the reader is closed, this
method doesn't automatically close the database connection. We have added a try/
finally block to make sure the connection is closed once we are done reading/
processing the data.

Executing a command using
ExecuteNonQuery
ExecuteNonQuery executes a command and returns the number of records affected.
There are six overloaded methods available to meet different needs such as executing
an SQL query, a stored procedure, a stored procedure with parameter values, with
transaction, and so on.

The following code snippet shows the usage of the ExecuteNonQuery method and
the retrieval of the output parameter value:

//Step 1: Create Default Database instance
Database db = EnterpriseLibraryContainer.Current.
GetInstance<Database>();

//Step 2: Create Database Command - Stored Procedure
DbCommand dbCommand = db.GetStoredProcCommand("usp_insert_Customer");

//Step 3: Add Input Parameters
db.AddInParameter(dbCommand, "FirstName", DbType.String, "John");
db.AddInParameter(dbCommand, "LastName", DbType.String, "Lennon");

Chapter 2

[45]

//Step 4: Add Output Parameter
db.AddOutParameter(dbCommand, "CustomerID", DbType.Int32, int.
MaxValue);

//Step 5: Execute Query
int numberOfRecordsAffected = db.ExecuteNonQuery(dbCommand);

if (numberOfRecordsAffected > 0)
{
 //Step 6: Retrieve Output Parameter Value
 int customerID = (int)db.GetParameterValue(dbCommand,
"CustomerID");
}

This code snippet demonstrates a typical usage of ExecuteNonQuery where a stored
procedure is used to insert a record and we retrieve the primary key value as part of
the value of output parameter.

Retrieving scalar values
One of the common requirements while working with databases is to retrieve a
single value. The ExecuteScalar method provides the ability to execute a command
or a query and returns the value of the first column of the first record. Similar to
other execute methods, the ExecuteScalar method contains six overloads satisfying
several different scenarios.

The following code snippet shows the retrieval of scalar value using the
ExecuteScalar method:

//Step 1: Create Default Database instance
Database db = EnterpriseLibraryContainer.Current.
GetInstance<Database>();

//Step 2: Create Database Command - SQL String
DbCommand dbCommand = db.GetSqlStringCommand("SELECT COUNT(*) FROM
Customers");

//Step 3: Execute Query
int totalCustomers = (int)db.ExecuteScalar(dbCommand);

The previous code block demonstrates the typical usage of the ExecuteScalar
method that retrieves the total record count for a specific SQL query.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Data Access Application Block

[46]

Updating records using DataSet
DataSet is an in-memory cache of data retrieved from a data source; it is especially
very useful during disconnected mode. Records can be added, updated, and deleted
in memory; the DataSet keeps track of these changes and can be used to make
batch updates to the database. Typically a DataSet object is created or loaded using
the ExecuteDataSet or LoadDataSet methods respectively. The only difference is
that LoadDataSet loads data on existing DataSet objects; this approach is useful
while retrieving data through multiple execution. Once the data is retrieved and
records have been added/modified/deleted, the DataSet can be passed on to the
UpdateDataSet method of Database to update the database with the changes.

The following code snippet shows a typical record update using DataSet:

DataSet customerDataSet = new DataSet();

//Step 1: Create Default Database instance
Database db = EnterpriseLibraryContainer.Current.
GetInstance<Database>();

//---
//Step 2: Create Database Command to retrieve Customers
DbCommand selectCommand = db.GetSqlStringCommand("Select CustomerID,
FirstName, LastName From Customers");

//Step 3: Retrieve Customers using LoadDataSet
db.LoadDataSet(selectCommand, customerDataSet, "Customers");
//---

//Step 4: Get the Customer DataTable Object for convenience
DataTable customerTable = customerDataSet.Tables["Customers"];

//---
//Step 5: Create Database Command to insert Customers
DbCommand insertCommand = db.GetSqlStringCommand("INSERT INTO
Customers(FirstName, LastName) VALUES(@FirstName, @LastName)");

//Step 6: Add input parameters to insert Customers
db.AddInParameter(insertCommand, "FirstName", DbType.String,
"FirstName", DataRowVersion.Current);
db.AddInParameter(insertCommand, "LastName", DbType.String,
"LastName", DataRowVersion.Current);

//Add new Customer to the table

Chapter 2

[47]

customerTable.Rows.Add(new object[] { DBNull.Value, "Mark", "Twain"
});

//---

//---
//Step 7: Create Database Command to update Customers
DbCommand updateCommand = db.GetSqlStringCommand("UPDATE Customers
SET FirstName = @FirstName, LastName = @LastName WHERE CustomerID = @
CustomerID");

//Step 8: Add input parameters to update Customers
db.AddInParameter(updateCommand, "CustomerID", DbType.Int32,
"CustomerID", DataRowVersion.Current);
db.AddInParameter(updateCommand, "FirstName", DbType.String,
"FirstName", DataRowVersion.Current);
db.AddInParameter(updateCommand, "LastName", DbType.String,
"LastName", DataRowVersion.Current);

//Modifying First & Last Name of Customer
customerTable.Rows[0]["FirstName"] = "Rob";
customerTable.Rows[0]["LastName"] = "Connery";

//---

//---
//Step 9: Add input parameters to delete Customers
DbCommand deleteCommand = db.GetSqlStringCommand("DELETE FROM Customer
WHERE CustomerID = @CustomerID");

//Step 10: Add input parameters to delete Customers
db.AddInParameter(deleteCommand, "CustomerID", DbType.Int32,
"CustomerID", DataRowVersion.Current);

//Deleting Customer
customerTable.Rows[4].Delete();

//---

//---
//Step 11: Update DataSet
int rowsAffected = db.UpdateDataSet(customerDataSet, "Customers",
 insertCommand, updateCommand,
 deleteCommand,
 UpdateBehavior.Standard);
//---

Data Access Application Block

[48]

Although this code snippet demonstrates this functionality in a single method,
the retrieval and modification will be two separate tasks. We have to provide a
DbCommand object for Insert, Update, and Delete to the UpdateDataSet method as
these commands are required to perform the appropriate operations. The Database
class is abstracting us from writing the boilerplate code of creating and executing the
DataAdapter method to update the data.

Working with transactions
Transaction is an important piece of functionality. While executing multiple
operations against the database it is a common requirement to successfully execute
all the operations or the database must roll back to the state before the operation
began. A typical example is to debit one account with an amount and then credit
the same amount into another account. It becomes important for the database to
execute both the debit and credit operations successfully or neither of them should
be committed to the database.

There are several ways to achieve this functionality, for example, controlling
the transaction in a stored procedure using T-SQL statements such as BEGIN
TRANSACTION, END TRANSACTION, and ROLLBACK TRANSACTION. TransactionScope
can also be used to execute several database operations within or across the database.
However we will be exploring the transaction support provided by ADO.NET; this
transaction is initiated explicitly by calling the BeginTransaction method on the
DbConnection object and we explicitly commit or roll back the transaction by calling
the Commit or Rollback method on the instance of DbTransaction.

The following code block shows multiple operations performed under a transaction:

//Step 1: Create Default Database instance
Database db = EnterpriseLibraryContainer.Current.
GetInstance<Database>();

//Create Database Command Object to perform credit operation
DbCommand creditCommand = db.GetStoredProcCommand("usp_Account_
CreditAmount");
db.AddInParameter(creditCommand, "BankAccountID", DbType.Int32, 1234);
db.AddInParameter(creditCommand, "Amount", DbType.Int32, 5000);

//Create Database Command Object to perform debit operation
DbCommand debitCommand = db.GetStoredProcCommand("usp_Account_
DebitAmount");
db.AddInParameter(debitCommand, "BankAccountID", DbType.Int32, 4321);
db.AddInParameter(debitCommand, "Amount", DbType.Int32, 5000);

Chapter 2

[49]

//Step 2: Create Database Connection
using (DbConnection dbConnection = db.CreateConnection())
{
 //Step 3: Open Database Connection
 dbConnection.Open();

 //Step 4: Begin Transaction
 DbTransaction dbTransaction = dbConnection.BeginTransaction();

 try
 {
 //Step 5: Perform Database Operations
 int creditAccountRowsAffected = db.ExecuteNonQuery
 (creditCommand, dbTransaction);
 int debitAccountRowsAffected = db.ExecuteNonQuery
 (debitCommand, dbTransaction);

 if (creditAccountRowsAffected > 0
 && debitAccountRowsAffected > 0)
 {
 //Step 6: Commit the transaction
 dbTransaction.Commit();
 }
 }
 catch
 {
 //Exception Occured: Roll back the transaction
 dbTransaction.Rollback();
 }

 dbConnection.Close();
}

The previous code snippet demonstrates the transaction mechanism using the built-
in support of ADO.NET transaction. The Database class exposes a method called
CreateConnection to create a connection, which returns a generic DbConnection
object, and using this object we explicitly open and close the database connection.
This is required as only we are aware of the boundary and the commands to be
executed. Once the database connection is opened, we use the connection object to
explicitly initiate the transaction by invoking the BeginTransaction method. This
method returns the DbTransaction object. This object will be used to commit or roll
back based on the outcome of the query execution. It is a good practice to wrap the
query execution block in a try/catch/finally block to roll back during exceptions.

Data Access Application Block

[50]

Summary
In this chapter, we have learned about the fundamental elements of the Data Access
Application Block such as Database, SqlDatabase, OracleDatabase, SqlCeDatabase,
GenericDatabase, Parameter Mapper, Output Mappers, and so on. We have learned
about the required assemblies and configuration. We have also explored various ways
of data retrieval, adding of input and output parameters, mapping of parameters and
rows, and learned to leverage DbTransaction. In the next chapter, we will explore,
understand, and leverage the Logging block to write messages.

Logging Application Block
We spend a lot of time and effort to develop world-class applications; it's as if
we are painstakingly creating a virtual life. Unfortunately, this virtual living
being (application) cannot send a distress signal to seek help during unforeseen
circumstances. Developers have a responsibility to empower the application so that it
can leave us a message with enough information to track and resolve the issue. Let's
face it, there are millions of things that can go wrong during development, or while
the application is in production. While in development, we have the luxury to debug
the application and fix the bugs, in production we need a mechanism to flip a switch
and make the application tell us "what happened", "when it happened", and so on.
Such logging of information is crucial to understand the root cause of an issue and
helps in quickly resolving it. Also, logging is not just limited to persisting exception/
error messages; it can also be useful for auditing purposes too.

The Logging Application Block provides developers with a flexible library that
satisfies simple to complex logging requirements. The simple task of logging
to a file using the Logging block requires just two lines of code and a simple
three or four-click configuration. Developers can categorize log entries (and log them
to one or more logging targets) and format them using the available formatters.
Logging filters allow developers to enable or disable logging based on category,
priority, or if required, disable logging completely. It also provides a mechanism for
tracing application activities. Although the Logging block provides lot of options,
if required we can leverage extension points to write custom logging targets, log
entry formatters, and logging filters to meet specific requirements. The way it
works is that our application code sends the logging information (LogEntry) using
LogWriter or a static façade Logger class. The log entry consists of a log message
and may also contain category, priority, event ID, severity, title, and other additional
context information. On the configuration side, we can add categories and associate
these categories to one or more destinations called Logging Target Listeners
(file, database, and so on). Additionally, these listeners can be configured to use a
formatter to format the log entry. Before writing the log entry, the Logging block
checks whether there are any filter conditions, generally called Logging Filters. This
helps in controlling logging through configuration file.

Logging Application Block

[52]

In this chapter, you will:

•	 Be introduced to the Logging Application Block
•	 Understand the concepts behind the Logging Application Block
•	 Learn about referencing the required and optional assemblies
•	 Learn to set up the initial infrastructure configuration using the

configuration editor
•	 Learn about the required and optional namespaces to avoid fully

qualifying types
•	 Explore the design elements of the Logging block
•	 Learn to leverage the LogEntry class
•	 Learn to use Logger and LogWriter to write log messages
•	 Learn to configure Special Categories
•	 Learn to add and configure Log Categories
•	 Learn to log messages to the Event Log
•	 Learn to configure to log messages to a flat file
•	 Learn to configure to log messages to a series of flat files
•	 Learn to configure to log messages to a text file in XML format
•	 Learn to configure to log messages to a database
•	 Learn to configure to send log messages to an e-mail address
•	 Learn to configure System Diagnostics Trace Listener
•	 Learn to configure to send log messages to a Message Queue
•	 Learn to configure to send log messages to WMI
•	 Learn to configure Log Message Formatters
•	 Understand and learn to configure Logging Filters such as Category Filter,

Logging Enabled Filter, and Priority Filter
•	 Learn to implement custom trace listeners, log formatters, and log filters

Chapter 3

[53]

Developing an application
Before we dig deeper in to individual features of the Logging block, we will touch
upon the basic elements by creating a sample application. This will help us to get
up-to-speed with the basics. In this section, we will do the following:

•	 Reference the Logging block assemblies
•	 Set up the initial configuration
•	 Write code to log a message

Referencing assemblies
For the purposes of this demonstration, we will be referencing non-strong-
named assemblies but based on individual requirements Microsoft strong-named
assemblies, or a modified set of custom assemblies can be referenced as well. Since
we will also be exploring the configuration of database logging features in this
chapter, we will include references to the database logging-related assemblies to
the project.

The following table lists the required/optional assemblies.

Assembly Required/Optional
Microsoft.Practices.EnterpriseLibrary.Common.dll Required
Microsoft.Practices.ServiceLocation.dll Required
Microsoft.Practices.Unity.dll Required
Microsoft.Practices.Unity.Interception.dll Required
Microsoft.Practices.EnterpriseLibrary.Logging.dll Required
Microsoft.Practices.EnterpriseLibrary.Data.dll

Microsoft.Practices.EnterpriseLibrary.Logging.
Database.dll

Optional

Only if database
logging is required

Logging Application Block

[54]

Open Visual Studio 2008/2010 and create a new sample Windows Forms
Application by selecting File | New | Project | Windows Forms Application,
and provide the appropriate name for the solution and the desired project location.
Currently, the application will have a default form and assembly references. In the
Solution Explorer right-click on the References section and click on Add Reference
and go to the Browse tab. Next, navigate to the Enterprise Library 5.0 installation
location; the default install location is %Program Files%\Microsoft Enterprise
Library 5.0\Bin. Now, select all the assemblies listed in the previous table. The
final assembly selection will look similar to the following screenshot; note that the
assemblies have been moved together for your reference.

Chapter 3

[55]

After clicking on OK, the following screenshot displays the Solution Explorer listing
all the added assemblies.

The next step is to add a configuration file to the project. Right-click on the project
and navigate and click on the menu Add | New Item; this will display the Add New
Item dialog. Select Application Configuration File and click on Add. This action
will add a configuration file named App.config to the project. We can now add the
Logging settings to the configuration file.

Adding Logging Settings
Before we can leverage the features of the Logging Application Block, we have
to add the initial Logging Settings to the configuration file. Open the Enterprise
Library configuration editor either using the shortcut available in Start | All
Programs | Microsoft patterns & practices | Enterprise Library 5.0 | Enterprise
Library Configuration or by just right-clicking the configuration file in the Solution
Explorer window of Visual Studio IDE and clicking on Edit Enterprise Library V5
Configuration. Initially, Enterprise Library configuration editor will display two
default sections: Application Settings and Database Settings.

Logging Application Block

[56]

The following screenshot displays the default settings displayed in the
configuration editor:

Let us go ahead and add the Logging Settings in the configuration file. Select the
menu option Blocks, which lists several application block settings to be added to the
configuration. Click on the Add Logging Settings menu item to add the Logging
configuration settings.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[57]

The following screenshot displays the Logging Settings section added to the
configuration editor:

Notice the Logging Settings are grouped in to five headings, namely Categories,
Special Categories, Logging Filters, Logging Target Listeners and Log Message
Formatters. By default, the settings are configured with a category called General,
Logging Target Listener as Event Log Listener and Log Message Formatter as Text
Formatter. We will change the default configuration further; but for now, we are in
good shape to leverage the Logging block and write our first log message.

Adding namespaces
Instead of fully qualifying the type on every instance of its usage, we can add
the namespaces given below to the source code file to use the Logging block
elements without fully qualifying the references. Although we will be using
EnterpriseLibraryContainer to instantiate objects (so we will also add the
Microsoft.Practices.EnterpriseLibrary.Common.Configuration namespace
to the source file), the Unity Namespace section is listed to make you aware of the
availability of the alternative approach to instantiating objects.

Core Namespaces:

•	 System.Diagnostics

•	 Microsoft.Practices.EnterpriseLibrary.Logging

Logging Application Block

[58]

Configuration Namespace (Optional): Required while using the
EnterpriseLibraryContainer to instantiate objects

•	 Microsoft.Practices.EnterpriseLibrary.Common.Configuration

Unity Namespaces (Optional): Required while instantiating objects using
UnityContainer

•	 System.Configuration

•	 Microsoft.Practices.Unity

•	 Microsoft.Practices.Unity.Configuration

Writing a log message
We are now ready to write our first log message. Since we are using the default
configuration, the log message will use the default category General, the log entry
will be written to the Windows Event Log, and the message will be formatted using
the Text Formatter. The first step in writing the log message is to create an instance of
LogWriter. LogWriter is an abstract class and is the primary interface in this release
for creating log entries; this abstract class belongs to the Microsoft.Practices.
EnterpriseLibrary.Logging namespace.

The following code snippet creates the LogWriter instance using the
EnterpriseLibraryContainer class.

//Create a LogWriter instance using the EnterpriseLibraryContainer
LogWriter logWriter = EnterpriseLibraryContainer.Current.
GetInstance<LogWriter>();

So now we have an instance of LogWriter (from this point on we will be using the
variable logWriter to log the messages), the following code snippet calls the Write
method of the LogWriter instance. The simplest overloaded Write method accepts a
single parameter of type System.String representing the log message.

//Writes a new log entry to the default category
logWriter.Write("My First Log Message");

Chapter 3

[59]

In the given code snippet, we are using the simplest overload of the Write method
of the LogWriter class, this method uses the default category and the configured log
destination and formatter. Execution of this code will result in creation of a log entry
in the Windows Event Log. To view the result, open the Windows Event Viewer and
check the log message in the Application section.

By default, the Enterprise Library Logging source name is used
while writing to the Windows Event Log. Since creation of event
sources requires administrator privilege, we will have to run the
sample application with administrator privilege for the first time to
successfully write the log entry. During deployment, the application
installer should take care of creating the appropriate event source.

The following screenshot displays the log message written to the Windows
Event Log.

Logging Application Block

[60]

We have successfully written our first log message, in hindsight we have also
completed one cycle of the logging process by adding the assembly references,
configuring the Logging block settings, adding the namespace, and writing the
code to log the message. We will now pick each individual configuration and code
elements and learn to understand them in detail.

Exploring design elements
The design of the Logging Application Block involves several elements such as
log message, category, logging destination/target and the format in which the
information has to be logged. Additionally, we may have filters to enable/disable
logging based on certain criteria.

The design elements of the Logging Application Block are as follows:

•	 LogEntry

•	 Logger

•	 LogWriter

•	 Trace Source Categories
•	 Trace Listeners
•	 Log Message Formatters
•	 Logging Filters
•	 TraceManager and Tracer

We will now explore the technical details of each one of these design elements.

LogEntry
The very basic information for a log entry is the log message; additionally it may
have other information such as Title, Priority, Categories, EventId, Severity,
ActivityId, TimeStamp, and so on. The LogEntry class part of the Microsoft.
Practices.EnterpriseLibrary.Logging namespace holds all this information,
which can be passed on to the Write method of a Logger or LogWriter instance. We
have not used the LogEntry while writing our first log message; the Write method
provides several overloads, which can be used to pass as little information as we want
and simplify the task of logging. However LogWriter internally creates a LogEntry
object with the details provided in the respective overloaded Write method.

The following screenshot shows the class diagram of LogEntry, XmlLogEntry,
and TraceLogEntry.

Chapter 3

[61]

Logging Application Block

[62]

The LogEntry class inherits from the ICloneable interface and so it supports
cloning; the Clone method can be called to create a new LogEntry object that
is a copy of the current instance. The XmlLogEntry class inherits from the
LogEntry class; it provides support to log messages in XML format, and the
XmlTraceListener class leverages XmlLogEntry to deliver the trace data as XML. A
LogEntry object can be constructed using several different constructors that accept
several parameters, apart from which it exposes several public properties that can be
assigned. Many of these properties such as MachineName, ProcessId, ProcessName,
and so on are initialized internally if the value is not assigned explicitly. A special
mention to ExtendedProperties, this property allows us to add additional
information to the log entry and is quite handy to log custom information.

The following is a list of the properties of the LogEntry class for your quick
reference. Values of these properties will be part of the generated log entry in the
configured destination (file, database, e-mail address, and so on).

Property Type Description
Title String Gets or sets the title of the log

message; by default this property is
set to String.Empty.

Message String Gets or sets the message body
to log; by default this property
returns String.Empty.

Categories ICollection<String> Gets or sets the category name
as a collection of strings; this
information will be used to route
the log entry to one or more trace
listeners.

CategoriesStrings String[] This read-only property returns
categories as a string array; this
property is available to support
WMI queries.

Priority int Gets or sets the priority or
importance of the log message;
by default it is -1. It is to be noted
that only messages satisfying the
priority filter configuration of
minimum and maximum priorities
(inclusive) will be processed.

Chapter 3

[63]

Property Type Description
Severity TraceEventType Gets or sets the severity of

type System.Diagnostics.
TraceEventType; the default
value is TraceEventType.
Information.

LoggedSeverity String This read-only property returns
the string representation of
Severity, which is of type
System.Diagnostics.
TraceEventType.

EventId int Gets or sets the event number or
identifier.

ActivityId Guid Holds tracing activity ID; a
Guid is generated and assigned
automatically if tracing is enabled.
Returns empty Guid if tracing is
not enabled.

ActivityIdString String This read-only property returns
a string representation of the
tracing activity ID to support WMI
queries.

RelatedActivityId Guid? Gets or sets the related activity ID;
by default this property is null.

AppDomainName String Gets or sets the AppDomain name;
if this property is not set then the
name of the AppDomain in which
the program is running will be
used.

MachineName String Gets or sets the machine name;
if this property is not set then
the current name of the machine
(Environment.MachineName) in
which the program is running will
be used.

ManagedThreadName String Gets or sets the name of the .NET
thread; if this property is not
set then the current thread name
(Thread.CurrentThread.Name)
will be used.

Logging Application Block

[64]

Property Type Description
ProcessId String Gets or sets the Win32 process ID;

if this property is not set then the
Win32 process ID for the current
running process will be used.

ProcessName String Gets or sets the process name;
if this property is not set then
the process name of the current
running process will be used.

Win32ThreadId String Gets or sets the Win32 thread ID;
if this property is not initialized
then it will automatically return
the Win32 thread ID of the current
thread provided unmanaged code
permission is available.

TimeStamp DateTime Gets or sets the date and time
of the log entry message; if this
property is not initialized then
it will automatically return
DateTime.UtcNow.

TimeStampString String This read-only property returns
the string representation of the
TimeStamp property formatted
using the current culture.

ErrorMessages String This read-only property returns
as String the error message
that was added using the
AddErrorMessage method.

ExtendedProperties IDictionary<String,
object>

Gets or sets additional properties
through a dictionary of key-value
pairs.

Logger
While writing our first log message we leveraged the LogWriter. Alternatively we
can also use the Logger class. The Logger class is a static façade to write log enties to
one or more logging destinations (trace listeners). This class is part of the Microsoft.
Practices.EnterpriseLibrary.Logging namespace and was used in the previous
versions to perform logging using the exposed methods, primarily the Write method.

Chapter 3

[65]

The following class diagram screenshot depicts the exposed properties and methods
of the Logger class.

The Logger class exposes several methods not only to write log messages but also
to perform supporting actions. The following is a list of the methods and brief
summary of each method:

Method Name Description
Write The Logger class provides a total of nineteen Write methods

with variable parameter signatures. These overloaded methods
go a long way in logging a meaningful log entry. At the bare
minimum it requires only the message to be logged, allowing it
to write the log entry to the default category.

ShouldLog This method is useful to query whether a LogEntry object
should be logged; it accepts a LogEntry instance and returns
true if the entry should be logged.

IsLoggingEnabled This method queries whether logging is enabled and returns
true/false based on the outcome of the query.

GetFilter There are three GetFilter methods, these methods return the
matching ILogFilter instance from the filters collection. If no
match is found then they return null.

SetContextItem This method accepts two parameters: key and value of type
Object. The added context items will be written with every log
entry.

FlushContextItems Calling this method will empty the context items dictionary.
Reset The Reset method as per the documentation is marked public

for testing purposes; it basically resets the writer used by the
façade. Please note threads still holding references to the old
LogWriter will fail when the LogWriter gets disposed.

Logging Application Block

[66]

Using Logger
Since Logger is a static façade class, we can start calling the methods mentioned
in the previous table without creating an instance. Internally, it creates a
local instance of LogWriter using EnterpriseLibraryContainer.Current.
GetInstance<LogWriter>() and forwards all the actions to the LogWriter instance.

The following code snippets demonstrate the usage of different overloads of the
Write method of the Logger class.

Logging using the default category:

Logger.Write("Log Message");

Logging using a specific category:

Logger.Write("Log Message", "LOG CATEGORY");

Passing a little more information:

//Message | Category | Priority | EventId | Severity | Title
Logger.Write("Log Message", "LOG CATEGORY", 1, 1234, TraceEventType.
Critical, "Log Title");

There are in total nineteen overloaded Write methods, each accepting a different
set of parameters and helping us construct the LogEntry object internally using the
information provided by us.

LogWriter
We have already explored the usage of LogWriter while writing our first log message.
Basically, LogWriter is an abstract class and is the primary interface in this release
for creating log entries; this abstract class belongs to the Microsoft.Practices.
EnterpriseLibrary.Logging namespace. EnterpriseLibraryContainer has the
mapping information that resolves the type (LogWriter) and creates an instance
of LogWriterImpl. The LogWriter instance can be created using the dependency
injection approach or if required, the concrete implementation LogWriterImpl can
be used directly as well. The LogWriter instance writes log messages based on the
configuration and the messages are routed to the respective logging destinations
(trace listeners) based on category.

The following screenshot shows the methods exposed by LogWriter, and inheritance
details of LogWriterImpl and the LogWriterFactory class.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[67]

Logging Application Block

[68]

The LogWriter class also exposes several methods and some of them perform the
same actions as with the Logger class. There are few additional methods that are
not available in the Logger class. The following is a list of the methods and a brief
summary of each method.

Method Name Description
Write The LogWriter class provides a total of nineteen

Write methods with variable parameter signatures.
These overloaded methods go a long way in logging a
meaningful log entry. At the bare minimum it requires
only the message to be logged, allowing it to write the log
entry to the default category.

ShouldLog This method is useful to query whether a LogEntry
object should be logged; it accepts a LogEntry instance
and returns true if the entry should be logged.

IsLoggingEnabled This method queries whether logging is enabled and
returns true/false based on the outcome of the query.

IsTracingEnabled This method queries whether tracing is enabled and
returns true/false based on the outcome of the query.

GetFilter There are a total of three GetFilter methods; these
methods return the matching ILogFilter instance
from the filters collection. If no match is found then they
return null.

SetContextItem This method accepts two parameters, key and value of
type Object. The added context items will be written
with every log entry.

FlushContextItems Calling this method will empty the context items
dictionary.

GetMatchingTraceSources This method returns IEnumerable<LogSource> for
the matching trace category sources specified in the given
LogEntry instance.

We used the simplest overload of the Write method while logging our first log
message. To demonstrate the power of the other overloads, we will explore two more
overloaded options. One of the overloads allows us to pass message, title, category,
priority, event ID, and severity. This overload allows writing a log entry with the
value specified for several key elements.

The following code snippet calls the Write method that accepts Message, Category,
Priority, EventId, Severity, and Title.

//Writes a new log entry with the specified category, priority, event
id, severity and title
logWriter.Write("Log Message", "Log Category", 1, 1234,
TraceEventType.Information, "Log Title");

Chapter 3

[69]

So far we haven't explored the usage of the LogEntry class; we can construct a
LogEntry instance with the values for one or more key elements and pass it to the
overloaded Write method of the LogWriter instance.

The following is a code snippet that constructs a LogEntry instance and calls the
Write method.

//Create new LogEntry object
LogEntry logEntry = new LogEntry();

//Assign the category
logEntry.Categories = new string[] { "UI Events" };

//Assign title
logEntry.Title = "Log Title";

//Assign message
logEntry.Message = "Log Message";

//Assign priority
logEntry.Priority = 1;

//Assign severity
logEntry.Severity = TraceEventType.Information;

//Writes a new log entry using the LogEntry instance
logWriter.Write(logEntry);

Adding trace source categories
So far we have been using the default category (General) to log messages, which
was added automatically while setting up the Logging block settings. Now, let
us understand the concept behind Trace Source Categories and learn to add and
configure new categories. While logging in our application code, we provide one
or more category under which the log entry will be logged. Categories allow us
to group together a set of log messages. This helps us in controlling the logging
behavior such as log destination, log format, and enabling/disabling logging
through log filters. These categories can be associated with one or more logging
target listeners (log destinations).

We can configure two types of categories:

•	 Special categories
•	 Log categories

Logging Application Block

[70]

The following class diagram depicts the exposed properties and methods of the
LogSource class:

Configuring special categories
Special categories are nothing but out-of-the-box category sources provided by the
Logging Application Block. We cannot add additional categories or remove these
sources but we can provide one or more log destination (trace listener) to the special
category source.

The following table lists the three special categories and their descriptions.

Special Category Description
All Events If this special category is configured then regardless of

other matching categories, the log entry will be traced
through the log source.

Unprocessed Category If All Events special category is not configured and this
category is configured and the category specified in the
LogEntry instance is not defined in the configuration then
the log entry will be logged to this special category.

Logging Errors & Warnings If both All Event and Unprocessed Category are not
configured and the property Warn If No Category Match
in Logging Settings is set to true then the log entry will be
logged to this special category.

Chapter 3

[71]

Configuring log categories
Logging a message with defined categories not only gives more context to the
message but also allows finer control over it while deciding whether to turn on/off
logging for a particular category. It is a good practice to decide the logging categories
(for example, Debug, Trace, UI Events, Data Access Events, and so on) beforehand
instead of logging into the default category (General). Category sources are defined
in the configuration settings as part of the Logging Application Block configuration;
a default category is also set while adding the configuration using the Enterprise
Library configuration tool.

Let us add a new category in the categories section of the Logging Settings. Click on
the plus symbol provided in the Categories section. Next, click on the Add Category
menu item, a new category with default values will be loaded in the configuration
tool as seen in the following screenshot.

