
www.allitebooks.com

http://www.allitebooks.org

Instant Munin Plugin Starter

Write custom scripts to monitor, analyze, and optimize

any device in your network

Bart ten Brinke

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Instant Munin Plugin Starter

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, without the prior written permission of the publisher,

except in the case of brief quotations embedded in critical articles or reviews.

Every efort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without

warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers

and distributors will be held liable for any damages caused or alleged to be caused directly or

indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies

and products mentioned in this book by the appropriate use of capitals. However, Packt

Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Production Reference: 1070213

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84969-674-6

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Bart ten Brinke

Reviewer

Diego Elio Pettenò

Acquisition Editor

Martin Bell

Commissioning Editor

Harsha Bharwani

Technical Editor

Pooja Prakashan

Copy Editors

Brandt D'Mello

Insiya Morbiwala

Project Coordinator

Michelle Quadros

Proofreader

Aaron Nash

Graphics

Aditi Gajjar

Production Coordinator

Prachali Bhiwandkar

Cover Work

Prachali Bhiwandkar

Cover Image

Sheetal Aute

www.allitebooks.com

http://www.allitebooks.org

About the Author

Bart ten Brinke is an experienced product developer; he has been building web

applications for over six years, mainly focusing on Ruby on Rails. In 2012, he started his

own company called Retrosync. Retrosync focuses on the three major pillars of web

application development—security, scalability, and usability.

Prior to Retrosync, Bart worked at Nedap Healthcare as a product developer and security

oicer. Here he developed a web-based planning solution that is now used by a majority
of the Dutch home care sector.

Bart holds a Masters title in Information Technology and a Minor in Biomedical Engineering,

both from the University of Twente in the Netherlands. He is also a Certiied Information
Systems Security Professional (CISSP).

I would like to take this opportunity to thank Olaf van Zandwijk, Daniele

Sluijters, Steve Schnepp, and Diego Elio Pettenò for taking the time to review

this book. I would especially like to thank Nanda van de Weerd for always

having faith in me.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Diego Elio Pettenò is a free software developer involved in projects based on Munin, Libav,

and Gentoo Linux. He's been maintaining a general, but mostly technical, blog for the past 8

years and has contributed articles to www.linux.com and www.lwn.net. His specialties are ELF

and Autotools.

www.allitebooks.com

http://www.allitebooks.org

www.packtpub.com

Support iles, eBooks, discount ofers and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt ofers eBook versions of every book published, with PDF and ePub
iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print book

customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@

packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a

range of free newsletters and receive exclusive discounts and ofers on Packt books and eBooks.

www.allitebooks.com

http://www.allitebooks.org

packtLib.packtpub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 Ê Fully searchable across every book published by Packt

 Ê Copy and paste, print and bookmark content

 Ê On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib

today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Instant Munin Plugin Starter 1

So, what is Munin? 3
Installation 6

Step 1 – What do I need? 6
Step 2 – Installing Munin 6

Step 3 – Plotting graphs 7

And that's it 8

Quick start – Setting up Munin 10
Munin master coniguration 10

Example coniguration ile for Munin 10
Munin node coniguration 13

Example coniguration ile for munin-node 13
Managing plugins 15

Top 6 features you need to know about 17
Monitoring additional servers 17

Step 1 – Installing munin-node 17

Step 2 – Testing your munin-node installation 18

Step 3 – Installing additional plugins 19

Step 4 – Adding the new node to the master 20

Troubleshooting 21

Monitoring additional devices 22
Step 1 – Enabling the SNMP interface plugin 22

Step 2 – Testing the SNMP interface plugin 22

Step 3 – Coniguring the Munin master 24
Installing sensor plugins 24

Monitoring sensors through lm-sensors 24

Monitoring sensors through IPMI 28

Writing a simple plugin 31
Step 1 – Gathering the information we need 31

Step 2 – Designing the graph 32

Step 3 – Writing the plugin 33

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Step 4 – Testing the plugin 33

Challenge yourself! 34

Writing a complex plugin 34
Step 1 – Rewriting our bash plugin to Perl 35

Step 2 – Documentation and markers 37

Step 3 – Supporting the autoconf argument 40

Step 4 – Adding support for the suggest argument 41

Advanced plugin options 41
dirtyconig 41
Multigraph 43

Challenge yourself! 45

People and places you should get to know 46
Finding plugins 46

Windows support 46

Interesting websites 47

Instant Munin Plugin Starter

Welcome to the Instant Munin Plugin Starter. This book provides you with all

the information that you need to set up a Munin cluster and expand it. We will

also teach you how to write your own Munin plugins.

This book contains the following sections:

So, what is Munin? explains what Munin actually is, what you can do with it,

and why it's so great.

Installation tells you how to install Munin with minimum fuss so that you

can use it as soon as possible.

Quick start – Setting up Munin will walk you through all the important bits

for the coniguration of the Munin master, Munin node, and Munin plugin.

Top 6 features you need to know about explains how to monitor additional

servers and devices. You will also learn how to write a Munin plugin using

bash and Perl.

People and places you should get to know provides you with many useful links

to websites and Twitter feeds where you can ind more interesting information
about Munin.

3

Instant Munin Plugin Starter

So, what is Munin?
Munin is a set of tools that allows you to monitor computers, applications, and devices in a

networked environment. Munin itself actually consists of three main components:

 Ê Munin master – the server component

 Ê Munin node – the client component

 Ê Munin plugin – the program that collects data

The master typically connects to all its client nodes every 5 minutes and asks them for a status

update. The node then looks at its conigured plugins and calls them to produce the requested
status information.

For example, a plugin might return the amount of free memory available in the system or the

amount of free disk space remaining. The nodes send this data back to the master, which uses

it to plot graphs of all the information provided. These graphs can easily be viewed using a

web browser.

Graphs are created such that they display the information for the past 24 hours, week, month,

and so on, up to the past year.

4

Instant Munin Plugin Starter

The real power of Munin is in the fact that this system of information gathering and graph

plotting is set up in a very generic way. This makes a Munin setup easily extendable. When you

conigure a plugin to monitor something on a node, the Munin server will automatically start
drawing neat graphs for you. The great thing is that while there are a lot of plugins provided

with Munin, you can also ind a lot of plugins on the Internet.

If you cannot ind the exact plugin you need, you can write it yourself; it is very easy to do so.
Further on, we will explain how you can write your own plugin from scratch.

So you might ask yourself why you would want to measure all this data. You might even

already have some alerting services, such as Nagios or Icinga set up to warn you when a host

is down or a service in your network is not responding. Even though Munin can actually send

out alerts as well, it is deinitely not its main focus. Munin is a very powerful tool to use when
you are debugging complex performance problems. Munin can really help you out of a tight

spot, especially if you have a problem spanning multiple servers.

When a performance issue arises, the problem is usually very simple to pinpoint, such as maybe

your web server isn't handling as many requests per second as it should or your database server

isn't processing as many queries as it used to.

The real challenge comes from trying to get to the root of a problem, say to ind out what is
causing this sudden drop in your performance. It is only when you ind the root cause of the
problem that you can actually start working on ixing it.

As Munin plots a lot of graphs for you about your systems, it makes it a lot easier for you

to visually correlate the things that might be causing your problem. If you don't have this

information at the ready when you encounter a problem, you would have to resort to

franticly taking stabs in the dark.

Another great advantage of Munin is that the graphs help you with resource and capacity

planning. For example, if you see the disk usage graph increase by 1 percent every day, you

can be sure that you will have a big problem somewhere within the next 3 months.

5

Instant Munin Plugin Starter

As Munin is so lexible and easy to set up, it is very easy for an administrator to set up a
custom dashboard of his or her network to help tackle any problems that may arise in their

day-to-day business. Munin can monitor anything from web requests, mail queues, print

queues, and network statistics to temperature, CPU load, the usage of the cofee machine,
and everything in between.

6

Instant Munin Plugin Starter

Installation

In four easy steps, you can install Munin and have it up and running and monitoring your system.

Step 1 – What do I need?
Before you install Munin, you will need to check that you have all of the required elements listed

as follows:

 Ê Disk space: Munin requires 100 MB of free disk space. You will require more free space if

you are going to monitor lots of devices.

 Ê Memory: The minimum memory required is 128 MB, but 1 GB is recommended.

 Ê Munin master: This requires a web server environment, such as Apache, and needs Perl

5 and RRDtool installed to function correctly.

 Ê Munin node: This should run in any environment that runs Perl 5.

 Ê Munin plugins: These can be platform-speciic, but most should work on any Linux
based system.

The load impact on the nodes is typically very low. This might increase if you install a lot of

plugins that perform heavy operations, such as log ile analysis. This is something to look out for.

