
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

NETWORK
SECURITY

HACKSTM

www.allitebooks.com

http://www.allitebooks.org

Other computer security resources from O’Reilly

Related titles Wireless Hacks

BSD Hacks

Knoppix Hacks

Ubuntu Hacks

Linux Desktop Hacks

Linux Server Hacks

Linux Server Hacks,
Volume 2

Linux Multimedia Hacks

Windows XP Hacks

Windows Server Hacks

Hacks Series Home hacks.oreilly.com is a community site for developers and
power users of all stripes. Readers learn from each other
as they share their favorite tips and tools for Mac OS X,
Linux, Google, Windows XP, and more.

Security Books
Resource Center

security.oreilly.com is a complete catalog of O’Reilly’s
books on security and related technologies, including
sample chapters and code examples.

oreillynet.com is the essential portal for developers inter-
ested in open and emerging technologies, including new
platforms, programming languages, and operating
systems.

Conferences O’Reilly brings diverse innovators together to nurture
the ideas that spark revolutionary industries. We special-
ize in documenting the latest tools and systems,
translating the innovator’s knowledge into useful skills
for those in the trenches. Visit conferences.oreilly.com for
our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online
reference library for programmers and IT professionals.
Conduct searches across more than 1,000 books. Sub-
scribers can zero in on answers to time-critical questions
in a matter of seconds. Read the books on your Book-
shelf from cover to cover or simply flip to the page you
need. Try it today for free.

www.allitebooks.com

http://www.allitebooks.org

NETWORK
SECURITY

HACKSTM

SECOND EDITION

Andrew Lockhart

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Network Security Hacks™, Second Edition
by Andrew Lockhart

Copyright © 2007, 2004 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Brian Sawyer
Production Editor: Philip Dangler
Copyeditor: Rachel Wheeler
Indexer: Ellen Troutman-Zaig

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano

and Jessamyn Read

Printing History:
April 2004: First Edition.

November 2006: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks
of O’Reilly Media, Inc. The Hacks series designations, Network Security Hacks, the image of barbed
wire, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Small print: The technologies discussed in this publication, the limitations on these technologies
that technology and content owners seek to impose, and the laws actually limiting the use of these
technologies are constantly changing. Thus, some of the hacks described in this publication may
not work, may cause unintended harm to systems on which they are used, or may not be consistent
with applicable user agreements. Your use of these hacks is at your own risk, and O’Reilly Media,
Inc. disclaims responsibility for any damage or expense resulting from their use. In any event, you
should take care that your use of these hacks does not violate any applicable laws, including
copyright laws.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN 10: 0-596-52763-2
ISBN 13: 978-0-596-52763-1
[C]

www.allitebooks.com

http://www.allitebooks.org

v

Contents

Credits . xi

Preface . xv

Chapter 1. Unix Host Security . 1
1. Secure Mount Points 2

2. Scan for SUID and SGID Programs 3

3. Scan for World- and Group-Writable Directories 5

4. Create Flexible Permissions Hierarchies with POSIX ACLs 5

5. Protect Your Logs from Tampering 9

6. Delegate Administrative Roles 11

7. Automate Cryptographic Signature Verification 13

8. Check for Listening Services 15

9. Prevent Services from Binding to an Interface 17

10. Restrict Services with Sandboxed Environments 19

11. Use proftpd with a MySQL Authentication Source 23

12. Prevent Stack-Smashing Attacks 26

13. Lock Down Your Kernel with grsecurity 28

14. Restrict Applications with grsecurity 33

15. Restrict System Calls with systrace 36

16. Create systrace Policies Automatically 39

17. Control Login Access with PAM 41

18. Restrict Users to SCP and SFTP 46

19. Use Single-Use Passwords for Authentication 49

20. Restrict Shell Environments 52

www.allitebooks.com

http://www.allitebooks.org

vi | Contents

21. Enforce User and Group Resource Limits 54

22. Automate System Updates 55

Chapter 2. Windows Host Security . 58
23. Check Servers for Applied Patches 59

24. Use Group Policy to Configure Automatic Updates 63

25. List Open Files and Their Owning Processes 66

26. List Running Services and Open Ports 68

27. Enable Auditing 69

28. Enumerate Automatically Executed Programs 71

29. Secure Your Event Logs 73

30. Change Your Maximum Log File Sizes 73

31. Back Up and Clear the Event Logs 75

32. Disable Default Shares 78

33. Encrypt Your Temp Folder 79

34. Back Up EFS 80

35. Clear the Paging File at Shutdown 86

36. Check for Passwords That Never Expire 88

Chapter 3. Privacy and Anonymity . 91
37. Evade Traffic Analysis 91

38. Tunnel SSH Through Tor 95

39. Encrypt Your Files Seamlessly 96

40. Guard Against Phishing 100

41. Use the Web with Fewer Passwords 105

42. Encrypt Your Email with Thunderbird 107

43. Encrypt Your Email in Mac OS X 112

Chapter 4. Firewalling . 117
44. Firewall with Netfilter 117

45. Firewall with OpenBSD’s PacketFilter 122

46. Protect Your Computer with the Windows Firewall 128

47. Close Down Open Ports and Block Protocols 137

48. Replace the Windows Firewall 139

49. Create an Authenticated Gateway 147

50. Keep Your Network Self-Contained 149

www.allitebooks.com

http://www.allitebooks.org

Contents | vii

51. Test Your Firewall 151

52. MAC Filter with Netfilter 154

53. Block Tor 156

Chapter 5. Encrypting and Securing Services . 158
54. Encrypt IMAP and POP with SSL 158

55. Use TLS-Enabled SMTP with Sendmail 161

56. Use TLS-Enabled SMTP with Qmail 163

57. Install Apache with SSL and suEXEC 164

58. Secure BIND 169

59. Set Up a Minimal and Secure DNS Server 172

60. Secure MySQL 176

61. Share Files Securely in Unix 178

Chapter 6. Network Security . 183
62. Detect ARP Spoofing 184

63. Create a Static ARP Table 186

64. Protect Against SSH Brute-Force Attacks 188

65. Fool Remote Operating System Detection Software 190

66. Keep an Inventory of Your Network 194

67. Scan Your Network for Vulnerabilities 197

68. Keep Server Clocks Synchronized 207

69. Create Your Own Certificate Authority 209

70. Distribute Your CA to Clients 213

71. Back Up and Restore a Certificate Authority with Certificate
Services 214

72. Detect Ethernet Sniffers Remotely 221

73. Help Track Attackers 227

74. Scan for Viruses on Your Unix Servers 229

75. Track Vulnerabilities 233

Chapter 7. Wireless Security . 236
76. Turn Your Commodity Wireless Routers into a Sophisticated

Security Platform 236

77. Use Fine-Grained Authentication for Your Wireless Network 240

78. Deploy a Captive Portal 244

www.allitebooks.com

http://www.allitebooks.org

viii | Contents

Chapter 8. Logging . 250
79. Run a Central Syslog Server 251

80. Steer Syslog 252

81. Integrate Windows into Your Syslog Infrastructure 254

82. Summarize Your Logs Automatically 262

83. Monitor Your Logs Automatically 263

84. Aggregate Logs from Remote Sites 266

85. Log User Activity with Process Accounting 272

86. Centrally Monitor the Security Posture of Your Servers 273

Chapter 9. Monitoring and Trending . 282
87. Monitor Availability 283

88. Graph Trends 291

89. Get Real-Time Network Stats 293

90. Collect Statistics with Firewall Rules 295

91. Sniff the Ether Remotely 297

Chapter 10. Secure Tunnels . 301
92. Set Up IPsec Under Linux 301

93. Set Up IPsec Under FreeBSD 306

94. Set Up IPsec in OpenBSD 309

95. Encrypt Traffic Automatically with Openswan 314

96. Forward and Encrypt Traffic with SSH 316

97. Automate Logins with SSH Client Keys 318

98. Use a Squid Proxy over SSH 320

99. Use SSH As a SOCKS Proxy 322

100. Encrypt and Tunnel Traffic with SSL 324

101. Tunnel Connections Inside HTTP 327

102. Tunnel with VTun and SSH 329

103. Generate VTun Configurations Automatically 334

104. Create a Cross-Platform VPN 339

105. Tunnel PPP 345

www.allitebooks.com

http://www.allitebooks.org

Contents | ix

Chapter 11. Network Intrusion Detection . 348
106. Detect Intrusions with Snort 349

107. Keep Track of Alerts 353

108. Monitor Your IDS in Real Time 356

109. Manage a Sensor Network 363

110. Write Your Own Snort Rules 370

111. Prevent and Contain Intrusions with Snort_inline 377

112. Automatically Firewall Attackers with SnortSam 380

113. Detect Anomalous Behavior 384

114. Automatically Update Snort’s Rules 385

115. Create a Distributed Stealth Sensor Network 388

116. Use Snort in High-Performance Environments with Barnyard 389

117. Detect and Prevent Web Application Intrusions 392

118. Scan Network Traffic for Viruses 397

119. Simulate a Network of Vulnerable Hosts 400

120. Record Honeypot Activity 407

Chapter 12. Recovery and Response . 413
121. Image Mounted Filesystems 413

122. Verify File Integrity and Find Compromised Files 415

123. Find Compromised Packages 420

124. Scan for Rootkits 422

125. Find the Owner of a Network 425

Index . 429

xi

0

Credits

About the Author
Andrew Lockhart is originally from South Carolina but currently resides in
northern Colorado, where he spends his time trying to learn the black art of
auditing disassembled binaries and trying to keep from freezing to death. He
holds a BS in computer science from Colorado State University and has done
security consulting for small businesses in the area. When he’s not writing
books, he’s a senior security analyst with Network Chemistry, a leading pro-
vider of wireless security solutions. Andrew is also a member of the Wireless
Vulnerabilities and Exploits project’s (http://www.wirelessve.org) editorial
board and regularly contributes to their wireless security column at Network-
World (http://www.networkworld.com/topics/wireless-security.html). In his
free time, he works on Snort-Wireless (http://snort-wireless.org), a project
intended to add wireless intrusion detection to the popular open source IDS
Snort.

Contributors
The following people contributed hacks, writing, and inspiration to this
book:

• Oktay Altunergil is the founder of The Free Linux CD Project (http://
www.freelinuxcd.org) and one of the maintainers of Turk-PHP.com (a
Turkish PHP portal). He also works full-time as a Unix system adminis-
trator and PHP programmer.

• Michael D. (Mick) Bauer (http://mick.wiremonkeys.org) writes Linux
Journal’s “Paranoid Penguin” security column. By day, he works to keep
strangers out of banks’ computer networks.

xii | Credits

• Schuyler Erle (http://nocat.net) is a Free Software developer and activist.
His interests include collaborative cartography, wireless networking,
software for social and political change, and the Semantic Web.
Schuyler is the lead developer of NoCatAuth, the leading open source
wireless captive portal.

• Bob Fleck (http://www.securesoftware.com) is Director of Security Ser-
vices at Secure Software. He consults in the fields of secure develop-
ment and wireless security and is a coauthor of O’Reilly’s 802.11
Security book. The results of his more recent investigations into Blue-
tooth security can be found at http://bluetooth.shmoo.com.

• Rob Flickenger (http://nocat.net) is a writer and editor for O’Reilly’s
Hacks series. He currently spends his time hacking on various projects
and promoting community wireless networking.

• Preston Gralla is the author of more than 30 books about computers
and the Internet, which have been translated into 15 languages, includ-
ing Windows XP Hacks (O’Reilly), Internet Annoyances (O’Reilly), and
Windows XP Power Hound (Pogue Press). He has been writing about
technology since the dawn of the PC age, and he has been an editor and
columnist for many national newspapers, magazines, and web sites. He
was the founding editor of PC Week; a founding editor, then editor,
then editorial director of PC/Computing; and executive editor for
ZDNet/CNet. Preston has written about technology for numerous mag-
azines and newspapers, including PC Magazine, Computerworld, CIO
Magazine, Computer Shopper, the Los Angeles Times, USA Today, the
Dallas Morning News (where he was a technology columnist), and many
others. He has been a columnist for ZDNet/CNet and is currently a col-
umnist for TechTarget.com. His commentaries about technology have
been featured on National Public Radio’s “All Things Considered,” and
he has won the award for the Best Feature in a Computer Publication
from the Computer Press Association. Under his editorship, PC/Com-
puting was a finalist in the category of General Excellence for the
National Magazine Awards. Preston is also the editor of O’Reilly’s Win-
dowsDevCenter.com site. He lives in Cambridge, MA, with his wife and
two children—although his daughter has recently fled the nest for col-
lege. Between writing books, articles, and columns, he swims, plays ten-
nis, goes to the opera, and contemplates the ram’s skull hanging on the
wall of his office.

• Michael Lucas (http://www.blackhelicopters.org/~mwlucas/) lives in a
haunted house in Detroit, Michigan, with his wife Liz, assorted rodents,
and a multitude of fish. He has been a pet wrangler, a librarian, and a
security consultant, and he now works as a network engineer and

Credits | xiii

system administrator with the Great Lakes Technologies Group.
Michael is the author of Absolute BSD, Absolute OpenBSD, and Cisco
Routers for the Desperate (all from No Starch Press), and he is currently
preparing a book about NetBSD.

• Matt Messier (http://www.securesoftware.com) is Director of Engineer-
ing at Secure Software and a security authority who has been program-
ming for nearly two decades. In addition to coauthoring the O’Reilly
books Secure Programming Cookbook for C and C++ and Network Secu-
rity with OpenSSL, Matt coauthored the Safe C String Library (SafeStr),
XXL, RATS, and EGADS.

• Ivan Ristic (http://www.modsecurity.org) is a web security specialist and
the author of mod_security, an open source intrusion detection and pre-
vention engine for web applications. He is a member of the OASIS Web
Application Security Technical Committee, where he works on the stan-
dard for web application protection.

• Hans Schefske is a columnist on myITforum.com (http://www.myitforum.
com) and has over eight years experience engineering and designing the
architecture and implementation of Microsoft client/server-based net-
work solutions. Consulting and leading projects in the IT industry, he has
provided technical expertise in the areas of designing and implementing
infrastructures for large enterprise-level companies such as Nabisco,
Prudential, AIG, Simpson, Thatcher and Bartlett, Novartis, and Hoffman
LaRoche Pharmaceuticals. In 2003, Hans was awarded a Microsoft Most
Valuable Professional (MVP) Award for SMS for his outstanding techni-
cal skills and willingness to share knowledge with his peers. As a techni-
cal author at myITforum.com, he provides technical information, tools,
scripts, and utilities for IT professionals and administrators to better assist
them in managing their Microsoft-based solutions. Hans is currently a
Senior Active Directory and SMS consultant at a large telecommunica-
tions company based in Atlanta, GA.

• Rod Trent, manager at myITforum.com (http://www.myitforum.com), is
the leading expert on Microsoft Systems Management Server (SMS). He
has over 18 years of IT experience, 8 of which have been dedicated to
SMS. He is the author of such books as Microsoft SMS Installer,
Admin911: SMS, and Windows 2000 IIS 5.0: A Beginner’s Guide (all from
McGraw-Hill) and has written thousands of articles on technology
topics. myITforum.com is the central location for third-party SMS sup-
port and a well-known online gathering place for IT professionals and the
IT community. Rod speaks at least three times a year at various confer-
ences and is a principal at NetImpress, Inc. (http://www.netimpress.com).

xiv | Credits

• Mitch Tulloch (http://www.mtit.com) is President of MTIT Enterprises,
an IT content development company based in Winnipeg, Canada. Prior
to starting his own company in 1998, Mitch worked as a Microsoft Cer-
tified Trainer for Productivity Point International. Mitch is a widely rec-
ognized expert on Windows administration, networking, and security
and has been awarded Most Valuable Professional (MVP) status by
Microsoft for his outstanding contributions in supporting users who
deploy Microsoft platforms, products, and solutions. Mitch is also cur-
rently a professor at Jones International University (JIU), where he
teaches graduate-level courses in Information Security Management
that he codeveloped with his wife, Ingrid Tulloch, for JIU’s MBA pro-
gram. Mitch is the author of 14 books, including Windows Server Hacks
(O’Reilly), Windows Server 2003 in a Nutshell (O’Reilly), the Microsoft
Encyclopedia of Networking (Microsoft Press), the Microsoft Encyclope-
dia of Security (Microsoft Press), and IIS 6 Administration (Osborne/
McGraw-Hill). Mitch has also written feature articles for industry maga-
zines such as NetworkWorld and Microsoft Certified Professional
Magazine, and he contributes articles regularly to O’Reilly’s Windows-
DevCenter.com, ITWorld.com, and WindowsNetworking.com. Mitch’s
articles have been widely syndicated on other IT sites, such as Comput-
erworld.com, Smallbusiness.com, and even CNN.com.

• John Viega (http://www.securesoftware.com) is Chief Technology Officer
and Founder of Secure Software. He is also the coauthor of several
books on software security, including Secure Programming Cookbook
for C and C++ (O’Reilly) and Building Secure Software (Addison-
Wesley). John is responsible for numerous software security tools, and
he is the original author of Mailman, the GNU mailing list manager.

Acknowledgments
Once again I have to thank Karen (a.k.a. DJ Jackalope for Defcon attend-
ees) for her constant support and encouragement, and for putting up with
the many hours spent in toil.

Also, thanks go out to Brian Sawyer for his patience throughout this whole
process, and to all of the other wonderful people at O’Reilly who worked
hard to make this book a tangible reality. I’d also like to thank John Hoopes
for providing the technical review for this edition. John’s advice was instru-
mental in making this a better book.

Finally, I’d like to thank my parents for their continued encouragement.

xv

0

Preface

Nowhere is the term hacker more misconstrued than in the network secu-
rity field. This is understandable because the very same tools that network
security professionals use to probe the robustness of their own networks
also can be used to launch attacks on any machine on the Internet. The dif-
ference between system administrators legitimately testing their own
machines and system crackers attempting to gain unauthorized access isn’t
so much a question of techniques or tools, but a matter of intent. After all,
as with any powerful piece of technology, a security tool isn’t inherently
good or bad—this determination depends entirely on how it is used. The
same hammer can be used to either build a wall or knock it down.

The difference between “white hat” and “black hat” hackers lies not in the
tools or techniques they use (or even the color of their hats), but in their
intentions. The difference is subtle but important. White hat hackers find
that building secure systems presents an interesting challenge, and the secu-
rity of such systems can be truly tested only through a thorough knowledge
of how to subvert them. Black hat hackers (more appropriately called crack-
ers) pursue precisely the same knowledge, but without regard for the people
who built the systems or the servers they attack. They use their knowledge
to subvert these systems for their own personal gain, often to the detriment
of the systems they infiltrate.

Of course, tales of daring international techno-robberies and black-clad, cig-
arette-smoking, laptop-wielding evil masterminds tend to sell better than
simple tales of engineers who build strong networks, so the term hacking has
gained a bad reputation in the popular press. They use it to refer to individu-
als who break into systems or who wreak havoc using computers as their
weapon. Among people who solve problems, though, the term hack refers to
a “quick-and-dirty” solution to a problem, or a clever way to get something
done. And the term hacker is taken very much as a compliment, referring to

xvi | Preface

someone as being creative, i.e., having the technical chops to get things
done. The Hacks series is an attempt to reclaim this word, document the
ways people are hacking (in a good way), and pass the hacker ethic of cre-
ative participation on to the uninitiated. Seeing how others approach sys-
tems and problems is often the quickest way to learn about a new
technology. Only by openly discussing security flaws and implementations
can we hope to build stronger systems.

Why Network Security Hacks?
This second edition of Network Security Hacks is a grimoire of 125 powerful
security techniques. This volume demonstrates effective methods for
defending your servers and networks from a variety of devious and subtle
attacks. Within this book are examples of how to detect the presence (and
track every keystroke) of network intruders, methods for protecting your
network and data using strong encryption, and even techniques for laying
traps for would-be system crackers. Many important security tools are pre-
sented, as well as clever methods for using them to reveal real, useful infor-
mation about what is happening on your network.

How This Book Is Organized
Although each hack is designed to stand on its own, this book makes exten-
sive use of cross-referencing between hacks. If you find a reference to some-
thing you’re interested in while reading a particular hack, feel free to skip
around and follow it (much as you might while browsing the Web). The
book itself is divided into several chapters, organized by subject:

Chapter 1, Unix Host Security
As the old saying goes, Unix was designed to share information, not to
protect it. This old saw is no longer true with modern operating sys-
tems, where security is an integral component to any server. Many new
programs and kernel features have been developed that provide a much
higher degree of control over what Unix-like operating systems can do.
Chapter 1 demonstrates advanced techniques for hardening your Linux,
FreeBSD, or OpenBSD server.

Chapter 2, Windows Host Security
Microsoft Windows is used as a server platform in many organizations.
As the Windows platform is a common target for various attacks,
administering these systems can be challenging. This chapter covers
many important steps that Windows administrators often overlook,
including tightening down permissions, auditing all system activity, and
eliminating security holes that are present in the default Windows
installation.

Preface | xvii

Chapter 3, Privacy and Anonymity
These days, controlling the information trail left online is more impor-
tant than ever. As more of our lives are conducted online, our informa-
tion becomes easier to access by both friend and foe. This chapter
discusses several ways to protect oneself online by offering solutions for
encrypting email, remaining anonymous, and managing passwords for
web sites.

Chapter 4, Firewalling
Firewalls are a key technology in the realm of network security. With-
out them, the world of network security would be quite different. This
chapter shows how to set up firewalls under various operating systems,
such as Linux, OpenBSD, FreeBSD, and Windows. Different filtering
and firewall testing techniques are also covered in this chapter.

Chapter 5, Encrypting and Securing Services
Limiting how services can affect the system on which they’re running is
a key aspect of server security. It’s also vital that traffic between the ser-
vice and the clients connecting to it remain confidential in order to pro-
tect data and users’ authentication credentials. This chapter shows how
to do that for several popular services, such as SMTP, IMAP, POP3,
Apache, and MySQL.

Chapter 6, Network Security
Regardless of the operating system your servers use, if your network is
connected to the Internet, it uses TCP/IP for communications. Net-
working protocols can be subverted in a number of powerful and sur-
prising ways, leading to attacks that can range from simple denial of
service to unauthorized access with full privileges. This chapter demon-
strates some tools and techniques used to attack servers using the net-
work itself, as well as methods for preventing these attacks.

Chapter 7, Wireless Security
Wireless networks have become a common sight on the home network
landscape and continue to gain traction in enterprise networks. How-
ever, warding off unauthorized users and attackers poses a greater chal-
lenge in a wireless network. While this chapter includes only a handful
of hacks, what can be learned from them is invaluable. Whether you
want to share your network with others (but still maintain a semblance
of security) or lock down your wireless network with fine-grained
authentication, this chapter has something for you.

Chapter 8, Logging
Network security administrators live and die by the quality of their logs.
If too little information is tracked, intrusions can slip by unnoticed. If
too much is logged, attacks can be lost in the deluge of irrelevant

xviii | Preface

information. This chapter shows you how to balance the need for infor-
mation with the need for brevity by automatically collecting, process-
ing, and protecting your system logs.

Chapter 9, Monitoring and Trending
As useful as system logs and network scans can be, they represent only a
single data point of information, relevant only to the instant that the
events were recorded. Without a history of activity on your network,
you have no way to establish a baseline for what is “normal,” nor any
real way to determine if something fishy is going on. This chapter pre-
sents a number of tools and methods for watching your network and
services over time, allowing you to recognize trends that will aid in
future planning and enable you to tell at a glance when something just
isn’t right.

Chapter 10, Secure Tunnels
How is it possible to maintain secure communications over networks as
untrustworthy as the Internet? The answer nearly always involves pow-
erful encryption and authentication techniques. Chapter 10 shows you
how to implement powerful VPN technologies, including IPSec, PPTP,
and OpenVPN. You will also find techniques for protecting services
using SSL, SSH, and other strong encryption tools.

Chapter 11, Network Intrusion Detection
How do you know when your network is under attack? While logs and
historical statistics can show you if something is out of sorts, there are
tools designed to notify you (or otherwise take action) immediately
when common attacks are detected. This chapter centers on the tremen-
dously popular NIDS tool Snort and presents many techniques and add-
ons that unleash this powerful tool’s full potential. Also presented are
methods for setting up your own “honeypot” network to attract and
confuse would-be system crackers.

Chapter 12, Recovery and Response
Even the most competent and careful network administrator will even-
tually have to deal with successful security incidents. This chapter con-
tains suggestions on how to verify your system’s integrity, preserve
evidence for later analysis, and track down the human being at the other
end of undesirable network traffic.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions,
pathnames, directories, daemons, programs, and Unix utilities

www.allitebooks.com

http://www.allitebooks.org

Preface | xix

Constant width
Indicates commands, options, switches, variables, attributes, keys, func-
tions, types, classes, namespaces, methods, modules, properties, param-
eters, values, objects, events, event handlers, XML tags, HTML tags,
macros, the contents of files, and the output from commands

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values

Gray type
Used to indicate a cross-reference within the text

You should pay special attention to notes set apart from the text with the
following icons:

This is a tip, suggestion, or general note. It contains useful
supplementary information about the topic at hand.

This is a warning or note of caution, often indicating that
your money or your privacy might be at risk.

The thermometer icons, found next to each hack, indicate the relative com-
plexity of the hack:

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your
favorite technology book, that means the book is available
online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that
lets you easily search thousands of top tech books, cut and paste code sam-
ples, download chapters, and find quick answers when you need the most
accurate, current information. Try it for free at http://safari.oreilly.com.

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to

beginner moderate expert

xx | Preface

contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering
a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Network
Security Hacks, Second Edition, by Andrew Lockhart. Copyright 2007
O’Reilly Media, Inc., 978-0-596-52763-1.”

If you suspect your use of code examples falls outside fair use or the permis-
sion given here, feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the pub-
lisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://www.oreilly.com/catalog/netsechacks2/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and
the O’Reilly Network, see our web site at:

http://www.oreilly.com

Got a Hack?
To explore Hacks books online or to contribute a hack for future titles, visit:

http://hacks.oreilly.com

1

Chapter 1 C H A P T E R O N E

Unix Host Security
Hacks 1–22

Networking is all about connecting computers together, so it follows that a
computer network is no more secure than the machines that it connects. A
single insecure host can make lots of trouble for your entire network,
because it can act as a tool for reconnaissance or a strong base of attack if it
is under the control of an adversary. Firewalls, intrusion detection mecha-
nisms, and other advanced security measures are useless if your servers offer
easily compromised services. Before delving into the network part of net-
work security, you should first make sure that the machines you are respon-
sible for are as secure as possible.

This chapter offers many methods for reducing the risks involved in offering
services on a Unix-based system. Even though each of these hacks can stand
on its own, it is worth reading through this entire chapter. If you implement
only one type of security measure, you run the risk of all your preparation
being totally negated once an attacker figures out how to bypass it. Just as
Fort Knox isn’t protected by a regular door with an ordinary dead bolt, no
single security feature can ultimately protect your servers. And the security
measures you may need to take increase proportionally to the value of what
you’re protecting.

As the old saying goes, security isn’t a noun, it’s a verb. That is, security is an
active process that must be constantly followed and renewed. Short of
unplugging it, there is no single action you can take to secure your machine.
With that in mind, consider these techniques as a starting point for building
a secure server that meets your particular needs.

2 | Chapter 1, Unix Host Security

#1 Secure Mount Points
HACK

H A C K

#1
Secure Mount Points Hack #1

Use mount options to help prevent intruders from further escalating a
compromise.

The primary way of interacting with a Unix machine is through its filesys-
tem. Thus, when an intruder has gained access to a system, it is desirable to
limit what he can do with the files available to him. One way to accomplish
this is with the use of restrictive mount options.

A mount option is a flag that controls how the filesystem may be accessed. It
is passed to the operating system kernel’s code when the filesystem is
brought online. Mount options can be used to prevent files from being inter-
preted as device nodes, to disallow binaries from being executed, and to dis-
allow the SUID bit from taking effect (by using the nodev, noexec, and nosuid
flags). Filesystems can also be mounted read-only with the ro option.

These options are specified from the command line by running mount with
the -o flag. For example, if you have a separate partition for /tmp that is on
the third partition of your first IDE hard disk, you can mount with the
nodev, noexec, and nosuid flags, which are enabled by running the following
command:

mount -o nodev,noexec,nosuid /dev/hda3 /tmp

An equivalent entry in your /etc/fstab would look something like this:

/dev/hda3 /tmp ext3 defaults,nodev,noexec,nosuid 1 2

By carefully considering your requirements and dividing up your storage
into multiple filesystems, you can utilize these mount options to increase the
work that an attacker will have to do in order to further compromise your
system. A quick way to do this is to first categorize your directory tree into
areas that need write access for the system to function and those that don’t.
You should consider using the read-only flag on any part of the filesystem
where the contents do not change regularly. A good candidate for this might
be /usr, depending on how often updates are made to system software.

Obviously, many directories (such as /home) will need to be mounted as
read/write. However, it is unlikely that users on an average multiuser sys-
tem will need to run SUID binaries or create device files within their home
directories. Therefore, a separate filesystem, mounted with the nodev and
nosuid options, could be created to house the users’ home directories. If
you’ve determined that your users will not need to execute programs stored
in their home directories, you can use the noexec mount option as well. A
similar solution could be used for /tmp and /var, where it is highly unlikely
that any process will legitimately need to execute SUID or non-SUID

Scan for SUID and SGID Programs #2

Chapter 1, Unix Host Security | 3

HACK

binaries or access device files. This strategy would help prevent the possibil-
ity of an attacker leaving a Trojan horse in a common directory such as /tmp
or a user’s home directory. The attacker may be able to install the program,
but it will not be able to run, with or without the proper chmod bits.

Services running in a sandboxed environment [Hack #10]
might be broken if nodev is specified on the filesystem
running in the sandbox. This is because device nodes such as
/dev/log and /dev/null must be available within the chroot()
environment.

There are a number of ways that an attacker can circumvent these mount
restrictions. For example, the noexec option on Linux can be bypassed by
using /lib/ld-linux.so to execute binaries residing on a filesystem mounted
with this option. At first glance, you’d think that this problem could be rem-
edied by making ld-linux.so nonexecutable, but this would render all
dynamically linked binaries nonexecutable.

So, unless all of the programs you rely on are statically linked (they’re proba-
bly not), the noexec option is of little use in Linux. In addition, an attacker
who has already gained root privileges will not be significantly hampered by
filesystems mounted with special options, since these can often be
remounted with the -o remount option. But by using mount flags, you can
easily limit the possible attacks available to a hostile user before he gains
root privileges.

H A C K

#2
Scan for SUID and SGID Programs Hack #2

Quickly check for potential root-exploitable programs and backdoors.

One potential way for a user to escalate her privileges on a system is to
exploit a vulnerability in an SUID or SGID program. SUID and SGID are
legitimately used when programs need special permissions above and
beyond those that are available to the user who is running them. One such
program is passwd. Simultaneously allowing a user to change her password
while not allowing any user to modify the system password file means that
the passwd program must be run with root privileges. Thus, the program has
its SUID bit set, which causes it to be executed with the privileges of the
program file’s owner. Similarly, when the SGID bit is set, the program is
executed with the privileges of the file’s group owner.

Running ls -l on a binary that has its SUID bit set should look like this:

-r-s--x--x 1 root root 16336 Feb 13 2003 /usr/bin/passwd

Notice that instead of an execute bit (x) for the owner bits, it has an s. This
signifies an SUID file.

4 | Chapter 1, Unix Host Security

#2 Scan for SUID and SGID Programs
HACK

Unfortunately, a poorly written SUID or SGID binary can be used to quickly
and easily escalate a user’s privileges. Also, an attacker who has already
gained root access might hide SUID binaries throughout your system in
order to leave a backdoor for future access. This leads us to the need for
scanning systems for SUID and SGID binaries. This is a simple process and
can be done with the following command:

find / \(-perm -4000 -o -perm -2000 \) -type f -exec ls -la {} \;

One important thing to consider is whether an SUID program is in fact a
shell script rather than an executable, since it’s trivial for someone to change
an otherwise innocuous script into a backdoor. Most operating systems
ignore any SUID or SGID bits on a shell script, but if you want to find all
SUID or SGID scripts on a system, change the argument to the -exec option
in the last command and add a pipe so that the command reads:

find / \(-perm -4000 -o -perm -2000 \) -type f \
-exec file {} \; | grep -v ELF

Now, every time an SUID or SGID file is encountered, the file command
will run and determine what type of file is being examined. If it’s an execut-
able, grep will filter it out; otherwise, it will be printed to the screen with
some information about what kind of file it is.

Most operating systems use ELF-format executables, but if you’re running
an operating system that doesn’t (older versions of Linux used a.out, and
AIX uses XCOFF), you’ll need to replace the ELF in the previous grep com-
mand with the binary format used by your operating system and architec-
ture. If you’re unsure of what to look for, run the file command on any
binary executable, and it will report the string you’re looking for.

For example, here’s an example of running file on a binary in Mac OS X:

$ file /bin/sh
/bin/sh: Mach-O executable ppc

To go one step further, you could even queue the command to run once a
day using cron and have it redirect the output to a file. For instance, this
crontab entry would scan for files that have either the SUID or SGID bits set,
compare the current list to the one from the day before, and then email the
differences to the owner of the crontab (make sure this is all on one line):

0 4 * * * find / \(-perm -4000 -o -perm -2000 \) -type f \
 > /var/log/sidlog.new && \
 diff /var/log/sidlog.new /var/log/sidlog && \
 mv /var/log/sidlog.new /var/log/sidlog

This example will also leave a current list of SUID and SGID files in /var/log/
sidlog.

Create Flexible Permissions Hierarchies with POSIX ACLs #4

Chapter 1, Unix Host Security | 5

HACK

H A C K

#3
Scan for World- and Group-Writable Directories Hack #3

Quickly scan for directories with loose permissions.

World- and group-writable directories present a problem: if the users of a
system have not set their umasks properly, they will inadvertently create inse-
cure files, completely unaware of the implications. With this in mind, it
seems it would be good to scan for directories with loose permissions. As in
“Scan for SUID and SGID Programs” [Hack #2], this can be accomplished with
a find command:

find / -type d \(-perm -g+w -o -perm -o+w \) -exec ls -lad {} \;

Any directories that are listed in the output should have the sticky bit set,
which is denoted by a t in the directory’s permission bits. Setting the sticky
bit on a world-writable directory ensures that even though anyone may cre-
ate files in the directory, they may not delete or modify another user’s files.

If you see a directory in the output that does not contain a sticky bit, con-
sider whether it really needs to be world-writable or whether the use of
groups or ACLs [Hack #4] will work better for your situation. If you really do
need the directory to be world-writable, set the sticky bit on it using chmod
+t.

To get a list of directories that don’t have their sticky bit set, run this com-
mand:

find / -type d \(-perm -g+w -o -perm -o+w \) \
-not -perm -a+t -exec ls -lad {} \;

If you’re using a system that creates a unique group for each user (e.g., you
create a user andrew, which in turn creates a group andrew as the primary
group), you may want to modify the commands to not scan for group-writ-
able directories. (Otherwise, you will get a lot of output that really isn’t per-
tinent.) To do this, run the command without the -perm -g+w portion.

H A C K

#4
Create Flexible Permissions Hierarchies with POSIX
ACLs Hack #4

When Unix mode-based permissions just aren’t enough, use an ACL.

Most of the time, the traditional Unix file permissions system fits the bill
just fine. But in a highly collaborative environment with multiple people
needing access to files, this scheme can become unwieldy. Access control
lists, otherwise known as ACLs (pronounced to rhyme with “hackles”), are a
relatively new feature of open source Unix operating systems, but they have
been available in their commercial counterparts for some time. While ACLs
do not inherently add “more security” to a system, they do reduce the

6 | Chapter 1, Unix Host Security

#4 Create Flexible Permissions Hierarchies with POSIX ACLs
HACK

complexity of managing permissions. ACLs provide new ways to apply file
and directory permissions without resorting to the creation of unnecessary
groups.

ACLs are stored as extended attributes within the filesystem metadata. As
the name implies, they allow you to define lists that either grant or deny
access to a given file or directory based on the criteria you provide. How-
ever, ACLs do not abandon the traditional permissions system completely.
ACLs can be specified for both users and groups and are still separated into
the realms of read, write, and execute access. In addition, a control list may
be defined for any user or group that does not correspond to any of the
other user or group ACLs, much like the “other” mode bits of a file.

Access control lists also have what is called an ACL mask, which acts as a
permission mask for all ACLs that specifically mention a user and a group.
This is similar to a umask, but not quite the same. For instance, if you set the
ACL mask to r--, any ACLs that pertain to a specific user or group and are
looser in permissions (e.g., rw-) will effectively become r--. Directories also
may contain a default ACL, which specifies the initial ACLs of files and sub-
directories created within them.

Enabling ACLs
Most filesystems in common use today under Linux (Ext2/3, ReiserFS, JFS,
and XFS) are capable of supporting ACLs. If you’re using Linux, make sure
one of the following kernel configuration options is set, corresponding to
the type of filesystem you’re using:

CONFIG_EXT2_FS_POSIX_ACL=y
CONFIG_EXT3_FS_POSIX_ACL=y
CONFIG_REISERFS_FS_POSIX_ACL=y
CONFIG_JFS_POSIX_ACL=y
CONFIG_FS_POSIX_ACL=y
CONFIG_XFS_POSIX_ACL=y

To enable ACLs in FreeBSD, mount any filesystems you want to use them
on with the acls mount option:

mount -o acls -u /usr
mount
/dev/ad0s1a on / (ufs, local)
devfs on /dev (devfs, local)
/dev/ad0s1e on /tmp (ufs, local, soft-updates)
/dev/ad0s1f on /usr (ufs, local, soft-updates, acls)
/dev/ad0s1d on /var (ufs, local, soft-updates)

The -u option updates the mount, which lets you change the mount options
for a currently mounted filesystem. If you want to undo this, you can disable

Create Flexible Permissions Hierarchies with POSIX ACLs #4

Chapter 1, Unix Host Security | 7

HACK

ACLs by using the noacls option instead. To enable ACLs automatically at
boot for a filesystem, modify the filesystem’s /etc/fstab entry to look like this:

/dev/ad0s1f /usr ufs rw,acls 2 2

Managing ACLs
Once they’ve been enabled, ACLs can be set, modified, and removed using
the setfacl command. To create or modify an ACL, use the -m option, fol-
lowed by an ACL specification and a filename or list of filenames. You can
delete an ACL by using the -x option and specifying an ACL or list of ACLs.

There are three general forms of an ACL: one for users, another for groups,
and one for others. Let’s look at them here:

User ACL
u:[user]:<mode>
Group ACL
g:[group]:<mode>
Other ACL
o:<mode>

Notice that in user and group ACLs, the actual user and group names that
the ACL applies to are optional. If these are omitted, it means that the ACL
will apply to the base ACL, which is derived from the file’s mode bits. Thus,
if you modify these, the mode bits will be modified, and vice versa.

See for yourself by creating a file and then modifying its base ACL:

$ touch myfile
$ ls -l myfile
-rw-rw-r-- 1 andrew andrew 0 Oct 13 15:57 myfile
$ setfacl -m u::---,g::---,o:--- myfile
$ ls -l myfile
---------- 1 andrew andrew 0 Oct 13 15:57 myfile

From this example, you can also see that multiple ACLs can be listed by sep-
arating them with commas.

You can also specify ACLs for an arbitrary number of groups or users:

$ touch foo
$ setfacl -m u:jlope:rwx,g:wine:rwx,o:--- foo
$ getfacl foo
file: foo
owner: andrew
group: andrew
user::rw-
user:jlope:rwx
group::---
group:wine:rwx
mask::rwx
other::---

8 | Chapter 1, Unix Host Security

#4 Create Flexible Permissions Hierarchies with POSIX ACLs
HACK

Now if you changed the mask to r--, the ACLs for jlope and wine would
effectively become r-- as well:

$ setfacl -m m:r-- foo
$ getfacl foo
file: foo
owner: andrew
group: andrew
user::rw-
user:jlope:rwx #effective:r--
group::---
group:wine:rwx #effective:r--
mask::r--
other::---

As mentioned earlier, a directory can have a default ACL that will automati-
cally be applied to files that are created within that directory. To designate
an ACL as the default, prefix it with a d::

$ mkdir mydir
$ setfacl -m d:u:jlope:rwx mydir
$ getfacl mydir
file: mydir
owner: andrew
group: andrew
user::rwx
group::---
other::---
default:user::rwx
default:user:jlope:rwx
default:group::---
default:mask::rwx
default:other::---

$ touch mydir/bar
$ getfacl mydir/bar
file: mydir/bar
owner: andrew
group: andrew
user::rw-
user:jlope:rwx #effective:rw-
group::---
mask::rw-
other::---

As you may have noticed from the previous examples, you can list ACLs by
using the getfacl command. This command is pretty straightforward and
has only a few options. The most useful is the -R option, which allows you
to list ACLs recursively and works very much like ls -R.

www.allitebooks.com

http://www.allitebooks.org

Protect Your Logs from Tampering #5

Chapter 1, Unix Host Security | 9

HACK

H A C K

#5
Protect Your Logs from Tampering Hack #5

Use file attributes to prevent intruders from removing traces of their
break-ins.

In the course of an intrusion, an attacker will more than likely leave telltale
signs of his actions in various system logs. This is a valuable audit trail that
should be well protected. Without reliable logs, it can be very difficult to fig-
ure out how the attacker got in, or where the attack came from. This infor-
mation is crucial in analyzing the incident and then responding to it by
contacting the appropriate parties involved [Hack #125]. However, if the break-
in attempt is successful and the intruder gains root privileges, what’s to stop
him from removing the traces of his misbehavior?

This is where file attributes come in to save the day (or at least make it a lit-
tle better). Both Linux and the BSDs have the ability to assign extra
attributes to files and directories. This is different from the standard Unix
permissions scheme in that the attributes set on a file apply universally to all
users of the system, and they affect file accesses at a much deeper level than
file permissions or ACLs [Hack #4]. In Linux, you can see and modify the
attributes that are set for a given file by using the lsattr and chattr com-
mands, respectively. Under the BSDs, you can use ls -lo to view the
attributes and use chflags to modify them.

One useful attribute for protecting log files is append-only. When this
attribute is set, the file cannot be deleted, and writes are only allowed to
append to the end of the file.

To set the append-only flag under Linux, run this command:

chattr +a filename

Under the BSDs, use this:

chflags sappnd filename

See how the +a attribute works by creating a file and setting its append-only
attribute:

touch /var/log/logfile
echo "append-only not set" > /var/log/logfile
chattr +a /var/log/logfile
echo "append-only set" > /var/log/logfile
bash: /var/log/logfile: Operation not permitted

The second write attempt failed, since it would overwrite the file. However,
appending to the end of the file is still permitted:

echo "appending to file" >> /var/log/logfile
cat /var/log/logfile
append-only not set
appending to file

10 | Chapter 1, Unix Host Security

#5 Protect Your Logs from Tampering
HACK

Obviously, an intruder who has gained root privileges could realize that file
attributes are being used and just remove the append-only flag from the logs
by running chattr -a. To prevent this, you’ll need to disable the ability to
remove the append-only attribute. To accomplish this under Linux, use its
capabilities mechanism. Under the BSDs, use the securelevel facility.

The Linux capabilities model divides up the privileges given to the all-pow-
erful root account and allows you to selectively disable them. To prevent a
user from removing the append-only attribute from a file, you need to
remove the CAP_LINUX_IMMUTABLE capability. When present in the running
system, this capability allows the append-only attribute to be modified. To
modify the set of capabilities available to the system, use a simple utility
called lcap (http://snort-wireless.org/other/lcap-0.0.6.tar.bz2.

To unpack and compile the tool, run this command:

tar xvfj lcap-0.0.6.tar.bz2 && cd lcap-0.0.6 && make

Then, to disallow modification of the append-only flag, run:

./lcap CAP_LINUX_IMMUTABLE
./lcap CAP_SYS_RAWIO

The first command removes the ability to change the append-only flag, and
the second command removes the ability to do raw I/O. This is needed so
that the protected files cannot be modified by accessing the block device on
which they reside. It also prevents access to /dev/mem and /dev/kmem, which
would provide a loophole for an intruder to reinstate the CAP_LINUX_
IMMUTABLE capability.

To remove these capabilities at boot, add the previous two commands to
your system startup scripts (e.g., /etc/rc.local). You should ensure that capa-
bilities are removed late in the boot order, to prevent problems with other
startup scripts. Once lcap has removed kernel capabilities, you can only
reinstate them by rebooting the system.

The BSDs accomplish the same thing through the use of securelevels. The
securelevel is a kernel variable that you can set to disallow certain function-
ality. Raising the securelevel to 1 is functionally the same as removing the
two previously discussed Linux capabilities. Once the securelevel has been
set to a value greater than 0, it cannot be lowered. By default, OpenBSD will
raise the securelevel to 1 when in multiuser mode. In FreeBSD, the
securelevel is –1 by default.

To change this behavior, add the following line to /etc/sysctl.conf:

kern.securelevel=1

Delegate Administrative Roles #6

Chapter 1, Unix Host Security | 11

HACK

Before doing this, you should be aware that adding append-only flags to
your log files will most likely cause log rotation scripts to fail. However,
doing this will greatly enhance the security of your audit trail, which will
prove invaluable in the event of an incident.

H A C K

#6
Delegate Administrative Roles Hack #6

Let others do your work for you without giving away root privileges.

The sudo utility can help you delegate some system responsibilities to other
people, without having to grant full root access. sudo is a setuid root binary
that executes commands on an authorized user’s behalf, after she has
entered her current password.