We will add a category named UI Events; for the purposes of the demonstration the
category name has been updated to UI Events. The following screenshot displays the
newly added category:

Logging Application Block

[72]

Note that the default Event Log Trace Listener is mapped by clicking on the plus
symbol against the Listeners and selecting the Event Log Trace Listener from the
drop-down list.

The following is the list of configurable properties and their description:

Property Description
Name Category name, used to identify this category. By default this

property is set to "Category" or if the name already exists then the
configuration tool appends the number 2, 3, 4 and so on.

Auto Flush Indicates whether Logging Target Listeners will automatically flush
messages and write the log entries as soon as they are received.
Setting it to False will buffer the log entries and they will be written
in batches or when a significant event occurs such as machine
shutting down. By default this property is set to True.

Listeners Allows adding one or more Logging Target Listeners for this
category; log entries will be sent to the configured listeners provided
they meet the minimum severity. We have to explicitly configure
the listeners.

Minimum Severity Indicates the minimum severity level required to log the message.
By default it is set to All.

Configuring trace listeners
Trace listeners determine where exactly the log entry will be sent for storage, each
trace source category may be associated with one or more trace listeners. Several
trace listeners are available out of the box to meet varied requirements; these inherit
from the abstract class called TraceListener, part of the System.Diagnostics
namespace. Apart from the trace listeners provided by the Logging Application
Block, .NET Framework also provides several trace listeners. The Logging block
provides additional formatting functionality, which is not available with the .NET
Framework trace listeners as they only send strings not a LogEntry object. The
following class diagram shows the base classes through which several trace listeners
are derived and additional functionality is implemented.

Chapter 3

[73]

Trace listeners such as FormattedEventLogTraceListener, the
FlatFileTraceListener, and the WMITraceListener use the same configuration
information as System.Diagnostics trace listeners. This means we can leverage
these three trace listeners provided as part of the <system.diagnostics>
configuration section. Several trace listeners have common properties that can be
configured; these properties are explained next:

Property Name Description
Name Used to identify an item.
Severity Filter This setting determines the minimum severity of message that will be

sent to the logging target. Below are the options for this setting; the
default setting is All.

•	 All
•	 Off
•	 Critical
•	 Error
•	 Warning
•	 Information
•	 Verbose
•	 ActivityTracing

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Logging Application Block

[74]

Property Name Description
Trace Output
Options

Trace listeners that do not output to a Text Formatter use this setting
to determine the elements/options to be included in the trace output.
Below are the possible values; by default none of the values is included.

•	 LogicalOperationStack
•	 DateTime
•	 Timestamp
•	 CallStack
•	 ProcessId
•	 ThreadId

Configuring Event Log Trace Listener
Although we have already seen this trace listener in action as it is part of the
default configuration, which was used while writing our first log message,
we haven't yet explored the design elements and the available configuration
options. Logging formatted messages to the Windows Event Log is provided
by the FormattedEventLogTraceListener class and is part of the Microsoft.
Practices.EnterpriseLibrary.Logging.TraceListeners namespace. This
class inherits from the abstract class FormattedTraceListenerWrapperBase. The
FormattedEventLogTraceListener class internally creates an instance of System.
Diagnostics.EventLogTraceListener and passes on to its base class.

The Logging block creates the event log source if it does not exist; since
creation of event log source requires appropriate privileges (access rights
to the registry key HKLM\System\CurrentControlSet\Services\
EventLog) the application/component must run with those privileges.
Alternatively, the event log source can be created while installing the
application/component under an account with the required privileges.

Chapter 3

[75]

The following screenshot depicts the default settings without any association to the
log formatter.

The following table provides a listing of all the configurable properties and their
description. It will help in modifying the default behavior of the Formatted Event
Log Trace Listener.

Property Description
Name Logging target listener name used to identify this item.
Formatter Name Name of the log message formatter; the drop-down list allows

selecting the currently added log message formatters.
Log Name Indicates the name of the Windows Event Log such as

Application or System to which the log messages will be written.
Machine Name Name of the machine to which the log messages should be

written; the default value is "." denoting the local machine.
Severity Filter Indicates the minimum severity of messages that should be

processed and sent to the logging target.
Source Name Source name to be used while writing to the Windows Event Log;

the default value is Enterprise Library Logging.
Trace Output Options Determines the elements included in the trace output for listeners

that do not output to a Text Formatter. The default value is None
and this property is optional.

Configuring Flat File Trace Listener
This trace listener writes log entries to a flat file using the configured log formatter.
The FlatFileTraceListener class is part of the Microsoft.Practices.
EnterpriseLibrary.Logging.TraceListeners namespace and inherits from
the FormattedTextWriterTraceListener class.

Logging Application Block

[76]

Flat File Trace Listener allows to output log messages to a disk file. The following is
a screenshot of the default configuration setting:

The following table lists the configuration properties and their description:

Property Description
Name Logging target listener name used to identify this item.
File Name Path and file name for the log file, using environment variables

such as %TEMP%, %WINDIR%, etc.
Formatter Name Name of the log message formatter, the drop-down list allows

selecting the currently added log message formatters.
Message Footer Footer text to be added to the log message.
Message Header Header text to be added to the log message.
Severity Filter Indicates the minimum severity of messages that should be

processed and sent to the logging target.
Trace Output Options Determines the elements included in the trace output for listeners

that do not output to a Text Formatter. The default value is None
and this property is optional.

While running the application in debug mode, the log file will be
generated in %Program Files%\Microsoft Visual Studio 9.0\
Common7\IDE folder, the "File Name" can be changed to ".\trace.
log" to generate the log file in the executing assembly folder.

Chapter 3

[77]

Configuring Rolling Flat File Trace Listener
While logging to a flat file is a good option, sometimes we might want to log to
new file based on the size or age of the file. The Rolling Flat File Trace Listener
provides this functionality by allowing us to configure the size and time thresholds.
The RollingFlatFileTraceListener class is part of the Microsoft.Practices.
EnterpriseLibrary.Logging.TraceListeners namespace and it inherits from the
FlatFileTraceListener class. The Rolling Flat File Trace Listener provides several
properties to tweak the behavior of the listener through configuration.

The following screenshot displays the default configuration settings.

The list of properties and their description is given next. These properties can be
configured to tweak the behavior of the Rolling Flat File Trace Listener.

Property Description
Name Logging target listener name used to identify this item.
File Exists Behavior Determines whether to overwrite the file or create a new file using a

name created using the timestamp when it rolls over.
File Name Path and file name for the log file, using environment variables

such as %TEMP%, %WINDIR%, etc.
Formatter Name Name of the log message formatter; the drop-down list allows

selecting the currently added log message formatters.

Logging Application Block

[78]

Property Description
Max Archived Files This property specifies the maximum number of log files to be

retained; when the number of log files exceeds the specified number
the listener will purge the old files based on the file creation date.

Message Footer Footer text to be added to the log message.
Message Header Header text to be added to the log message.
Roll Interval Determines the log file roll-over interval; the default value is None.

Options include:
•	 Minute
•	 Hour
•	 Day
•	 Week
•	 Month
•	 Year
•	 Midnight

Roll Size KB Determines the maximum log file size (in kilobytes) before rolling
over.

Severity Filter Indicates the minimum severity of messages that should be
processed and sent to the logging target.

Timestamp Pattern Specifies the date/time format to be used to suffix the file name.
Trace Output
Options

Determines the elements included in the trace output for listeners
that do not output to a Text Formatter. The default value is None
and this property is optional.

Configuring XML Trace Listener
This trace listener as the name suggests writes the log message to a file in XML
form. The XmlTraceListener class is part of the Microsoft.Practices.
EnterpriseLibrary.Logging.TraceListeners namespace and it inherits from the
XmlWriterTraceListener class available in the System.Diagnostics namespace.
It does not require a log formatter as it internally formats LogEntry or any class
derived from LogEntry into an XML string using the XmlLogFormatter class.

XML Trace Listener configuration consists of three key properties: File Name,
Severity Filter, and Trace Output Options, which might be modified to change
the respective behavior.

Chapter 3

[79]

The following screenshot shows the default settings of the XML Trace Listener:

The following table listing shows the configurable properties and their descriptions.

Property Description
Name Logging target listener name used to identify this item.
File Name Path and file name for the log file, using environment variables

such as %TEMP%, %WINDIR%, etc.
Severity Filter Indicates the minimum severity of messages that should be

processed and sent to the logging target.
Trace Output Options Determines the elements included in the trace output for

listeners that do not output to a Text Formatter. The default
value is None and this property is optional.

Configuring Database Trace Listener
As the name suggests, this trace listener writes log messages to a
database formatting the output using the configured log formatter. The
FormattedDatabaseTraceListener class is part of the Microsoft.Practices.
EnterpriseLibrary.Logging.Database namespace and it inherits from an
abstract class named FormattedTraceListenerBase. The Logging block provides
the database table schema and stored procedures to log messages in the database;
the database script LoggingDatabase.sql and Windows command script
CreateLoggingDb.cmd are available in the default source folder (EntLib50Src\
Blocks\Logging\Src\DatabaseTraceListener\Scripts). Although the SQL script
generates a database named Logging, the script can be modified to create tables
and stored procedures in our custom database as well. By default the command file
generates the database, tables, and stored procedures in local instance of SQL Server
Express; this can be customized in the command script file.

Logging Application Block

[80]

Database Trace Listener configuration involves setting of Database Instance and
Formatter at the bare minimum; other properties might be modified to change their
respective behavior.

The next screenshot shows the default settings of the Database Trace Listener:

The following table listing shows the configurable properties and their description:

Property Description
Name Logging target listener name used to identify this item.
Add Category Procedure Name of the stored procedure that creates a new category

in the tables; the default value is AddCategory, which is
generated by the script provided in the source folder of
database logging.

Database Instance Name of the database instance to be used for logging
messages.

Formatter Name Name of the log message formatter; the drop-down list
allows selecting the currently added log message formatters.

Severity Filter Indicates the minimum severity of messages that should be
processed and sent to the logging target.

Trace Output Options Determines the elements included in the trace output for
listeners that do not output to a Text Formatter. The default
value is None and this property is optional.

Write To Log Procedure Name of the stored procedure that inserts log messages
into the tables; the default value is WriteLog, which is
generated by the script provided in the source folder of
database logging.

Chapter 3

[81]

Configuring to send log messages to an e-mail
address
The e-mail trace listener provides the ability to send log entries as e-mail messages
to the specified e-mail address. This trace listener is feature-packed; it allows setting
the authentication mode, from address, SMTP port and server, SSL mode, and so on.
The EmailTraceListener class provides the implementation for this functionality;
it inherits from the FormattedTraceListenerBase abstract class and both are part
of the Microsoft.Practices.EnterpriseLibrary.Logging.TraceListeners
namespace. Email Trace Listener configuration involves setting of several properties
that are mandatory for the functioning of this trace listener.

The following screenshot shows the default setting of the Email Trace Listener:

Logging Application Block

[82]

The following table listing shows the configurable properties and their description:

Property Description
Name Logging target listener name used to identify this item.
Authentication Mode Determines how the listener will authenticate the user. The

default value is None.

Options include:
•	 None
•	 WindowsCredentials
•	 UserNameAndPassword

Authentication User
Name

User name to use for authentication while sending e-mail
messages.

Authentication Password Password to use for authentication for the specified user
name.

Formatter Name Name of the log message formatter; the drop-down list allows
selecting the currently added log message formatters.

From Address E-mail address to be used to send the e-mail messages from.
Severity Filter Indicates the minimum severity of messages that should be

processed and sent to the logging target.
Smtp Port Specifies the SMTP port to be used to send the e-mail

message; the default value is 25.
Smtp Server Specifies the SMTP server name or IP address to be used

to send the e-mail message; the default IP address is 127.0.0.1
(local host).

Subject Line Prefix Prefix to add at the start of the e-mail subject.
Subject Line Suffix Suffix to add to the end of the e-mail subject.
To Address The address to send the log entry e-mail to.
Trace Output Options Determines the elements included in the trace output for

listeners that do not output to a Text Formatter. The default
value is None and this property is optional.

Use SSL Determines whether to use Secure Socket Layer (SSL).

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[83]

Configuring System Diagnostics Trace Listener
The System Diagnostics Trace Listener is an interesting trace listener; it provides
the Type Name property to configure the trace listener to be used from the list of
available trace listeners. The following screenshot displays the default settings of this
trace listener.

Apart from the common properties, the previous screenshot has two interesting
properties. The Type Name property allows us to assign the fully qualified type
name of the trace listener to be used while writing log messages. The InitData
property allows us to pass initialization data to the configured trace listener.

The following table listing shows the configurable properties and their description:

Property Description
Name Logging target listener name used to identify this item.
InitData The value provided in this property will be passed on to the

configured trace listener as initialization data.
Severity Filter Indicates the minimum severity of messages that should be

processed and sent to the logging target.
Trace Output Options Determines the elements included in the trace output for listeners

that do not output to a Text Formatter. The default value is None
and this property is optional.

Type Name Fully qualified type name of the trace listener to be used to write
log messages.

Logging Application Block

[84]

The following screenshot shows the type selection dialog box with the list of
available trace listeners derived from TraceListener:

We can select any trace listener from the list as shown in the above screenshot, for
example selecting ConsoleTraceListener will write all messages to Console.Out
or Console.Error.

Configuring Message Queuing Trace Listener
The Message Queuing Trace Listener sends the log entries to the configured MSMQ
instance; the MsmqTraceListener class inheriting the FormattedTraceListenerBase
abstract class, both part of the Microsoft.Practices.EnterpriseLibrary.Logging.
TraceListeners namespace, provides the implementation for this functionality.

Chapter 3

[85]

The following screenshot displays the default settings of Message Queuing
Trace Listener.

The following table provides the list of configurable properties and their description.

Property Description
Name Logging target listener name used to identify this item.
Formatter Name Name of the log message formatter; the drop-down list allows

selecting the currently added log message formatters.
Message Priority This property sets the priority of a log entry; while in transit the

message priority determines where the log entry is inserted into its
destination queue. The default value is Normal.

Available options are:
•	 Lowest
•	 VeryLow
•	 Low
•	 Normal
•	 AboveNormal
•	 High
•	 VeryHigh
•	 Highest

Logging Application Block

[86]

Property Description
Queue Path Message queuing path to be used by the MSMQ Trace Listener

instance. The default value is .\Private$\myQueue.
Recoverable This property determines whether the log entry is delivered even

following computer failure or network problem. The default value
is False.

Available options:
•	 True
•	 False

Severity Filter Indicates the minimum severity of messages that should be processed
and sent to the logging target.

Time To Be
Received

This property allows setting the total time to receive the log entry by
the destination queue.

The default value is 49710.06:28:15.
Time To Reach
Queue

This property allows setting the maximum time to reach the queue
for a log entry.

The default value is 49710.06:28:15.
Trace Output
Options

Determines the elements included in the trace output for listeners
that do not output to a Text Formatter. The default value is None and
this property is optional.

Transaction Type This property determines the Message Queuing transaction type. The
default value is None.

Available options:
•	 None
•	 Automatic
•	 Single

Use
Authentication

This property determines whether to use authentication before the
message is sent. The default value is False.

Use Dead Letter
Queue

This property determines whether a copy of any undelivered
message should be sent to dead letter queue. The default value
is False.

Use Encryption This property determines whether to use encryption. The default
value is False.

Chapter 3

[87]

Configuring WMI Trace Listener
The WMI Trace Listener raises a WMI event passing the LogEntry instance; this
functionality is implemented by the WmiTraceListener class inheriting directly
from the System.Diagnostics.TraceListener abstract class.

The following screenshot displays the default settings of WMI Trace Listener:

The following table provides a list of the configurable properties and their description:

Property Description
Name Logging target listener name used to identify this item.
Severity Filter Indicates the minimum severity of messages that should be

processed and sent to the logging target.
Trace Output Options Determines the elements included in the trace output for

listeners that do not output to a Text Formatter. The default
value is None and this property is optional.

Configuring custom trace listeners
The Logging block provides an abstract class called CustomTraceListener as an
extension point for implementing custom trace listeners. Also, we may extend one
of the existing trace listener implementations to satisfy our unique requirements.

Logging Application Block

[88]

Configuring log message formatters
While logging information to a log destination, the log entry must often be
formatted. The Logging block provides two log message formatters (TextFormatter
and BinaryLogFormatter) to format the information in the LogEntry instance. Both
these formatters inherit from an abstract class named LogFormatter, which in turn
implements the ILogFormatter interface. All the mentioned formatter elements
are part of the Microsoft.Practices.EnterpriseLibrary.Logging.Formatters
namespace. ILogFormatter exposes a method called Format that accepts a
LogEntry instance and returns the formatted string; derived classes are expected to
provide implementation for the Format method.

•	 TextFormatter: This is a template-based formatter that formats LogEntry
information using the default template tokens.

•	 BinaryLogFormatter: This serializes a LogEntry object using
BinaryFormatter and returns it as a base-64 encoded string. This formatter
should be used with Message Queuing.

•	 XmlLogFormatter: As the name suggests, this formatter formats a LogEntry
object to an XML string representation. This formatter is not available as part
of configuration but is internally used by XmlTraceListener to convert the
LogEntry object to an XML string.

Chapter 3

[89]

Let's see how to configure a trace listener to use Binary Log Message Formatter;
the process is same for Text Formatter as well. Click on the plus symbol in the Log
Message Formatters section and navigate to Add Log Message Formatters | Add
Binary Log Message Formatter as shown in the following screenshot.

The action performed in the above screenshot will add a Binary Log Message
Formatter to the configuration editor as shown in the following screenshot.

Once the log message formatter is added to the configuration, the next step is to
configure the formatter in the trace listener. Most trace listeners have a property
named Formatter Name, which lists the available log message formatters in a
drop-down list. The following screenshot shows the Formatter Name configured
to use the Binary Log Message Formatter.

Logging Application Block

[90]

While writing log messages using the preceding configuration, the log messages
will be formatted using the binary format. The following screenshot shows output
from the trace.log file with the log message formatted using the Binary Log
Message Formatter.

Configuring logging filters
Logging is very helpful but it also comes with a cost; too much logging might impact
performance. Also there are scenarios where we might want to disable logging
based on certain conditions. Logging filters provide the mechanism to switch on/
off logging. We can provide filter conditions and prevent the Logging block from
sending the LogEntry object to the trace listeners. The Logging block provides three
types of logging filters: CategoryFilter, PriorityFilter, and LogEnabledFilter.
These filters inherit from an abstract class named LogFilter which in turn
implements the ILogFilter interface. All these logging filter elements are part of the
Microsoft.Practices.EnterpriseLibrary.Logging.Filters namespace. The
ILogFilter interface exposes two members; derived classes are expected to provide
implementation for both the members. The Name property returns the name of the
log filter and the Filter method accepts a LogEntry object and returns a Boolean
value indicating whether or not to send the message to the trace listeners.

Chapter 3

[91]

•	 CategoryFilter: Filters LogEntry objects based on categories, this allows us
to turn on/off logging for specific categories.

•	 PriorityFilter: Filters LogEntry objects based on the priority, we can
specify the minimum and maximum priority condition for logging.

•	 LogEnabledFilter: This filter gives us control to completely turn
on/off logging.

Adding a category filter
Category filter configuration allows us to add one or more categories and set the
filter mode to either "allow all except denied" or "deny all except allowed". The
following screenshot shows how to add a category filter:

Logging Application Block

[92]

The following screenshot shows the default settings of the newly added category filter:

The following table shows the list of configurable properties and their description:

Property Description
Name Logging filter name used to identify this item.
Categories List of all the categories defined for this filter.
Filter Mode Filter mode determines whether the configured categories will be allowed

or denied logging. The default value is AllowAllExceptDenied.

Options are:
•	 AllowAllExceptDenied
•	 DenyAllExceptAllowed

Adding a logging enabled filter
Logging enabled filter configuration is pretty straight forward, it just allows us
to specify whether all logging activities are enabled or disabled by setting the All
Logging Enabled property. The following screenshot shows how to add the logging
enabled filter:

Chapter 3

[93]

The following screenshot shows the default settings of the newly added Logging
Enabled Filter:

The following table listing shows the available configurable properties and
their description:

Property Description
Name Logging filter name used to identify this item.
All Logging Enabled Determines whether all logging is enabled or disabled. The default

value is False.

Adding a priority filter
Priority filter configuration allows us to configure the maximum and minimum
priority values based on which the log messages will be filtered. The following
screenshot shows how to add a priority logging filter:

The following screenshot shows the default settings of the newly added
Priority Filter:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Logging Application Block

[94]

The table below shows the list of configurable properties and their description:

Property Description
Name Logging filter name used to identify this item.
Maximum Priority Maximum priority filter value; any log message priority greater

than this value will not be logged. The default value is 2147483647.
Minimum Priority Minimum priority filter value; any log message priority less than

this value will not be logged. The default value is 0.

TraceManager and Tracer
The TraceManager class provides application activity tracing functionality to
log method entry/exit and duration; it is part of the Microsoft.Practices.
EnterpriseLibrary.Logging namespace. This class exposes a method named
StartTrace; this method internally creates and returns a new Tracer object. The
Tracer class provides the actual implementation of the tracing functionality. Tracing
starts with the creation of the Tracer object and ends when the object is disposed.

The following screenshot displays the class diagram of the Tracer and
TraceManager classes:

Tracing activities
We can trace application activities using the TraceManager class. This class exposes
a method called StartTrace, which starts with the invocation of the StartTrace
method and stops the tracing activity when the Tracer instance gets disposed.

Chapter 3

[95]

The following code snippet shows how to initiate tracing and end the tracing activity:

//Create a TraceManager instance using the EnterpriseLibraryContainer
TraceManager traceManager = EnterpriseLibraryContainer.Current.
GetInstance<TraceManager>();

using (traceManager.StartTrace("Tracing"))
{
 //Perform application actions here
}

The previous code snippet first creates an instance of TraceManager using the
EnterpriseLibraryContainer class. Next, we use the TraceManager instance and
call the StartTrace method inside a using statement. This makes sure that the
Tracer instance created internally gets disposed and the tracing activity ends with
the disposal of the Tracer instance.

The following screenshot shows the typical log entry of a tracing activity:

The above given screenshot shows two log entries representing the start and end of
the tracing activity with the timestamp, activity ID, ticks, and other details.

Logging Application Block

[96]

Customizing Logging block elements
The Logging block provides extension points to implement custom Trace Listeners,
Log Formatters, and Log Filters. Although the Logging block provides commonly
used logging functionality every project has its own set of requirements and on
some occasions we would like to extend an existing element or write a custom
implementation using the extension points.

Implementing a custom trace listener
Implementing a custom trace listener is simple; we just need to inherit from the
abstract class called CustomTraceListener. The CustomTraceListener class
inherits from System.Diagnostics.TraceListener, also an abstract class
exposing several virtual methods that can be overridden to provide the custom
implementation. We have to add reference to the System.Configuration.dll
assembly in the project while implementing custom trace listener.

The following code snippet shows the list of required namespaces for the
custom implementation:

using System.Diagnostics;
using Microsoft.Practices.EnterpriseLibrary.Common.Configuration;
using Microsoft.Practices.EnterpriseLibrary.Logging;
using Microsoft.Practices.EnterpriseLibrary.Logging.Configuration;
using Microsoft.Practices.EnterpriseLibrary.Logging.TraceListeners;

The folowing code block shows the implementation details such as
ConfigurationElementType attribute, inheritance, methods to be overridden,
and so on.

[ConfigurationElementType(typeof(CustomTraceListenerData))]
public class MyCustomTraceListener : CustomTraceListener
{
 public override void TraceData(TraceEventCache eventCache, string
source, TraceEventType eventType, int id, object data)
 {
 if (data is LogEntry && this.Formatter != null)
 {
 this.WriteLine(this.Formatter.Format(data as LogEntry));
 }
 else
 {
 this.WriteLine(data.ToString());
 }
 }

Chapter 3

[97]

 public override void Write(string message)
 {
 this.WriteLine(message);
 }

 public override void WriteLine(string message)
 {
 //Write to custom destination
 }
}

The MyCustomTraceListener class inherits from CustomTraceListener and has
overridden three methods: TraceData, WriteLine, and Write. We have to provide
our custom logic to write the messages to the destination in the Write and WriteLine
methods. It is to be noted that in the TraceData method we verify whether the
parameter data is of type LogEntry; this check is carried out to ensure that the
custom trace listener executes correctly outside of the Logging block. We also verify
whether we have the formatter to format the log message; based on the outcome of
the condition we write the message by passing the message to the WriteLine method.
Also to be noticed is that the MyCustomTraceListener class is decorated with the
ConfigurationElementType attribute with the input as CustomTraceListenerData;
this attribute indicates the configuration object type to be used.

Configuring the custom trace listener
We have to configure the custom trace listener to leverage the trace listener;
configuration is similar to what we have seen with other trace listeners. The
following screenshot shows how to add a custom trace listener:

Logging Application Block

[98]

After clicking on Add Custom Trace Listener, a dialog box is displayed with the
available types that derive from CustomTraceListener.

After selecting the required type and clicking on the OK button, the configuration
editor will add the details to the configuration file. The following screenshot displays
the added MyCustomTraceListener:

We are already aware of the common properties such as Name, Formatter, Severity
Filter, and Trace Output Options. The property named Attributes comes in quite
handy to pass additional configuration information to our custom trace listener.

Implementing a custom log formatter
A custom log formatter can be implemented by implementing the ILogFormatter
interface. We need to implement the Format method that accepts a LogEntry
instance and provides custom formatting logic to return the formatted string.

The following code snippet shows the required namespaces:

using Microsoft.Practices.EnterpriseLibrary.Common.Configuration;
using Microsoft.Practices.EnterpriseLibrary.Logging;
using Microsoft.Practices.EnterpriseLibrary.Logging.Configuration;
using Microsoft.Practices.EnterpriseLibrary.Logging.Formatters;

Chapter 3

[99]

The following code snippet shows the implementation structure of a custom log
formatter.

[ConfigurationElementType(typeof(CustomFormatterData))]
public class CustomFormatter: ILogFormatter
{
 public string Format(LogEntry log)
 {
 //Provide custom formatting logic here
 }
}

We have to provide the custom formatting logic in the Format method of the
CustomFormatter class.

Configuring the custom log formatter
Configuration of the custom log message formatter is similar to that for Text
Formatter and Binary Formatter; the configuration editor provides an option Add
Custom Log Message Formatter. The following screenshot highlights the option:

Once we click on the Add Custom Log Message Formatter option, a dialog box to
browse types that derive from ILogFormatter interface opens up. The following
screenshot displays the dialog box with the selected custom log formatter:

Logging Application Block

[100]

After clicking the OK button, the configuration editor adds a new log formatter
in the Log Formatters section. The following screenshot displays the newly added
log formatter:

Attributes can be passed on to the custom formatter by providing the key and value
details. Trace listeners will be able to select this custom formatter from the formatter
drop-down list.

Implementing a custom log filter
We will implement a simple custom log filter to understand the creation of
custom log filters; this log filter implements the ILogFilter interface and uses the
configuration element type CustomLogFilterData. The CustomLogFilterData class
provides the infrastructure (configuration data) for custom log filters. This custom
filter allows us to pass the required information as custom attributes. We will use
this to pass the name of a machine that should not be allowed to write log entries.

The following code snippet shows the list of required namespaces for the
custom implementation:

using System.Collections.Specialized;
using Microsoft.Practices.EnterpriseLibrary.Common.Configuration;
using Microsoft.Practices.EnterpriseLibrary.Logging;
using Microsoft.Practices.EnterpriseLibrary.Logging.Configuration;
using Microsoft.Practices.EnterpriseLibrary.Logging.Filters;

The following code snippet shows the custom log filter implementation that filters
log entries based on machine name:

[ConfigurationElementType(typeof(CustomLogFilterData))]
public class MachineNameLogFilter : ILogFilter
{
 string filterMachineName = string.Empty;

 public MachineNameLogFilter(NameValueCollection attributes)
 {

Chapter 3

[101]

 filterMachineName = attributes["MachineName"];
 }

 public bool Filter(LogEntry log)
 {
 return string.Compare(log.MachineName, filterMachineName,
true) != 0;
 }

 public string Name
 {
 get { return "Machine name Log Filter"; }
 }
}

The MachineNameLogFilter class is annotated with a ConfigurationElementType
attribute of CustomLogFilterData; we have implemented a constructor that accepts
NameValueCollection, which contains the attributes added in the configuration.
The Filter method is at the heart of the action that determines whether the machine
name matches with the log entry's machine name; if there is a match then the method
returns false to stop the log entry from being written.

Configuring the custom log filter
Configuration of a custom log filter is pretty straightforward: click on the plus
symbol provided in the Logging Filters section, navigate, and click on the menu item
Add Logging Filters | Add Custom Logging Filter.

The following screenshot displays the configuration option to add custom log filters:

Logging Application Block

[102]

After clicking on the menu item Add Custom Logging Filter a type-browser dialog
box will be displayed with the list of available custom log filters. The following
screenshot displays the type MachineNameLogFilter:

Select the custom log filter and click OK button; this will add the custom log filter
to the configuration editor. The following screenshot displays the newly added
custom log filter; an attribute MachineName with the value has been manually
added for your reference.

The configuration specified in the above screenshot will block all log entries with
machine name as "machine1".

Summary
In this chapter, we have explored the fundamental elements of the Logging
Application Block such as Log Category, Special Category, Logging Trace Listeners,
Log Formatters, Logging Filters, Logger, LogWriter, LogEntry, and so on. We have
learned about the various required and optional assemblies and learned to set up
the initial configuration. We have also learned to create LogWriter instances and
write log entries using several overloaded Write methods. We have further explored
how to configure trace listeners such as Event Log, Flat File, Rolling Flat File, XML
Trace Listener, Database, Email, MSMQ, WMI, and so on; we have also explored
the configuration options of Trace Source Categories and Logging Filters such as
Category Filter, Priority Filter and Logging Enabled Filter. Finally, we implemented
a custom trace listener, log formatter, and log filter.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Exception Handling
Application Block

To err is human, and we developers are but humans. It's a myth that we can develop
bug-free software at one go. We can definitely take measures to reduce bugs through
test-driven development, unit test cases, stringent code check-in policy, and so on.
However, the fact is that there are bugs in every application and they will show their
ugly faces in the production environment. Additionally, applications have to face
unforeseen scenarios such as the database server not being available, network failure,
and so on. Hence, handling exceptions and providing meaningful and user-friendly
messages to the user helps in avoiding/reducing user frustration. We need to handle
exceptions not only to gracefully recover but also to log useful information, which
can be used to fix bugs in the application.