The load impact of the master is also very low with small clusters. If your cluster gets bigger, you

should look into the ine-tuning of the graph plotting features as this is the most load-intensive
work that the master does. When this happens, you should look at plotting graphs only when

viewed or assigning more resources to the graphing processes.

Step 2 – Installing Munin
The easiest way to install Munin is to use the package manager provided by your operating

system. This will ensure that you get the most current stable build.

For Debian or Ubuntu, enter the following command:

sudo apt-get install munin munin-node

For Red Hat or Fedora, use:

sudo yum -y install munin munin-node

If you are trying to install Munin for another operating system, such as FreeBSD or OS X, please

check whether they provide a native prepackaged Munin. If not, take a look at the wiki on the

following Munin website for information on how to install Munin on your system:

http://munin-monitoring.org/wiki/Documentation

It is also possible to monitor Windows systems, but we will not go into that here.

7

Instant Munin Plugin Starter

Step 3 – Plotting graphs
In order to view the generated graphs, we need to conigure a web server to actually serve the
HTML generated by the master and munin-graph. If you don't have a web server installed,

please install Apache2 and add the Munin host to the coniguration.

For Debian or Ubuntu, use the following commands:

sudo apt-get install apache2

sudo ln -s /etc/munin/apache.conf /etc/apache2/sites-enabled/munin

sudo apache2ctl restart

For Red Hat or Fedora, use:

sudo yum install httpd

sudo ln -s /etc/munin/apache.conf /etc/httpd/conf.d/munin.conf

sudo apachectl restart

This will install Apache; symlink the Apache coniguration provided by Munin to Apache, and
then restart Apache to enable the new website.

By default, the Munin website is only available from localhost. If you want to change this, edit

/etc/munin/apache.conf and add your IP address to the Allow from list. For example,

if your IP address is 10.0.0.123, change the coniguration to look like this:

<Directory /var/cache/munin/www>

 Order allow,deny

 Allow from localhost 127.0.0.0/8 ::1 10.0.0.123

 Options None

 <IfModule mod_expires.c>

 ExpiresActive On

 ExpiresDefault M310

 </IfModule>

</Directory>

Please note that the list is space-separated and that you have to restart Apache before your

changes take efect.

If you prefer to use basic authorization for authentication, you can also conigure this here.

8

Instant Munin Plugin Starter

Downloading the example code

You can download the example code iles for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you

purchased this book elsewhere, you can visit http://www.PacktPub.com/

support and register to have the iles e-mailed directly to you.

And that's it
By this point, you should have a working installation of Munin running at http://localhost/
munin or at http://your_munin_master/munin.

9

Instant Munin Plugin Starter

Go ahead and look around to discover more about Munin. Keep in mind that Munin generates a

point in each graph every 5 minutes, so right now, your graphs will be pretty boring. Go and do

something else for about an hour, and then come back and take a look at all the beautiful graphs

that were generated for you!

www.allitebooks.com

http://www.allitebooks.org

10

Instant Munin Plugin Starter

Quick start – Setting up Munin
In this section, you'll learn the most important settings for Munin master and node and how to

manage Munin plugins.

Munin master coniguration
The coniguration of the Munin master is located at /etc/munin/munin.conf. Use your

favorite text editor to open that ile and look at its contents. The coniguration is pretty well
documented, but we will walk you through it nonetheless.

Example coniguration ile for Munin
An example coniguration ile for Munin is given as follows:

Example configuration file for Munin, generated by 'make build'

The next three variables specify the location of the RRD

databases, the HTML output, logs and the lock/pid files. They

all must be writable by the user running munin-cron. They are all

defaulted to the values you see here.

#

#dbdir /var/lib/munin

#htmldir /var/cache/munin/www

#logdir /var/log/munin

#rundir /var/run/munin

Where to look for the HTML templates

#

#tmpldir /etc/munin/templates

Where to look for the static www files

#

#staticdir /etc/munin/static

temporary cgi files are here. note that they have to be writable by

the cgi user (usually nobody or httpd).

#

cgitmpdir /var/lib/munin/cgi-tmp

(Exactly one) directory to include all files from.

includedir /etc/munin/munin-conf.d

11

Instant Munin Plugin Starter

You can choose the time reference for "DERIVE" like graphs and
show "per minute", "per hour" values instead of the default

#"per second" #graph_period second

Graphics files are generated either via cron or by a CGI

#process.

See http://munin-monitoring.org/wiki/CgiHowto2 for more

documentation.

Since 2.0, munin-graph has been rewritten to use the cgi code.
It is single threaded *by design* now.

#

#graph_strategy cron

munin-cgi-graph is invoked by the web server up to very many
times at the same time.

This is not optimal since it results in high CPU

and memory consumption to the degree that the system can thrash.

Again the default is 6. Most likely the optimal number for

max_cgi_graph_jobs is the same as max_graph_jobs.

#

#munin_cgi_graph_jobs 6

If the automatic CGI url is wrong for your system override

it here:

#

#cgiurl_graph /munin-cgi/munin-cgi-graph

max_size_x and max_size_y are the max size of images in pixel.

Default is 4000. Do not make it too large otherwise RRD might

use all RAM to generate the images.

#

#max_size_x 4000

#max_size_y 4000

HTML files are normally generated by munin-html, no matter if
the files are used or not. You can change this to on-demand
#generation

by following the instructions in

http://munin-monitoring.org/wiki/CgiHowto2

Notes:

- moving to CGI for HTML means you cannot have graphs generated
by cron.

- cgi html has some bugs, mostly you still have to launch

12

Instant Munin Plugin Starter

munin-html by hand

#html_strategy cron

munin-update runs in parallel.

#

The default max number of processes is 16, and is probably ok.

#

If set too high, it might hit some process/ram/filedesc limits.

If set too low, munin-update might take more than 5 min.

#

If you want munin-update to not be parallel set it to 0.

#

#max_processes 16

RRD updates are per default, performed directly on the rrd
files.

To reduce IO and enable the use of the rrdcached, uncomment it

and set it to the location of the socket that rrdcached uses.

#

#rrdcached_socket /var/run/rrdcached.sock

Drop somejuser@fnord.comm and anotheruser@blibb.comm an email

everytime something changes (OK -> WARNING, CRITICAL -> OK, etc)

#contact.someuser.command mail -s "Munin" somejuser@fnord.comm

#contact.anotheruser.command mail -s "Munin" anotheruser@blibb.comm

#

For those with Nagios, the following might come in handy.

In addition, the services must be defined in the Nagios server
as well.

#contact.nagios.command /usr/bin/send_nsca nagios.host.comm -c
/etc/nsca.conf

a simple host tree

[localhost.localdomain]

 address 127.0.0.1

 use_node_name yes

Then we want totals...

[foo.com;Totals] #Force it into the "foo.com"-domain...

update no # Turn off data-fetching for this "host".

#

The graph "load1". We want to see the loads of both machines...

"fii=fii.foo.com:load.load" means "label=machine:graph.field"

13

Instant Munin Plugin Starter

The irst variables specify the location of all the iles that the master needs. Important to note
here are the location of the statistics database (dbdir) and the location of the HTML output

(htmldir). All the data gathered by the Munin master is written to the database directory.

The master then uses a tool called munin-graph to analyze the data and output graphs into the

HTML output directory. If you want to change these later on, you can, but we will leave them at

their defaults for now.

Further down are some settings for graphing. By default, updating of the graphs is triggered by

cron, but in very large systems it would be smarter to generate them on demand through CGI.

Just leave it at cron for now.

After that, we see the notiication options. If you want, the master can trigger an alert when a
graph goes from ok to warning or from warning to critical. Munin can either send an alert to an

e-mail address or pass it on to Nagios. I recommend that you set up the mail notiication at this
point. This will notify you by e-mail if something is amiss. Add Nagios after you have completed

your entire Munin installation and have had it up and running for about a month. This will

prevent coniguration errors in Munin from waking you up in the middle of the night.

A really interesting bit for now is the host tree. Here we can conigure all the nodes we want
our master to query for information. By default, it only looks at localhost, so efectively, it just
monitors itself.

In addition to just hosts, your host tree can also include custom dashboard elements. The

coniguration ile shows a couple of examples. Simple features that you can add are combining
counters of multiple machines. In this example, the load of two machines is added into a new

graph, which is not a very useful example. Features such as combining the web requests of all your

web servers into one single graph, however, could be a very handy addition to your dashboard.

Munin node coniguration
By default, the coniguration of the Munin node is located at /etc/munin/munin-node.
conf. Use your favorite text editor to open that ile and look at its contents. It is also fairly well
documented. However there are two settings that I would like to point out at this stage as you

will need them in the future. These settings are highlighted in the following coniguration ile.