As root, run /usr/sbin/visudo to edit the list of users who can call sudo. The
default sudo list looks something like this:

root ALL=(ALL) ALL

Unfortunately, many system administrators tend to use this entry as a tem-
plate and grant unrestricted root access to all other admins unilaterally:

root ALL=(ALL) ALL
rob ALL=(ALL) ALL
jim ALL=(ALL) ALL
david ALL=(ALL) ALL

While this may allow you to give out root access without giving away the
root password, this method is truly useful only when all of the sudo users
can be completely trusted. When properly configured, the sudo utility pro-
vides tremendous flexibility for granting access to any number of com-
mands, run as any arbitrary user ID (UID).

The syntax of the sudo line is:

user machine=(effective user) command

The first column specifies the sudo user. The next column defines the hosts
in which this sudo entry is valid. This allows you to easily use a single sudo
configuration across multiple machines.

For example, suppose you have a developer who needs root access on a
development machine, but not on any other server:

peter beta.oreillynet.com=(ALL) ALL

The next column (in parentheses) specifies the effective user who may run
the commands. This is very handy for allowing users to execute code as
users other than root:

peter lists.oreillynet.com=(mailman) ALL

12 | Chapter 1, Unix Host Security

#6 Delegate Administrative Roles
HACK

Finally, the last column specifies all of the commands that this user may run:

david ns.oreillynet.com=(bind) /usr/sbin/rndc,/usr/sbin/named

If you find yourself specifying large lists of commands (or, for that matter,
users or machines), take advantage of sudo’s alias syntax. An alias can be
used in place of its respective entry on any line of the sudo configuration:

User_Alias ADMINS=rob,jim,david
User_Alias WEBMASTERS=peter,nancy
Runas_Alias DAEMONS=bind,www,smmsp,ircd
Host_Alias WEBSERVERS=www.oreillynet.com,www.oreilly.com,www.perl.com
Cmnd_Alias PROCS=/bin/kill,/bin/killall,/usr/bin/skill,/usr/bin/top
Cmnd_Alias APACHE=/usr/local/apache/bin/apachectl
WEBMASTERS WEBSERVERS=(www) APACHE
ADMINS ALL=(DAEMONS) ALL

It is also possible to specify a system group instead of a user, to allow any
user who belongs to that group to execute commands. Just prefix the group
name with a %, like this:

%wwwadmin WEBSERVERS=(www) APACHE

Now any user who is part of the wwwadmin group can execute apachectl as
the www user on any of the web server machines.

One very useful feature is the NOPASSWD: flag. When present, the user won’t
have to enter a password before executing the command. For example, this
will allow the user rob to execute kill, killall, skill, and top on any machine,
as any user, without entering a password:

rob ALL=(ALL) NOPASSWD: PROCS

Finally, sudo can be a handy alternative to su for running commands at star-
tup out of the system rc files:

(cd /usr/local/mysql; sudo -u mysql ./bin/safe_mysqld &)
sudo -u www /usr/local/apache/bin/apachectl start

For that to work at boot time, the default line root ALL=(ALL) ALL must be
present.

Use sudo with the usual caveats that apply to setuid binaries. Particularly if
you allow sudo to execute interactive commands (like editors) or any sort of
compiler or interpreter, you should assume that it is possible that the sudo
user will be able to execute arbitrary commands as the effective user. Still,
under most circumstances this isn’t a problem, and it’s certainly preferable
to giving away undue access to root privileges.

—Rob Flickenger

Automate Cryptographic Signature Verification #7

Chapter 1, Unix Host Security | 13

HACK

H A C K

#7
Automate Cryptographic Signature Verification Hack #7

Use scripting and key servers to automate the chore of checking software
authenticity.

One of the most important things you can do for the security of your system
is to make yourself familiar with the software you are installing. You proba-
bly will not have the time, knowledge, or resources to go through the source
code for all of the software that you install. However, verifying that the soft-
ware you are compiling and installing is what the authors intended can go a
long way toward preventing the widespread distribution of Trojan horses.

Recently, Trojaned versions of several pivotal pieces of software (such as
tcpdump, libpcap, sendmail, and OpenSSH) have been distributed. Since this
is an increasingly popular attack vector, verifying your software is critically
important.

Why does this need to be automated? It takes little effort to verify software
before installing it, but either through laziness or ignorance, many system
administrators overlook this critical step. This is a classic example of “false”
laziness, since it will likely lead to more work for the sysadmin in the long
run.

This problem is difficult to solve, because it relies on the programmers and
distributors to get their acts together. Then there’s the laziness aspect. Soft-
ware packages often don’t even come with a signature to use for verifying
the legitimacy of what you’ve downloaded, and even when signatures are
provided with the source code, to verify the code you must hunt through the
software provider’s site for the public key that was used to create the signa-
ture. After finding the public key, you have to download it, verify that the
key is genuine, add it to your keyring, and finally check the signature of the
code.

Here is what this would look like when checking the signature for Version
1.3.28 of the Apache web server using GnuPG (http://www.gnupg.org):

gpg -import KEYS
gpg -verify apache_1.3.28.tar.gz.asc apache_1.3.28.tar.gz
gpg: Signature made Wed Jul 16 13:42:54 2003 PDT using DSA key ID 08C975E5
gpg: Good signature from "Jim Jagielski <jim@zend.com>"
gpg: aka "Jim Jagielski <jim@apache.org>"
gpg: aka "Jim Jagielski <jim@jaguNET.com>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the
owner.
Fingerprint: 8B39 757B 1D8A 994D F243 3ED5 8B3A 601F 08C9 75E5

14 | Chapter 1, Unix Host Security

#7 Automate Cryptographic Signature Verification
HACK

As you can see, it’s not terribly difficult to do, but this step is often over-
looked when people are in a hurry. This is where this hack comes to the res-
cue. We’ll use a little bit of shell scripting and what are known as key servers
to reduce the number of steps required to perform the verification process.

Key servers are a part of a public-key cryptography infrastructure that allows
you to retrieve keys from a trusted third party. A nice feature of GnuPG is its
ability to query key servers for a key ID and to download the result into a
local keyring. To figure out which key ID to ask for, we rely on the fact that
the error message generated by GnuPG tells us which key ID it was unable
to find locally when trying to verify the signature.

In the previous example, if the key that GnuPG was looking for had not
been imported prior to verifying the signature, it would have generated an
error like this:

gpg: Signature made Wed Jul 16 13:42:54 2003 PDT using DSA key ID 08C975E5
gpg: Can't check signature: public key not found

The following script takes advantage of that error:

#!/bin/sh
VENDOR_KEYRING=vendors.gpg
KEYSERVER=search.keyserver.net
KEYID="0x`gpg --verify $1 $2 2>&1 | grep 'key ID' | awk '{print $NF}'`"
gpg --no-default-keyring --keyring $VENDOR_KEYRING --recv-key \
 --keyserver $KEYSERVER $KEYID
gpg --keyring $VENDOR_KEYRING --verify $1 $2

The first line of the script specifies the keyring in which the result from the
key server query will be stored. You could use pubring.gpg (which is the
default keyring for GnuGP), but using a separate file will make managing
vendor public keys easier. The second line of the script specifies which key
server to query (the script uses search.keyserver.net; another good one is pgp.
mit.edu). The third line attempts (and fails) to verify the signature without
first consulting the key server. It then uses the key ID it saw in the error,
prepending an 0x in order to query the key server on the next line. Finally,
GnuPG attempts to verify the signature and specifies the keyring in which
the query result was stored.

This script has shortened the verification process by eliminating the need to
search for and import the public key that was used to generate the signa-
ture. Going back to the example of verifying the Apache 1.3.28 source code,
you can see how much more convenient it is now to verify the package’s
authenticity:

checksig apache_1.3.28.tar.gz.asc apache_1.3.28.tar.gz
gpg: requesting key 08C975E5 from HKP keyserver search.keyserver.net
gpg: key 08C975E5: public key imported
gpg: Total number processed: 1

Check for Listening Services #8

Chapter 1, Unix Host Security | 15

HACK

gpg: imported: 1
gpg: Warning: using insecure memory!
gpg: please see http://www.gnupg.org/faq.html for more information
gpg: Signature made Wed Jul 16 13:42:54 2003 PDT using DSA key ID 08C975E5
gpg: Good signature from "Jim Jagielski <jim@zend.com>"
gpg: aka "Jim Jagielski <jim@apache.org>"
gpg: aka "Jim Jagielski <jim@jaguNET.com>"
gpg: checking the trustdb
gpg: no ultimately trusted keys found
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the
owner.
Fingerprint: 8B39 757B 1D8A 994D F243 3ED5 8B3A 601F 08C9 75E5

This small, quick script has reduced both the number of steps and the
amount of time needed to verify a source package. As with any good shell
script, it should help you to be lazy in a good way: by doing more work
properly, but with less effort on your part.

H A C K

#8
Check for Listening Services Hack #8

Find out whether unneeded services are listening and looking for possible
backdoors.

One of the first things you should do after a fresh operating system install is
see what services are running and remove any unneeded services from the
system startup process. You could use a port scanner (such as Nmap [Hack

#66]) and run it against the host, but if one didn’t come with the operating
system install, you’ll likely have to connect your fresh (and possibly inse-
cure) machine to the network to download one.

Also, Nmap can be fooled if the system is using firewall rules. With proper
firewall rules, a service can be completely invisible to Nmap unless certain
criteria (such as the source IP address) also match. When you have shell
access to the server itself, it is usually more efficient to find open ports using
programs that were installed with the operating system. One option is
netstat, a program that will display various network-related information and
statistics.

To get a list of listening ports and their owning processes under Linux, run
this command:

netstat -luntp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1679/sshd
udp 0 0 0.0.0.0:68 0.0.0.0:* 1766/dhclient

From the output, you can see that this machine is probably a workstation,
since it just has a DHCP client running along with an SSH daemon for

16 | Chapter 1, Unix Host Security

#8 Check for Listening Services
HACK

remote access. The ports in use are listed after the colon in the Local Address
column (22 for sshd and 68 for dhclient). The absence of any other listening
processes means that this is probably a workstation, not a network server.

Unfortunately, the BSD version of netstat does not let us list the processes
and the process IDs (PIDs) that own the listening port. Nevertheless, the
BSD netstat command is still useful for listing the listening ports on your
system.

To get a list of listening ports under FreeBSD, run this command:

netstat -a -n | egrep 'Proto|LISTEN'
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 *.587 *.* LISTEN
tcp4 0 0 *.25 *.* LISTEN
tcp4 0 0 *.22 *.* LISTEN
tcp4 0 0 *.993 *.* LISTEN
tcp4 0 0 *.143 *.* LISTEN
tcp4 0 0 *.53 *.* LISTEN

Again, the ports in use are listed in the Local Address column. Many sea-
soned system administrators have memorized the common port numbers for
popular services and will be able to see at a glance that this server is running
SSHD, SMTP, DNS, IMAP, and IMAP+SSL services. If you are ever in doubt
about which services typically run on a given port, either eliminate the -n
switch from the netstat command (which tells netstat to use names but can
take much longer to run when looking up DNS addresses) or manually grep
the /etc/services file:

grep -w 993 /etc/services
imaps 993/udp # imap4 protocol over TLS/SSL
imaps 993/tcp # imap4 protocol over TLS/SSL

The /etc/services file should only be used as a guide. If a process is listening
on a port listed in the file, it doesn’t necessarily mean that the service listed
in /etc/services is what it is providing.

Also notice that, unlike in the output of netstat on Linux, with the BSD ver-
sion you don’t get the PIDs of the daemons themselves. You might also
notice that no UDP ports were listed for DNS. This is because UDP sockets
do not have a LISTEN state in the same sense that TCP sockets do. In order to
display UDP sockets, you must add udp4 to the argument for egrep, thus
making it 'Proto|LISTEN|udp4'. However, due to the way UDP works, not
all UDP sockets will necessarily be associated with a daemon process.

Under FreeBSD, there is another command that will give us just what we
want. The sockstat command performs only a small subset of what netstat
can do and is limited to listing information on Unix domain sockets and Inet
sockets, but it’s ideal for this hack’s purposes.

Prevent Services from Binding to an Interface #9

Chapter 1, Unix Host Security | 17

HACK

To get a list of listening ports and their owning processes with sockstat, run
this command:

sockstat -4 -l
USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
root sendmail 1141 4 tcp4 *:25 *:*
root sendmail 1141 5 tcp4 *:587 *:*
root sshd 1138 3 tcp4 *:22 *:*
root inetd 1133 4 tcp4 *:143 *:*
root inetd 1133 5 tcp4 *:993 *:*
named named 1127 20 tcp4 *:53 *:*
named named 1127 21 udp4 *:53 *:*
named named 1127 22 udp4 *:1351 *:*

Once again, you can see that SSHD, SMTP, DNS, IMAP, and IMAP+SSL
services are running, but now you have the process that owns the socket
plus its PID. You can now see that the IMAP services are being spawned
from inetd instead of standalone daemons, and that sendmail and named are
providing the SMTP and DNS services.

For most other Unix-like operating systems, you can use the lsof utility (http:
//ftp.cerias.purdue.edu/pub/tools/unix/sysutils/lsof/). lsof is short for “list open
files” and, as the name implies, it allows you to list files that are open on a
system, in addition to the processes and PIDs that have them open. Since
sockets and files work the same way under Unix, lsof can also be used to list
open sockets. This is done with the -i command-line option.

To get a list of listening ports and the processes that own them using lsof,
run this command:

lsof -i -n | egrep 'COMMAND|LISTEN'
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
named 1127 named 20u IPv4 0xeb401dc0 0t0 TCP *:domain (LISTEN)
inetd 1133 root 4u IPv4 0xeb401ba0 0t0 TCP *:imap (LISTEN)
inetd 1133 root 5u IPv4 0xeb401980 0t0 TCP *:imaps (LISTEN)
sshd 1138 root 3u IPv4 0xeb401760 0t0 TCP *:ssh (LISTEN)
sendmail 1141 root 4u IPv4 0xeb41b7e0 0t0 TCP *:smtp (LISTEN)
sendmail 1141 root 5u IPv4 0xeb438fa0 0t0 TCP *:submission (LISTEN)

Again, you can change the argument to egrep to display UDP sockets. How-
ever, this time use UDP instead of udp4, which makes the argument
'COMMAND|LISTEN|UDP'. As mentioned earlier, not all UDP sockets will neces-
sarily be associated with a daemon process.

H A C K

#9
Prevent Services from Binding to an Interface Hack #9

Keep services from listening on a port instead of firewalling them.

Sometimes, you might want to limit a service to listen on only a specific
interface. For instance, Apache [Hack #55] can be configured to listen on a

18 | Chapter 1, Unix Host Security

#9 Prevent Services from Binding to an Interface
HACK

specific interface as opposed to all available interfaces. You can do this by
using the Listen directive in your configuration file and specifying the IP
address of the interface:

Listen 192.168.0.23:80

If you use VirtualHost entries, you can specify interfaces to bind to on a per-
virtual-host basis:

<VirtualHost 192.168.0.23>
...
</VirtualHost>

You might even have services that are listening on a TCP port but don’t
need to be. Database servers such as MySQL are often used in conjunction
with Apache and are frequently set up to coexist on the same server when
used in this way. Connections that come from the same machine that
MySQL is installed on use a domain socket in the filesystem for communica-
tions. Therefore, MySQL doesn’t need to listen on a TCP socket. To keep it
from listening, you can either use the --skip-networking command-line
option when starting MySQL or specify it in the [mysqld] section of your
my.cnf file:

[mysqld]
...
skip-networking
...

Another program that you’ll often find listening on a port is your X11 server,
which listens on TCP port 6000 by default. This port is traditionally used to
enable remote clients to connect to your X11 server so they can draw their
windows and accept keyboard and mouse input; however, with the advent
of SSH and X11 forwarding, this really isn’t needed anymore. With X11 for-
warding enabled in ssh, any client that needs to connect to your X11 server
will be tunneled through your SSH connection and will bypass the listening
TCP port when connecting to your X11 server.

To get your X Windows server to stop listening on this port, all you need to
do is add -nolisten tcp to the command that is used to start the server. This
can be tricky, though—figuring out which file controls how the server is
started can be a daunting task. Usually, you can find what you’re looking for
in /etc/X11.

If you’re using gdm, open gdm.conf and look for a line similar to this one:

command=/usr/X11R6/bin/X

Then, just add -nolisten tcp to the end of the line.

www.allitebooks.com

http://www.allitebooks.org

Restrict Services with Sandboxed Environments #10

Chapter 1, Unix Host Security | 19

HACK

If you’re using xdm, look for a file called Xservers and make sure it contains
a line similar to this:

:0 local /usr/X11R6/bin/X -nolisten tcp

Alternatively, if you’re not using a managed display and instead are using
startx or a similar command to start your X11 server, you can just add
-nolisten tcp to the end of your startx command. To be sure that it is
passed to the X server process, start it after an extra set of hyphens:

$ startx -- -nolisten tcp

Once you start X, fire up a terminal and see what is listening using lsof or
netstat [Hack #8]. You should no longer see anything bound to port 6000.

H A C K

#10
Restrict Services with Sandboxed Environments Hack #10

Mitigate system damage by keeping service compromises contained.

Sometimes, keeping up with the latest patches just isn’t enough to prevent a
break-in. Often, a new exploit will circulate in private circles long before an
official advisory is issued, during which time your servers might be open to
unexpected attack. With this in mind, it’s wise to take extra preventative
measures to contain the possible effects of a compromised service. One way
to do this is to run your services in a sandbox. Ideally, this minimizes the
effects of a service compromise on the overall system.

Most Unix and Unix-like systems include some sort of system call or other
mechanism for sandboxing that offers various levels of isolation between the
host and the sandbox. The least restrictive and easiest to set up is a chroot()
environment, which is available on nearly all Unix and Unix-like systems.
FreeBSD also includes another mechanism called jail(), which provides
some additional restrictions beyond those provided by chroot().

If you want to set up a restricted environment but don’t feel
that you need the level of security provided by a system-call-
based sandboxed environment, see “Restrict Shell Environ-
ments” [Hack #20].

Using chroot()
chroot() very simply changes the root directory of a process and all of its
children. While this is a powerful feature, there are many caveats to using it.
Most importantly, there should be no way for anything running within the
sandbox to change its effective user ID (EUID) to 0, which is root’s UID.
Naturally, this implies that you don’t want to run anything as root within
the jail.

20 | Chapter 1, Unix Host Security

#10 Restrict Services with Sandboxed Environments
HACK

There are many ways to break out of a chroot() sandbox, but they all rely
on being able to get root privileges within the sandboxed environment. Pos-
session of UID 0 inside the sandbox is the Achilles heel of chroot(). If an
attacker is able to gain root privileges within the sandbox, all bets are off.
While the attacker will not be able to directly break out of the sandboxed
environment, he may be able to run functions inside the exploited pro-
cesses’ address space that will let him break out.

There are a few services that support chroot() environments by calling the
function within the program itself, but many services do not. To run these
services inside a sandboxed environment using chroot(), you need to make
use of the chroot command. The chroot command simply calls chroot()
with the first command-line argument and attempts to execute the program
specified in the second argument. If the program is a statically linked binary,
all you have to do is copy the program to somewhere within the sandboxed
environment; however, if the program is dynamically linked, you will need
to copy all of its supporting libraries to the environment as well.

See how this works by setting up bash in a chroot() environment. First try
to run chroot without copying any of the libraries bash needs:

mkdir -p /chroot_test/bin
cp /bin/bash /chroot_test/bin/
chroot /chroot_test /bin/bash
chroot: /bin/bash: No such file or directory

Now find out what libraries bash needs by using the ldd command. Then
copy the libraries into your chroot() environment and attempt to run chroot
again:

ldd /bin/bash
libtermcap.so.2 => /lib/libtermcap.so.2 (0x4001a000)
libdl.so.2 => /lib/libdl.so.2 (0x4001e000)
libc.so.6 => /lib/tls/libc.so.6 (0x42000000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
mkdir -p chroot_test/lib/tls && \
> (cd /lib; \
> cp libtermcap.so.2 libdl.so.2 ld-linux.so.2 /chroot_test/lib; \
> cd tls; cp libc.so.6 /chroot_test/lib/tls)
chroot /chroot_test /bin/bash
bash-2.05b#
bash-2.05b# echo /*
/bin /lib

Setting up a chroot() environment mostly involves trial and error in getting
the permissions right and getting all of the library dependencies in place. Be
sure to consider the implications of having other programs such as mknod or
mount available in the chroot() environment. If these are available, the
attacker may be able to create device nodes to access memory directly or to

Restrict Services with Sandboxed Environments #10

Chapter 1, Unix Host Security | 21

HACK

remount filesystems, thus breaking out of the sandbox and gaining total
control of the overall system.

This threat can be mitigated by putting the directory on a filesystem
mounted with options that prohibit the use of device files [Hack #1], but that
isn’t always convenient. It is advisable to make as many of the files and
directories in the chroot()-ed directory as possible owned by root and writ-
able only by root, in order to make it impossible for a process to modify any
supporting files (this includes files such as libraries and configuration files).
In general, it is best to keep permissions as restrictive as possible and to
relax them only when necessary (for example, if the permissions prevent the
daemon from working properly).

The best candidates for a chroot() environment are services that do not
need root privileges at all. For instance, MySQL listens for remote connec-
tions on port 3306 by default. Since this port is above 1024, mysqld can be
started without root privileges and therefore doesn’t pose the risk of being
used to gain root access. Other daemons that need root privileges can
include an option to drop these privileges after completing all the opera-
tions for which they need root access (e.g., binding to a port below 1024),
but care should be taken to ensure that the programs drop their privileges
correctly. If a program uses seteuid() rather than setuid() to drop its privi-
leges, an attacker can still exploit it to gain root access. Be sure to read up on
current security advisories for programs that will run only with root privi-
leges.

You might think that simply not putting compilers, a shell, or utilities such
as mknod in the sandbox environment might protect them in the event of a
root compromise within the restricted environment. In reality, attackers can
accomplish the same functionality by changing their code from calling
system("/bin/sh") to calling any other C library function or system call that
they desire. If you can mount the filesystem the chroot()-ed program runs
from using the read-only flag [Hack #1], you can make it more difficult for
attackers to install their own code, but this is still not quite bulletproof.
Unless the daemon you need to run within the environment can meet the
criteria discussed earlier, you might want to look into using a more power-
ful sandboxing mechanism.

Using FreeBSD’s jail()
One such mechanism is available under FreeBSD and is implemented
through the jail() system call. jail() provides many more restrictions in
isolating the sandbox environment from the host system and offers addi-
tional features, such as assigning IP addresses from virtual interfaces on the

22 | Chapter 1, Unix Host Security

#10 Restrict Services with Sandboxed Environments
HACK

host system. Using this functionality, you can create a full virtual server or
just run a single service inside the sandboxed environment.

Just as with chroot(), the system provides a jail command that uses the
jail() system call. Here’s the basic form of the jail command, where
ipaddr is the IP address of the machine on which the jail is running:

jail new root hostname ipaddr command

The hostname can be different from the main system’s hostname, and the IP
address can be any IP address that the system is configured to respond to.
You can actually give the appearance that all of the services in the jail are
running on a separate system by using a different hostname and configuring
and using an additional IP address.

Now, try running a shell inside a jail:

mkdir -p /jail_test/bin
cp /stand/sh /jail_test/bin/sh
jail /jail_test jail_test 192.168.0.40 /bin/sh
echo /*
/bin

This time, no libraries need to be copied, because the binaries in /stand are
statically linked.

On the opposite side of the spectrum, you can build a jail that can function
as a nearly fully functional virtual server with its own IP address. The steps
to do this basically involve building FreeBSD from source and specifying the
jail directory as the install destination. You can do this by running the fol-
lowing commands:

mkdir /jail_test
cd /usr/src
make world DESTDIR=/jail_test
cd etc && make distribution DESTDIR=/jail_test
mount_devfs devfs /jail_test/dev
cd /jail_test && ln -s dev/null kernel

However, if you’re planning to run just one service from within the jail, this
is definitely overkill. (Note that in the real world you’ll probably need to cre-
ate /dev/null and /dev/log device nodes in your sandbox environment for
most daemons to work correctly.)

To start your jails automatically at boot, you can modify /etc/rc.conf, which
provides several variables for controlling a given jail’s configuration:

jail_enable="YES"
jail_list=" test"
ifconfig_lnc0_alias0="inet 192.168.0.41 netmask 255.255.255.255"
jail_test_rootdir="/jail_test"
jail_test_hostname="jail_test"

Use proftpd with a MySQL Authentication Source #11

Chapter 1, Unix Host Security | 23

HACK

jail_test_ip="192.168.0.41"
jail_test_exec_start="/bin/sh /etc/rc"
jail_test_exec_stop="/bin/sh /etc/rc.shutdown"
jail_test_devfs_enable="YES"
jail_test_fdescfs_enable="NO"
jail_test_procfs_enable="NO"
jail_test_mount_enable="NO"
jail_test_devfs_ruleset="devfsrules_jail"

Setting jail_enable to YES will cause /etc/rc.d/jail start to execute at
startup. This in turn reads the rest of the jail_X variables from rc.conf, by
iterating over the values for jail_list (multiple jails can be listed, separated
by spaces) and looking for their corresponding sets of variables. These vari-
ables are used for configuring each individual jail’s root directory, host-
name, IP address, startup and shutdown scripts, and what types of special
filesystems will be mounted within the jail.

For the jail to be accessible from the network, you’ll also need to configure a
network interface with the jail’s IP address. In the previous example, this is
done with the ifconfig_lnc0_alias0 variable. For setting IP aliases on an
interface to use with a jail, this takes the form of:

ifconfig_<iface>_alias<alias number>="inet <address> netmask 255.255.255.255"

So, if you wanted to create a jail with the address 192.168.0.42 and use the
same interface as above, you’d put something like this in your rc.conf:

ifconfig_lnc0_alias1="inet 192.168.0.42 netmask 255.255.255.255"

One thing that’s not entirely obvious is that you’re not limited to using a dif-
ferent IP address for each jail. You can specify multiple jails with the same IP
address, as long as you’re not running services within them that listen on the
same port.

By now you’ve seen how powerful jails can be. Whether you want to create
virtual servers that can function as entire FreeBSD systems within a jail or
just to compartmentalize critical services, they can offer another layer of
security in protecting your systems from intruders.

H A C K

#11
Use proftpd with a MySQL Authentication Source Hack #11

Make sure that your database system’s OS is running as efficiently as
possible with these tweaks.

proftpd is a powerful FTP daemon with a configuration syntax much like
Apache. It has a whole slew of options not available in most FTP daemons,
including ratios, virtual hosting, and a modularized design that allows peo-
ple to write their own modules.

24 | Chapter 1, Unix Host Security

#11 Use proftpd with a MySQL Authentication Source
HACK

One such module is mod_sql, which allows proftpd to use a SQL database as
its backend authentication source. Currently, mod_sql supports MySQL and
PostgreSQL. This can be a good way to help lock down access to your
server, as inbound users will authenticate against the database (and there-
fore not require an actual shell account on the server). In this hack, we’ll get
proftpd authenticating against a MySQL database.

First, download and build the source to proftpd and mod_sql:

~$ bzcat proftpd-1.2.6.tar.bz2 | tar xf -
~/proftpd-1.2.6/contrib$ tar zvxf ../../mod_sql-4.08.tar.gz
~/proftpd-1.2.6/contrib$ cd ..
~/proftpd-1.2.6$./configure --with-modules=mod_sql:mod_sql_mysql \
--with-includes=/usr/local/mysql/include/ \
--with-libraries=/usr/local/mysql/lib/

Substitute the path to your MySQL install, if it isn’t in /usr/
local/mysql/.

Now, build the code and install it:

rob@catlin:~/proftpd-1.2.6$ make && sudo make install

Next, create a database for proftpd to use (assuming that you already have
MySQL up and running):

$ mysqladmin create proftpd

Then, permit read-only access to it from proftpd:

$ mysql -e "grant select on proftpd.* to proftpd@localhost \
identified by 'secret';"

Create two tables in the database, with this schema:

CREATE TABLE users (
userid varchar(30) NOT NULL default '',
password varchar(30) NOT NULL default '',
uid int(11) default NULL,
gid int(11) default NULL,
homedir varchar(255) default NULL,
shell varchar(255) default NULL,
UNIQUE KEY uid (uid),
UNIQUE KEY userid (userid)
) TYPE=MyISAM;

CREATE TABLE groups (
groupname varchar(30) NOT NULL default '',
gid int(11) NOT NULL default '0',
members varchar(255) default NULL
) TYPE=MyISAM;

Use proftpd with a MySQL Authentication Source #11

Chapter 1, Unix Host Security | 25

HACK

One quick way to create the tables is to save this schema to a file called
proftpd.schema and run a command like mysql proftpd < proftpd.schema.

Now, you need to tell proftpd to use this database for authentication. Add
the following lines to your /usr/local/etc/proftpd.conf file:

SQLConnectInfo proftpd proftpd secret
SQLAuthTypes crypt backend
SQLMinUserGID 111
SQLMinUserUID 111

The SQLConnectInfo line takes the form database user password. You could
also specify a database on another host (even on another port) with some-
thing like this:

SQLConnectInfo proftpd@dbhost:5678 somebody somepassword

The SQLAuthTypes line lets you create users with passwords stored in the
standard Unix crypt format, or MySQL’s PASSWORD() function. Be warned
that if you’re using mod_sql’s logging facilities, the password might be
exposed in plain text, so keep those logs private.

The SQLAuthTypes line as specified won’t allow blank passwords; if you need
that functionality, also include the empty keyword. The SQLMinUserGID and
SQLMinUserUID lines specify the minimum group and user ID that proftpd will
permit on login. It’s a good idea to make this greater than 0 (to prohibit root
logins), but it should be as low as you need to allow proper permissions in
the filesystem. On this system, we have a user and a group called www, with
both the user ID (UID) and the group ID (GID) set to 111. As we’ll want web
developers to be able to log in with these permissions, we’ll need to set the
minimum values to 111.

Finally, you’re ready to create users in the database. The following line cre-
ates the user jimbo, with effective user rights as www/www, and dumps him
in the /usr/local/apache/htdocs directory at login:

mysql -e "insert into users values ('jimbo',PASSWORD('sHHH'),'111', \
 '111', '/usr/local/apache/htdocs','/bin/bash');" proftpd

The password for jimbo is encrypted with MySQL’s PASSWORD() function
before being stored. The /bin/bash line is passed to proftpd to pass proftpd’s
RequireValidShell directive. It has no bearing on granting actual shell access
to the user jimbo.

At this point, you should be able to fire up proftpd and log in as user jimbo,
with a password of sHHH. If you are having trouble getting connected, try
running proftpd in the foreground with debugging on, like this:

proftpd -n -d 5

26 | Chapter 1, Unix Host Security

#12 Prevent Stack-Smashing Attacks
HACK

Watch the messages as you attempt to connect, and you should be able to
track down the problem. In my experience, it’s almost always due to a fail-
ure to set something properly in proftpd.conf, usually regarding permissions.

The mod_sql module can do far more than I’ve shown here; it can connect
to existing MySQL databases with arbitrary table names, log all activity to
the database, modify its user lookups with an arbitrary WHERE clause, and
much more.

See Also
• The mod_sql home page at http://www.lastditcheffort.org/~aah/proftpd/

mod_sql/

• The proftpd home page at http://www.proftpd.org

—Rob Flickenger

H A C K

#12
Prevent Stack-Smashing Attacks Hack #12

Learn how to prevent stack-based buffer overflows.

In C and C++, memory for local variables is allocated in a chunk of mem-
ory called the stack. Information pertaining to the control flow of a program
is also maintained on the stack. If an array is allocated on the stack and that
array is overrun (that is, more values are pushed into the array than the
available space allows), an attacker can overwrite the control flow informa-
tion that is also stored on the stack. This type of attack is often referred to as
a stack-smashing attack.

Stack-smashing attacks are a serious problem, since they can make an other-
wise innocuous service (such as a web server or FTP server) execute
arbitrary commands. Several technologies attempt to protect programs
against these attacks. Some are implemented in the compiler, such as IBM’s
ProPolice patches for GCC (http://www.trl.ibm.com/projects/security/ssp/).
Others are dynamic runtime solutions, such as LibSafe. While recompiling
the source gets to the heart of the buffer overflow attack, runtime solutions
can protect programs when the source isn’t available or recompiling simply
isn’t feasible.

All of the compiler-based solutions work in much the same way, although
there are some differences in the implementations. They work by placing a
canary (which is typically some random value) on the stack between the
control flow information and the local variables. The code that is normally
generated by the compiler to return from the function is modified to check

Prevent Stack-Smashing Attacks #12

Chapter 1, Unix Host Security | 27

HACK

the value of the canary on the stack; if it is not what it is supposed to be, the
program is terminated immediately.

The idea behind using a canary is that an attacker attempting to mount a
stack-smashing attack will have to overwrite the canary to overwrite the con-
trol flow information. Choosing a random value for the canary ensures that
the attacker cannot know what it is and thus cannot include it in the data
used to “smash” the stack.

When a program is distributed in source form, the program’s developer can-
not enforce the use of ProPolice, because it’s a nonstandard extension to the
GCC compiler (although ProPolice-like features have been added to GCC 4.
x, that version of GCC isn’t in common use). Using ProPolice is the respon-
sibility of the person compiling the program. ProPolice is available with
some BSD and Linux distributions out of the box. You can check to see if
your copy of GCC contains ProPolice functionality by using the -fstack-
protector option to GCC. If your GCC is already patched, the compilation
should proceed normally. Otherwise, you’ll get an error like this:

cc1: error: unrecognized command line option "-fstack-protector"

When ProPolice is enabled and an overflow is triggered and detected in a
program, rather than receiving a SIGSEGV, the program will receive a
SIGABRT and dump core. In addition, a message will be logged informing
you of the overflow and the offending function in the program:

May 25 00:17:22 zul vulnprog: stack overflow in function Get_method_from_
request

For Linux systems, Avaya Labs’s LibSafe technology is not implemented as
a compiler extension, but instead takes advantage of a feature of the
dynamic loader that preloads a dynamic library with every executable. Using
LibSafe does not require the source code for the programs it protects, and it
can be deployed on a system-wide basis.

LibSafe replaces the implementation of several standard functions that are
vulnerable to buffer overflows, such as gets(), strcpy(), and scanf(). The
replacement implementations attempt to compute the maximum possible
size of a statically allocated buffer used as a destination buffer for writing,
using a GCC built-in function that returns the address of the frame pointer.
That address is normally the first piece of information on the stack follow-
ing local variables. If an attempt is made to write more than the estimated
size of the buffer, the program is terminated.

Unfortunately, there are several problems with the approach taken by Lib-
Safe. First, it cannot accurately compute the size of a buffer; the best it can

28 | Chapter 1, Unix Host Security

#13 Lock Down Your Kernel with grsecurity
HACK

do is limit the size of the buffer to the difference between the start of the
buffer and the frame pointer. Second, LibSafe’s protections will not work
with programs that were compiled using the -fomit-frame-pointer flag to
GCC, an optimization that causes the compiler not to put a frame pointer
on the stack. Although relatively useless, this is a popular optimization for
programmers to employ. Finally, LibSafe does not work on SUID binaries
without static linking or a similar trick. Still, it does provide at least some
protection against conventional stack-smashing attacks.

The newest versions of LibSafe also provide some protection against format-
string attacks. The format-string protection also requires access to the frame
pointer because it attempts to filter out arguments that are not pointers into
either the heap or the local variables on the stack.

In addition to user-space solutions, you can opt to patch your kernel to use
nonexecutable stacks and detect buffer overflow attacks [Hack #13].

H A C K

#13
Lock Down Your Kernel with grsecurity Hack #13

Harden your system against attacks with the grsecurity kernel patch.

Hardening a Unix system can be a difficult process that typically involves
setting up all the services that the system will run in the most secure fashion
possible, as well as locking down the system to prevent local compromises.
However, putting effort into securing the services that you’re running does
little for the rest of the system and for unknown vulnerabilities. Luckily,
even though the standard Linux kernel provides few features for proactively
securing a system, there are patches available that can help the enterprising
system administrator do so. One such patch is grsecurity (http://www.
grsecurity.net).

grsecurity started out as a port of the OpenWall patch (http://www.
openwall.com) to the 2.4.x series of Linux kernels. This patch added fea-
tures such as nonexecutable stacks, some filesystem security enhance-
ments, restrictions on access to /proc, as well as some enhanced resource
limits. These features helped to protect the system against stack-based
buffer overflow attacks, prevented filesystem attacks involving race
conditions on files created in /tmp, limited users to seeing only their own
processes, and even enhanced Linux’s resource limits to perform more
checks.

Since its inception, grsecurity has grown to include many features beyond
those provided by the OpenWall patch. grsecurity now includes many addi-
tional memory address space protections to prevent buffer overflow exploits
from succeeding, as well as enhanced chroot() jail restrictions, increased

www.allitebooks.com

http://www.allitebooks.org

Lock Down Your Kernel with grsecurity #13

Chapter 1, Unix Host Security | 29

HACK

randomization of process and IP IDs, and increased auditing features that
enable you to track every process executed on a system. grsecurity also adds
a sophisticated access control list system that makes use of Linux’s capabili-
ties system. This ACL system can be used to limit the privileged operations
that individual processes are able to perform on a case-by-case basis.

The gradm utility handles configuration of ACLs. If you
already have grsecurity installed on your machine, feel free to
skip ahead to “Restrict Applications with grsecurity” [Hack
#14].

Patching the Kernel
To compile a kernel with grsecurity, you will need to download the patch
that corresponds to your kernel version and apply it to your kernel using the
patch utility. For example, if you are running Linux 2.6.14.6:

cd /usr/src/linux-2.6.14.6
zcat ~andrew/grsecurity-2.1.8-2.6.14.6-200601211647.patch.gz | patch -p1

While the command is running, you should see a line for each kernel source
file that is being patched. After the command has finished, you can make
sure that the patch applied cleanly by looking for any files that end in .rej.
The patch program creates these when it cannot apply the patch cleanly to a
file. A quick way to see if there are any .rej files is to use the find command:

find ./ -name *.rej

If there are any rejected files, they will be listed on the screen. If the patch
applied cleanly to all files, you should be returned to the shell prompt with-
out any additional output.

After the patch has been applied, you can configure the kernel to enable
grsecurity’s features by running make config to use text prompts, make
menuconfig for a curses-based interface, or make xconfig to use a QT-based
GUI (use gconfig for a GTK-based one). If you went the graphical route and
used make xconfig, expand the Security options tree and you should see
something similar to Figure 1-1.

There are now two new subtrees: PaX and Grsecurity. If you ran make
menuconfig or make config, the relevant kernel options have the same names
as the menu options described in this example.

30 | Chapter 1, Unix Host Security

#13 Lock Down Your Kernel with grsecurity
HACK

Configuring Kernel Options
To enable grsecurity and configure which features will be enabled in the ker-
nel, expand the Grsecurity subtree and click the checkbox labeled Grsecu-
rity. You should see the dialog shown in Figure 1-2.

After you’ve done that, you can enable predefined sets of features under the
Security Level subtree, or set it to Custom and go through the menus to pick
and choose which features to enable.

Low security. Choosing Low is safe for any system and should not affect any
software’s normal operation. Using this setting will enable linking restric-
tions in directories with mode 1777. This prevents race conditions in /tmp
from being exploited, by only following symlinks to files that are owned by
the process following the link. Similarly, users won’t be able to write to
FIFOs that they do not own if they are within a directory with permissions
of 1777.

In addition to the tighter symlink and FIFO restrictions, the Low setting
increases the randomness of process and IP IDs. This helps to prevent
attackers from using remote detection techniques to correctly guess the
operating system your machine is running [Hack #65], and it also makes it diffi-
cult to guess the process ID of a given program.

Figure 1-1. New sections added by the grsecurity patch

Lock Down Your Kernel with grsecurity #13

Chapter 1, Unix Host Security | 31

HACK

The Low security level also forces programs that use chroot() to change
their current working directory to / after the chroot() call. Otherwise, if a
program left its working directory outside of the chroot() environment, it
could be used to break out of the sandbox. Choosing the Low security level
also prevents non-root users from using dmesg, a utility that can be used to
view recent kernel messages.

Medium security. Choosing Medium enables all of the same features as the
Low security level, but this level also includes features that make chroot()-
based sandboxed environments more secure. The ability to mount filesys-
tems, call chroot(), write to sysctl variables, or create device nodes within
a chroot()-ed environment are all restricted, thus eliminating much of the
risk involved in running a service in a sandboxed environment under Linux.
In addition, the Medium level randomizes TCP source ports and logs failed
fork() calls, changes to the system time, and segmentation faults.

Enabling the Medium security level also restricts total access to /proc to
those who are in the wheel group. This hides each user’s processes from
other users and denies writing to /dev/kmem, /dev/mem, and /dev/port. This

Figure 1-2. Enabling grsecurity

32 | Chapter 1, Unix Host Security

#13 Lock Down Your Kernel with grsecurity
HACK

makes it more difficult to patch kernel-based root kits into the running ker-
nel. The Medium level also randomizes process memory address space
layouts, making it harder for an attacker to successfully exploit buffer over-
run attacks, and removes information on process address space layouts from
/proc. Because of these /proc restrictions, you will need to run your identd
daemon (if you are running one) as an account that belongs to the wheel
group. According to the grsecurity documentation, none of these features
should affect the operation of your software, unless it is very old or poorly
written.

High security. To enable nearly all of grsecurity’s features, you can choose
the High security level. In addition to the features provided by the lower
security levels, this level implements additional /proc restrictions by limiting
access to device and CPU information to users who are in the wheel group.
The High security level further restricts sandboxed environments by disal-
lowing chmod to set the SUID or SGID bit when operating within such an
environment.

Additionally, applications that are running within such an environment will
not be allowed to insert loadable modules, perform raw I/O, configure net-
work devices, reboot the system, modify immutable files, or change the sys-
tem’s time. Choosing this security level also lays out the kernel’s stack
randomly, to prevent kernel-based buffer overrun exploits from succeeding.
In addition, it hides the kernel’s symbols—making it even more difficult for
an intruder to install Trojan code into the running kernel—and logs filesys-
tem mounting, remounting, and unmounting.

The High security level also enables grsecurity’s PaX code, which enables
nonexecutable memory pages, among other things. Enabling this causes
many buffer overrun exploits to fail, since any code injected into the stack
through an overrun will be unable to execute. It is still possible to exploit a
program with buffer overrun vulnerabilities, although this is made much
more difficult by grsecurity’s address space layout randomization features.
However, some programs—such as XFree86, wine, and Java virtual
machines—expect that the memory addresses returned by malloc() will be
executable. Since PaX breaks this behavior, enabling it will cause those pro-
grams and others that depend on it to fail.

Luckily, PaX can be disabled on a per-program basis with the paxctl utility
(http://pax.grsecurity.net). For instance, to disable nonexecutable memory
for a given program, you can run a command similar to this one:

paxctl -ps /usr/bin/java

Restrict Applications with grsecurity #14

Chapter 1, Unix Host Security | 33

HACK

Other programs also make use of special GCC features, such as trampoline
functions, which allow a programmer to define a small function within a
function so that the defined function is visible only to the enclosing func-
tion. Unfortunately, GCC puts the trampoline function’s code on the stack,
so PaX will break any programs that rely on this. However, PaX can provide
emulation for trampoline functions, which can be enabled on a per-pro-
gram basis with paxctl by using the -E switch.

Customized security settings. If you do not like the sets of features that are
enabled with any of the predefined security levels, you can just set the ker-
nel option to Custom and enable only the features you need.

After you’ve set a security level or enabled the specific options you want to
use, just recompile your kernel and modules as you normally would:

make clean && make bzImage
make modules && make modules_install

Then, install your new kernel and reboot with it. In addition to the kernel
restrictions already in effect, you can now use gradm to set up ACLs for your
system [Hack #14].

As you can see, grsecurity is a complex but tremendously useful modifica-
tion of the Linux kernel. For more detailed information on installing and
configuring the patches, consult the extensive documentation at http://www.
grsecurity.net/papers.php.

H A C K

#14
Restrict Applications with grsecurity Hack #14

Use Linux capabilities and grsecurity’s ACLs to restrict applications on your
system.

Now that you have installed the grsecurity patch [Hack #13], you’ll probably
want to make use of its flexible Role-Based Access Controls (RBAC) system
to further restrict the privileged applications on your system, beyond what
grsecurity’s kernel security features provide.

If you’re just joining us and are not familiar with grsecurity,
read “Lock Down Your Kernel with grsecurity” [Hack #13]
first.

To restrict specific applications, you will need to make use of the gradm
utility, which can be downloaded from the main grsecurity site (http://
www.grsecurity.net). You can compile and install it in the usual way:
unpack the source distribution, change into the directory that it creates,
and then run make && make install. This command installs gradm in /sbin,

34 | Chapter 1, Unix Host Security

#14 Restrict Applications with grsecurity
HACK

creates the /etc/grsec directory containing a default policy, and installs the
manual page.

As part of running make install, you’ll be prompted to set a password that
will be used for gradm to authenticate itself with the kernel. You can change
the password later by running gradm with the -P option:

gradm -P
Setting up grsecurity RBAC password
Password:
Re-enter Password:
Password written to /etc/grsec/pw.

You’ll also need to set a password for the admin role:

gradm -P admin
Setting up password for role admin
Password:
Re-enter Password:
Password written to /etc/grsec/pw.

Then, use this command to enable grsecurity’s RBAC system:

/sbin/gradm -E

Once you’re finished setting up your policy, you’ll probably want to add that
command to the end of your system startup. Add it to the end of /etc/rc.local
or a similar script that is designated for customizing your system startup.