Many good developers or project teams develop reusable components to handle and
manage exceptions within and across software projects. Unfortunately, developing
a good reusable component that caters to various requirements involves huge cost
and effort, and also, maintenance of such in-house components is a nightmare. The
Exception Handling Application Block is a reusable library that addresses many
common requirements that developers have to deal with and there is enough room
for extensibility through custom implementation to satisfy unique requirements. The
beauty of the application block lies in its design. We have to sprinkle very much less
code in our application to manage exceptions. The configuration determines how an
exception is processed and the application code dictates which policy processes the
exception. This flexibility allows the application to modify the exception handling
process without recompiling the code.

Exception Handling Application Block

[104]

In this chapter, you will:

•	 Receive an overview of the Exception Handling Application Block
•	 Be introduced to concepts such as Exception Policy, Exception Types, and

Exception Handlers
•	 Learn about referencing the required and optional assemblies
•	 Learn about the initial infrastructure configuration using the

configuration editor
•	 Learn about adding a namespace to avoid fully qualifying types
•	 Learn how to wrap exceptions using Wrap Handler
•	 Learn how to replace exceptions using Replace Handler
•	 Learn how to log exception information using Logging Handler
•	 Learn how to shield exceptions in WCF Service using ExceptionShielding
•	 Learn how to implement a custom Exception Handler

Developing an application
Before we leverage and dig deeper into individual features of the Exception
Handling block, we will create a simple application that will help us to get
up-to-speed with the basics. In this section, we will do the following:

•	 Reference the Exception Handling block assemblies
•	 Set up the initial configuration
•	 Add namespaces

To complement the concepts and sample code of this book and allow you to
gain quick hands-on experience of different features of the Exception Handling
Application Block, we have created a sample demonstration application, which
simulates different layers of an application.

Chapter 4

[105]

A screenshot of the sample application follows:

Referencing required assemblies
For the purposes of this demonstration, we will be referencing non-strong-named
assemblies but, based on individual requirements, Microsoft strong-named
assemblies or a modified set of custom assemblies can be referenced as well.

The following table lists the required/optional assemblies:

Assembly Required/Optional
Microsoft.Practices.EnterpriseLibrary.
Common.dll

Required

Microsoft.Practices.ServiceLocation.dll Required
Microsoft.Practices.Unity.dll Required
Microsoft.Practices.Unity.Interception.dll Required
Microsoft.Practices.EnterpriseLibrary.
ExceptionHandling.dll

Required

Exception Handling Application Block

[106]

Assembly Required/Optional
Microsoft.Practices.EnterpriseLibrary.
ExceptionHandling.Logging.dll

Optional

Used while
leveraging Logging
functionality

Microsoft.Practices.EnterpriseLibrary.
Data.dll

Optional; used only
if exception logging
is configured to be
stored in database

Adding initial Exception Handling settings
Before we can leverage the features of the Exception Handling block, we have to add
the initial Exception Handling Settings to the configuration. Open the Enterprise
Library configuration editor either using the shortcut available in Start | All
Programs | Microsoft patterns & practices | Enterprise Library 5.0 | Enterprise
Library Configuration or just by right-clicking the configuration file in the Solution
Explorer window of Visual Studio IDE and clicking on Edit Enterprise Library
V5 Configuration. Initially, we will have a blank configuration file with default
Application Settings and Database Settings.

The following screenshot displays the default settings displayed in the
configuration editor:

Let us go ahead and add the Exception Handling Settings in the configuration file.
Select the menu option Blocks, which lists many different settings to be added to the
configuration, and click on the Add Exception Handling Settings menu item to add
the configuration settings.

Chapter 4

[107]

The following screenshot shows the menu option Add Exception Handling Settings:

Once we click on Add Exception Handling Settings the configuration
editor will display the default Exception Handling Settings as shown in the
following screenshot:

Notice that the settings consist of three sections: Policies, Exception Types, and
Handlers. By default, a policy named Policy with exception type All Exceptions is
added to the configuration. We will change the default configuration later, but for
now, we are in good shape with regards to the initial infrastructure configuration.

Exception Handling Application Block

[108]

Adding namespaces
Instead of fully qualifying the type on every instance of its usage, we can add the
namespace given below to the source code file to use the Exception Handling block
elements without fully qualifying the reference.

Core Namespace:

•	 Microsoft.Practices.EnterpriseLibrary.ExceptionHandling

Configuration Namespace (Optional): Required while using the
EnterpriseLibraryContainer to instantiate objects.

•	 Microsoft.Practices.EnterpriseLibrary.Common.Configuration

Unity Namespace (Optional): Required while instantiating objects using
UnityContainer.

•	 System.Configuration

•	 Microsoft.Practices.Unity

•	 Microsoft.Practices.Unity.Configuration

WCF Namespace (Optional): Required while leveraging the Exception Handling
block in a WCF Service.

•	 Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.WCF

Understanding the Exception Handling block
The Exception Handling Application Block is driven by elements such as Exception
Policy, Exception Types, Exception Handler and the ExceptionManager class.

Exception policy
Exception policy is like creating a group under which one or more exception
types are configured and under each exception type, one or more handlers can
be configured. For example, we might have Data Access Exception Policy to
handle data access-related exceptions with multiple exception types such as
DBConcurrencyException, DbException, and so on. While configuring the
exception policy we have to provide a unique name, which can be used in the
application code to process the exception.

Chapter 4

[109]

The following class diagram shows the method exposed by the
ExceptionPolicy class:

Exception types
Exception type is nothing but any type that inherits from System.Exception; based
on the configuration the application block chooses the matching exception type in
the class hierarchy. If an exception of type System.NotFiniteNumberException
is thrown and the policy is configured to handle exceptions of types System.
Exception and System.ArithmeticException then the application block will
process the exception using System.ArithmeticException based on the class
hierarchy. While configuring the exception type, we have to decide on the post
handling action. There are three options to choose from.

•	 None: Indicates to the calling code to continue execution.
•	 NotifyRethrow: Indicates to the calling code to throw the same exception.
•	 ThrowNewException: Indicates that the application block will throw an

exception after executing all the configured handlers and the exception will
be a result of the executed handlers.

Exception handler
Exception handlers are .NET classes that implement the Exception Handling block's
interface called IExceptionHandler. The application block includes the four
commonly required handlers Wrap, Replace, Logging, and Fault Contract Exception
Handler (used to guard the WCF service boundary and generate new fault contract
from the exception). We can also implement custom handlers to meet our custom
requirements and configure them in the configuration file using the editor.

Exception Handling Application Block

[110]

The following class diagram shows various concrete implementations of exception
handlers and the IExceptionHandler interface:

The description of each of the concrete exception handlers is given as follows:

•	 Wrap Handler: The Wrap handler is very useful in scenarios where we
want to provide a more meaningful message to the calling code rather than
throwing the original exception. The original exception is wrapped with
another exception that gives more detailed information to the caller. This
exception handling pattern is referred to as the Exception Translation pattern.

•	 Replace Handler: The Replace handler as the name suggests replaces the
original exception with the configured exception type; this avoids revealing
sensitive information to the calling code. This exception handling pattern is
referred to as the Exception Shielding pattern.

•	 Logging Handler: Handling exceptions is not enough; as developers we
have to identify issues and resolve them. The Logging handler leverages
the Logging Application Block to log exception details, which helps in issue
identification and resolution. This exception handling pattern is referred to as
the Exception Logging pattern.

•	 WCF Fault Contract Exception Handler: This guards the WCF service
boundary and generates a new FaultContract from the exception;
developers working on the WCF service would appreciate the ability to
shield the exception and return the configured FaultContract based on the
exception type as part of the response.

Chapter 4

[111]

•	 Custom Exception Handler: Out of luck? None of the out-of-the-box
handlers fits your requirement? Extensibility is the key aspect of the
Enterprise Library; we can always write a custom exception handler by
implementing the IExceptionHandler interface.

Exception Manager class
ExceptionManager is one of the key classes of the Exception Handling Application
Block; this abstract class is part of the Microsoft.Practices.EnterpriseLibrary.
ExceptionHandling namespace. It acts as an entry point to the exception handling
functionality and provides two different ways to manage exceptions. The signatures
of both the HandleException and Process methods are given next. The actual
implementation is provided by the ExceptionManagerImpl class, which inherits
from the ExceptionManager class.

The following class diagram shows the inheritance hierarchy and methods exposed
by ExceptionManager and the ExceptionManagerImpl class:

Exception Handling Application Block

[112]

HandleException method
The HandleException method provides granular control while processing
exceptions; it returns a Boolean value indicating whether or not an exception
re-throw is recommended. Typical usage of the HandleException method will
be similar to the code snippet given next:

try
{
 BusinessLayer.BlogManager blogManager = new BusinessLayer.
BlogManager();

 //Get Blog Post
 BusinessLayer.BlogPost post = blogManager.GetBlogPost(0);
}
catch (ArgumentException ex)
{
 Exception exceptionToRethrow;

 //Get instance of ExceptionManager using static method of
Enterprise Library Container
 ExceptionManager exManager = EnterpriseLibraryContainer.Current.Ge
tInstance<ExceptionManager>();

 //Call to HandleException method
 //Return value indicates whether to re-throw the exception
 bool rethrow = exManager.HandleException(ex, "General Policy", out
exceptionToRethrow);

 if (rethrow) throw exceptionToRethrow;
}

Process method
The Process method automatically performs exception management and throws the
exception based on the configuration. It accepts the policy name and a delegate or a
lambda expression; the application block manages any exception that occurs while
executing the method or lambda expression, also if the postHandlingAction is set
to ThrowNewException then the application block throws the exception as a result of
the respective execution of the configured exception handlers.

Typical usage of the Process method will be similar to the code snippet given next:

//Get instance of ExceptionManager using static method of Enterprise
Library Container
ExceptionManager exManager = EnterpriseLibraryContainer.Current.GetIns
tance<ExceptionManager>();

Chapter 4

[113]

BusinessLayer.BlogPost post = null;
BusinessLayer.BlogManager blogManager = new BusinessLayer.
BlogManager();

//try..catch block not required...
//Automatic Exception Management through Process method
post = exManager.Process<BusinessLayer.BlogPost>(
 () => { return
blogManager.GetBlogPost(0); },
 "Data Access Policy"
);

Stitching together: Exception Policy/Type/
Handler
Let us stitch together the three fundamental elements (exception policy/type/
handler) to put things in perspective and understand them better. Imagine that
we want all the database-related exceptions to be replaced with a new exception to
prevent disclosing the connection string information; additionally, we want to log
the exception in a file to identify the root cause of the exception. To achieve this, we
define a policy named Data Access Exception Policy. Now we can associate one
or more data access-related exception types (SqlException, SqlTypeException,
DBConcurrencyException, and so on) and configure one or more exception
handlers for each exception type. As we want to replace the exception and also log
the exception information, we can configure the Logging handler first and then the
Replace handler.

Creating an Exception Handling block object
We have several options at hand while creating an Exception Handling object such as
using the static ExceptionPolicy class, using Unity service locator, and using Unity
container directly. A few approaches such as configuring the container through a
configuration file or code are not listed here but the recommended approach is either
to use the Unity service locator for applications with few dependencies or create
objects using Unity container directly to leverage the benefits of this approach. Use of
the static factory class is not recommended.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Exception Handling Application Block

[114]

Using the ExceptionPolicy class
ExceptionPolicy is a static class and is part of the Microsoft.Practices.
EnterpriseLibrary.ExceptionHandling namespace. This class contains static
methods to handle exceptions. Internally, it leverages EnterpriseLibraryContainer,
which is part of the Microsoft.Practices.EnterpriseLibrary.Common.
Configuration namespace. This class is an entry point for the container
infrastructure for the Enterprise Library. The ExceptionPolicy class was the default
approach to handle exceptions in versions prior to 5.0. This approach is no longer
recommended and is still available for backwards compatibility.

The following is the syntax to handle exceptions using the ExceptionPolicy
static class:

try
{
 //Potentially exceptional area :)
}
catch (Exception ex)
{
 bool rethrow = ExceptionPolicy.HandleException(ex, "UI Policy");

 if (rethrow)
 {
 throw;
 }
}

Using Unity service locator
This approach is recommended for applications with few dependencies. The
EnterpriseLibraryContainer class exposes a static property called Current of
type IServiceLocator, which resolves and gets an instance of the specified type.

The following is the syntax to create an instance of ExceptionManager using Unity
service locator:

//Get instance of ExceptionManager using static method of Enterprise
Library Container
ExceptionManager exManager = EnterpriseLibraryContainer.Current.GetIns
tance<ExceptionManager>();

Chapter 4

[115]

Using Unity container directly
Larger complex applications demand looser coupling. This approach leverages
the dependency injection mechanism to create objects instead of explicitly creating
instances of concrete implementations. Unity container resolves objects using type
registrations and mappings; these can be configured programmatically or through
a configuration file. Based on the configuration, it resolves the appropriate type
whenever requested. The following example instantiates a new Unity container
object and adds the Enterprise Library Core Extension. This loads the configuration
and makes registrations and mappings of Enterprise Library available.

The following is the syntax to create an instance of ExceptionManager directly using
Unity Container:

var container = new UnityContainer();
container.AddNewExtension<EnterpriseLibraryCoreExtension>();

ExceptionManager exManager = container.Resolve<ExceptionManager>();

Wrapping an exception using Wrap
handler
The Exception Handling block provides an out-of-the-box handler called Wrap
Handler, which allows us to configure the wrap exception type and the exception
message. We can also load the exception message from a resource file by specifying the
message resource name and resource type. Based on the configuration, the exception is
wrapped using the new exception type with the specified exception message. The new
exception object contains the original exception as part of the InnerException.

Wrapping the original exception with a new exception type is useful in the scenarios
given next:

•	 Updating the error message of the original exception with a more meaningful
message while maintaining the original context

•	 Throwing a specific exception (DataLayerException,
BusinessLayerException, FatalException, NonFatalException, and so
on) across layers/boundaries while maintaining the original context

Exception Handling Application Block

[116]

Configuring a Wrap exception handler
We currently have the default settings in the configuration file; to understand the
configuration we will delete the default policy named Policy. The steps to configure
Wrap Handler are given as follows:

1. Add a new policy in the policies section and name it Data Access Policy as
shown in the following screenshot.

2. Right-click on the Data Access Policy and click on Add Exception Type. This
will pop up a new exception type selection dialog.

3. Specify the type name as DbException by keying in the type name.

Chapter 4

[117]

4. Set the Post handling action attribute of the exception type DbException to
ThrowNewException.

5. So far we have added the policy and the exception type, now let's add the
Wrap Handler. Right-click on the exception type DbException and click on
Add Handlers | Add Wrap Handler.

6. Set the exception message and also set the Wrap Exception Type to System.
ApplicationException.

Exception Handling Application Block

[118]

So far we have successfully configured the application with a policy that will process
an exception of type DbException or any matching exception in the class hierarchy.
It also wraps the exception with a new System.ApplicationException with the
specified exception message. Once the exception is wrapped with the new exception
object, the new exception is thrown as configured in the post-handling action.

The following is the execution result of Exception Wrapping Demo provided as part
of the sample application with this book:

Exception Message:

===================

Wrapped Exception: Database operation failed due to concurrency issue.
Error code: f294419a-b4b5-47ad-9e9e-ec62362965f2

Inner Exception Message:

=========================

Original Exception: Concurrency violation: the UpdateCommand affected 0
records.

We can see in the given result that the original exception is wrapped with a
new exception message. This helps in retaining the context yet providing more
meaningful information to the application user.

Replacing an exception using Replace
handler
Replacing an exception is one of the common requirements to avoid exposing more
than the required information especially while dealing with sensitive information.
Imagine a scenario where a component throws the original exception, which might
contain sensitive information such as connection string, stack trace, and so on, to the
consumer. The Exception Handling Application Block provides the Replace handler
to replace the exception with a custom exception and message.

Configuring a Replace handler
Let us update the existing configuration file with a Replace handler. In this scenario,
we will replace a DbException with an ApplicationException and set a custom
message. This prevents the Data Access Layer from exposing sensitive information
such as connection string and so on.

Chapter 4

[119]

1. Add a new policy in the policies section and name it Data Access Layer
Policy as shown in the following screenshot:

2. Right-click on the Data Access Layer Policy and click on Add Exception
Type; this will pop up a new exception type selection dialog.

3. Specify the type name as DbException by keying in the type name.

Exception Handling Application Block

[120]

4. Set the Post handling action attribute of the exception type DbException to
ThrowNewException.

5. So far we have added the policy and the exception type. Now let's add the
Replace exception handler. Right-click on the exception type DbException
and click on Add Handlers | Add Replace Handler.

Chapter 4

[121]

6. Set the exception message and also set the replace exception type to System.
ApplicationException.

So far we have successfully configured the application with a policy that will process
an exception of type DbException or any matching exception in the class hierarchy.
It also replaces the exception with a new System.ApplicationException with
the specified exception message; a new exception is thrown as configured in the
post-handling action.

The following is the execution result of Exception Replace Demo provided as part of
the sample application with this book:

Exception Message:

===================

Replaced Exception: Application exception occured. Error code: 6a45a1e8-
e131-421d-a1f4-7a73cdb16198

As we can see in the above result, the original DbException has been replaced with
ApplicationException. Additionally, the message also provides a unique error
code to trace the root of the exception. This helps in protecting sensitive data from
being exposed to other layers or users.

Logging an exception using Logging
handler
Logging exceptions/errors provides valuable information; this information can be
analyzed and issues can be resolved proactively. The Logging handler leverages the
Logging block to log exception information. As mentioned earlier, every exception
type can have one or more handlers and generally the Logging handler is used in
combination with a Wrap or Replace handler.

Exception Handling Application Block

[122]

Configuring a Logging handler
We will update the existing configuration and add a Logging handler for the
DbException type associated to the policy named Data Access Layer Policy.

Right-click on the DbException type in the Exception Types section of the Data
Access Layer Policy and click on Add Handlers | Add Logging Exception Handler
as shown in the following screenshot:

The following screenshot shows the default configuration of Logging
Exception Handler:

Notice the Logging Exception Handler is moved up and is the first
handler in the hierarchy; this is explicitly done to log the original
exception and not the replaced or wrapped exception.

Chapter 4

[123]

The following screenshot shows the Logging Settings added to the
configuration editor.

The Logging Application Block is explained in more detail
in the respective chapter. For this particular functionality,
we will be using the default logging configuration.

Now, in our code when we encounter an exception of type DbException
either managed through the Process or HandleException method of the
ExceptionManager class, the application block will first log the exception in
Windows Application Event Log as it is the default configuration. Later, the second
handler will be invoked, which replaces the original exception with a new exception.

The following screenshot shows the exception logged in Windows Event Log; this
is the execution result of Exception Logging Demo provided as part of the sample
application with this book:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Exception Handling Application Block

[124]

WCF fault contract exception handler
The Exception Handling Application Block also provides a handler to shield
exceptions for Windows Communication Foundation (WCF) services. It is very
important to implement an Exception Shielding pattern at service boundary level
and this handler makes it very easy to prevent any sensitive information crossing
the service boundary. This is implemented as part of the Microsoft.Practices.
EnterpriseLibrary.ExceptionHandling.WCF assembly, which needs to be
referenced to leverage the functionality. We have to create a fault contract for our
WCF service, configure the exception handling policy to use the fault contract
exception handler, and map the created fault contract type.

Imagine we have a WCF service called BlogService and we want to prevent all
original exceptions from being thrown to the service consumer. We also want to
replace such exceptions with a generic fault contract providing a generic error
message and an error code. In order to satisfy such a requirement, we will implement
a fault contract called GenericFaultContract and configure the Exception Policy to
replace all exceptions with an instance of GenericFaultContract.

Generic fault contract creation
We will create a simple fault contract to hold the error code and the message. A
simple GenericFaultContract class is given next. This fault contract will be used to
configure the exception handlers section mapped to an exception type.

The following code snippet shows the GenericFaultContract class:

using System;
using System.Runtime.Serialization;

namespace EntLibBook.ExceptionHandling.ServiceLayer
{
 [DataContract]
 public class GenericFaultContract
 {
 [DataMember]
 public Guid FaultID { get; set; }

 [DataMember]
 public string FaultMessage { get; set; }
 }
}

Chapter 4

[125]

Configuring a fault contract exception handler
As we have the fault contract ready, we will use the configuration editor to edit the
WCF service configuration file and add a BlogServicePolicy policy that handles all
exceptions with a post-handling action to throw new exception.

The following screenshot shows the Exception Handling Settings with a configured
policy named BlogServicePolicy and exception type as All Exceptions:

Alright, now we have the exception policy and type in place, let us add the fault
contract exception handler and configure it to use the GenericFaultContract
class. The following screenshot shows the configured handler called Fault Contract
Exception Handler.

There are two important things to notice in the handler configuration. The exception
message contains a token {handlingInstanceID}, which is replaced by a Guid
generated by the application block. This Guid can be very useful if the exceptions
are logged, since the support staff can look into the configured log store for more
information on what went wrong using the handling instance identifier. Another
important aspect in the configuration is the property mappings; we are mapping
the tokens to the property of our GenericFaultContract class. The generated fault
contract will have both the properties populated based on the configured tokens.

Exception Handling Application Block

[126]

Applying the ExceptionShielding attribute
Now the final task in the WCF service is to apply the ExceptionShielding attribute
either to the ServiceContract interface or to the class. The ExceptionShielding
attribute instructs the Exception Handling Application Block to handle exceptions
based on the configured exception policy.

The following code snippet shows the ExceptionShielding attribute in action:

using EntLibBook.ExceptionHandling.BusinessEntities;
using Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.WCF;

namespace EntLibBook.ExceptionHandling.ServiceLayer
{
 [ExceptionShielding("BlogServicePolicy")]
 public class BlogService : IBlogService
 {
 public BlogPost GetBlogPost(int id)
 {
 // Code to get Blog Post
 return null;
 }
 }
}

Exception handling: WCF Service consumer
The WCF Service consumer will be able to handle the Fault Exception by specifying
the GenericFaultContract type and will be able to access the FaultID and
FaultMessage properties.

The following code snippet shows the catch block with the FaultException as
GenericFaultContract type:

try
{
 ServiceProxy.BlogServiceClient client = new ServiceProxy.
BlogServiceClient();

 client.GetBlogPost(1);
}
catch (FaultException<ServiceProxy.GenericFaultContract>
faultException)
{
 // Note: Just to demonstrate this scenario we are assigning the
 property

Chapter 4

[127]

 // We can use Exception Handling Application Block to manage the
 exception here as well.

 // Retrieving FaultID and FaultMessage
 Guid handlingInstanceID = faultException.Detail.FaultID;
 string faultMessage = faultException.Detail.FaultMessage;
}

Whenever the call to GetBlogPost throws an exception, the client code will receive
a FaultException of GenericFaultContract type, which will be handled by the
client code as part of the structured exception handling.

Implementing custom exception handler
Extensibility is the key feature of any Enterprise Library Application Block and
hence, this block is extensible too. The Exception Handling block provides two
areas for extensions, Exception Handler and Exception Formatter. We have already
understood the concept of an exception handler and have also used many out-of-the-
box handlers. Implementing a custom handler is very easy: we have to implement
the IExceptionHandler interface and provide our custom implementation of
the HandleException method. To understand and learn to implement a custom
exception handler, let us create an exception handler that displays a message box to
the user in a Windows Forms application.

The following code snippet provides the implementation of a custom
exception handler that displays a message box whenever it receives a request
to handle exception:

[ConfigurationElementType(typeof(CustomHandlerData))]
public class WindowsMessageExceptionHandler : IExceptionHandler
{
 public WindowsMessageExceptionHandler(NameValueCollection ignore)
 {
 }

 public Exception HandleException(Exception exception, Guid
handlingInstanceId)
 {
 MessageBox.Show(exception.Message, "Error", MessageBoxButtons.
OK, MessageBoxIcon.Error);

 return exception;
 }
}

Exception Handling Application Block

[128]

The WindowsMessageExceptionHandler class inherits from the IExceptionHandler
interface and provides implementation for the HandleException method; this
method shows a message box with the exception message. The custom exception
handler implementation is decorated with the ConfigurationElementType attribute
with the CustomHandlerData type as parameter; this essentially indicates the
configuration object type.

Configuring custom exception handler
Configuration for the custom exception handler is similar to that for other
handlers; we just need to add the WindowsMessageExceptionHandler in
the configuration editor. Right-click on the exception type and click on Add
Handlers | Add Custom Exception Handler. In the selection dialog, select the
WindowsMessageExceptionHandler class.

The following screenshot shows the configuration screen for Add Custom
Exception Handler:

The following screenshot shows WindowsMessageExceptionHandler added to the
configuration editor:

Chapter 4

[129]

We are done with our implementation and configuration of the custom exception
handler. While handling exceptions in code using the specific policy mapped with
the custom handler, it will display a message box to the user with the error message.

Summary
In this chapter, we have learned about the fundamental elements of the Exception
Handling Application Block such as Exception Policy, Exception Types, and
Exception Handler. We have learned about the required and optional assemblies, the
initial infrastructure configuration, and the individual feature-level configuration.
We have also explored and learned to leverage different Exception Handlers and
implemented a custom Exception Handler.

Caching Application Block
Performance, Scalability, and Availability are three key design elements that are
considered while designing enterprise-class applications. Judicious use of caching
techniques goes a long way in improving and strengthening these elements. Caching
is not rocket science but judiciously caching data involves some thoughtfulness. Data
involving enormous processing/computation, expensive-to-retrieve data, and data
that changes infrequently and/or is consumed quite often are great candidates for
caching. Caching helps in improving performance by storing data either in-memory
or to some persistent storage for quicker retrieval compared to the original source.

Caching is an important aspect of any enterprise application but it is a daunting task
to develop a caching library that satisfies the requirements of different projects. The
Caching Application Block fills that gap by providing a ready-to-use infrastructure
for caching. It supports both in-memory caching as well as backing storage (Database
or Isolated Storage); customization is also possible through extension points. The
Caching block provides all the common functionality to add, retrieve, remove, and
flush cached data. Also, cache expiration and scavenging policy can be controlled
through configuration.

The following are the key features of the Caching Application Block:

•	 Manage configuration settings through Enterprise Library configuration tool
•	 In-memory, isolated, or database persistent cache storage location can be

configured
•	 Policy-based expiration and scavenging, both configurable
•	 Support for custom expiration policies and storage location
•	 Extensibility points to implement custom backing store, expiration policy,

storage encryption provider, and cache manager

Caching Application Block

[132]

The Enterprise Library Caching Application Block will be
deprecated in future releases. Caching functionality is available in
.NET 4.0 as part of System.Runtime.Caching namespace; this
implementation is not dependent on the System.Web assembly
and it can be used by other .NET applications, not just ASP.NET.

The Caching Application Block can be used with any of the following
application types:

•	 Console Application
•	 Windows Forms
•	 ASP.NET Web Application or Web Service
•	 Windows Communication Foundation (WCF)
•	 Windows Presentation Foundation (WPF)
•	 Windows Service

Caching Application Block operations are both
thread safe and exception safe.

The Caching Application Block can be leveraged for several different scenarios. The
key scenarios for the Caching block are as follows:

•	 Consistent approach to caching across different application environments.
Basically, it doesn't matter whether it's a Web application, Windows Forms
application, WCF, WPF, and so on.

•	 Requires a configuration-based caching where the key elements can be
modified during production deployment if required.

•	 Option to cache in a persistent backing store: The Caching Application
Block provides support to store the cache data to both database and isolated
storage. Additionally, cached data can be encrypted before persisting into
a backing store. The backing store can be extended by creating a custom
backing store provider.

Chapter 5

[133]

In this chapter, you will:

•	 Be introduced to the Caching Application Block
•	 Understand the scenarios for the Caching Application Block
•	 Understand the concepts behind the Caching Application Block
•	 Learn about different backing stores such as NullBackingStore,

IsolatedStorageBackingStore, and DataBackingStore
•	 Learn about referencing the required assemblies
•	 Learn to set up the initial infrastructure configuration using the

configuration editor
•	 Learn to cache, retrieve, remove, and flush cached data using the Caching

Application Block
•	 Understand and implement the cache item refresh action using

ICacheItemRefreshAction

•	 Learn to configure IsolatedStorageBackingStore and DataBackingStore
•	 Learn to configure an encryption provider to encrypt cached data

Developing an application
Before we dig deeper into individual features of the Caching block, we will
touch upon the basic elements by creating a sample Windows Forms Application
project. This will help us to get up-to-speed with the basics; in this section, we will
do the following:

•	 Reference the Caching block assemblies
•	 Set up the initial configuration
•	 Write code to add items to the cache

To complement the concepts and sample code of this book and allow you to gain
quick hands-on experience of different features of the Caching Application Block, we
have created a sample demonstration application, which provides implementation
of Add/Retrieve/Remove/Flush operations utilizing an in-memory and Isolated
Storage Cache Manager (configured to encrypt cached data).

Caching Application Block

[134]

The following is a screenshot of the sample application:

Referencing the required assemblies
For the purposes of this demonstration, we will be referencing non-strong-named
assemblies but based on individual requirements, Microsoft strong-named
assemblies, or a modified set of custom assemblies can be referenced as well. Since
we will also be exploring storage of cached items to a database and encryption of
cached items feature in this chapter, we need to include references to the database
and cryptography-related assemblies in the project.

The following table lists the required/optional assemblies.

Assembly Required/Optional
Microsoft.Practices.EnterpriseLibrary.Common.dll Required
Microsoft.Practices.ServiceLocation.dll Required
Microsoft.Practices.Unity.dll Required
Microsoft.Practices.Unity.Interception.dll Required

Chapter 5

[135]

Assembly Required/Optional
Microsoft.Practices.EnterpriseLibrary.Caching.dll Required
Microsoft.Practices.EnterpriseLibrary.Caching.
Database.dll

Microsoft.Practices.EnterpriseLibrary.Data.dll

Optional.

Only if database
caching is required.

Microsoft.Practices.EnterpriseLibrary.Security.
Cryptography.dll

Microsoft.Practices.EnterpriseLibrary.Caching.
Cryptography.dll

Optional.

Only if data
encryption is
required for cached
data.

Adding the initial Caching Settings
Before we can leverage the features of the Caching Application Block we have to add
the initial Caching Settings to the configuration. The following steps will add the
settings to the configuration file:

1. Open the Enterprise Library configuration editor either using the shortcut
available in Start | All Programs | Microsoft patterns & practices |
Enterprise Library 5.0 | Enterprise Library Configuration or just by
right-click-the configuration file in the Solution Explorer window of
Visual Studio IDE.

2. Next, click on Edit Enterprise Library V5 Configuration. Initially, we
will have a blank configuration file with default Application Settings and
Database Settings.

The following screenshot shows the default configuration settings:

Caching Application Block

[136]

3. Now let us add the Caching Settings in the configuration file. Select the
menu option Blocks, which lists many different settings to be added to the
configuration, and click on the Add Caching Settings menu item to add the
caching configuration settings.