Example coniguration ile for munin-node
An example coniguration ile for munin-node is as follows:

Example config-file for munin-node

#

log_level 4

log_file /var/log/munin/munin-node.log

pid_file /var/run/munin/munin-node.pid

14

Instant Munin Plugin Starter

background 1

setsid 1

user root

group root

Regexps for files to ignore

ignore_file [\#~]$

ignore_file DEADJOE$

ignore_file \.bak$

ignore_file %$

ignore_file \.dpkg-(tmp|new|old|dist)$

ignore_file \.rpm(save|new)$

ignore_file \.pod$

Set this if the client doesn't report the correct hostname when

telnetting to localhost, port 4949

#

#host_name localhost.localdomain

A list of addresses that are allowed to connect. This must be a

regular expression, since Net::Server does not understand

CIDR-style network notation unless the perl module Net::CIDR is

installed. You may repeat the allow line as many times as you'd

like

allow ^127\.0\.0\.1$

allow ^::1$

If you have installed the Net::CIDR perl module, you can use one

or more cidr_allow and cidr_deny address/mask patterns.

A connecting client must match any cidr_allow, and not match any

cidr_deny. Note that a netmask *must* be provided, even if it's /32

#

Example:

#

cidr_allow 127.0.0.1/32

cidr_allow 192.0.2.0/24

cidr_deny 192.0.2.42/32

Which address to bind to;

15

Instant Munin Plugin Starter

host *

host 127.0.0.1

And which port

port 4949

Firstly, there is the host_name setting. This is the name the machine responds with. By default

this is the hostname, but in a lot of internal network environments, the conigured hostname of
a host difers from its network name. If this is the case, you can enter the hostname your master
expects here.

Secondly, there is the allow section. The master connects to its nodes by connecting them

through port 4949, deined at the bottom of the coniguration ile. The node uses the allow
option to block information requests not coming from the master. For now, localhost is ine,
since we are just monitoring ourselves, but if you are running munin-node on an external host,

you need to enter the IP address or range of your master here. If you want to know more about

this, you can skip forward to the Monitoring additional servers feature.

Managing plugins
All the active plugins can be found at /etc/munin/plugins. Go to this directory and take

a look at its contents. As you can see, the plugins that are currently installed are all symbolic

links to default Munin plugins at /usr/share/munin/plugins/. Munin-node created these

symbolic links during its installation as it detected that these plugins were useful to have on your

system. If you ever add a plugin to your system, you can place them here.

admin@server:/etc/munin/plugins# ls -la

cpu -> /usr/share/munin/plugins/cpu

df -> /usr/share/munin/plugins/df

df_inode -> /usr/share/munin/plugins/df_inode

diskstats -> /usr/share/munin/plugins/diskstats

entropy -> /usr/share/munin/plugins/entropy

forks -> /usr/share/munin/plugins/forks

fw_packets -> /usr/share/munin/plugins/fw_packets

http_loadtime -> /usr/share/munin/plugins/http_loadtime

if_err_eth0 -> /usr/share/munin/plugins/if_err_

if_eth0 -> /usr/share/munin/plugins/if_

interrupts -> /usr/share/munin/plugins/interrupts

iostat -> /usr/share/munin/plugins/iostat

iostat_ios -> /usr/share/munin/plugins/iostat_ios

irqstats -> /usr/share/munin/plugins/irqstats

load -> /usr/share/munin/plugins/load

memory -> /usr/share/munin/plugins/memory

munin_stats -> /usr/share/munin/plugins/munin_stats

ntp_kernel_err -> /usr/share/munin/plugins/ntp_kernel_err

16

Instant Munin Plugin Starter

ntp_kernel_pll_freq -> /usr/share/munin/plugins/ntp_kernel_pll_freq

ntp_kernel_pll_off -> /usr/share/munin/plugins/ntp_kernel_pll_off

ntp_offset -> /usr/share/munin/plugins/ntp_offset

open_files -> /usr/share/munin/plugins/open_files

open_inodes -> /usr/share/munin/plugins/open_inodes

processes -> /usr/share/munin/plugins/processes

proc_pri -> /usr/share/munin/plugins/proc_pri

swap -> /usr/share/munin/plugins/swap

threads -> /usr/share/munin/plugins/threads

uptime -> /usr/share/munin/plugins/uptime

users -> /usr/share/munin/plugins/users

vmstat -> /usr/share/munin/plugins/vmstat

Please note that some distributions might put their shared plugins at a diferent location. The
coniguration ile of the plugins themselves is located in /etc/munin/plugin-conf.d/
munin-node. The convention here is quite straightforward. The name of the plugin is listed at

the top of each section in [accolades]. Below that are the speciic options for each plugin.
Open up the ile and take a look at its contents.

The most important are the user and group settings. These dictate which user and group the

plugin will run as. By default, this will be nobody:munin, and a lot of plugins can work just ine
with this, but some plugins need more permissions to be able to get the information they need.

Always try to keep the permissions here as tight as possible.

Most of the other settings in this ile are environment settings. These are used to pass additional
parameters to the plugins. Most plugins are conigured by their symlink, but additional options,
such as locations of iles or ports to monitor, can be set here. For example, if we open up the
munin-node coniguration and look at the dhcpd3 section, you should see something like

the following :

[dhcpd3]

user root

env.leasefile /var/lib/dhcp3/dhcpd.leases

env.configfile /etc/dhcp3/dhcpd.conf

The dhcpd3 plugin should be run as root because, otherwise, it cannot read the information it

needs. The lease and conig iles are passed as environment variables to the plugin as they can
be diferent per distribution.

It is also possible to use wildcards in the section description. If you scroll further down, you will

see a section labeled [if_*]. This matches interface plugins such as if_eth0 and if_eth1.

17

Instant Munin Plugin Starter

Top 6 features you need to know about
Adding the same host that runs the master as the irst node was just the irst step in connecting
the rest of your network. In this section, you will learn how to add additional nodes to your

master so that you can monitor additional servers and devices.

After that, we will look into plugins. First you will learn how to install the commonly used plugins

to monitor sensors. Next, you will build a simple plugin using bash, which we will expand to

a full-ledged Munin plugin in Perl. Finally, we will be looking at some of the more advanced
features you can build into your plugin.

Monitoring additional servers
The irst step in expanding your munin cluster will be monitoring another server. Once you know
how to add one server, you will be able to add all of them! We will do this in four simple steps.

Step 1 – Installing munin-node
First we need to connect to the server we want to monitor and install munin-node. In our

examples, we will be using the name muninnode as the name of our additional server. Your server

will probably have a diferent name, so every time you see muninnode in an example, you should

replace that with the name of the server you are using. Examples will also use the term username,

which you should replace with your username. But irst, let's install munin-node.

For Debian or Ubuntu, use the following commands:

ssh username@muninnode

sudo apt-get install munin-node

For Red Hat or Fedora, use:

ssh username@muninnode

sudo yum install munin-node

Next, we will take a look at the generated coniguration ile. It is located at /etc/munin/
munin-node.conf. Please open it up in your favorite editor.

The irst thing we have to take care of is the fact that we want our master to be able to connect
to this node. For security reasons, munin-node defaults to allowing only connections from the

localhost to query its data. So, let's scroll down to the allow section and add a line beneath it.

If your master has a static IP address, please enter it in the allow section in the following format:

allow 10.0.0.200

This will grant the master at 10.0.0.200 access to the data of this node.

18

Instant Munin Plugin Starter

If your server has a dynamic IP or you want to trust your entire network range, you can either

add a single line for every possible IP addresses or use a cidr_allow section. Please note that

you can only use this if you have the Net::CIDR Perl module installed. Most systems will have this

by default, but if you are having problems, you should check that.

cidr_allow 10.0.0.0/24

This will grant anyone connecting from any IP from 10.0.0.0 to 10.0.0.255 to fetch all the

information available in this node.

After you have done this, you need to save the ile and restart the munin-node daemon.

For older versions of Debian or Ubuntu, use the following command:

sudo invoke-rc.d munin-node restart

For Debian or Ubuntu and Red Hat or Fedora, use:

sudo service munin-node restart

Step 2 – Testing your munin-node installation
Now that we have installed the node, it is a good idea to check if it functions correctly. We will do

this by connecting to the node and fetching some information.

ssh username@muninnode

telnet localhost 4949

version

list

quit

You should get the following output:

ssh username@muninnode

Welcome to muninnode

username@muninnode:~$ telnet muninnode 4949

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

munin node at muninnode.

version

19

Instant Munin Plugin Starter

munins node on muninnode. version: 2.0.9-2

list

cpu df df_inode entropy forks fw_packets http_loadtime if_err_eth0
if_eth0 interrupts iostat iostat_ios irqstats load memory
munin_stats ntp_kernel_err ntp_kernel_pll_freq ntp_kernel_pll_off
ntp_offset open_files open_inodes proc_pri processes sensors swap
threads uptime users vmstat

quit

Connection closed by foreign host.

username@muninnode:~$

Please note that the node might be a bit impatient with you. If you connect to it using Telnet and

then give no further instructions for a few seconds, munin-node will automatically disconnect

you, thinking you are just wasting it's time. If this happens, just go ahead and try again.