The default policy installed in /etc/grsec/policy is quite restrictive, so you’ll
want to create a policy for the services and system binaries that you want to
use. For example, after the RBAC system has been enabled, ifconfig will no
longer be able to change interface characteristics, even when run as root:

/sbin/ifconfig eth0:1 192.168.0.59 up
SIOCSIFADDR: Permission denied
SIOCSIFFLAGS: Permission denied
SIOCSIFFLAGS: Permission denied

The easiest way to set up a policy for a particular command is to specify that
you want to use grsecurity’s learning mode, rather than specifying each one
manually. If you’ve enabled RBAC, you’ll need to temporarily disable it for
your shell by running gradm -a admin. You’ll then be able to access files
within /etc/grsec; otherwise, the directory will be hidden to you.

Add an entry like this to /etc/grsec/policy:

subject /sbin/ifconfig l
 / h
 /etc/grsec h
 -CAP_ALL

Restrict Applications with grsecurity #14

Chapter 1, Unix Host Security | 35

HACK

This is about the most restrictive policy possible, because it hides the root
directory from the process and removes any privileges that it may need. The
l next to the binary that the policy applies to says to use learning mode.

After you’re done editing the policy, you’ll need to disable RBAC and then
re-enable it with learning mode:

gradm -a admin
Password:
gradm -D
gradm -L /etc/grsec/learning.logs -E

Now, try to run the ifconfig command again:

/sbin/ifconfig eth0:1 192.168.0.59 up
/sbin/ifconfig eth0:1
eth0:1 Link encap:Ethernet HWaddr 08:00:46:0C:AA:DF
 inet addr:192.168.0.59 Bcast:192.168.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

When the command succeeds, grsecurity will create learning log entries.
You can then use gradm to generate an ACL for the program based on these
logs:

gradm -a admin
Password:
gradm -L /etc/grsec/learning.logs -O stdout
Beginning full learning object reduction for subject /sbin/ifconfig...done.
THE BELOW SUBJECT(S) SHOULD BE ADDED TO THE DEFAULT ROLE
subject /sbin/ifconfig {
user_transition_allow root
group_transition_allow root

 / h
 /sbin/ifconfig rx
 -CAP_ALL
 +CAP_NET_ADMIN
 +CAP_SYS_ADMIN
}

Now, you can replace the learning policy for /sbin/ifconfig in /etc/grsec/policy
with this one, and ifconfig should work. You can then follow this process
for each program that needs special permissions to function. Just make sure
to try out anything you will want to do with those programs, to ensure that
grsecurity’s learning mode will detect that it needs to perform a particular
system call or open a specific file.

Using grsecurity to lock down applications can seem like tedious work at
first, but it will ultimately create a system that gives each process only the
permissions it needs to do its job—no more, no less. When you need to
build a highly secured platform, grsecurity can provide finely grained con-
trol over just about everything the system can possibly do.

36 | Chapter 1, Unix Host Security

#15 Restrict System Calls with systrace
HACK

H A C K

#15
Restrict System Calls with systrace Hack #15

Keep your programs from performing tasks they weren’t meant to do.

One of the more exciting features in NetBSD and OpenBSD is systrace, a
system call access manager. With systrace, a system administrator can spec-
ify which programs can make which system calls, and how those calls can be
made. Proper use of systrace can greatly reduce the risks inherent in running
poorly written or exploitable programs. systrace policies can confine users in
a manner completely independent of Unix permissions. You can even define
the errors that the system calls return when access is denied, to allow pro-
grams to fail in a more proper manner. Proper use of systrace requires a
practical understanding of system calls and what functionality programs
must have to work properly.

First of all, what exactly are system calls? A system call is a function that lets
you talk to the operating-system kernel. If you want to allocate memory,
open a TCP/IP port, or perform input/output on the disk, you’ll need to use
a system call. System calls are documented in section 2 of the manual pages.

Unix also supports a wide variety of C library calls. These are often con-
fused with system calls but are actually just standardized routines for things
that could be written within a program. For example, you could easily write
a function to compute square roots within a program, but you could not
write a function to allocate memory without using a system call. If you’re in
doubt whether a particular function is a system call or a C library function,
check the online manual.

You might find an occasional system call that is not documented in the
online manual, such as break(). You’ll need to dig into other resources to
identify these calls.

break() is a very old system call used within libc, but not by
programmers, so it seems to have escaped being docu-
mented in the manpages.

systrace denies all actions that are not explicitly permitted and logs the rejec-
tions using syslog. If a program running under systrace has a problem, you
can find out which system call the program wants to use and decide whether
you want to add it to your policy, reconfigure the program, or live with the
error.

systrace has several important pieces: policies, the policy-generation tools,
the runtime access management tool, and the sysadmin real-time interface.

Restrict System Calls with systrace #15

Chapter 1, Unix Host Security | 37

HACK

This hack gives a brief overview of policies; “Create systrace Policies Auto-
matically” [Hack #16] shows how to use the systrace tools.

The systrace(1) manpage includes a full description of the syntax used for
policy descriptions, but I generally find it easier to look at some examples of
a working policy and then go over the syntax in detail. Since named, the
name server daemon, has been a subject of recent security discussions, let’s
look at the policy that OpenBSD provides for named.

Before reviewing the named policy, let’s review some commonly known facts
about its system-access requirements. Zone transfers and large queries occur
on port 53/TCP, while basic lookup services are provided on port 53/UDP.
OpenBSD chroots named into /var/named by default and logs everything to
/var/log/messages.

Each systrace policy file is in a file named after the full path of the program,
replacing slashes with underscores. The policy file usr_sbin_named contains
quite a few entries that allow access beyond binding to port 53 and writing
to the system log. The file starts with:

Policy for named that uses named user and chroots to /var/named
This policy works for the default configuration of named.
Policy: /usr/sbin/named, Emulation: native

The Policy statement gives the full path to the program this policy is for.
You can’t fool systrace by giving the same name to a program elsewhere on
the system. The Emulation entry shows which Application Binary Interface
(ABI) this policy is for. Remember, BSD systems expose ABIs for a variety of
operating systems. systrace can theoretically manage system-call access for
any ABI, although only native and Linux binaries are supported at the
moment.

The remaining lines define a variety of system calls that the program may or
may not use. The sample policy for named includes 73 lines of system-call
rules. The most basic look like this:

native-accept: permit

When /usr/sbin/named tries to use the accept() system call to accept a con-
nection on a socket, under the native ABI, it is allowed. Other rules are far
more restrictive. Here’s a rule for bind(), the system call that lets a program
request a TCP/IP port to attach to:

native-bind: sockaddr match "inet-*:53" then permit

sockaddr is the name of an argument taken by the accept() system call. The
match keyword tells systrace to compare the given variable with the string
inet-*:53, according to the standard shell pattern-matching (globbing) rules.
So, if the variable sockaddr matches the string inet-*:53, the connection is

38 | Chapter 1, Unix Host Security

#15 Restrict System Calls with systrace
HACK

accepted. This program can bind to port 53, over both TCP and UDP proto-
cols. If an attacker had an exploit to make named attach a command prompt
on a high-numbered port, this systrace policy would prevent that exploit from
working.

At first glance, this seems wrong:

native-chdir: filename eq "/" then permit
native-chdir: filename eq "/namedb" then permit

The eq keyword compares one string to another and requires an exact
match. If the program tries to go to the root directory, or to the directory /
namedb, systrace will allow it. Why would you possibly want to allow named
to access the root directory? The next entry explains why:

native-chroot: filename eq "/var/named" then permit

We can use the native chroot() system call to change our root directory to /
var/named, but to no other directory. At this point, the /namedb directory is
actually /var/named/namedb. We also know that named logs to syslog. To do
this, it will need access to /dev/log:

native-connect: sockaddr eq "/dev/log" then permit

This program can use the native connect() system call to talk to /dev/log and
only /dev/log. That device hands the connections off elsewhere.

We’ll also see some entries for system calls that do not exist:

native-fsread: filename eq "/" then permit
native-fsread: filename eq "/dev/arandom" then permit
native-fsread: filename eq "/etc/group" then permit

systrace aliases certain system calls with very similar functions into groups.
You can disable this functionality with a command-line switch and only use
the exact system calls you specify, but in most cases these aliases are quite
useful and shrink your policies considerably. The two aliases are fsread and
fswrite. fsread is an alias for stat(), lstat(), readlink(), and access(),
under the native and Linux ABIs. fswrite is an alias for unlink(), mkdir(),
and rmdir(), in both the native and Linux ABIs. As open() can be used to
either read or write a file, it is aliased by both fsread and fswrite, depend-
ing on how it is called. So named can read certain /etc files, it can list the
contents of the root directory, and it can access the groups file.

systrace supports two optional keywords at the end of a policy statement:
errorcode and log. The errorcode is the error that is returned when the pro-
gram attempts to access this system call. Programs will behave differently
depending on the error that they receive. named will react differently to a
“permission denied” error than it will to an “out of memory” error. You can
get a complete list of error codes from the errno manpage. Use the error

www.allitebooks.com

http://www.allitebooks.org

Create systrace Policies Automatically #16

Chapter 1, Unix Host Security | 39

HACK

name, not the error number. For example, here we return an error for non-
existent files:

filename sub "<non-existent filename>" then deny[enoent]

If you put the word log at the end of your rule, successful system calls will
be logged. For example, if you wanted to log each time named attached to
port 53, you could edit the policy statement for the bind() call to read:

native-bind: sockaddr match "inet-*:53" then permit log

You can also choose to filter rules based on user ID and group ID, as the
example here demonstrates:

native-setgid: gid eq "70" then permit

This very brief overview covers the vast majority of the rules you will see.
For full details on the systrace grammar, read the systrace manpage. If you
want some help with creating your policies, you can also use systrace’s auto-
mated mode [Hack #16].

The original article that this hack is based on is available
online at http://www.onlamp.com/pub/a/bsd/2003/01/30/Big_
Scary_Daemons.html.

—Michael Lucas

H A C K

#16
Create systrace Policies Automatically Hack #16

Let systrace’s automated mode do your work for you.

In a true paranoid’s ideal world, system administrators would read the
source code for each application on their system and be able to build sys-
tem-call access policies by hand, relying only on their intimate understand-
ing of every feature of the application. Most system administrators don’t
have that sort of time, though, and would have better things to do with that
time if they did.

Luckily, systrace includes a policy-generation tool that will generate a policy
listing for every system call that an application makes. You can use this pol-
icy as a starting point to narrow down the access you will allow the applica-
tion. We’ll use this method to generate a policy for inetd.

Use the -A flag to systrace, and include the full path to the program you
want to run:

systrace -A /usr/sbin/inetd

To pass flags to inetd, add them at the end of the command line.

40 | Chapter 1, Unix Host Security

#16 Create systrace Policies Automatically
HACK

Then use the program for which you’re developing a policy. This system has
ident, daytime, and time services open, so run programs that require those
services. Fire up an IRC client to trigger ident requests, and telnet to ports
13 and 37 to get time services. Once you have put inetd through its paces,
shut it down. inetd has no control program, so you need to kill it by using
the process ID.

Checking the process list will show two processes:

ps -ax | grep inet
24421 ?? Ixs 0:00.00 /usr/sbin/inetd
12929 ?? Is 0:00.01 systrace -A /usr/sbin/inetd

Do not kill the systrace process (PID 12929 in this example); that process
has all the records of the system calls that inetd has made. Just kill the inetd
process (PID 24421), and the systrace process will exit normally.

Now check your home directory for a .systrace directory, which will contain
systrace’s first stab at an inetd policy. Remember, policies are placed in files
named after the full path to the program, replacing slashes with under-
scores.

Here’s the output of ls:

ls .systrace
usr_libexec_identd usr_sbin_inetd

systrace created two policies, not one. In addition to the expected policy for
/usr/sbin/inetd, there’s one for /usr/libexec/identd. This is because inetd imple-
ments time services internally, but it needs to call a separate program to ser-
vice other requests. When inetd spawned identd, systrace captured the identd
system calls as well.

By reading the policy, you can improve your understanding of what the pro-
gram actually does. Look up each system call the program uses, and see if
you can restrict access further. You’ll probably want to look for ways to fur-
ther restrict the policies that are automatically generated. However, these
policies make for a good starting point.

Applying a policy to a program is much like creating the systrace policy
itself. Just run the program as an argument to systrace, using the -a option:

systrace -a /usr/sbin/inetd

If the program tries to perform system calls not listed in the policy, they will
fail. This may cause the program to behave unpredictably. systrace will log
failed entries in /var/log/messages.

To edit a policy, just add the desired statement to the end of the rule list,
and it will be picked up. You could do this by hand, of course, but that’s the

Control Login Access with PAM #17

Chapter 1, Unix Host Security | 41

HACK

hard way. systrace includes a tool to let you edit policies in real time, as the
system call is made. This is excellent for use in a network operations center
environment, where the person responsible for watching the network moni-
tor can also be assigned to watch for system calls and bring them to the
attention of the appropriate personnel. You can specify which program you
wish to monitor by using systrace’s -p flag. This is called attaching to the
program.

For example, earlier we saw two processes containing inetd. One was the
actual inetd process, and the other was the systrace process managing inetd.
Attach to the systrace process, not the actual program (to use the previous
example, this would be PID 12929), and give the full path to the managed
program as an argument:

systrace -p 12929 /usr/sbin/inetd

At first nothing will happen. When the program attempts to make an unau-
thorized system call, however, a GUI will pop up. You will have the option
to allow the system call, deny the system call, always permit the call, or
always deny it. The program will hang until you make a decision, however,
so decide quickly.

Note that these changes will only take effect so long as the current process is
running. If you restart the program, you must also restart the attached
systrace monitor, and any changes you previously set in the monitor will be
gone. You must add those rules to the policy if you want them to be
permanent.

The original article that this hack is based on is available
online at http://www.onlamp.com/pub/a/bsd/2003/02/27/Big_
Scary_Daemons.html.

—Michael Lucas

H A C K

#17
Control Login Access with PAM Hack #17

Seize fine-grained control of when and from where your users can access
your system.

Traditional Unix authentication doesn’t provide much granularity in limit-
ing a user’s ability to log in. For example, how would you limit the hosts
that users can come from when logging into your servers? Your first thought
might be to set up TCP wrappers or possibly firewall rules [Hack #44].

But what if you want to allow some users to log in from a specific host, but
disallow others from logging in from it? Or what if you want to prevent

42 | Chapter 1, Unix Host Security

#17 Control Login Access with PAM
HACK

some users from logging in at certain times of the day because of daily main-
tenance, but allow others (e.g., administrators) to log in at any time they
wish? To get this working with every service that might be running on your
system, you would traditionally have to patch each of them to support this
new functionality. This is where pluggable authentication modules (PAM)
enters the picture.

PAM allows for just this sort of functionality (and more) without the need to
patch all of your services. PAM has been available for quite some time under
Linux, FreeBSD, and Solaris and is now a standard component of the tradi-
tional authentication facilities on these platforms. Many services that need
to use some sort of authentication now support PAM.

Modules are configured for services in a stack, with the authentication pro-
cess proceeding from top to bottom as the access checks complete success-
fully. You can build a custom stack for any service by creating a file in /etc/
pam.d with the same name as the service. If you need even more granularity,
you can include an entire stack of modules by using the pam_stack module.
This allows you to specify another external file containing a stack. If a ser-
vice does not have its own configuration file in /etc/pam.d, it will default to
using the stack specified in /etc/pam.d/other.

There are several types of entries available when configuring a service for use
with PAM. These types allow you to specify whether a module provides
authentication, access control, password change control, or session setup
and teardown. Right now, we are interested in only one of the types: the
account type. This entry type allows you to specify modules that will con-
trol access to accounts that have been authenticated.

In addition to the service-specific configuration files, some modules have
extended configuration information that can be specified in files within the
/etc/security directory. For this hack, we’ll mainly use two of the most use-
ful modules of this type: pam_access and pam_time.

Limiting Access by Origin
The pam_access module allows you to limit where a user or group of users
may log in from. To make use of it, you’ll first need to configure the service
with which you want to use the module. You can do this by editing the ser-
vice’s PAM config file in /etc/pam.d.

Here’s an example of what /etc/pam.d/login might look like:

#%PAM-1.0
auth required pam_securetty.so
auth required pam_stack.so service=system-auth
auth required pam_nologin.so

Control Login Access with PAM #17

Chapter 1, Unix Host Security | 43

HACK

account required pam_stack.so service=system-auth
password required pam_stack.so service=system-auth
session required pam_stack.so service=system-auth
session optional pam_console.so

Notice the use of the pam_stack module; it includes the stack contained
within the system-auth file. Let’s see what’s inside /etc/pam.d/system-auth:

#%PAM-1.0
This file is auto-generated.
User changes will be destroyed the next time authconfig is run.
auth required /lib/security/$ISA/pam_env.so
auth sufficient /lib/security/$ISA/pam_unix.so likeauth nullok
auth required /lib/security/$ISA/pam_deny.so
account required /lib/security/$ISA/pam_unix.so
password required /lib/security/$ISA/pam_cracklib.so retry=3 type=
password sufficient /lib/security/$ISA/pam_unix.so nullok use_authtok
md5 shadow
password required /lib/security/$ISA/pam_deny.so
session required /lib/security/$ISA/pam_limits.so
session required /lib/security/$ISA/pam_unix.so

To add the pam_access module to the login service, you could add another
account entry to the login configuration file, which would, of course, just
enable the module for the login service. Alternatively, you could add the
module to the system-auth file, which would enable it for most of the PAM-
aware services on the system.

To add pam_access to the login service (or any other service, for that mat-
ter), simply add a line like this to the service’s configuration file after any
preexisting account entries:

account required pam_access.so

Now that you’ve enabled the pam_access module for our services, you can
edit /etc/security/access.conf to control how the module behaves. Each entry
in the file can specify multiple users, groups, and hostnames to which the
entry applies, and specify whether it’s allowing or disallowing remote or
local access. When pam_access is invoked by an entry in a service configura-
tion file, it looks through the lines of access.conf and stops at the first match
it finds. Thus, if you want to create default entries to fall back on, you’ll
want to put the more specific entries first, with the general entries following
them.

The general form of an entry in access.conf is:

permission

 : users

 : origins

where permission can be either + or -. This denotes whether the rule grants
or denies access, respectively.

44 | Chapter 1, Unix Host Security

#17 Control Login Access with PAM
HACK

The users portion allows you to specify a list of users or groups, separated
by whitespace. In addition to simply listing users in this portion of the entry,
you can use the form user@host, where host is the local hostname of the
machine being logged into. This allows you to use a single configuration file
across multiple machines, but still specify rules pertaining to specific
machines.

The origins portion is compared against the origin of the access attempt.
Hostnames can be used for remote origins, and the special LOCAL keyword
can be used for local access. Instead of explicitly specifying users, groups, or
origins, you can also use the ALL and EXCEPT keywords to perform set opera-
tions on any of the lists.

Here’s a simple example of locking out the user andrew (Eep! That’s me!)
from a host named colossus:

- : andrew : colossus

Note that if a group that shares its name with a user is specified, the module
will interpret the rule as applying to both the user and the group.

Restricting Access by Time
Now that we’ve covered how to limit where a user may log in from and how
to set up a PAM module, let’s take a look at how to limit what time a user
may log in by using the pam_time module. To configure this module, you
need to edit /etc/security/time.conf. The format for the entries in this file is a
little more flexible than that of access.conf, thanks to the availability of the
NOT (!), AND (&), and OR (|) operators.

The general form for an entry in time.conf is:

services;devices;users;times

The services portion of the entry specifies what PAM-enabled service will
be regulated. You can usually get a full list of the available services by look-
ing at the contents of your /etc/pam.d directory.

For instance, here are the contents of /etc/pam.d on a Red Hat Linux system:

$ ls -1 /etc/pam.d
authconfig
chfn
chsh
halt
internet-druid
kbdrate
login
neat
other

Control Login Access with PAM #17

Chapter 1, Unix Host Security | 45

HACK

passwd
poweroff
ppp
reboot
redhat-config-mouse
redhat-config-network
redhat-config-network-cmd
redhat-config-network-druid
rhn_register
setup
smtp
sshd
su
sudo
system-auth
up2date
up2date-config
up2date-nox
vlock

To set up pam_time for use with any of these services, you’ll need to add a
line like this to the file in /etc/pam.d that corresponds to the service you want
to regulate:

account required /lib/security/$ISA/pam_time.so

The devices portion specifies the terminal device from which the service is
being accessed. For console logins, you can use !ttyp*, which specifies all
TTY devices except for pseudo-TTYs. If you want the entry to affect only
remote logins, use ttyp*. You can restrict it to all users (console, remote,
and X11) by using tty*.

For the users portion of the entry, you can specify a single user or a list of
users, separated with | characters.

Finally, the times portion is used to specify the times when the rule will
apply. Again, you can stipulate a single time range or multiple ranges, sepa-
rated with | characters. Each time range is specified by a combination of one
or more two-character abbreviations denoting the day or days that the rule
will apply, followed by a range of hours for those days.

The abbreviations for the days of the week are Mo, Tu, We, Th, Fr, Sa, and Su.
For convenience, you can use Wk to specify weekdays, Wd to specify the week-
end, or Al to specify every day of the week. If using the latter three abbrevia-
tions, bear in mind that repeated days will be subtracted from the set of days
to which the rule applies (e.g., WkSu would effectively be just Sa). The range
of hours is simply specified as two 24-hour times, minus the colons, sepa-
rated by a dash (e.g., 0630-1345 is 6:30 A.M. to 1:45 P.M.).

46 | Chapter 1, Unix Host Security

#18 Restrict Users to SCP and SFTP
HACK

If you wanted to disallow access to the user andrew from the local console
on weekends and during the week after hours, you could use an entry like
this:

system-auth;!ttyp*;andrew;Wk1700-0800|Wd0000-2400

Or perhaps you want to limit remote logins through SSH during a system
maintenance window lasting from 7 P.M. Friday to 7 A.M. Saturday, but
you want to allow a sysadmin to log in:

sshd;ttyp*;!andrew;Fr1900-0700

As you can see, there’s a lot of flexibility for creating entries, thanks to the
logical Boolean operators that are available. Just make sure that you remem-
ber to configure the service file in /etc/pam.d for use with pam_time when you
create entries in /etc/security/time.conf.

H A C K

#18
Restrict Users to SCP and SFTP Hack #18

Provide restricted file-transfer services to your users without resorting to
FTP.

Sometimes, you’d like to provide file-transfer services to your users without
setting up an FTP server. This leaves the option of letting them transfer files
to and from your server using SCP or SFTP. However, because of the way
OpenSSH’s sshd implements these subsystems, it’s usually impossible to do
this without also giving the user shell access to the system. When an SCP or
SFTP session is started, the daemon executes another executable to handle
the request using the user’s shell, which means the user needs a valid shell.

One way to get around this problem is to use a custom shell that is capable
of executing only the SCP and SFTP subsystems. One such program is rssh
(http://www.pizzashack.org/rssh/), which has the added benefit of being
able to chroot(), enabling you to limit access to the server’s filesystem as
well.

Setting Up rssh
To set up rssh, first download the compressed archive from program’s web
site and unpack it. Then, run the standard ./configure and make:

$ tar xfz rssh-2.3.2.tar.gz
$ cd rssh-2.3.2
$./configure && make

Once rssh has finished compiling, become root and run make install. You
can now create an account and set its shell to rssh. Try logging into it via

Restrict Users to SCP and SFTP #18

Chapter 1, Unix Host Security | 47

HACK

SSH. You’ll notice that the connection is closed before you’re able to com-
pletely log in. You should also see this before the connection is closed:

This account is restricted by rssh.
This user is locked out.

If you believe this is in error, please contact your system administrator.

You should get similar results if you try to access the account with scp or
sftp, because rssh’s default configuration locks out everything. To enable
SFTP and SCP, add the following lines to your rssh.conf file (the file should
be located in /usr/local/etc or somewhere similar):

allowsftp
allowscp

Now, try accessing the account with sftp:

$ sftp rssh_test@freebsd5-vm1
Connecting to freebsd5-vm1...
Password:
sftp>

Configuring chroot()
This has been easy so far. Now comes the hard part: configuring chroot().
Here you have two options: you can specify a common environment for all
users that have been configured to use rssh, or you can create user-specific
chroot() environments.

To create a global environment, you just need to specify the directory to
chroot() by using the chrootpath configuration directive. For instance, to
have rssh chroot() to /var/rssh_chroot, set up a proper environment there
and add the following line to your rssh.conf file:

chrootpath=/var/rssh_chroot

Setting up rssh to use chroot() has one major caveat, though. Supporting
chroot() requires the use of an SUID helper binary to perform the chroot()
call for the user that has logged in. This is because only the root user can
issue a chroot() call. This binary is extremely limited; all it does is perform
the chroot() and take steps to ensure that it can only be executed by rssh.
However, it’s something to keep in mind if you consider this a risk.

For a user-specific chroot() environment, you can add a line like this:

user=rssh_test:077:00011:/var/rssh_chroot

The first set of numbers after the username is the umask. The second set of
digits is actually a bit-vector specifying the allowed means of access. From
left to right, these are Rsync, Rdist, CVS, SFTP, and SCP. In the previous
example, only SFTP and SCP are allowed.

48 | Chapter 1, Unix Host Security

#18 Restrict Users to SCP and SFTP
HACK

Finally, the last portion of the line specifies which directory to chroot() to.
One thing allowed by this configuration syntax that isn’t immediately obvi-
ous is the ability to specify per-user configurations without a directory to
chroot() to: simply omit the directory. So, if you just want to allow one user
to use only SCP but not SFTP (so they can’t browse the filesystem), you can
add a line similar to this one:

user=rssh_test:077:00001

Now, all you need to do is set up the sandbox environment. Create a bin
directory within the root directory of your sandbox and copy /bin/sh into it.
Then, copy all of the requisite libraries for it to their proper places:

cd /var/rssh_chroot
mkdir bin && cp /bin/sh bin
ldd bin/sh
bin/sh:
 libedit.so.4 => /lib/libedit.so.4 (0x2808e000)
 libncurses.so.5 => /lib/libncurses.so.5 (0x280a1000)
 libc.so.5 => /lib/libc.so.5 (0x280e0000)
 # mkdir lib
 # cp /lib/libedit.so.4 /lib/libncurses.so.5 /lib/libc.so.5 lib

Now, copy your scp and sftp binaries and all of their requisite libraries to
their proper locations. Here is an example of doing so for scp (sftp should
require the same libraries):

ldd usr/bin/scp
usr/bin/scp:
 libssh.so.2 => /usr/lib/libssh.so.2 (0x2807a000)
 libcrypt.so.2 => /lib/libcrypt.so.2 (0x280a9000)
 libcrypto.so.3 => /lib/libcrypto.so.3 (0x280c1000)
 libz.so.2 => /lib/libz.so.2 (0x281b8000)
 libc.so.5 => /lib/libc.so.5 (0x281c8000)
 libgssapi.so.7 => /usr/lib/libgssapi.so.7 (0x282a2000)
 libkrb5.so.7 => /usr/lib/libkrb5.so.7 (0x282b0000)
 libasn1.so.7 => /usr/lib/libasn1.so.7 (0x282e8000)
 libcom_err.so.2 => /usr/lib/libcom_err.so.2 (0x28309000)
 libmd.so.2 => /lib/libmd.so.2 (0x2830b000)
 libroken.so.7 => /usr/lib/libroken.so.7 (0x28315000)
cp /lib/libcrypt.so.2 /lib/libcrypto.so.3 /lib/libz.so.2 \
/lib/libc.so.5 /lib/libmd.so.2 lib
mkdir -p usr/lib
cp /usr/lib/libssh.so.2 /usr/lib/libgssapi.so.7 /usr/lib/libkrb5.so.7 \
/usr/lib/libasn1.so.7 /usr/lib/libcom_err.so.2 \
/usr/lib/libroken.so.7 usr/lib/

Next, copy rssh_chroot_helper to the proper place and copy your dynamic
linker (the program that is responsible for issuing the chroot() call):

mkdir -p usr/local/libexec
cp /usr/local/libexec/rssh_chroot_helper usr/local/libexec
mkdir libexec && cp /libexec/ld-elf.so.1 libexec/

www.allitebooks.com

http://www.allitebooks.org

Use Single-Use Passwords for Authentication #19

Chapter 1, Unix Host Security | 49

HACK

This example is for FreeBSD. For Linux, you’ll likely want to
use /lib/ld-linux.so.2.

Then, recreate /dev/null in your chroot() environment:

ls -la /dev/null
crw-rw-rw- 1 root wheel 2, 2 Apr 10 16:22 /dev/null
mkdir dev && mknod dev/null c 2 2 && chmod a+w dev/null

Now create a dummy password file:

mkdir etc && cp /etc/passwd etc

Edit the password file to remove all the entries for other accounts, leaving
only the accounts that will be used in the jail.

Now, try connecting with sftp:

$ sftp rssh_test@freebsd5-vm1
Connecting to freebsd5-vm1...
Password:
sftp> ls /etc
/etc/.
/etc/..
/etc/passwd

All that’s left to do is to create a /dev/log and change your syslogd startup
options to listen for log messages on the /dev/log in your chroot() environ-
ment. Using the -a option and specifying additional log sockets will usually
take care of this:

/sbin/syslogd -a /home/rssh_test/dev/log

rssh is an incredibly useful tool that can remove the need for insecure legacy
services. In addition to supporting SCP and SFTP, it supports CVS, Rdist,
and Rsync. Check out the rssh(1) and rssh.conf(5) manual pages for more
information on setting those up.

H A C K

#19
Use Single-Use Passwords for Authentication Hack #19

Use one-time passwords to access servers from possibly untrustworthy
computers and to limit access to accounts.

Generally, it’s best not to use untrusted computers to access a server. The
pitfalls are plentiful. However, you can mitigate some part of the risk by
using one-time passwords (OTPs) for authentication. An even more interest-
ing use for them, though, is to limit access to accounts used for file transfer.

That is, if you want to provide a file to someone or allow someone to upload
a file only once, you can set up an account to use OTPs. Once the person
you’ve given the password to has done her thing (and disconnected), she no

50 | Chapter 1, Unix Host Security

#19 Use Single-Use Passwords for Authentication
HACK

longer has access to the account. This works well with rssh [Hack #18], since it
prevents the user from accessing the system outside of a specified directory
and from generating additional OTPs.

For this purpose, FreeBSD provides One-time Passwords in Everything
(OPIE), which is thoroughly supported throughout the system. OpenBSD
uses a similar system called S/Key.

OPIE Under FreeBSD
Setting up an account to use OPIE under FreeBSD is fairly simple. First, run
opiepasswd to create an entry in /etc/opiepasswd and to seed the OTP
generator:

$ opiepasswd -c
Adding andrew:
Only use this method from the console; NEVER from remote. If you are using
telnet, xterm, or a dial-in, type ^C now or exit with no password.
Then run opiepasswd without the -c parameter.
Using MD5 to compute responses.
Enter new secret pass phrase:
Again new secret pass phrase:

ID andrew OTP key is 499 fr8266
HOVE TEE LANG FOAM ALEC THE

The 499 in the output is the OTP sequence, and fr8266 is the seed to use
with it in generating the OTP. Once the sequence reaches 0, you’ll need to
run opiepasswd again to reseed the system.

The -c option tells it to accept password input directly. Needless to say, you
shouldn’t be setting this up over insecure channels; if you do, you’ll defeat
the purpose of OTP. Run this from the local console or over an SSH
connection only!

Then, try logging into the system remotely:

$ ssh freebsd5-vm1
otp-md5 497 fr8266 ext
Password:

The first line of output is the arguments to supply to opiekey, which is used
to generate the proper OTP to use. otp-md5 specifies the hashing algorithm
that has been used. As before, 497 specifies the OTP sequence, and fr8266 is
the seed.

Now, generate the password:

$ opiekey 497 fr8266
Using the MD5 algorithm to compute response.
Reminder: Don't use opiekey from telnet or dial-in sessions.

Use Single-Use Passwords for Authentication #19

Chapter 1, Unix Host Security | 51

HACK

Enter secret pass phrase:
DUET SHAW TWIT SKY EM CITE

To log in, enter the passphrase that was generated. Once you’ve logged in,
you can run opieinfo and see that the sequence number has been
decremented:

$ opieinfo
496 fr8266

It’s also possible to generate multiple passwords at the same time with
opiekey:

$ opiekey -n 5 496 fr8266
Using the MD5 algorithm to compute response.
Reminder: Don't use opiekey from telnet or dial-in sessions.
Enter secret pass phrase:
492: EVIL AMID EVEN CRAB FRAU NULL
493: GEM SURF LONG TOOK NAN FOUL
494: OWN SOB AUK RAIL SEED HUGE
495: GAP THAT LORD LIES BOMB ROUT
496: RON ABEL LIE GWYN TRAY ROAR

You might want to do this before traveling, so you can print out the pass-
words and carry them with you.

Be sure not to include the hostname on the same sheet of
paper. If you do and you lose it, anyone who finds it can eas-
ily gain access to your system.

If you have a PDA, another option is to use PilOTP (http://astro.uchicago.edu/
home/web/valdes/pilot/pilOTP/), an OTP generator for Palm OS devices,
which supports both OPIE and S/Key systems.

S/Key Under OpenBSD
Setting up S/Key under OpenBSD is similar to setting up OPIE. First, the
superuser needs to enable it by running skeyinit -E. Then, as a normal user,
run skeyinit again. It will prompt you for your system password and then
ask you for a password to initialize the S/Key system:

$ skeyinit
Reminder - Only use this method if you are directly connected
 or have an encrypted channel. If you are using telnet,
 hit return now and use skeyinit -s.
Password:
[Adding andrew with md5]
Enter new secret passphrase:
Again secret passphrase:

ID andrew skey is otp-md5 100 open66823
Next login password: DOLE WALE MAKE COAT BALE AVID

52 | Chapter 1, Unix Host Security

#20 Restrict Shell Environments
HACK

To log in, you need to append :skey to your username:

$ ssh andrew:skey@puffy
otp-md5 99 open66823
S/Key Password:

Then, in another terminal, run skey and enter the password you entered
when you ran skeyinit:

$ skey -md5 99 open66823
Reminder - Do not use this program while logged in via telnet.
Enter secret passphrase:
SOME VENT BUDD GONG TEAR SALT

Here’s the output of skeyinfo after logging in:

$ skeyinfo
98 open66823

Although it’s not wise to use untrusted computers to access your systems,
you can see that one-time passwords can help mitigate the possible ill
effects. Additionally, they can have other uses, such as combining them with
other components to allow a user to access a protected resource only a lim-
ited number of times. With a little ingenuity, you can come up with some
other uses, too.

H A C K

#20
Restrict Shell Environments Hack #20

Keep your users from shooting themselves (and you) in the foot.

Sometimes a sandboxed environment [Hack #10] is overkill for your needs. But
if you want to set up a restricted environment for a group of users that
allows them to run only a few particular commands, you’ll have to dupli-
cate all of the libraries and binaries for those commands for each user. This
is where restricted shells come in handy. Many shells include such a feature,
which is usually invoked by running the shell with the -r switch. While not
as secure as a system-call-based sandboxed environment, a restricted shell
can work well if you trust your users not to be malicious (but worry that
some might be curious to an unhealthy degree).

Some common features of restricted shells are the abilities to prevent a pro-
gram from changing directories, to allow the execution of commands only
using absolute pathnames, and to prohibit executing commands in other
subdirectories. In addition to these restrictions, all of the command-line
redirection operators are disabled. With these features, restricting the com-
mands a user can execute is as simple as picking and choosing which com-
mands should be available and making symbolic links to them inside the
user’s home directory. If a sequence of commands needs to be executed, you
can also create shell scripts owned by another user. These scripts will

Restrict Shell Environments #20

Chapter 1, Unix Host Security | 53

HACK

execute in an unrestricted environment and can’t be edited within the
restricted environment by the user.

Let’s try running a restricted shell and see what happens:

$ bash -r
bash: SHELL: readonly variable
bash: PATH: readonly variable
bash-2.05b$ ls
bash: ls: No such file or directory
bash-2.05b$ /bin/ls
bash: /sbin/ls: restricted: cannot specify `/' in command names
bash-2.05b$ exit
$ ln -s /bin/ls .
$ bash -r
bash-2.05b$ ls -la
total 24
drwx------ 2 andrew andrew 4096 Oct 20 08:01 .
drwxr-xr-x 4 root root 4096 Oct 20 14:16 ..
-rw------- 1 andrew andrew 18 Oct 20 08:00 .bash_history
-rw-r--r-- 1 andrew andrew 24 Oct 20 14:16 .bash_logout
-rw-r--r-- 1 andrew andrew 197 Oct 20 07:59 .bash_profile
-rw-r--r-- 1 andrew andrew 127 Oct 20 07:57 .bashrc
lrwxrwxrwx 1 andrew andrew 7 Oct 20 08:01 ls -> /bin/ls

Restricted ksh is a little different in that it will allow you to run scripts and
binaries that are in your PATH, which can be set before entering the shell:

$ rksh
$ ls -la
total 24
drwx------ 2 andrew andrew 4096 Oct 20 08:01 .
drwxr-xr-x 4 root root 4096 Oct 20 14:16 ..
-rw------- 1 andrew andrew 18 Oct 20 08:00 .bash_history
-rw-r--r-- 1 andrew andrew 24 Oct 20 14:16 .bash_logout
-rw-r--r-- 1 andrew andrew 197 Oct 20 07:59 .bash_profile
-rw-r--r-- 1 andrew andrew 127 Oct 20 07:57 .bashrc
lrwxrwxrwx 1 andrew andrew 7 Oct 20 08:01 ls -> /bin/ls
$ which ls
/bin/ls
$ exit

This worked because /bin was in the PATH before we invoked ksh. Now let’s
change the PATH and run rksh again:

$ export PATH=.
$ /bin/rksh
$ /bin/ls
/bin/rksh: /bin/ls: restricted
$ exit
$ ln -s /bin/ls .
$ ls -la
total 24

54 | Chapter 1, Unix Host Security

#21 Enforce User and Group Resource Limits
HACK

drwx------ 2 andrew andrew 4096 Oct 20 08:01 .
drwxr-xr-x 4 root root 4096 Oct 20 14:16 ..
-rw------- 1 andrew andrew 18 Oct 20 08:00 .bash_history
-rw-r--r-- 1 andrew andrew 24 Oct 20 14:16 .bash_logout
-rw-r--r-- 1 andrew andrew 197 Oct 20 07:59 .bash_profile
-rw-r--r-- 1 andrew andrew 127 Oct 20 07:57 .bashrc
lrwxrwxrwx 1 andrew andrew 7 Oct 20 08:01 ls -> /bin/ls

Restricted shells are incredibly easy to set up and can provide minimal
restricted access. They might not be able to keep out determined attackers,
but they certainly make a hostile user’s job much more difficult.

H A C K

#21
Enforce User and Group Resource Limits Hack #21

Make sure resource-hungry users don’t bring down your entire system.

Whether it’s through malicious intent or an unintentional slip, having a user
bring your system down to a slow crawl by using too much memory or CPU
time is no fun at all. One popular way of limiting resource usage is to use the
ulimit command. This method relies on a shell to limit its child processes,
and it is difficult to use when you want to give different levels of usage to
different users and groups. Another, more flexible way of limiting resource
usage is with the PAM module pam_limits.

pam_limits is preconfigured on most systems that have PAM [Hack #17]

installed. All you should need to do is edit /etc/security/limits.conf to config-
ure specific limits for users and groups.

The limits.conf configuration file consists of single-line entries describing a
single type of limit for a user or group of users. The general format for an
entry is:

domain type resource value

The domain portion specifies to whom the limit applies. You can specify sin-
gle users here by name, and groups can be specified by prefixing the group
name with an @. In addition, you can use the wildcard character * to apply
the limit globally to all users except for root. The type portion of the entry
specifies whether it is a soft or hard resource limit. The user can increase
soft limits, whereas hard limits can be changed only by root.

You can specify many types of resources for the resource portion of the
entry. Some of the more useful ones are cpu, memlock, nproc, and fsize.
These allow you to limit CPU time, total locked-in memory, number of pro-
cesses, and file size, respectively. CPU time is expressed in minutes, and
sizes are in kilobytes. Another useful limit is maxlogins, which allows you to
specify the maximum number of concurrent logins that are permitted.

Automate System Updates #22

Chapter 1, Unix Host Security | 55

HACK

One nice feature of pam_limits is that it can work together with ulimit to
allow the user to raise her limit from the soft limit to the imposed hard limit.

Let’s try a quick test to see how it works. First, we’ll limit the number of
open files for the guest user by adding these entries to limits.conf:

guest soft nofile 1000
guest hard nofile 2000

Now the guest account has a soft limit of 1,000 concurrently open files and a
hard limit of 2,000. Let’s test it out:

su - guest
$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
file size (blocks, -f) unlimited
max locked memory (kbytes, -l) unlimited
max memory size (kbytes, -m) unlimited
open files (-n) 1000
pipe size (512 bytes, -p) 8
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 1024
virtual memory (kbytes, -v) unlimited
$ ulimit -n 2000
$ ulimit -n
2000
$ ulimit -n 2001
-bash: ulimit: open files: cannot modify limit: Operation not permitted

There you have it. In addition to open files, you can create resource limits
for any number of other resources and apply them to specific users or entire
groups. As you can see, pam_limits is quite powerful and useful in that it
doesn’t rely upon the shell for enforcement.

H A C K

#22
Automate System Updates Hack #22

Patch security holes in a timely manner to prevent intrusions.

Updating and patching your systems in a timely manner is one of the most
important things you can do to help protect them from the deluge of newly
discovered security vulnerabilities. Unfortunately, this task often gets
pushed to the wayside in favor of “more pressing” issues, such as perfor-
mance tuning, hardware maintenance, and software debugging. In some cir-
cles, it’s viewed as a waste of time and overhead that doesn’t contribute to
the primary function of a system. Coupled with management demands to
maximize production, the task of keeping a system up-to-date is often
pushed even further down on the to-do list.

56 | Chapter 1, Unix Host Security

#22 Automate System Updates
HACK

Updating a system can be very repetitive and time-consuming if you’re not
using scripting to automate it. Fortunately, most Linux distributions make
their updated packages available for download from a standard online loca-
tion, and you can monitor that location for changes and automatically
detect and download the new updates when they’re made available. To
demonstrate how to do this on an RPM-based distribution, we’ll use
AutoRPM (http://www.autorpm.org).

AutoRPM is a powerful Perl script that allows you to monitor multiple FTP
sites for changes. It will automatically download new or changed packages
and either install them automatically or alert you so that you may do so. In
addition to monitoring single FTP sites, you can also monitor a pool of mir-
ror sites, to ensure that you still get your updates if the FTP server is busy.
AutoRPM will monitor busy FTP servers and keep track of how many times
connections to them have been attempted. Using this information, it assigns
internal scores to each of the FTP sites configured within a given pool, with
the outcome that the server in the pool that is available most often will be
checked first.

To use AutoRPM, download the latest package and install it like this:

rpm -ivh autorpm-3.3.3-1.noarch.rpm

Although a tarball is also available, installation is a little trickier than the
typical make; make install, so it is recommended that you stick to installing
from the RPM package.

By default AutoRPM is configured to monitor for updated packages for Red
Hat’s Linux distribution, but you’ll probably want to change this to use
Fedora or another RPM-based distribution. To do this, open the AutoRPM
configuration file, /etc/autorpm.d/autorpm.conf, and find the following
section:

######################## BEGIN Red Hat Linux
#################################
This automatically determines the version of Red Hat Linux
You have... you can comment this out and define it yourself
if you want to
Eval_Var("RHVersion", "sed 's/\(Red Hat Linux \)\?release \([^]*\) (.*)/\2/
' /etc/redhat-release");
#Set_Var("RHVersion", "9.0");

Look for official Red Hat updates
(won't automatically install anything unless you edit the file)
Config_File("/etc/autorpm.d/redhat-updates.conf");
########################## END Red Hat Linux
#################################

Automate System Updates #22

Chapter 1, Unix Host Security | 57

HACK

Comment out the Eval_var, Set_Var, and Config_File lines. In the next
section, uncomment the Eval_Var and Config_File lines to make it like this:

######################## BEGIN Fedora Linux
#################################
This automatically determines your version of Fedora Linux
Eval_Var("FedoraVersion", "rpm -q fedora-release | awk -F'-' {'print $3'}");

Look for official Fedora updates
(won't automatically install anything unless you edit the file)
Config_File("/etc/autorpm.d/fedora-updates.conf");
########################## END Fedora Linux
#################################

After you’ve done that, you can add a crontab entry for /etc/autorpm.d/
autorpm.cron to schedule AutoRPM to run at a regular interval. When it
runs, it will automatically download any pending updates.

Another way to perform automatic updates is to use the yum program. By
default, yum both downloads and installs updates, but you can change this
behavior by installing the downloadonly plug-in (http://linux.duke.edu/
projects/yum/download/yum-utils/), causing yum to skip the installation step.
You can then use the following command to download any updates that are
available:

yum --downloadonly -y update

Put this command in a crontab entry so that it will run at a regular interval.
Then, when you’ve reviewed the updates that you’ve downloaded, you can
use the usual yum update command to install them.

You can achieve similar results on Debian-based systems with apt-get -d -y
upgrade. This command downloads any pending updates to packages that
you have installed. When you’ve decided to install them, you can do so by
running apt-get upgrade.

As you can see, there are many ways that you can keep a system updated
with the latest fixed packages. Whatever you decide to do, it’s important to
stay current with operating system patches because of the security fixes they
contain. If you fall behind, you’re a much easier target for an attacker.

58

Chapter 2C H A P T E R T W O

Windows Host Security
Hacks 23–36

This chapter shows some ways to keep your Windows system up-to-date
and secure, thereby making your network a safer place to work (and have
fun). Although many may scoff at the mention of Windows and security in
the same sentence, you actually can make a Windows system fairly secure
without too much effort.