The following screenshot shows the Add Caching Settings menu item in the
Blocks menu:

4. Once we click on Add Caching Settings, the configuration editor will display
the default Caching Settings as shown in the following screenshot:

Notice that the settings consist of three parts: Cache Managers, Backing Stores,
and Encryption Providers. By default, the setting is configured to use the default
CacheManager provider and also the other attributes are set with the default values.
We will change the default configuration further but for now, we are in good shape
with regards to the initial infrastructure configuration.

Chapter 5

[137]

Adding namespaces
We definitely don't want to get bored by fully qualifying the type on every instance
of its usage, so to make our life easy we can add the given namespaces to the
Windows Form's source code file to use the Caching block elements without fully
qualifying the reference. Although we will be using EnterpriseLibraryContainer
to instantiate objects (so we will also add Microsoft.Practices.
EnterpriseLibrary.Common.Configuration namespace to the source file), the
Unity Namespace section is listed to make you aware of the availability of the
alternative approach of instantiating objects.

Core Namespaces:

•	 Microsoft.Practices.EnterpriseLibrary.Caching

•	 Microsoft.Practices.EnterpriseLibrary.Caching.Expirations

Configuration Namespace (Optional): Required while using the
EnterpriseLibraryContainer to instantiate objects.

•	 Microsoft.Practices.EnterpriseLibrary.Common.Configuration

Unity Namespace (Optional): Required while instantiating objects using
UnityContainer.

•	 System.Configuration

•	 Microsoft.Practices.Unity

•	 Microsoft.Practices.Unity.Configuration

Creating the CacheManager instance
The CacheManager class is the default implementation of the ICacheManager
interface, which resides in the Microsoft.Practices.EnterpriseLibrary.
Caching namespace. As the name implies, it acts as a manager and manages all
the caching operations. CacheManager internally creates a Cache object during
initialization and this Cache object holds the real cache; all the requests (add,
retrieve, remove, and so on) are forwarded to the Cache object.

Operations performed using the default
CacheManager object are thread safe.

Caching Application Block

[138]

The following diagram shows the definitions of the ICacheManager interface and of
the CacheManager class.

We have several options at hand while creating a CacheManager object such as using
the static CacheFactory class, using Unity service locator and using Unity container
directly. A few approaches such as configuring the container through a configuration
file or code are not listed here but the recommended approach is either to use the
Unity service locator for applications with few dependencies or create objects using
Unity container directly to leverage the benefits of this approach. Use of the static
factory class is not recommended.

Using the static factory class
Static factory classes were the default approach to creating objects with versions
prior to 5.0. This approach is no longer recommended and is still available for
backwards compatibility. The Caching Application Block provides a static class
called CacheFactory available in the Microsoft.Practices.EnterpriseLibrary.
Caching namespace. Once the CacheManager object is created it in turn creates a
CacheManagerFactory object, which in turn creates a Cache object.

The following is the syntax to create a deafult CacheManager instance using the static
factory class:

ICacheManager cacheManager = CacheFactory.GetCacheManager();

The following is the syntax to create a named CacheManager instance using the static
factory class:

ICacheManager cacheManager = CacheFactory.GetCacheManager("Isolated
Storage Cache Manager");

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 5

[139]

Using the Unity Service Locator
This approach is recommended for applications with few dependencies. The
EnterpriseLibraryContainer class exposes a static property called Current of
type IServiceLocator, which resolves and gets an instance of the specified type.

The following is the syntax to create a default CacheManager instance using Unity
Service Locator:

ICacheManager cacheManager = EnterpriseLibraryContainer.Current.
GetInstance<ICacheManager>();

The following is the syntax to create a named CacheManager instance using Unity
Service Locator:

ICacheManager cacheManager = EnterpriseLibraryContainer.Current.GetIns
tance<ICacheManager>("Isolated Storage Cache Manager");

Using the Unity container directly
Larger complex applications demand looser coupling; this approach leverages the
dependency injection mechanism to create objects instead of explicitly creating
instances of concrete implementations. Unity container resolves objects using type
registrations and mappings; these can configured programmatically or through
a configuration file. Based on the configuration, it resolves the appropriate type
whenever requested. The following example instantiates a new Unity container
object and adds the Enterprise Library Core Extension. This loads the configuration
and makes registrations and mappings of Enterprise Library available.

The following is the syntax to create a default CacheManager instance directly using
Unity container:

var container = new UnityContainer();
container.AddNewExtension<EnterpriseLibraryCoreExtension>();
ICacheManager cacheManager = container.Resolve<ICacheManager>();

The following is the syntax to create a named CacheManager instance directly using
Unity container:

var container = new UnityContainer();
container.AddNewExtension<EnterpriseLibraryCoreExtension>();
ICacheManager cacheManager = container.Resolve<ICacheManager>("Isolate
d Storage Cache Manager");

Caching Application Block

[140]

Configuring the in-memory backing store
Cache manager stores the cached data in-memory and optionally it can also store
the data in a configured persistent storage. The Caching block provides three
backing stores out of the box and a custom backing store can be implemented using
either the IBackingStore interface or BaseBackingStore class. The IBackingStore
interface is part of the Microsoft.Practices.EnterpriseLibrary.Caching
namespace; this interface provides the contract for backing store implementation. The
BaseBackingStore class is part of the Microsoft.Practices.EnterpriseLibrary.
Caching.BackingStoreImplementations namespace; this class provides
implementation of common policies and utilities such as argument validations, which
are useful to all backing store implementations.

The following diagram shows the members and inheritance hierarchy of the
respective class and interface:

Chapter 5

[141]

NullBackingStore is the default backing store, which is used by the Caching block
while no backing store is configured. This implementation of the backing store
inherits the IBackingStore interface but the implementation does nothing. It is
surprising but the reason is pretty clear, this backing store allows the Cache class
to store the data in-memory only. NullBackingStore is part of the Microsoft.
Practices.EnterpriseLibrary.Caching.BackingStoreImplementations
namespace. As discussed previously, in-memory is ideally a cache manager
configuration without any backing store; in other words, a dummy implementation
(NullBackingStore) is used as default backing store. This ideally means that the
caching will be in-memory only.

The following screenshot shows the configuration options of the cache manager:

Adding items to cache
CacheManager provides two overloaded methods to add items to cache; the simplest
overload accepts a key and a value of the cached item. This method sets the cache
item priority to Normal and it also sets the refresh action and expiration policy to
null. The other overloaded Add method provides finer control over the cached item.
It not only allows setting the cache item priority for scavenging but it also allows
setting the refresh action and multiple expiration policies. Both methods will throw
an ArgumentNullException if the key is null or an ArgumentException if the key
is an empty string. Apart from the above-mentioned exceptions, specific exceptions
might be thrown by the configured BackingStore implementation.

The following is the syntax for caching an item with default settings:

this.cacheManager.Add(book.ID.ToString(), book);

Caching Application Block

[142]

The following is the syntax for setting priority and expiration policy for the
cache item:

//Cache Item Priority = High
//Cache Refresh Action is not set
//Cache Expiration Policy is set to sliding time of 2 minutes
this.cacheManager.Add(book.ID.ToString(), book, CacheItemPriority.
High, null, new SlidingTime(TimeSpan.FromMinutes(2)));

Understanding the expiration process
Cached data often needs a configurable expiration mechanism, which removes the
cached item after a specified interval; this can be easily achieved by associating an
expiration policy with the cached item. The Caching Application Block periodically
evaluates the internal hash table to identify the expired cached items. The
BackgroundScheduler class performs the expiration process based on the Expiration
Polling Frequency (seconds) configured in the Cache Manager configuration settings.

The following diagram shows the members and inheritance relationship of the
respective classes related to the expiration process:

Chapter 5

[143]

Expiration policies
Expiration policy dictates when the cached item expires; we have three types of
expiration policies:

•	 No expiration
•	 Time-based expiration
•	 Notification-based expiration

The following is the list of available expiration policies:

•	 NeverExpired: Cache item never expires but may be removed by the block if
lack of memory is detected. This falls under the "No Expiration" category.

•	 AbsoluteTime: Cache item expires at a specified absolute time as specified
in the AsoluteExpirationTime property. This falls under the "Time-based
Expiration" category.

•	 SlidingTime: Cache item expires after the specified time has elapsed from
when the item was last accessed. By default it is 2 minutes. This falls under
the "Time-based Expiration" category.

•	 ExtendedFormatTime: Provides the ability to specify detailed expiration
conditions like cache item expires every day at 5:00 PM or on Friday of each
week. This falls under the "Time-based Expiration" category.

•	 FileDependency: Cache item expires when the specified file is modified. This
falls under "Notification-based Expiration" category.

NeverExpired is the default expiration policy that will be
assigned while using the given method of CacheManager:
public void Add(string key, object value);

The expiration process performs marking and sweeping as a
two-part process.

Understanding the Scavenging process
Every time an item is added to the cache, the BackgroundScheduler object
checks whether the total items in the cache have reached the configured limit
(Maximum Elements in Cache before Scavenging) provided in the Cache Manager
configuration settings. Also, another setting, Number to remove when scavenging,
determines the number of cached items removed from the cache after scavenging
begins. Cached items are removed based on the priority (Low, Normal, High or
NotRemovable) specified while adding the cached item; the default value is Normal.

Caching Application Block

[144]

Scavenging process performs marking and
sweeping in a single pass.

The following diagram shows the members of the Interface, Class, and Enum related
to scavenging:

Reading cached items
CacheManager exposes a method called GetData, which accepts the key of a cached
item; this operation will return null if the cached item does not exist. It will throw
an ArgumentNullException if the key is null or ArgumentException if the key is an
empty string. Apart from the above-mentioned exceptions, specific exceptions might
be thrown by the configured BackingStore implementation.

The following syntax gets the cached item using the key:

Book book = this.cacheManager.GetData("1") as Book;

Never use the Contains method of the cache manager as this
method might not return an accurate result. The Contains method
might return true indicating the cache item with the specified
key exists but the GetData method may not fetch the item as the
cached item might be expired, removed, or marked for removal.

Chapter 5

[145]

Removing cached items
Removing cached items is a very simple affair; CacheManager exposes a method
called Remove, which accepts a string representing the key of a cached item. It does
nothing if no item exists with that key. It will throw an ArgumentNullException if
the key is null or ArgumentException if the key is an empty string. Apart from the
above-mentioned exceptions, specific exceptions might be thrown by the configured
BackingStore implementation.

The following syntax removes the cached item with the specified key:

this.cacheManager.Remove("1");

Flushing cached items
Flushing removes all items from the cache and the cache items are left unchanged
if an error is encountered during the removal process. If the CacheManager is
configured to use either the out-of-the-box or a custom BackingStore, then an
exception might be thrown by the configured BackingStore implementation.

The following syntax removes all cached items from the cache manager:

this.cacheManager.Flush();

Reloading expired items
The Caching Application Block provides extensibility points at every level;
imagine a scenario where a cache item has to be reloaded as soon as it expires.
The ICacheItemRefreshAction interface defines the contract to cater to such
requirements; we can implement a custom refresh action and pass it while adding
the item to the cache.

The following code snippet shows the definition of ICacheItemRefreshAction
interface:

namespace Microsoft.Practices.EnterpriseLibrary.Caching
{
 public interface ICacheItemRefreshAction
 {
 void Refresh(string removedKey, object expiredValue,
CacheItemRemovedReason removalReason);
 }
}

Caching Application Block

[146]

The following code snippet is a sample skeleton structure to reload the expired item
by implementing the ICacheItemRefreshAction interface:

[Serializable]
public class BookCacheItemRefreshAction : ICacheItemRefreshAction
{
 public void Refresh(string removedKey, object expiredValue,
CacheItemRemovedReason removalReason)
 {
 //Item removed from cache with the specified removal reason
 //Refresh the cached item
 }
}

The BookCacheItemRefreshAction class implements the
ICacheItemRefreshAction interface. We have to provide the custom reload logic
for the expired item in the Refresh method.

The following code snippet shows how to leverage the
BookCacheItemRefreshAction class while adding items to cache:

BookCacheItemRefreshAction refreshAction = new
BookCacheItemRefreshAction();
this.cacheManager.Add(book.ID.ToString(), book, CacheItemPriority.
High, refreshAction, new SlidingTime(TimeSpan.FromMinutes(2)));

We are creating an instance of BookCacheItemRefreshAction and passing this object
while invoking the Add method. Now, whenever the cached item expires the Refresh
method will be invoked, this allows us to identify the cached item using the key.
Additionally, it also provides the value of the expired item and the removal reason.

Configuring Isolated Cache Storage
Backing Store
IsolatedStorageBackingStore stores cached data in a data storage
mechanism called "Isolated Storage", which provides isolation and safety.
IsolatedStorageBackingStore inherits from the BaseBackingStore class,
which provides implementation of common policies and utilities useful to all
backing store implementations. It leverages the System.IO.IsolatedStorage.
IsolatedStorageFile class to store the cached data in a tree structured storage
schema. Performance is optimized by storing the cached item in its own subdirectory
and by creating separate files representing different elements of CacheItem. A storage
encryption provider can be configured to encrypt data before storing it in persistent
form. IsolatedStorageBackingStore is part of the Microsoft.Practices.
EnterpriseLibrary.Caching.BackingStoreImplementations namespace.

Chapter 5

[147]

Configuration of the Isolated Storage Cache Store backing store is pretty
straight-forward: we need to add an Isolated Storage Cache Store backing store
with a unique Partition Name and then map the backing store in the Cache Manager
configuration. Additionally, an encryption provider can be configured to store the
cached data in encrypted form.

The following screenshot shows the configuration options of the Isolated Storage
Cache Store.

Isolated Cache Storage stores the cached data in the user's
IsolatedStorage folder located at C:\Users\<<user name>>\
AppData\Local\IsolatedStorage. The partition name helps
in partitioning cached data of different cache managers or even
different applications.

The following screenshot shows the configuration options of the cache manager with
the Backing Store configured as Isolated Storage Cache Store.

Caching Application Block

[148]

Configuring Database Cache Storage
DataBackingStore is an implementation that stores cached items in a database
leveraging the Data Access Application Block. This application block provides the
script to create the necessary database schema for SQL Server for storing cached
items. A storage encryption provider can be configured to encrypt data before
storing data in persistent form. DataBackingStore is part of the Microsoft.
Practices.EnterpriseLibrary.Caching.Database namespace.

Configuration of Data Cache Storage backing store is similar to that for Isolated
Storage: we need to add a Data Cache Storage backing store with a unique partition
name and then map the backing store in the Cache Manager configuration. We also
need to provide the "Connection String Key" in the Database Instance attribute;
this connection string points to the database that contains the caching tables and
stored procedures created using the CreateCachingDatabase.sql script located
at \Blocks\Caching\Src\Database\Scripts folder. This script creates a database
named Caching; we can modify the script to create the required tables, stored
procedures, and so on in an existing or in a different database as well. Additionally,
an encryption provider can be configured to store the cached data in encrypted form.

The following screenshot shows the configuration options of Data Cache Storage
with the configured Database Instance (configuring Data Access block settings is
covered in detail in the Adding data access settings section of Chapter 2, Data Access
Application Block):

Data Cache Storage stores the cached data in the configured database. This database can
be shared across different applications or different cache managers, and the partition name
helps in identifying the partition to be used by the respective cache managers.

The following screenshot shows the configuration options of Database Storage
Cache Manager with the Backing Store configured as Data Cache Storage:

Chapter 5

[149]

Configuring and encrypting cached data
The Caching Application Block provides the ability to encrypt the cache item before
the data is cached in a backing store. SymmetricStorageEncryptionProvider
implements the IStorageEncryptionProvider interface, which leverages the
symmetric cryptographic implementations from the Cryptography Application
Block. The Cryptography block is covered in detail in Chapter 8, Cryptography
Application Block. The configuration tool helps in selecting the symmetric
cryptography provider, generate a key, and associate the encryption provider to the
backing store. SymmetricStorageEncryptionProvider is part of the Microsoft.
Practices.EnterpriseLibrary.Caching.Cryptography namespace.

While using NullBackingStore to cache data in memory,
the application block will not perform encryption even if
encryption is configured. This behavior is intentional and so it is
recommended not to store any sensitive data in the cache.

The Caching Application Block leverages the Cryptography Application Block
to provide us with the encryption and decryption capabilities to securely store
our cached data in a persistent backing store. It is to be noted that encryption
configuration will not work with in-memory storage (NullBackingStore).
Encryption/Decryption is a feature purely enabled through configuration,
and there are no code changes required to leverage this functionality.

Caching Application Block

[150]

Configuration steps
1. Caching Settings contains a section called Encryption Providers. Click

on the plus symbol available on the top right corner of that section and
navigate and click Add Encryption Providers | Add Symmetric Crypto
Provider. This action would add the default Cryptography Settings of the
Cryptography Application Block.

2. In the Cryptography Settings, click on the plus symbol of the Symmetric
Cryptography Providers section and navigate and click Add Symmetric
Cryptography Providers | Add Symmetric Algorithm Provider. We can also
add Data Protection API (DPAPI) or Custom Symmetric Crypto Provider
based on the requirements.

3. The previous action will show a symmetric algorithm selection dialog;
for this demonstration, we will select System.Security.Cryptography.
RijndaelManaged and hit OK.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 5

[151]

4. The previous action will pop up the Cryptographic Key Wizard dialog;
basically the algorithm requires a key that can be used to encrypt and
decrypt data. We can either create a new key, use an existing Data Protection
API (DPAPI) protected key file, or import a password-protected key file.
For the purposes of this demonstration, we will opt to Create a new key and
click Next.

Caching Application Block

[152]

5. We are now prompted to either enter the key or generate the key using the
Generate button. Click on Generate and a new key will be generated and
displayed in the textbox. Click Next to move to the next step of the wizard.

6. This step allows us to store the key in a file; provide the appropriate path and
key filename by clicking the ellipsis "..." button. Click Next to move to the
next step of the wizard.

7. So far we have generated the key and specified the path and filename to
store the key. But the key itself is not yet protected and vulnerable; this step
prompts us to protect the key using the Data Protection API (DPAPI). We
have to select the data protection mode. User mode encrypts the key using
the credentials of the currently logged-in user while the Machine mode
allows any users on this computer to encrypt or decrypt the key. For the
purposes of this demonstration, we will select User mode. Click the Finish
button to close the wizard.

Chapter 5

[153]

8. We will end up with the Cryptography Settings configuration as given next:

9. The next step is to associate the configured Symmetric Cryptography
Provider in the Encryption Providers section of the Caching Settings. Also
we have to associate the backing store with the Encryption Provider. The
following screenshots depict the associations and configuration.

Caching Application Block

[154]

To summarize the configuration steps, we have configured an IsolatedStorage
backing store with an Encryption Provider entry named Symmetric Crypto
Provider, which leverages the Cryptography Application Block and is associated to a
Symmetric Cryptography Providers entry named RijndaelManaged, with algorithm
type System.Security.Cryptography.RijndaelManaged. While performing
caching operations using the specified IsolatedStorage backing store, the cached
data will be encrypted/decrypted using the provided encryption configuration.

Summary
In this chapter, we have learned the fundamental elements of the Caching
Application Block such as the CacheManager class, expiration policy, scavenging
process, backing stores, and encryption providers. We have explored the various
required and optional assemblies, the initial infrastructure configuration and
the individual feature-level configuration. We have also learned to initialize the
CacheManager using the CacheFactory class, Unity service locator, and using Unity
container directly and later we deep dived into the basics of adding, removing,
reading, and flushing the cache items. We have further learned to configure an
encryption provider to encrypt cached data while using a persistent backing store.

We often spend lot of effort on validating input and it often becomes challenging
to perform the same validation across different layers of the application; in the next
chapter we will explore the Validation block which makes validation a productive
and easy affair.

Validation Application Block
While developing applications we always have to be distrustful of any input; be
it from users or from other systems, it is very important to validate the input.
Developers often spend the bulk of their development effort on validating input,
yet we find ourselves struggling to manage the validation logic, which spreads like
a plague into every nook and corner of the application code. To make our life more
challenging we have to deal with several different validation mechanisms that are
available for different types of applications (ASP.NET, Windows Forms, WCF, WPF);
also within the same application we may have to validate input at multiple places
across different layers or trust boundaries.

Started to feel dizzy? Let us do something about it.

The Validation Application Block is a structured, consistent, easy-to-maintain,
flexible, and reusable component to perform validations. It provides commonly
required Validators that can be leveraged to validate input. It can be used to prevent
invalid input; also business rules validation can be implemented. As the approach is
not focused towards any specific layer (for example the UI) the same validation rules
can be used to validate the input at different layers in the application. The Validation
Application Block includes adapters for technologies such as ASP.NET, Windows
Forms, Windows Communication Foundation (WCF), and Windows Presentation
Foundation (WPF).

The following are the key features of the Validation block:

•	 Validation rules are not limited to any specific layer of the application;
validation logic/rules can be used to validate across different layers.

•	 Rule-based validation provides flexibility to validate an object for various
scenarios through a Rule Set.

•	 It provides consistent and flexible validation mechanism.
•	 It allows validating objects using attributes.

Validation Application Block

[156]

•	 It allows validating values programmatically.
•	 It allows validating objects using self-validation.
•	 It allows validating objects using configuration.
•	 It provides several validator types for the most common validation scenarios.
•	 It provides adapters for integration with ASP.NET, Windows Forms, WPF,

and WCF.

In this chapter, you will:

•	 Be introduced to the Validation Application Block
•	 Be introduced to concepts such as Validators, ValidatorFactory,

ValidationResults, and so on
•	 Learn about referencing the required and optional assemblies
•	 Learn to set up the initial infrastructure configuration using the

configuration editor
•	 Learn to validate objects using attributes
•	 Learn to validate values programmatically
•	 Learn to validate using self-validation
•	 Learn to validate objects using configuration
•	 Learn to integrate the Validation Application Block with Windows Forms

based applications
•	 Learn to integrate the Validation Application Block with ASP.NET

web applications
•	 Learn to implement a custom Validator

Validation Application Block features
Several Validation Application Block elements work together to fulfill the validation
requirements. To start with, we have to decide on the validation method. The
application block provides validation methods such as the following:

•	 Validating objects using attributes by decorating the properties with the
required Validators

•	 Validating values programmatically
•	 Validating objects using self-validation by decorating the class with the

HasSelfValidation attribute and providing a validation method

Chapter 6

[157]

•	 Validating objects using configuration by providing type to be validated,
rule set, validation targets (Properties, Fields and/or Methods), and
validation rules

Each validation method is useful in its own way; we may opt for the validation
method based on our needs. The Validation block provides several Validators (.NET
classes), which can be grouped using Rule Sets, so while validating objects we may
provide a Rule Set and all the validation rules are processed. These Rule Sets are
mapped against properties, fields, and/or methods of the types to be validated. Now
using the appropriate ValidatorFactory we may initiate the validation process by
providing the object to be validated and the rule set to be used for validation.

Developing an application
We will explore each individual Validation block feature and along the way we will
understand the concepts behind the individual elements. This will help us to get up
to speed with the basics; to get started we will do the following:

•	 Reference the Validation block assemblies
•	 Add the required Namespaces

To complement the concepts and sample code of this book and allow you to gain
quick hands-on experience of different features of the Validation Application Block,
we have created a sample demonstration application. A screenshot of the sample
application is shown as follows:

Validation Application Block

[158]

Referencing the required assemblies
For the purposes of this demonstration we will be referencing non-strong-named
assemblies but based on individual requirements Microsoft strong-named
assemblies, or a modified set of custom assemblies can be referenced as well. We will
also be exploring the features relating to ASP.NET in this chapter; for now, we will
only include references to WinForms assemblies; adding assemblies for ASP.NET
will be introduced in the Integrating the Validation block with ASP.NET section.

The following table lists the required/optional assemblies:

Assembly Required/Optional
Microsoft.Practices.EnterpriseLibrary.
Common.dll

Required

Microsoft.Practices.ServiceLocation.dll Required
Microsoft.Practices.Unity.dll Required
Microsoft.Practices.Unity.Interception.dll Required
Microsoft.Practices.Unity.Configuration.dll Optional

Useful while utilizing Unity
configuration classes in our
code

Microsoft.Practices.EnterpriseLibrary.
Validation.dll

Required

Microsoft.Practices.
EnterpriseLibrary.Validation.Integration.
AspNet.dll

Optional

Used for integration with
ASP.NET application

Microsoft.Practices.EnterpriseLibrary.
Validation.Integration.WinForms.dll

Optional

Used for integration with
Windows Forms application

Microsoft.Practices.EnterpriseLibrary.
Validation.Integration.WCF.dll

Optional

Used for integration with
WCF service

Microsoft.Practices.EnterpriseLibrary.
Validation.Integration.WPF.dll

Optional

Used for integration with
WPF application

Chapter 6

[159]

The following steps will add the references to the sample application:

1. Open Visual Studio 2008/2010 and create a new sample Windows
Forms Application by selecting File | New | Project | Windows Forms
Application, providing the appropriate name for the solution and the
desired project location. Currently, the application will have a default
form and assembly references. In the Solution Explorer right-click on the
References section and click on Add Reference and go to the Browse tab.

2. Next, navigate to the Enterprise Library 5.0 installation location, the
default install location is %Program Files%\Microsoft Enterprise
Library 5.0\Bin.

3. Now select all the required assemblies listed in the previously given table
and also the optional WinForms integration assembly. The final assembly
selection will look similar to the following screenshot; note that the
assemblies have been moved together for your reference.

Validation Application Block

[160]

4. After clicking the OK button the selected assemblies will be added to the
references, the following screenshot displays the Solution Explorer listing all
the added assemblies.

5. The next step is to add a configuration file to the project. Right-click on
the project and navigate and click on the menu Add | New Item; this will
display the Add New Item dialog. Select Application Configuration File and
click on Add. This action will add a configuration file named App.config to
the project. We can now add the Logging settings to the configuration file.
This configuration file will be leveraged while validating using the rules
configured in the configuration file.

Adding namespaces
We need to add the given namespaces to the source code file to use the Validation
Application Block elements without fully qualifying each reference.

Core Namespaces:

•	 Microsoft.Practices.EnterpriseLibrary.Validation

•	 Microsoft.Practices.EnterpriseLibrary.Validation.Validators

Configuration Namespace (Optional): Required while using the
EnterpriseLibraryContainer to instantiate objects.

•	 Microsoft.Practices.EnterpriseLibrary.Common.Configuration

Chapter 6

[161]

Unity Namespaces (Optional): Required while instantiating objects using
Unity container.

•	 System.Configuration

•	 Microsoft.Practices.Unity

•	 Microsoft.Practices.Unity.Configuration

WCF Namespace (Optional): Required while leveraging Validation Application
Block in a WCF Service.

•	 Microsoft.Practices.EnterpriseLibrary.Validation.Integration.
WCF

Understanding Validators
The Validation Application Block provides several validation classes, which
inherit from the abstract Validator class and these are called Validators. Each
Validator class is associated with a specific data type; the Validator validates
whether the input is valid or not. Validators can be associated with data types
in several ways; association can be made through configuration, attributes, a
combination of configuration, and attributes, and using self-validation. They can
also be instantiated within our code without associating them with a data type. The
concrete implementation of the Validator class holds the validation logic; the block
also provides Validator<T>, which is a generic abstract class to validate the type
represented by T. The Validation Application Block provides the following Validators.

Value Validators
Value Validators as the name suggests perform validations on the value of
their respective data type. These are implemented using the abstract class
ValueValidator<T>.

Validator Class Description
StringLengthValidator The StringLengthValidator class checks

whether the length of the string is within the
specified lower and upper bound range.

ContainsCharactersValidator The ContainsCharactersValidator class
checks whether an arbitrary string input contains
any or all of the characters specified by the
CharacterSet property.

Validation Application Block

[162]

Validator Class Description
DateTimeRangeValidator DateTimeRangeValidator class validates

whether a DateTime object is within the specified
lower and upper bound range.

DomainValidator<T> DomainValidator<T> class checks whether the
input value is one of the specified values in the
set of acceptable values specified as part of the
Domain property.

EnumConversionValidator EnumConversionValidator class checks
whether the input string can be converted to a
value of the enum type specified in the EnumType
property.

NotNullValidator NotNullValidator class checks that the value is
not null.

PropertyComparisonValidator PropertyComparisonValidator class
compares the value to be verified with the value
of the property on the target object property
(PropertyToCompare) using the specified
comparison operator (ComparisonOperator).

RangeValidator<T> RangeValidator<T> class checks whether the
value is within the specified lower and upper
bound range. This generic implementation
can be used with any type implementing the
IComparable interface.

RegexValidator RegexValidator class validates whether
the value matches the pattern specified by
a regular expression using System.Text.
RegularExpressions.Regex.

RelativeDateTimeValidator RelativeDateTimeValidator class verifies
whether the DateTime value is within the
specified lower and upper bound range using
relative times and dates. Additionally the
LowerUnit and UpperUnit properties set the
unit of time for the respective lower and upper
boundaries.

TypeConversionValidator TypeConversionValidator class validates
whether the input value string can be converted
to the target type specified in the TargetType
property.

Chapter 6

[163]

Object Validators
Object Validators performs validations on an object reference. Object Validator and
Object Collection Validator fall under this category.

Validator Class Description
ObjectValidator ObjectValidator class invokes all Validators

defined for the object's type and causes validation to
occur on an object reference. Validation is ignored if
the object is null (C#) or Nothing (Visual Basic).

ObjectCollectionValidator ObjectCollectionValidator class verifies
whether the object is a collection of the specified type;
validation is invoked for each object in the collection
using the defined Validators.

Single Member Validators
Instead of validating the entire data type using the defined Validators,
Single Member Validators gives us the flexibility to validate the individual
members of types. The Validation Application Block provides three different
Validators: FieldValueValidator, MethodReturnValueValidator, and
PropertyValueValidator.

Validator Class Description
FieldValueValidator<T> FieldValueValidator<T> class provides

the flexibility to validate a field of a type;
the constructor accepts a field name and the
Validator to validate the value of the field.

MethodReturnValueValidator<T> MethodReturnValueValidator<T>
class is similar to FieldValueValidator,
instead of validating the field this validator
accepts a method name and the Validator
instance to validate the return value.
MethodReturnValueValidator invokes the
method and performs validation of the return
value using the specified Validator.

PropertyValueValidator<T> PropertyValueValidator<T> class validates
the value of the specified property of a type; the
constructor signature is same as for other Single
Member Validators. This validator accepts a
property name and the Validator type to be
used to validate the value of the property.

Validation Application Block

[164]

Composite Validators
Composite Validators provide the flexibility to combine multiple Validators. This
category consists of "And" and "Or" Composite Validators.

Validator Class Description
AndCompositeValidator The AndCompositeValidator class performs validation

on all the specified Validators; only if all the Validators are
valid will the outcome be valid. The constructor accepts a
variable number of Validator objects as parameters.