Now that we know that munin-node is running, we want to make sure it is functioning

correctly. Munin-node keeps its log ile at /var/log/munin/munin-node.log. Let's

take a look at that.

ssh username@muninnode

tail /var/log/munin/munin.log

You should be able to see your connection attempt in the log; it should look something like

the following:

2013/01/01-12:30:10 CONNECT TCP Peer: "127.0.0.1:44363" Local: \

 "127.0.0.1:4949"

If you have a node that is experiencing problems with connections or a plugin, make sure to look

at this log ile for exceptions or error messages.

Step 3 – Installing additional plugins
When munin-node was installed, it ran its autodetect script to enable plugins from its standard

library if they were applicable to your system. If you have installed new software on this

machine, you can easily re-run this script to see if Munin can help you monitor the new software.

If you, for example, have installed MySQL or PostgreSQL, then this is what you do:

ssh username@muninnode

sudo munin-node-configure --suggest

sudo munin-node-configure --shell

www.allitebooks.com

http://www.allitebooks.org

20

Instant Munin Plugin Starter

The irst command will show you all the plugins your munin-node has out of the box and whether
they apply to your system. The second command will display the commands you will have to

execute to create the symbolic links in order to enable those suggestions. Please note that not

all plugins support this, and therefore, not all applicable plugins will automatically be enabled.

Munin-node has to be restarted after you've added new plugins;

otherwise, these changes will not take efect.

Step 4 – Adding the new node to the master
Now that we've completely conigured the node and tested to see if it works, we are ready to
add the node to our master. To do this, we have to go to our master and test whether we can

connect back to our munin-node.

ssh username@muninmaster

telnet 4949 muninnode

version

list

quit

This should display the version and the capabilities of the munin-node running on the

muninnode server. If this does not work, make sure you have started the munin-node

on the muninnode server and also check whether irewalls allow you to connect to it
on port 4949. Also go ahead and recheck the allowed IP addresses in the munin-node

coniguration as mentioned in step 2.

If this is working correctly, go ahead and open up the ile at /etc/munin/munin.conf.

Here, we scroll down until we see the following host tree:

a simple host tree

[localhost.localdomain]

 address 127.0.0.1

 use_node_name yes

We need to add our new munin-node to this host tree as follows:

the host tree of our local network

[localhost.localdomain]

 address 127.0.0.1

 use_node_name yes

[muninnode.localdomain]

 address 10.0.0.200

 use_node_name yes

21

Instant Munin Plugin Starter

Now, we'll have to wait at least 10 minutes before we will be able to see our new node on

the Munin master's website. Go ahead and point your browser to your Munin master at

http://localhost/munin or at http://your_munin_master/munin; you should

see something like the following screenshot:

After a couple of minutes, you should be able to see graphs for your node and even compare the

nodes of your cluster side by side.

Troubleshooting
Now it could very well be possible that it isn't working for you. Here are the few steps you should

check irst:

 Ê Check the Munin master log at /var/log/munin/munin.log for errors.

 Ê Check the Munin node log at /var/log/munin/munin-node.log on the munin

server for access calls and errors.

 Ê Try to connect from your Munin master to your node using Telnet 4949.

 Ê If you can connect, type nodes and check whether the name of your node is there.

 Ê Still in Telnet, type list munninnode.localdomain and check whether you get a

list of plugins. If not, add your hostname to /etc/munin/munin-node.conf (see

the Munin node coniguration section).

22

Instant Munin Plugin Starter

Monitoring additional devices
Not all things you want to monitor will be able to run munin-node themselves. If you want to

monitor routers, switches, or printers, you will have to set up a munin-node to do that for you.

Of course, the device will need to be networked and have either SNMP or another interface

exposed that can be used to monitor it. In this section, we will be going through the steps of

doing just that. If you understand how you can add a single networked device, you can go

ahead and start monitoring all the devices in your network.

We will be setting up monitoring of a networked router through SNMP. Note that, while

most routers can be monitored through SNMP, some can't. So this example might not work

for your setup.

Step 1 – Enabling the SNMP interface plugin
Munin-node comes with a handy plugin that can monitor the traic of most switches and
routers through SNMP. In this example, we will be monitoring a core router named router,

which has an IP address of 10.0.0.1.

We will start by enabling the plugins, as follows:

ln -s /usr/share/munin/plugins/snmp__if_
/etc/munin/plugins/snmp_router_if_1

ln -s /usr/share/munin/plugins/snmp__if_err_
/etc/munin/plugins/snmp_router_if_err_1

The hostname of our router is part of the symlink.

Step 2 – Testing the SNMP interface plugin
We start by testing the plugin.

cd /etc/munin/plugins

munin-run snmp_router_if_1

This should give you the following output:

recv.value 2928754283

send.value 562680241

If you get recv.value noSuchObject, your switch isn't supported by this SNMP plugin and

you will have to look for a speciic one for your switch or router (see the People and places you

should get to know section).

23

Instant Munin Plugin Starter

If you get Unable to resolve UDP/IPv4 address 'router', the hostname of your

router could not be resolved. You can easily ix this by changing the hostname or by adding the
hostname and the IP address of your router to the hosts ile of your server in /etc/hosts.

Now that we have the plugin working, we have to make sure that the node publishes our router

correctly. Start by restarting munin-node so it picks up our changes to its plugins.

Next, we connect to the munin-node through Telnet and we query it for nodes. If everything is

correct, you should see our new node, router. If we list the plugins for router through list
router, we get the plugins for this node; they are snmp_router_if_1 and snmp_router_
if_err_1. To test them we can call a fetch on them using fetch snmp_router_if_1.

$ sudo service munin-node restart

Stopping Munin-Node: done.

Starting Munin-Node: done.

$ telnet localhost 4949

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

munin node at muninmaster

$ nodes

muninmaster

router

.

$ list router

snmp_router_if_1

snmp_router_if_err_1

$ fetch snmp_router_if_1

.

recv.value 2928754283

send.value 562680241

.

$ quit

24

Instant Munin Plugin Starter

Step 3 – Coniguring the Munin master
We go back to opening the master coniguration ile at /etc/munin.conf on the Munin

master and then go to our host tree.

Here we will add the following section:

[router]

 use_node_name no

 address 127.0.0.1

Even though router is the name of the node, the master will not use that name. By default,

the Munin master will try to get information about our router by calling list localhost.
localdomain. This is, of course, not what we want. To make sure the master queries using

list router, we have to set use_node_name to no.

After you've restarted the Munin master, you should see the traic from your router in the
web interface.

If you want to ind out whether one of the default SNMP plugins provided
by Munin is applicable for a speciic host, run munin-node-configure
--shell --snmp hostname and try the suggestions Munin gives you.

Installing sensor plugins
Some of the most frequently used plugins with munin-node are the plugins for monitoring

sensors. This allows you to view temperatures, fan speeds, and voltages of your system.

There are two main sensor plugins. First, there is the sensors plugin that is shipped with Munin.

This depends on the lm-sensor package and uses kernel modules to read out information. This

method works on a lot of systems, but most modern servers these days use IPMI to expose their

sensors. In this section, we will irst try to use the sensors package. If this fails, please try to use
the IPMI variant, which can be found in the next section.

Monitoring sensors through lm-sensors
To use it, we must irst install the lm-sensors package.

The autodetection of sensors used by the lm-sensors package might

cause instability of your server. Please make sure you do this either during

a maintenance window or on a server that can be rebooted at any time. I

have personally never seen it go wrong, but it is better to be safe than sorry.

25

Instant Munin Plugin Starter

For Debian or Ubuntu, use the following commands:

ssh username@muninnode

sudo apt-get install lm-sensors

sudo sensors-detect

sensors

For Red Hat or Fedora, use:

ssh username@muninnode

sudo yum install lm-sensors

sudo sensors-detect

sensors

After this, please answer all the questions with yes.

ssh username@muninnode

Welcome to muninnode

username@muninnode:~$ sudo sensors-detect

sensors-detect revision 5984 (2011-07-10 21:22:53 +0200)

System: Unknow Unknow

This program will help you determine which kernel modules you need

to load to use lm_sensors most effectively. It is generally safe

and recommended to accept the default answers to all questions,

unless you know what you're doing.

OUTPUT SHORTENED FOR READABILITY

Now follows a summary of the probes I have just done.