One of the main reasons that Windows gets a bad rap is the poorly adminis-
tered state in which Windows machines seem to be kept. The recent deluge
of worm and virus attacks that have brought down many a network shows
this to hold true. A lot of this can be traced back to the “ease” of administra-
tion that Windows seems to provide by effectively keeping the Windows
administrator out of the loop about the inner workings of her environment
(and wresting control from her hands).

This chapter seeks to remedy that problem to some degree by showing you
ways to see exactly what your server is really doing. While this might seem
like old hat to a Unix sysadmin, getting details on open ports and running
services is often a new concept to the average Windows administrator.

In addition, this chapter shows how to disable some Windows “features,”
such as sharing out all your files automatically and truncating log files.
You’ll also learn how to enable some of the auditing and logging features of
Windows, to give you early warning of possible security incidents (rather
than waiting for the angry phone call from someone at the wrong end of a
denial-of-service attack originating from your network).

This chapter also covers how to use and manage the Windows Encrypting
File System (EFS) for encrypting files and folders, how to configure auto-
matic updates on a network of computers, and how to check for accounts
that have passwords that never expire.

Check Servers for Applied Patches #23

Chapter 2, Windows Host Security | 59

HACK

H A C K

#23
Check Servers for Applied Patches Hack #23

Make sure your Windows servers have the latest patches installed.

Keeping a network of systems patched and up-to-date is hard enough in
Unix, but it can be even more difficult with Windows systems. A lack of
robust built-in scripting and remote access capabilities makes Windows
unsuitable for automation. Nevertheless, before you even attempt to update
your systems, you need to know which updates have been applied to each
system; otherwise, you might waste time and effort updating systems that
don’t need it.

Clearly, this problem gets more difficult as the number of systems that need
to be managed increases. You can avoid much of the extra work of manu-
ally updating systems by using the HFNetChk tool, which was originally a
standalone program from Shavlik Technologies. It is now a part of
Microsoft’s Baseline Security Analyzer (http://www.microsoft.com/technet/
security/tools/mbsa1/default.mspx) and is available through its command-line
interface, mbsacli.exe.

Not only can HFNetChk remotely check the status of Windows Server 2003
and Windows XP/2000/NT, but it can also check whether critical updates
for IIS, SQL Server, Exchange Server, Media Player, and Internet Explorer
have been applied. Although it can only check the update status of a system
(and won’t actually bring the system up-to-date), it is still an invaluable
timesaving tool.

HFNetChk works by downloading a signed and compressed XML file from
Microsoft that contains information on all currently available updates. This
information includes checksums and versions of files covered by each
update, as well as the Registry keys modified by each update. Additional
dependency information is also included.

When scanning a system, HFNetChk first scans the Registry for the keys that
are associated with the most current set of updates available for the current
system configuration. If any of these Registry keys are missing or do not
match what is contained in the XML file, it flags the update as not having
been installed. If the Registry key for an update is present and matches the
information in the XML file, HFNetChk then attempts to verify whether the
files specified in the update information are present on the system and
whether their versions and checksums match.

If any of the checks fails, HFNetChk flags the update. All flagged updates are
then displayed in a report, along with a reference to the Microsoft Knowl-
edge Base article with more information on the specific update.

60 | Chapter 2, Windows Host Security

#23 Check Servers for Applied Patches
HACK

Using HFNetChk
To install HFNetChk on your system, you first need to download and install
the Microsoft Baseline Security Analyzer. To run HFNetChk, open a com-
mand prompt and change to the directory that was created during the install
(C:\Program Files\Microsoft Baseline Security Analyzer is the default).

To check the update status of the local system, run this command:

C:\Program Files\Microsoft Baseline Security Analyzer>mbsacli /hf
Microsoft Baseline Security Analyzer
Version 1.2.1 (1.2.4013.0)
(C) Copyright 2002-2004 Microsoft Corporation. All rights reserved.
HFNetChk developed for Microsoft Corporation by Shavlik Technologies, LLC.
(C) Copyright 2002-2004 Shavlik Technologies, LLC. www.shavlik.com

Please use the -v switch to view details for
Patch NOT Found, Warning and Note messages

Scanning BLACKBIRD
Attempting to get CAB from http://go.microsoft.com/fwlink/?LinkId=18922
XML successfully loaded.

Done scanning BLACKBIRD

BLACKBIRD (192.168.0.67)

 * WINDOWS XP PROFESSIONAL SP2

 Note MS05-009 887472
 Patch NOT Found MS06-021 916281
 Patch NOT Found MS06-022 918439
 Patch NOT Found MS06-025 911280
 Patch NOT Found MS06-032 917953

The first column tells why the check for a particular update failed. The sec-
ond column shows which update failed the check, and the third column lists
a Microsoft Knowledge Base (http://support.microsoft.com) article number
that you can refer to for more information on the issue fixed by that particu-
lar update.

If you want more information on why a particular check failed, you can run
the command with the -v (verbose) switch. Here are the results of the previ-
ous command, this time with the verbose switch:

C:\Program Files\Microsoft Baseline Security Analyzer>mbsacli /hf -v
Microsoft Baseline Security Analyzer
Version 1.2.1 (1.2.4013.0)
(C) Copyright 2002-2004 Microsoft Corporation. All rights reserved.

Check Servers for Applied Patches #23

Chapter 2, Windows Host Security | 61

HACK

HFNetChk developed for Microsoft Corporation by Shavlik Technologies, LLC.
(C) Copyright 2002-2004 Shavlik Technologies, LLC. www.shavlik.com

Scanning BLACKBIRD
Attempting to get CAB from http://go.microsoft.com/fwlink/?LinkId=18922
XML successfully loaded.

Done scanning BLACKBIRD

BLACKBIRD (192.168.0.67)

 * WINDOWS XP PROFESSIONAL SP2

 Note MS05-009 887472
 Please refer to 306460 for a detailed explanation.

 Patch NOT Found MS06-021 916281
 File version is less than expected.
 [C:\WINDOWS\system32\browseui.dll, 6.0.2900.2861 < 6.0.2900.2904]

 Patch NOT Found MS06-022 918439
 File version is less than expected.
 [C:\WINDOWS\system32\jgdw400.dll, 82.0.0.0 < 106.0.0.0]

 Patch NOT Found MS06-025 911280
 File version is less than expected.
 [C:\WINDOWS\system32\rasmans.dll, 5.1.2600.2180 < 5.1.2600.2908]

 Patch NOT Found MS06-032 917953
 File version is less than expected.
 [C:\WINDOWS\system32\drivers\tcpip.sys, 5.1.2600.2827 <
 5.1.2600.2892]

After applying the listed updates, you should see something like this:

Scanning BLACKBIRD
.............................
Done scanning BLACKBIRD

PLUNDER(192.168.0.67)

 * WINDOWS XP PROFESSIONAL SP2

 Information
 All necessary hotfixes have been applied.

You need Administrator privileges to scan the local system. Likewise, to
scan a remote machine, you will need Administrator privileges on that
machine. There are several ways to scan remote machines. To scan a single
remote system, you can specify a NetBIOS name with the -h switch or an IP
address with the -i switch.

62 | Chapter 2, Windows Host Security

#23 Check Servers for Applied Patches
HACK

For example, to scan the machine PLUNDER from another machine, use
either of these two commands:

mbsacli /hf -h PLUNDER
mbsacli /hf -i 192.168.0.65

You can also scan a handful of additional systems by listing them on the
command line, with commas separating each NetBIOS name or IP address.

Note that, in addition to having Administrator privileges on the remote
machine, you must also ensure that you have not disabled the default shares
[Hack #32]. If the default administrative shares have been disabled, HFNetChk
will not be able to check for the proper files on the remote system and, con-
sequently, will not be able to determine whether an update was applied.

If you want to scan a large group of systems, you have several options. Using
the -fh option, you can specify a file containing up to 256 NetBIOS host-
names (one on each line) to be scanned. You can do the same thing with IP
addresses, using the -fip option. You can also specify ranges of IP addresses
by using the -r option.

For example, you could run a command like this to scan systems with IP
addresses in the range 192.168.1.23 to 192.168.1.172:

mbsacli /hf -r 192.168.1.123 - 192.168.1.172

All of these options are very flexible, and you can use them in any combina-
tion to specify which remote systems will be scanned.

In addition to specifying remote systems by NetBIOS name and IP address,
you can scan systems by domain name by using the -d option, or you can
scan your entire local network segment by using the -n command-line
option.

When scanning systems from a personal workstation, the -u and -p options
can prove useful. These allow you to specify a username and password to
use when accessing the remote systems. These switches are particularly
handy if you don’t normally log in using the Administrator account. (The
account that is specified with the -u option will, of course, need to have
Administrator privileges on the remote machines being scanned.)

Also, if you’re scanning a large number of systems, you might want to use
the -t option. This allows you to specify the number of threads used by the
scanner, and increasing this value generally speeds up scanning. Valid val-
ues are from 1 to 128; the default value is 64.

If you are scanning more than one machine, a huge amount of data will sim-
ply be dumped to the screen. Use the -f option to specify a file to store the
results of the scan in, and view it at your leisure using a text editor.

Use Group Policy to Configure Automatic Updates #24

Chapter 2, Windows Host Security | 63

HACK

HFNetChk is a flexible tool and can be used to check the update statuses of
a large number of machines in a very short amount of time. It is especially
useful when a new worm has come onto the scene and you need to know if
all of your systems are up-to-date on their patches.

See Also
• Frequently Asked Questions about the Microsoft Network Security

Hotfix Checker (Hfnetchk.exe) Tool: Knowledge Base Article 305385, at
http://support.microsoft.com/default.aspx?scid=kb;EN-US;

H A C K

#24
Use Group Policy to Configure Automatic Updates Hack #24

Use Group Policy to simplify the configuration of Automatic Updates in an
Active Directory environment.

Configuring Automatic Updates is a lot of work if you have to do it sepa-
rately on every machine on your network. Fortunately, in an Active Direc-
tory environment, you can use Group Policy to simplify the job.

First, open an existing Group Policy Object (GPO), such as the Default
Domain Policy, or create a new GPO and link it to the appropriate domain,
organizational unit (OU), or site. Then, add the wuau.adm template to the
GPO so that the Group Policy settings for Automatic Updates will be added
to your GPO. This is done as follows.

These steps are unnecessary if you have Windows Server
2003.

Begin by expanding Computer Configuration to show Administrative Tem-
plates. Next, right-click on Administrative Templates, select Add/Remove
Template, click Add, select wuau.adm from the list of templates in the
%Windir%\Inf folder, click Open, and then click Close.

Now, configure the GPO settings for Automatic Updates by expanding
Computer Configuration ➝ Administrative Templates ➝ Windows Compo-
nents and selecting Windows Update in the pane on the left, as shown in
Figure 2-1.

Let’s dig into what the various settings in Figure 2-1 mean. The first setting,
“Configure Automatic Updates,” lets you perform basic configuration of
Automatic Updates for computers in the domain, OU, or site to which the
GPO is linked. The options here are the same as the options available when
you manually configure the feature using the Control Panel’s Automatic

64 | Chapter 2, Windows Host Security

#24 Use Group Policy to Configure Automatic Updates
HACK

Updates utility (Windows 2000) or System utility (Windows Server 2003
and Windows XP). The next setting, “Specify intranet Microsoft update ser-
vice location,” applies only if you plan on using Software Update Services
(SUS) to deploy updates.

The “Reschedule Automatic Updates schedule installations” option deter-
mines how long Automatic Updates will wait after the computer restarts
before installing updates that have already been downloaded and are past
the scheduled time for installation. The value ranges from 1 to 60 (minutes);
the default is 1 if the setting is not configured and 5 when the policy is
enabled. Disabling this policy defers the installation of overdue updates until
the next scheduled installation day and time.

Finally, “No auto-restart for scheduled Automatic Updates installations”
determines whether the logged-on user will be forcibly logged off in order to
complete the installation process when a reboot is required. Enabling this
policy means that machines will not be forcibly rebooted. While this might
seem like a good idea (so users won’t lose their work), it does have a down-
side: Automatic Updates won’t be able to check the Windows Update web
site for new updates until the machine is rebooted.

Figure 2-1. Using Group Policy to configure Automatic Updates

Use Group Policy to Configure Automatic Updates #24

Chapter 2, Windows Host Security | 65

HACK

Enabling these policy settings will override any configuration of Automatic
Updates that was done locally using the Control Panel and will prevent you
from making such changes locally, even as an administrator. However,
changing these policy settings back to Not Configured will restore the man-
ual settings previously configured for Automatic Updates (though a reboot is
required). And while changes made to these policies are automatically
applied to client computers every 90 minutes (plus a random offset of up to
30 minutes), you can test the settings immediately by forcing a policy refresh
with the command secedit /refreshpolicy machine_policy on Windows
2000 or gpupdate /force on Windows Server 2003.

Some Recommendations
If you want to configure different Automatic Updates policies for different
users or computers, you have two options: (1) create multiple GPOs, link
each to a different OU, and place users and computers into these OUs
accordingly; or (2) filter the GPO settings to prevent their inheritance by
specific users, computers, or groups.

You can also check the Security log in the Event Viewer if you want to see
whether the machine has been rebooted to install scheduled updates. Look
for the following Event IDs:

Event ID 21
“Restart Required: To complete the installation of the following
updates, the computer must be restarted. Until this computer has been
restarted, Windows cannot search for or download new updates.”

Event ID 22
“Restart Required: To complete the installation of the following
updates, the computer will be restarted within five minutes. Until this
computer has been restarted, Windows cannot search for or download
new updates.”

Digging Deeper
There’s another policy that controls how Automatic Updates works, but it’s
not found under Computer Configuration. Instead, it’s found at User Con-
figuration ➝ Administrative Templates ➝ Windows Components ➝ Win-
dows Update ➝ “Remove access to use all Windows Update features.”

This policy prevents the currently logged-on user from opening the Win-
dows Update web site in Internet Explorer, in order to manually download
and install updates on his machine. When the user attempts to access the
URL http://windowsupdate.microsoft.com, an “Access Denied” page appears,

66 | Chapter 2, Windows Host Security

#25 List Open Files and Their Owning Processes
HACK

explaining that a policy is preventing him from using the site. Enabling this
policy also has the effect of preventing Automatic Updates from notifying
users when new updates are ready to install. In other words, no notification
icon will appear in the status area to inform the logged-on user that updates
are ready to install. Even local administrators on the machine are affected by
this policy, as are domain administrators.

So, why would you want to use this policy? While it prevents users from vis-
iting or interacting with the Windows Update site, it doesn’t prevent Auto-
matic Updates from operating if the feature has been configured at the
computer level using the policies discussed in the previous section. This is
because this setting is a per-user policy, not a per-machine one. In other
words, it affects only users; it doesn’t affect configuration done at the
machine level.

Enabling this policy might be a good idea, because it prevents users from
trying to download and install updates on their own, even if they have
administrative privileges.

Microsoft says that this policy works only on Windows XP
and Windows Server 2003, but in my experience it also
works on Windows 2000.

While this policy prevents users from using the Windows Update site, it still
leaves the Windows Update icon in the Start menu, tempting users to
explore and see what it does. You can remove this icon from the Start menu
by enabling another policy: User Configuration ➝ Administrative Templates
➝ Start Menu & Taskbar ➝ “Disable and remove links to Windows Update.”

This removes all temptation for users to try to keep their machines up-to-
date by themselves. Administrators would do well to use such policies and
to explore similar restrictions on user activity provided by Group Policy.

—Mitch Tulloch

H A C K

#25
List Open Files and Their Owning Processes Hack #25

Look for suspicious activity by monitoring file accesses.

Suppose you’re looking at the list of processes in the task manager one day
after noticing some odd behavior on your workstation, and you notice a pro-
cess you haven’t seen before. Well, what do you do now? If you were run-
ning something other than Windows, you might try to determine what the
process is doing by looking at the files it has open. But Windows doesn’t
provide a tool to do this.

List Open Files and Their Owning Processes #25

Chapter 2, Windows Host Security | 67

HACK

Fortunately, a third-party solution exists. Sysinternals makes an excellent
tool called Handle, which is available for free at http://www.sysinternals.com/
Utilities/Handle.html. Handle is a lot like lsof [Hack #8], but it can list many
other types of operating resources, including threads, events, and sema-
phores. It can also display open Registry keys and IOCompletion structures.

Running handle without any command-line arguments lists all open file han-
dles on the system. You can also specify a filename, which lists the pro-
cesses that are currently accessing it, by typing this:

C:\> handle filename

Or you can list only files that are opened by a particular process—in this
case, Internet Explorer:

C:\> handle -p iexplore
Handle v2.10
Copyright (C) 1997-2003 Mark Russinovich
Sysinternals - www.sysinternals.com

--
IEXPLORE.EXE pid: 688 PLUNDER\andrew
 98: Section \BaseNamedObjects\MTXCOMM_MEMORY_MAPPED_FILE
 9c: Section \BaseNamedObjects\MtxWndList
 12c: Section \BaseNamedObjects_ _R_0000000000d4_SMem_ _
 18c: File C:\Documents and Settings\andrew\Local Settings\
Temporary Internet
Files\Content.IE5\index.dat
 198: Section \BaseNamedObjects\C:_Documents and Settings_andrew_
Local
Settings_Temporary Internet Files_Content.IE5_index.dat_3194880
 1a0: File C:\Documents and Settings\andrew\Cookies\index.dat
 1a8: File C:\Documents and Settings\andrew\Local Settings\
History\History.IE5\
index.dat
 1ac: Section \BaseNamedObjects\C:_Documents and Settings_andrew_
Local
Settings_History_History.IE5_index.dat_245760
 1b8: Section \BaseNamedObjects\C:_Documents and
Settings_andrew_Cookies_index.dat_81920
 228: Section \BaseNamedObjects\UrlZonesSM_andrew
 2a4: Section \BaseNamedObjects\SENS Information Cache
 540: File C:\Documents and Settings\andrew\Application
Data\Microsoft\SystemCertificates\My
 574: File C:\Documents and Settings\All Users\Desktop
 5b4: Section \BaseNamedObjects\mmGlobalPnpInfo
 5cc: File C:\WINNT\system32\mshtml.tlb
 614: Section \BaseNamedObjects\WDMAUD_Callbacks
 640: File C:\WINNT\system32\Macromed\Flash\Flash.ocx
 648: File C:\WINNT\system32\STDOLE2.TLB
 6a4: File \Dfs
 6b4: File C:\Documents and Settings\andrew\Desktop
 6c8: File C:\Documents and Settings\andrew\Local Settings\

68 | Chapter 2, Windows Host Security

#26 List Running Services and Open Ports
HACK

Temporary Internet Files\Content.IE5\Q5USFST0\softwareDownloadIndex[1].htm
 70c: Section \BaseNamedObjects\MSIMGSIZECacheMap
 758: File C:\WINNT\system32\iepeers.dll
 75c: File C:\Documents and Settings\andrew\Desktop
 770: Section \BaseNamedObjects\RotHintTable

If you want to find the Internet Explorer process that owns a resource with a
partial name of handle, you can type this:

C:\> handle -p iexplore handle
Handle v2.10
Copyright (C) 1997-2003 Mark Russinovich
Sysinternals - www.sysinternals.com

IEXPLORE.EXE pid: 1396 C:\Documents and Settings\andrew\Local
Settings\Temporary
Internet Files\Content.IE5\H1EZGFSH\handle[1].htm

Additionally, if you want to list all types of resources, you can use the -a
option. Handle is quite a powerful tool, and you can mix together any of its
command-line options to quickly narrow your search and find just what you
want.

H A C K

#26
List Running Services and Open Ports Hack #26

Check for remotely accessible services the Windows way.

Unix makes it quick and easy to see which ports on a system are open, but
how can you do that on Windows? Well, with FPort from Foundstone (http://
www.foundstone.com/resources/proddesc/fport.htm), it’s as quick and easy as
running good old netstat.

FPort has a few command-line options, which deal mostly with specifying
how you’d like the output sorted. For instance, if you want the output
sorted by application name, you can use /a; if you want it sorted by process
ID, you can use /i. While it might not be as full of features as the Unix ver-
sion of netstat [Hack #8], FPort definitely gets the job done.

To get a listing of all ports that are open on your system, simply type fport.
If you want the list to be sorted by port number, use the /p switch:

C:\> fport /p
FPort v2.0 - TCP/IP Process to Port Mapper
Copyright 2000 by Foundstone, Inc.
http://www.foundstone.com

Pid Process Port Proto Path
432 svchost -> 135 TCP C:\WINNT\system32\svchost.exe
8 System -> 139 TCP
8 System -> 445 TCP
672 MSTask -> 1025 TCP C:\WINNT\system32\MSTask.exe

Enable Auditing #27

Chapter 2, Windows Host Security | 69

HACK

8 System -> 1028 TCP
8 System -> 1031 TCP
1116 navapw32 -> 1035 TCP C:\PROGRA~1\NORTON~1\navapw32.exe
788 svchost -> 1551 TCP C:\WINNT\system32\svchost.exe
788 svchost -> 1553 TCP C:\WINNT\system32\svchost.exe
788 svchost -> 1558 TCP C:\WINNT\system32\svchost.exe
1328 svchost -> 1565 TCP C:\WINNT\System32\svchost.exe
8 System -> 1860 TCP
1580 putty -> 3134 TCP C:\WINNT\putty.exe
772 WinVNC -> 5800 TCP C:\Program Files\TightVNC\WinVNC.exe
772 WinVNC -> 5900 TCP C:\Program Files\TightVNC\WinVNC.exe

432 svchost -> 135 UDP C:\WINNT\system32\svchost.exe
8 System -> 137 UDP
8 System -> 138 UDP
8 System -> 445 UDP
256 lsass -> 500 UDP C:\WINNT\system32\lsass.exe
244 services -> 1027 UDP C:\WINNT\system32\services.exe
688 IEXPLORE -> 2204 UDP C:\Program Files\Internet Explorer\
IEXPLORE.EXE
1396 IEXPLORE -> 3104 UDP C:\Program Files\Internet Explorer\
IEXPLORE.EXE
256 lsass -> 4500 UDP C:\WINNT\system32\lsass.exe

Notice that some of the processes listed—such as navapw32, putty, and
IEXPLORE—don’t appear to be services. These show up in the output because
FPort lists all open ports, not just opened ports that are listening.

Though fport is not as powerful as some of the commands available under
other operating systems, it is still a valuable, quick, and easy-to-use tool, and
a great addition to Windows.

H A C K

#27
Enable Auditing Hack #27

Log suspicious activity to help spot intrusions.

Windows includes some powerful auditing features, but unfortunately, they
are not always enabled. Using these capabilities, you can monitor failed log-
ins, account-management events, file accesses, privilege use, and more. You
can also log security policy changes as well as system events.

To enable auditing in any one of these areas, locate and double-click the
Administrative Tools icon in the Control Panel. Now find and double-click
the Local Security Policy icon. Expand the Local Policies tree node, and you
should see a screen like the one shown in Figure 2-2.

You can go through each of the audit policies and check whether to log suc-
cesses or failures for each type. To do this, double-click the policy you wish
to modify, located in the right pane of the window. After double-clicking,
you should see a dialog similar to Figure 2-3.

70 | Chapter 2, Windows Host Security

#27 Enable Auditing
HACK

Leaving auditing off is akin to not logging anything at all, so you should
enable auditing for all policies. Once you’ve enabled auditing for a particu-
lar policy, you should begin to see entries in the event logs for when a partic-
ular audit event occurs. For example, once you have enabled logon event

Figure 2-2. Audit Policy settings in the Local Security Settings applet

Figure 2-3. The “Audit logon events” dialog

Enumerate Automatically Executed Programs #28

Chapter 2, Windows Host Security | 71

HACK

auditing, you should begin to see entries for logon successes and failures in
the system’s security event log.

H A C K

#28
Enumerate Automatically Executed Programs Hack #28

Take control of your system by finding programs that Windows starts
automatically.

One of the many problems Windows users face is being able to keep track of
all the methods Windows uses to automatically start programs at system
boot and when a user logs in. Of course, any programs in a user’s Startup
folder are automatically launched when the user logs in. The Registry keys
that control system services, scheduled tasks, and Internet Explorer add-ons
are just a few of the other things that can cause a program to be started auto-
matically.

The onslaught of spyware has made it important to be able to find out
exactly what’s being automatically launched on your system and what’s
causing it to be launched. At the very least, finding out why a program is
started automatically can be a minor annoyance. Many software packages
install add-on utilities that start up automatically, and disabling these is usu-
ally easy to do so. However, spyware can be much more difficult to deal
with, as it often uses more obscure Registry locations to launch itself.

Because spyware packages often launch via more than one avenue, they can
be difficult to remove. If you notice something odd in one place and remove
it, you’ll often find that there’s an entry buried somewhere else deep within
the system Registry that either undoes your attempts to remove the software
or attempts to start the offending piece of software. To completely rid your-
self of the spyware, you need to remove all traces of it in one shot.

You’ve probably gotten the idea by now, but completely removing a spy-
ware package can be difficult because all of these different avenues are bur-
ied deep within the system Registry. This problem is compounded by the
fact that mistakes made when editing the Registry can often leave a system
either partially or wholly inoperable. Luckily, some programs can help you
track down all of the programs that are executed automatically and show
you the Registry locations that are causing them to be executed.

One such program is Autoruns (http://www.sysinternals.net/Utilities/
Autoruns.html). Not only does it let you find the programs, but it also lets
you easily disable them. To install Autoruns, download the .zip archive from
the Sysinternals site and then extract its contents to a suitable directory (e.g.,
C:\Program Files\Autoruns).

72 | Chapter 2, Windows Host Security

#28 Enumerate Automatically Executed Programs
HACK

Then, launch autoruns.exe. After accepting the license agreement, you
should see the window shown in Figure 2-4.

As you can see, the Autoruns interface is fairly simple. The tabs at the top of
the window allow you to filter by method of automatic execution. The
Everything tab, of course, shows all automatically executed items, while the
Logon tab shows items that are executed when you log in. Figure 2-4 dis-
plays the contents of the Internet Explorer tab, which shows the helper plug-
ins loaded by Internet Explorer. The Internet Explorer tab is especially use-
ful for tracking down browser toolbars and other pieces of software that can
be used to monitor your web browsing.

If you feel that you’re staring at too much information, you can ignore any
standard items that are legitimate Microsoft programs. Just choose Options
➝ Hide Microsoft Signed Entries to display only third-party programs. Make
sure to choose File ➝ Refresh to update the display.

If you want to disable an item, simply uncheck the box next to it. Autoruns
will make a backup of the information, so that you can re-enable it later if
you need to (simply recheck the entry). Also, if you’re not quite sure what a
program is, you can click on the item and choose Entry ➝ Google to launch
your web browser with search results for the item.

Figure 2-4. Autoruns displaying Internet Explorer helpers

Change Your Maximum Log File Sizes #30

Chapter 2, Windows Host Security | 73

HACK

H A C K

#29
Secure Your Event Logs Hack #29

Keep your system’s logs from being tampered with.

Windows has some powerful logging features. Unfortunately, if you’re still
running an older Windows system, such as a variety of Windows 2000, by
default the event logs are not protected against unauthorized access or mod-
ification. You might not realize that even though you have to view the logs
through the Event Viewer, they’re simply regular files just like any others.
To secure them, all you need to do is locate them and apply the proper
ACLs.

Unless their locations have been changed through the Registry, you should
be able to find the logs in the %SystemRoot%\system32\config directory. The
three files that correspond to the Application Log, Security Log, and System
Log are AppEvent.Evt, SecEvent.Evt, and SysEvent.Evt, respectively.

Now, apply ACLs to limit access to only Administrator accounts. You can
do this by bringing up the Properties dialog for the files and clicking the
Security tab. After you’ve done this, remove any users or groups other than
Administrators and SYSTEM from the top pane.

H A C K

#30
Change Your Maximum Log File Sizes Hack #30

Change your log properties so that they see the whole picture.

From a security point of view, logs are one of the most important assets con-
tained on a server. After all, without logs, how will you know if or when
someone has gained access to your machine? Therefore, it is imperative that
your logs not miss a beat. If you’re trying to track down the source of an
incident, having missing log entries is not much better than having no logs
at all.

One common problem is that the maximum log size is set too low; depend-
ing on the version of Windows, the default can be as measly as 512 KB. To
change this, go to the Administrative Tools control panel and open the
Event Viewer. You should see the screen shown in Figure 2-5.

Right-click one of the log files in the left pane of the Event Viewer window
and select the Properties menu item to bring up the Security Log Properties
dialog, shown in Figure 2-6.

Now, locate the text input box with the label “Maximum log size.” You can
type in the new maximum size directly, or you can use the arrows next to
the text box to change the value. What size is appropriate depends on how
often you want to review and archive your logs. Anything above 1 MB is
good. However, keep in mind that while having very large log files won’t

74 | Chapter 2, Windows Host Security

#30 Change Your Maximum Log File Sizes
HACK

Figure 2-5. The Windows Event Viewer

Figure 2-6. Security Log Properties

Back Up and Clear the Event Logs #31

Chapter 2, Windows Host Security | 75

HACK

inherently slow down the machine, it can slow down the Event Viewer when
you’re trying to view the logs.

While you’re here, you may also want to change the behavior for when the
log file reaches its maximum size. By default, it will start overwriting log
entries that are older than seven days with newer log entries. It is recom-
mended that you change this value to something higher—say, 31 days.
Alternatively, you can elect not to have entries overwritten automatically at
all, in which case you’ll need to clear the log manually.

H A C K

#31
Back Up and Clear the Event Logs Hack #31

Here’s a nifty script you can use to back up and clear the Event logs on your
servers.

Managing Event logs is an essential part of a system administrator’s job.
These logs are useful for a number of purposes, including troubleshooting
system problems, verifying that services are functioning properly, and
detecting possible intrusion attempts. While you can use the Event Viewer
to save and clear these logs, it would be handy to have a script that would
back up your Windows Event Logs and then clear the information con-
tained within them.

This hack provides a script to do just that. You can run it manually (by
double-clicking on a desktop shortcut) or automatically at different times
(by adding a task to the Scheduled Tasks folder).

The Code
Type the following script into Notepad (make sure you have Word Wrap
disabled), and save it as archivelogs.vbs:

Option Explicit
On Error Resume Next
Dim numThreshold
Dim strMachine
Dim strArchivePath
Dim strMoniker
Dim refWMI
Dim colEventLogs
Dim refEventLog

If WScript.Arguments.Count < 2 Then
WScript.Echo _
"Usage: archivelogs.vbs <machine> <archive_path> [threshold]"
WScript.Quit
End If

76 | Chapter 2, Windows Host Security

#31 Back Up and Clear the Event Logs
HACK

If WScript.Arguments.Count = 2 Then
numThreshold = 0
Else
numThreshold = WScript.Arguments(2)
If Not IsNumeric(numThreshold) Then
WScript.Echo "The third parameter must be a number!"
WScript.Quit
End If

If numThreshold < 0 OR numThreshold > 100 Then
WScript.Echo "The third parameter must be in the range 0-100"
WScript.Quit
End If
End If

strMachine = WScript.Arguments(0)
strArchivePath = WScript.Arguments(1)

strMoniker = "winMgmts:{(Backup,Security)}!\\" & strMachine
Set refWMI = GetObject(strMoniker)
If Err <> 0 Then
WScript.Echo "Could not connect to the WMI service."
WScript.Quit
End If

Set colEventLogs = refWMI.InstancesOf("Win32_NTEventLogFile")
If Err <> 0 Then
WScript.Echo "Could not retrieve Event Log objects"
WScript.Quit
End If

For Each refEventLog In colEventLogs
'if shouldAct() returns non-zero attempt to back up
If shouldAct(refEventLog.FileSize,refEventLog.MaxFileSize) <> 0 Then
If refEventLog.ClearEventLog(_
makeFileName(refEventLog.LogfileName)) = 0 Then
WScript.Echo refEventLog.LogfileName & _
" archived successfully"
Else
WScript.Echo refEventLog.LogfileName & _
" could not be archived"
End If
Else
WScript.Echo refEventLog.LogfileName & _
" has not exceeded the backup level"
End If
Next
Set refEventLog = Nothing
Set colEventLogs = Nothing
Set refWMI = Nothing

Function shouldAct(numCurSize, numMaxSize)
If (numCurSize/numMaxSize)*100 > numThreshold Then
shouldAct = 1

Back Up and Clear the Event Logs #31

Chapter 2, Windows Host Security | 77

HACK

Else
shouldAct = 0
End If
End Function

Function makeFileName(strLogname)
makeFileName = strArchivePath & "\" & _
strMachine & "-" & strLogname & "-" & _
Year(Now) & Month(Now) & Day(Now) & ".evt"
End Function

Running the Hack
To run the script, use Cscript.exe, the command-line script engine of the
Windows Script Host (WSH). The script uses the following command-line
syntax:

archivelogs.vbs machine archive_path [threshold]

where machine is the name of the server and archive_path is the path to
where you want to save the backup. threshold is an optional parameter that
checks the size (in MB) of the logs: if the logs are above the threshold value
you specify, the script will back them up; otherwise, it will skip them.

The following example shows how to run the script and provides typical
output when the script is executed against a domain controller (the archive
directory C:\Log Files must first be created on the machine on which you run
the script):

C:\>cscript.exe archivelogs.vbs srv210 "C:\Log Archive"
Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Security archived successfully
System archived successfully
Directory Service archived successfully
DNS Server archived successfully
File Replication Service archived successfully
Application archived successfully

C:\>

The result of running the script is a set of files in C:\Log Files of the form
srv210-Application-20031217.evt, srv210-Security-20031217.evt, and so on.
Note that each archive file is named according to the server, event log, and
current date.

If you plan on using the Backup utility instead to back up the Event log files
on your Windows 2000 servers, it might surprise you to know that being part
of the Backup Operators group will not allow you to back up or restore these
Event log files; this right is available to only local or domain administrators!

—Rod Trent

78 | Chapter 2, Windows Host Security

#32 Disable Default Shares
HACK

H A C K

#32
Disable Default Shares Hack #32

Stop sharing all your files with the world.

By default, Windows enables sharing for each logical disk on your system
(e.g., C$ for the C: drive) in addition to another share called ADMIN$ for the
%SystemRoot% directory (e.g., C:\WINNT). Although the shares are accessi-
ble only to Administrators it is wise to disable them if possible, as they
present a potential security hole.

To disable these shares, open the Registry by running regedit.exe and then find
the HKey_Local_Machine\SYSTEM\CurrentControlSet\Services\lanmanserver\
parameters key.

If you’re using Windows 2000 Workstation, add an AutoShareWks DWORD
key with the value of 0 (as shown in Figure 2-7) by clicking Edit ➝ New ➝

DWORD Value. For Windows 2000 Server, add an AutoShareServer key
with a value of 0. When you’re done editing the Registry, restart Windows
for the change to take effect.

After Windows has finished loading, you can verify that the default shares
no longer exist by running net share:

C:\>net share

Share name Resource Remark
--
IPC$ Remote IPC The command completed successfully.

Figure 2-7. Adding an AutoShareWks Registry key

Encrypt Your Temp Folder #33

Chapter 2, Windows Host Security | 79

HACK

Before doing this, you should be sure that disabling these
shares will not negatively affect your environment. Lack of
these shares can cause some system management software,
such as HFNetChk [Hack #23] or System Management Server,
to not work. This is because such software depends on
remote access to the default administrative shares in order to
access the contents of the systems disks.

H A C K

#33
Encrypt Your Temp Folder Hack #33

Keep prying eyes out of your temporary files.

Many Windows applications create intermediary files while they do their
work. They typically store these files in a temporary folder within the cur-
rent user’s settings directory. These files are usually created world-readable
and aren’t always cleaned up when the program exits. How would you like
it if your word processor left a copy of the last document you were working
on for anyone to come across and read? Not a pretty thought, is it?

One way to guard against this situation is to encrypt your temporary files
folder. Open an Explorer window and go to the C:\Documents and Settings\
<username>\Local Settings folder, where you should see another folder
called Temp. This is the folder that holds the temporary files. Right-click the
folder and bring up its Properties dialog. Make sure the General tab is
selected, and click the button labeled Advanced. This will bring up an
Advanced Attributes dialog, as shown in Figure 2-8. Here you can choose to
encrypt the folder.

Figure 2-8. The Temp folder’s Advanced Attributes dialog

80 | Chapter 2, Windows Host Security

#34 Back Up EFS
HACK

Check the “Encrypt contents to secure data” box and click the OK button.
When you have done that, click the Apply button in the Properties dialog.
Another dialog (shown in Figure 2-9) opens, asking you whether you would
like the encryption to apply recursively.

To apply the encryption recursively, choose the “Apply changes to this
folder, subfolders and files” option. This automatically creates a public-key
pair if you have never encrypted any files before. Otherwise, Windows will
use the public key that it generated for you previously.

When decrypting, Windows ensures that the private keys are stored in non-
paged kernel memory, so that the decryption key will never be left in the
paging file. If you’re using an older version of Windows, beware. Windows
2000 uses the DESX algorithm, which is almost useless. However, versions
from Windows XP SP1 onward support both 3DES and the much stronger
AES.

H A C K

#34
Back Up EFS Hack #34

Backing up EFS recovery keys is essential if you want to be able to recover
encrypted documents after a disaster.

The Encrypting File System (EFS) lets you encrypt files so that unauthorized
individuals can’t read them. Normally, this is a good thing, because it helps
secure data stored on a machine’s hard drive. However, this hack is con-
cerned with what happens when something goes wrong—for example, if a
user’s machine becomes toast, taking her EFS private key and certificate to
Never-Never Land.

Figure 2-9. Confirming the choice of encryption and making it recursive

Back Up EFS #34

Chapter 2, Windows Host Security | 81

HACK

The key to being able to recover encrypted files when something goes wrong
is having a designated recovery agent already in place. Then, if you lose your
EFS private key, the recovery agent can decrypt your encrypted files in an
emergency. Every time you encrypt a file, EFS generates a unique File
Encryption Key (FEK) that it uses to encrypt only that file. In other words,
each encrypted file has its own unique FEK.

In addition, the FEK is itself encrypted using your own EFS public key and
incorporated into the header of the file. Later, if you want to read the
encrypted file, EFS automatically uses your EFS private key to decrypt the
FEK for the file and then uses the FEK to decrypt the file itself. The FEK is
thus used for both encrypting and decrypting the file (a process known as
symmetric encryption), while your EFS public/private key pair is used for
encrypting and decrypting the FEK (known as asymmetric encryption). This
combination of symmetric (or secret-key) encryption and asymmetric (pub-
lic-key) encryption is the basis of how EFS works.

But what happens if you lose your EFS private key? This might happen if
your machine has two drives: a system drive (C:) and a data drive (D:),
where encrypted files are stored. By default, your EFS keys are stored on
your system drive, so if C: becomes corrupted, the encrypted files on D: will
be inaccessible, right? That’s where the recovery agent comes in. Each time
you encrypt a file, the FEK is encrypted with both your own EFS public key
and the EFS public key of the recovery agent. That means that the recovery
agent can always decrypt the FEK by using its EFS private key and thus
decrypt the file when something goes wrong and your own private key is lost
or corrupted.

What are these recovery agents? By default, on standalone Windows 2000
machines, the built-in local administrator account is designated as a recov-
ery agent, so you can always log on as Administrator and decrypt any
encrypted files stored on the machine. You can add other users as recovery
agents by using the Local Security Policy console, which you can open by
using Start ➝ Run ➝ secpol.msc. Then, expand Security Settings ➝ Public
Key Policies ➝ Encrypted Data Recovery Agents, right-click on that node,
and select Add to start the Add Recovery Agent Wizard. Any user accounts
that already have X.509v3 certificates on the machine can then be added as
recovery agents.

On standalone Windows Server 2003 machines, the built-in
Administrator account is not a designated recovery agent. In
fact, there are no default recovery agents in Windows Server
2003 in a workgroup environment. You must designate an
account for this role.

82 | Chapter 2, Windows Host Security

#34 Back Up EFS
HACK

In a domain environment, things are a little different. The built-in Domain
Administrator account is the default recovery agent for all machines in the
domain, and you can specify additional recovery agents by using Group Pol-
icy. Open the Group Policy Object for the domain, OU, or site in which the
intended recovery agent account resides, and navigate to Computer Config-
uration ➝ Windows Settings ➝ Security Settings ➝ Public Key Policies ➝

Encrypted Data Recovery Agents. Right-click on this node and select Add to
start the same Add Recovery Agent Wizard as before, but this time browse
the directory to locate the account you want to add.

Once Group Policy refreshes, your new recovery agent will be able to
decrypt files encrypted by other users, but only if the users encrypted the file
after the new recovery agent was designated. This is because files encrypted
previously have no information about this new recovery agent in their head-
ers and therefore can’t be decrypted yet by the new recovery agent. Fortu-
nately, if the user who encrypted the file simply opens and then closes it,
this alone is sufficient for EFS to add the new recovery agent to the
encrypted file’s header.

The moral of the story is that you should think before you implement EFS,
and designate recovery agents before you allow users to start encrypting
files. Otherwise, you might find yourself sending out an unusual email to
everyone saying, “Please open and then close all files you have encrypted on
your machines” or something similar.

Backing Up Encrypted Data and EFS Keys
Backing up files that have been encrypted using EFS is easy: simply use the
Backup utility to back them up like any other files. What’s really important is
that you also back up the EFS certificate and public/private key pair for each
user who stores data on the machine. Since EFS is implemented on a per-user
basis, you have to back up this information for each user individually.

Fortunately, as this information is stored in the user profile for each user,
by simply backing up user profiles you also back up the users’ EFS
certificates and keys. More specifically, a user’s EFS private key is stored in
the \Application Data\Microsoft\Crypto\RSA subfolder within that user’s
profile, while the user’s EFS public key certificate and public key are stored
in the \Application Data\Microsoft\SystemCertificates\My Certificates\My
folder under the subfolders \Certificates and \Keys.

You can back up users’ EFS certificates and key pairs as part of your regular
backup program, and if you have roaming user profiles configured, you can
do this centrally from the file server where such profiles are stored. If you
don’t have roaming profiles implemented and users store important

Back Up EFS #34

Chapter 2, Windows Host Security | 83

HACK

documents on their own machines, it might be necessary to have users back
up their own profiles locally by using Backup to back up to file instead of
tape. Unfortunately, this guards against profile corruption only, and it might
not help if a disk failure causes the backed-up profile to be lost as well.

A better alternative is to have each user export his EFS certificate and pri-
vate key to a floppy and store it somewhere safe. That way, if a user’s sys-
tem drive crashes, he can still decrypt information on his data drive by
importing his previously exported EFS certificate and private key.

The steps to export a user’s EFS certificate and private key are quite straight-
forward and can be done easily by any user. Simply open Internet Explorer,
select Tools ➝ Internet Options, switch to the Content tab, click the Certifi-
cates button, and select the Personal tab, as shown in Figure 2-10.

Then, select the certificate you want to export (the correct certificate will
display “Encrypting File System” beneath “Certificate intended purposes,”
near the bottom of the properties page) and click Export to begin the Certifi-
cate Export Wizard. Choose the option to include the user’s private key in
the export (the public key is automatically included in the certificate), spec-
ify a password to protect your export file, and choose a name and destina-
tion for your export file. The result of this export process will be a Personal
Information Exchange (.pfx) file, located in the target folder or media.

Figure 2-10. Exporting the EFS certificate and private key for user jsmith

84 | Chapter 2, Windows Host Security

#34 Back Up EFS
HACK

As mentioned previously, users will typically export their EFS keys to a
floppy, but you could burn them to a CD or even store them on a secure net-
work share if you prefer. The important thing is, wherever you export this
information, keep it safe so that no one except the user and trusted adminis-
trators can access it. Anyone who gets their hands on the export file and
cracks the password can use it to decrypt any encrypted files they can
access.

If a user’s EFS keys later become corrupted and the need arises to reinstall
these keys, this can be done either by repeating the previous process (but
clicking Import instead of Export in Figure 2-10) or, more simply, by dou-
ble-clicking on the .pfx file itself to start the Certificate Import Wizard. This
wizard is smart enough to figure out that the EFS certificate and private key
stored in the .pfx file should be imported into the user’s personal certificate
store.

An interesting option to consider when exporting a user’s EFS certificate and
private key is to delete the user’s private key from his profile during the pro-
cess. This option is labeled “Delete the private key if the export is success-
ful” and is found on the penultimate page of the Certificate Export Wizard.
If you choose this option, you’ll be able to encrypt files by using EFS, but
you won’t be able to decrypt them unless you supply the private key on
some medium—something that might be an option to consider in a high-
security environment.

Restoring EFS Keys
If a user’s EFS private key becomes corrupted or lost and the user hasn’t
backed up the key to a floppy as described in the previous section, it’s time
for the recovery agent to step in. On a standalone machine, you can simply
log on using the built-in Administrator account, locate the encrypted fold-
ers the user can no longer access in Windows Explorer, right-click on each
folder, select Properties, click Advanced, and clear the “Encrypt contents to
secure data” checkbox for each folder. This decrypts the files within the
folders and enables the user to read them again.

In a domain environment, you typically don’t want to log onto a user’s
machine as a domain administrator and see a local user profile being cre-
ated for your account as a result. Instead, simply instruct the user to use
the Backup utility to back up to file any encrypted volumes or folders on
her machine. The resulting backup (.bkf) file processes files it backs up as a

Back Up EFS #34

Chapter 2, Windows Host Security | 85

HACK

data stream and preserves their encrypted status. Then, have the user copy
her .bkf file to a network share where you, as domain administrator, can
access the backup file, restore it to another folder, decrypt any files the user
needs, and copy these files to the share where the user can access them.

While this is the most common solution, there’s another approach that’s
worth considering: unite the user with her EFS keys again. Even if the user
hasn’t previously exported her keys to a floppy for safekeeping, chances are,
in a domain environment, that you make regular backups of users’ profiles
(assuming roaming profiles are enabled). By simply restoring a user’s profile
from backup you restore her EFS certificate and keys, allowing her to read
her encrypted files again. Then, tell her politely but firmly to immediately
export her certificate and keys to a floppy, because you don’t want to have
to go through this again!