OrCompositeValidator Similar to AndCompositeValidator the
OrCompositeValidator class also performs validation
of all the specified Validators.

The following diagram lists the available Validator classes and the
inheritance hierarchy:

Chapter 6

[165]

Understanding Rule Sets
Consider Rule Sets as a way of grouping validation rules for a specific scenario.
For example, while updating a Product record we might want to validate whether
ProductID is available as part of the Product object. This rule will not apply while
adding a new Product to the data store. Rule sets can be applied as part of attributes
to properties of a class or through configuration.

Understanding ValidatorFactory
ValidatorFactory is an abstract class for creating Validators for a specific type;
this class applies the factory pattern and helps in creating Validator objects
using CreateValidator method. Since we have several validation methods, the
ValidatorFactory class has several concrete implementations each for a specific
validation method.

•	 The AttributeValidatorFactory class produces Validators based on the
Validator attributes specified and the Rule Set in the type to be validated.

•	 The ConfigurationValidatorFactory class produces Validators based on
the configuration specified and the Rule Set in the type to be validated.

•	 The CompositeValidatorFactory class composes one or more concrete
implementations of ValidatorFactory classes.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Validation Application Block

[166]

The following diagram shows the members and inheritance hierarchy of the all the
ValidatorFactory classes:

Understanding ValidationResults
The ValidationResults class holds one or more ValidationResult objects based
on the outcome of the validation. It has two useful properties; the IsValid property
specifies whether the validation is successful and the Count property gets the results
count. The ValidationResult class holds a single result with information such as
validation message, key, tag, and so on.

Chapter 6

[167]

The following diagram shows the members of the ValidationResult and
ValidationResults classes:

Validating objects using attributes
Let us scratch the surface with a simple Author class, which consists of ID,
FirstName, and EmailID properties. We would like to validate based on the
given criteria:

•	 First name of the author should not be null and should be between 1 and
30 characters.

•	 EmailID should not be null or empty and should be a valid E-mail ID.

The Author class marked with the respective Validator attributes is given next:

public class Author
{
 public int ID { get; set; }

 [NotNullValidator(MessageTemplate = "First Name cannot be null")]
 [StringLengthValidator(1, 30, MessageTemplate = "First Name must
be between 1 and 30 characters")]
 public string FirstName { get; set; }

 [RegexValidator(@"\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*",
MessageTemplate = "Invalid Email ID")]
 public string EmailID { get; set; }
}

Validation Application Block

[168]

The given Author class is marked with the Validator attributes to let the Validation
Application Block know that validation has to be done based on the given criteria. So
we have specified the criteria; now we have to validate the object in our application.
Assume that we receive the First Name and Email ID from the user while registering
as a new author. We have to use that input and construct the object and then validate
the object to verify whether the input meets the validation criteria. The following
code creates a ValidatorFactory and creates a Validator instance by passing the
type Author.

AttributeValidatorFactory validatoryFactory =
EnterpriseLibraryContainer.Current.GetInstance<AttributeValidatorFact
ory>();
Validator<Author> validator = validatoryFactory.
CreateValidator<Author>();

Author author = new Author();
author.FirstName = null;
author.EmailID = "some invalid email id";

ValidationResults results = validator.Validate(author);

foreach (ValidationResult result in results)
{
 Console.WriteLine(result.Message);
}

Since we are dealing with attribute-based validation we have
created an instance of the AttributeValidatorFactory
class. Alternatively, ValidatorFactory can also be
instantiated to validate rules defined in attributes, configuration,
and .NET Data Annotations validation attributes.

The previous code block will result in validation failure and display the following
error messages in the console.

•	 First Name cannot be null
•	 First Name must be between 1 and 30 characters
•	 Invalid Email ID

Chapter 6

[169]

Validating values programmatically
Validating objects using attributes works well while we own the source code for the
class we wish to validate; unfortunately, there are cases where this approach will not
work. We might only have the binary or the proxy of a web service and we might
also wish to validate individual values instead of the entire object. To cater to these
scenarios the Validation Application Block provides a Validator class that can be
used to validate values against the specified validation criteria.

Let us assume that we have a web service proxy with Author class and we have to
validate the "First Name" and "Email ID". The given code will validate against the
same set of criteria as defined in the attribute-based validation example.

ValidationResults validationResults = null;

Author author = new Author();
author.FirstName = null;
author.EmailID = "some invalid email id";

Validator firstNameValidator = new AndCompositeValidator(new
NotNullValidator(), new StringLengthValidator(1, 30));
validationResults = firstNameValidator.Validate(author.FirstName);

Validator<string> emailIDValidator = new RegexValidator(@"\w+([-+.']\
w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*");
emailIDValidator.Validate(author.EmailID, validationResults);

foreach (ValidationResult result in validationResults)
{
 Console.WriteLine(result.Message);
}

This code block validates individual values based on the specific validation
criteria provided by the Validator object. The firstNameValidator object
consists of an AndCompositeValidator, which has NotNullValidator and
StringLengthValidator; basically this says that both the validators should be
true for a successful validation. Email ID validation is performed by instantiating
RegexValidator (Regular Expression Validator) with the valid Email ID
pattern. The Validate method provides an overload that accepts an existing
ValidationResults object and adds validation errors to the list.

Validation Application Block

[170]

Validating objects using self-validation
Self-validation provides the flexibility of implementing validation logic within
the class; this approach is very useful to quickly implement validation logic for
complex scenarios.

The given Author class is marked for self-validation and provides its own
validation logic:

[HasSelfValidation]
public class Author
{
 public int ID { get; set; }

 public string FirstName { get; set; }

 public string EmailID { get; set; }

 [SelfValidation]
 public void Validate(ValidationResults results)
 {
 if (this.FirstName == null)
 results.AddResult(new ValidationResult("First Name cannot
 be null", this, null, null, null));
 else if((this.FirstName.Length < 1) ||
 (this.FirstName.Length > 30))
 results.AddResult(new ValidationResult("First Name must be
 between 1 and 30 characters", this, null, null, null));

 Validator<string> emailIDValidator = new RegexValidator
 (@"\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*");
 emailIDValidator.Validate(this.EmailID, results);
 }
}

Chapter 6

[171]

In the given code the Author class is marked with the HasSelfValidation
attribute to notify the Validation Application Block that the class implements its
own validation logic. Also, we have marked the Validate method (the method
signature should accept a single parameter of type ValidationResults) with the
SelfValidation attribute. The method marked with the SelfValidation attribute
is invoked by the Validation Application Block to validate the object.

One or more methods can be marked with the
SelfValidation attribute for different Rule Sets.

Now when the following code is invoked, it displays all the validation errors in
the console.

AttributeValidatorFactory validatoryFactory =
EnterpriseLibraryContainer.Current.GetInstance<AttributeValidatorFact
ory>();
Validator<Author> validator = validatoryFactory.
CreateValidator<Author>();

Author author = new Author();
author.FirstName = null;
author.EmailID = "some invalid email id";

ValidationResults results = validator.Validate(author);
foreach (ValidationResult result in results)
{
 Console.WriteLine(result.Message);

}

Validating objects using configuration
So far we have specified validation rules in attributes or written our own validation
logic but validation rules are often dynamic in nature. Validation rules might
change over a period of time and would require code changes and recompilation.
Configuration-based validation provides flexibility to change validation rules
without re-compiling the code. Validation rules can be configured and stored in
configuration file for several types. The following steps will add the settings to the
configuration file:

1. Open the Enterprise Library configuration editor either using the shortcut
available in Start | All Programs | Microsoft patterns & practices |
Enterprise Library 5.0 | Enterprise Library Configuration or just by
right-clicking the configuration file in the Solution Explorer window of
Visual Studio IDE.

Validation Application Block

[172]

2. Next click on Edit Enterprise Library V5 Configuration; initially we will
have a blank configuration file with default Application Settings and
Database Settings.
The following screenshot displays the default configuration:

3. Now let us add the Validation Settings in the configuration file. Select the
menu option Blocks, which lists many different settings to be added to the
configuration, and click on the Add Validation Settings menu item to add
the validation configuration settings.

The following screenshot shows the menu listing several settings options:

Chapter 6

[173]

4. Once we click on the Add Validation Settings menu item, the Validation
Settings section is added as shown in the given screenshot:

Notice that the setting consists of four parts: Validated Types, Rule Sets, Validation
Targets, and Rules.

Before proceeding any further, let us look at the code of the Author class that will be
used to demonstrate the configuration-based validation approach. The given Author
class is similar to the Author class used during the attribute-based approach; we
have removed all the validator attributes as these rules will now be configured in the
configuration.

public class Author
{
 public int ID { get; set; }

 public string FirstName { get; set; }

 public string EmailID { get; set; }
}

Now let us add the Author class whose members will be validated. Click the plus
symbol in the Validated Types section and then click on Add Type To Validate. A
dialog will appear with the list of available assemblies; select the Author class from
our application assembly. The following screenshot displays the menu option to add
the type to validate:

Validation Application Block

[174]

After we click the Add Type To Validate menu item, the type selection dialog will
be shown. The following screenshot displays the type selection dialog with the
selected type as Author.

The following screenshot shows the type Author added in the Validated Types
section in Validation Settings.

Chapter 6

[175]

Now that we have configured the Validated Types section, let us move ahead with
the Rule Sets section, which will hold the set of validation rules to be applied while
validating instances of the Author class.

The following screenshot shows the menu option to add the validation Rule Set:

We will add two Rule Sets to validate the properties of the Author object while
inserting and updating the author in the application. The following screenshot shows
the configuration after adding two Rule Sets. Note that the Name has been updated
to reflect the purpose of the rule set.

We have the Rule Sets in place; now we will add the Validation Targets, which are
properties for both the Rule Sets. Right-click on each rule set and click on the Select
Members... menu to select the members of the Author class that need to be validated.
Alternatively, we can manually add each member using the menu options such as
Add Field To Validate, Add Method To Validate, and Add Property To Validate.

Validation Application Block

[176]

The following screenshot shows the Select Members... menu option:

After clicking on Select Members... a member selector dialog will be displayed with
the list of available properties, methods, and fields. The given screenshot displays the
Member Selector dialog for the Author class:

Chapter 6

[177]

Once the members are selected, in our case we are going to select FirstName and
EmailID for Rule Set Ruleset.Insert and ID, FirstName, and EmailID for Rule
Set Ruleset.Update. The following screenshot displays the members added to the
Validation Targets section:

Once the properties are selected for validation, we have to specify one or more
validator for each member based on the validation needs. We will be using the same
validators as used during the attribute-based approach; right-click on each member
to navigate to Add Validators and to the respective validator. The given screenshot
shows list of available validators for configuration:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Validation Application Block

[178]

The following screenshot shows the configured validators for each member. Several
validators require setting of one or more properties and these are self explanatory
as they share the same characteristic as the attribute-based approach. The following
screenshot shows the configured validators for each member under the Rules section.

The following is a summary of the configuration steps we have performed so far:

1. We configured the Author class as a type whose members will be validated.
2. We configured two Rule Sets, one each for adding and modifying

an Author.
3. Next, we selected the properties for both of the Rule Sets.
4. Finally, we added validation rules for the selected properties of the

Author class.

We are done with the configuration part; now we will use the configured Rule Set to
perform validation. The following code block validates the Author object using the
specified Rule Set:

ConfigurationValidatorFactory validatoryFactory =
EnterpriseLibraryContainer.Current.GetInstance<ConfigurationValidator
Factory>();
Validator<Author> validator = validatoryFactory.CreateValidator<Author
>("Ruleset.Update");

Author author = new Author();
author.FirstName = null;
author.EmailID = "some invalid email id";

Chapter 6

[179]

ValidationResults results = validator.Validate(author);

foreach (ValidationResult result in results)
{
 Console.WriteLine(result.Message);
}

In this code, we are instantiating a ConfigurationValidatorFactory object
using the EnterpriseLibraryContainer class. Then, the next step is to create the
Validator object; notice the highlighted code: while creating the Validator we can
specify the Rule Set name to apply specific Rule Set-based validations. In our case,
while adding the Author to the application we will use Ruleset.Insert and while
modifying we will use the Ruleset.Update. The previous code block validates the
Author object with Ruleset.Update, which validates the ID, FirstName, and EmailID
properties based on the configured rules for each property.

Integrating with Windows Forms-based
applications
The Validation Application Block provides integration with Windows Forms
applications and validates user input. The ValidationProvider component
part of the Microsoft.Practices.EnterpriseLibrary.Validation.
Integration.WinForms assembly is an extender provider that adds additional
properties to Windows Forms controls. Validation can be performed by using the
Control.Validating event or it can be invoked manually in our code using the
ValidationProvider.PerformValidation(Control) method. Additionally, it
provides integration with Windows Forms ErrorProvider component to display
visual indication to the user of the error.

We must add reference to the Microsoft.Practices.
EnterpriseLibrary.Validation.Integration.
WinForms.dll to leverage the integration features.

Validation Application Block

[180]

Steps to leverage ValidationProvider
1. Add ValidationProvider to the Toolbox.
2. Right-click on the Toolbox and click Choose Items... menu, this will load

the Choose Toolbox Items dialog. In the .NET Framework Components tab,
select the ValidationProvider component.

3. Add ErrorProvider and a ValidationProvider component to the
Windows Forms.

Chapter 6

[181]

4. Configure ValidationProvider by selecting the ErrorProvider component
and by assigning the SourceTypeName to the fully qualified name of the type
to be validated. Optionally, RulesetName can be configured to use a specific
Rule Set; also the component can be enabled or disabled by setting the
Enabled property.

5. Configure controls for validation.
6. Assuming we want to validate the Author class, which consists of First

Name, Last Name, and Email ID, since ValidationProvider adds
additional properties to the controls, we can configure SourcePropertyName
to the respective property name in the Author class. ValidatedProperty is
set to Text by default for a TextBox control and PerformValidation is set to
True by default.

Validation Application Block

[182]

7. The following screenshot shows the extended properties that have to be
configured. SourcePropertyName determines the property to be used of the
type configured in the ValidationProvider.

8. Perform validation either using ValidateChildren or the
ValidationProvider.PerformValidation(Control) method.

9. The following code snippet shows the validation call using the Windows
Forms ValidateChildren method:
this.ValidateChildren(ValidationConstraints.Visible);

10. The following code snippet shows the validation call using the
ValidationProvider:
validationProviderAuthor.PerformValidation(textBoxFirstName);

Chapter 6

[183]

Integrating the Validation block with
ASP.NET
The Validation Application Block provides the PropertyProxyValidator control
to validate user input by associating the existing validation rules of a particular type
by mapping it to an ASP.NET server control. Apart from the common assembly
references and Validation Application Block reference, we have to add the Enterprise
Library Validation Application Block ASP.NET Integration assembly to leverage and
integrate the Validation Application Block with ASP.NET.

We must include the integration assembly using the @Register directive:

<%@ Register Assembly="Microsoft.Practices.EnterpriseLibrary.
Validation.Integration.AspNet"
 Namespace="Microsoft.Practices.EnterpriseLibrary.Validation.
Integration.AspNet"
 TagPrefix="vabaspnet" %>

The PropertyProxyValidator control works like the ASP.NET Validator control
but under the hood it acts as a wrapper that uses the existing validation rules. The
four basic properties of this control are as follows:

•	 ControlToValidate: ID of the input control to validate
•	 SourceTypeName: Fully qualified type name whose property will

be validated
•	 PropertyName : Property to be validated
•	 RulesetName : Rule Set to be applied for validation

The ASP.NET syntax to associate the Server control with the
PropertyProxyValidator control and the corresponding class and
property mapping are shown next:

<asp:TextBox ID="txtFirstName" runat="server" Width="235px"></
asp:TextBox>
<vabaspnet:PropertyProxyValidator id="firstNameValidator"
runat="server"
 ControlToValidate="txtFirstName" PropertyName="FirstName"
 RulesetName="Ruleset.Insert" SourceTypeName="VAB_ASPNET_
Integration.Author"
 OnValueConvert="firstNameValidator_ValueConvert"></vabaspnet:P
ropertyProxyValidator>

Validation Application Block

[184]

This code will display the error message if the First Name does not satisfy any rules
of the FirstName property of the Author class. Also, it exposes a ValueConvert
event which can be used to convert the string representation value to the required
type. The given code block converts the First Name to null value if the First Name
is empty.

protected void firstNameValidator_ValueConvert(object sender,
Microsoft.Practices.EnterpriseLibrary.Validation.Integration.
ValueConvertEventArgs e)
{
 string firstName = e.ValueToConvert as string;

 if (firstName == string.Empty) e.ConvertedValue = null;
}

The following screenshot shows the validation result with the error message Invalid
Email ID for the Email ID field.

Implementing a Custom Validator
The Validation Application Block provides extension points to implement custom
validators; both loosely and strongly typed validators can be implemented using
the abstract classes Validator and Validator<T> respectively. We may also inherit
from an existing Validator class to extend the functionality. Additionally, we can also
implement a custom Validator Attribute to allow our custom validator to be used
with the attribute-based validation approach.

Let us implement a simple US Zip Code validator to understand the implementation
details of a custom Validator. The steps to implement it are as follows:

1. The very first step is to add the required assembly references. We need the
given assemblies for the implementation:

	° System.Configuration.dll

	° Microsoft.Practices.EnterpriseLibrary.Common.dll

	° Microsoft.Practices.EnterpriseLibrary.Validation.dll

Chapter 6

[185]

2. Add a class and name the class USZipCodeValidator; this class will
be decorated with the ConfigurationElementType attribute and
we will use the CustomValidatorData as the configuration object.
CustomValidatorData describes an instance of a custom Validator class.
[ConfigurationElementType(typeof(CustomValidatorData))]
public class USZipCodeValidator
{
}

3. Next, we can inherit using the strongly typed Validator and implement
the abstract members, additionally the default message template, and the
required constructors. We also have to provide our US Zip Code validation
logic in the DoValidate method.
[ConfigurationElementType(typeof(CustomValidatorData))]
public class USZipCodeValidator: Validator<string>
{
 public USZipCodeValidator() : base(null, null) { }

 public USZipCodeValidator(string messageTemplate, string tag)
: base(messageTemplate, tag) { }

 protected override void DoValidate(string objectToValidate,
object currentTarget, string key, ValidationResults
validationResults)
 {
 string zipCodePattern = @"\d{5}(-\d{4})?";

 Regex regex = new Regex(zipCodePattern);

 if (!regex.IsMatch(objectToValidate))
 {
 string message = string.Format(this.MessageTemplate,
objectToValidate);
 this.LogValidationResult(validationResults, message,
currentTarget, key);
 }
 }

 protected override string DefaultMessageTemplate
 {
 get { return "Value {0} is not a valid US Zip Code"; }
 }
}

Validation Application Block

[186]

We have implemented our custom validator that validates a string for a valid US
Zip Code. The USZipCodeValidator class can now be consumed either through
configuration by adding the custom validator or through programmatic validation.
Let us now see how we consume the Validator in our application through
programmatic validation to validate the user input.

The following code snippet demonstrates the usage of the implemented custom
validator, which can also be leveraged using the configuration-based approach by
adding the USZipCodeValidator using the Add Custom Validator menu item while
adding validators.

USZipCodeValidator customValidator = new USZipCodeValidator();

ValidationResults results = customValidator.Validate(textBoxUSZipCode.
Text);

Summary
In this chapter, we have learned about the key features and fundamental elements
of the Validation Application Block such as Validators, ValidatorFactory,
ValidationResults, and Rule Sets. We have explored the various required and
optional assemblies, the initial infrastructure configuration, and the individual
feature-level configuration. We have also learned to validate objects using various
approaches such as attributes, self-validation, programmatically, and through
configuration. We have also seen how the Validation Application Block can be
integrated with Windows Forms-based applications and ASP.NET web applications.
Finally, we learned to implement a custom validator with a simple implementation
of a US Zip Code Validator. In the next chapter, we will deep dive into the Security
Application Block and learn to leverage Authorization Rule Provider and Security
Cache Provider to authorize and cache security credentials.

Security Application Block
Security is of prime importance for any application, especially enterprise applications
where the business impact is potentially high. At the very core, security is a two
step mechanism. The first step is the process of validating an identity against a store
(Active Directory, Database, and so on); this is commonly called as Authentication.
The second step is the process of verifying whether the validated identity is allowed
to perform certain actions; this is commonly known Authorization. These two
security mechanisms take care of allowing only known identities to access the
application and perform their respective actions. Although, with the advent of new
tools and technologies, it is not difficult to safeguard the application, utilizing these
authentication and authorization mechanisms and implementing security correctly
across different types of applications, or across different layers and in a consistent
manner is pretty challenging for developers. Also, while security is an important
factor, it's of no use if the application's performance is dismal. So, a good design
should also consider performance and cache the outcome of authentication and
authorization for repeated use.

The Security Application Block provides a very simple and consistent way to
implement authorization and credential caching functionality in our applications.
Authorization doesn't belong to one particular layer; it is a best practice to authorize
user action not only in the UI layer but also in the business logic layer. As Enterprise
Library application blocks are layer-agnostic, we can leverage the same authorization
rules and expect the same outcome across different layers bringing consistency.
Authorization of user actions can be performed using an Authorization Provider;
the block provides Authorization Rule Provider or AzMan Authorization Provider;
it also provides the flexibility of implementing a custom authorization provider.
Caching of security credentials is provided by the SecurityCacheProvider by
leveraging the Caching Application Block and a custom caching provider can also
be implemented using extension points. Both Authorization and Security cache
providers are configured in the configuration file; this allows changing of provider
any time without re-compilation.

Security Application Block

[188]

The following are the key features of the Security block:

•	 The Security Application Block provides a simple and consistent API to
implement authorization.

•	 It abstracts the application code from security providers through
configuration.

•	 It provides the Authorization Rule Provider to store rules in a configuration
file and Windows Authorization Manager (AzMan) Authorization Provider
to authorize against Active Directory, XML file, or database.

•	 Flexibility to implement custom Authorization Providers.
•	 It provides token generation and caching of authenticated IIdentity,

IPrincipal and Profile objects.
•	 It provides User identity cache management, which improves performance

while repeatedly authenticating users using cached security credentials.
•	 Flexibility to extend and implement custom Security Cache Providers.

In this chapter, you will:

•	 Be introduced to the Security Application Block
•	 Be introduced to Authorization Providers such as Authorization Rule

Provider and AzMan Authorization Provider
•	 Be introduced to the Security Cache Provider
•	 Learn about referencing the required assemblies
•	 Learn about the required and optional namespaces to avoid fully

qualifying types
•	 Learn to authorize user actions based on rules
•	 Learn to save user Identity in cache and obtain a temporary token for an

Authenticated User
•	 Learn to retrieve a token from cache and authenticate user
•	 Learn to terminate a User session by expiring cached identity
•	 Learn to implement a custom authorization provider

Chapter 7

[189]

Developing an application
We will explore each individual Security block feature and along the way we will
understand the concepts behind the individual elements. This will help us to get up
to speed with the basics. To get started, we will do the following:

•	 Reference the Validation block assemblies
•	 Add the required Namespaces
•	 Set up the initial configuration

To complement the concepts and sample code of this book and allow you to gain
quick hands-on experience of different features of the Security Application Block,
we have created a sample web application project with three additional projects,
DataProvider, BusinessLayer, and BusinessEntities, to demonstrate the
features. The application leverages SQL Membership, Role, and Profile provider
for authentication, role management, and profiling needs. Before running the web
application you will have to run the database generation script provided in the
DBScript folder of the solution, and update the connection string in web.config
appropriately. You might have to open the solution in "Administrator" mode based
on your development environment. Also, create an application pool with an identity
that has the required privileges to access the development SQL Server database, and
map the application pool to the website. A screenshot of the sample application is
shown as follows:

Security Application Block

[190]

Referencing required/optional assemblies
For the purposes of this demonstration we will be referencing non-strong-named
assemblies but based on individual requirements Microsoft strong-named
assemblies, or a modified set of custom assemblies can be referenced as well. The
list of Enterprise Library assemblies that are required to leverage the Security
Application Block functionality is given next. A few assemblies are optional based
on the Authorization Provider and cache storage mechanism used. Use the Microsoft
strong-named, or the non-strong-named, or a modified set of custom assemblies
based on your referencing needs.

The following table lists the required/optional assemblies:

Assembly Required/Optional
Microsoft.Practices.EnterpriseLibrary.
Common.dll

Required

Microsoft.Practices.ServiceLocation.dll Required
Microsoft.Practices.Unity.dll Required
Microsoft.Practices.Unity.Interception.
dll

Required

Microsoft.Practices.Unity.
Configuration.dll

Optional

Useful while utilizing Unity
configuration classes in our code

Microsoft.Practices.EnterpriseLibrary.
Security.dll

Required

Microsoft.Practices.EnterpriseLibrary.
Security.AzMan.dll

Optional

Used for Windows Authorization
Manager Provider

Microsoft.Practices.EnterpriseLibrary.
Security.Cache.CachingStore.dll

Optional

Used for caching the User identity
Microsoft.Practices.EnterpriseLibrary.
Data.dll

Optional

Used for caching in Database
Cache Storage

Chapter 7

[191]

Open Visual Studio 2008/2010 and create a new ASP.NET Web Application Project
by selecting File | New | Project | ASP.NET Web Application; provide the
appropriate name for the solution and the desired project location. Currently,
the application will have a default web form and assembly references. In the
Solution Explorer, right-click on the References section and click on Add
Reference and go to the Browse tab. Next, navigate to the Enterprise Library 5.0
installation location; the default install location is %Program Files%\Microsoft
Enterprise Library 5.0\Bin. Now select all the assemblies listed in the
previous table, excluding the AzMan-related assembly (Microsoft.Practices.
EnterpriseLibrary.Security.AzMan.dll).

The final assembly selection will look similar to the following screenshot:

Adding initial security settings
Before we can leverage the features of the Security Application Block, we have to
add the initial Security Settings to the configuration. Open the Enterprise Library
configuration editor either using the shortcut available in Start | All Programs
| Microsoft patterns & practices | Enterprise Library 5.0 | Enterprise Library
Configuration or just by right-clicking the configuration file in the Solution
Explorer window of Visual Studio IDE and clicking on Edit Enterprise Library
V5 Configuration. Initially, we will have a blank configuration file with default
Application Settings and Database Settings.

Security Application Block

[192]

The following screenshot shows the default configuration settings:

Let us go ahead and add the Security Settings in the configuration file. Select
the menu option Blocks, which lists many different settings to be added to the
configuration, and click on the Add Security Settings menu item to add the
security configuration settings.

The following screenshot shows the available options in the Blocks menu:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

[193]

Once we click on the Add Security Settings the configuration editor will display the
default Security Settings as shown in the following screenshot.

The Security Settings consist of Authorization Providers, Security Caches and
Authorization Rules. Authorization Rules can be configured only while using
Authorization Rule Provider. We will change the configuration further but for now,
we are in good shape with regards to the initial infrastructure configuration.

Adding namespaces
We will be leveraging types from several different namespaces and so to make our
life easy we can add the given namespace to the source code file to use the Security
block elements without fully qualifying the references. Although we will be using
EnterpriseLibraryContainer to instantiate objects (we will also add Microsoft.
Practices.EnterpriseLibrary.Common.Configuration namespace to the source
file), the Unity Namespace section is listed to make you aware of the availability of
the alternative approach of instantiating objects.

•	 Core Namespace:
	° Microsoft.Practices.EnterpriseLibrary.Security

•	 Configuration Namespace (Optional): Required while using the
EnterpriseLibraryContainer to instantiate objects.

	° Microsoft.Practices.EnterpriseLibrary.Common.
Configuration

•	 Unity Namespace (Optional): Required while instantiating objects using
UnityContainer.

	° System.Configuration

	° Microsoft.Practices.Unity

	° Microsoft.Practices.Unity.Configuration

Security Application Block

[194]

Creating security application block objects
We have several options at hand while creating objects, such as using a static
factory class, using Unity service locator and using Unity container directly. A
few approaches such as configuring the container through a configuration file or
code are not listed here but the recommended approach is either to use the Unity
Service Locator for applications with few dependencies or create objects using Unity
container directly to leverage the benefits of this approach. Use of a static factory class
is not recommended.

Using the static factory class
Static factory classes were the default approach for creating objects with versions
prior to 5.0. This approach is no longer recommended but is still available for
backward compatibility.

The following is the syntax to create deafult and named Authorization Provider
instances using the static AuthorizationFactory class:

//Instantiating Using Static Factory - Default Authorization Provider
IAuthorizationProvider defaultAuthorizationProvider =
AuthorizationFactory.GetAuthorizationProvider();

//Instantiating Using Static Factory - Named Authorization Provider
IAuthorizationProvider namedAuthorizationProvider =
AuthorizationFactory.GetAuthorizationProvider("AuthzProvider");

The following is the syntax to create deafult and named Security Cache Provider
instances using the static SecurityCacheFactory class:

//Instantiating Using Static Factory - Default Security Cache Provider
ISecurityCacheProvider defaultSecurityCacheProvider =
SecurityCacheFactory.GetSecurityCacheProvider();

//Instantiating Using Static Factory - Named Security Cache Provider
ISecurityCacheProvider namedSecurityCacheProvider =
SecurityCacheFactory.GetSecurityCacheProvider("SecurityCache");

Using Unity service locator
This approach is recommended for applications with few dependencies. The
EnterpriseLibraryContainer class exposes a static property called Current of type
IServiceLocator, which resolves and gets an instance of the specified type.

Chapter 7

[195]

The following is the syntax to create default and named Authorization Provider
instances using the EnterpriseLibraryContainer class:

//Instantiating Using Unity Service Locator - Default Authorization
Provider
IAuthorizationProvider defaultAuthorizationProvider =
EnterpriseLibraryContainer.Current.GetInstance<IAuthorizationProvid
er>();

//Instantiating Using Unity Service Locator - Named Authorization
Provider
IAuthorizationProvider namedAuthorizationProvider =
EnterpriseLibraryContainer.Current.GetInstance<IAuthorizationProvider>
("AuthzProvider");

The following is the syntax to create default and named Security Cache Provider
instances using the EnterpriseLibraryContainer class:

//Instantiating Using Unity Service Locator - Default Security Cache
Provider
ISecurityCacheProvider defaultSecurityCacheProvider =
EnterpriseLibraryContainer.Current.GetInstance<ISecurityCacheProvid
er>();

//Instantiating Using Unity Service Locator - Named Security Cache
Provider
ISecurityCacheProvider namedSecurityCacheProvider =
EnterpriseLibraryContainer.Current.GetInstance<ISecurityCacheProvider>
("SecurityCache");

Using Unity container directly
Larger complex applications demand looser coupling; this approach leverages the
dependency injection mechanism to create objects instead of explicitly creating
instances of concrete implementations. Unity container stores the type registrations
and mappings in the configuration file and instantiates the appropriate type
whenever requested. This allows us to change the type in the configuration without
re-compiling the code and essentially to change the behavior from outside.