Just press ENTER to continue:

Driver 'it87':

 * ISA bus, address 0x228

 Chip 'ITE IT8712F Super IO Sensors' (confidence: 9)

Driver 'k8temp' (autoloaded):

 * Chip 'AMD K8 thermal sensors' (confidence: 9)

26

Instant Munin Plugin Starter

To load everything that is needed, add this to /etc/modules:

#----cut here----

Chip drivers

it87

k8temp

#----cut here----

Do you want to add these lines automatically to /etc/modules? (yes/NO)
yes

Successful!

The lm-sensors package automatically installs the required kernel modules for us. We can

check this by looking at the contents of /etc/modules.

/etc/modules: kernel modules to load at boot time.

#

This file contains the names of kernel modules that should be

loaded at boot time, one per line. Lines beginning with "#" are

ignored.

loop

lp

Generated by sensors-detect

Chip drivers

it87

k8temp

If there is nothing there, your system is probably not supported by lm-sensors, and you

should advance to the section about monitoring through IPMI. If you do have modules in place

here, we can use them to look at the sensor values of our server in the terminal:

username@muninnode:~$ sensors

acpitz-virtual-0

Adapter: Virtual device

temp1: +40.0°C (crit = +75.0°C)

k8temp-pci-00c3

Adapter: PCI adapter

Core0 Temp: +23.0°C

Core0 Temp: +23.0°C

Core1 Temp: +21.0°C

27

Instant Munin Plugin Starter

Core1 Temp: +20.0°C

it8712-isa-0228

Adapter: ISA adapter

in0: +1.18 V (min = +1.01 V, max = +4.08 V)

in1: +3.01 V (min = +0.00 V, max = +3.95 V)

in2: +3.42 V (min = +0.00 V, max = +4.08 V)

in3: +2.94 V (min = +2.50 V, max = +4.08 V)

in4: +2.98 V (min = +0.00 V, max = +4.08 V)

in5: +3.25 V (min = +0.00 V, max = +4.08 V)

in6: +2.98 V (min = +0.00 V, max = +4.08 V)

in7: +2.94 V (min = +0.00 V, max = +4.08 V)

Vbat: +2.83 V

fan1: 2689 RPM (min = 2657 RPM, div = 2)

temp1: +57.0°C (low= +127.0°C, high = +75.0°C)

temp2: +56.0°C (low = +127.0°C, high = +75.0°C)

temp3: +51.0°C (low = +127.0°C, high = +75.0°C)

cpu0_vid: +0.000 V

Your output will difer from mine as your system will have a diferent chipset and lm-sensors

will detect diferent sensors.

Our next step will be to enable the plugin that parses the output of the sensor's command and

outputs something that Munin understands. This will in turn generate graphs of this data. We

do this by running the sensors plugin, as follows:

$ ssh username@muninnode

username@muninnode:~$ cd /usr/share/munin/plugins

username@muninnode:/usr/share/munin/plugins$./sensors_ suggest

fan

volt

temp

In my case, you can see that the Munin sensors plugin discovers three groups of sensors it can

read out: fan, volt, and temp. To enable these, we have to create symbolic links for them:

ssh username@muninnode

$ cd /etc/munin/plugins

$ sudo ln –s /usr/share/munin/plugins/sensors_

28

Instant Munin Plugin Starter

 /etc/munin/plugins/sensors_fan

$ munin-run sensors_fan

fan1.value 2678

You will see that the output from the Munin sensors plugin is identical to the sensors command

we had given earlier, so this means it works! Go ahead and enable any other suggestions that

the Munin sensors autosuggest has given you by creating a symbolic link for them as well.

Now restart munin-node and let's make sure that our Munin node exposes these sensors

correctly:

ssh username@muninnode

telnet localhost 4949

fetch sensors_fan

They should give you the following output:

username@muninnode:~$ telnet localhost 4949

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

munin node at muninnode

fetch sensors_fan

fan1.value 2689

.

quit

Connection closed by foreign host.

username@muninnode:~$

You will see that when we ask the node to fetch sensors_fan, it executes the plugin and

returns this information over a network connection.

You have also learned that plugins can take part of their coniguration from the name of their
symlink. sensors_volt and sensors_fan call the same sensors_ script function

but use the name of the symlink to ilter out diferent results. This keeps down the number of
duplicate plugins, thus keeping the coniguration as simple as possible.

Monitoring sensors through IPMI
To use it, we must irst install the freeimpi-tools package as the freeimpi plugin depends

on it to read out the sensor values.

29

Instant Munin Plugin Starter

For Debian or Ubuntu, use the following commands:

ssh username@muninnode

sudo apt-get install freeipmi-tools

sudo ipmi-sensors

For Red Hat or Fedora, use:

ssh username@muninnode

sudo yum install free-ipmi-tools

sudo ipmi-sensors

If your system supports IPMI, this should output a large array of available sensors:

ID | Name | Type | Reading | Units | Event

7 | Ambient Temp | Temperature | 23.00 | C | 'OK'

9 | CMOS Battery | Battery | N/A | N/A | 'OK'

24 | FAN MOD 1A RPM | Fan | 5040.00 | RPM | 'OK'

25 | FAN MOD 1B RPM | Fan | 3480.00 | RPM | 'OK'

26 | FAN MOD 2A RPM | Fan | 5040.00 | RPM | 'OK'

27 | FAN MOD 2B RPM | Fan | 3480.00 | RPM | 'OK'

28 | FAN MOD 3A RPM | Fan | 5040.00 | RPM | 'OK'

29 | FAN MOD 3B RPM | Fan | 3480.00 | RPM | 'OK'

30 | FAN MOD 4A RPM | Fan | 5040.00 | RPM | 'OK'

31 | FAN MOD 4B RPM | Fan | 3480.00 | RPM | 'OK'

32 | FAN MOD 5A RPM | Fan | 4920.00 | RPM | 'OK'

33 | FAN MOD 5B RPM | Fan | 3480.00 | RPM | 'OK'

48 | OS Watchdog | Watchdog 2 | N/A | N/A | 'OK'

50 | Intrusion | Physical | N/A | N/A | 'OK'

51 | PS Redundancy | Power Supply | N/A | N/A | 'Redundant'

52 | Fan Redundancy | Fan | N/A | N/A | 'Redundant'

56 | Current 1 | Current | 0.20 | A | 'OK'

57 | Current 2 | Current | 0.20 | A | 'OK'

58 | Voltage 1 | Voltage | 228.00 | V | 'OK'

59 | Voltage 2 | Voltage | 228.00 | V | 'OK'

60 | System Level | Current | 91.00 | W | 'OK'

www.allitebooks.com

http://www.allitebooks.org

30

Instant Munin Plugin Starter

Next, we need to get the freeimpi plugin. This plugin is not available by default, so we need to

download it from the GitHub repository.

username@muninnode:~$ cd /etc/munin/plugins

username@muninnode:/etc/munin/plugins$ wget
'https://raw.github.com/

munin-monitoring/contrib/master/plugins/sensors/freeipmi'

username@muninnode:/etc/munin/plugins$ chmod +x freeipmi

Next, we need to run freeimpi as root by adding the following to the bottom of the /etc/
munin/plugin-conf.d/munin-node ile:

[freeipmi]

user root

And now, to test it, use the following commands:

username@muninnode:~$ cd /etc/munin/plugins

username@muninnode:/etc/munin/plugins$ munin-run freeipmi

You should get output similar to the following:

multigraph freeipmi_voltage

ipmi58.value 228.00

ipmi59.value 228.00

multigraph freeipmi_fan

ipmi24.value 5040.00

ipmi25.value 3480.00

ipmi26.value 5040.00

multigraph freeipmi_temp

ipmi7.value 23.00

multigraph freeipmi_current

ipmi56.value 0.20

ipmi57.value 0.20

multigraph freeipmi_power

ipmi60.value 98.00

If you get the preceding output, everything is working. Quickly bring up the web interface of

your Munin master and take a look at all your sensory data.

31

Instant Munin Plugin Starter

Writing a simple plugin
In the previous sections, we have mainly been focusing on how you can enable and conigure
existing plugins for a node. One of the great advantages of Munin, however, is the fact that it

is really easy to write your own plugins.

Basically, a plugin is a simple executable or script that conforms to the plugin API. There are just

two things a minimal Munin plugin must do in order to conform to this API:

 Ê Provide the layout of the graph that the Munin master has to draw

 Ê Output a list of labels and measurements on execution

If we take a look at a simple plugin, such as the load plugin, we can see how it does this:

/etc/munin/plugins$ munin-run load config

graph_title Load average

graph_vlabel load

graph_scale no

graph_category system

load.label load

graph_info The load average of the machine describes how many
processes are in the run-queue (scheduled to run "immediately").

load.info 5 minute load average

/etc/munin/plugins$ sudo munin-run load

load.value 1.44

So, the current load of this system is 1.44, which is the value that the master uses to draw

a point in its graph. The config output speciies the rest of the graph, the vertical label on
the graph should read load, and the graph should not have a scale. It should be placed in

the system category. graph_info contains the information shown when you hover over

the graph in the web interface.