If EFS is being used to encrypt files on a file server where multiple users
store their files, this process can become complicated if you’ve designated
different recovery agents for different groups of users. In particular, you
might need to determine which recovery agents are designated for any
encrypted files that users can no longer access. To do this, you can use the
efsinfo command-line utility included in the Windows 2000 Server
Resource Kit. This handy little utility can tell you who originally encrypted
a file and who the designated recovery agents for the file are. Just type
efsinfo/r /ufilename, where filename includes the path to the encrypted
file. Once you know any recovery agent for the file, you can proceed to
decrypt it as shown previously.

What if the individual who can’t access her encrypted files is your boss and
she needs access to her files immediately? Export your own EFS certificate
and private key to floppy as a domain administrator or other recovery agent,
walk the floppy over to your boss’s office, insert the floppy into her
machine, import the certificate and private key, and decrypt her files. Then,
delete the certificate and key from her machine. When she tries to encrypt a
file again, a new EFS certificate and private key will automatically be gener-
ated. Smile, because you’ve acted like Superman, and send her an email later
asking for a raise.

But what if your own EFS certificate and private key as domain administra-
tor or recovery agent is lost or corrupted?

86 | Chapter 2, Windows Host Security

#34 Back Up EFS
HACK

Backing Up Recovery Agent Keys
Obviously, it’s a good idea for administrators and other recovery agents to
also make backup copies of their own EFS certificates and private keys. Oth-
erwise, a point of failure exists in this whole recovery process, and users’
encrypted files could be lost forever and unrecoverable.

If you’re operating in a workgroup environment, recall that the built-in local
Administrator account is the default recovery agent in Windows 2000. This
means you have to back up the EFS certificate and private key of the Admin-
istrator account, so log onto the machine using this account and use Start ➝

Run ➝ secpol to open Local Security Policy as before. Select the Encrypted
Data Recovery Agents node under Public Key Policies in the left pane, right-
click the EFS certificate in the right pane, and select All Tasks ➝ Export to
start the Certificate Export Wizard. Choose the option to export the private
key as well, specify a password to protect the export file, and specify a file-
name and destination to export the information to—typically, some form of
removable media, such as a floppy. Keep that floppy safe.

In a domain environment, the built-in Domain Administrator account is the
default recovery agent and the EFS certificate and private key are located on
the first domain controller in the domain (the one that created the domain
when you ran dcpromo on it). Log onto this machine using that account, use
Start ➝ Run ➝ dompol.msc to open the Domain Security Policy, select
Encrypted Data Recovery Agents in the left pane, right-click the EFS certifi-
cate in the right pane, again select All Tasks ➝ Export to start the Certificate
Export Wizard, and proceed as before. If you are not given the option to
export the private key, you might not be logged onto the right domain con-
troller, so change machines and try again.

Another method for exporting certificates and keys is to use the Certificates
snap-in. Open a blank MMC console, add this snap-in while logged on as
Administrator, expand Certificates ➝ Current User ➝ Personal ➝ Certifi-
cates, and find the certificate you want to back up by looking under the
Intended Purposes column, as shown in Figure 2-11. The power of this
approach is that you can also use it to back up and restore other sorts of cer-
tificates and keys, including EFS keys.

Now that you’ve backed up your recovery agent’s EFS certificate and keys,
you’re ready for the worst—unless your dog eats your floppy!

—Mitch Tulloch

Clear the Paging File at Shutdown #35

Chapter 2, Windows Host Security | 87

HACK

H A C K

#35
Clear the Paging File at Shutdown Hack #35

Prevent information leaks by automatically clearing the swap file before
shutting down.

Virtual memory management (VMM) is truly a wonderful thing. It protects
programs from one another and lets them think that they have more mem-
ory available than is physically in the system. To accomplish this, VMM uses
what is called a paging file.

As you run more and more programs over the course of time, you’ll begin to
run out of physical memory. Since things can start to go awry when this
happens, the memory manager will look for the least frequently used pieces
of memory owned by programs that aren’t actively doing anything at the
moment and write the chunks of memory out to the disk (i.e., the virtual
memory). This is known as swapping.

However, there is one possibly bad side effect of this feature: if a program
containing confidential information in its memory space is running, the
memory containing such information may be written out to disk. This is fine
when the operating system is running and there are safeguards to prevent
the paging file from being read, but what about when the system is off or
booted into a different operating system?

This is where this hack comes in handy. What we’re going to do is tell the
operating system to overwrite the paging file with zeros when it shuts down.
Keep in mind that this will not work if the cord is pulled from the system or

Figure 2-11. Using the Certificates snap-in to back up a recovery agent key

88 | Chapter 2, Windows Host Security

#36 Check for Passwords That Never Expire
HACK

the system is shut down improperly, since this overwrite will only be done
during a proper shutdown.

To enable this feature of Windows, you must edit the system Registry. Open
the Registry and find the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Control\Session Manager\Memory Management key. You should now see the
screen shown in Figure 2-12.

Locate the ClearPageFileAtShutdown entry in the right pane of the window
and change its value to 1. Now, restart Windows for the change to take
effect, and your swap file will be cleared at shutdown.

The only side effect of enabling this is that Windows may take longer to
shut down. However, this is very much dependent on your hardware (e.g.,
disk controller chipset, disk drive speed, processor speed, etc.), since that’s
what will govern how long it will take to overwrite your paging file with
zeros.

H A C K

#36
Check for Passwords That Never Expire Hack #36

Here’s a handy script that makes it simple to find user accounts with
nonexpiring passwords.

User accounts set to never expire are sometimes used for permanent
employees of a company, while temporary employees are assigned accounts
that expire after a specified period of time. Ever wish you could quickly and
simply find out which user accounts have their passwords set to never

Figure 2-12. The Memory Management Registry key

Check for Passwords That Never Expire #36

Chapter 2, Windows Host Security | 89

HACK

expire, along with the dates the flags were set? Here is a sample script that
accomplishes this and more.

This script prompts for the desired domain, checks all user accounts in the
domain to see if their passwords are set to never expire, and reports the date
the flags were set. It then writes the output to a comma-separated values
(CSV) file called PWDNeverExpired.csv, creating this file in the same
directory where the script itself is located. For each password that is not set
to expire the script records a Yes. If the password is set to expire, the script
instead records a No and the date the password will expire.

The Code
To use the script, type it into Notepad (with Word Wrap turned off) and
save it as PWDNeverExpired.vbs:

' Set WshShell
Set WshShell = WScript.CreateObject("WScript.Shell")
strVer = "Ver 1.0 "
Set FileSystem = WScript.CreateObject("Scripting.FileSystemObject")
Set oFile = FileSystem.CreateTextFile("PWDNeverExpired.csv", true)

' Pull Environment variables for domain/user
strDomain = WshShell.ExpandEnvironmentStrings("%USERDOMAIN%")
strUserName = WshShell.ExpandEnvironmentStrings("%USERNAME%")
strOS = WshShell.ExpandEnvironmentStrings("%OS%")

strMessage = strMessage & "Hit Cancel or enter a blank to quit"
strTitle = "Domain to Search"
'get resource domain name, domain default
UserDomain = InputBox(strMessage, strTitle, strDomain)
strMessage = ""
strTitle = ""

'strMessage = "Please enter the USER Login ID" & vbCrLf & vbCrLf & _
'"Default is: " & strUserName & vbCrLf & vbCrLf
'strMessage = strMessage & "Hit Cancel or enter a blank to quit"
'strTitle = "USER Login ID"
'get resource domain name, domain default via input box
'objUserName = InputBox(strMessage, strTitle, strUserName)

' Display Just a minute!
strMessage = "This may take a few seconds. . ."
WshShell.Popup strMessage,2,"One moment please. . . "
strMessage = ""

Set ObjDomain = GetObject("WinNT://" & UserDomain)
ObjDomain.Filter = Array("User")
For Each ObjUser In ObjDomain

90 | Chapter 2, Windows Host Security

#36 Check for Passwords That Never Expire
HACK

' Attempt to bind to the user
'Set objUser = GetObject("WinNT://"& UserDomain &"/"& objUser.Name, user)
Set UserName = GetObject("WinNT://" & UserDomain & "/" & ObjUser.Name & _
",User")

' Is password set to NEVER expire?
objPwdExpires = UserName.Get("UserFlags")
If (objPwdExpires And &H10000) <> 0 Then
objPwdExpiresTrue = "Yes"
strPwdExpires = "Date Set: "
msgPwdExpires = "Password Set to Never Expire: "
Else objPwdExpiresTrue = "No"
strPwdExpires = "Password Expires: "
msgPwdExpires = "Password Set to Never Expire: "
End If
oFile.WriteLine (UserName.fullname & "," & UserName.name & ","
& _ msgPwdExpires & objPwdExpiresTrue & "," & strPwdExpires & _
objUser.PasswordExpirationDate)
'Wscript.Echo "Full Name: " & UserName.fullname & vbCrlf &
'"Account Name: " & UserName.name & vbCrlf &
'msgPwdExpires & objPwdExpiresTrue & vbCrlf &
'strPwdExpires & objUser.PasswordExpirationDate & vbCrlf
Set UserName = Nothing
Next
Wscript.Echo "Done Checking Accounts"

Running the Hack
To run this hack, simply create a shortcut to the script and double-click on
the shortcut. Figure 2-13 shows a sample CSV output file for the script,
viewed in Excel.

—Hans Schefske

Figure 2-13. Sample output from running PWDNeverExpired.vbs

91

Chapter 3 C H A P T E R T H R E E

Privacy and Anonymity
Hacks 37–43

It’s been said before, but it’s truer now than ever: the Internet can be a scary
place. Performing banking transactions, filing taxes, paying bills, and buy-
ing and selling goods online—all of these things were unheard of in the early
days of the Internet. However, as people and businesses have become
increasingly savvy in the electronic world, so have the crooks that prey on
them. In addition, the increased scrutiny of people’s online identities by gov-
ernments, employers, and other organizations might make you think twice
about what you say the next time you post on a public message board.

Because of this, it’s important to take precautions to safeguard your identity
and take control of your information online. This chapter provides you with
a few ways to do just that. In this chapter, you’ll learn how to protect your
privacy and remain anonymous while using the Internet. You’ll also learn
how to encrypt your files and email using strong encryption. Finally, you’ll
learn how to guard against phishing attacks and how to easily use different
passwords for each web site you use without struggling to keep track of
them.

H A C K

#37
Evade Traffic Analysis Hack #37

Use transparent onion routing to evade traffic analysis and protect your
privacy.

Privacy is something most people value, or at least think they do, but in our
ever-connected world it’s becoming quite a rare commodity. Every packet
your computer sends out onto the Internet is ultimately traceable back to
you (the Internet wouldn’t work properly if it weren’t), but that’s just the tip
of the iceberg. Since all your traffic must flow through your ISP, it’s possible
for them to build a complete picture of you from the web sites you visit.

One way to guard against traffic analysis is to use The Onion Router, Tor
(http://tor.eff.org).

92 | Chapter 3, Privacy and Anonymity

#37 Evade Traffic Analysis
HACK

Onion Routing
Onion routing is a technique for anonymous communication that involves
randomly building a virtual circuit through several routers to obfuscate the
connection’s source. Thus, someone monitoring your traffic will just see you
communicating with the first hop in the circuit, and the final destination
will think that it’s communicating with the last hop in the circuit.

Before the data is transmitted, though, Tor negotiates encryption keys with
each hop in the circuit to protect your data along the way. It then encrypts
the packet with the key for the last hop in the circuit, then the next to last,
and so on until the packet is encrypted with the key for the first hop in the
circuit. This process creates a packet encapsulated in multiple layers of
encryption.

This is what makes the onion metaphor apropos for describing this tech-
nique. As the packet passes through each hop of the circuit, the outermost
encrypted layer is peeled off. This also has the nice side effect of each hop in
the circuit not having a complete picture of the circuit. An individual hop
knows about only the previous hop and the next hop.

Installing Tor
Before compiling Tor, you’ll need to have Zlib and OpenSSL installed on
your system. (Most systems should have Zlib and OpenSSL already.) Tor
also requires libevent (http://monkey.org/~provos/libevent/), which you can
install by simply downloading the tarball, unpacking it, and doing the stan-
dard ./configure && make and running make install as root. Once those
prerequisites are out of the way, you can install Tor.

Before doing anything else, add a user and group to run Tor as. Then, run
./configure and specify the user and group that you created:

$./configure --with-tor-user=tor --with-tor-group=tor

As the script executes, you might see the following error:

checking whether we need extra options to link libevent... configure: error:
Found linkable libevent in (system), but it doesn't run, even with -R.
Maybe specify another using --with-libevent-dir?

If you do encounter this, run ./configure again and tell it where to find
libevent:

$./configure --with-tor-user=tor --with-tor-group=tor --with-libevent-dir=/
usr/local

Once the configure script completes, run make, become root, and run make
install.

Evade Traffic Analysis #37

Chapter 3, Privacy and Anonymity | 93

HACK

You’ll now need to create a directory for Tor to store its data in. For example:

mkdir /var/run/tor && chown tor:tor /var/run/tor

Installing Privoxy
If you plan to use Tor with a web browser, you should also install Privoxy
(http://www.privoxy.org). Most web browsers support only SOCKS4 or
SOCKS5, which use IP addresses to initiate connections through the proxy.
This means that your web browser will have to perform name lookups using
your normal DNS server, which can reveal your web-browsing activities to
others. Using an HTTP proxy such as Privoxy to browse the Web fixes this
problem, by forwarding the DNS requests and traffic through Tor.

To install Privoxy, first unpack the tarball and change into the directory that
it creates. Then, run the following command:

$ autoheader && autoconf

You can safely ignore most of the warnings you’ll see in the output. Just
make sure that the ./configure file exists after autoconf finishes executing.

Now you’ll need to create a user and group to run Privoxy under (e.g.,
privoxy). Then, you can run ./configure:

$./configure --with-user=privoxy --with-group=privoxy

Once the configure script has finished, run make, become root, and run make
install.

Configuring Privoxy for Tor
Now all that’s standing between you and a working Tor installation is the
task of configuring Privoxy. To do this, add the following line at the begin-
ning of the /usr/local/etc/privoxy/config file:

forward-socks4a / localhost:9050 .

This line tells Privoxy to forward all requests to a SOCKS4a proxy at 127.0.
0.1:9050, which Tor has been configured to act as.

Privoxy will log all requests by default, so you’ll also want to disable log-
ging. You can do this by locating and removing the following lines:

logfile logfile
jarfile jarfile

Now, start Privoxy and Tor:

/usr/local/sbin/privoxy --user privoxy privoxy /usr/local/etc/privoxy/
config
Apr 10 00:26:10 Privoxy(-1208432960) Info: loading configuration file '/usr/
local/etc/privoxy/config':

94 | Chapter 3, Privacy and Anonymity

#37 Evade Traffic Analysis
HACK

Apr 14 00:26:10 Privoxy(-1208432960) Info: Privoxy version 3.0.3
Apr 10 00:26:10 Privoxy(-1208432960) Info: Program name: /usr/local/sbin/
privoxy
Apr 10 00:26:10 Privoxy(-1208432960) Info: Listening on port 8118 for local
connections only
/usr/local/bin/tor --user tor --group tor --datadirectory /var/run/tor
Apr 10 00:27:50.023 [notice] Tor v0.1.1.18-rc. This is experimental
software. Do not rely on it for strong anonymity.
Apr 10 00:27:50.024 [notice] Configuration file "/usr/local/etc/tor/torrc"
not present, using reasonable defaults.
Apr 10 00:27:50.027 [notice] Initialized libevent version 1.1a using method
epoll. Good.
Apr 10 00:27:50.027 [notice] connection_create_listener(): Opening Socks
listener on 127.0.0.1:9050
Apr 10 00:27:56.626 [notice] We now have enough directory information to
build circuits.
Apr 10 00:28:01.463 [notice] Tor has successfully opened a circuit. Looks
like client functionality is working.

You can now configure your web browser to use Privoxy as its HTTP proxy.
When doing this, specify localhost as the hostname and port 8118. You can
then test out your Tor setup by visiting the Tor test page (http://serifos.eecs.
harvard.edu/cgi-bin/ipaddr.pl?tor=1). If you’re connecting to it through Tor,
you should see something similar to Figure 3-1.

Tor can be used for much more than just anonymizing web browsing,
though. You can tunnel SSH through Tor [Hack #38] and use Tor with IRC cli-
ents, IM, and anything else that supports SOCKS. However, keep in mind
that Tor does not provide end-to-end encryption. Any unencrypted traffic
sent through Tor will only be protected until it exits the Tor network.

Figure 3-1. Tor test results

Tunnel SSH Through Tor #38

Chapter 3, Privacy and Anonymity | 95

HACK

See Also
• “Tunnel SSH Through Tor” [Hack #38], for information on using Tor to

anonymize SSH connections

• “Block Tor” [Hack #53], for information on blocking Tor for users on your
network

H A C K

#38
Tunnel SSH Through Tor Hack #38

Ensure your privacy when accessing shell accounts remotely.

“Evade Traffic Analysis” [Hack #37] shows how to set up Tor and Privoxy, with
a focus on using Tor to anonymize web-browsing traffic. In this hack, we’ll
look at using Tor to anonymize SSH connections. This is useful if you have
shell access to any Internet-facing servers but don’t want the server opera-
tors to be able to build a profile of locations you might be coming from.

This hack makes use of SSH’s little-used ProxyCommand option, which lets
you specify a program to proxy connections though. When using this
option, SSH will tunnel all traffic through to the program’s standard input
and output. The option takes the following form:

ProxyCommand <program> <args>

When specifying the arguments, you can make use of the %h and %p macros.
SSH will expand these to be the host and port that you are connecting to
when executing the command. One nice thing about implementing proxy-
ing this way is that it is incredibly flexible. Simply drop in a program that
can connect to whatever type of proxy you’re interested in using.

One simple program that can perform this task is connect.c (available at
https://savannah.gnu.org/maintenance/connect.c), which can be used with
SSH’s ProxyCommand to direct SSH connections through a proxy server.
Download it and compile it:

$ gcc -o connect connect.c

If that produces any errors, check the comments at the beginning of connect.c
for tips on getting it to compile. Once you’ve done that, copy it to an appro-
priate place. Now, to use it with SSH to connect through Tor, run a com-
mand like this:

$ ssh -o ProxyCommand="/home/andrew/bin/connect -S localhost:9050 %h %p" \
10.0.0.23

Replace localhost with the address or hostname of your Tor server, if you’re
not running one on your local machine. Also note that the previous exam-
ple command uses an IP address, instead of a hostname, to specify the server
to connect to. This prevents ssh from resolving the IP address using your

96 | Chapter 3, Privacy and Anonymity

#39 Encrypt Your Files Seamlessly
HACK

name server before passing it to the connect program. If you were to let ssh
do the resolving, it might reveal the location you are connecting to, since
Tor wouldn’t protect the name resolution traffic.

So, what do you do if you don’t know the IP address of the host to which
you want to connect? There’s an easy solution. Included with the Tor distri-
bution is a program called tor-resolve. Its purpose is to resolve hostnames to
IP addresses by making DNS queries through the Tor network.

The program takes only two arguments: the hostname to resolve and the
SOCKS proxy connection information (i.e., the address and port on which
your Tor proxy is listening). So, if your Tor proxy is running locally, you’d
use something like this to resolve www.google.com:

$ tor-resolve www.google.com localhost:9050
64.233.161.99

Then, you can use the IP address returned by tor-resolve when running
ssh.

See Also
• “Evade Traffic Analysis” [Hack #37], for information on setting up Tor and

Privoxy

• “Block Tor” [Hack #53], for information on blocking Tor for users on your
network

H A C K

#39
Encrypt Your Files Seamlessly Hack #39

Use TrueCrypt to protect your data.

“Encrypt Your Temp Folder” [Hack #33] showed how to encrypt files using the
Windows EFS, but it also touched on some problems with EFS, such as lack
of support for the same algorithms across all versions of Windows on which
it’s available. One other big caveat is that the keys used by EFS are attached
to your user account, so it leaves you unable to access the files on another
system unless you decrypt them before moving them there.

Another good solution for seamless file encryption under Windows is True-
Crypt (http://www.truecrypt.org). With TrueCrypt, you can choose either to
create an encrypted disk volume (a container file) or to actually encrypt a
whole disk device (USB memory drives are especially good for this). In addi-
tion, TrueCrypt supports a wide variety of encryption and hashing algo-
rithms. What’s more, it runs under Linux and it’s free.

To set up TrueCrypt, download the .zip file from the project’s download
page, unzip the archive, and launch the installer: TrueCrypt Setup.exe. The

Encrypt Your Files Seamlessly #39

Chapter 3, Privacy and Anonymity | 97

HACK

installer features all of the options that you’d expect. You can choose
whether to install it for your own account or for all users on the system,
whether to create Start menu and desktop icons for it, where to install it,
and a variety of other options.

After you’ve installed it, launching TrueCrypt brings up the window shown
in Figure 3-2.

This window lists all currently mounted TrueCrypt volumes. Since you’ve
just installed it, you won’t have any, so now it’s time to create one. Click the
Create Volume button to launch the Volume Creation Wizard. You should
see the window shown in Figure 3-3.

The first option you’ll be presented with is whether to create a hidden vol-
ume—one of the coolest features TrueCrypt has to offer. A hidden volume
allows you to create an encrypted disk volume (the outer volume) with one
password and hide another volume (with a different password) within the
free space of the outer volume. This allows you to disclose the key to the
outer volume if you’re compelled to do so, but still leave the hidden volume

Figure 3-2. TrueCrypt’s main window

98 | Chapter 3, Privacy and Anonymity

#39 Encrypt Your Files Seamlessly
HACK

undetected. The only major drawback to doing this is that the outer volume
must be formatted using the FAT filesystem. However, the hidden volume
can be formatted as either FAT or NTFS.

If you choose to create a hidden volume, you can either do so within a FAT-
formatted volume that already exists, or choose to create a new outer vol-
ume and hidden volume. Whatever you decide, you’ll still be going through
the same volume-creation process used for standard volumes (you’ll just do
it twice in the latter case), so we’ll cover creating a standard volume here.

Select the “Create a standard TrueCrypt volume” radio button and click
Next. You should now see the dialog shown in Figure 3-4.

Here is where you can select the location of the container file where you
want to store the encrypted disk image or which partition you want to
encrypt. For now, try out a container file. Enter a name for your container
file, and click Next.

You’ll be presented with options for what algorithm to use for encryption
and which hashing algorithm to use for generating the encryption key. In
this example, Figure 3-5 shows that AES will be used for encryption and
RIPEMD-160 will be used to generate the key.

If you want to see what encryption algorithm will likely yield the highest
performance, click the Benchmark button. After the benchmarking window
pops up, click the Benchmark button to display the screen shown in
Figure 3-6.

Figure 3-3. Creating a volume

Encrypt Your Files Seamlessly #39

Chapter 3, Privacy and Anonymity | 99

HACK

On the system used here, it might be worthwhile to choose Blowfish instead
of AES, because Blowfish is significantly faster at decryption. Once you’ve
chosen which algorithms to use, click Next. You’ll then be able to specify
the size of the encrypted volume. Of course, if you’re creating a hidden vol-
ume, you won’t be able to make it any larger than the outer volume in which
it’s located.

Figure 3-4. Selecting the image file or device to encrypt

Figure 3-5. Choosing an encryption algorithm

100 | Chapter 3, Privacy and Anonymity

#40 Guard Against Phishing
HACK

After specifying the size, you’ll be prompted to set a password. Then it’s
time to format the volume. Choose either NTFS or FAT and specify the clus-
ter size to use, and then click Format. After TrueCrypt finishes formatting
the volume, follow the prompts to exit the wizard.

You can now go back to the main TrueCrypt window and select the
encrypted container file or the device that you encrypted. Once you do that,
click the Mount button. You’ll be prompted for your password. If your pass-
word is accepted, you should see the details of the volume listed in the top-
most pane of the window. Just double-click the drive letter to open it in the
Explorer shell.

H A C K

#40
Guard Against Phishing Hack #40

Protect your users from phishing attacks by deploying SpoofGuard.

Internet scams that use fraudulent web sites and emails to gain sensitive
information, known as phishing scams, have become quite the epidemic in
the past few years. And, with ever more sophisticated techniques such as
IDN spoofing, it has become increasingly harder for the average end user to
tell a fake web site from its legitimate counterpart.

To combat phishing, you need to know the signs to look out for. However,
even with the best advice on how to spot a phishing scam, if you don’t have

Figure 3-6. Encryption algorithm benchmarks

Guard Against Phishing #40

Chapter 3, Privacy and Anonymity | 101

HACK

foundational knowledge in how the Web operates it can be difficult to
remember and spot all the warning signs.

One thing that would certainly help is to have an expert watch over your
shoulder while you’re surfing the Web, though that’s obviously infeasible.
The next best thing might be to use something like SpoofGuard (http://
crypto.stanford.edu/SpoofGuard/).

SpoofGuard
SpoofGuard is an extension to Internet Explorer produced by the Security
Lab at Stanford University. It allows users to spot suspicious sites easily by
displaying a simple traffic signal indicator (e.g., green is safe, yellow is suspi-
cious, and red is unsafe) that shows the safety level of the current site.

For example, Figure 3-7 shows the legitimate PayPal site (notice the green
light on the toolbar), while Figure 3-8 shows a spoofed PayPal site.

Figure 3-7. The real PayPal site

102 | Chapter 3, Privacy and Anonymity

#40 Guard Against Phishing
HACK

Aside from the URL, the spoofed site looks very convincing. However,
notice that the light on the toolbar is now red and SpoofGuard has kindly
popped up a warning that explains why it thinks that this site is a scam.

Installing SpoofGuard
Installing SpoofGuard is easy. Simply go to the download page, where both
Default and Light versions are available. The Default version will report
information back to the team at Stanford to help them gauge what methods
are most effective in detecting spoofed web sites. If you don’t want to do
this, download the Light version, which doesn’t report anything.

Once you’ve downloaded the installer, execute it and restart Internet
Explorer. You should now see a toolbar like one shown earlier. If you don’t,
choose View ➝ Toolbars ➝ WarnBar Class.

You can begin configuring SpoofGuard by clicking the Options toolbar but-
ton, which brings up the window shown in Figure 3-9.

SpoofGuard works by performing a series of checks on the URL and the
contents of the web page you are viewing. You can configure each of these
tests with a weight in the Options window. When one of the tests returns
positive, its weight is added to the total score for the page. If the page’s score
exceeds the Total Alert Level you’ve configured, SpoofGuard will warn you.

Figure 3-8. SpoofGuard’s warning on a spoofed PayPal site

Guard Against Phishing #40

Chapter 3, Privacy and Anonymity | 103

HACK

How SpoofGuard Works
The first three tests are performed before the browser has even made the
page request. When navigating to a site, SpoofGuard first checks the domain
to see if it is similar to any domains in the browser history. It does this by
computing the distances between the domain of the site being navigated to
and the domains of sites in the browser history.

Figure 3-9. Configuring SpoofGuard options

104 | Chapter 3, Privacy and Anonymity

#40 Guard Against Phishing
HACK

The distance is the number of changes that are required to transform one
string into another one. For instance, google.com and googIe.com might
appear to be the same in your address bar or on a web page, depending on
what font is being used. The distance between these two domain names
would be one, so the smaller the distance, the more similar it is to the legiti-
mate site’s domain.

Next, SpoofGuard checks the URL to make sure it does not have a suspicious
username embedded in it (e.g., http://www.paypal.com@10.0.0.1/...),
because such tricks are often used to fool users into thinking they’re access-
ing a legitimate web site. In addition, SpoofGuard searches the URL for ele-
ments common to hostnames, such as www and commercially used TLDs to
ensure that the domain of the site isn’t obscured. Next, it checks to make sure
that the URL refers to commonly used port numbers (e.g., port 80 for HTTP
and 443 for HTTPS).

The other thing that SpoofGuard checks before loading the page is the refer-
rer field. If this field is blank, either the user has entered the URL manually
or she’s followed it from an external application (e.g., an email client).
SpoofGuard also checks to see if the referrer is a known web-based email
site. If these checks cause SpoofGuard to flag the site as possibly being
unsafe, you can choose to be alerted that the site might be unsafe and given
the option to block it from loading.

Once a page finishes loading, SpoofGuard then performs a series of checks
on the content of the page. It first looks for password fields and, if the page
isn’t secured with SSL, displays a warning if it finds one. Next, it analyzes all
links on the page, looking for suspicious URLs according to the same crite-
ria it uses for analyzing the page URL before it is loaded. Finally, Spoof-
Guard generates hashes for the images on the current page and then looks
through your browser cache and compares them to images on previously
visited sites. If an image on the current page matches one on another site, a
warning flag is raised.

In addition to all of these checks, you can configure SpoofGuard to monitor
for usernames and passwords being used on more than one web site. Spoof-
Guard monitors forms for elements that look like usernames and passwords
and then combines them to generate a hash. It then compares the hash of
the username and password on the page that you’re visiting with previously
generated values.

While SpoofGuard is a very powerful tool, it’s not foolproof. Make sure that
you educate your users to look out for signs of phishing. With some educa-
tion and tools like SpoofGuard, they might just stand a chance.

Use the Web with Fewer Passwords #41

Chapter 3, Privacy and Anonymity | 105

HACK

H A C K

#41
Use the Web with Fewer Passwords Hack #41

Help your users stay more secure by giving them fewer passwords to
remember.

At first glance, this hack might seem counterintuitive. Shouldn’t you be
using strong passwords that are unique to every account? Well, yes you
should, but let’s face it: that’s hard to do. IT security professionals should
try to practice what they preach, but it can be unrealistic to expect the aver-
age corporate or home user to follow such practices, especially since nearly
everything seems to require user registration these days. Unfortunately, this
makes the issue much more problematic, because if the user is using the
same password for multiple online accounts, discovery of that password can
jeopardize all of them.

PwdHash
One tool that helps to improve this situation is PwdHash (http://crypto.
stanford.edu/PwdHash/), from the Security Lab at Stanford University.
PwdHash is an extension (available for Internet Explorer, Firefox, and
Opera) that enables a user to easily use strong passwords that are unique to
each web site with which they register.

PwdHash does this by reading any password fields in a web form and
dynamically replacing them with a unique strong password. It generates the
password by combining the user-specified password with the domain name
of the web site and then generating a one-way hash from it. This also allevi-
ates the users’ worries about the security of their browsers’ password stores:
they no longer need to have their browsers remember their passwords,
because in their minds, they each only have one password.

In addition, using PwdHash can help mitigate the result of phishing attacks
[Hack #40]. If a user clicks on a link purporting to be a legitimate web site and
ignorantly enters his password, PwdHash will replace it with its generated
hash. Unless the phishers actually managed to take control of the legitimate
site’s domain, the phisher’s domain used to compute the hash will be differ-
ent, so the hash will be too.

Installing PwdHash is easy: just go to the site and click on the installer corre-
sponding to the browser with which you want to use it. Depending on your
browser’s security systems, you might need to allow crypto.stanford.edu to
install extensions. Once you’ve installed the extension, restart your browser.
PwdHash is selectively triggered for password fields by either prefixing the
password you enter with @@ or pressing the F2 key.

106 | Chapter 3, Privacy and Anonymity

#41 Use the Web with Fewer Passwords
HACK

Remote PwdHash
One problem that implementing PwdHash locally presents is what to do
when you’re away from your computer. Remote PwdHash (http://crypto.
stanford.edu/PwdHash/RemotePwdHash/), shown in Figure 3-10, solves this
problem.

Remote PwdHash is a web-based implementation of PwdHash’s hashing
algorithm. It’s done in JavaScript and executed only within your browser, so
you can rest assured that the password you enter won’t be transmitted or
stored anywhere. Enter the domain of the web site you want to access, along
with the password, and it will generate the proper hash for you.

Figure 3-10. Remote PwdHash

Encrypt Your Email with Thunderbird #42

Chapter 3, Privacy and Anonymity | 107

HACK

Though PwdHash and its remote cousin are incredibly simple, they’re
extremely powerful tools. PwdHash exhibits one of the main hallmarks of
good security: usability. If the security policies you make aren’t followed in
spirit (as many password policies aren’t), they’re no good. This tool goes a
long way toward keeping both administrators and end users happy.

H A C K

#42
Encrypt Your Email with Thunderbird Hack #42

Use strong encryption with Mozilla’s Thunderbird to protect your email from
electronic eavesdroppers.

With the growth of the Internet, email has become ubiquitous. You would
have to look very hard to find anyone that uses a computer but doesn’t have
an email address. However, as with any form of interpersonal communica-
tion, certain information shared between parties might be of a sensitive
nature. Because of this, it’s a wonder that most email is sent as unencrypted
clear-text.

One way to get started easily with encrypted email is to use the Mozilla
Foundation’s Thunderbird email client (http://www.mozilla.com/
thunderbird/) with the Enigmail extension (http://enigmail.mozdev.org). This
extension enables Thunderbird to integrate strong encryption almost
seamlessly by using powerful public-key encryption based on the OpenPGP
standard.

Setting Up Thunderbird
Of course, the first thing you’ll need to do, if you haven’t already, is install
Thunderbird and configure it to access your email account. The next step is
to download GnuPG for Windows (http://www.gnupg.org/download/index.
html). Once you’ve done that, launch the installer and follow the prompts
presented by the installation wizard until it has completed installation.

Then, download the Enigmail extension (http://enigmail.mozdev.org/
download.html) by right-clicking and saving it.

If you’re running Firefox and don’t choose to save the exten-
sion, Firefox will incorrectly attempt to install it as a Firefox
extension.

After you’ve done that, start Thunderbird, go to the Tools menu, and click
Extensions. You should now see a window like the one shown in
Figure 3-11.

108 | Chapter 3, Privacy and Anonymity

#42 Encrypt Your Email with Thunderbird
HACK

Click the Install button to open a file-selection dialog. Locate the file you
just downloaded and click Open. You’ll be presented with a dialog like the
one shown in Figure 3-12.

Click Install Now, and you should see Enigmail listed in the Extensions
window.

To load the extension, restart Thunderbird. You should now see a new
OpenPGP menu, as shown in Figure 3-13.

Figure 3-11. The Thunderbird Extensions window

Figure 3-12. Installing the Enigmail extension

Encrypt Your Email with Thunderbird #42

Chapter 3, Privacy and Anonymity | 109

HACK

Now you need to tell Enigmail where to find the GnuPG installation. Open
the OpenPGP menu and choose Preferences. You should now see the dialog
box shown in Figure 3-14.

Click the Browse button next to the “GnuPG executable path” item, locate
the gpg executable (e.g., C:\Program Files\GNU\GnuPG\gpg.exe), and click
OK.

Providing a Public/Private Key Pair
Now, you’ll need to provide Enigmail with a public/private key pair. The
public key is what others use to send encrypted email to you. Data
encrypted with your public key can only be decrypted with your private key.
Likewise, you can sign an email by encrypting it with your private key, so
that others can decrypt it only with your public key. Since only you know
your private key, this assures the receiver that the email is truly from you.

When using Enigmail you have the choice of importing an existing key pair
or generating a new one.

Figure 3-13. Enigmail’s OpenPGP menu

110 | Chapter 3, Privacy and Anonymity

#42 Encrypt Your Email with Thunderbird
HACK

Importing an existing key pair. To import an existing key pair, open the Open-
PGP menu and choose Key Management to bring up the window shown in
Figure 3-15.

Figure 3-14. Telling Enigmail where gpg.exe is located

Figure 3-15. The key management window

Encrypt Your Email with Thunderbird #42

Chapter 3, Privacy and Anonymity | 111

HACK

Choose File ➝ Import Keys From File and locate your key files in the file dia-
log that appears. After you import the key, you should see it listed in the key
management window.

Generating a new key pair. If you need to generate a new key, go to the Open-
PGP menu and choose Key Management. In the key management window,
select Generate ➝ New Key Pair. After doing so, you should see the dialog
box shown in Figure 3-16.

In this menu, enter a password to protect your private key and indicate how
long the key should be valid before it expires. Once you’re done setting your
password and expiration info, click the “Generate key” button. After the key
is generated, it should appear in the list of keys displayed in the OpenPGP
Key Management window.

Sending and Receiving Encrypted Email
You should now see an OpenPGP menu, as shown in Figure 3-17, when
composing messages.

Figure 3-16. Generating a new key pair

112 | Chapter 3, Privacy and Anonymity

#43 Encrypt Your Email in Mac OS X
HACK

Sign messages by clicking OpenPGP ➝ Sign Message and encrypt messages
by clicking OpenPGP ➝ Encrypt Message. Before sending an encrypted mes-
sage to someone, you’ll need to import that person’s public key into your
keyring. You can do this by following the same method for importing your
own public and private key pair (i.e., clicking File ➝ Import Keys From File
in the key management window). After you’ve imported the public key for
the recipient, it will automatically be used for encrypting the message when
you send it.

When receiving encrypted mail, all you need to do is click on the message
and Thunderbird will prompt you for your private key’s password. After
accepting your password, it will display the unencrypted message for you.

H A C K

#43
Encrypt Your Email in Mac OS X Hack #43

Use strong encryption to protect your email when using a Mac.

“Encrypt Your Email with Thunderbird” [Hack #42] shows how to set up GPG
with Mozilla’s Thunderbird by using the Enigmail extension. While Thun-
derbird is cross-platform and will run under Mac OS X, it might not be your
cup of tea. This hack shows how to set up GPG with Apple’s Mail.app, the
default mail application included with Mac OS X.

Figure 3-17. Composing an encrypted message in Thunderbird

Encrypt Your Email in Mac OS X #43

Chapter 3, Privacy and Anonymity | 113

HACK

Installing GPG
The first thing to do is to install a copy of GPG, a program that uses strong
public-key encryption to protect your data. Simply download Mac GPG
from http://macgpg.sourceforge.net and open the disk image. You should see
the window shown in Figure 3-18.

Launch the installer by double-clicking on the .mpkg file. Follow the
prompts, and be sure to choose your boot volume when presented with the
choice of where to install GnuPG.

Creating a GPG Key
Before installing GPGMail, you’ll need to create a public and private key
pair, if you don’t have one already. The public key is what others use to send
encrypted email to you. Public keys can be decrypted with your private key.
Likewise, you can sign an email by encrypting it with your private key, so
that others can decrypt it only with your public key. Since only you know
your private key, this assures the receiver that the email is truly from you.

You can do this by running the following command from the command line,
which can be accessed by opening Terminal.app:

$ gpg --gen-key

Figure 3-18. Mac GPG installation window

114 | Chapter 3, Privacy and Anonymity

#43 Encrypt Your Email in Mac OS X
HACK

Then, just follow the prompts. The default choices should generally be okay.

Alternatively, you can create a GPG key using GPG Keychain Access, which
is available from the Mac GPG site. Just download it and launch the applica-
tion bundle. You’ll be presented with a dialog like the one shown in
Figure 3-19.

When you click the Generate button, Mac GPG will walk you through the
rest of the process.

Installing GPGMail
Now that you have a key, you can install GPGMail. Download it from http://
www.sente.ch/software/GPGMail/ and open the disk image file. Then, dou-
ble-click the Install GPGMail icon. This AppleScript will copy the GPGMail.
mailbundle file to the Library/Mail/Bundles folder in your home directory
and then enable plug-in support for Mail.app.

The next time you launch Mail.app, you should see a new section called
PGP in its Preferences panel, as shown in Figure 3-20.

Make sure that the key that you created appears in the drop-down list. For
everything else, the default configuration should work fine. Now, find a
friend with a GPG or PGP key to exchange encrypted email with, so that you
can test it out.

Figure 3-19. Creating a GPG key

Encrypt Your Email in Mac OS X #43

Chapter 3, Privacy and Anonymity | 115

HACK

Sending and Receiving Encrypted Email
When composing messages, you’ll now see two additional checkboxes, one
for signing the message and another for encrypting it, as shown in
Figure 3-21.

Figure 3-20. The PGP Preferences window in Mail.app

Figure 3-21. Composing an encrypted message in Mail.app

116 | Chapter 3, Privacy and Anonymity

#43 Encrypt Your Email in Mac OS X
HACK

The drop-down boxes next to the checkboxes should automatically select
the appropriate key for you.

When receiving encrypted mail, all you need to do is click on the message
and Mail.app will prompt you for your private key’s password. Then it will
display the unencrypted message for you.

117

Chapter 4 C H A P T E R F O U R

Firewalling
Hacks 44–53

When designing a network, it’s often desirable to define policies governing
how and where certain vital network services can be accessed. The firewall is
a key technology that is instrumental in enforcing these policies and can
allow network administrators to delineate trust relationships between net-
works and hosts with a fine grain of detail.

By instituting a firewall, you can prevent unauthorized access to services at
the network level before an attacker is given the chance to attempt to exploit
them. You can use a firewall not only to limit what information flows into a
network, but also to prevent the egress of information. Doing so aids in pre-
venting worm propagation and helps stop important confidential informa-
tion from leaving an enterprise. Additionally, firewall logs can be excellent
tools to help you understand where the threats to your network originate.

A variety of firewalls are available today. In addition to the many firewall
appliances that are available, Linux, BSD, and Windows all include some
form of firewalling support. This chapter shows how to set up firewalls with
Linux, FreeBSD, OpenBSD, and Windows, as well as how to test your fire-
wall rulesets. You’ll also see how to perform MAC address filtering and how
to create a gateway that will authenticate machines based on login creden-
tials. Finally, you’ll learn a few additional tricks to keep certain types of traf-
fic from exiting your network.

H A C K

#44
Firewall with Netfilter Hack #44

Protect your network with Linux’s powerful firewalling features.

Linux has long had the capability for filtering packets, and it has come a
long way since the early days in terms of both power and flexibility. The first
generation of packet-filtering code, called ipfw (for “IP firewall”), provided
basic filtering capability. Since it was somewhat inflexible and inefficient for

118 | Chapter 4, Firewalling

#44 Firewall with Netfilter
HACK

complex configurations, ipfw is rarely used now. The second generation of
IP filtering was called IP chains. It improved greatly on ipfw and is still in
common use. The latest generation of filtering, called Netfilter, is manipu-
lated with the iptables command and used exclusively with the 2.4.x and
later series of kernels. Although Netfilter is the kernel component and
iptables is the user-space configuration tool, these terms are often used inter-
changeably.

An important concept in Netfilter is the chain, which consists of a list of
rules that are applied to packets as they enter, leave, or traverse the system.
The kernel defines three chains by default, but new chains of rules can be
specified and linked to the predefined chains. The INPUT chain applies to
packets that are received by and destined for the local system, and the
OUTPUT chain applies to packets that are transmitted by the local system.
Finally, the FORWARD chain applies whenever a packet will be routed from one
network interface to another through the system. It is used whenever the
system is acting as a router or gateway, and it applies to packets that are nei-
ther originating from nor destined for the local system.

The iptables command makes changes to the Netfilter chains and rulesets.
Using iptables, you can create new chains, delete chains, list the rules in a
chain, flush chains (i.e., remove all rules from a chain), and set the default
action for a chain. iptables also allows you to insert, append, delete, and
replace rules in a chain.

Setting the Filtering Policy
Before we get started with some example rules, it’s important to set a default
behavior for all the chains. To do this, use the -P (which stands for “pol-
icy”) command-line switch:

iptables -P INPUT DROP
iptables -P FORWARD DROP

This ensures that only those packets covered by subsequent rules that you
specify will make it past your firewall. After all, with the relatively small
number of services that your network will likely provide, it is far easier to
explicitly specify all the types of traffic that you want to allow than it is to
specify all the traffic that you don’t.

Note that you don’t specify a default policy for the OUTPUT
chain. This is because you’ll want to allow traffic to proceed
out of the firewall itself in a normal manner.

Firewall with Netfilter #44

Chapter 4, Firewalling | 119

HACK

With the default policy set to DROP, you’ll specify what is actually allowed.
Here’s where you’ll need to figure out what services will have to be
accessible to the outside world. For the rest of these examples, assume that
eth0 is the external interface on the firewall and eth1 is the internal one.
The sample network will contain a web server (192.168.1.20), a mail server
(192.168.1.21), and a DNS server (192.168.1.18)—a fairly minimal setup
for a self-managed Internet presence.

We’ll begin specifying rules momentarily, but first, remove filtering from the
loopback interface:

iptables -A INPUT -i lo -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT

Rule Examples
Now, let’s construct some rules to allow this traffic through. First, make a
rule to allow traffic on TCP port 80—the standard port for web servers—to
pass to the web server unfettered by the firewall:

iptables -A FORWARD -m state --state NEW -p tcp \
-d 192.168.1.20 --dport 80 -j ACCEPT

And now for the mail server, which uses TCP port 25 for SMTP:

iptables -A FORWARD -m state --state NEW -p tcp \
-d 192.168.1.21 --dport 25 -j ACCEPT

You might also want to allow remote POP3, IMAP, and IMAP+SSL access:

POP3
iptables -A FORWARD -m state --state NEW -p tcp \
-d 192.168.1.21 --dport 110 -j ACCEPT

IMAP
iptables -A FORWARD -m state --state NEW -p tcp \
-d 192.168.1.21 --dport 143 -j ACCEPT

IMAP+SSL
iptables -A FORWARD -m state --state NEW -p tcp \
-d 192.168.1.21 --dport 993 -j ACCEPT

Finally, allow DNS access via port 53:

iptables -A FORWARD -m state --state NEW -p tcp \
-d 192.168.1.21 --dport 53 -j ACCEPT

Unlike the other services, DNS can use both TCP and UDP port 53. Using a
default deny policy makes it slightly more difficult to use UDP for DNS.
This is because the policy relies on the use of state-tracking rules, and since
UDP is a stateless protocol, there is no way to track it. In this case, you can
configure the DNS server either to use only TCP, or to use a UDP source

120 | Chapter 4, Firewalling

#44 Firewall with Netfilter
HACK

port of 53 for any response that it sends back to clients that were using UDP
to query the name server.