The following is the syntax to create default and named Authorization Provider
instances using the UnityContainer class:

var container = new UnityContainer();
container.AddNewExtension<EnterpriseLibraryCoreExtension>();

//Instantiating Using Unity Container Directly - Default Authorization
Provider

Security Application Block

[196]

IAuthorizationProvider defaultAuthorizationProvider = container.Resolv
e<IAuthorizationProvider>();

//Instantiating Using Unity Container Directly - Named Authorization
Provider
IAuthorizationProvider namedAuthorizationProvider = container.Resolve<
IAuthorizationProvider>("AuthzProvider");

The following is the syntax to create default and named Security Cache Provider
instances using the UnityContainer class:

var container = new UnityContainer();
container.AddNewExtension<EnterpriseLibraryCoreExtension>();

//Instantiating Using Unity Container Directly - Default Security
Cache Provider
ISecurityCacheProvider defaultSecurityCacheProvider = container.Resolv
e<ISecurityCacheProvider>();

//Instantiating Using Unity Container Directly - Named Security Cache
Provider
ISecurityCacheProvider namedSecurityCacheProvider = container.Resolve<
ISecurityCacheProvider>("SecurityCache");

Understanding Authorization Providers
An Authorization Provider is simply a class that provides authorization logic;
technically it implements either an IAuthorizationProvider interface or an
abstract class named AuthorizationProvider and provides authorization logic in
the Authorize method. As mentioned previously, the Security Application Block
provides two Authorization Providers out of the box, AuthorizationRuleProvider
and AzManAuthorizationProvider both implementing the abstract
class AuthorizationProvider available in the Microsoft.Practices.
EnterpriseLibrary.Security namespace. This abstract class in turn implements
the IAuthorizationProvider interface, which defines the basic functionality of an
Authorization Provider; it exposes a single method named Authorize, which accepts
an instance of the IPrincipal object and the name of the rule to evaluate. Custom
providers can be implemented either by implementing the IAuthorizationProvider
interface or an abstract class named AuthorizationProvider.

Chapter 7

[197]

An IPrincipal instance (GenericPrincipal,
WindowsPrincipal, PassportPrincipal, and so on)
represents the security context of the user on whose behalf the code
is running; it also includes the user's identity represented as an
instance of IIdentity (GenericIdentity, FormsIdentity,
WindowsIdentity, PassportIdentity, and so on).

The following diagram shows the members and inheritance hierarchy of the
respective class and interface:

Authorization Rule Provider
The AuthorizationRuleProvider class is an implementation that evaluates Boolean
expressions to determine whether the objects are authorized; these expressions or
rules are stored in the configuration file. We can create authorization rules using
the Rule Expression Editor part of the Enterprise Library configuration tool and
validate them using the Authorize method of the Authorization Provider. This
authorization provider is part of the Microsoft.Practices.EnterpriseLibrary.
Security namespace.

Security Application Block

[198]

Authorizing using Authorization Rule Provider
As discussed earlier, Authorization Rule Provider stores authorization rules in
the configuration and this is one of the simplest ways to perform authorization.
Basically, we need to configure to use the Authorization Rule Provider and provide
authorization rules based on which the authorization will be performed.

Let us add Authorization Rule Provider as our Authorization Provider; click on the
plus symbol on the right side of the Authorization Providers and navigate to the Add
Authorization Rule Provider menu item.

The following screenshot shows the configuration options of the Add Authorization
Rule Provider menu item:

The following screenshot shows the default configuration of the newly added
Authorization Provider; in this case, it is Authorization Rule Provider:

Now we have the Authorization Rule Provider added to the configuration but we still
need to add the authorization rules. Imagine that we have a business scenario where:

•	 We have to allow only users belonging to the administrator's role to add or
delete products.

•	 We should allow all authenticated customers to view the products.

Chapter 7

[199]

This scenario is quite common where certain operations can be performed only by
specific roles, basically role-based authorization. To fulfill this requirement, we will
have to add three different rules for add, delete, and view operations. Right-click
on the Authorization Rule Provider and click on the Add Authorization Rule menu
item as shown on the following screenshot.

The following screenshot shows the newly added Authorization Rule:

Let us update the name of the rule to "Product.Add" to represent the operation for
which the rule is configured. We will provide the rule using the Rule Expression
Editor; click on the right corner button to open the Rule Expression Editor. The
requirement is to allow only the administrator role to perform this action. The
following action needs to be performed to configure the rule:

1. Click on the Role button to add the Role expression: R.
2. Enter the role name next to the role expression: R:Admin.
3. Select the checkbox Is Authenticated to allow only authenticated users.

Security Application Block

[200]

The following screenshot displays the Rule Expression Editor dialog box with the
expression configured to R:Admin.

The following screenshot shows the Rule Expression property set to R:Admin.

Now let us add the rule for the product delete operation. This rule is configured
in a similar fashion. The resulting configuration will be similar to the
configuration shown.

Chapter 7

[201]

The following screenshot displays the added authorization rule named Product.
Delete with the configured Rule Expression:

Alright, we now have to allow all authenticated customers to view the products.
Basically we want the authorization to pass if the user is either of role Customer; also
Admin role should have permission, only then the user will be able to view products.
We will add another rule called Product.View and configure the rule expression
using the Rule Expression Editor as given next. While configuring the rule, use the
OR operator to specify that either Admin or Customer can perform this operation.

The following screenshot displays the added authorization rule named Product.
View with the configured Rule Expression:

Security Application Block

[202]

Now that we have the configuration ready, let us get our hands dirty with
some code. Before authorizing we need to authenticate the user; based on the
authentication requirement we could be using either out-of-the-box authentication
mechanism or we might use custom authentication. Assuming that we are using
the current Windows identity, the following steps will allow us to authorize specific
operations by passing the Windows principal while invoking the Authorize method
of the Authorization Provider.

1. The first step is to get the IIdentity and IPrincipal based on the
authentication mechanism. We are using current Windows identity
for this sample.
WindowsIdentity windowsIdentity = WindowsIdentity.GetCurrent();
WindowsPrincipal windowsPrincipal = new WindowsPrincipal(windowsId
entity);

2. Create an instance of the configured Authorization Provider using the
AuthorizationFactory.GetAuthorizationProvider method; in our case
we will get an instance of Authorization Rule Provider.
IAuthorizationProvider authzProvider = AuthorizationFactory.GetAut
horizationProvider("Authorization Rule Provider");

3. Now use the instance of Authorization Provider to authorize the operation
by passing the IPrincipal instance and the rule name.
bool result = authzProvider.Authorize(windowsPrincipal, "Product.
Add");

AuthorizationFactory.GetAuthorizationProvider also has an overloaded
alternative without any parameter, which gets the default authorization provider
configured in the configuration.

AzMan Authorization Provider
The AzManAuthorizationProvider class provides us the ability to define individual
operations of an application, which then can be grouped together to form a task.
Each individual operation or task can then be assigned roles to perform those
operations or tasks. The best part of Authorization Manager is that it provides
an administration tool as a Microsoft Management Console (MMC) snap-in to
manage users, roles, operations, and tasks. Policy administrators can configure
an Authorization Manager Policy store in an Active Directory, Active Directory
Application Mode (ADAM) store, or in an XML file. This authorization provider is
part of the Microsoft.Practices.EnterpriseLibrary.Security namespace.

Chapter 7

[203]

Understanding Security Cache Provider
Security Cache Provider allows us to cache, retrieve instances of IIdentity,
IPrincipal, or Profile objects (such as the ASP.NET Profile object), and additionally
purge/expire the same. It also generates a token of type IToken and this token
can be used to purge/expire the cache. The SecurityCacheProvider class is an
abstract implementation of the ISecurityCacheProvider interface; both are part
of the Microsoft.Practices.EnterpriseLibrary.Security namespace. The
ISecurityCacheProvider interface consists of methods such as SaveIdentity,
SavePrincipal, and SaveProfile; all three methods have their overloaded
counterparts to accept an instance of IToken to group each of these objects with the
same token. It also provides methods such as GetIdentity, GetPrincipal, and
GetProfile to retrieve cached credentials; these methods accept instance of IToken.
Apart from saving and retrieving, ISecurityCacheProvider also exposes methods
to expire cached items; ExpireIdentity, ExpirePrincipal, and ExpireProfile.
These methods accept an instance of IToken to expire the respective cached item.

The following diagram shows the members and inheritance relationship of the
respective classes related to Security Cache Provider.

Security Application Block

[204]

CachingStoreProvider class
The CachingStoreProvider class is a concrete implementation of the
SecurityCacheProvider class; it leverages the Caching Application Block for its
caching needs. This class provides the logic to obtain a token for an authenticated
user and manage caching for authenticated IIdentity, IPrincipal, or Profile
objects (such as the ASP.NET Profile object). The CachingStoreProvider class
is part of the Microsoft.Practices.EnterpriseLibrary.Security.Cache.
CachingStore namespace.

Configuring Security Cache Provider
To leverage security caching related functionality, let us add the built-in
CachingStoreProvider Security Cache Provider in the configuration. This provider
uses the caching mechanism implemented by the Caching Application Block. In
the configuration file, click on the plus symbol of the Security Caches section and
navigate to the Add Security Cache menu item as shown in the following screenshot:

The following screenshot shows the default configuration of Security Cache:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

[205]

We have configured the Security Cache Provider and are ready to use it in our code
to perform various actions against the Security Cache Provider.

Caching and generating a token for an
authenticated user
Frequent authentication of user during a single session may lead to performance
degradation of the application; we can obtain a temporary token by saving a user
principal or a user identity in the security cache. We can save user identity, principal
and/or profile; one or more objects can be combined using the same token. Caching
an IIdentity, IPrincipal, or Profile is just a two-step process; everything else
is taken care of by the configuration. As mentioned earlier, Security Cache Provider
uses the Caching Application Block for caching, which gives us all the flexibility of
configuration to select the storage mechanism, encryption, and expiration policy.
Also, the generated IToken can be used to retrieve cached items or mark them
for expiration.

The following code snippet gets the current Windows identity and checks whether
the identity is authenticated. Upon validation, the instance of Security Cache
Provider is used to save the identity and generate the token:

//Get current Windows Identity
WindowsIdentity identity = WindowsIdentity.GetCurrent();

if (identity.IsAuthenticated)
{
 ISecurityCacheProvider cacheProvider = EnterpriseLibraryContainer.
Current.GetInstance<ISecurityCacheProvider>();

 //Cache User Identity and generate token
 IToken token = cacheProvider.SaveIdentity(identity);
}

For ASP.NET Web Applications, User Identity can be obtained
by accessing the property Page.User.Identity.
ISecurityCacheProvider cacheProvider =
EnterpriseLibraryContainer.Current.GetInstance
<ISecurityCacheProvider>();

cacheProvider.SaveIdentity(Page.User.Identity);

Security Application Block

[206]

The following code snippet gets the current Windows identity and for the purposes
of the demonstration, creates a GenericPrincipal object with Manager role.
The instance of Security Cache Provider is used to save the principal and generate
the token:

//Get current Windows Identity
WindowsIdentity identity = WindowsIdentity.GetCurrent();

//Constructing dummy Principal Object for demonstration
GenericPrincipal principal = new GenericPrincipal(identity, new
string[] { "Manager" });

if (identity.IsAuthenticated)
{
 ISecurityCacheProvider cacheProvider = EnterpriseLibraryContainer.
Current.GetInstance<ISecurityCacheProvider>();

 //Cache IPrincipal and generate token
 IToken token = cacheProvider.SavePrincipal(principal);
}

For ASP.NET Web Applications, the respective
IPrincipal instance can be obtained by accessing
the property Page.User.

The following code snippet demonstrates the Profile caching feature; the
SaveProfile method of Security Cache Provider is used to save the profile object
and generate the token:

ISecurityCacheProvider cacheProvider = EnterpriseLibraryContainer.
Current.GetInstance<ISecurityCacheProvider>();
IToken token = cacheProvider.SaveProfile(HttpContext.Current.Profile);

Associating a token with User Identity,
Principal and Profile objects
We can associate an existing token while caching instead of generating a new token,
which allows grouping of Identity, Principal, and Profile objects. To utilize this
grouping functionality, we have to use the respective overloaded save method and
pass the instance of the token as the second parameter.

Chapter 7

[207]

The following code snippet demonstrates how to associate the generated token while
saving Identity, Principal, and Profile objects:

//Constructing dummy Principal Object for demonstration
GenericPrincipal principal = new GenericPrincipal(Page.User.Identity,
new string[] { "Manager" });

if (Page.User.Identity.IsAuthenticated)
{
 ISecurityCacheProvider cacheProvider = EnterpriseLibraryContainer.
Current.GetInstance<ISecurityCacheProvider>();

 //Cache IIdentity and generate token
 IToken token = cacheProvider.SaveIdentity(Page.User.Identity);

 //Cache IPrincipal and group token with related items
 cacheProvider.SavePrincipal(principal, token);

 //Cache Profile object and group token with related items
 cacheProvider.SaveProfile(HttpContext.Current.Profile, token);
}

Retrieving User Identity, User Principal, and Profile
objects
The following code block first creates an instance of the Security Cache Provider and
then saves the respective items, which generates an IToken instance, which can be
used to retrieve the respective item. Currently IToken is an instance of GuidToken,
which generates a Guid; this can be stored for the user's session in the appropriate
location based on the application type. The token can be re-generated using the
Guid and authentication information can be validated as well as authorization being
performed by retrieving the IPrincipal instance from the security cache.

The following code snippet demonstrates how to retrieve the Identity object using
the generated token:

//Get current Windows Identity
IIdentity identity = WindowsIdentity.GetCurrent();

ISecurityCacheProvider cacheProvider = EnterpriseLibraryContainer.
Current.GetInstance<ISecurityCacheProvider>();

//Cache Identity and generate token
IToken token = cacheProvider.SaveIdentity(identity);

//Retrieve Identity using token
IIdentity cachedIdentity = cacheProvider.GetIdentity(token);

Security Application Block

[208]

The following code snippet demonstrates how to retrieve the Principal object using
the generated token:

//Constructing dummy Principal Object for demonstration
GenericPrincipal principal = new GenericPrincipal(Page.User.Identity,
new string[] { "Manager" });

if (Page.User.Identity.IsAuthenticated)
{
 ISecurityCacheProvider cacheProvider = EnterpriseLibraryContainer.
Current.GetInstance<ISecurityCacheProvider>();

 //Cache IIdentity and generate token
 IToken token = cacheProvider.SaveIdentity(Page.User.Identity);

 //Cache IPrincipal and group token with related items
 cacheProvider.SavePrincipal(principal, token);

 //Retrieve cached Principal using token
 cacheProvider.GetPrincipal(token);
}

The following code snippet demonstrates how to retrieve the Profile object using the
generated token:

ISecurityCacheProvider cacheProvider = EnterpriseLibraryContainer.
Current.GetInstance<ISecurityCacheProvider>();

//Cache Profile object and generate token
IToken token = cacheProvider.SaveProfile(HttpContext.Current.Profile);

//Retrieve cached Profile using token
ProfileBase profile = cacheProvider.GetProfile(token) as ProfileBase;

Expiring User Identity, User Principal, and Profile
objects
Security Cache Provider also provides the ability to expire the cached item when
the user logs out of the system or the session ends so that the token cannot be
misused. This functionality is part of the ExpireIdentity, ExpirePrincipal, and
ExpireProfile methods of Security Cache Provider. In the given code blocks, we
are creating an instance of the Security Cache Provider and then saving the respective
items, which generates an IToken instance. The same token is used to force expiration
of the cached item. Please note we are deliberately performing the cache and
immediately forcing expiration in the next line just to give you the full picture.

Chapter 7

[209]

The following code snippet demonstrates how to purge/expire the saved Identity
using the generated token:

ISecurityCacheProvider cacheProvider = EnterpriseLibraryContainer.
Current.GetInstance<ISecurityCacheProvider>();

//Cache IIdentity and generate token
IToken token = cacheProvider.SaveIdentity(Page.User.Identity);

//Purge/Expire an existing cached Identity using token
cacheProvider.ExpireIdentity(token);

The following code snippet demonstrates how to purge/expire the saved Principal
using the generated token:

//Constructing dummy Principal Object for demonstration
GenericPrincipal principal = new GenericPrincipal(Page.User.Identity,
new string[] { "Manager" });

if (Page.User.Identity.IsAuthenticated)
{
 ISecurityCacheProvider cacheProvider = EnterpriseLibraryContainer.
Current.GetInstance<ISecurityCacheProvider>();

 //Cache IIdentity and generate token
 IToken token = cacheProvider.SaveIdentity(Page.User.Identity);

 //Cache IPrincipal and group token with related items
 cacheProvider.SavePrincipal(principal, token);

 //Purge/Expire the existing cached Principal using token
 cacheProvider.ExpirePrincipal(token);
}

The following code snippet demonstrates how to purge/expire the saved Profile
object using the generated token:

ISecurityCacheProvider cacheProvider = EnterpriseLibraryContainer.
Current.GetInstance<ISecurityCacheProvider>();

//Cache Profile object and generate token
IToken token = cacheProvider.SaveProfile(HttpContext.Current.Profile);

//Purge/Expire the cached Profile using token
cacheProvider.ExpireProfile(token);

Security Application Block

[210]

Implementing a custom Authorization
Provider
The Security Application Block provides extension points to implement a custom
authorization provider; we may extend either the IAuthorizationProvider
interface or the abstract class AuthorizationProvider. The Authorize method is
where we need to provide our authorization logic. Both the extension points are part
of the Microsoft.Practices.EnterpriseLibrary.Security namespace.

Following is the IAuthorizationProvider interface which exposes the
Authorize method:

public interface IAuthorizationProvider
{
 bool Authorize(IPrincipal principal, string context);
}

The following code snippet shows the implementation of the AuthorizationProvider
abstract class, which inherits the IAuthorizationProvider interface and provides
wiring of the instrumentation provider for instrumentation purposes:

public abstract class AuthorizationProvider : IAuthorizationProvider
{
 IAuthorizationProviderInstrumentationProvider
instrumentationProvider;

 protected AuthorizationProvider()
 : this(new NullAuthorizationProviderInstrumentationProvider())
 {
 }

 protected
AuthorizationProvider(IAuthorizationProviderInstrumentationProvider
instrumentationProvider)
 {
 if (instrumentationProvider == null) throw new ArgumentNullExc
eption("instrumentationProvider");

 this.instrumentationProvider = instrumentationProvider;
 }

 public abstract bool Authorize(IPrincipal principal, string
context);

 protected IAuthorizationProviderInstrumentationProvider
InstrumentationProvider
 {
 get { return this.instrumentationProvider; }
 }
}

Chapter 7

[211]

Custom XML Authorization Provider
Implementing a custom authorization provider is pretty straight-forward.
As mentioned previously, we can inherit from the AuthorizationProvider
class and provide an override the Authorize method to provide our
authorization logic. Apart from that, we also have to decorate the class with the
ConfigurationElementType attribute. To make our job easy, the application block
provides the CustomAuthorizationProviderData class, which holds a configuration
object for custom providers. This class is part of the Microsoft.Practices.
EnterpriseLibrary.Security.Configuration namespace.

The following code snippet shows a typical custom Authorization
Provider implementation:

[ConfigurationElementType(typeof(CustomAuthorizationProviderData))]
public class XmlAuthorizationProvider : AuthorizationProvider
{
 public XmlAuthorizationProvider(NameValueCollection
configurationItems) { }

 public override bool Authorize(IPrincipal principal, string
context)
 {
 // Custom authorization logic goes here

 // Return true or false based on the authorization outcome
 return false;
 }
}

Summary
In this chapter, we discussed the key features of the Security Application Block
and have explored the elements of Authorization and Security Cache Providers.
We have learned about the various required and optional assemblies. We saw how
to configure the initial configuration and also the Authorization Rule Provider,
Authorization Rules, as well as Security Cache Provider. We have also learned to
authorize based on the configured rules and perform various operations such as
saving, retrieving, and expiring instances of IIdentity, IPrincipal, and Profile objects
using the Security Cache Provider. Finally, we observed how to implement a custom
authorization provider.

Cryptography Application
Block

Cryptography is an ancient art and science of hiding information to protect
sensitive information from the bad guys. It was extensively used even before the
computer age. During those times, cryptography was concerned solely with message
confidentiality (encryption). Encryption is the process of converting information
called plaintext into an unreadable form called cipher-text, and decryption is the
opposite where cipher-text is converted back to plaintext. The most basic form of
cipher is a transposition cipher, which involves rearranging the order of letters,
for example "attack today" will become "tatakc otdya". Substitution cipher is
another type of cipher, which replaces letters or group of letters with other
letters or group of letters. Several interesting means of hiding information
were introduced by imaginative and intelligent people/groups. Cryptography
has evolved and modern-day cryptography in general involves three types of
cryptographic algorithms: symmetric (secret key) algorithms, asymmetric (public
key) algorithms, and hash functions. Symmetric algorithms use a single key for
encryption and decryption, asymmetric algorithms uses two keys, one for encryption
and the other for decryption, and hash functions are one-way cryptography and
since the plaintext is not recoverable they do not require any key.

An application dealing with sensitive data available in memory, stored in a
database, file, or any other storage medium is vulnerable to theft. Encryption
provides protection from such threats by encrypting data using a key and
reconstructs the original data by decrypting it using the same key. Similarly,
hashing provides a mechanism through which we can maintain data integrity
by creating and comparing the generated hash with the original input, and is
generally used to save a password or check for message integrity.

Cryptography Application Block

[214]

The Cryptography Application Block simplifies implementation of hashing and
symmetric encryption functionality in our application. As you might be aware, the
.NET Framework provides the Cryptography API as part of the System.Security.
Cryptography namespace for this very purpose. The application block takes it
a step further by abstracting the application code from the intricacies of specific
cryptography providers. It allows us to create and compare hashes, encrypt and
decrypt data using the configured hashing and symmetric cryptography providers
respectively. Hashing in cryptography is a mechanism through which an input is
converted into fixed size string (hash value); this process is generally referred to as
one-way hashing function as the hash value cannot be re-converted to the original
input. This can be used to perform message integrity checks, store sensitive data
such as password that doesn't need to be retrieved, digital signatures, and so on.
Encryption in cryptography is a process transforming an input or plain text into
an unreadable form called cipher text. This transformation is performed using an
algorithm with a key.

The following are the key features of the Cryptography Application Block:

•	 Provides hashing functionality with a simple API to generate and compare
hash values

•	 Several hash providers are available out of the box for common
hashing algorithms

•	 Extension point to implement custom hash provider
•	 Provides symmetric cryptography functionality to encrypt/decrypt data
•	 Several symmetric cryptography providers are available out of the box for

common encryption algorithms
•	 Configuration editor support to configure hashing and

cryptography providers

In this chapter, you will:

•	 Be introduced to the Cryptography Application Block
•	 Be introduced to Hashing and Hash Providers
•	 Be introduced to Cryptography and Cryptography Providers
•	 Learn about referencing the required and optional assemblies
•	 Learn to set up the initial configuration
•	 Learn to configure the hash provider
•	 Learn to generate hash value for a given string
•	 Learn to compare hash value with a string
•	 Learn to implement a custom Hash Provider

Chapter 8

[215]

•	 Learn to configure the symmetric cryptography provider
•	 Learn to encrypt data
•	 Learn to decrypt data
•	 Learn to implement custom Symmetric Cryptography Provider

Developing an application
Before we leverage and dig deeper into individual features of the Cryptography
block, we will create a simple application, which will help us to get up to speed with
the basics; in this section we will do the following:

•	 Reference the Logging block assemblies
•	 Add Namespaces
•	 Set up the initial configuration

To complement the concepts and sample code snippet of this book and allow
you to gain quick hands-on experience of different features of the Cryptography
Application Block, we have created a sample demonstration application that provides
implementation of generating and comparing hashes and encrypting/decrypting data.

The following is a screenshot of the sample application:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Cryptography Application Block

[216]

Referencing required and optional assemblies
For the purposes of this demonstration, we will be referencing non-strong-named
assemblies but based on individual requirements, Microsoft strong-named
assemblies or a modified set of custom assemblies can be referenced as well.

The following table lists the required/optional assemblies:

Assembly Required/Optional
Microsoft.Practices.EnterpriseLibrary.Common.dll Required
Microsoft.Practices.ServiceLocation.dll Required
Microsoft.Practices.Unity.dll Required
Microsoft.Practices.Unity.Interception.dll Required
Microsoft.Practices.EnterpriseLibrary.Security.
Cryptography.dll

Required

Microsoft.Practices.EnterpriseLibrary.Caching.
dll

Optional: Used
while leveraging
SerializationUtility
class for serializing
and de-serializing
objects to and from
byte streams

Adding namespaces
Instead of fully qualifying the types on every instance of their usage, we can add
the namespaces given next to the source code file to use the Cryptography block
elements without fully qualifying each reference.

Core Namespace:

•	 Microsoft.Practices.EnterpriseLibrary.Security.Cryptography

Configuration Namespace (Optional): Required while using the
EnterpriseLibraryContainer to instantiate objects.

•	 Microsoft.Practices.EnterpriseLibrary.Common.Configuration

Chapter 8

[217]

Unity Namespace (Optional): Required while instantiating objects using
UnityContainer.

•	 System.Configuration

•	 Microsoft.Practices.Unity

•	 Microsoft.Practices.Unity.Configuration

Adding initial cryptography settings
Before we can leverage the features of the Cryptography Application Block, we have
to add the initial Cryptography Settings to the configuration. Open the Enterprise
Library configuration editor either using the shortcut available in Start | All
Programs | Microsoft patterns & practices | Enterprise Library 5.0 | Enterprise
Library Configuration or by just right-clicking the configuration file in the Solution
Explorer window of Visual Studio IDE and clicking on Edit Enterprise Library
V5 Configuration. Initially, we will have a blank configuration file with default
Application Settings and Database Settings.

The following screenshot displays the default settings displayed in the
configuration editor:

Let us go ahead and add the Cryptography Settings in the configuration file.
Select the menu option Blocks, which lists many different settings to be added to
the configuration. Click on the Add Cryptography Settings menu item to add the
security configuration settings.

Cryptography Application Block

[218]

The following screenshot shows the menu option Add Cryptography Settings:

Once we click on Add Cryptography Settings, the configuration editor will display
the default Cryptography Settings as shown in the following screenshot:

Notice that the setting consists of two sections: Hash Providers and Symmetric
Cryptography Providers. We will change the configuration further, but for now,
we are in good shape with regards to the initial infrastructure configuration.

Chapter 8

[219]

Working of Hash Provider
The Cryptography Application Block is developed with same principles as for other
application blocks—it separates the implementation from the usage. So it means
the hash provider configuration can be updated without impacting the application
code. But how does this work? The application block provides an interface called
IHashProvider, which is part of Microsoft.Practices.EnterpriseLibrary.
Security.Cryptography namespace; this contract defines two methods,
CreateHash, and CompareHash to create and compare hashes respectively. These
methods accept both input and hash value as byte arrays; any class implementing
this interface is required to provide the implementation for both the CreateHash and
CompareHash methods.

The following screenshot shows the definition of the IHashProvider interface:

The HashAlgorithmProvider class, which inherits from the IHashProvider interface,
is a hash provider implementation for hash algorithms derived from the System.
Security.Cryptography.HashAlgorithm class. This class internally utilizes the
HashCryptographer class, which provides basic cryptographic services for a hash
algorithm. It also has another hash provider named KeyedHashAlgorithmProvider
apparently inheriting from the HashAlgorithmProvider class; as the name suggests
this is a hash provider for hash algorithms deriving from the System.Security.
Cryptography.KeyedHashAlgorithm class.

The following diagram shows the definition of the HashAlgorithmProvider class:

Cryptography Application Block

[220]

The following diagram shows the members and inheritance hierarchy of the
KeyedHashAlgorithmProvider class.

The first step in leveraging the hash functionality is to configure a hash provider in
the configuration file using the configuration editor. Once we have the configuration
in place, we can access the required functionality either using the static facade,
service locator, or using Unity container directly. Regardless of approach, the
application block identifies the configured hash provider and loads it to be used
while creating and comparing hash value.

Creating CryptographyManager and
IHashProvider instances
We have several options at hand; while utilizing the static facade we can either
use the static Cryptographer class or we can create CryptographyManager or
IHashProvider implementation objects using Unity service locator or using Unity
container directly. A few approaches such as configuring the container through a
configuration file or code are not listed here but the recommended approach is
either to use the Unity service locator for applications with few dependencies
or create objects using Unity container by loading through configuration or
programmatically to leverage the benefits of this approach. Use of the static
factory class is not recommended.

Chapter 8

[221]

Using the static facade
Static factory classes were the default approach to creating objects with versions
prior to 5.0. This approach is no longer recommended and is still available
for backwards compatibility. The Cryptography Application Block provides
a static class called Cryptographer available in the Microsoft.Practices.
EnterpriseLibrary.Security.Cryptography namespace. This static facade class
provides methods to generate and compare hashes, and also encrypt and decrypt
data using the configured providers; this approach does not require creation of any
object to perform the required actions.

Using Unity service locator
This approach is recommended for applications with few dependencies; the
EnterpriseLibraryContainer class exposes a static property called Current of
type IServiceLocator, which resolves and gets an instance of the specified type.

The following code snippet creates an instance of CryptographyManager:

CryptographyManager cryptoManager = EnterpriseLibraryContainer.
Current.GetInstance<CryptographyManager>();

The following is a code snippet to create a deafult IHashProvider implementation
instance using Unity service locator:

IHashProvider defaultHashProvider = EnterpriseLibraryContainer.
Current.GetInstance<IHashProvider>();

The following is a code snippet to create a named IHashProvider implementation
instance using Unity service locator:

IHashProvider hashProvider = EnterpriseLibraryContainer.Current.GetIns
tance<IHashProvider>("SHA256Managed");

Using Unity container directly
Larger complex applications demand looser coupling. This approach leverages
the dependency injection mechanism to create objects instead of explicitly creating
instances of concrete implementations. Unity container resolves objects using the
type registrations and mappings; these can be configured programmatically or
through a configuration file. Based on the configuration, it resolves the appropriate
type whenever requested. The following example instantiates a new Unity container
object and adds the Enterprise Library Core Extension. This loads the configuration
and makes registrations and mappings of the Enterprise Library available.