As an example, we will be writing a similar plugin that monitors the amount of disk space

used by a speciic user in four simple steps.

Step 1 – Gathering the information we need
Systems are packed with handy tools that make it very easy to get the size of a speciic
directory, so we will try not to reinvent the wheel. We will be using the disk usage utility,

du, as it is available on most Unix-based systems and does almost everything that we want.

~$ du -s –b /home/testuser

1323302912 /home/testuser

32

Instant Munin Plugin Starter

du -s gives us a neat total of the test user's directory, while the -b lag makes sure we are
consistently getting bytes, which is needed to get a good, consistent graph. We don't need

the /home/testuser bit, so we need to chop that part of:

~$ du -s –b /home/testuser | awk '{print $1}'

1323302912

To achieve this, we pipe the original output of du into awk. awk then cuts the line at the irst
space into two lines and prints the irst part, leaving just 1323302912.

du can take a very long time if the user you are testing has a lot of iles in
his directory. If it takes longer then 5 minutes, munin-node will assume

something is wrong with the plugin and interrupt its execution. Please

choose a small user directory to try this example as it will save you a

lot of time. If you don't have a small user on your system, create a user

named testuser, and place a few iles in its home directory.

Step 2 – Designing the graph
The Munin master needs some context information about the value that we are returning. It

needs to know what base it is, what the maximum and minimum values are, and so on.

graph_title Diskusage of testuser

graph_args --base 1024 --lower-limit 0

graph_vlabel bytes

graph_category system

userdiskusage.label Average disk usage the last five minutes.

userdiskusage.warning 2147483648

userdiskusage.critical 5368709120

graph_info The disk usage of testuser in bytes.

As disk space is measured in blocks of 1,024 bits, we have to set the graph base to 1,024. If you

are monitoring something like a network speed or temperature, you need to change the base

to 1,000.

As we cannot have negative disk usage, we set the lower limit of the graph to zero. We also add

a warning for if the user goes over 2 GB and a critical message for if the user goes over 5 GB.

These graph_args arguments are passed directly to the graphing engine of munin, which is

called RRDGraph. If you want to know more about the graphing possibilities, you can ind the
documentation for the RRDtool at http://oss.oetiker.ch/rrdtool/doc/rrdtool.en.html.

33

Instant Munin Plugin Starter

Step 3 – Writing the plugin
Now, we need to combine steps 1 and 2 into a plugin. For this simple plugin, we will be doing this

with some bash code:

#!/bin/bash

case $1 in

 config)

 echo "graph_title Diskusage of testuser"

 echo "graph_args --base 1024 --lower-limit 0"

 echo "graph_vlabel bytes"

 echo "graph_category system"

 echo "testuserdiskusage.label Average disk usage."

 echo "testuserdiskusage.warning 2147483648"

 echo "testuserdiskusage.critical 5368709120"

 echo "graph_info The disk usage of testuser in bytes."

 exit 0;

esac

echo -n "testuserdiskusage.value "

du -s -b /home/testuser | awk '{print $1}'

So, if config gets passed as the irst argument, we print out the graph options that we need
and exit. If nothing gets passed, we print testuserdiskusage.value and the value that du

is giving us.

Step 4 – Testing the plugin
Now, to test the plugin, we run it:

/etc/munin/plugins$./testuserdiskusage

testuserdiskusage.value 1323302912

It works! So next, we try to run it using munin-run:

munin-run testuserdiskusage

testuserdiskusage.value du: cannot read directory '/home/testuser':
Permission denied

0

Oh! What is going on here? Well, the irst time the script gets executed as your user, and your
user can probably look at the contents of /home/testuser to calculate its total size. However,

by default, munin-node runs plugins as the user nobody that, in this case, does not have enough

permissions to view the contents of /home/testuser. To ix this, we need to open /etc/
munin/plugin-conf.d in your favorite editor and add the following section:

[testuserdiskusage]

user testuser

34

Instant Munin Plugin Starter

This will make munin-run run the plugin under the user testuser, which is the safest option

in this case. Just re-run the plugin with munin-run to verify that it works and then take the

following steps:

1. Restart munin-node (service munin-node restart).

2. Verify that the plugin has been picked up by munin-node using Telnet on port 4949.

3. Fetch the value of testuserdiskusage as a test.

4. Verify the plugin works through Telnet by connecting from the Munin server to the

Munin node.

5. Open up the Munin web interface and see the results of your work.

Challenge yourself!
And now to test your own abilities! The three following assignments get increasingly diicult:

 Ê Change the plugin such that you can set the username in the environment so that it can

monitor other users as well.

 Ê Rename the plugin to userdiskusage_ and create a symlink to it, called

userdiskusage_testuser. Modify the plugin so that it fetches the username

from the symlink. This way you can monitor any user by just creating a symlink.

 Ê Make sure that the script is executed with only the privileges of the user it is monitoring.

Writing a complex plugin
So you've written your irst plugin! The plugin you've built is a very basic one, but those are
usually good enough to monitor something in your network for years and years. If you want to

go one step further and provide your plugin to other people or even to Munin core, you have to

apply a bit more polish to your plugin.

35

Instant Munin Plugin Starter

The Munin community calls plugins that check all the boxes vetted plugins, and we will be writing

one together. A vetted plugin needs to provide the following:

 Ê Graph information on the config argument

 Ê Data on the fetch argument

 Ê Correct documentation stating author and functionality

 Ê Magic markers that state the correct capabilities of the plugin

 Ê Autodetect its usefulness on the system through the autoconf argument

 Ê Suggest possible use cases when the suggest argument is passed

We will be rewriting our plugin so that it complies with all of these requirements.

Step 1 – Rewriting our bash plugin to Perl
We will start by wrapping our bash script with just enough Perl to make the generation of our

graph a lot more lexible.

#!/usr/bin/perl

-*- cperl -*-

use warnings;

use strict;

use utf8;

use Munin::Plugin;

Process and setup global variables

my $warn_level = 2147483648;

$warn_level = $ENV{'warning'} if defined($ENV{'warning'});

my $crit_level = 5368709120;

$crit_level = $ENV{'critical'} if defined($ENV{'critical'});

my $username = $Munin::Plugin::me;

$username =~ s/^user_diskusage_//g;

my $home = "/home";

$home = $ENV{'alt_home'} if defined($ENV{'alt_home'});

my $user_directory = "$home/$username";

my $du = defined $ENV{'du'} ? $ENV{'du'} : "/usr/bin/du";

sub Config {

 print "graph_title Diskusage of $username\n";

 print "graph_args --base 1024 --lower-limit 0\n";

 print "graph_vlabel bytes\n";

36

Instant Munin Plugin Starter

 print "graph_category system\n";

 print "user_diskusage.label Average disk usage.\n";

 print "user_diskusage.warning $warn_level\n";

 print "user_diskusage.critical $crit_level\n";

 print "graph_info The disk usage of $username in bytes.\n";

}

sub Fetch {

 my $du_output = '$du -s -b $user_directory';

 my @du_items = split(/\s+/, $du_output);

 print "user_diskusage.value $du_items[0]\n";

}

sub Execute {

 if (defined $ARGV[0] && $ARGV[0] ne '') {

 my $command = $ARGV[0];

 if ($command eq 'config') { Config(); }

 elsif ($command eq 'autoconf') { AutoConf(); }

 elsif ($command eq 'suggest') { Suggest(); }

} else {

 Fetch();

 }

}

Execute(); # Run it!

exit(0);

As not everyone is probably familiar with Perl, I'll step through the ile to highlight the speciic
points of interest.

At the top, we declare that this is a Perl ile and that we want to make use of Munin::Plugin.

The Munin::Plugin class is supplied with Munin and provides us with some convenient

methods. We use $Munin::Plugin::me to fetch the name of the plugin.

After that, we process all our global variables. As we want this plugin to be as versatile as

possible, we swap all of the hardcoded values from our bash script for conigurable values.

We set the warning and critical levels to the defaults or fetch them from the munin environment.

We use a regular expression to get the username from the symlink, and we use that to build the

$user_directory variable. Because somebody might use a diferent location as the value
/home, we make that conigurable as well.

The script also needs to know where du is located so it can call it. Because these might not

always be in /usr/bin/, this is made conigurable as well.

37

Instant Munin Plugin Starter

The Config and Fetch methods are exact copies of the output of our bash script earlier, except

that we now do the splitting in Perl. We inserted the variables we've just deined into their
correct positions.

Lastly, the Execute method wraps it all together. It looks at the irst argument that has been
passed. If this is the conig, we run Config to get the conig output; otherwise, Fetch is run.