If the DNS server is configured to respond to clients using UDP port 53, you
can allow this traffic through with the following two rules:

iptables -A FORWARD -p udp -d 192.168.1.18 --dport 53 -j ACCEPT
iptables -A FORWARD -p udp -s 192.168.1.18 --sport 53 -j ACCEPT

The first rule allows traffic destined for the DNS server into your network,
and the second rule allows responses from the DNS server to leave the net-
work.

A Word About Stateful Inspection
You might be wondering what the -m state and --state arguments are
about. These two options allow us to use Netfilter’s stateful packet-inspec-
tion engine. Using these options tells Netfilter that you want to allow only
new connections to the destination IP and port pairs that you have speci-
fied. When these rules are in place, the triggering packet is accepted and its
information is entered into a state table.

Now, you can specify that you want to allow any outbound traffic that is
associated with these connections by adding a rule like this:

iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

The only thing left now is to allow traffic from machines behind the firewall
to reach the outside world. To do this, use a rule like the following:

iptables -A FORWARD -m state --state NEW -i eth1 -j ACCEPT

This rule enters any outbound connections from the internal network into
the state table. It works by matching packets coming into the internal inter-
face of the firewall that are creating new connections. If you were setting up
a firewall that had multiple internal interfaces, you could have used a Bool-
ean NOT operator on the external interface (e.g., -i ! eth0). Now, any traffic
that comes into the firewall through the external interface that corresponds
to an outbound connection will be accepted by the preceding rule, because
this rule will have put the corresponding connection into the state table.

Ordering Rules
In these examples, the order in which the rules were entered does not really
matter. Since you’re operating with a default DENY policy, all your rules have
an ACCEPT target. However, if you had specified targets of DROP or REJECT as
arguments to the -j option, you would have had to take a little extra care to
ensure that the order of those rules would result in the desired effect.

Firewall with Netfilter #44

Chapter 4, Firewalling | 121

HACK

Remember that the first rule that matches a packet is always triggered as the
rule chains are traversed, so rule order can sometimes be critically
important.

It should also be noted that rule order can have a performance impact in
some circumstances. For example, the rule shown earlier that matches
ESTABLISHED and RELATED states should be specified before any of the other
rules, since that particular rule will be matched far more often than any of
the rules that will match only on new connections. Putting that rule first will
prevent any packets that are already associated with a connection from hav-
ing to traverse the rest of the rule chain before finding a match.

To complete the firewall configuration, you’ll want to enable packet for-
warding. Run this command:

echo 1 > /proc/sys/net/ipv4/ip_forward

This tells the kernel to forward packets between interfaces whenever appro-
priate. To have this done automatically at boot time, add the following line
to /etc/sysctl.conf:

net.ipv4.ip_forward=1

If your system doesn’t support /etc/sysctl.conf, you can put the preceding
echo command in one of your startup rc scripts, such as /etc/rc.local.

Another useful kernel parameter is rp_filter, which helps prevent IP spoof-
ing. Running the following command enables source address verification by
checking that the IP address for any given packet has arrived on the
expected network interface:

echo 1 > /proc/sys/net/ipv4/conf/default/rp_filter

You can also enable source address verification by editing /etc/sysctl.conf on
systems that support it, or else putting the changes in your rc.local. To
enable rp_filter in your sysctl.conf, add the following line:

net.ipv4.conf.all.rp_filter=1

To save all of the rules, either write them to a shell script or use your Linux
distribution’s particular way of saving them. Do this in Red Hat by running
the following command:

/sbin/service iptables save

This saves all currently active filter rules to /etc/sysconfig/iptables. To achieve
the same effect under Debian, edit /etc/default/iptables and set enable_
iptables_initd=true.

After doing this, run the following command:

/etc/init.d/iptables save_active

122 | Chapter 4, Firewalling

#45 Firewall with OpenBSD’s PacketFilter
HACK

When the machine reboots, your iptables configuration will automatically be
restored.

H A C K

#45
Firewall with OpenBSD’s PacketFilter Hack #45

Use OpenBSD’s firewalling features to protect your network.

PacketFilter, commonly known as PF, is the firewalling system available in
OpenBSD. While it is a relatively new addition to the operating system, it
has already surpassed IPFilter, the system it replaced, in both features and
flexibility and has even become a part of FreeBSD as of 5.3-RELEASE. PF
shares many features with Linux’s Netfilter, and while Netfilter is more eas-
ily extensible with modules, PF outshines it in its traffic normalization capa-
bilities and enhanced logging features.

OpenBSD supports PF out of the box. However, under FreeBSD, you’ll need
to enable at minimum the following kernel configuration options:

device pf
device pflog

If you don’t have these options enabled, add them in and rebuild and rein-
stall your kernel. For more information on how to do that, see the “Building
and Installing a Custom Kernel” section of the FreeBSD Handbook.

To communicate with the kernel portion of PF, you’ll need to use the pfctl
command. Unlike the iptables command that is used with Linux’s Netfil-
ter, pfctl is not used to specify individual rules, but instead uses its own
configuration and rule specification language. To actually configure PF, you
must edit /etc/pf.conf.

Configuring PF
PF’s rule specification language is actually very powerful, flexible, and easy
to use. The pf.conf file is split up into seven sections, each of which contains
a particular type of rule. You don’t need to use all of the sections; if you
don’t need a specific type of rule, you can simply omit that section from the
file.

The first section is for macros. In this section, you can specify variables to
hold either single values or lists of values for use in later sections of the con-
figuration file. Like an environment variable or a programming-language
identifier, a macro must start with a letter and may contain digits and under-
scores.

Firewall with OpenBSD’s PacketFilter #45

Chapter 4, Firewalling | 123

HACK

Here are some example macros:

EXT_IF="de0"
INT_IF="de1"
RFC1918="{ 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }"

You can reference a macro later by prefixing it with the $ character:

block drop quick on $EXT_IF from any to $RFC1918

The second section allows you to specify tables of IP addresses to use in later
rules. Using tables for lists of IP addresses is much faster than using a macro,
especially for large numbers of IP addresses, because when a macro is used
in a rule, it will expand to multiple rules, with each one matching on a sin-
gle value contained in the macro. Using a table adds just a single rule when
it is expanded.

Thus, rather than using the macro from the previous example, you could
define a table to hold the nonroutable RFC 1918 IP addresses:

table <rfc1918> const { 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }

The const keyword ensures that this table cannot be modified once it has
been created. Specify tables in a rule in the same way that they were created:

block drop quick on $EXT_IF from any to <rfc1918>

You can also load a list of IP addresses into a table by using the file key-
word:

table <spammers> file "/etc/spammers.table"

If you elect not to use the const keyword, you can add addresses to a table
by running a command such as this:

pfctl -t spammers -T add 10.1.1.1

Additionally, you can delete an address by running a command like this:

pfctl -t spammers -T delete 10.1.1.1

To list the contents of a table, you can run this command:

pfctl -t spammers -T show

In addition to IP addresses, you can also specify hostnames. In this case, all
valid addresses returned by the resolver will be inserted into the table.

Global Options
The next section of the configuration file contains options that affect the
behavior of PF. By modifying options, you can control session timeouts,
defragmentation timeouts, state-table transitions, statistic collection, and
other behaviors. Specify options by using the set keyword. The available

124 | Chapter 4, Firewalling

#45 Firewall with OpenBSD’s PacketFilter
HACK

options are too numerous to discuss all of them in any meaningful detail;
however, we will discuss the most pertinent and useful ones.

One of the most important options is block-policy. This option specifies the
default behavior of the block keyword and can be configured to silently drop
matching packets by specifying drop. Alternatively, you can use return to
specify that packets matching a block rule will generate a TCP reset or an
ICMP unreachable packet, depending on whether the triggering packet is
TCP or UDP. This is similar to the REJECT target in Linux’s Netfilter.

For example, to have PF drop packets silently by default, add a line like this
to /etc/pf.conf:

set block-policy drop

In addition to setting the block-policy, you can collect other statistics, such
as packet and byte counts, for an interface. To enable this for an interface,
add a line similar to this to the configuration file:

set loginterface de0

Note that you can collect these statistics on only a single interface at a time.
If you do not want to collect any statistics, you can replace the interface
name with the none keyword.

To better utilize resources on busy networks, you can also modify the ses-
sion-timeout values. Setting the timeout interval to a low value can help
improve the performance of the firewall on high-traffic networks, but at the
expense of dropping valid idle connections.

To set the session timeout (in seconds), put a line similar to this one in /etc/
pf.conf:

set timeout interval 20

With this setting in place, any TCP connection that is idle for 20 seconds
will automatically be reset.

PF can also optimize performance on low-end hardware by tuning its mem-
ory use regarding how many states can be stored at any one time or how
many fragments may reside in memory for fragment reassembly. For exam-
ple, to set the number of states to 20,000 and the number of entries used by
the fragment reassembler to 15,000, you could put these lines in your pf.conf
file:

set limit states 20000
set limit frags 15000

Alternatively, you could combine these entries into a single statement like
this:

set limit { states 20000, frags 15000 }

Firewall with OpenBSD’s PacketFilter #45

Chapter 4, Firewalling | 125

HACK

Traffic Normalization Rules
The next section is for traffic normalization rules. Rules of this type ensure
that packets passing through the firewall meet certain criteria regarding frag-
mentation, IP IDs, minimum TTLs, and other attributes of a TCP datagram.
Rules in this section are all prefixed by the scrub keyword. In general, just
putting scrub all is fine. However, if necessary, you can get quite detailed in
specifying what you want normalized and how you want to normalize it.
Since you can use PF’s general filtering-rule syntax to determine what types
of packets a scrub rule will match, you can normalize packets with a great
deal of control.

One of the more interesting possibilities is to randomize all IP IDs in the
packets leaving your network for the outside world. In doing this, you can
make sure that passive operating-system-determination methods based on IP
IDs will break when trying to figure out the operating system of a system
protected by the firewall. Because such methods depend on analyzing how
the host operating system increments the IP IDs in its outgoing packets, and
your firewall ensures that the IP IDs in all the packets leaving your network
are totally random, it will be pretty hard to match them against a known
pattern for an operating system.

IP ID randomization also helps to prevent enumeration of machines in a net-
work address translated (NAT) environment. Without random IP IDs,
someone outside the network can perform a statistical analysis of the IP IDs
being emitted by the NAT gateway in order to count the number of
machines on the private network.

To enable random ID generation on an interface, put a line like this in /etc/
pf.conf:

scrub out on de0 all random-id

You can also use the scrub directive to reassemble fragmented packets
before forwarding them to their destinations. This helps prevent specially
fragmented packets (such as packets that overlap) from evading intrusion-
detection systems that are sitting behind the firewall.

To enable fragment reassembly on all interfaces, simply put the following
line in the configuration file:

scrub fragment reassemble

If you want to limit reassembly to just a single interface, change it to some-
thing like:

scrub in on de0 all fragment reassemble

This will enable fragment reassembly for the de0 interface.

126 | Chapter 4, Firewalling

#45 Firewall with OpenBSD’s PacketFilter
HACK

Filtering Rules
The next two sections of the pf.conf file involve packet queuing and address
translation, but since this hack focuses on packet filtering, we’ll skip those.
This brings us to the last section, which contains the actual packet-filtering
rules. In general, the syntax for a filter rule can be defined by the following:

action direction [log] [quick] on int [af] [proto protocol] \
 from src_addr [port src_port] to dst_addr [port dst_port] \
 [tcp_flags] [state]

In PF, a rule can have only two actions: block and pass. As discussed previ-
ously, the block policy affects the behavior of the block action. However,
you can modify the block action’s behavior for specific rules by specifying
block along with the action, as in block drop or block return. Additionally,
you can use block return-icmp, which will return an ICMP unreachable
message by default. You can also specify an ICMP type, in which case that
type of ICMP message will be returned.

For most purposes, you’ll want to start out with a default deny policy; that
way, you can later add rules to allow the specific traffic that you want
through the firewall.

To set up a default deny policy for all interfaces, put the following line in
/etc/pf.conf:

block all

Now you can add rules to allow traffic through the firewall. First, keep the
loopback interface unfiltered by using this rule:

pass quick on lo0 all

Notice the use of the quick keyword. Normally, PF will continue through
the rule list even if a rule has already allowed a packet to pass, in order to
see whether a more specific rule that appears later in the configuration file
will drop the packet. The use of the quick keyword modifies this behavior,
causing PF to stop processing the packet at this rule if it matches the packet
and to take the specified action. With careful use, this can greatly improve
the performance of a ruleset.

To prevent external hosts from spoofing internal addresses, you can use the
antispoof keyword:

antispoof quick for $INT_IF inet

Next, you’ll want to block any packets that have a nonroutable RFC 1918 IP
address from entering or leaving your external interface. Such packets,
unless explicitly allowed later, would be caught by your default deny policy.

Firewall with OpenBSD’s PacketFilter #45

Chapter 4, Firewalling | 127

HACK

However, if you use a rule to specifically match these packets and use the
quick keyword, as follows, you can increase performance:

block drop quick on $EXT_IF from any to <rfc1918>

If you want to allow traffic destined for a specific web server (say, 192.168.1.
20) into the network, use a rule like this:

pass in on $EXT_IF proto tcp from any to 192.168.1.20 port 80 \
 modulate state flags S/SA

This will allow packets destined to TCP port 80 at 192.168.1.20 only if they
are establishing new connections (i.e., if the SYN flag is set), and will enter
the connections into the state table. The modulate keyword ensures that a
high-quality initial sequence number (ISN) is generated for the session,
which is important if the operating system in use at either end of the connec-
tion uses a poor algorithm for generating its ISNs.

Similarly, if you want to pass traffic to and from a particular email server
(say, IP address 192.168.1.21), use this rule:

pass in on $EXT_IF proto tcp from any to 192.168.1.21 \
 port { smtp, pop3, imap2, imaps } modulate state flags S/SA

Notice that you can specify multiple ports for a rule by separating them with
commas and enclosing them in curly braces. You can also use service names,
as defined in /etc/services, instead of specifying the services’ port numbers.

To allow traffic to a specific DNS server (say, 192.168.1.18), add a rule like
this:

pass in on $EXT_IF proto tcp from any to 192.168.1.18 port 53 \
 modulate state flags S/SA

This still leaves the firewall blocking UDP DNS traffic. To allow it through,
add a rule like this:

pass in on $EXT_IF proto udp from any to 192.168.1.18 port 53 \
 keep state

Notice that even though this is a rule for UDP packets, you have still used
the state keyword. In this case, PF will keep track of the connection using
the source and destination IP address and port pairs. Also, since UDP data-
grams do not contain sequence numbers, the modulate keyword is not appli-
cable. Using keep state instead specifies stateful inspection when not
modulating ISNs. In addition, since UDP datagrams do not contain flags,
simply omit them.

Now you’ll want to allow connections initiated within the network to pass
through the firewall. To do this, you need to add the following rules to let
the traffic into the internal interface of the firewall:

pass in on $INT_IF from $INT_IF:network to any
pass out on $INT_IF from any to $INT_IF:network

128 | Chapter 4, Firewalling

#46 Protect Your Computer with the Windows Firewall
HACK

pass out on $EXT_IF proto tcp all modulate state flags S/SA
pass out on $EXT_IF proto { icmp, udp } all keep state

In the past few releases, the popular passive OS fingerprinting tool p0f has
been integrated into PF. This enables PF to ascertain the operating systems
running on hosts sending traffic to or through a system running PF. Conse-
quently, you can create PF rules that are operating-system-specific. For
instance, if you want to block traffic from any system that isn’t running
Linux, you can use something like this:

block in
pass in from any os "Linux"

But beware that OS fingerprinting is far from perfect. It’s entirely possible
for someone to modify the characteristics of her TCP/IP stack to mimic
another operating system [Hack #65].

Once you’re done editing pf.conf, you can enable PF by running the follow-
ing commands:

pfctl -e
pfctl -f /etc/pf.conf

The first line enables PF, and the second line loads your configuration. If
you want to make changes to your configuration, just run pfctl -f /etc/pf.
conf again. To enable PF automatically at startup under OpenBSD, add the
following line to /etc/rc.conf.local:

pf=YES

FreeBSD is slightly different. You’ll instead need to add the following line to
/etc/rc.conf:

pf_enable="YES"

The next time you reboot, PF should be enabled.

As you can see, OpenBSD has a very powerful and flexible firewalling sys-
tem. There are too many features and possibilities to discuss here. For more
information, look at the excellent PF documentation available online, or the
pf.conf manpage.

H A C K

#46
Protect Your Computer with the Windows Firewall Hack #46

Windows XP SP2 turns on the Windows Firewall by default, so you’re
automatically protected from incoming attacks. Here’s how to configure the
Windows Firewall for maximum protection and flexibility and use it to log
potential attacks and send information about the intruders to your ISP.

The moment you connect to the Internet, you’re in some danger of intru-
sion, especially if you have a broadband connection. PCs with broadband

Protect Your Computer with the Windows Firewall #46

Chapter 4, Firewalling | 129

HACK

connections are tempting targets, because their high-speed connections are
ideal springboards for attacking other networks or web sites.

Whenever you’re connected, your system is among many constantly being
scanned for weaknesses by crackers (malicious hackers) and wannabes
(often called script kiddies) sending out automated probes looking for vul-
nerable PCs. In fact, these kinds of probes are so common and incessant,
you can think of them as the background radiation of the Internet.

One of the best ways to protect yourself against these probes and more tar-
geted attacks is to use a firewall. Firewall software sits between you and the
Internet and acts as a gatekeeper of sorts, allowing only nonmalicious traffic
through.

In this hack, we’ll look at how to get the most out of the Windows Firewall,
the firewall built into XP SP2, which is turned on by default when you install
SP2.

Before SP2, the firewall was called the Internet Connection
Firewall (ICF). It was much the same as the Windows Fire-
wall, with some notable differences in how the firewall and
its features were accessed.

The Windows Firewall offers basic Internet security by stopping all unsolic-
ited inbound traffic and connections to your PC and network, unless your
PC or another PC on the network initially makes the request for the connec-
tion. However, it will not block outgoing requests and connections, so you
can continue to use the Internet as you normally would for browsing the
Web, getting email, using FTP, or similar services.

The Windows Firewall has one serious drawback: it won’t protect you
against Trojans, such as the Back Orifice Trojan. Trojans let other users take
complete control of your PC and its resources. For example, someone could
use your PC as a launchpad for attacking web sites, making it appear as
though you were the culprit, or could copy all your files and find out per-
sonal information about you, such as your credit card numbers if you store
them on your PC. The Windows Firewall won’t stop Trojans because it
blocks only incoming traffic, and Trojans work by making outbound con-
nections from your PC.

To stop Trojans, get a third-party firewall, such as CORE
FORCE [Hack #48].

130 | Chapter 4, Firewalling

#46 Protect Your Computer with the Windows Firewall
HACK

When you install XP SP2, you’re automatically protected because it turns on
the Windows Firewall. However, it is possible to turn off the firewall. To
make sure it’s turned on, click Security Center from the Control Panel.
When the Security Center appears, there should be a green light next to the
Firewall button and it should say ON, as shown in Figure 4-1.

If it’s not on, click the Windows Firewall icon at the bottom of the screen,
click ON, and then click OK.

Allow Programs to Bypass the Firewall
The Windows Firewall offers protection from inbound threats, but it can
also cause problems. A variety of software needs to be able to accept
inbound connections, and the firewall will initially prevent these programs
from working. Instant messaging programs and FTP programs, for example,
both need to be able to accept these kinds of connections, and the Win-
dows Firewall blocks them.

Usually, but not always, the first time you run one of these programs, you’ll
get the warning from the Windows Firewall shown in Figure 4-2.

Figure 4-1. Making sure the Windows Firewall is turned on

Protect Your Computer with the Windows Firewall #46

Chapter 4, Firewalling | 131

HACK

The warning will show you the name of the program and the publisher and
will ask if you want to keep blocking the program. If you’d like the
Windows Firewall to let the program function, click Unblock. To keep
blocking the program, click Keep Blocking. The Ask Me Later choice lets the
program accept incoming connections for just this one time; after you exit,
the next time you run the program, you’ll get the same warning.

That’s well and good, but the Windows Firewall won’t always pop up this
alert. So, you might find that some programs don’t work with the firewall
on, but you won’t get a warning about them. Once you figure that out, you
can manually tell the Windows Firewall to let those programs through by
adding them to its exceptions list.

To do so, choose Control Panel ➝ Security Center ➝ Windows Firewall.
Then click the Exceptions tab, shown in Figure 4-3.

When you get a warning from the Windows Firewall and
click Ask Me Later, the temporarily allowed program will be
listed on the Exceptions tab, with no check next to it.

To add a program to the exceptions list, click Add Program to bring up the
window shown in Figure 4-4.

This tab lists all the programs for which the firewall will accept inbound
connections. If a program is listed here but doesn’t have a check next to it, it
means the firewall will block it. To tell the firewall to stop blocking inbound
connections for the program, check the box next to it and click OK.

Figure 4-2. A warning from the Windows Firewall

132 | Chapter 4, Firewalling

#46 Protect Your Computer with the Windows Firewall
HACK

Choose a program from the list and click OK, and then click OK again to
add it to your list. If the program you want to add isn’t listed in the Add a
Program dialog box, click the Browse button to find it and then add it.

There might be some programs for which you want to grant access to only
certain people and not others. Maybe, for example, you want to allow an
instant messaging program to work only with people on your own network.
There’s a way to do that.

First, add the program to the exceptions list. Then, highlight the program
and choose Edit ➝ Change Scope. The Change Scope dialog box appears, as
shown in Figure 4-5.

Choose “My Network (subnet) only,” click OK, and then click OK again,
and the firewall will allow only inbound connections originating from your

Figure 4-3. The Windows Firewall Exceptions tab

Protect Your Computer with the Windows Firewall #46

Chapter 4, Firewalling | 133

HACK

network. To allow inbound connections for the program for only specific IP
addresses, choose “Custom list,” type in the IP addresses you want to allow,
and then click OK and OK again.

Figure 4-4. Choosing a program to add to your exceptions list

Figure 4-5. Granting access to your network to specific people only

134 | Chapter 4, Firewalling

#46 Protect Your Computer with the Windows Firewall
HACK

Tracking Firewall Activity with a Windows Firewall Log
The Windows Firewall can do more than just protect you from intruders; it
can also keep track of all intrusion attempts so that you know whether your
PC has been targeted and what kinds of attacks the Windows Firewall has
turned back. Then you can send that information to your ISP so they can
track down the intruders.

First, create a Windows Firewall log. From the Security Center, choose Win-
dows Firewall ➝ Advanced, and click the Settings button in the Security
Logging section. The dialog box shown in Figure 4-6 appears.

Choose whether to log dropped packets, successful connections, or both. A
dropped packet is a packet that the Windows Firewall has blocked. A suc-
cessful connection refers to any connection you have made over the Internet,
such as to a web site; it doesn’t mean an intruder has successfully con-
nected to your PC. Because of this, there’s usually no reason for you to log
successful connections. If you do log them, your log will become large
quickly, and it will be more difficult to track only potentially dangerous
activity. So, your best bet is to log only dropped packets.

After you’ve made your choices, choose a location for the log, set its maxi-
mum size, and click OK. I don’t let my log get larger than 1 MB, but
depending on how much you care about disk space and how much you plan
to use the log, you might want yours to be larger or smaller.

Figure 4-6. Creating a Windows Firewall log

Protect Your Computer with the Windows Firewall #46

Chapter 4, Firewalling | 135

HACK

The log will be created in a W3C Extended Log (.log) format that you can
examine with Notepad or another text editor or by using a log analysis pro-
gram such as the free AWStats (http://awstats.sourceforge.net). Figure 4-7
shows a log generated by the Windows Firewall, examined in Notepad.

Each log entry has a total of up to 16 pieces of information associated with
each event, but the most important columns for each entry are the first 8. (In
a text editor, the names of the columns don’t align over the data, but they
will align in a log analyzer.)

Table 4-1 describes the most important columns.

Figure 4-7. A log generated by the Windows Firewall

Table 4-1. The columns in the Windows Firewall log

Name Description

Date Date of occurrence, in year-month-date format

Time Time of occurrence, in hour:minute:second format

Action The operation that was logged by the firewall, such as DROP for
dropping a connection, OPEN for opening a connection, or CLOSE
for closing a connection

Protocol The protocol used, such as TCP, UDP, or ICMP

Source IP (src-ip) The IP address of the computer that started the connection

136 | Chapter 4, Firewalling

#46 Protect Your Computer with the Windows Firewall
HACK

The source IP address is the source of the attack. If you notice the same
source IP address continually cropping up, an intruder might be targeting
you. It’s also possible that the intruder is sending out automated probes to
thousands of PCs across the Internet and your PC is not under direct attack.
In either case, you can send the log information to your ISP and ask them to
follow up by tracking down the source of the connection attempts. Either
forward the entire log or cut and paste the relevant sections to a new file.

Problems with Email and the Windows Firewall
Depending on the email program you use and how it gets notification of
new messages, the Windows Firewall could interfere with the way you
retrieve your email. It won’t stop you from getting your mail, but it could
disable your email program’s notification feature.

The Windows Firewall won’t interfere with the normal notification feature
of Outlook Express, because the initial request asking for notification of new
email comes from Outlook Express, which is inside the firewall. When the
server responds to the request, the firewall recognizes that the server is
responding to the request from Outlook Express, so it lets the communica-
tion pass through.

However, if you use Outlook and connect to a Microsoft Exchange server
using a remote procedure call (RPC) to send email notifications (which is
usually the case with Exchange), you’ll run into problems. Because the RPC
initially comes from the server, not from Outlook, the firewall won’t allow

Destination IP (dst-ip) The IP address of the computer to which the connection was
attempted

Source Port (src-port) The port number on the sending computer from which the
connection was attempted

Destination Port (dst-port) The port to which the sending computer was trying to make a
connection

size The packet size

tcpflags Information about TCP control flags in TCP headers

tcpsyn The TCP sequence of a packet

tcpack The TCP acknowledgment number in the packet

tcpwin The TCP window size of the packet

icmtype Information about the ICMP messages

icmcode Information about the ICMP messages

info Information about an entry in the log

Table 4-1. The columns in the Windows Firewall log (continued)

Name Description

Close Down Open Ports and Block Protocols #47

Chapter 4, Firewalling | 137

HACK

the notification to pass to you. In this case, you can still retrieve your email,
but you’ll have to check for new messages manually; you won’t be able to
get automatic notifications from the server. So, if you find that you stop get-
ting new mail notifications after you install the Windows Firewall, it’s not
that coworkers, friends, and spammers are suddenly ignoring you; you’ll
just have to check for new mail manually.

Hacking the Hack
The Windows Firewall Exceptions tab is especially useful for anyone who
uses file sharing on a home or corporate network but wants to turn it off
when on a public network connection, such as a WiFi hotspot. When you
get to a hotspot, before connecting, go to the Exceptions tab, uncheck the
box next to File and Printer Sharing, and click OK. File sharing will be
turned off. Then, when you get back to your home or business network,
turn it back on again.

See Also
• For more information about the Windows Firewall, see Microsoft

Knowledge Base Article 875357 (http://support.microsoft.com/kb/
875357)

—Preston Gralla

H A C K

#47
Close Down Open Ports and Block Protocols Hack #47

You don’t need a firewall to protect your PC; you can manually close down
ports and block certain protocols.

As noted in “Protect Your Computer with the Windows Firewall” [Hack #46],
firewalls can protect your PC and your network from intruders. But if you
don’t want to use a firewall and you still want protection, you can manually
close down ports and block protocols.

Some of these ports and protocols are more dangerous than others. For
example, if you leave open the port commonly used by telnet (port 23),
someone could use that service to take control of your PC. Other risky ports
include those used by the infamous Back Orifice Trojan, which also can give
malicious users complete control of your PC. Back Orifice uses a variety of
ports, including 31337 and 31338, among others. For a list of ports used by
Trojans, go to http://www.sans.org/resources/idfaq/oddports.php.

In this hack, you’ll need to know which ports you want to be open on your
PC—such as port 80 for web browsing—and you’ll close down all the
others. For a complete list of well-known ports, go to http://www.iana.org/
assignments/port-numbers.

138 | Chapter 4, Firewalling

#47 Close Down Open Ports and Block Protocols
HACK

To close down ports and protocols manually, right-click My Network Places
and choose Properties to open the Network Connections folder. Right-click
the connection for which you want to close ports and choose Properties.
Highlight the Internet Protocol (TCP/IP) listing and choose Properties. On
the General tab, click the Advanced button. Click the Options tab, high-
light “TCP/IP filtering,” and choose Properties. The TCP/IP Filtering dialog
box appears. To block TCP ports, UDP ports, and IP protocols, choose the
Permit Only option for each. Doing this will effectively block all TCP ports,
UDP ports, and IP protocols.

You don’t want to block all ports, though, so you have to add the ports you
want to allow to pass. For example, you need to keep port 80 open if you
want to browse the Web. Click Add to add the ports or protocols you will
allow to be used, as shown in Figure 4-8. Keep adding as many ports and
protocols as you want to be enabled, and click OK when you’re done. You’ll
be able to use only the ports and protocols that are listed.

Keep in mind that Internet applications and services use hundreds of TCP
and UDP ports. If, for example, you enable only web access, you won’t be
able to use other Internet resources, such as FTP, email, file sharing, listen-
ing to streaming audio, viewing streaming video, and so on. So, use this
hack only if you want your PC to use a very limited number of Internet ser-
vices and applications.

—Preston Gralla

Figure 4-8. Blocking TCP ports, UDP ports, and IP protocols

Replace the Windows Firewall #48

Chapter 4, Firewalling | 139

HACK

H A C K

#48
Replace the Windows Firewall Hack #48

Block both incoming and outgoing traffic with CORE FORCE.

As of Windows XP SP2, Microsoft has done the world a favor by enabling
the Windows Firewall [Hack #46] by default. However, the Windows Firewall
can often give users a false sense of security, especially as the plagues of mal-
ware targeting Windows systems grow. While Windows XP’s firewall is
great at protecting systems from attacks against services, it does little to pre-
vent keyloggers and other forms of malware from phoning home with your
vital private information.

Where XP’s firewall fails, CORE FORCE (http://force.coresecurity.com) from
CORE Security excels. CORE FORCE includes a Windows port of Open-
BSD’s Packet Filter [Hack #45] in addition to a file and registry access monitor
and an application binary integrity checker.

Installing CORE FORCE
Before you install CORE FORCE, exit any applications that need to main-
tain network connectivity in order to function properly, because the installa-
tion process might disrupt them. Then, install CORE FORCE by
downloading the installer and launching it. Other than the previously noted
caveat of losing network connectivity, the installation process is pretty
normal; you select where to install the package files and it installs them.

As part of the process, CORE FORCE installs custom firewalling drivers
into your network stack, so a dialog like the one shown in Figure 4-9 might
alert you that hardware is being installed and ask if you want to stop the
installation. This is a normal warning, so you can just click Continue Any-
way. (You might be prompted multiple times; if so, just click the Continue
Anyway button each time.)

The Configuration Wizard
After the installation has finished, you’ll need to restart your computer.
Once your system has finished booting up and you have logged in, you’ll be
presented with CORE FORCE’s setup wizard, shown in Figure 4-10. This
wizard helps you choose how restrictive you’d like the system to be and tell
it about your network, DNS servers, and other servers that you access regu-
larly, so that it can apply this information to its firewall rules.

After clicking Next, you’ll be presented with a choice of which security level
to use, Medium or High, as shown in Figure 4-11. For now, go ahead and
select Medium. You can change this setting and make additional tweaks to
your system’s policy in CORE FORCE’s configuration tool when the wiz-
ard’s finished.

140 | Chapter 4, Firewalling

#48 Replace the Windows Firewall
HACK

During the next step, the wizard prompts you to enter basic information
about your network, as shown in Figure 4-12. This information includes the
Classless Inter-Domain Routing (CIDR) address block your local network
occupies, your broadcast address, and up to two name servers that you use.

Figure 4-9. Window XP’s hardware installation prompt

Figure 4-10. CORE FORCE’s setup wizard

Replace the Windows Firewall #48

Chapter 4, Firewalling | 141

HACK

Figure 4-11. Choosing a security level

Figure 4-12. Entering basic network information

142 | Chapter 4, Firewalling

#48 Replace the Windows Firewall
HACK

The next step (shown in Figure 4-13) prompts you for information about
servers that you use, such as the hostnames of your incoming and outgoing
mail servers, your news server and web proxy server (if you have them), and
your domain controller.

Items that require a port should have a default filled in for you, but you can
change the port used if necessary. For instance, if you use IMAP or
IMAP+SSL instead of POP3 for your incoming mail, change the port for
your incoming mail server to either port 143 or 993, respectively.

After you’ve entered your server’s information and clicked Next, the setup
wizard scans your system for programs for which CORE FORCE has pre-
configured profiles. For the most part, these preconfigured profiles limit
their corresponding applications to performing only their core purposes. For
instance, your email client should be able to connect to your incoming and
outgoing mail servers only and, with the exception of saving attachments, it
should write files only to certain well-known locations on your system. If
someone attempts to exploit your mail client, this setting limits what the
intruder can do.

When the setup wizard has finished looking for programs, you’ll be pre-
sented with a dialog like the one shown in Figure 4-14.

Figure 4-13. Entering server information

Replace the Windows Firewall #48

Chapter 4, Firewalling | 143

HACK

CORE FORCE adds a checkmark next to any program it locates. You might
also see that some programs were found but that their signatures were
invalid. Don’t be alarmed about this. CORE FORCE maintains a database of
valid program hashes for the applications for which it has preconfigured
profiles, and it might display signatures as invalid simply because it does not
have the signatures for the most recent versions of programs that are
updated frequently (e.g., Internet Explorer and Firefox. You can update
CORE FORCE’s database to contain the signatures of what’s currently on
your system by checking the “Update unrecognized signatures…” box.

After you’ve finished selecting which profiles to install, click Next to import
all of the profiles you have selected. Click Next again, then Finish, and
you’re done. CORE FORCE’s configuration interface should appear, as
shown in Figure 4-15.

Manual Configuration
CORE FORCE’s configuration consists of a system-wide default security
level and application-specific security levels. In turn, each security level con-
sists of policies that have been assigned to it, such as “Cannot execute from
temp,” which define restrictions to be placed on the system or application.
Things that can be defined for each policy include firewall rules, Registry
access restrictions, and filesystem restrictions.

Figure 4-14. Selecting preconfigured application profiles

144 | Chapter 4, Firewalling

#48 Replace the Windows Firewall
HACK

When going through the setup wizard, you selected a security level to use
for the whole system. If you want to view exactly what policies a security
level has, expand the Security Levels item in the tree view and then expand
the security level that you want to examine. Figure 4-16 shows the policies
comprising the Medium security level.

Look over the policies that your current security level enforces. If you decide
that you want to change the security level for the entire system, right-click
the System item in the tree view and choose Change Security Level. You
should see a dialog like Figure 4-17. Use the slider to change the level.

If you want to make the current configuration more or less restrictive, you
can modify it at either the system or application level by selecting the Per-
missions item in the tree view. For instance, Figure 4-18 shows the firewall
permissions that are applied to any program that doesn’t have its own set-
tings defined.

To add a firewall rule, right-click within the pane displaying the firewall
rules and choose New to insert a rule that allows any packet to pass through
the firewall. You can then modify the rule by using the widgets located to
the right of the rule list.

Figure 4-15. CORE FORCE’s configuration interface

Replace the Windows Firewall #48

Chapter 4, Firewalling | 145

HACK

One thing that CORE Security added when porting PF to Windows was a
new rule action: Ask. Choosing this action displays a dialog like Figure 4-19,
alerting you that an application is attempting to make a connection. From
the dialog, you can choose to either allow or deny the connection.

Figure 4-16. Viewing policies for the Medium security level

Figure 4-17. Changing the security level

146 | Chapter 4, Firewalling

#48 Replace the Windows Firewall
HACK

Figure 4-18. System firewall settings

Figure 4-19. Allowing or denying a connection

Create an Authenticated Gateway #49

Chapter 4, Firewalling | 147

HACK

This feature is especially useful for catching software phoning home, but
you can also use it to spot an exploited program making network connec-
tions that it normally wouldn’t.

As you can see, CORE FORCE is a powerful firewall and system-monitor-
ing package. It provides a great deal of flexibility in terms of which system
operations it can track and limit and is very configurable. Unfortunately,
there’s not enough space here to cover everything you can do with it, so be
sure to take a look at CORE FORCE’s excellent help file.

H A C K

#49
Create an Authenticated Gateway Hack #49

Use PF to keep unauthorized users off the network.

Firewalling gateways have traditionally been used to block traffic from spe-
cific services or machines. Instead of watching IP addresses and port num-
bers, an authenticated gateway allows you to regulate traffic to or from
machines based on a user’s credentials. With an authenticated gateway,
users have to log in and authenticate themselves to the gateway in order to
gain access to the protected network. This can be useful in many situations,
such as restricting Internet access or restricting a wireless segment to be used
only by authorized users.

With the release of OpenBSD 3.1, you can implement this functionality via
PF and the authpf shell. Using authpf also provides an audit trail by logging
usernames and originating IP addresses, the time that each user authenti-
cates with the gateway, and when users log off the network.

To set up authentication with authpf, you’ll first need to create an account
on the gateway for each user. Specify /usr/sbin/authpf as the shell, and be
sure to add authpf as a valid shell to /etc/shells. When a user logs in through
SSH, authpf will obtain the user’s name and IP address through the environ-
ment.

After doing this, a template file containing NAT and filter rules is read in,
and the username and IP address are applied to it. The resulting rules are
then added to the running configuration. When the user logs out (i.e., types
^C), the rules that were created are unloaded from the current ruleset.

For user-specific rule templates, authpf looks in /etc/authpf/users/$USER/
authpf.rules. Global rule templates are stored in /etc/authpf/authpf.rules.
Similarly, NAT entries are stored in authpf.nat, in either of these two direc-
tories. When a user-specific template is present for the user who has just
authenticated, the template completely replaces the global rules, instead of

148 | Chapter 4, Firewalling

#49 Create an Authenticated Gateway
HACK

just adding to them. When loading the templates, authpf will expand the
$user_ip macro to the user’s current IP address:

pass in quick on wi0 proto { tcp, udp } from $user_ip to any \
 keep state flags S/SA

This particular rule will pass in all traffic on the wireless interface from the
newly authenticated user’s IP address. This works particularly well with a
default deny policy, where only the initial SSH connection to the gateway
and DNS have been allowed from the authenticating IP address.

You could be much more restrictive and allow only HTTP-, DNS-, and
email-related traffic through the gateway:

pass in quick on wi0 proto tcp from $user_ip to any \
 port { smtp, www, https, pop3, pop3s, imap, imaps } \
 keep state flags S/SA
pass in quick on wi0 proto udp from $user_ip to any port domain

After the template files have been created, you must then provide an entry
point into pf.conf for the rules that authpf will create for evaluation by PF.
These entry points are added to your pf.conf with the various anchor
keywords:

nat-anchor authpf
rdr-anchor authpf
binat-anchor authpf
anchor authpf

Note that each anchor point needs to be added to the section to which it
applies; you cannot just put them all at the end or beginning of your pf.conf
file. Thus, the nat-anchor, rdr-anchor, and binat-anchor entries must go into
the address translation section of pf.conf, while the anchor entry, which
applies only to filtering rules, should be added to the filtering section.

When a user logs into the gateway, he should now be presented with a mes-
sage like this:

Hello andrew, You are authenticated from host "192.168.0.61"

The user will also see the contents of /etc/authpf/authpf.message if it exists
and is readable.

If you examine /var/log/daemon, you should also see log messages similar to
these for when a user logs in and out:

Dec 3 22:36:31 zul authpf[15058]: allowing 192.168.0.61, \
 user andrew
Dec 3 22:47:21 zul authpf[15058]: removed 192.168.0.61, \
 user andrew- duration 650 seconds

Note that, since it is present in /etc/shells, any user that has a local account is
capable of changing his shell to authpf. If you want to ensure that a

Keep Your Network Self-Contained #50

Chapter 4, Firewalling | 149

HACK

particular user cannot do this, you can create a file named after that user and
put it in the /etc/authpf/banned directory. The contents of this file will be dis-
played when the user logs into the gateway. Conversely, you can explicitly
allow users by listing their usernames, one per line, in /etc/authpf/authpf.
allow. However, any bans that have been specified in /etc/authpf/banned take
precedence over entries in authpf.allow.

Since authpf relies on the SSH session to determine when the rules pertain-
ing to a particular user are to be unloaded, care should be taken in configur-
ing your SSH daemon to time out connections. Timeouts should happen
fairly quickly, to revoke access as soon as possible once a connection has
gone stale. This also helps prevent connections to systems outside the gate-
way from being held open by those conducting ARP spoof attacks.

You can set up OpenSSH to guard against this by adding these to lines to
your sshd_config:

ClientAliveInterval 15
ClientAliveCountMax 3

This will ensure that the SSH daemon will send a request for a client
response 15 seconds after it has received no data from the client. The
ClientAliveCountMax option specifies that this can happen three times with-
out a response before the client is disconnected. Thus, after a client has
become unresponsive, it will disconnect after 45 seconds. These keepalive
packets are sent automatically by the SSH client software and don’t require
any intervention on the part of the user.

authpf is powerful in its flexibility and integration with PF, OpenBSD’s
native firewalling system. It is easy to set up and has very little performance
overhead, since it relies on SSH and the operating system to do authentica-
tion and manage sessions.

H A C K

#50
Keep Your Network Self-Contained Hack #50

Use egress filtering to mitigate attacks and information leaks coming from
your network.

By now you should be familiar with the concept of firewalling as it applies to
blocking traffic coming into your network. But have you considered the ben-
efits of filtering traffic that leaves your network? For instance, what would
happen if someone compromised a host on your network and used it as a
platform to attack other networks? What if a worm somehow made it onto
your network and tried to infect hosts across the Internet? At the very least,
you would probably receive some angry phone calls and emails.

150 | Chapter 4, Firewalling

#50 Keep Your Network Self-Contained
HACK

Luckily, filtering your outbound traffic—otherwise known as egress
filtering—can help to contain such malicious behavior. Egress filtering not
only can protect others from attacks originating from your network, but also
can be used to enforce network usage policies and make sure information
doesn’t leak out of your network onto the wider Internet. In many situa-
tions, egress filtering is just as important as filtering inbound traffic.

The general guideline when crafting egress-filtering rules is the same as
when constructing any inbound-filtering rule: devices should be allowed to
do only what they were meant to do. That is, a mail server should be
allowed to serve and relay mail only, a web server should be allowed to serve
web content only, a DNS server should service DNS requests only, and so
on. By ensuring that this policy is implemented, you can better contain the
threats mentioned earlier.

It might also be a good idea to force users to use internal services rather than
Internet services wherever possible. For example, if you are using your own
DNS servers, clients shouldn’t be able to connect to external DNS servers to
resolve hostnames. If clients are allowed to do this, you risk the chance that
they will reveal intranet hostnames to outside parties when they attempt to
resolve internal hostnames through an external DNS server.

This restriction can be accomplished in OpenBSD with a rule like this:

rdr on $INT_IF inet proto { tcp, udp } from $INT_IF:network to any port 53
-> $DNS_SERVER port 53

Of course, you’ll need to set INT_IF to the interface facing your internal net-
work and set DNS_SERVER to the IP address of your internal DNS server.

If you’re using Netfilter [Hack #44], you’ll have to use four rules to accomplish
the same goal:

iptables -t nat -A PREROUTING -p tcp -i $INT_IF --dport 53 -j DNAT \
--to-destination $DNS_SERVER:53
iptables -t nat -A PREROUTING -p udp -i $INT_IF --dport 53 -j DNAT \
--to-destination $DNS_SERVER:53
iptables -t nat -A POSTROUTING -p tcp -o $EXT_IF --sport 53 -j SNAT \
--to-source $SNAT_IP
iptables -t nat -A POSTROUTING -p udp -o $EXT_IF --sport 53 -j SNAT \
--to-source $SNAT_IP

The first two rules specify that the destination address of any incoming
packet destined for TCP or UDP port 53 should be rewritten to DNS_SERVER.
However, this will cause any response to the rewritten packet to be sent to
the host that initiated the connection. If the server to which the host origi-
nally intended to connect is not DNS_SERVER, the response from DNS_SERVER
will be silently dropped.

Test Your Firewall #51

Chapter 4, Firewalling | 151

HACK

The next two rules fix this by performing address translation on the source
address of the packet before it is sent out. That sends DNS_SERVER’s response
back to the host running Netfilter, and the host then translates the destina-
tion address back to the host that initiated the connection. You should set
SNAT_IP to the IP address on the machine running Netfilter that is visible to
DNS_SERVER.

Similarly, if you’re running an internal mail server and want to monitor
email that exits your enterprise, you’ll need to prevent your users from send-
ing email through external mail servers. In OpenBSD, can do this by using a
similar rule to force all SMTP traffic to be redirected to your own SMTP
server:

rdr on $INT_IF inet proto tcp from $INT_IF:network to any port 25 -> $SMTP_
HOST port 25

For Netfilter, the same result can be accomplished with these two rules:

iptables -t nat -A PREROUTING -p tcp -i $INT_IF --dport 25 -j DNAT \
--to-destination $SMTP_HOST:25
iptables -t nat -A POSTROUTING -p tcp -i $EXT_IF --sport 25 -j SNAT \
--to-source $SNAT_IP

Egress filtering can also prevent IP spoofing. By filtering on your external
interface at the border of your network, you can verify that packets leaving
your network have source addresses that match your address space. By fil-
tering all other traffic, you can ensure that any IP spoofing attack performed
from your network or routed through it will be dropped before the packets
are able to leave.