Cryptography Application Block

[222]

The following is a code snippet to create a default CryptographyManager instance
using UnityContainer:

var container = new UnityContainer();
container.AddNewExtension<EnterpriseLibraryCoreExtension>();
CryptographyManager cryptoManager = container.
Resolve<CryptographyManager>();

The following is a code snippet to create a deafult IHashProvider implementation
instance using UnityContainer:

var container = new UnityContainer();
container.AddNewExtension<EnterpriseLibraryCoreExtension>();
IHashProvider defaultHashProvider = container.
Resolve<IHashProvider>();

The following is a code snippet to create a named IHashProvider implementation
instance using UnityContainer:

var container = new UnityContainer();
container.AddNewExtension<EnterpriseLibraryCoreExtension>();
IHashProvider hashProvider = container.Resolve<IHashProvider>("SHA256
Managed");

Configuring Hash Provider
We have already learned to add Cryptography Settings to the configuration file;
click on the plus symbol provided on the top right-corner of the Hash Providers
section, navigate, and click Add Hash Providers | Add Hash Algorithm Provider.
This action will display the Hash Algorithm selection dialog box. For the purposes
of this demonstration, we will select SHA256Managed, which is part of System.
Security.Cryptography namespace, and hit the OK button.

The following screenshot shows the menu option Add Hash Algorithm Provider:

Chapter 8

[223]

Once we click on the menu option Add Hash Algorithm Provider, the following
HashAlgorithm selection dialog is displayed:

The previous action will result in addition of SHA256Managed hash provider in the
configuration as shown in the following screenshot.

By default the property Salt Enabled is set to True; this property
determines whether a random string (salt value) is generated and
pre-pended to the plain text before hashing. Salt values help in protecting
against dictionary attacks by making it difficult to generate the hash.

Cryptography Application Block

[224]

Generating a hash value
Generating the hash for a given string or byte[] is pretty simple; we create an
instance of either CryptographyManager or IHashProvider using the methods
described in the section Creating CryptographyManager and IHashProvider instances.
Once we have the respective object, we can invoke the CreateHash method. While
creating a hash using IHashProvider the CreateHash method accepts and returns
a byte[] whereas CryptographyManager provides an overloaded CreateHash
method that accepts and returns string objects as well. IHashProvider allows us to
leverage the Default Hash Provider configuration and additionally a named instance
can also be constructed.

The following code snippet shows the creation of the hash for the given text using a
CryptographyManager instance:

CryptographyManager cryptoManager = EnterpriseLibraryContainer.
Current.GetInstance<CryptographyManager>();

string hashValue = cryptoManager.CreateHash("SHA256Managed", "Some
text to be hashed");

In the above code snippet, we have created an instance of CryptographyManager
or rather its real implementation the CryptographyManagerImpl class. Next,
we invoke the CreateHash method, passing the configured hash provider name
SHA256Managed and the plain text that must be hashed. Although the generated
hash value will not make any sense, it will definitely give you an idea of its
gibberish nature.

The following text is the generated hash value:

4yieYiwA9YXAbGiIme1GWtjKJtXUpbKOiQl6Q6VApL30zCXtuL1UfQgTTAA1TItq

Comparing hash values
Comparing hash values for a given string or byte[] is also a simple affair. We
follow the same process of creating an instance of either CryptographyManager
or IHashProvider using the methods described in the section Creating
CryptographyManager and IHashProvider instances. Next, we invoke the CompareHash
method; depending on the object, we may or may not pass the hash instance name as
the first parameter; the other two parameters accepts plain text and the hashed value
for comparison.

Chapter 8

[225]

The following code snippet shows the comparison of a hash value with the given text:

CryptographyManager cryptoManager = EnterpriseLibraryContainer.
Current.GetInstance<CryptographyManager>();

string hashValue =
"4yieYiwA9YXAbGiIme1GWtjKJtXUpbKOiQl6Q6VApL30zCXtuL1UfQgTTAA1TItq";

bool result = cryptoManager.CompareHash("SHA256Managed", "Some text to
be hashed", hashValue);

The CompareHash method for the above given code snippet will result in a return
value of true.

Implementing a custom Hash Provider
Although the .NET Framework provides implementation of several hash algorithms,
there might be a scenario in which we will need to use a custom hash provider to
meet certain proprietary or statutory requirements. The Cryptography block provides
extensibility points that allow us to configure a custom hash provider without
re-compiling the code. Apart from the assemblies listed in section referencing required
and optional assemblies, we will have to add an additional reference of System.
Configuration.dll. This assembly is used to indicate the configuration object type
specified using the ConfigurationElementType attribute. As pointed out previously,
the IHashProvider interface is the contract that every hash provider must implement.
This interface provides two methods, CreateHash and CompareHash.

Adding the following namespaces will help in saving IDE real estate and improve
readability of the code and so it is recommended to add these namespaces.

•	 System.Collections.Specialized

•	 Microsoft.Practices.EnterpriseLibrary.Common.Configuration

•	 Microsoft.Practices.EnterpriseLibrary.Security.Cryptography

•	 Microsoft.Practices.EnterpriseLibrary.Security.Cryptography.
Configuration

Although the following code is self explanatory, we will attempt to make
a quick walkthrough of the code snippet. We have a written a class named
CustomHashProvider, which inherits from the IHashProvider interface
and provides a stub implementation for demonstration purposes. Just in
case you are wondering what the first line of code is all about, the attribute
ConfigurationElementType attribute indicates the configuration object
CustomHashProviderData used for CustomHashProvider. We also have to
provide a constructor that accepts a parameter of type NameValueCollection.

Cryptography Application Block

[226]

The following code snippet demonstrates the implementation of a custom
hash provider:

[ConfigurationElementType(typeof(CustomHashProviderData))]
public class CustomHashProvider : IHashProvider
{
 public CustomHashProvider(NameValueCollection attributes)
 {
 }

 public bool CompareHash(byte[] plaintext, byte[] hashedtext)
 {
 // Create hash of plain text and compare with hashed text
 }

 public byte[] CreateHash(byte[] plaintext)
 {
 // Implementing Custom Hashing Logic
 }
}

Configuring a Custom Hash Provider
While leveraging the custom hash provider implementation, we have to follow a
slightly different route for configuration. In the Hash Providers of Cryptography
Settings click on the plus symbol; navigate and click Add Hash Providers | Add
Custom Hash Provider. This action will display a types browsing dialog box
listing the types derived from the IHashProvider interface. For the purposes of
this demonstration, we will select the CustomHashProvider implementation. Post
selection, we will have the custom hash provider configured; the configuration
editor allows us to add custom key/value attributes, which will be passed on to the
constructor of CustomHashProvider.

The following screenshot shows the menu option Add Custom Hash Provider:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 8

[227]

Once we click on the Add Custom Hash Provider menu option, custom hash
provider selection dialog is displayed as shown in the given screenshot:

Once we select the custom hash provider type and click the OK button,
the configuration editor adds the selected hash provider as shown in the
following screenshot:

With these simple steps, the custom hash provider is configured and is ready to
be used.

Cryptography Application Block

[228]

Working of symmetric cryptography
providers
The symmetric cryptography provider works the same way as the hash provider
except for the fact that the interface and class involved are different. The
ISymmetricCryptoProvider interface defines the core contract for configurable
symmetric cryptographic implementation; this interface is part of the Microsoft.
Practices.EnterpriseLibrary.Security.Cryptography namespace. This interface
defines two methods, Encrypt and Decrypt, as shown in the following diagram:

The SymmetricAlgorithmProvider class inherits the ISymmetricCryptoProvider
interface and provides implementation for algorithms derived from the System.
Security.Cryptography.SymmetricAlgorithm class.

The following diagram shows the members of the SymmetricAlgorithmProvider
class:

CryptographyManager is an abstract class, which wraps functionality from instances
of both IHashProvider and ISymmetricCryptoProvider. The application block
identifies the configured hash and symmetric cryptography provider and provides
both hashing and encryption functionality by exposing the respective methods. It
also provides a nifty method that accepts plain text and returns plain text while
creating a hash.

Chapter 8

[229]

The following diagram shows the methods exposed by the CryptographyManager
abstract class:

The CryptographyManagerImpl class inherits from the abstract class
CryptographyManager; this class provides the real implementation, which identifies
both the providers and loads the configured providers. This class loads both the hash
and cryptography providers from the configuration and leverages them to perform
the respective actions.

The following diagram shows the inheritance hierarchy and methods exposed by the
CryptographyManagerImpl class:

Cryptography Application Block

[230]

Creating CryptographyManager and
ISymmetricCryptoProvider instances
We have already explored creating instances of CryptographyManager in the
Creating CryptographyManager and IHashProvider Instances section, so in this section
we will focus on creating instances of ISymmetricCryptoProvider using Unity
service locator and using the Unity container directly.

Using the static facade
The Cryptographer static class provides EncryptSymmetric and
DecryptSymmetric methods to perform encryption and decryption of data.
Additionally, it accepts string as well as byte[] for both encryption and
decryption. As discussed previously, being a static facade the methods can be
invoked directly.

Using Unity service locator
Creating instances using Unity service locator has already been explored in the
section Creating CryptographyManager and IHashProvider Instances.

We have already learned to create an instance of CryptographyManager while
working with hashing functionality in the section Creating CryptographyManager and
IHashProvider Instances; CryptographyManager also provides methods to perform
encryption and decryption of data.

The following is a code snippet to create a deafult ISymmetricCryptoProvider
instance using UnityContainer:

ISymmetricCryptoProvider defaultCryptoProvider =
EnterpriseLibraryContainer.Current.GetInstance<ISymmetricCryptoProvid
er>();

The following is a code snippet to create a ISymmetricCryptoProvider named
instance using UnityContainer:

ISymmetricCryptoProvider cryptoProvider = EnterpriseLibraryContainer.
Current.GetInstance<ISymmetricCryptoProvider>("DPAPI Symmetric Crypto
Provider");

Using Unity container directly
While learning to leverage the hashing functionality in the section Creating
CryptographyManager and IHashProvider Instances we explored creating instances
using Unity container directly and the same applies to this section as well.

Chapter 8

[231]

The following is a code snippet to create a deafult ISymmetricCryptoProvider
instance using UnityContainer:

var container = new UnityContainer();
container.AddNewExtension<EnterpriseLibraryCoreExtension>();
ISymmetricCryptoProvider defaultCryptoProvider = container.Resolve<ISy
mmetricCryptoProvider>();

The following is a code snippet to create a ISymmetricCryptoProvider named
instance using UnityContainer:

var container = new UnityContainer();
container.AddNewExtension<EnterpriseLibraryCoreExtension>();
ISymmetricCryptoProvider defaultCryptoProvider = container.Resolve<ISy
mmetricCryptoProvider>("DPAPI Symmetric Crypto Provider");

Configuring the symmetric cryptography
provider
We have already learned to add Cryptography Settings to the configuration
file; click on the plus symbol provided on the top-right corner of the Symmetric
Cryptography Providers section, navigate, and click Add Symmetric Cryptography
Providers | Add Symmetric Algorithm Provider. This action will display the
Symmetric Algorithm selection dialog box. For the purposes of this demonstration,
we will select the RijndaelManaged algorithm implementation, which is part of the
System.Security.Cryptography namespace, and hit the OK button.

The following screenshot shows the menu option Add Symmetric
Algorithm Provider:

Cryptography Application Block

[232]

Once we click on the menu option Add Symmetric Algorithm Provider,
the Symmetric algorithm selection dialog box is displayed as shown in
the following screenshot:

Selection of the Symmetric Algorithm will result in display of the Cryptographic Key
Wizard dialog. Basically, the algorithm requires a key that can be used to encrypt
and decrypt data. We can either create a new key, use an existing Data Protection
API (DPAPI)-protected key file, or import a password-protected key file. For the
purposes of this demonstration, we will opt to Create a new key and click Next.

The following screenshot shows the Cryptographic Key Wizard dialog box:

Chapter 8

[233]

We are now prompted to either enter the key or generate the key using the Generate
button. Click on Generate and a new key will be generated and displayed in the
textbox as shown in the following screenshot. Click Next to move to the next step of
the wizard.

Once we click Next, we will be prompted to choose the file storage path. We can
provide the appropriate path and key filename by clicking the ellipsis "..." button.
Click Next to move to the next step of the wizard.

So far we have generated the key and specified the path and filename to store the
key. But the key itself is not yet protected and vulnerable; this step prompts us to
protect the key using the Data Protection API (DPAPI). We have to select the data
protection mode; User mode encrypts the key using the credentials of the currently
logged-in user while the Machine mode allows any users on this computer to
encrypt or decrypt the key. For the purposes of this demonstration, we will select
User mode; click the Finish button to close the wizard.

Cryptography Application Block

[234]

The following screenshot shows the data protection mode options:

Once the key wizard dialog is closed, we will end up with the Cryptography
Settings configuration as shown in the following screenshot:

We are now done with the configuration of the Symmetric Cryptography Provider.
We can now leverage the provider to encrypt/decrypt data but before we explore
encryption/decryption, we will learn the important task of exporting the generated
key in the next section.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 8

[235]

Exporting the key
We can export the generated key and save it in a file for backup purposes; the
key is encrypted with the provided password. Since this file contains the key for
encryption, it must be protected and only trusted users must be given access
through ACL.

1. Right-click on the specific symmetric cryptography provider and click on the
Export Key ... menu item as shown in the following screenshot.

2. The previous action will display an Export Key Wizard dialog; this dialog
requires a key file path and a password, using which the key will be encrypted.

3. On clicking the OK button, the key file will be saved in the specified path
with the encrypted key.

Cryptography Application Block

[236]

Encrypting data
The simplicity of the API makes it very easy to perform encryption operations.
Encrypting data requires two/three input based on the approach (Factory vs. Service
Locator vs. Unity) taken. For the purposes of this demonstration, we are using the
service locator to get an instance of CryptographyManager and perform encryption
using the configured symmetric algorithm provider.

The following code snippet gets an instance of CryptographyManager and encrypts
the given data using the named provider:

CryptographyManager cryptoManager = EnterpriseLibraryContainer.
Current.GetInstance<CryptographyManager>();

//Encrypt Data Using Configured Symmetric Cryptography Provider Named
'RijndaelManaged'
//Returns encrypted data
string encryptedData = cryptoManager.EncryptSymmetric("RijndaelManag
ed", "Data to be encrypted");

The given code snippet returns the following encrypted data:

5B0oeiIoQNO5A2C/LE+L6Ax7ecPxU4jDQJ8I+j0Z8+VadOaqVcj7HdWMWHyDpfYblqxFgB
qNvfijMONAxNYCBQ==

Decrypting data
For the purposes of this demonstration we are using the service locator to get an
instance of CryptographyManager and perform decryption using the configured
symmetric algorithm. Note that the input for encrypted data is the result of the
encryption action performed in the previous section; the same algorithm is used to
decrypt the data.

The following code snippet demonstrates data decryption using the
DecryptSymmetric method:

CryptographyManager cryptoManager = EnterpriseLibraryContainer.
Current.GetInstance<CryptographyManager>();

string encryptedData = "5B0oeiIoQNO5A2C/LE+L6Ax7ecPxU4jDQJ8I+j0Z8+VadO
aqVcj7HdWMWHyDpfYblqxFgBqNvfijMONAxNYCBQ==";

//Decrypt Data Using Configured Symmetric Cryptography Provider Named
'RijndaelManaged'
//Returns encrypted data
string decryptedData = cryptoManager.DecryptSymmetric("RijndaelManag
ed", encryptedData);

Chapter 8

[237]

The given code snippet returns the following decrypted data:

Data to be encrypted

Implementing a custom symmetric provider
Although the .NET Framework provides implementation of several symmetric
cryptography algorithms there might be a scenario in which we will need to use a
custom symmetric encryption to meet certain proprietary or statutory requirements.
The Cryptography block provides extensibility points that allow us to configure
a custom symmetric encryption provider without re-compiling the code. Apart
from the assemblies listed in the section Referencing required and optional assemblies,
we will have to add an additional reference of System.Configuration.dll.
This assembly is used to indicate the configuration object type specified using the
ConfigurationElementType attribute. We can implement a custom symmetric
provider by inheriting the ISymmetricCryptoProvider interface and providing
logic to Encrypt and Decrypt data.

Adding the following given namespaces will help in saving IDE real estate and
improve readability of the code and so it is recommended to add these namespaces.

•	 System.Collections.Specialized

•	 Microsoft.Practices.EnterpriseLibrary.Common.Configuration

•	 Microsoft.Practices.EnterpriseLibrary.Security.Cryptography

•	 Microsoft.Practices.EnterpriseLibrary.Security.Cryptography.
Configuration

Although the given code is self explanatory, we will attempt to make a
quick walkthrough of the code snippet. We have written a class named
CustomEncryptionProvider, which inherits from the ISymmetricCryptoProvider
interface and provides a stub implementation for demonstration purposes.

The following code snippet provides a skeleton implementation of the custom
encryption provider:

[ConfigurationElementType(typeof(CustomSymmetricCryptoProviderData))]
public class CustomEncryptionProvider : ISymmetricCryptoProvider
{
 public byte[] Decrypt(byte[] ciphertext)
 {
 // Implement Decryption Logic
 }

 public byte[] Encrypt(byte[] plaintext)

Cryptography Application Block

[238]

 {
 // Implement Encryption Logic
 }
}

Just in case if you are wondering what the first line of code is all about, the
attribute ConfigurationElementType indicates the configuration object
CustomSymmetricCryptoProviderData used for CustomEncryptionProvider.
We also have to provide a constructor that accepts a parameter of type
NameValueCollection. Implementation of a custom encryption provider is quite
straightforward as seen in the above code snippet; we just need to provide our custom
encryption/decryption logic in the Encrypt and Decrypt methods respectively.

Configuring the custom symmetric provider
Configuration of a custom symmetric provider takes a slightly different approach.
In the Symmetric Cryptography Providers section of Cryptography Settings
click on the plus symbol; navigate and click on the menu option Add Symmetric
Cryptography Providers | Add Custom Symmetric Crypto Provider.

The following screenshot shows the menu option Add Custom Symmetric
Crypto Provider:

This action will display a types browsing dialog box listing the types derived from
the ISymmetricCryptoProvider interface. The following is a screenshot of the
custom symmetric cryptography provider selection dialog.

Chapter 8

[239]

For the purposes of this demonstration, we will select the
CustomEncryptionProvider implementation as shown in the given screenshot.
Once we select the provider and click on the OK button, the custom encryption
provider is added to the configuration file as shown in the following screenshot. The
configuration editor allows us to add custom key/value attributes, which will be
passed on to the constructor of CustomEncryptionProvider.

The following screenshot shows the selected custom Symmetric
Cryptography Provider:

After configuring the cryptography provider, we will be able to leverage the
custom encryption and decryption functionality without changing or impacting
the application code.

Summary
In this chapter, we have learned the fundamental elements of the Cryptography
Application Block such as IHashProvider, ISymmetricCryptoProvider,
CryptographyManager, and so on. We have explored the various required and
optional assemblies, the initial infrastructure configuration, and the individual
feature-level configuration. We have also learned to initialize the IHashProvider,
ISymmetricCryptoProvider, and CryptographyManager classes. We further
learned to generate hashes, compare hashes, and implement custom hash
providers. We also explored encryption and decryption of data and understood
the implementation basics of a custom symmetric cryptography provider.

Index
Symbols
{handlingInstanceID} 125
.NET Framework 72
.NET platform 19
<system.diagnostics> configuration

section 73

A
AbsoluteTime expiration policy 143
accessors

creating 41
executing 41

Active Directory Application Mode
(ADAM) 9, 202

ActivityId property 63
ActivityIdString property 63
Add Authorization Rule Provider menu

item 198
Add Category menu item 71
add category procedure property 80
Add Database Connection String 23, 24
Add Encryption Providers | Add Symmetric

Crypto Provider 150
Add Exception Handling Settings 107
Add Exception Handling Settings menu

item 106
Add Handlers | Add Logging Exception

Handler 122
AddInParameter method 35
Add Logging Settings menu item 56
Add method 141, 146
ADO.NET 19
ADO.NET transaction 49
all logging enabled property 93

AndCompositeValidator class 164
AppDomainName property 63
application, caching application block

developing 133
application, data access application block

assemblies, referencing 22
data access settings, adding 23-27
DatabaseFactory class using 32, 33
database instance, creating 32
developing 21, 22
namespace, adding 27
Unity container using 33
unity service locator using 33

application, exception handling application
block

assemblies, referencing 105, 106
developing 104
exception handling block object,

creating 113
Exception Manager class 111
exception Policy/Type/Handler 113
initial Exception Handling settings,

adding 106, 107
namespace, adding 108

application, logging application block
assemblies, referencing 53-55
developing 53
logging settings, adding 55-57
log message, writing 58, 60
namespace, adding 57

application, security application block
developing 189

application, security application block
assemblies, referencing 190, 191
initial security settings, adding 191-193
namespace, adding 193

[242]

application, validation application block
assemblies, referencing 158, 159
namespace, adding 160, 161

ArgumentException 144
ArgumentNullException 141, 144, 145
ASP.NET

validation block, integrating 183, 184
ASP.NET Web Application 132
assemblies, caching application block

referencing 134, 135
assemblies, data access application block

referencing 22
assemblies, exception handling application

block
referencing 105, 106

AssignParameters method 37
attributes

used, for validating objects 167, 168
AttributeValidatorFactory class 165, 168
authentication 187
Author class 167
authorization 187
AuthorizationFactory class 194
AuthorizationFactory.

GetAuthorizationProvider
method 202

Authorization Manager (AzMan) 9
Authorization Manager Policy 202
Authorization Provider

about 196
AuthorizationRuleProvider class 197
Authorization Rule Provider, used for

authorizing 198-202
AzManAuthorizationProvider class 202

AuthorizationProvider abstract class 210
AuthorizationProvider class 196, 211
Authorization Providers

AuthorizationRuleProvider 196
AzManAuthorizationProvider 196

Authorization Rule Provider 187
AuthorizationRuleProvider 196
AuthorizationRuleProvider class 197
Authorize method 197, 210
authorizing

Authorization Rule Provider used 198-202
auto flush property 72
AzMan Authorization Provider 187, 202

AzManAuthorizationProvider 196

B
BackgroundScheduler class 142
BackgroundScheduler object 143
BackingStore implementation 141, 144
BaseBackingStore class 140, 146
BeginExecuteNonQuery 29
BeginExecuteReader 29
BeginExecuteScalar 29
BeginExecuteXmlReader 29
BeginTransaction method 48, 49
binaries, Enterprise Library 13
BinaryLogFormatter 88
BlogService 124
BookCacheItemRefreshAction class 146
BookResultSetMapper 43
BookResultSetMapper class 43

C
cached data, caching application block

Add Symmetric Cryptography Providers |
Add Symmetric Algorithm
Provider 150

configuration options 150-152
configuring 149
Cryptographic Key Wizard dialog 151
Cryptography Settings, adding 150
Cryptography Settings configuration 153
Custom Symmetric Crypto Provider 150
Data Protection API (DPAPI) 150, 151
encrypting 149
Encryption Providers 150
Finish button 152
Generate button 152
IsolatedStorage backing store 154
Symmetric Cryptography Providers

section 150
cached items, caching application block

flushing 145
reading 144
removing 145

CacheFactory class 138
CacheItem 146
CacheManager class 138
CacheManagerFactory object 138

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[243]

CacheManager Instance, caching
application block 139

creating 137, 138
Static Factory Class, using 138
Unity container, using directly 139
Unity Service Locator, using 139

CacheManager provider 136
Cache object 137
caching 131
caching application block

about 9, 131
application, developing 133
application types 132
assemblies, referencing 134, 135
cached data, configuring 149
cached data, encrypting 149
cached items, flushing 145
cached items, reading 144
cached items, removing 145
CacheManager Instance, creating 137, 138
database cache storage, configuring 148
dependencies 10
expiration policies 143
expired items, reloading 145, 146
features 131
initial caching settings, adding 135, 136
in-memory backing store,

configuring 140, 141
isolated cache storage backing store,

configuring 146, 147
items, adding to cache 141
key scenarios 132
namespace, adding 137

CachingStoreProvider class 204
categories property 62, 92
CategoriesStrings property 62
category filter

adding 91
categories property 92
filter mode property 92
name property 92
properties 92

CategoryFilter 91
CodePlex open source community site

URL 6
command

executing, ExecuteNonQuery used 44

Common Data Related Namespace 27
CompareHash method 219
CompositeValidatorFactory class 165
composite validators

AndCompositeValidator 164
OrCompositeValidator 164

configuration
used, for validating objects 171-179

ConfigurationElementType attribute 96,
101, 128, 211

Configuration Namespace (Optional) 27
ConfigurationValidatorFactory class 165
ConfigurationValidatorFactory object 179
Connection String property 24
Console Application 132
ContainsCharactersValidator class 161
Contains method 144
ControlToValidate property 183
Core Namespace 27
CreateConnection method 28
CreateHash method 219
CreateParameter method 28
CreateSprocAccessor method 35, 41
CreateSqlStringAccessor method 35
CreateValidator method 165
CRUD (Create Read Update Delete)

operations 8, 28
Cryptographic Key Wizard dialog 151
cryptography application block

about 10, 149
features 214

CryptographyManager creation, hash
provider. See IHashProvider Instance
creation, hash provider

CryptographyManagerImpl class 224
CryptographyManager Instance creation,

symmetric cryptography provider. See
ISymmetricCryptoProvide Istance
creation, symmetric cryptography
provider

Cryptography Setting 150
cryptograpy 213
Current 139
Custom Authorization Provider

custom XML Authorization Provider 211
implementing 210

[244]

CustomAuthorizationProviderData
class 211

Customer class 39
custom exception handler, exception

handling application block
about 111
configuring 128, 129
implementing 127, 128

custom log filter
configuring 101, 102
implementing 100

CustomLogFilterData class 100
custom log formatter

configuring 99, 100
implementing 98

Custom Symmetric Crypto Provider 150
custom trace listener

configuring 97, 98
implementing 96, 97

Custom Trace Listener
configuring 87

CustomTraceListener class 96
Custom Validator, validation application

block
implementing 184, 185

D
data access application block (DAAB)

about 8, 19
application, developing 21, 22
benefits 19
requisites 12
working 20, 21

Data Access Application Block (DAAB) 148
Data Access Exception Policy 108
Data Access Layer Policy 119
data accessors

about 40
SQL string accessor 40
stored procedure accessor 40
types 40

data access settings, data access application
block

adding 23-27
DataBackingStore 148

database cache storage, caching application
block

configuration options 148
configuring 148
Data Cache Storage 148
Microsoft.Practices.EnterpriseLibrary.

Caching.Database namespace 148
database class, data access application block

about 28
derived classes 28
GenericDatabase class 31
OracleDatabase class 31
SqlCeDatabase Class 30
SqlDatabase class 29

Database Connection String 24
Database. Database class 20
DatabaseFactory class 32, 33
DatabaseFactory class, data access

application block 32, 33
Database Instance attribute 148
database instance, data access application

block
creating 32
DatabaseFactory class using 32, 33
Unity container using 33
unity service locator using 33

database instance property 80
Database object 32
Data Cache Storage 148
Data Protection API (DPAPI) 150, 152, 232
DataSet, data access application block

used, for retrieving records 35
used, for updating records 46-48

DateTimeRangeValidator class 162
DbCommand object 48
DbConnection object 49
DbException type 122
DbParameter object 36
DbProviderFactory class 20
DbProviderFactory object 20
DbTransaction object 49
DecryptSymmetric method 236
DeriveParameters method 36
design elements, Logging Application Block

exploring 60
LogEntry 60-64

[245]

Logger 64, 65
Logging block elements, customizing 96
Logging filters, configuring 90, 91
Log Message formatters, configuring 88, 89
LogWriter 66-69
trace listeners, configuring 72, 74
TraceManager class 94
Tracer class 94
Trace Source Categories, adding 69, 70

DomainValidator<T> class 162

E
Edit Text Value dialog 24
ellipsis 152
Email Trace Listener

about 81
authentication mode property 82
authentication password property 82
authentication user name property 82
formatter name property 82
from address property 82
name property 82
properties 82
severity filter property 82
Smtp port property 82
Smtp server property 82
subject line prefix property 82
subject line suffix property 82
To address property 82

EmailTraceListener class 81
Encryption 213
Encryption Providers 150
EndExecuteXmlReader 29
Enterprise Library

binaries 13
community site, URL 6
configuration editor, for Visual Studio 13
installing 13
source code 14-16
system requisites 12

Enterprise Library 5.0
custom setup 15
End-User License Agreement screen 14
install button 16
Launch Microsoft Enterprise Library 5.0

Source Installer 16

setup wizard 14
system requirements 15

Enterprise Library configuration editor 106
EnterpriseLibraryContainer 114, 137
EnterpriseLibraryContainer class 33, 58, 95,

114, 179, 195
Enterprise Library (EntLib) 6
EntLib Contrib community 21
EnumConversionValidator class 162
ErrorMessages property 64
ErrorProvider component 179
EventId property 63
exception

wrapping, Wrap Handler used 115
exceptional handling application block

dependencies 10
exception handler, exception handling

application block
implementation 110

exception handling application block
about 8
application, developing 104
dependencies 10
exception handler 109, 111
exception manager class 111
exception policy 108
exception types 109

exception handling block object, creating
ExceptionPolicy class used 114
unity container, used directly 115
unity service locator used 114

Exception Handling Settings 106
ExceptionManager class 108, 111, 123
exception manager class, exception handling

application block 111
HandleException method 112
hierarchy 111
methods 111
process method 112

ExceptionManagerImpl class 111
ExceptionPolicy class 113, 114
ExceptionPolicy class, exception handling

block object
about 109, 114
syntax 114

exception policy, exception handling
application block 108

[246]

ExceptionPolicy static class 114
exception policy/type/handler, exception

handling application block 113
Exception Replace Demo 121
ExceptionShielding attribute 126
exception type, exception handling

application block
None 109
NotifyRethrow 109
ThrowNewException 109

Exception Wrapping Demo 118
ExecuteDataSet method 28, 35
ExecuteDataSetSql 30
Execute method 35
ExecuteNonQuery

usage 44
used, for executing command 44

ExecuteNonQuery method 28
ExecuteNonQuerySql 30
ExecuteReader, data access application

block
used, for retrieving records 34, 35

ExecuteReader method 28, 34, 35
ExecuteScalar method 28, 45
ExecuteScalarSql 30
ExecuteSprocAccessor 35
ExecuteSqlAccessor 35
ExecuteXmlReader 29
ExecuteXmlReader method 43
expiration policies, caching application

block
AbsoluteTime 143
ExtendedFormatTime 143
FileDependency 143
NeverExpired 143
no expiration policy 143
notification-based expiration policy 143
time-based expiration policy 143
types 143

expiration process, caching application
block 142

expired items, caching application block
Add method 146
BookCacheItemRefreshAction class 146
ICacheItemRefreshAction interface 145
Refresh method 146
reloading 145

ExpireProfile methods 208
ExtendedFormatTime expiration policy 143
ExtendedProperties property 64

F
Fault Contract Exception Handler 125
FieldValueValidator<T> class 163
FileDependency expiration policy 143
file exists behavior property 77
file name property 76, 77, 79
filter mode property 92
Finish button 152
FirstName property 184
firstNameValidator object 169
Flat File Trace Listener

configuring 75
file name property 76
formatter name property 76
message footer property 76
message header property 76
name property 76
properties 76
severity filter property 76
tarce output options property 76

FlatFileTraceListener class 73, 77
FlushContextItems method 65, 68
Format method 88
Formatted Database Trace Listener

add category procedure property 80
configuring 79
database instance property 80
default setting 80
formatter name property 80
name property 80
severity filter property 80
write to log procedure property 80

FormattedDatabaseTraceListener class 79
formatted Event Log Trace Listener

configuring 74, 75
formatter name property 75
log name property 75
machine name property 75
name property 75
properties 75
severity filter property 75
source name property 75

[247]

trace output options property 75
FormattedEventLogTraceListener class 74
formatter name property 75-77, 80, 85
functional application block

about 7, 8
caching application block 9
cryptography application block 10
data access application block 8
dependency 10, 11
exception handling application block 8
logging application block 8
security application block 9
validation application block (VAB) 9

functional application block, dependency
caching application block 10
exception handling application block 10
graphical representation 11
logging application block 10
security application block 10

G
Generate button 152
GenericDatabase class

about 31
methods 32
properties 32

GenericFaultContract class 124
GenericFaultContract type 126
GenericPrincipal object 206
GetDataAdapter method 28
GetData method 144
GetFilter method 65, 68
GetMatchingTraceSources method 68
GetParameterValue method 28
GetSqlStringCommand method 28, 35
GetStoredProcCommand method 28
Guid 207
GuidToken 207

H
HandleException method 112, 123
HashAlgorithmProvider class

about 219
diagram 219

HashAlgorithm selection dialog 223
hashing 213

hash provider
configuring 222, 223
custom hash provider, configuring 226, 227
custom hash provider, implementing 225
hash value, comparing 224
hash value, generating 224
working 219, 220

HasSelfValidation attribute 156

I
IAuthorizationProvider interface 196, 210
IBackingStore interface 140, 141
ICacheItemRefreshAction interface 145, 146
ICacheManager interface 137
ICloneable interface 62
IDataReader 35
IDataReader interface 34
IEnumerable<Book> 43
IExceptionHandler 109
IExceptionHandler interface 110, 127, 128
IHashProvider, creating 220
IHashProvider Instance creation, hash

provider
about 220
static facade, using 221
Unity Container, using directly 221, 222
Unity Service Locator, using 221

IIdentity instance 197
ILogFilter interface 90
ILogFormatter interface 98, 99
InitData property 83
initial caching settings, caching application

block
adding 135, 136

initial exception handling settings,
exception handling application block

adding 106, 107
initial security settings, security application

block
adding 191-193

in-memory backing store, caching
application block

configuring 140, 141
InnerException 115
internal class 28
IParameterMapper interface 37, 38

[248]

IParameterMapper object 41
IPrincipal instance 197, 202, 206, 207
IResultSetMapper interface 39, 42
IResultSetMapper<TResult> interface 39
IRowMapper object 41
IRowMapper<TResult>

used, for row mapping 38
IServiceLocator 33, 221
IsLoggingEnabled method 65, 68
isolated cache storage backing store, caching

application bl
BaseBackingStore class 146
System.IO.IsolatedStorage.