Now try out your new plugin using munin-run.

Step 2 – Documentation and markers
Documentation is always vital to software, especially if it is a piece of software that a lot of

people might use in the future. Munin plugins should have decent documentation, so we'll

provide just that.

#!/usr/bin/perl

-*- cperl -*-

=head1 NAME

user_diskusage_ - Plugin to monitor diskusage of specific users.

=head1 APPLICABLE SYSTEMS

Any system that has du support and a home directory.

=head1 CONFIGURATION

This script is used to generate diskusage data for specific users.

To generate data, you need to create a symbolic link named:

user_disk_usage_<USERNAME> to the user_disk_usage_ script.

In addition you need to specify a user that has read rights to the

<USERNAME>'s home directory in your munin-node.conf:

 [user_diskusage_*]

 user root

Or if you want more specific privileges:

 [user_diskusage_john]

 user john

Warning and critical values can be set via the environment variables.

References to an alternative home directory or alternative du

implementation can also be optionally specified.

 [user_diskusage_john]

 user home

 env.alt_home '/alternative_home'

38

Instant Munin Plugin Starter

 env.du '/full_path_to/du'

 env.warning 2147483648

 env.critical 5368709120

The default warning and critical levels are 2048MB and 5120MB,

respectively.

=head1 DEPENDENCIES

This script depends on Perl and a working du application.

=head1 AUTHOR

Bart ten Brinke <info@retrosync.com>, Retrosync

=head1 LICENSE.

Copyright (c) 2012 Bart ten Brinke

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

=head1 VERSION

Version 1.0

=head1 MAGIC MARKERS

39

Instant Munin Plugin Starter

 #%# family=auto

 #%# capabilities=autoconf suggest

=cut

The name and applicable systems and version are self-explanatory, so we won't go into these. I

will explain all the other headers one by one, going through them from top to bottom:

 Ê Coniguration: The coniguration section is very important. Here, you should explain
what your plugin does and how it does it. It is recommended that you provide at least

two coniguration examples. First, a minimal coniguration example that contains
everything that is needed to get this plugin running. Second, a maximal coniguration
example that shows all the options that are available and how they might be useful.

 Ê Dependencies: These are again what you expect. As we depend on a functional du to be

present, we state that here.

 Ê Author: This is you, so add your name here and an e-mail address where you can be

reached. If anybody has questions about your plugin, it is always handy for them to be

able to contact you.

 Ê License: The license is a vital part of any piece of software that you are building. I have

chosen to license my plugin under the MIT license. This license allows anybody to do

pretty much anything with my plugin without restrictions. "Why add a license then?"
you might ask. Well by including it, we make this fact very clear for the rest of the world.

If somebody wants to make our plugin part of the default Munin plugins, this license

makes it absolutely clear that this will not cause any legal problems for the Munin

project. When no license is explicitly given, people would have to assume that all rights

are reserved, which means that it can't be distributed, modiied, or used as a basis for
other plugins.

 Ê Magic markers: The magic markers are the most puzzling. These are there to tell munin-

conigure and munin-node what the capabilities are of this plugin. The plugin can
belong to any of the following families:

 ° auto: This plugin can be installed fully automatically by munin-configure

 ° contrib: This plugin comes from https://github.com/munin-

monitoring/contrib, a collection of plugins that probably work but are not

actively checked and are probably not vetted

 ° example: A nonfunctional example plugin to show how to build plugins in a

specific language or style

 ° manual: This plugin needs to be installed manually

 ° snmpauto: This is the same as auto, except for snmp plugins, configured

through munin-configure --snmp

 ° test: These are plugins that are used to test munin-node.

www.allitebooks.com

http://www.allitebooks.org

40

Instant Munin Plugin Starter

Currently there are only two capability options for Munin plugins:

 Ê autoconf: This plugin supports automatic coniguration by munin-node-conigure

 Ê suggest: This plugin is a wildcard plugin and can suggest options for the plugin

Our plugin currently does not support autoconf and suggest even though our documentation

says that we do. Let's ix this in the next step.

Step 3 – Supporting the autoconf argument
autoconf is the ability of a plugin to detect whether it will work out of the box for this system.

sub AutoConf {

 unless (-e $du) {

 print "no (Cannot find du at $du)\n";

 exit(1);

 }

 my $dir;

 if (!opendir($dir, $home)) {

 print "no (no access to $home)\n";

 exit(1);

 } else {

 closedir($dir);

 }

 print "yes\n";

}

We need to be testing as much as possible here. We start by testing our dependencies; du should

exist. If it doesn't exist, autoconf will result in an error. We will also test whether the home

directory exists and whether we have access to it.

Try out autoconf by running it through munin-run.

$ munin-run user_diskusage_testuser autoconf

yes

To test whether our autoconf argument works correctly, try changing the location of du in your

/etc/munin/plugin-conf.d/munin-node ile to something incorrect and see if it fails.

[user_diskusage_*]

user root

env.du /does/not/exist

$ munin-run user_diskusage_testuser autoconf

no (Cannot find du at /does/not/exist)

41

Instant Munin Plugin Starter

Make sure to change it back though!

Step 4 – Adding support for the suggest argument
suggest gives a list of possible options for a wildcard plugin. For example, the if_ plugin

will tell you which interfaces are available for monitoring. Our plugin should suggest a list of

available user directories it can monitor, so let's build that:

sub Suggest {

 my $dir;

 opendir($dir, $home);

 while (my $file = readdir($dir)) {

 next unless (-d "$home/$file");

 next if ($file =~ m/^\./);

 print "$file\n";

 }

 closedir($dir);

}

We open the home directory (by default, /home) and we walk through all the iles there. If the
ile is a directory and doesn't equal . or .., we suggest this directory to the user.

Try it out by running munin-run user_disk_usage_ suggest.

Advanced plugin options
With the latest releases of Munin, some additional options were made available for advanced

plugin writers. The most noteworthy of these are dirtyconfig and multigraph. Both have

the potential to speed up complex plugin execution considerably. We will explain each of these

through an example.

dirtyconig
As we explained in the previous section, a plugin gets called with the config parameter the

irst time and without it the second time. For our example plugin, this is ine; during the config

run we just output our graph options, and in the fetch run we do the actual work. There are,

however, some plugins for which the only way to ind out what the output will look like is
to actually generate the output. These plugins will basically be doing the same work for the

config option as for the fetch option.

As an example, we will take a look at the freeimpi sensors plugin we used in the previous

section at https://github.com/munin-monitoring/contrib/blob/master/plugins/

sensors/freeipmi.

42

Instant Munin Plugin Starter

This plugin uses the ipmi-sensors command to read out all the sensors that are available and

their value. Because each system has a diferent set of sensors, this means that ipmi-sensors
would irst be called to gather the available labels and then run again to gather the available
data. As this is not very eicient, Munin 2.0 has introduced dirtyconfig.

When the Munin master connects to the node, it signals the node that it supports dirtyconfig

by sending a cap dirtyconfig command. The node passes this on to its plugins by setting the

MUNIN_CAP_DIRTYCONFIG environment variable to 1. When a plugin detects this, it may send

the conig and the fetched result back in a single reply.

$ munin-run freeipmi config

multigraph freeipmi_voltage

graph_title Voltages by IPMI

graph_vlabel Volt

graph_args --base 1000 --logarithmic

graph_category sensors

ipmi58.label Voltage 1

ipmi59.label Voltage 2

$ MUNIN_CAP_DIRTYCONFIG=1 munin-run freeipmi config

multigraph freeipmi_voltage

graph_title Voltages by IPMI

graph_vlabel Volt

graph_args --base 1000 --logarithmic

graph_category sensors

ipmi58.label Voltage 1

ipmi59.label Voltage 2

multigraph freeipmi_voltage

ipmi58.value 228.00

ipmi59.value 228.00

Updating our disk usage plugin to support this is actually really simple:

sub Execute {

 if (defined $ARGV[0] && $ARGV[0] ne '') {

 my $command = $ARGV[0];

 if ($command eq 'config') {

 Config();

 Fetch() if (defined($ENV{MUNIN_CAP_DIRTYCONFIG}));

 }

 elsif ($command eq 'autoconf') { AutoConf(); }

 elsif ($command eq 'suggest') { Suggest(); }

43

Instant Munin Plugin Starter

 } else {

 Fetch();

 }

}

What you also might have noticed is the fact that the freeipmi plugin uses another new

feature called multigraph. We will explain that in the next section.

Multigraph
Since Version 1.4, Munin has added support for multigraph plugins. This feature extends the

normal graphing options and provides two additional options:

 Ê Yield multiple graphs instead of one graph

 Ê Support graph hierarchy

For most situations, the normal style plugin is preferred as it keeps things nice, simple,

and contained in a single plugin. However there are situations that are more complex than

monitoring the disk usage of a single user. Down-drilling network traic on a switch or slow
queries on a database server are where multigraph plugins can really shine.