H A C K

#51
Test Your Firewall Hack #51

Find out if your firewall really works the way you think it should.

So, you’ve set up a firewall and done a few cursory tests to make sure it’s
working, but have you tested the firewall to be sure that it’s blocking every-
thing it’s supposed to? You might not have done this because you think it
will take too long or be too difficult. Luckily, there’s FTester (http://dev.
inversepath.com/trac/ftester/), a free tool for doing extensive firewall tests.

FTester consists of three Perl scripts. The ftest script is used for injecting cus-
tom packets as defined in the configuration file ftest.conf. If you are testing
how the firewall behaves with ingress traffic, you should run this script on a
machine outside of your firewalled network. If you want to test your fire-
wall’s behavior toward egress traffic, you will need to run ftest from a
machine within your firewall’s protected network.

152 | Chapter 4, Firewalling

#51 Test Your Firewall
HACK

One of the other scripts, ftestd, listens for the packets injected with ftest that
come through the firewall that you are testing. You should run this script on
a machine within your internal network if you are testing the firewall’s
ingress behavior. If you are testing egress behavior, you’ll need to run it on a
machine external to your network. Both of these scripts keep a log of what
they send or receive. After a test run, their respective logs can be compared
using the freport script, to quickly see what packets were able to get through
the firewall.

Before you can use FTester, you will need the Net::RawIP, Net::PcapUtils,
and NetPacket Perl modules. You will also need the Net::Pcap module if it is
not already installed, since the Net::PcapUtils module depends on it. If you
have the CPAN Perl module available, you can install these modules with
the following commands:

perl -MCPAN -e "install Net::RawIP"
perl -MCPAN -e "install Net::PcapUtils"
perl -MCPAN -e "install NetPacket"

Once these modules are available on the systems you will be using to con-
duct your firewall test, you will need to create a configuration file to tell ftest
what packets it should generate.

Here’s the general form for a TCP or UDP packet in ftest.conf, where source
addr and source port are the source IP address and port, and dest addr and
dest port are the destination IP address and port:

source addr:source port:dest addr:dest port:flags:proto:tos

Address ranges can be specified in the low-high format or by using CIDR
notation. You can also specify port ranges using the low-high format. The
flags field is where you specify the TCP flags that you want set for the
packet. Valid values for this field are S for SYN, A for ACK, P for PSH, U for URG, R
for RST, and F for FIN. The proto field specifies which protocol to use (either
TCP or UDP), and tos contains the number to set for the Type-of-Service (ToS)
field in the IP header. Sometimes, routers use the contents of this field to
make decisions about traffic prioritization. You can get more information on
the ToS field by reading RFC 791 (http://www.ietf.org/rfc/rfc0791.txt), which
defines the Internet Protocol.

You can define ICMP packets in a similar manner. Here’s the general form
for one:

source addr::dest addr:::ICMP:type:code

As you can see, the main difference between the two forms is the omission
of port numbers and flags, which ICMP does not use. Instead, it uses types
and codes (hence the addition of the type and code fields). Currently, there

Test Your Firewall #51

Chapter 4, Firewalling | 153

HACK

are over 40 ICMP types. The ones used by the ping utility, echo (type 8) and
echo reply (type 0), or the type used by the traceroute command (type 30),
might be familiar to you. ICMP codes are like subclassifications of ICMP
types. Not all ICMP types have ICMP codes associated with them, although
there are roughly the same number of ICMP codes as types. You can find
out more about ICMP types and codes by reading the Internet Assigned
Numbers Authority’s assignments for them at http://www.iana.org/
assignments/icmp-parameters.

Here’s an ftest.conf that will check all of the privileged TCP ports on a
machine with the IP address 10.1.1.1:

192.168.1.10:1025:10.1.1.1:1-1024:S:TCP:0
stop_signal=192.168.1.10:1025:10.1.1.1:22:S:TCP:0

stop_signal creates a payload for the packet that will tell ftestd that the test-
ing is over. For quick tests, you can use the -c option and specify a packet to
send using the syntax described previously. For instance, the following com-
mand sends a packet with the source IP address and port of 192.168.1.10:
1025 to port 22 on 10.1.1.1.1:

./ftest -c 192.168.1.10:1025:10.1.1.1:22:S:TCP:0

Before starting ftest, you should start ftestd:

./ftestd -i eth0

Then, run ftest:

./ftest -f ftest.conf

This command creates a log file called ftest.log containing an entry for every
packet ftest sent. When ftestd receives the signal to stop, it will exit. You can
then find its log of what packets it received in ftestd.log.

Now, you can copy the logs to the same machine and run them through
freport. If you used a configuration file like the one shown earlier and were
allowing SSH, SMPTP, and HTTP traffic, you might get a report similar to
this:

./freport ftest.log ftestd.log

Authorized packets:

22 - 192.168.1.10:1025 > 10.1.1.1:22 S TCP 0
25 - 192.168.1.10:1025 > 10.1.1.1:25 S TCP 0
80 - 192.168.1.10:1025 > 10.1.1.1:80 S TCP 0

Modified packets (probably NAT):

154 | Chapter 4, Firewalling

#52 MAC Filter with Netfilter
HACK

Filtered or dropped packets:

1 - 192.168.1.10:1025 > 10.1.1.1:1 S TCP 0
2 - 192.168.1.10:1025 > 10.1.1.1:2 S TCP 0
3 - 192.168.1.10:1025 > 10.1.1.1:3 S TCP 0

If you are using a stateful firewall and want to test this functionality, you can
also specify packets that have flags other than SYN set. For instance, if the
previous example had used ACK or some other flag instead of SYN, it would
have been dropped by the firewall because only packets with the SYN flag set
are used to initiate connections.

It’s a good idea to run ftest each time you make changes to your firewall, or
periodically just to make sure that your firewall works as you expect. While
complex rulesets on your firewall can sometimes make it difficult to predict
exactly how it will behave, ftest will tell you with good authority exactly
what kinds of traffic are permitted.

H A C K

#52
MAC Filter with Netfilter Hack #52

Keep unwanted machines off your network with MAC address whitelisting.

Media Access Control (MAC) address filtering is a well-known method for
protecting wireless networks. This type of filtering works on the default
deny principle: you specify the hosts that are allowed to connect, while leav-
ing unknown ones behind. MAC addresses are unique 48-bit numbers that
have been assigned to every Ethernet device that has ever been manufac-
tured, including 802.11 devices, and are usually written as six 8-bit hexadec-
imal digits separated by colons.

In addition to Linux’s native IP packet filtering system, Netfilter contains
MAC address filtering functionality. While many of the wireless access
points on the market today already support this, there are many older ones
that do not. MAC filtering is also important if your access point is actually
the Linux machine itself, using a wireless card. If you have a Linux-based
firewall already set up, it’s a trivial modification to enable it to filter at the
MAC level. MAC address filtering with iptables is much like IP-based filter-
ing and is just as easy to do.

The following example demonstrates how to allow a particular MAC
address if your firewall policy is set to DROP [Hack #44]:

iptables -A FORWARD -m state --state NEW \
-m mac --mac-source 00:DE:AD:BE:EF:00 -j ACCEPT

This command allows any traffic sent from the network interface with the
address 00:DE:AD:BE:EF:00. Using rules like this along with a default deny

MAC Filter with Netfilter #52

Chapter 4, Firewalling | 155

HACK

policy enables you to create a whitelist of the MAC addresses that you want
to allow through your gateway. To create a blacklist, you can employ a
default accept policy and change the MAC address matching rule’s target to
DENY.

This is all pretty straightforward if you already know the MAC addresses for
which you want to create rules, but what if you don’t? If you have access to
the system, you can find out the MAC address of an interface by using the
ifconfig command:

$ ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:0C:29:E2:2B:C1
 inet addr:192.168.0.41 Bcast:192.168.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:132893 errors:0 dropped:0 overruns:0 frame:0
 TX packets:17007 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:46050011 (43.9 Mb) TX bytes:1601488 (1.5 Mb)
 Interrupt:10 Base address:0x10e0

Here you can see that the MAC address for this interface is 00:0C:29:E2:2B:
C1. The output of ifconfig differs slightly on other operating systems, but
much the same information is provided (this output is from a Linux system).

Finding the MAC address of a remote system is slightly more involved and
can be done using the arp and ping commands. Pinging the remote system
resolves its IP address to a MAC address, which can then be looked up using
the arp command.

For example, to look up the MAC address that corresponds to the IP
address 192.168.0.61, run the following commands:

$ ping -c 1 192.168.0.61
$ /sbin/arp 192.168.0.61 | awk '{print $3}'

Or use this very small and handy shell script:

#!/bin/sh
ping -c $1 >/dev/null && /sbin/arp $1 | awk '{print $3}' \
 | grep -v Hwaddress

When implementing MAC address filtering, be aware that it is not fool-
proof. Under many circumstances, it is quite trivial to change the MAC
address that an interface uses by simply instructing the driver to do so. It is
also possible to send out link-layer frames with forged MAC addresses by
using raw link-layer sockets. Thus, MAC address filtering should be consid-
ered only an additional (rather than a primary) network-protection mecha-
nism. It’s more like a “Keep Out” sign than a good deadbolt!

156 | Chapter 4, Firewalling

#53 Block Tor
HACK

H A C K

#53
Block Tor Hack #53

Keep your users from bypassing egress filtering by blocking access to Tor.

Tor [Hack #37] is a great tool for protecting your privacy when using the Inter-
net, but it can also provide a way for your users to circumvent security mea-
sures that you’ve put in place on your network, such as egress filtering [Hack

#50] or proxies. Therefore, you might want a way to block your users from
using it.

One simple way to do this is to block access to Tor’s directory servers.
When Tor starts up for the first time, it connects to one of these servers to
get a list of all the possible nodes through which Tor can construct a virtual
circuit. Logically, if you block access to all of these servers at the border, Tor
will be unable to download the node list and won’t be able to function.

If you look at src/or/config.c in the Tor source tree, you’ll see a function
called add_default_trusted_dirservers(). This function contains the list of
the directory servers:

const char *dirservers[] = {
 "moria1 v1 18.244.0.188:9031 "
 "FFCB 46DB 1339 DA84 674C 70D7 CB58 6434 C437 0441",
 "moria2 v1 18.244.0.114:80 "
 "719B E45D E224 B607 C537 07D0 E214 3E2D 423E 74CF",
 "tor26 v1 86.59.21.38:80 "
 "847B 1F85 0344 D787 6491 A548 92F9 0493 4E4E B85D",
 "lefkada 140.247.60.64:80 "
 "38D4 F5FC F7B1 0232 28B8 95EA 56ED E7D5 CCDC AF32",
 "dizum 194.109.206.212:80 "
 "7EA6 EAD6 FD83 083C 538F 4403 8BBF A077 587D D755",
 NULL
 };

This list of servers can change, so be sure to check new
releases of Tor to see if any have been added.

All you have to do is block them at your border firewall. For instance, you
could use the following rules in PF:

table <tor_dirservers> { 18.244.0.188, 18.244.0.114, 86.59.21.38, 140.247.
60.64, 194.109.206.212 }
block from any to <tor_dirservers>

However, it will still be possible for someone who’s already obtained a copy
of the Tor node list to use Tor. To combat this situation, you can download
the list manually from one of the directory servers, then individually block
each Tor node, like so:

Block Tor #53

Chapter 4, Firewalling | 157

HACK

$ links -source http://18.244.0.114:80/ | egrep '^router '
router moria2 18.244.0.114 443 0 80
router anselcomputers 24.170.55.120 9001 0 0
router sic4gh 84.172.97.158 443 0 0
router Sivusto9022 80.222.75.74 9001 0 9030
router vader 149.9.0.21 9001 0 9030
router duglha 82.227.178.224 9001 0 9002
router nycbug 64.90.179.108 443 0 80
router BlueNeedle 12.222.100.156 6571 0 0
router 1984jhb 84.58.246.2 43567 0 0
router Pastis 82.67.175.80 9001 0 9030
...

The first item after the router keyword is the router’s nickname, the next
field is its IP address, and the remaining fields are the ports on which that
particular router is listening for Tor connections. Here’s a quick little Perl
script to transform this into a more easily readable form:

#!/usr/bin/perl

while (<>) {

 if (/^router\ /) {
 @router_stmt = split();
 for($i = 3; $i < $#router_stmt; $i++) {
 if ($router_stmt[$i] != 0) {
 print "$router_stmt[2]:$router_stmt[$i]\n";
 }
 }
 }
}

Here is what the output looks like when the script is executed:

$ links -source http://18.244.0.114:80/ | ~/src/tor_routers.pl
18.244.0.114:443
24.170.55.120:9001
84.172.97.158:443
80.222.75.74:9001
149.9.0.21:9001
82.227.178.224:9001
64.90.179.108:443
12.222.100.156:6571
84.58.246.2:43567
154.35.254.172:9001
...

This script can easily be modified to output firewall rules for whatever fire-
wall you’re using, be it Netfilter [Hack #44], PF [Hack #45], or something else.
You’ll also want to update the rules periodically to cover new nodes that
have joined the Tor network.

158

Chapter 5C H A P T E R F I V E

Encrypting and Securing Services
Hacks 54–61

A network is only as secure as the weakest host connected to it. Therefore, it
follows that a host is only as secure as the weakest service that it’s running.
After all, the only way into a system from the network (barring esoteric ker-
nel-level network stack vulnerabilities) is through the services that it offers.
Because of this, a large part of network security involves ensuring that your
services are configured securely. This entails configuring services to provide
only the functionality that’s required of them to accomplish the tasks they
need to perform. Additionally, you should give services access to only the
bare minimum of system resources needed.

That’s just part of the solution, though. If a network service operates in
clear-text, all of your work spent locking it down can be for nothing. In most
cases, all an attacker has to do to gain access to such a service is use a packet
sniffer to capture the login details of a user authenticating with the service.

This chapter shows how to deploy IMAP, POP3, and SMTP servers that are
protected with encryption, in order to prevent your users from accidentally
disclosing their login credentials and keep their data safe from prying eyes.
You’ll also learn how to securely deploy DNS services and MySQL. In addi-
tion, you’ll learn how to deploy Apache with SSL support and how to keep
your users’ CGI scripts from accessing files that they normally wouldn’t be
able to access.

H A C K

#54
Encrypt IMAP and POP with SSL Hack #54

Keep your email safe from prying eyes while also protecting your POP and
IMAP passwords.

Having your email available on an IMAP server is invaluable when you need
to access it from multiple locations. Unlike POP, IMAP stores all your email
and any folders you create on the server, so you can access all of your

Encrypt IMAP and POP with SSL #54

Chapter 5, Encrypting and Securing Services | 159

HACK

messages from whatever email client you decide to use. You can even set up
a web-based email client so that you can access your messages from literally
any machine with an Internet connection and a web browser. However,
you’ll almost certainly need to cross untrusted networks along the way.
How do you protect your email and your account password from others
with undesirable intentions? You use encryption, of course!

If you already have an IMAP or POP daemon installed that does not have
the ability to use SSL natively, you can use stunnel [Hack #100] to wrap the ser-
vice in an SSL tunnel. If you’re starting from scratch, though, you have the
luxury of choosing a daemon that has SSL support compiled directly into
the binary.

One daemon that supports SSL out of the box is Dovecot (http://www.
dovecot.org). Dovecot includes support for both IMAP and POP3 and has
the added benefit that it was designed and written with security in mind
from the very beginning. In pursuit of that goal, it makes use of best-of-
breed secure coding practices as well as privilege separation and chroot()-
ing. Additionally, Dovecot is very flexible and supports a number of authen-
tication methods, as well as both mbox and MailDir mailbox formats.

To compile and install Dovecot, download the compressed tar archive and
run the following commands:

$ tar xfz dovecot-1.0.beta5.tar.gz
$ cd dovecot-1.0.beta5
$./configure && make

This will build Dovecot with facilities to support most commonly used
authentication mechanisms. If you want to use LDAP or an SQL database
for authentication, you can build a copy that supports those mechanisms as
well. Run./configure --help to see the full range of options.

Once you’ve compiled Dovecot, become root and run make install.

Next, to create self-signed certificates, run the following command:

$ openssl req -new -x509 -nodes -out /etc/ssl/certs/dovecot.pem -keyout \
/etc/ssl/private/dovecot.pem -days 3650

Alternatively, you can sign the certificates with your own Certificate Author-
ity (CA) [Hack #69].

All that’s left to do now is to create a dovecot.conf file. To do this, find the
dovecot-example.conf file, which should be located in /usr/local/etc (or wher-
ever you told configure to install it), and copy it to dovecot.conf. Creating
your own custom configuration is a fairly easy process, because the example
configuration is replete with comments and displays the default values for
each configuration variable.

160 | Chapter 5, Encrypting and Securing Services

#54 Encrypt IMAP and POP with SSL
HACK

Of particular interest is the protocols variable. By default this variable is set
to support unencrypted IMAP and IMAP+SSL:

protocols = imap imaps

However, if you want to support POP3 or POP3+SSL, you can add pop3
and/or pop3s to the list of values. If you want to disable unencrypted IMAP,
remove the imap value.

If you placed your SSL certificate and key in a location other than the one
mentioned in the previous example, you’ll need to tell Dovecot where to
find them. To do this, modify the ssl_cert_file and ssl_key_file vari-
ables. For example, to use /usr/local/ssl/certs/myhostname.crt and /usr/local/
ssl/private/myhostname.key, make the following changes:

ssl_cert_file = /usr/local/ssl/certs/myhostname.crt
ssl_key_file = /usr/local/ssl/private/myhostname.key

Now that you’ve done that, you’ll need to create a user account called
dovecot for the imap-login process to run under. This allows the imap-login
process, which is responsible for handling client connections before they
have been authenticated, to operate with the least amount of privileges
possible.

One other thing to be aware of is that, if you are using mbox mailboxes,
you’ll need to set the mail_extra_groups variable to the group owner of your
mail spool directory. For instance, if the group owner of /var/mail is mail,
use the following:

mail_extra_groups = mail

Setting this enables Dovecot to create locks when it is accessing a user’s mail
spool file.

Now that you’ve finished configuring Dovecot, you can launch the daemon
by running /usr/local/sbin/dovecot. You should then see log entries like these:

Apr 10 19:27:29 freebsd5-vm1 dovecot: Dovecot v1.0.beta5 starting up
Apr 10 19:27:29 freebsd5-vm1 dovecot: Generating Diffie-Hellman parameters
for the first time. This may take a while..
Apr 10 19:27:58 freebsd5-vm1 dovecot: ssl-build-param: SSL parameters
regeneration completed

That’s the final task for the server end of things. All you need to do now is
configure your email clients to connect to the secure version of the service
that they were using. Usually, there will be a Use Encryption, Use SSL, or
some other similarly named checkbox in the incoming mail settings for your
client. Just check the box and reconnect, and you should be using SSL. Be
sure your client trusts your CA certificate, though, or you will be nagged
with annoying (but important!) trust warnings.

Use TLS-Enabled SMTP with Sendmail #55

Chapter 5, Encrypting and Securing Services | 161

HACK

H A C K

#55
Use TLS-Enabled SMTP with Sendmail Hack #55

Protect your users’ in-transit email from eavesdroppers.

If you have set up encrypted POP and IMAP services [Hack #54], your users’
incoming email is protected from others once it reaches your servers, but
what about their outgoing email? You can protect outgoing email quickly
and easily by setting up your mail server to use Transport Layer Security
(TLS) encryption. Virtually all modern email clients support TLS; enable it
by simply checking a box in the email account preferences.

If you’re using Sendmail, you can check to see if it has compiled-in TLS sup-
port by running this command:

$ sendmail -bt -d0.1

This prints out the options with which your sendmail binary was compiled.
If you see a line that says STARTTLS, all you need to do is supply some addi-
tional configuration information to get TLS support working. If you don’t
see this line, you’ll need to recompile sendmail.

Before recompiling sendmail, go into the directory containing sendmail’s
source code and add the following lines to the devtools/Site/site.config.m4
file:

APPENDDEF(`conf_sendmail_ENVDEF', `-DSTARTTLS')
APPENDDEF(`conf_sendmail_LIBS', `-lssl -lcrypto')

If this file doesn’t exist, simply create it. The build process will automati-
cally include the file. The first line in the previous example compiles TLS
support into the sendmail binary, and the second line links the binary with
libssl.so and libcrypto.so.

After adding these lines, you can recompile and reinstall sendmail by run-
ning this command:

./Build -c && ./Build install

You’ll need to create a certificate/key pair [Hack #69] to use with Sendmail and
then reconfigure Sendmail to use the certificate and key that you created.
You can do this by editing the file from which your sendmail.cf file is gener-
ated, which is usually /etc/mail/sendmail.mc. Once you’ve located the file,
add lines similar to the following, to point to your Certificate Authority’s
certificate as well as the certificate and key you generated earlier:

define(`confCACERT_PATH', `/etc/mail/certs')
define(`confCACERT', `/etc/mail/certs/cacert.pem')
define(`confSERVER_CERT', `/etc/mail/certs/cert.pem')
define(`confSERVER_KEY', `/etc/mail/certs/key.pem')
define(`confCLIENT_CERT', `/etc/mail/certs/cert.pem')
define(`confCLIENT_KEY', `/etc/mail/certs/key.pem')

162 | Chapter 5, Encrypting and Securing Services

#55 Use TLS-Enabled SMTP with Sendmail
HACK

The first line tells sendmail where your Certificate Authority is located, and
the second one tells it where to find the CA certificate itself. The next two
lines tell sendmail which certificate and key to use when it is acting as a
server (i.e., accepting mail from a mail user agent or another mail server).
The last two lines tell sendmail which certificate and key to use when it is
acting as a client (i.e., relaying mail to another mail server).

Usually, you can then rebuild your sendmail.cf by typing make sendmail.cf
while inside the /etc/mail directory. Now, kill sendmail and then restart it.

After you’ve restarted sendmail, you can check whether TLS is set up cor-
rectly by connecting to it:

telnet localhost smtp
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 mail.example.com ESMTP Sendmail 8.12.9/8.12.9; Sun, 11 Jan 2004 12:07:43
-0800 (PST)ehlo localhost
250-mail.example.com Hello IDENT:6l4ZhaGP3Qczqknqm/KdTFGsrBe2SCYC@localhost
[127.0.0.1], pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-EXPN
250-VERB
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-AUTH DIGEST-MD5 CRAM-MD5
250-STARTTLS
250-DELIVERBY
250 HELP
QUIT
221 2.0.0 mail.example.com closing connection
Connection closed by foreign host.

When sendmail relays mail to another TLS-enabled mail server, your mail
will be encrypted. Now, all you need to do is configure your mail client to
use TLS when connecting to your mail server, and your users’ email will be
protected all the way to the message transfer agent (MTA).

While there isn’t enough room in this hack to cover every MTA available,
nearly all support some variant of TLS. If you are running Exim (http://www.
exim.org) or Courier (http://www.courier-mta.org), you can build TLS
support straight out of the box. Postfix (http://www.postfix.org) has TLS
support and is designed to be used in conjunction with Cyrus-SASL (see the
HOWTO at http://postfix.state-of-mind.de/patrick.koetter/smtpauth/). Qmail
[Hack #56] also has a patch that adds TLS support. With TLS support in

Use TLS-Enabled SMTP with Qmail #56

Chapter 5, Encrypting and Securing Services | 163

HACK

virtually all MTAs and email clients, there is no longer any good reason to
send email “in the clear.”

H A C K

#56
Use TLS-Enabled SMTP with Qmail Hack #56

Protect your users’ in-transit email from eavesdroppers the Qmail way.

If you want to protect your users’ email with strong encryption, you might
be wary of using a package with a less-than-illustrious security track record,
such as Sendmail [Hack #55]. Another option is to use Qmail (http://cr.yp.to/
qmail.html).

Setting up Qmail to support TLS can seem daunting at first, because there is
no “official” patch for doing so; all enhancements to Qmail are like this.
This hack uses a patch that integrates SMTP AUTH and TLS, so that you
can also require that your users authenticate with your SMTP server before
it will allow them to relay mail through it.

First, download the patch (http://shupp.org/smtp-auth-tls/), change to the
directory containing the Qmail source code, and apply the patch:

cd /usr/local/src/netqmail-1.05/netqmail-1.05
patch -p0 < ../../netqmail-1.05-tls-smtpauth-20060105.patch

Then, check to see if the patch applied cleanly:

find . -name *.rej

After you’ve verified that the patch was applied correctly, stop Qmail by
running the following commands:

svc -d /service/qmail-smtpd /service/qmail-smtpd/log
svc -d /service/qmail-send /service/qmail-send/log

Now, run make setup check to reinstall it. If you need to generate x.509 cer-
tificates, you can run make -f Makefile-cert cert. This will prompt you for
information to create a certificate/key pair that will be used to encrypt traf-
fic between your Qmail server and other SMTP servers, as well as between it
and your users’ mail clients.

Once the certificate and key have been generated, they’ll be placed in /var/
qmail/control/servercert.pem (with a symbolic link to /var/qmail/control/
clientcert.pem). Of course, you could just skip this step and make a sym-
bolic link to those locations from a certificate/key pair that you’ve already
created [Hack #69]. Once you’ve gotten your certificates squared away, run
make tmprsadh to generate the Diffie-Hellman key exchange parameters.

Now, you’re ready to restart Qmail:

svc -u /service/qmail-send /service/qmail-send/log
svc -u /service/qmail-smtpd /service/qmail-smtpd/log

164 | Chapter 5, Encrypting and Securing Services

#57 Install Apache with SSL and suEXEC
HACK

If you telnet to port 25 of your server and issue an EHLO command, you
should now see that the server supports STARTTLS and SMTP AUTH:

$ telnet mail.example.com 25
Trying 192.168.0.2...
Connected to mail.example.com.
Escape character is '^]'.
220 mail.example.com ESMTP
EHLO
250-freebsd5-vm1.nnc
250-STARTTLS
250-PIPELINING
250-8BITMIME
250-SIZE 0
250 AUTH LOGIN PLAIN CRAM-MD5

You’re almost done. All you need is a way to let Qmail check your users’
passwords for it to authenticate them. This is done with the checkpassword
program (http://cr.yp.to/checkpwd.html). If you’re using Qmail as a POP3
server, you probably already have it installed properly, so you’re done. If
you don’t, download and unpack the source tarball for checkpassword,
change to the directory that was extracted (e.g., checkpassword-0.90), and
run make setup check as root.

After it’s installed, you’ll need to make checkpassword SUID, so it can verify
user passwords:

chmod 4711 /bin/checkpassword

You’re now set on the server side. Your users can enjoy encrypted email
between their clients and your server. In addition, you can allow your users
to send email from wherever they are, since you don’t have to restrict relay-
ing based on hostnames any longer.

However, keep in mind that email will be encrypted only between the clients,
your server, and any destination servers that support TLS. If a recipient’s
server doesn’t support TLS, the message will be sent in the clear at some
point. For true end-to-end encryption, you can use GnuPG [Hacks #42 and #43].

H A C K

#57
Install Apache with SSL and suEXEC Hack #57

Help secure your web applications with mod_ssl and suEXEC.

Web server security is a very important issue these days, especially since
people are always finding new and creative ways to put the Web to use. If
you’re using any sort of web application that needs to handle authentica-
tion or provides some sort of restricted information, you should seriously
consider installing a web server with SSL capabilities. Without SSL, any
authentication information your users send to the web server is sent over the

Install Apache with SSL and suEXEC #57

Chapter 5, Encrypting and Securing Services | 165

HACK

network in the clear, and anyone with a sniffer can view any information
that clients can access. If you are already using Apache 2.x, you can easily
rebuild it to add SSL capabilities. If you’re using Apache 1.x, you can do this
with mod_ssl (http://www.modssl.org).

In addition, if your web server serves up dynamic content for multiple users,
you might want to enable Apache’s suEXEC functionality. suEXEC allows
your web server to execute server-side scripts as the user that owns them,
rather than as the account under which the web server is running. Other-
wise, any user could create a script and run code as the account under which
the web server is running. This is a bad thing, particularly on a multiuser
web server. If you don’t review the scripts that your users write before allow-
ing them to be run, they could very well write code that allows them to
access other users’ data or other sensitive information, such as database
accounts and passwords.

Apache 1.x
To compile Apache with mod_ssl, download the appropriate mod_ssl source
distribution for the version of Apache that you’ll be using.

If you don’t want to add mod_ssl to an existing Apache
source tree, you will also need to download and unpack the
Apache source.

After you’ve done that, unpack the mod_ssl distribution and go into the
directory that it creates. Then, run a command like this:

$./configure \
--with-apache=../apache_1.3.36 \
--with-ssl=SYSTEM \
--prefix=/usr/local/apache \
--enable-module=most \
--enable-module=mmap_static \
--enable-module=so \
--enable-shared=ssl \
--disable-rule=SSL_COMPAT \
--server-uid=www \
--server-gid=www \
--enable-suexec \
--suexec-caller=www \
--suexec-uidmin=500 \
--suexec-gidmin=500

This both patches the Apache source tree with extensions provided with
mod_ssl and configures Apache for the build process.

166 | Chapter 5, Encrypting and Securing Services

#57 Install Apache with SSL and suEXEC
HACK

You will probably need to change a number of options in order to build
Apache. The directory specified in the --with-apache switch should point to
the directory that contains the Apache source code for the version you are
building. In addition, if you want to use a version of OpenSSL that has not
been installed yet, specify the location of its build tree with the --with-ssl
switch.

If you elect to do that, you should configure and build OpenSSL in the
specified directory before attempting to build Apache and mod_ssl. The
--server-uid and --server-gid switches specify the user and group under
which the web server will run. Apache defaults to the nobody account. How-
ever, many programs that can be configured to drop their privileges also
default to the nobody account; if you end up accepting these defaults with
every program, the nobody account can become quite privileged. So, it is rec-
ommended that you create a separate account for every program that pro-
vides this option.

The remaining options enable and configure Apache’s suEXEC. To pro-
vide the suEXEC functionality, Apache uses a SUID wrapper program to
execute users’ scripts. This wrapper program makes several checks before
it allows a program to execute. One thing that the wrapper checks is the
UID of the process that invoked it. If it is not the account that was
specified with the --suexec-caller option, execution of the user’s script
will abort. Since the web server will call the suEXEC wrapper, set this
option to the same value as --server-uid.

Additionally, since most privileged accounts and groups on a system usually
all have a UID and GID beneath a certain value, the suEXEC wrapper will
check to see if the UID or GID of the process invoking it is below this
threshold. For this to work, you must specify the appropriate value for your
system. In this example, Apache and mod_ssl are being built on a Red Hat
system, which starts regular user accounts and groups at UID and GID 500.
In addition to these checks, suEXEC performs a multitude of other checks,
such as ensuring that the script is writable only by the owner, that the owner
is not root, and that the script is not SUID or SGID.

After the configure script completes, change to the directory that contains
the Apache source code and run make and make install. You can run make
certificates if you would like to generate an SSL certificate to test out your
installation. You can also run make certificate TYPE=custom to generate a
certificate signing request to be signed by either a commercial Certificate
Authority or your own CA [Hack #69].

After installing Apache, you can start it by running this command:

/usr/local/apache/bin/apachectl startssl

Install Apache with SSL and suEXEC #57

Chapter 5, Encrypting and Securing Services | 167

HACK

If you want to start out by testing it without SSL, run this:

/usr/local/apache/bin/apacectl start

You can then run this command to verify that suEXEC support is enabled:

grep suexec /usr/local/apache/logs/error_log
[Thu Jan 1 16:48:17 2004] [notice] suEXEC mechanism enabled (wrapper:
/usr/local/apache/bin/suexec)

Now, add a Directory entry to enable CGI scripts for user directories:

<Directory /home/*/public_html>
 AllowOverride FileInfo AuthConfig Limit
 Options MultiViews Indexes SymLinksIfOwnerMatch Includes ExecCGI
 <Limit GET POST OPTIONS PROPFIND>
 Order allow,deny
 Allow from all
 </Limit>
 <LimitExcept GET POST OPTIONS PROPFIND>
 Order deny,allow
 Deny from all
 </LimitExcept>
</Directory>

In addition, add this line to enable CGI scripts outside of the ScriptAlias
directories:

AddHandler cgi-script .cgi

After you’ve done that, you can restart Apache by running this command:

/usr/local/apache/bin/apachectl restart

Now, test out suEXEC with a simple script that runs the id command,
which will print out information about the user under which the script is
executed:

#!/bin/sh

echo -e "Content-Type: text/plain\r\n\r\n"
/usr/bin/id

Put this script in a directory such as /usr/local/apache/cgi-bin, name it suexec-
test.cgi, and make it executable. Now, enter the URL for the script (e.g.,
http://webserver/cgi-bin/suexec-test.cgi) into your favorite web browser. You
should see something like this:

uid=80(www) gid=80(www) groups=80(www)

As you can see, it is being executed under the same UID as the web server.

Now, copy the script into a user’s public_html directory:

$ mkdir public_html && chmod 711 ~/ ~/public_html
$ cp /usr/local/apache/cgi-bin/suexec-test.cgi ~/public_html

168 | Chapter 5, Encrypting and Securing Services

#57 Install Apache with SSL and suEXEC
HACK

After you’ve done that, enter the URL for the script (e.g., http://webserver/
~user/suexec-test.cgi) in your web browser. You should see something
similar to this:

uid=500(andrew) gid=500(andrew) groups=500(andrew)

In addition to handling scripts in users’ private HTML directories, suEXEC
can execute scripts as another user within a virtual host. However, to enable
this, you will need to create all of your virtual host’s directories beneath the
web server’s document root (e.g., /usr/local/apache/htdocs). When doing
this, you can configure what user and group the script will execute as by
using the User and Group configuration directives within the VirtualHost
statement:

<VirtualHost>
 User myuser
 Group mygroup
 DocumentRoot /usr/local/apache/htdocs/mysite
 ...
</VirtualHost>

Apache 2.x
Setting up Apache 2.x isn’t very different from setting up Apache 1.x. The
main difference is that SSL functionality is already included and just needs
to be enabled. The options used to enable suEXEC are also slightly different:

$./configure \
--with-ssl=SYSTEM \
--prefix=/usr/local/apache2 \
--enable-module=most \
--enable-module=mmap_static \
--enable-module=so \
--enable-ssl \
--enable-suexec \
--with-suexec-caller=daemon \
--with-suexec-uidmin=500 \
--with-suexec-gidmin=500

One thing that you’ll notice is absent is the ability to specify the user and
group under which the server executes. Apache 2 defaults to the daemon
user and group, which you can change later by modifying the User and Group
lines in the configuration file, httpd.conf. If you use the --prefix option the
way it’s shown in this example, httpd.conf will be in /usr/local/apache2/conf.
When you change these lines you’ll also need to rebuild the daemon and tell
the configure script the new user with the --with-suexec-caller option.

After the configure script completes, build and install the daemon by run-
ning make and then changing to root and running make install. Once that
has finished, you’ll need to edit the configuration file to set up SSL. Do this

Secure BIND #58

Chapter 5, Encrypting and Securing Services | 169

HACK

by uncommenting the line that includes the SSL-specific configuration
options:

#Include conf/extra/httpd-ssl.conf

Now, you need to tell Apache where to find your certificate and key by edit-
ing the file specified in the Include entry. By default, it looks for server.crt
and server.key in the same directory as httpd.conf:

SSLCertificateFile /usr/local/apache2/conf/server.crt
SSLCertificateKeyFile /usr/local/apache2/conf/server.key

Once you have your certificate and key configured, start Apache by using
apachectl:

/usr/local/apache2/bin/apachectl start

The difference between Apache 1.x and 2.x here is that apachectl no longer
differentiates between SSL and non-SSL configurations, so the startssl
argument isn’t accepted anymore. Aside from these differences, you can fol-
low the same steps used for Apache 1.x.

Unfortunately, suEXEC is incompatible with mod_perl and mod_php, because
the modules run within the Apache process itself instead of in a separate
program. Since the Apache process is running as a nonroot user, it cannot
change the UID under which the scripts execute. suEXEC works by having
Apache call a special SUID wrapper (e.g., /usr/local/apache/bin/suexec) that
can only be invoked by Apache processes.

If you care to make the security/performance trade-off by using suEXEC but
still need to run Perl scripts, you can do so through the standard CGI inter-
face. You can also run PHP programs through the CGI interface, but you’ll
have to create a php binary and specify it as the interpreter in all the PHP
scripts you wish to execute through suEXEC. Alternatively, you can execute
your scripts through mod_perl or mod_php by locating them outside the direc-
tories where suEXEC will work.

H A C K

#58
Secure BIND Hack #58

Lock down your BIND setup to help contain potential security problems.

Due to BIND’s not-so-illustrious track record with regard to security, if you
want to use it you’ll probably want to spend some time hardening your
setup. One way to make running BIND a little safer is to run it inside a sand-
boxed environment [Hack #10]. This is easy to do with recent versions of
BIND, since it natively supports running as a nonprivileged user within a
chroot() jail. All you need to do is set up the directory you’re going to have
it chroot() to and change the command you’re using to start named to
reflect this.

170 | Chapter 5, Encrypting and Securing Services

#58 Secure BIND
HACK

To begin, create a user and group to run named as (e.g., named). To prepare
the sandboxed environment, you’ll need to create the appropriate directory
structure. You can create the directories for such an environment within
/named_chroot by running the following commands:

mkdir /named_chroot
cd /named_chroot
mkdir -p dev etc/namedb/slave var/run

Next, you’ll need to copy your named.conf file and namedb directory to the
sandboxed environment:

cp /etc/named.conf /named_chroot/etc
cp -a /var/namedb/* /named_chroot/etc/namedb

These commands assume you store your zone files in /var/namedb.

If you’re setting up BIND as a secondary DNS server, you will need to make
the /named_chroot/etc/namedb/slave directory writable so that named can
update the records it contains when it performs a domain transfer from the
master DNS node:

chown -R named:named /named_chroot/etc/namedb/slave

In addition, named will need to write its process ID (PID) file to /named_
chroot/var/run, so you’ll have to make this directory writable by the named
user as well:

chown named:named /named_chroot/var/run

Now, create the device files that named will need to access after it has called
chroot():

cd /named_chroot/dev
ls -la /dev/null /dev/random
crw-rw-rw- 1 root root 1, 3 Jan 30 2003 /dev/null
crw-r--r-- 1 root root 1, 8 Jan 30 2003 /dev/random
mknod null c 1 3
mknod random c 1 8
chmod 666 null random

You’ll also need to copy your time zone file from /etc/localtime to /named_
chroot/etc/localtime. Additionally, named usually uses /dev/log to communi-
cate its log messages to syslogd. Since this doesn’t exist inside the sand-
boxed environment, you will need to tell syslogd to create a socket that the
chroot()-ed named process can write to. You can do this by modifying your
syslogd startup command and adding -a /named_chroot/dev/log to it. Usu-
ally, you can do this by modifying an existing file in /etc.

For instance, under Fedora, edit /etc/sysconfig/syslogd and modify the
SYSLOGD_OPTIONS line to read:

SYSLOGD_OPTIONS="-m 0 -a /named_chroot/dev/log"

Secure BIND #58

Chapter 5, Encrypting and Securing Services | 171

HACK

Or, if you’re running FreeBSD, modify the syslogd_flags line in /etc/rc.conf:

syslogd_flags="-s -a /named_chroot/dev/log"

After you restart syslogd, you should see a log socket in /named_chroot/dev.

Now, to start named, all you need to do is run this command:

named -u named -t /named_chroot

Other tricks for increasing the security of your BIND installation include
limiting zone transfers to your slave DNS servers and altering the response
to BIND version queries. Restricting zone transfers ensures that random
attackers will not be able to request a list of all the hostnames for the zones
hosted by your name servers. You can globally restrict zone transfers to cer-
tain hosts by putting an allow-transfer section within the options section in
your named.conf.

For instance, if you want to restrict transfers on all zones hosted by your
DNS server to only 192.168.1.20 and 192.168.1.21, you can use an allow-
transfer section like this:

allow-transfer {
 192.168.1.20;
 192.168.1.21;
};

If you don’t want to limit zone transfers globally and instead want to specify
the allowed hosts on a zone-by-zone basis, you can put the allow-transfer
section inside the zone section.

Before an attacker attempts to exploit a BIND vulnerability, she will often
scan for vulnerable versions of BIND by connecting to name servers and per-
forming a version query. Since you should never need to perform a version
query on your own name server, you can modify the reply BIND sends to
the requester. To do this, add a version statement to the options section in
your named.conf:

version "SuperHappy DNS v1.5";

This statement doesn’t really provide extra security, but if
you don’t want to advertise what software and version
you’re running to the entire world, you don’t have to.

Also, if you’re running a publicly facing name server that is used to serve
zones, you’ll want to disable recursion. Otherwise, your server could be
used in a denial of service (DoS) attack. To disable recursion, you’ll need to
add a recursion statement to the options section of named.conf:

recursion no;

172 | Chapter 5, Encrypting and Securing Services

#59 Set Up a Minimal and Secure DNS Server
HACK

You should allow recursion only on servers where you have a reasonable
level of trust in the clients that can query it, such as an internal name server
on your network.

See Also
• The section “Securing BIND” in Building Secure Servers with Linux, by

Michael D. Bauer (O’Reilly)

H A C K

#59
Set Up a Minimal and Secure DNS Server Hack #59

Use Djbdns, a more secure alternative to BIND, to serve your DNS records.

For many years BIND has been the workhorse of the Internet, serving up
DNS records. But with that history comes a long track record of security vul-
nerabilities. While the rate at which vulnerabilities are being discovered has
decreased over the years (it’s gotten “more secure”), you might want to err
on the side of caution and use a different software package that doesn’t have
such a colorful history. One such package is Djbdns (http://cr.yp.to/djbdns.
html), written by Daniel J. Bernstein, for which no security vulnerabilities
have been disclosed to date.

One of the things that makes Djbdns so secure is its architecture. BIND uses
one big monolithic program to perform all DNS-related duties. On the other
hand, Djbdns uses many separate specialized programs to serve authorita-
tive zones, do recursive queries, perform zone transfers, and carry out log-
ging, amongst other things. Each of these subprograms is smaller and easier
to audit for vulnerabilities.

This hack focuses primarily on the tinydns program, which Djbdns uses to
serve authoritative DNS zones.

Installing daemontools
Before you can get Djbdns up and running, you’ll first need to install
daemontools (http://cr.yp.to/daemontools.html), another package used to
manage server processes on Unix systems. Download the tarball from http://
cr.yp.to/daemontools/daemontools-0.76.tar.gz and create a /package directory:

mkdir /package
chmod 1755 /package

Then, change into /package and unpack the tarball. You might be wonder-
ing why we’re using this /package directory. The reason is because
daemontools’s installation process makes symbolic links from the binaries
that were compiled during the build process to other locations within the

Set Up a Minimal and Secure DNS Server #59

Chapter 5, Encrypting and Securing Services | 173

HACK

system’s filesystems. So, you need a good permanent place to keep the
source tree; any directory that satisfies that requirement will do.

Once the source code has been unpacked into /package, change the direc-
tory to admin/daemontools-0.76 and run the installation script:

cd admin/daemontools-0.76
package/install

You might encounter an error like this:

/usr/bin/ld: errno: TLS definition in /lib/libc.so.6 section .tbss
mismatches non-TLS reference in envdir.o
/lib/libc.so.6: could not read symbols: Bad value
collect2: ld returned 1 exit status
make: *** [envdir] Error 1
Copying commands into ./command...
cp: cannot stat `compile/svscan': No such file or directory

If you do, download the patch available at http://www.qmailrocks.org/
downloads/patches/daemontools-0.76.errno.patch and apply it:

cd /package/admin/daemontools-0.76/src
patch < <path to patch file>

Now, run package/install again.

If the system uses a SysV init process (i.e., if an /etc/inittab file and an /etc/rc.
d directory are used), an entry for daemontools will be added to /etc/ininttab.
This will cause daemontools to automatically start now and with each sys-
tem boot. Otherwise, the install process will add a line to /etc/rc.local to start
it at boot time. Instead of rebooting to start daemontools, locate this line and
run it manually:

csh -cf '/command/svscanboot &'

Now it’s time to install Djbdns.

Installing Djbdns
Once you’ve installed daemontools, download and unpack the Djbns tarball
(available at http://cr.yp.to/djbdns/djbdns-1.05.tar.gz) and change to the
directory that is created (e.g., djbdns-1.05). On Linux systems, run the fol-
lowing before starting the build:

$ echo gcc -O2 -include /usr/include/errno.h > conf-cc

Build Djbdns by simply running make. After compilation finishes, run make
setup check to install it. You’ll need to create two user accounts under
which to run tinydns and its logging process:

adduser _tinydns
adduser _dnslog

174 | Chapter 5, Encrypting and Securing Services

#59 Set Up a Minimal and Secure DNS Server
HACK

Now, set up tinydns to use these accounts and tell daemontools to start it
(replace 192.168.0.40 with your system’s IP address):

tinydns-conf _tinydns _dnslog /etc/tinydns 192.168.0.40
ln -s /etc/tinydns /service

After a few seconds, daemontools will start tinydns, and you should see it
and its logger process:

ps -aux | egrep '_tinydns|_dnslog'
_tinydns 49485 0.0 0.2 1328 552 p1 I 12:53AM 0:00.12 /usr/local/
bin/tinydns
_dnslog 49486 0.0 0.2 1208 480 p1 I 12:53AM 0:00.07 multilog t
./main

Now it’s time to add some DNS records.

Adding Records
Setting up an authoritative zone with Djbdns is much less complex than
doing so with BIND. In fact, it’s surprisingly easy. Simply put authoritative
DNS records into a plain-text file and then compile them into a binary data-
base format that tinydns can read.