IsolatedStorageFile class 146
isolated cache storage backing store, caching

application block
configuration options 147
configuring 146

IsolatedStorageBackingStore 146
Isolated Storage Cache Store backing

store 147
IStorageEncryptionProvider interface 149
IsTracingEnabled method 68
IsValid property 166
ISymmetricCryptoProvider Instance

creation, symmetric cryptography
provider

Unity Container, using directly 230
Unity Service Locator, using 230

items, caching application block
adding, to cache 141

IToken 205, 207

K
KeyedHashAlgorithmProvider class

hierarchy 220

L
listeners property 72
LoadDataSet 35
LoadDataSet method 28, 46
log categories, Trace Source Categories

about 69
auto flush property 72
configuring 71, 72
listeners property 72

minimum severity property 72
name property 72

LogEnabledFilter 91
LogEntry

about 60
class diagram 60, 62

LogEntry class
about 60, 62, 69
properties 62

LogEntry class, properties
ActivityId property 63
ActivityIdString property 63
AppDomainName property 63
categories property 62
CategoriesStrings property 62
ErrorMessages property 64
EventId property 63
ExtendedProperties property 64
LoggedSeverity property 63
MachineName property 63
ManagedThreadName property 63
message property 62
priority property 62
ProcessId property 64
ProcessName property 64
RelatedActivityId property 63
Severity property 63
TimeStamp property 64
TimeStampString property 64
title property 62
Win32ThreadId property 64

LogEntry instance 69, 88, 98
LogEntry object 66, 72, 90
LoggedSeverity property 63
Logger 64
Logger class

about 51, 64, 65
FlushContextItems method 65
GetFilter method 65
IsLoggingEnabled method 65
methods 65
properties 65
Reset method 65
SetContextItem method 65
ShouldLog method 65
using 66
write method 65, 66

[249]

Logging 79
logging application block

about 8, 51
application, developing 53
assemblies, referencing 53, 55
Configuration Namespace (Optional) 58
Core Namespace 57
dependencies 10
logging settings, adding 55-57
log message, writing 58-60
namespace, adding 57
requisites 12
Unity Namespace (Optional) 58

Logging block elements, customizing
about 96
custom log formatter, configuring 99, 100
custom log formatter, implementing 98-100
custom trace listener, configuring 97, 98
custom trace listener, implementing 96, 97

logging enabled filter
adding 92
all logging enabled property 93
name property 93
properties 93

logging filters
about 51
CategoryFilter 91
category filter, adding 91
configuring 90, 91
LogEnabledFilter 91
logging enabled filter, adding 92
PriorityFilter 91
priority filter, adding 93

logging handler, exception handling
application block

about 110
configuring 122, 123
used, for logging exception 121

logging settings, logging application block
adding 55-57

Logging Settings section 57
Logging Target Listeners 51
Log Message formatters

BinaryLogFormatter 88, 90
configuring 88
TextFormatter 88
XmlLogFormatter 88

log message, logging application block
writing 58, 60

log messages
sending, to email address 81

log name property 75
LogSource class

methods 70
properties 70

LogWriter class
about 51, 59, 68
FlushContextItems method 68
GetFilter method 68
GetMatchingTraceSources method 68
IsLoggingEnabled method 68
IsTracingEnabled method 68
methods 66, 68
Microsoft.Practices.EnterpriseLibrary.

Logging namespace 66
SetContextItem method 68
ShouldLog method 68
write method 68

LogWriter instance 58, 66
LogWriter. LogWriter, abstract class 58

M
MachineNameLogFilter class 101
machine name property 75
MachineName property 63
ManagedThreadName property 63
MapBuilder

used, for row mapping 38
MapBuilder class 38
MapRow method 38
MapSet method 39
max archived files property 78
maximum priority property 94
message footer property 76, 78
message header property 76
message priority property 85
message property 62
Message Queuing Trace Listener

configuring 84
default setting 85
formatter name property 85
message priority property 85
name property 85

[250]

properties 85
queue path property 86
recoverable property 86
severity filter property 86
Time To Be Received property 86
Time To Reach Queue property 86
Trace Output Options property 86
transaction type property 86
use authentication property 86
Use Dead Letter Queue property 86
Use Encryption property 86

method
DecryptSymmetric 236

MethodReturnValueValidator<T> class 163
Microsoft Management Console (MMC) 202
Microsoft.Practices.

EnterpriseLibrary.Caching.
BackingStoreImplementations
namespace 140, 141, 146

Microsoft.Practices.EnterpriseLibrary.
Caching.Cryptography namespace 149

Microsoft.Practices.EnterpriseLibrary.
Caching.Database.dll 135

Microsoft.Practices.EnterpriseLibrary.
Caching.Database namespace 148

Microsoft.Practices.EnterpriseLibrary.
Caching.dll 135

Microsoft.Practices.EnterpriseLibrary.
Caching namespace 137, 138, 140

Microsoft.Practices.EnterpriseLibrary.
Common.Configuration
namespace 27, 32, 57

Microsoft.Practices.EnterpriseLibrary.
Common.Configuration
namespace 137

Microsoft.Practices.EnterpriseLibrary.
Common.dll 53, 105, 134, 158, 190

Microsoft.Practices.EnterpriseLibrary.
Common.dll assembly 22

Microsoft.Practices.EnterpriseLibrary.Data.
dll 53, 106, 135, 190

Microsoft.Practices.EnterpriseLibrary.Data.
dll assembly 22

Microsoft.Practices.EnterpriseLibrary.Data
namespace 28, 31, 32

Microsoft.Practices.EnterpriseLibrary.Data.
Oracle namespace 31

Microsoft.Practices.EnterpriseLibrary.Data.
SqlCe namespace 30

Microsoft.Practices.EnterpriseLibrary.Data.
Sql namespace 29

Microsoft.Practices.EnterpriseLibrary.
ExceptionHandling.dll 105

Microsoft.Practices.EnterpriseLibrary.
ExceptionHandling.Logging.dll 106

Microsoft.Practices.EnterpriseLibrary.
ExceptionHandling
namespace 111, 114

Microsoft.Practices.EnterpriseLibrary.
Integration.AspNet.dll 158

Microsoft.Practices.EnterpriseLibrary.
Logging.Database.dll 53

Microsoft.Practices.EnterpriseLibrary.
Logging.Database namespace 79

Microsoft.Practices.EnterpriseLibrary.
Logging.dll 53

Microsoft.Practices.EnterpriseLibrary.
Logging.Filters namespace 90

Microsoft.Practices.EnterpriseLibrary.
Logging namespace 60, 64

Microsoft.Practices.EnterpriseLibrary.
Logging namespace 94

Microsoft.Practices.EnterpriseLibrary.
Logging.TraceListeners
namespace 74, 81

Microsoft.Practices.EnterpriseLibrary.
Security.AzMan.dll 190

Microsoft.Practices.EnterpriseLibrary.
Security.Cache. CachingStore.dll 190

Microsoft.Practices.EnterpriseLibrary.
Security. Configuration
namespace 211

Microsoft.Practices.EnterpriseLibrary.
Security.Cryptography.dll 135

Microsoft.Practices.EnterpriseLibrary.
Security.dll 190

Microsoft.Practices.EnterpriseLibrary.
Security namespace 196, 197, 210

Microsoft.Practices.EnterpriseLibrary.
Validation.dll 158

Microsoft.Practices.EnterpriseLibrary.
Validation.Integration.WCF.dll 158

Microsoft.Practices.EnterpriseLibrary.
Validation.Integration.WinForms.
dll 158

[251]

Microsoft.Practices.EnterpriseLibrary.
Validation.Integration.WPF.dll 158

Microsoft.Practices.ServiceLocation.dll 53,
105, 134, 158, 190

Microsoft.Practices.ServiceLocation.dll
assembly 22

Microsoft.Practices.Unity.Configuration.dll
158, 190

Microsoft.Practices.Unity.dll 53, 105, 134,
158, 190

Microsoft.Practices.Unity.dll assembly 22
Microsoft.Practices.Unity.Interception.dll

53, 105, 134, 158, 190
Microsoft.Practices.Unity.Interception.dll

assembly 22
Microsoft Public License (Ms-PL) 6
minimum priority property 94
minimum severity property 72
multiple records

retrieving, as object collection 42, 43
MyCustomTraceListener class 97

N
name property 24, 72- 80, 83, 85, 87, 92, 93, 94
namespace, caching application block

adding 137
Configuration Namespace (Optional) 137
Core Namespace 137
Unity Namespace (Optional) 137

namespace, data access application block
adding 27
Common Data Related Namespace 27
Configuration Namespace (Optional) 27
Core Namespace 27
Unity Namespace (Optional) 27

namespace, exception handling application
block

adding 108
Configuration Namespace (Optional) 108
Core Namespace 108
Unity Namespace (Optional) 108
WCF Namespace (Optional) 108

namespace, logging application block
adding 57
Configuration Namespace (Optional) 58

Core Namespace 57
Unity Namespace (Optional) 58

namespace, security application block
Configuration Namespace (Optional) 193
Core Namespace 193
Unity Namespace (Optional) 193

namespace, validation application block
adding 160
Configuration Namespace (Optional) 160
Core Namespace 160
Unity Namespace (Optional) 161
WCF Namespace (Optional) 161

NeverExpired expiration policy 143
no expiration policy 143
Normal method 141
notification-based expiration policy 143
NotNullValidator class 162
NotSupportedException 31
NullBackingStore 141

O
object collection

multiple records, retrieving as 42, 43
ObjectCollectionValidator class 163
objects

record, retrieving as 35
validating, attributes used 167, 168
validating, configuration used 171-175
validating, self validation used 170, 171

ObjectValidator class 163
object validators

ObjectCollectionValidator class 163
ObjectValidator class 163

OracleDatabase class
about 31
methods 31
properties 31

OrCompositeValidator class 164
output mappers

about 38
default row mappers 38
result set mappers 39
row mapping, IRowMapper<TResult>

used 38
row mapping, MapBuilder used 38

[252]

P
ParameterCache class 28
parameter mappers 36, 37
ParameterToken 29
policy injection application block 7
Post handling action attribute 117, 120
priority filter

maximum priority property 94
minimum priority property 94
name property 94

PriorityFilter 91
priority property 62
ProcessId property 64
Process method 112
ProcessName property 64
ProductID 165
Profile Object

expiring 208, 209
retrieving 207, 208

PropertyComparisonValidator class 162
PropertyName property 183
PropertyProxyValidator control 183

ControlToValidate property 183
properties 183
PropertyName property 183
RulesetName property 183
SourceTypeName property 183

PropertyValueValidator<T> class 163
protected DeriveParameters method 31
providerName attribute 21

Q
queue path property 86

R
RangeValidator<T> class 162
record, retrieving as objects

about 35
accessors, creating 41
accessors, executing 41
data accessors 40
default row mappers 38
output mappers 38
parameter mappers 36, 37
result set mappers 39

row mapping, IRowMapper<TResult>
used 38, 39

row mapping, MapBuilder used 38
records, data access application block

multiple records, retrieving as object
collection 42, 43

retrieving, as objects 35
retrieving, as XML 43
retrieving, DataSet used 35
retrieving, ExecuteReader used 34, 35
updating, DataSet used 46-48

recoverable property 86
Refresh method 146
RegexValidator class 162
RegexValidator (Regular expression

validator) 169
RelatedActivityId property 63
Relational Database Management System

(RDBMS) 19
RelativeDateTimeValidator class 162
replace handler, exception handling

application block
about 110
configuring 118-121
used, for replacing exception 118

requisites, Enterprise Library
data access application block 12
logging application block 12
operating system 12
supported architectures 12
unit testing 13

Reset method 65
Rollback method 48
Rolling Flat File Trace Listener

configuring 77
default configuration setting 77
file exists behavior property 77
file name property 77
formatter name property 77
max archived files property 78
message footer property 78
message header property 78
name property 77
properties 77
roll interval property 78
roll size KB property 78
severity filter property 78

[253]

timestamp pattern property 78
trace output options property 78

RollingFlatFileTraceListener class 77
roll interval property 78
roll size KB property 78
row mapping

IRowMapper<TResult> used 38
MapBuilder used 38

Rule Expression Editor 197
RulesetName property 183
Rule Sets, validation application block 165

S
SaveProfile method 206
scalar values

retrieving 45
scavenging process, caching application

block
about 143
BackgroundScheduler object 143
members 144

security application block
about 9, 187
application, developing 189
authenticated user, caching for 205
authenticated user, token generating

for 205
authentication 187
authorization 187
Authorization Providers 196
configuration namespace (optional) 193
core namespace 193
default configuration settings 192
dependencies 10
features 188
initial security settings, adding 191-193
namespace, adding 193
objects, creating 194
Profile Object, retrieving 207, 208
required/optional assemblies,

referencing 190, 191
static factory class, using 194
token, associating with Principal 206, 207
token, associating with Profile

Object 206, 207

token, associating with User
identity 206, 207

unity container, using directly 195, 196
unity namespace (optional) 193
unity service locator, using 194, 195
User Identity, retrieving 207, 208
User Principal, retrieving 207, 208

SecurityCacheFactory class 194
Security Cache Provider

about 203
CachingStoreProvider class 204
configuring 204, 205

SecurityCacheProvider class 203
Select Members... menu option 176
self validation

used, for validating objects 170, 171
SelfValidation attribute 171
ServiceContract interface 126
Service Locator

URL 32
SetContextItem method 65, 68
severity filter property 73-80, 83, 86
severity property 87
Severity property 63
ShouldLog method 65, 68
simple Cryptography Application Block,

developing
initial settings, adding 217, 218
Namespace, adding 216
required/optional assemblies 216
screenshot 215
steps 215

single member validators
FieldValueValidator<T> class 163
MethodReturnValueValidator<T> class 163
PropertyValueValidator<T> 163

SlidingTime expiration policy 143
source code, Enterprise Library 14-16
source name property 75
SourceTypeName property 183
special categories, Trace Source Categories

about 69
all events 70
configuring 70
logging errors & warnings 70
unprocessed category 70

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[254]

SqlCeDatabase Class
about 30
methods 30
properties 30

SqlDatabase class 29
SQL string accessor 40
StartTrace method 95
Static Factory Class 138
static factory class, caching application

block 138
static factory class, security application

block 194
stored procedure accessor 40
StringLengthValidator class 161
SupportsAsync 29
SupportsParemeterDiscovery 29
symmetric cryptography provider, working

about 228, 229
configuring 231-234
CryptographyManagerImpl class,

inheritance hierarchy 229
 CryptographyManager Instance,

creating 230
custom symmetric provider,

configuring 238, 239
custom symmetric provider,

implementing 237, 238
data, decrypting 236, 237
data, encrypting 236
generated key, exporting 235
ISymmetricCryptoProvider Instance,

creating 230
System.ApplicationException 121
System.ArithmeticException 109
System.Data.Common namespace 20
System.Data.EntityClient provider 21
System.Data.Odbc provider 21
System.Data.OleDb provider 21
System.Data.OracleClient data provider 21
System.Data.OracleClient provider 21
System.Data.SqlClient database

provider 25
System.Data.SqlClient data provider 21
System.Data.SqlClient provider 21
System.Data.SqlServerCe.3.5 provider 21
System Diagnostics Trace Listener

configuring 83

InitData property 83
name property 83
properties 83
severity filter property 83
trace output options property 83
type name property 83

System.Diagnostics.TraceListener abstract
class 87

System.Diagnostics trace listeners 73
System.Exception 109
System.IO.IsolatedStorage.

IsolatedStorageFile class 146
System.NotFiniteNumberException 109
System.Runtime.Caching namespace 132
System.Security.Cryptography.

HashAlgorithm class 219
System.Web assembly 132

T
tarce output options property 76
TextFormatter 88
time-based expiration policy 143
timestamp pattern property 78
TimeStamp property 64
TimeStampString property 64
Time To Be Received property 86
Time To Reach Queue property 86
title property 62
trace listeners

configuring 72, 74
Custom Trace Listener, configuring 87
Flat File Trace Listener, configuring 75, 76
Formatted Database Trace Listener,

configuring 79, 80
formatted Event Log Trace Listener,

configuring 74, 75
Logging filters, configuring 90, 91
Log Message formatters, configuring 88, 89
Message Queuing Trace Listener,

configuring 84, 86
name property 73
 Rolling Flat File Trace Listener,

configuring 77, 78
severity filter property 73
System Diagnostics Trace Listener,

configuring 83, 84

[255]

trace output options property 74
WMI Trace Listener, configuring 87
XML Trace Listener, configuring 78, 79

TraceLogEntry
class diagram 60, 62

TraceManager class
about 94
class diagram 94

trace output options property 74, 75, 78, 79,
80, 83, 87

Trace Output Options property 86
Tracer class

class diagram 94
Trace Source Categories

adding 69
log categories 69
special categories 69

Tracing activities 94, 95
transactions

working with 48, 49
transaction type property 86
try/finally block 44
TypeConversionValidator class 162
type name property 83

U
unity application block 7
Unity Container

URL 32
unity container, caching application

block 139
UnityContainer class 195, 196
unity container, data access application

block 33
unity container, exception handling block

object 115
unity container, security application

block 195
Unity Namespace (Optional) 27
Unity service locator 33
unity service locator, caching application

block 139
unity service locator, data access application

block
using 33

unity service locator, exception handling
block object

syntax 114
unity service locator, security application

block 195
UpdateDataSet method 28
use authentication property 86
Use Dead Letter Queue property 86
Use Encryption property 86
User Identity

expiring 208, 209
retrieving 207, 208

User mode 152
User Principal

expiring 208, 209
retrieving 207, 208

USZipCodeValidator class 186

V
ValidateChildren method 182
validation application block (VAB)

about 9, 155
application, developing 157
assemblies, referencing 158
composite validators 164
Custom Validator, implementing 184, 186
features 155, 156
integrating, with ASP.NET 183, 184
namespace, adding 160, 161
objects validating, attributes used 167, 168
objects validating, configuration

used 171-175
objects validating, self validation

used 170, 171
object validators 163
references, adding to sample

application 159, 160
Rule Sets 165
single member validators 163
Validation Block, integrating with

ASP.NET 183
ValidationResults 166, 167
ValidatorFactory 165
validators 161
values, validating 169

[256]

value validators 161, 162
Windows Forms based applications,

integrating with 179
working 156, 157

ValidationProvider 180-182
ValidationProvider component 179
ValidationProvider.

PerformValidation(Control)
method 179, 182

ValidationResults class, validation
application block

about 166
members 167

Validator attributes 168
validator class 161
ValidatorFactory class 165
ValidatorFactory, validation application

block
about 165
AttributeValidatorFactory class 165
CompositeValidatorFactory class 165
ConfigurationValidatorFactory class 165

validators
about 161
composite validators 164
object validators 163
single member validators 163
value validators 161
value validators class 162

Validator<T> 161
values

validating 169
value validators

ContainsCharactersValidator class 161
DateTimeRangeValidator class 162
DomainValidator<T> class 162
EnumConversionValidator class 162
NotNullValidator class 162
PropertyComparisonValidator 162
RangeValidator<T> class 162
RegexValidator class 162
RelativeDateTimeValidator class 162
StringLengthValidator class 161
TypeConversionValidator class 162

Visual Studio
configuration editor for 13

W
WCF fault contract exception handler,

exception handling application block
about 110, 124
configuring 125
ExceptionShielding attribute, applying 126
generic fault contract creation 124
WCF Service consumer 126, 127

Web Service 132
Win32ThreadId property 64
Windows Authorization Manager (AzMan)

Authorization Provider 188
Windows Communication Foundation

(WCF) 132
Windows Communication Foundation

(WCF) services 124
Windows Forms 132
Windows Forms based applications

integrating with 179
WindowsMessageExceptionHandler

class 128
Windows Presentation Foundation

(WPF) 132
Windows Service 132
wiring application blocks

about 7
policy injection application block 7
unity application block 7

WMI Trace Listener
configuring 87
default setting 87
name property 87
properties 87
severity property 87
trace output options property 87

WmiTraceListener class 87
wrap exception handler

configuring 116-118
wrap handler, exception handling

application block
about 110
used, for wrapping exception 115
Wrap Exception Handler, configuring 116,

117, 118
write method 65, 68

[257]

Write method 59, 60, 68
Write methods 66
write to log procedure property 80

X
XML

records, retrieving as 43, 44
XmlLogEntry

class diagram 60, 62
XmlLogFormatter 88

XmlLogFormatter class 78
XML Trace Listener

configuring 78
default setting 79
file name property 79
name property 79
properties 79
severity filter property 79
trace output options property 79

XmlTraceListener class 78
XmlWriterTraceListener class 78

Thank you for buying
Microsoft Enterprise Library 5.0

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

ASP.NET 3.5 Application
Architecture and Design
ISBN: 978-1-847195-50-0 Paperback: 260 pages

Build robust, scalable ASP.NET applications quickly
and easily

1. Master the architectural options in ASP.NET to
enhance your applications

2. Develop and implement n-tier architecture
to allow you to modify a component without
disturbing the next one

3. Design scalable and maintainable web
applications rapidly

4. Implement ASP.NET MVC framework to
manage various components independently

ASP.NET Data Presentation
Controls Essentials
ISBN: 978-1-847193-95-7 Paperback: 256 pages

Master the standard ASP.NET server controls for
displaying and managing data

1. Systematic coverage of major ASP.NET data
presentation controls

2. Packed with re-usable examples of common
data control tasks

3. Covers LINQ and binding data to ASP.NET 3.5
(Orcas) controls

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1:Getting Started with Enterprise Library
	Introducing Enterprise Library
	Wiring Application Blocks
	Unity Application Block
	Policy Injection Application Block

	Functional Application Blocks
	Data Access Application Block
	Logging Application Block
	Exception Handling Application Block
	Caching Application Block
	Validation Application Block
	Security Application Block
	Cryptography Application Block

	Functional Application Block Dependency
	System Requirements
	Installing Enterprise Library
	Enterprise Library Binaries
	Configuration Editor for Visual Studio
	Source Code of Enterprise Library

	Summary

	Chapter 2:Data Access Application Block
	Working of Data Access Application Block
	Developing an Application
	Referencing the required assemblies
	Adding Data Access Settings
	Adding a namespace
	Understanding the Database class
	SqlDatabase class
	SqlCeDatabase class
	OracleDatabase class
	GenericDatabase class

	Creating a Database instance
	Using the DatabaseFactory class
	Using Unity service locator
	Using Unity container directly

	Retrieving records using ExecuteReader
	Retrieving records using DataSet
	Retrieving a record as an object
	Parameter mappers
	Output Mappers
	Default row mappers
	Row mapping using MapBuilder
	Row mapping using IRowMapper<TResult>
	Result Set Mappers

	Data Accessors
	Creating and executing Accessors

	Retrieving multiple records as an object collection
	Retrieving records as XML
	Executing a command using ExecuteNonQuery
	Retrieving scalar values
	Updating records using DataSet
	Working with transactions
	Summary

	Chapter 3:Logging Application Block
	Developing an application
	Referencing assemblies
	Adding Logging Settings
	Adding namespaces
	Writing a log message

	Exploring design elements
	LogEntry
	Logger
	Using Logger

	LogWriter
	Adding trace source categories
	Configuring special categories
	Configuring log categories

	Configuring trace listeners
	Configuring Event Log Trace Listener
	Configuring Flat File Trace Listener
	Configuring Rolling Flat File Trace Listener
	Configuring XML Trace Listener
	Configuring Database Trace Listener
	Configuring to send log messages to an e-mail address
	Configuring System Diagnostics Trace Listener
	Configuring Message Queuing Trace Listener
	Configuring WMI Trace Listener
	Configuring Custom trace listeners

	Configuring log message formatters
	Configuring logging filters
	Adding a category filter
	Adding a logging enabled filter
	Adding a priority filter

	TraceManager and Tracer
	Tracing activities

	Customizing Logging block elements
	Implementing a custom trace listener
	Implementing a custom log formatter
	Implementing a custom log filter

	Summary

	Chapter 4:Exception Handling Application Block
	Developing an application
	Referencing required assemblies
	Adding initial Exception Handling settings
	Adding namespaces
	Understanding the Exception Handling block
	Exception policy
	Exception types
	Exception handler
	Exception Manager class

	Stitching together: Exception Policy/Type/Handler
	Creating an Exception Handling block object
	Using the ExceptionPolicy class
	Using Unity service locator
	Using Unity container directly

	Wrapping an exception using Wrap Handler
	Configuring a Wrap Exception Handler

	Replacing an exception using replace handler
	Configuring a replace handler

	Logging an exception using Logging handler
	Configuring a Logging handler

	WCF fault contract exception handler
	Generic fault contract creation
	Configuring a fault contract exception handler
	Applying the ExceptionShielding attribute
	Exception handling: WCF Service consumer

	Implementing Custom Exception Handler
	Configuring custom exception handler

	Summary

	Chapter 5:Caching Application Block
	Developing an application
	Referencing the required assemblies
	Adding the initial Caching Settings
	Adding Namespace
	Creating the CacheManager instance
	Using the static factory class
	Using the Unity Service Locator
	Using the Unity container directly

	Configuring the in-memory backing store
	Adding items to cache
	Understanding the expiration process

	Expiration policies
	Understanding the Scavenging process

	Reading cached items
	Removing cached items
	Flushing cached items

	Reloading expired items
	Configuring Isolated Cache Storage Backing Store
	Configuring Database Cache Storage
	Configuring and encrypting cached data
	Configuration steps

	Summary

	Chapter 6:Validation Application Block
	Validation Application Block features
	Developing an application
	Referencing the required assemblies
	Adding namespaces

	Understanding Validators
	Value Validators
	Object Validators
	Single Member Validators
	Composite Validators

	Understanding Rule Sets
	Understanding ValidatorFactory
	Understanding ValidationResults
	Validating objects using attributes
	Validating values programmatically
	Validating objects using self-validation
	Validating objects using configuration
	Integrating with Windows Forms-based applications
	Steps to leverage ValidationProvider

	Integrating the Validation block with
ASP.NET
	Implementing a Custom Validator
	Summary

	Chapter 7:Security Application Block
	Developing an application
	Referencing required/optional assemblies
	Adding initial security settings
	Adding namespaces
	Creating security application block objects
	Using the static factory class
	Using Unity service locator
	Using Unity container directly

	Understanding Authorization Providers
	Authorization Rule Provider
	AzMan Authorization Provider

	Understanding Security Cache Provider
	CachingStoreProvider class
	Configuring Security Cache Provider
	Caching and generating a token for an authenticated user

	Associating a token with User Identity, Principal and Profile objects
	Retrieving User Identity, User Principal, and Profile objects
	Expiring User Identity, User Principal, and Profile objects

	Implementing a custom Authorization Provider
	Custom XML Authorization Provider

	Summary

	Chapter 8:Cryptography Application Block
	Developing an application
	Referencing required and optional assemblies
	Adding Namespaces
	Adding initial cryptography settings

	Working of Hash Provider
	Creating CryptographyManager and IHashProvider instances
	Using the static facade
	Using Unity service locator
	Using Unity container directly

	Configuring Hash Provider
	Generating a hash value
	Comparing hash values
	Implementing a custom Hash Provider
	Configuring a Custom Hash Provider

	Working of Symmetric cryptography providers
	Creating CryptographyManager and ISymmetricCryptoProvider instances
	Using the static facade
	Using Unity service locator
	Using Unity container directly

	Configuring the Symmetric Cryptography Provider
	Exporting the key
	Encrypting data
	Decrypting Data
	Implementing a Custom Symmetric Provider
	Configuring the custom symmetric provider

	Summary

	Index