So how can I make one myself? Well that's actually not very complicated. Just like with
dirtyconf, the master sends a cap multigraph command to the nodes if it has multigraph

support. The node passes this on to its plugins by setting the MUNIN_CAP_MULTIGRAPH

environment variable.

When we want our plugin to provide the total disk usage of all users as well as a drill-down to

speciic users, we need to output the conig for multiple graphs. This is done by separating
each graph conig with a multigraph line:

multigraph user_diskusage

graph_title Total diskusage of all home users

graph_args --base 1024 --lower-limit 0

graph_vlabel Bytes

graph_category system

user_diskusage.label Average disk usage the last 5 minutes.

user_diskusage.warning 322122547200

user_diskusage.critical 429496729600

graph_info Total diskusage in bytes.

multigraph user_diskusage.testuser

graph_title Diskusage of testuser

graph_args --base 1024 --lower-limit 0

graph_vlabel Bytes

graph_category system

44

Instant Munin Plugin Starter

user_diskusage.label Average disk usage the last five minutes.

user_diskusage.warning 2147483648

user_diskusage.critical 5368709120

graph_info The disk usage of testuser in bytes.

multigraph user_diskusage.john

...

As you might have guessed, the user_diskusage keyword represents the top of the hierarchy

and user_diskusage.testuser is a down-drill of this.

The fetch argument still provides the same output that it normally would, but they are

separated by the multigraph lines:

multigraph user_diskusage

user_diskusage.value 42949672960

multigraph user_diskusage.testuser

user_diskusage.value 1323302912

multigraph user_diskusage.john

...

When the Munin master picks this up, you will get a total disk usage of all users on your

dashboard. When you click it, you will able to see the disk usage of individual users.

45

Instant Munin Plugin Starter

Challenge yourself!
Once again it is time to test your own abilities. The three following assignments get

increasingly diicult:

 Ê Try to change the Config subroutine so that it prints out a multigraph output like in

the preceding example. Use the autosuggest subroutine as a starting point.

 Ê Change the output of the fetch subroutine so that it prints out the same multigraph

separated values, just like in the preceding example.

 Ê du will probably be too slow to monitor the disk usage of all your users. Can you ind
and implement a replacement?

If you want to see more multigraph examples, take a look at the PyMunin project at

http://aouyar.github.com/PyMunin. Here you can ind a few very nice multigraph
plugins to down-drill, PostgreSQL, Memcache, Redis, and many other systems, all written

in Python.

46

Instant Munin Plugin Starter

People and places you should get to know
The oicial website for Munin is located at http://munin-monitoring.org. Here you can ind
a wiki with a lot of good documentation, especially on installing munin-node on diverse systems,

and tips and tricks on writing your own plugins. If you want to read more about this, take a look

at the following wiki pages:

 Ê http://munin-monitoring.org/wiki/HowToWritePlugins

 Ê http://munin-monitoring.org/wiki/HowToWriteSNMPPlugins

 Ê http://munin-monitoring.org/wiki/Debugging_Munin_plugins

 Ê http://munin-monitoring.org/wiki/MultigraphSampleOutput

Finding plugins
There used to be a munin-plugin-exchange, much like the Nagios Exchange, which helped

people with inding plugins. This has been discontinued and the Munin codebase has been
moved to GitHub. All of the munin code can be found on GitHub at https://github.com/

munin-monitoring.

If you are looking for plugins for a speciic piece of software that you would like to monitor,
you should look at the contrib project. This project contains a lot of third-party plugins for

a wide variety of applications.

If you still cannot ind the plugin you need, try searching for munin plugin and your
application on GitHub or Google. A lot of people write simple plugins to solve a problem

they had and post it on their blog or on GitHub.

Windows support
At GitHhub, you can also ind a munin-node implementation for Windows. This application
gathers some counters through the Win32 API and makes them available through the standard

munin-node interface. This can be very handy if you need to monitor an odd Windows machine

in your network. It is also possible to monitor Windows machines through SNMP.

47

Instant Munin Plugin Starter

Interesting websites
If you don't want to run a Munin master, take a look at http://hostedmunin.com; they provide

Munin master as a service.

A lot of people are using Munin to monitor their home or oice (myself included). Take a look
at the Arduino power monitor at https://github.com/hessu/arduino-powermunin or the

cofeeleft plugin at https://github.com/ways/coffeeleft.

Twitter has a lot of tweets, if you search for #munin, about things people are doing with Munin.

There is an oicial Munin twitter account at @MuninMonitoring, but it mostly just tracks

GitHub. Steve Schnepp, one of the main contributors, has interesting Munin tidbits here at

@steve_schnepp.

Thank you for buying

Instant Munin Plugin Starter

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Efective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused

books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and

customizing today's systems, applications, and frameworks. Our solution based books give you the

knowledge and power to customize the software and technologies you're using to get the job done.

Packt books are more speciic and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what

you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,

cutting-edge books for communities of developers, administrators, and newbies alike.

For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent

to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss

it irst before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing

experience, our experienced editors can help you develop a writing career, or simply get some

additional reward for your expertise.

www.allitebooks.com

http://www.allitebooks.org

Zabbix 1.8 Network Monitoring
ISBN: 978-1-84719-768-9 Paperback: 428 pages

Monitor your network hardware, servers, and web

performance efectively and eiciently

1. Start with the very basics of Zabbix, an enterprise-

class open source network monitoring solution, and

move up to more advanced tasks later

2. Eiciently manage your hosts, users, and
permissions

3. Get alerts and react to changes in monitored

parameters by sending out e-mails, SMSs, or even

execute commands on remote machines

4. In-depth coverage for both beginners and

advanced users with plenty of practical, working

examples and clear explanations

Tcl 8.5 Network Programming
ISBN: 978-1-84951-096-7 Paperback: 588 pages

Build network-aware applications using Tcl, a powerful

dynamic programming language

1. Develop network-aware applications with Tcl

2. Implement the most important network protocols

in Tcl

3. Packed with hands-on-examples, case studies, and

clear explanations for better understanding

Please check www.PacktPub.com for information on our titles

Cacti 0.8 Network Monitoring
ISBN: 978-1-84719-596-8 Paperback: 132 pages

Monitor your network with ease!

1. Install and setup Cacti to monitor your network and

assign permissions to this setup in no time at all

2. Create, edit, test, and host a graph template to

customize your output graph

3. Create new data input methods, SNMP, and Script

XML data query

4. Full of screenshots and step-by-step instructions to

monitor your network with Cacti

Cacti 0.8 Beginner's Guide
ISBN: 978-1-84951-392-0 Paperback: 348 pages

Learn Cacti and design a robust Network Operations

Center

1. A complete Cacti book that focuses on the basics

as well as the advanced concepts you need to know

for implementing a Network Operations Center

2. A step-by-step Beginner's Guide with detailed

instructions on how to create and implement

custom plugins

3. Real-world examples, which you can explore and

make modiications to as you go

4. Written by Thomas Urban – creator of the "Network

Management Inventory Database" plugins for Cacti

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.packtpub.com
	packtLib.packtpub.com
	Table of Contents
	Instant Munin Plugin Starter
	So, what is Munin?
	Installation
	Step 1 – What do I need?
	Step 2 – Installing Munin
	Step 3 – Plotting graphs
	And that's it

	Quick start – Setting up Munin
	Munin master configuration
	Example configuration file for Munin

	Munin node configuration
	Example configuration file for munin-node

	Managing plugins

	Top 6 features you need to know about
	Monitoring additional servers
	Step 1 – Installing munin-node
	Step 2 – Testing your munin-node installation
	Step 3 – Installing additional plugins
	Step 4 – Adding the new node to the master
	Troubleshooting

	Monitoring additional devices
	Step 1 – Enabling the SNMP interface plugin
	Step 2 – Testing the SNMP interface plugin
	Step 3 – Configuring the Munin master

	Installing sensor plugins
	Monitoring sensors through lm-sensors
	Monitoring sensors through IPMI

	Writing a simple plugin
	Step 1 – Gathering the information we need
	Step 2 – Designing the graph
	Step 3 – Writing the plugin
	Step 4 – Testing the plugin
	Challenge yourself!

	Writing a complex plugin
	Step 1 – Rewriting our bash plugin to Perl
	Step 2 – Documentation and markers
	Step 3 – Supporting the autoconf argument
	Step 4 – Adding support for the suggest argument

	Advanced plugin options
	dirtyconfig
	Multigraph
	Challenge yourself!

	People and places you should get to know
	Finding plugins
	Windows support
	Interesting websites