Now, you’ll need to create some records. Some programs for adding records
are included, but you’ll probably want to add NS and MX records by hand,
because the included tools enforce a certain DNS- and mail-server-naming
scheme that you might not want to use.

First, create NS and SOA records for the domain and an A record for your
name server:

cd /service/tinydns/root
echo ".example.com:192.168.0.40:ns1.example.com" > data
echo ".0.168.192.in-addr.arpa:192.168.0.40:ns1.example.com" >> data

The first character of each entry signifies the record type. A dot (.) causes
tinydns to create an NS record for example.com pointing to ns1.example.
com, an A record for ns1.example.com, and an SOA record for example.com.
The second entry delegates the reverse zone for 192.168.0.0/24 to the name
server. After adding these entries, run make to create the database that
tinydns reads its data from, data.cdb. Remember to do this after every
change you make to data.

Now, take a look at the records that were created:

dig -t any example.com @192.168.0.40

; <<>> DiG 9.3.1 <<>> -t any example.com @192.168.0.40
; (1 server found)
;; global options: printcmd
;; Got answer:

Set Up a Minimal and Secure DNS Server #59

Chapter 5, Encrypting and Securing Services | 175

HACK

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18791
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; QUESTION SECTION:
;example.com. IN ANY

;; ANSWER SECTION:
example.com. 2560 IN SOA ns1.example.com. hostmaster.
example.com. 1151133345 16384 2048 1048576 2560
example.com. 259200 IN NS ns1.example.com.

;; ADDITIONAL SECTION:
ns1.example.com. 259200 IN A 192.168.0.40

;; Query time: 6 msec
;; SERVER: 192.168.0.40#53(192.168.0.40)
;; WHEN: Sat Jun 24 01:15:48 2006
;; MSG SIZE rcvd: 110

Try adding an MX record. This time, use the add-mx helper program:

./add-mx example.com 192.168.0.42
This will create the following entry in the data file:
@example.com:192.168.0.42:a::86400

This results in an A record and an MX entry pointing to a.mx.example.com.
This is an example of the helper programs enforcing their own naming
scheme. Change the entry to look like the following to create an A and MX
record for mail.example.com instead:

@example.com:192.168.0.42:mail.example.com:10:86400

The helper programs aren’t good for everything, but they are good for
adding generic hosts. To add a host, use the appropriately named add-host
program:

./add-host caligula.example.com 192.168.0.41

This creates an = entry, which causes tinydns to serve up an A record for
caligula.example.com and its corresponding reverse DNS PTR record:

=caligula.example.com:192.168.0.41:86400

To add additional A (but not PTR) records for a host, use the add-alias
command. Entries created with this command start with a +:

./add-alias www.example.com 192.168.0.41
cat data
.example.com:192.168.0.40:ns1.example.com
.0.168.192.in-addr.arpa:192.168.0.40:ns1.example.com
@example.com:192.168.0.42:mail.example.com:10:86400
=caligula.example.com:192.168.0.41:86400
+www.example.com:192.168.0.41:86400

176 | Chapter 5, Encrypting and Securing Services

#60 Secure MySQL
HACK

The types of entries discussed here should satisfy most situations. However,
there are several other types, including a generic type that allows you to
specify entries that generate any type of DNS record. For more information
on these, consult http://cr.yp.to/djbdns/tinydns-data.html.

H A C K

#60
Secure MySQL Hack #60

Take some basic steps to harden your MySQL installation.

MySQL (http://www.mysql.com), one of the most popular open source data-
base systems available today, is often used in conjunction with both the
Apache web server and the PHP scripting language to drive dynamic con-
tent on the Web. However, MySQL is a complex piece of software and,
given the fact that it often has to interact both locally and remotely with a
broad range of other programs, special care should be taken to secure it as
much as possible.

Some steps you can take include running MySQL in a chroot()-ed environ-
ment [Hack #10], running it as a nonroot user, and disabling MySQL’s ability to
load data from local files. Luckily, none of these are as hard to do as they
might sound. To start, let’s look at how to chroot() MySQL.

First, create a user and group for MySQL to run as and download the
MySQL source distribution. After you’ve done that, unpack the source and
go into the directory that it creates. Run this command to build MySQL and
set up its directory structure for chroot()-ing:

$./configure --prefix=/mysql --with-mysqld-ldflags=-all-static && make

This configures MySQL to be installed in /mysql and statically links the
mysqld binary; this makes setting up the chroot() environment much easier,
since you won’t need to copy any additional libraries to the environment.

After the compilation finishes, become root and run these commands to
install MySQL:

make install DESTDIR=/mysql_chroot && ln -s /mysql_chroot/mysql /mysql
scripts/mysql_install_db

The first command installs MySQL, but instead of placing the files in /mysql,
it places them in /mysql_chroot/mysql. It also creates a symbolic link from
that directory to /mysql, which makes administering MySQL much easier
after installation.

The second command creates MySQL’s default databases. If you hadn’t cre-
ated the symbolic link prior to running this command, the mysql_install_db
script would have failed, because it expects to find MySQL installed beneath
/mysql. Many other scripts and programs will expect the same, so creating
the symbolic link will make your life easier.

Secure MySQL #60

Chapter 5, Encrypting and Securing Services | 177

HACK

Next, you need to set up the correct directory permissions so that MySQL
will be able to function properly:

chown -R root:mysql /mysql
chown -R mysql /mysql/var

Now, try running MySQL:

/mysql/bin/mysqld_safe&
Starting mysqld daemon with databases from /mysql/var
ps -aux | grep mysql | grep -v grep
root 10137 0.6 0.5 4156 744 pts/2 S 23:01 0:00 /bin/sh /
mysql/bin/
mysqld_safe
mysql 10150 7.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10151 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10152 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10153 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10154 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10155 0.3 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10156 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10157 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10158 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
mysql 10159 0.0 9.3 46224 11756 pts/2 S 23:01 0:00 [mysqld]
/mysql/bin/mysqladmin shutdown
040103 23:02:45 mysqld ended

[1]+ Done /mysql/bin/mysqld_safe

Now that you know MySQL is working outside of its chroot() environ-
ment, you can create the additional files and directories it will need to work
inside the chroot() environment:

mkdir /mysql_chroot/tmp /mysql_chroot/dev
chmod 1777 /mysql_chroot/tmp
ls -l /dev/null
crw-rw-rw- 1 root root 1, 3 Jan 30 2003 /dev/null
mknod /mysql_chroot/dev/null c 1 3

Now, try running mysqld in the chroot()-ed environment:

/usr/sbin/chroot /mysql_chroot /mysql/libexec/mysqld -u 100

In this example, the UID of the user you want mysqld to run as is specified
with the -u option. This should correspond to the UID of the user created
earlier.

To ease management, you might want to modify the mysqld_safe shell script
to chroot() mysqld for you. You can accomplish this by finding the lines
where mysqld is called and modifying them to use the chroot program.

Open up /mysql/bin/mysqld_safe and locate the block of lines that looks like
this:

if test -z "$args"
 then

178 | Chapter 5, Encrypting and Securing Services

#61 Share Files Securely in Unix
HACK

 $NOHUP_NICENESS $ledir/$MYSQLD $defaults \
 --basedir=$MY_BASEDIR_VERSION \
 --datadir=$DATADIR $USER_OPTION \
 --pid-file=$pid_file --skip-locking >> $err_log 2>&1
 else
 eval "$NOHUP_NICENESS $ledir/$MYSQLD $defaults \
 --basedir=$MY_BASEDIR_VERSION \
 --datadir=$DATADIR $USER_OPTION \
 --pid-file=$pid_file --skip-locking $args >> $err_log 2>&1"
 fi

Change them to look like this:

if test -z "$args"
 then
 $NOHUP_NICENESS /usr/sbin/chroot /mysql_chroot \
 $ledir/$MYSQLD $defaults \
 --basedir=$MY_BASEDIR_VERSION \
 --datadir=$DATADIR $USER_OPTION \
 --pid-file=$pid_file --skip-locking >> $err_log 2>&1
 else
 eval "$NOHUP_NICENESS /usr/sbin/chroot /mysql_chroot \
 $ledir/$MYSQLD $defaults \
 --basedir=$MY_BASEDIR_VERSION \
 --datadir=$DATADIR $USER_OPTION \
 --pid-file=$pid_file --skip-locking $args >> $err_log 2>&1"
 fi

Now, you can start MySQL by using the mysqld_safe wrapper script, like
this:

/mysql/bin/mysqld_safe --user=100

You might also want to create a separate my.conf file for the MySQL utili-
ties and server. For instance, in /etc/my.cnf, you could specify socket = /
mysql_chroot/tmp/mysql.sock in the [client] section so that you don’t have to
specify the socket manually every time you run a MySQL-related program.

You’ll also probably want to disable MySQL’s ability to load data from local
files. To do this, you can add set-variable=local-infile=0 to the [mysqld]
section of your /mysql_chroot/etc/my.cnf. This disables MySQL’s LOAD DATA
LOCAL INFILE command. Alternatively, you can disable it from the com-
mand line by using the --local-infile=0 option.

H A C K

#61
Share Files Securely in Unix Hack #61

Use SFS to help secure your remote filesystems.

If you are using Unix systems and sharing files on your network, you are
most likely using the Network File System (NFS). However, NFS has many
security problems, not only with individual implementations, but also in the
design of the protocol itself. For instance, if a user can spoof an IP address

Share Files Securely in Unix #61

Chapter 5, Encrypting and Securing Services | 179

HACK

and mount an NFS share that is only meant for a certain computer, that user
will essentially have root access to all the files on that share. In addition,
NFS employs secret file handles that are used with each file request. Since
NFS does not encrypt its traffic, it’s easy for attackers to guess these file han-
dles. If they guess correctly, they effectively gain total root access to the
remote filesystem.

The Self-certifying File System (SFS), available at http://www.fs.net, fixes all
of these problems by employing a drastically different design philosophy.
NFS was created with the notion that you can (and should) trust your net-
work. SFS has been designed from the beginning with the idea that no net-
work should ever be trusted until it can definitively prove its identity.

To accomplish this level of security, SFS makes use of public keys on both
the client and server ends. It uses these keys to verify the identity of servers
and clients, and it also provides access control on the server side. One par-
ticularly nice side effect of such strong encryption is that SFS provides a
much finer-grained level of access control than NFS. With NFS, you are lim-
ited to specifying which hosts can or cannot connect to a given exported file-
system. In order to access an SFS server, a user must create a key pair and
then authorize the key by logging into the SFS server and registering the key
manually.

Building SFS can take up quite a lot of disk space. Before you attempt it,
make sure you have at least 550 MB of space available on the filesystem on
which you’ll be compiling SFS. You will also need to make sure that you have
the GNU Multiple Precision (GMP) math library (http://www.swox.com/gmp/)
installed.

Before you begin to build SFS, you also need to create a user and group for
SFS’s daemons. By default, these are both called sfs. If you want to use a dif-
ferent user or group, you can do this by passing options to the configure
script.

Once your system is ready, check out the most recent version of the SFS
code (hit Enter at the password prompt):

$ cvs -d :pserver:sfscvs@cvs.fs.net:/cvs login
Logging in to :pserver:sfscvs@cvs.fs.net:2401/cvs
CVS password:

$ cvs -z5 -d :pserver:sfscvs@cvs.fs.net:/cvs co -P sfs1

Then, change to the sfs1 directory and build SFS by running this command:

$ sh ./setup && ./configure && make

Once that process is finished, become root and type make install.

180 | Chapter 5, Encrypting and Securing Services

#61 Share Files Securely in Unix
HACK

If you want to use a user and group other than sfs, you can specify these
with the --with-sfsuser and --with-sfsgroup options:

$./configure --with-sfsuser=nobody --with-sfsgroup=nobody

Building SFS can take quite a bit of time, so you might want to take the
opportunity to enjoy a cup of coffee, a snack, or maybe even a full meal,
depending on the speed of your machine and the amount of memory it has.

After SFS has finished building and you have installed it, you can test it out
by connecting to the SFS project’s public server. To do this, start the SFS cli-
ent daemon, sfscd, and then change to the directory under which the SFS
server will be mounted:

sfscd
cd /sfs/@sfs.fs.net,uzwadtctbjb3dg596waiyru8cx5kb4an
ls
CONGRATULATIONS cvs pi0 reddy sfswww
cat CONGRATULATIONS
You have set up a working SFS client.
#

sfscd automatically creates the /sfs directory and the directory for the SFS
server.

SFS relies on the operating system’s portmap daemon and
NFS mounter; you’ll need to have those running before run-
ning the client.

To set up an SFS server, first log into your server and generate a public and
private key pair:

mkdir /etc/sfs
sfskey gen -P /etc/sfs/sfs_host_key

sfskey will ask you to bang on the keys for a little while in order to gather
entropy for the random number generator.

Now, you will need to create a configuration file for sfssd, the SFS server
daemon. Create a file in /etc/sfs called sfsrwsd_config, which is where you’ll
configure the filesystem namespace that SFS will export to other hosts.

If you want to export the /home filesystem, create a configuration file like
this:

Export /var/sfs/root /
Export /home /home

Then, create the /var/sfs/root and /var/sfs/home directories. After that, create
NFS exports so that the /home filesystem can be mounted under /var/sfs/
root/home. These are then re-exported by sfssd. The NFS exports need to
allow mounting only from localhost.

Share Files Securely in Unix #61

Chapter 5, Encrypting and Securing Services | 181

HACK

Here’s what /etc/exports looks like for exporting /home:

/var/sfs/root localhost(rw)
/home localhost(rw)

This exports file is for Linux. If you are running the SFS server on another
operating system (such as Solaris or OpenBSD), consult your operating sys-
tem’s mountd manpage for the proper way to add these shares.

Now, start your operating system’s NFS server. Once NFS has started, you
can start sfssd. After attempting to connect to the sfssd server, you should
see some messages like these in your logs:

Jun 10 10:14:47 colossus : sfssd: version 0.8pre, pid 30880
Jun 10 10:14:47 colossus : rexd: version 0.8pre, pid 30882
Jun 10 10:14:47 colossus : sfsrwsd: version 0.8pre, pid 30884
Jun 10 10:14:47 colossus : rexd: serving @colossus.
nnc,kkvt3kzmqry5gy4s3es97yu9gip2f967
Jun 10 10:14:47 colossus : rexd: spawning /usr/local/lib/sfs-0.8pre/ptyd
Jun 10 10:14:47 colossus : sfsauthd: version 0.8pre, pid 30883
Jun 10 10:14:47 colossus : sfssd: listening on TCP port 4
Jun 10 10:14:47 colossus : sfsauthd: dbcache_refresh_delay = 0
Jun 10 10:14:47 colossus : sfsauthd: Disabling authentication server cache
refresh...
Jun 10 10:14:47 colossus rpc.mountd: authenticated mount request from
localhost.localdomain:956 for /var/sfs/root (/var/sfs/root)
Jun 10 10:14:47 colossus : sfsauthd: serving @colossus.
nnc,kkvt3kzmqry5gy4s3es97yu9gip2f967
Jun 10 10:14:47 colossus rpc.mountd: authenticated mount request from
localhost.localdomain:956 for /home (/home)
Jun 10 10:14:47 colossus : sfsrwsd: serving /sfs/@colossus.
nnc,kkvt3kzmqry5gy4s3es97yu9gip2f967

The last log entry shows the path that users can use to mount your filesys-
tem. Before mounting any filesystems on your server, users will have to cre-
ate a key pair and register it with your server. They can do this by logging
into your server and running the sfskey command:

$ sfskey register
sfskey: /home/andrew/.sfs/random_seed: No such file or directory
sfskey: creating directory /home/andrew/.sfs
sfskey: creating directory /home/andrew/.sfs/authkeys
/var/sfs/sockets/agent.sock: No such file or directory
sfskey: sfscd not running, limiting sources of entropy
Creating new key: andrew@colossus.nnc#1 (Rabin)
 Key Label: andrew@colossus.nnc#1
Enter passphrase:
 Again:

sfskey needs secret bits with which to seed the random number generator.
Please type some random or unguessable text until you hear a beep:
DONE

182 | Chapter 5, Encrypting and Securing Services

#61 Share Files Securely in Unix
HACK

UNIX password:
colossus.nnc: New SRP key: andrew@colossus.nnc/1024
wrote key: /home/andrew/.sfs/authkeys/andrew@colossus.nnc#1

Alternatively, if you already have an existing key pair on another server, you
can type sfskey user@otherserver instead. This command retrieves the key
from the remote machine and registers it with the server you are currently
logged into.

Now that you have registered a key with the server, you can log into the SFS
server from another machine. This is also done with the sfskey program:

$ sfskey login andrew@colossus.nnc
Passphrase for andrew@colossus.nnc/1024:
SFS Login as andrew@colossus.nnc

Now, try to access the remote server:

$ cd /sfs/@colossus.nnc,fd82m36uwxj6m3q8tawp56ztgsvu7g77
$ ls
home

As you can see, SFS is a powerful tool for sharing files across a network, and
even across the Internet. Not only does it provide security, but it also pro-
vides a unique and universal method for referencing a remote host and its
exported filesystems. You can even put your home directory on an SFS server,
simply by linking the universal pathname of the exported filesystem /home.

183

Chapter 6 C H A P T E R S I X

Network Security
Hacks 62–75

As we come to rely more and more on massively interconnected networks,
the stability and security of those networks becomes more vital than ever.
The world of business has adopted information technology to help stream-
line processes, increase productivity, and cut costs. As such, a company’s IT
infrastructure is often a core asset, and many businesses would cease to
function if disaster (whether natural or digital) were to significantly disrupt
their network operations. At the same time, the widespread adoption of the
Internet as a global communications medium has also brought computer
networks out of the business and academic world and into our personal
lives. That largest of networks is now used not only for information and
entertainment, but also as a means to keep in touch with friends, family, and
loved ones.

Although this book as a whole is meant to address network security, the
information it contains extends into many other areas. After all, a network is
simply a means to connect machines and services so that they can communi-
cate. This chapter, however, deals primarily with the security and integrity
of the network itself. In this chapter, you’ll learn how to detect and prevent
certain types of spoofing attacks that can be used to compromise the core
integrity of a TCP/IP Ethernet network at its lowest level. You’ll also see
how to protect against brute-force attacks against SSH, how to keep track of
vulnerabilities, and how to scan for viruses on Unix servers.

Although it is not always a direct security threat, network reconnaissance is
often a precursor to an attack. In this chapter, you’ll learn how to fool those
who are trying to gather information about the hosts on your network, as
well as ways to detect eavesdroppers who are monitoring your network for
juicy bits of information.

184 | Chapter 6, Network Security

#62 Detect ARP Spoofing
HACK

H A C K

#62
Detect ARP Spoofing Hack #62

Find out if there’s a “man in the middle” impersonating your server.

One of the biggest threats to a computer network is a rogue system pretend-
ing to be a trusted host. Once someone has successfully impersonated
another host, he can do a number of nefarious things. For example, he can
intercept and log traffic destined for the real host, or lie in wait for clients to
connect and begin sending the rogue host confidential information.

Spoofing a host has especially severe consequences in IP networks, because
it opens many other avenues of attack. One technique for spoofing a host on
an IP network is Address Resolution Protocol (ARP) spoofing. ARP spoofing
is limited only to local segments and works by exploiting the way IP
addresses are translated to hardware Ethernet addresses.

When an IP datagram is sent from one host to another on the same physical
segment, the IP address of the destination host must be translated into a
MAC address. This is the hardware address of the Ethernet card that is
physically connected to the network. To accomplish this, the Address Reso-
lution Protocol is used.

When a host needs to know another host’s Ethernet address, it sends out a
broadcast frame that looks like this:

01:20:14.833350 arp who-has 192.168.0.66 tell 192.168.0.62

This is called an ARP request. Since this is sent to the broadcast address, all
Ethernet devices on the local segment should see the request. The machine
that matches the request then responds by sending an ARP reply like the fol-
lowing:

01:20:14.833421 arp reply 192.168.0.66 is-at 0:0:d1:1f:3f:f1

Since the ARP request already contained the MAC address of the sender in
the Ethernet frame, the receiver can send this response without making yet
another ARP request.

ARP’s biggest weakness is that it is a stateless protocol. This means that it
does not track responses to the requests that are sent out and therefore will
accept responses without having sent a request. Someone who wanted to
receive traffic destined for another host could send forged ARP responses
matching any chosen IP address to that host’s MAC address. The machines
that receive these spoofed ARP responses can’t distinguish them from legiti-
mate ARP responses and will begin sending packets to the attacker’s MAC
address.

Detect ARP Spoofing #62

Chapter 6, Network Security | 185

HACK

Another side effect of ARP being stateless is that a system’s ARP tables usu-
ally use only the results of the last response. In order for someone to con-
tinue to spoof an IP address, it is necessary to flood the host with ARP
responses that overwrite legitimate ARP responses from the original host.
This particular kind of attack is commonly known as ARP cache poisoning.

Several tools—such as Ettercap (http://ettercap.sourceforge.net) and Dsniff
(http://www.monkey.org/~dugsong/dsniff/)—employ techniques like this to
both sniff on switched networks and perform “man-in-the-middle” attacks.
This technique can, of course, be used between any two hosts on a switched
segment, including the local default gateway. To intercept traffic bidirec-
tionally between hosts A and B, the attacking host C will poison host A’s
ARP cache, making it think that host B’s IP address matches host C’s MAC
address. C will then poison B’s cache, to make it think A’s IP address corre-
sponds to C’s MAC address.

Luckily, there are methods to detect just this kind of behavior, whether
you’re using a shared or switched Ethernet segment. One program that can
help accomplish this is Arpwatch (ftp://ftp.ee.lbl.gov/arpwatch.tar.gz), which
works by monitoring an interface in promiscuous mode and recording
MAC/IP address pairings over a period of time. When it sees anomalous
behavior, such as a change to one of the MAC/IP address pairs that it has
learned, it will send an alert to syslog. This can be very effective in a shared
network using a hub, since a single machine can monitor all ARP traffic.
However, due to the unicast nature of ARP responses, this program will not
work as well on a switched network.

To achieve the same level of detection coverage in a switched environment,
Arpwatch should be installed on as many machines as possible. After all,
you can’t know with 100% certainty what hosts an attacker will decide to
target. If you’re lucky enough to own one, many high-end switches allow
you to designate a monitor port that can see the traffic on all other ports. If
you have such a switch, you can install a server on that port for network
monitoring, and simply run Arpwatch on it.

After downloading Arpwatch, you can compile and install it in the usual
manner:

./configure && make && make install

When running Arpwatch on a machine with multiple interfaces, you’ll prob-
ably want to specify the interface on the command line by using the -i
option:

arpwatch -i iface

186 | Chapter 6, Network Security

#63 Create a Static ARP Table
HACK

As Arpwatch begins to learn the MAC/IP address pairings on your network,
you’ll see log entries similar to this:

Nov 1 00:39:08 zul arpwatch: new station 192.168.0.65 0:50:ba:85:85:ca

When a MAC/IP address pair changes, you should see something like this:

Nov 1 01:03:23 zul arpwatch: changed ethernet address 192.168.0.65 0:e0:81:
3:d8:8e
(0:50:ba:85:85:ca)
Nov 1 01:03:23 zul arpwatch: flip flop 192.168.0.65 0:50:ba:85:85:ca (0:e0:
81:3:d8:8e)
Nov 1 01:03:25 zul arpwatch: flip flop 192.168.0.65 0:e0:81:3:d8:8e (0:50:
ba:85:85:ca)

In this case, the initial entry is from the first fraudulent ARP response that
was received, and the subsequent two are from a race condition between the
fraudulent and authentic responses.

To make it easier to deal with multiple Arpwatch installs in a switched envi-
ronment, you can send the log messages to a central syslogd [Hack #79], aggre-
gating all the output into one place. However, because your machines can
be manipulated by the same attacks that Arpwatch is looking for, it would
be wise to use static ARP table entries [Hack #63] on your syslog server, as well
as all the hosts running Arpwatch.

H A C K

#63
Create a Static ARP Table Hack #63

Use static ARP table entries to combat spoofing and other nefarious activities.

As discussed in “Detect ARP Spoofing” [Hack #62], a lot of bad things can hap-
pen if someone successfully poisons the ARP table of a machine on your net-
work. The previous hack discussed how to monitor for this behavior, but
how do you prevent the effects of someone attempting to poison an ARP
table?

One way to prevent the ill effects of this behavior is to create static ARP
table entries for all of the devices on your local network segment. When this
is done, the kernel will ignore all ARP responses for the specific IP address
used in the entry and use the specified MAC address instead.

You can create static entries with the arp command, which allows you to
directly manipulate the kernel’s ARP table entries. To add a single static
ARP table entry, run this command:

arp -s ipaddr macaddr

For example, if you know that the MAC address that corresponds to 192.
168.0.65 is 00:50:BA:85:85:CA, you could add a static ARP entry for it like
this:

arp -s 192.168.0.65 00:50:ba:85:85:ca

Create a Static ARP Table #63

Chapter 6, Network Security | 187

HACK

For more than a few entries, this can be a time-consuming process. And for
it to be fully effective, you must add an entry for each device on your net-
work on every host that allows you to create static ARP table entries.

Luckily, most versions of the arp command can take a file as input and use it
to create static ARP table entries. Under Linux, this is done with the -f
command-line switch. So, all you need to do is generate a file containing the
MAC and IP address pairings, which you can then copy to all the hosts on
your network.

To make this easier, you can use this quick-and-dirty Perl script:

#!/usr/bin/perl
#
gen_ethers.pl <from ip> <to ip>
#

my ($start_1, $start_2, $start_3, $start_4) = split(/\./, $ARGV[0], 4);
my ($end_1, $end_2, $end_3, $end_4) = split(/\./, $ARGV[1], 4);
my $ARP_CMD="/sbin/arp -n";

for(my $oct_1 = $start_1; $oct_1 <= $end_1 && $oct_1 <= 255; $oct_1++){
 for(my $oct_2 = $start_2; $oct_2 <= $end_2 && $oct_2 <= 255; $oct_2++){
 for(my $oct_3 = $start_3; $oct_3 <= $end_3 && $oct_3 <= 255; $oct_3++){
 for(my $oct_4 = $start_4; $oct_4 <= $end_4 && $oct_4 < 255; $oct_4++){
 system("ping -c 1 -W 1 $oct_1.$oct_2.$oct_3.$oct_4 > /dev/null 2>&1");
 my $ether_addr = `$ARP_CMD $oct_1.$oct_2.$oct_3.$oct_4 | egrep
'HWaddress|
(incomplete)' | awk '{print \$3}'`;
 chomp($ether_addr);
 if(length($ether_addr) == 17){
 print("$ether_addr\t$oct_1.$oct_2.$oct_3.$oct_4\n");
 }
 }
 }
 }
}

This script will take a range of IP addresses and attempt to ping each one
once. This will cause each active IP address to appear in the machine’s ARP
table. After an IP address is pinged, the script will then look for that IP
address in the ARP table and print out the MAC/IP address pair in a format
suitable for putting into a file to load with the arp command. (This script
was written with Linux in mind, but it should work on other Unix-like oper-
ating systems as well.)

For example, if you want to generate a file for all the IP addresses ranging
from 192.168.1.1 to 192.168.1.255 and store the results in /etc/ethers, run
the script like this:

./gen_ethers 192.168.1.1 192.168.1.255 > /etc/ethers

188 | Chapter 6, Network Security

#64 Protect Against SSH Brute-Force Attacks
HACK

When you run arp with the -f switch, it will automatically use the /etc/ethers
file to create the static entries. However, you can specify any file you prefer.
For example, to use /root/arp_entries instead, run this:

arp -f /root/arp_entries

This script isn’t perfect, but it can save a lot of time when creating static
ARP table entries for the hosts on your network. Once you’ve generated the
file with the MAC/IP address pairings, you can copy it to the other hosts and
add an arp command to the system startup scripts, to automatically load
them at boot time.

The main downside to using this method is that all the devices on your net-
work need to be powered on when the script runs; otherwise, they will be
missing from the list. In addition, if the machines on your network change
frequently, you’ll have to regenerate and distribute the file often, which may
be more trouble than it’s worth. However, this method can protect devices
that never change their IP or MAC addresses from ARP poisoning attacks.

H A C K

#64
Protect Against SSH Brute-Force Attacks Hack #64

Thwart automated attacks against your Internet-facing servers.

If you remotely administer a server across the Internet, you might notice
large numbers of failed login attempts from time to time. These often have
the telltale sign of coming from a single IP address for an account that is not
meant for interactive logins but is commonly found on Unix systems.

For example:

Jun 24 22:15:52 oceana sshd[11632]: Failed password for www from 218.22.3.51
port 39766 ssh2
Jun 24 22:16:24 oceana sshd[11678]: Failed password for news from 218.22.3.
51 port 40394 ssh2
Jun 24 22:16:33 oceana sshd[11687]: Failed password for games from 218.22.3.
51 port 40563 ssh2
Jun 24 22:17:22 oceana sshd[11747]: Failed password for cvs from 218.22.3.51
port 41462 ssh2

Often, these are brute-force attacks coming from compromised computers
in foreign countries, which usually makes contacting those responsible for
the network block or domain and asking them to put a stop to the attacks
an exercise in futility. Theoretically, you should be safe from them, as long
as your users use adequately strong passwords and the attacks don’t persist
for long enough to try a significant number of possible passwords. How-
ever, such attacks can make it more difficult to spot other attacks that might
pose a more significant risk to your systems. Because of this, you’ll want to
put a stop to them quickly.

Protect Against SSH Brute-Force Attacks #64

Chapter 6, Network Security | 189

HACK

Changing the Port
Some methods for doing this are more effective than others. For instance,
the most simple thing to do is to tell the SSH daemon to listen on a non-
standard port. For example, to have sshd listen on port 2200 instead of 22,
you could put the following line in your sshd_config file (replacing the exist-
ing Port entry):

Port 2200

This might stop an attacker who’s just looking for SSH daemons on their
standard port, but it only requires a port scan to discover that you’re run-
ning the service on a nonstandard port. Also, this measure will cost your
users the convenience of not having to specify the port to connect to when
logging in via SSH. Nevertheless, it should significantly decrease the num-
ber of failed login attempts you see in your logs.

Disabling Password Authentication
Another method is to disable password authentication. This will mean that
users can only successfully connect when they have configured public-key
authentication by generating a public/private key pair and copying the pub-
lic key to ~/.ssh/authorized_keys on the server. Adding the following line to
your sshd_config disables authentication via passwords:

PasswordAuthentication no

However, this will require that your users carry their private keys with them
on portable media if they wish to be able to log in when traveling.

Firewalling the SSH Daemon
The next method is to firewall your SSH daemon. Here there are three
approaches you can take.

Limiting connections to your sshd. The most restrictive approach is to allow
connections to your sshd only from a specific list of IP addresses (i.e., a
whitelist).

For instance, you could use something similar to the following PF rules:

table <ssh_allow> { 10.0.0.47, 10.0.0.98, 10.0.0.27 }
block from any to any port 22
pass from <ssh_allow> to any port 22

However, this is obviously of limited use if your users need to be able to
connect to their accounts when traveling.

190 | Chapter 6, Network Security

#65 Fool Remote Operating System Detection Software
HACK

Parsing logs and blocking an IP. The next approach is to parse your logs for
failed login attempts and automatically block a given IP address once it has
reached a threshold. If you go this route, make sure to whitelist any IP
addresses that you connect from regularly, to avoid being inadvertently
locked out if you mistype your password too many times.

Rate-limiting SYN packets. The last approach is to rate-limit SYN packets
going to the port on which your SSH daemon is listening. The effect of this
should be unnoticed by legitimate users, but it will delay an attacker that is
making many repeated connections because it allows only a certain number
of undelayed connections. For instance, PF lets you specify a rate for any
stateful rule. This one limits the connection rate to port 22 to three per
minute:

pass inet proto tcp from any to any port 22 \
keep state (max-src-conn-rate 3 / 60)

This will most likely cause the attacker to give up, because of the inordinate
amount of time that will be needed to successfully brute-force an account.

H A C K

#65
Fool Remote Operating System Detection SoftwareHack #65

Evade remote OS detection attempts by disguising your TCP/IP stack.

One method to thwart operating-system-detection attempts is to modify the
behavior of your system’s TCP/IP stack and make it emulate the behavior of
another operating system. This might sound difficult, but it can be done
fairly easily in Linux by patching your kernel with code available from the IP
Personality project (http://ippersonality.sourceforge.net). This code extends
the kernel’s built-in firewalling system, Netfilter [Hack #44], as well as its user-
space component, the iptables command.

This currently works for 2.4.x kernels only. However, this
kernel version is still in widespread use.

To set up IP Personality, download the package that corresponds to your ker-
nel. If you can’t find the correct one, visit the SourceForge patches page for
the project (http://sourceforge.net/tracker/?group_id=7557&atid=307557),
which usually has more recent kernel patches available.

To patch your kernel, unpack the IP Personality source distribution and go
to the directory containing your kernel source. Then run the patch
command:

cd /usr/src/linux
patch -p1 < \ ../ippersonality-20020819-2.4.19/patches/ippersonality-
20020819-linux-2.4.19.diff

Fool Remote Operating System Detection Software #65

Chapter 6, Network Security | 191

HACK

If you are using a patch downloaded from the patches page, just substitute
your patch command. To verify that the patch has been applied correctly,
run this command:

find ./ -name *.rej

If the patch was applied correctly, this command should not find any files.

Now that the kernel is patched, you will need to configure the kernel for IP
Personality support. As mentioned in “Lock Down Your Kernel with grsecu-
rity” [Hack #13], running make xconfig, make menuconfig, or even make config
while you are in the kernel source’s directory will allow you to configure
your kernel. Regardless of the method you choose, the menu options will
remain the same.

First, be sure that “Prompt for development and/or incomplete code/driv-
ers” is enabled under “Code maturity level options.” Under “Networking
Options,” find and enable the option for Netfilter Configuration.

Figure 6-1 shows the list displayed by make xconfig. Find the option labeled
IP Personality Support, and either select y to statically compile it into your
kernel or select m to create a dynamically loaded module.

After you have configured support for IP Personality, save your configura-
tion. Now, compile the kernel and modules and install them by running the
following commands:

make dep && make clean
make bzImage && make modules
cp arch/i386/boot/bzImage /boot/vmlinuz
make modules_install

Reboot with your new kernel. In addition to patching your kernel, you’ll
also need to patch the user-space portion of Netfilter, the iptables com-
mand. Go to the Netfilter web site (http://www.netfilter.org) and download
the version specified by the patch that came with your IP Personality pack-
age. For instance, the iptables patch included in ippersonality-20020819-2.
4.19.tar.gz is for Netfilter Version 1.2.2.

After downloading the proper version and unpacking it, you will need to
patch it with the patch included in the IP Personality package. Then, build
and install it in the normal way:

tar xfj iptables-1.2.2.tar.bz2
cd iptables-1.2.2
patch -p1 < \../ippersonality-20020819-2.4.19/patches/ippersonality-
20020427-iptables-\1.2.2.diff
patching file pers/Makefile
patching file pers/example.conf
patching file pers/libipt_PERS.c
patching file pers/pers.h

192 | Chapter 6, Network Security

#65 Fool Remote Operating System Detection Software
HACK

patching file pers/pers.l
patching file pers/pers.y
patching file pers/pers_asm.c
patching file pers/perscc.c
make KERNEL_DIR=/usr/src/linux && make install

This will install the modified iptables command, its supporting libraries,
and the manpage under the /usr/local hierarchy. If you would like to change
the default installation directories, you can edit the makefile and change the
values of the BINDIR, LIBDIR, MANDIR, and INCDIR macros. Be sure to set
KERNEL_DIR to the directory containing the kernel sources you built earlier.

If you are using Red Hat Linux, you can replace the iptables command that
is installed by changing the macros to these values:

LIBDIR:=/lib
BINDIR:=/sbin
MANDIR:=/usr/share/man

Figure 6-1. Enabling IP Personality support

Fool Remote Operating System Detection Software #65

Chapter 6, Network Security | 193

HACK

INCDIR:=/usr/include

In addition to running make install, you might want to create a directory
for the operating system personality configuration files. These files are
located in the /samples directory within the IP Personality distribution. For
example, you could create a directory called /etc/personalities and copy them
there.

Before setting up IP Personality, try running Nmap (http://www.insecure.org/
nmap/) against the machine to see which operating system it detects:

nmap -O colossus

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-12-12 18:36 MST
Interesting ports on colossus (192.168.0.64):
(The 1651 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
111/tcp open rpcbind
139/tcp open netbios-ssn
505/tcp open mailbox-lm
631/tcp open ipp
Device type: general purpose
Running: Linux 2.4.X|2.5.X
OS details: Linux Kernel 2.4.0 - 2.5.20
Uptime 3.095 days (since Tue Dec 9 16:19:55 2003)

Nmap run completed -- 1 IP address (1 host up) scanned in 7.375 seconds

If your machine has an IP address of 192.168.0.64 and you want it to pre-
tend that it’s running Mac OS 9, you can run iptables commands like these:

iptables -t mangle -A PREROUTING -d 192.168.0.64 -j PERS \
--tweak dst --local --conf /etc/personalities/macos9.conf
iptables -t mangle -A OUTPUT -s 192.168.0.64 -j PERS \
--tweak src --local --conf /etc/personalities/macos9.conf

Now, run Nmap again:

nmap -O colossus

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-12-12 18:47 MST
Interesting ports on colossus (192.168.0.64):
(The 1651 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
111/tcp open rpcbind
139/tcp open netbios-ssn
505/tcp open mailbox-lm
631/tcp open ipp
Device type: general purpose

194 | Chapter 6, Network Security

#66 Keep an Inventory of Your Network
HACK

Running: Apple Mac OS 9.X
OS details: Apple Mac OS 9 - 9.1
Uptime 3.095 days (since Tue Dec 9 16:19:55 2003)

Nmap run completed -- 1 IP address (1 host up) scanned in 5.274 seconds

You can, of course, emulate other operating systems that aren’t provided
with the IP Personality package. All you need is a copy of Nmap’s operating
system fingerprints file, nmap-os-fingerprints. You can then construct your
own IP Personality configuration file for any operating system Nmap knows
about.

H A C K

#66
Keep an Inventory of Your Network Hack #66

Use Nmap to keep track of the devices and services on your network.

As introduced in “Fool Remote Operating System Detection Software” [Hack

#65], Nmap (http://www.insecure.org/nmap/) is a free tool that can be used to
conduct various sorts of scans on networks. Normally, when people think of
Nmap, they assume it’s used to conduct some sort of nefarious network
reconnaissance in preparation for an attack. But as with all powerful tools,
Nmap can be used for far more than breaking into networks.

For example, it allows you to conduct simple TCP connect scans without
needing root privileges:

$ nmap rigel

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003-12-15 17:42 MST
Interesting ports on rigel (192.168.0.61):
(The 1595 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
7/tcp open echo
9/tcp open discard
13/tcp open daytime
19/tcp open chargen
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
25/tcp open smtp
37/tcp open time
79/tcp open finger
111/tcp open rpcbind
512/tcp open exec
513/tcp open login
514/tcp open shell
587/tcp open submission
4045/tcp open lockd
7100/tcp open font-service
32771/tcp open sometimes-rpc5
32772/tcp open sometimes-rpc7

Keep an Inventory of Your Network #66

Chapter 6, Network Security | 195

HACK

32773/tcp open sometimes-rpc9
32774/tcp open sometimes-rpc11
32775/tcp open sometimes-rpc13
32776/tcp open sometimes-rpc15
32777/tcp open sometimes-rpc17

Nmap run completed -- 1 IP address (1 host up) scanned in 75.992 seconds

This is tremendously useful for checking on the state of your own machines.
You could probably guess that this scan was performed on a Solaris
machine, and one that needs to have some services disabled at that.

Nmap can also scan ranges of IP addresses, indicated by either specifying the
range or using CIDR notation, as follows:

$ nmap 192.168.0.1-254
$ nmap 192.168.0.0/24

Nmap can provide much more information if you run it as root. When run
as root, it can use special packets to determine the operating system of the
remote machine by using the -O flag. Additionally, you can do half-open
TCP scanning by using the -sS flag. When doing a half-open scan, Nmap
sends a SYN packet to the remote host and waits to receive the ACK from it; if
it receives an ACK, it knows that the port is open. This is different from a nor-
mal three-way TCP handshake, where the client sends a SYN packet and then
sends an ACK back to the server once it has received the initial server ACK.
Attackers typically use this option to avoid having their scans logged on the
remote machine.

Try it out for yourself:

nmap -sS -O rigel

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on rigel.nnc (192.168.0.61):
(The 1578 ports scanned but not shown below are in state: filtered)
Port State Service
7/tcp open echo
9/tcp open discard
13/tcp open daytime
19/tcp open chargen
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
25/tcp open smtp
37/tcp open time
79/tcp open finger
111/tcp open sunrpc
512/tcp open exec
513/tcp open login
514/tcp open shell
587/tcp open submission

196 | Chapter 6, Network Security

#66 Keep an Inventory of Your Network
HACK

7100/tcp open font-service
32771/tcp open sometimes-rpc5
32772/tcp open sometimes-rpc7
32773/tcp open sometimes-rpc9
32774/tcp open sometimes-rpc11
32775/tcp open sometimes-rpc13
32776/tcp open sometimes-rpc15
32777/tcp open sometimes-rpc17
Remote operating system guess: Solaris 9 Beta through Release on SPARC
Uptime 44.051 days (since Sat Nov 1 16:41:50 2003)

Nmap run completed -- 1 IP address (1 host up) scanned in 166 seconds

With OS detection enabled, Nmap has confirmed that the operating system
is Solaris, but now you also know that it’s probably Version 9 running on a
SPARC processor.

One powerful feature you can use to help keep track of your network is
Nmap’s XML output capabilities, activated with the -oX command-line
switch:

nmap -sS -O -oX scandata.xml rigel

This is especially useful when scanning a range of IP addresses or your
whole network, because you can put all the information gathered from the
scan into a single XML file that can be parsed and inserted into a database.
Here’s what an XML entry for an open port looks like:

<port protocol="tcp" portid="22">
<state state="open" />
<service name="ssh" method="table" conf="3" />
</port>

This is especially powerful when combined with the Nmap::Parser Perl mod-
ule (http://npx.sourceforge.net), which allows you to read Nmap’s XML out-
put. When paired with Perl’s DBI for database access, you have the makings
of a tool that can easily generate a database of network devices. Parsing an
Nmap XML file is as easy as this:

use Nmap::Parser;
my $np = new Nmap::Parser;
my $file_xml = "an_nmap_xml_file.xml"
$np->parsefile($file_xml);

Then, all you need to do is call the parser object’s accessor methods to get at
the data.

Nmap is a powerful tool. By using its XML output capabilities, a little bit of
scripting, and a database, you can create an even more powerful tool that
can monitor your network for unauthorized services and machines.

Scan Your Network for Vulnerabilities #67

Chapter 6, Network Security | 197

HACK

H A C K

#67
Scan Your Network for Vulnerabilities Hack #67

Use Nessus to quickly and easily scan your network for services that are
vulnerable to attack.

As a network administrator, you need to know not only which hosts are on
your network and what services they are running, but also if those services
are vulnerable to exploits. While a port scanner can show you what
machines and ports are reachable on your network, a security scanner such
as Nessus (http://www.nessus.org) can tell you if those machines are vulnera-
ble to known exploits.

Unlike a regular port scanner, a security scanner first locates listening ser-
vices and then connects to those services and attempts to execute exploits
against them. It then records whether the exploits were successful and con-
tinues scanning until all available services have been tested. The key benefit
here is that you’ll know at a glance how your systems perform against
known exploits, and thus whether they truly are vulnerable to attack.

With the release of Version 3, Nessus has become a closed-source project.
Because of this, the current release and future versions are available only as
packages, instead of as source code. However, the old Version 2.8.8 is still
available in source form. If you want to use Nessus 2.x, read on. Otherwise,
skip to the “Nessus 3.x” section.

Nessus 2.x
If you want to use Version 2.8.8, download the nessus-installer-2.2.8.sh
script from the Nessus download page (http://www.nessus.org/download/
index.php) and execute it. You will be asked where you want to install Nes-
sus (the default is /usr/local) and prompted for your root password. The
script will then create a temporary SUID shell that is accessible only through
your user account. This might sound alarming at first, but it tells you the
filename for the shell, so you can verify that it is indeed accessible only to
you and make sure that it is deleted when the installation is complete.

After the installation has finished, you’ll need to create a Nessus user (not
the same thing as a Unix account). Since Nessus uses a client/server model,
you’ll also need to generate a certificate so that all communications can be
encrypted.

To create a new Nessus user, run nessus-adduser. You’ll be prompted for a
name and a password. To create a certificate, you can run nessus-mkcert, or,
if you have your own Certificate Authority (CA) [Hack #69], you can use that to
create a certificate for Nessus to use. If you do use your own CA, you’ll need

198 | Chapter 6, Network Security

#67 Scan Your Network for Vulnerabilities
HACK

to edit nessus.conf to tell it where to look for the CA certificate and the cer-
tificate and key that you generated.

The configuration file usually lives in /etc or /usr/local/etc. To tell Nessus the
location of its certificates, add lines similar to the following:

cert_file=/etc/ssl/nessus.key
key_file=/etc/ssl/nessus.crt
ca_file=/etc/ssl/ca.crt

If you generated a certificate/key pair and used a password, you can specify
that password here as well:

pem_password=mypassword

After you’ve done that, you can start the Nessus daemon. This is the busi-
ness end of Nessus and is what actually performs the scans against the hosts
on your network.

To start it, run this command:

/usr/local/sbin/nessusd -D

Now, you can start the Nessus client and connect to the server. Several Nes-
sus clients are available, including a command-line interface, an X11 appli-
cation, and a Windows client. The figures in this hack show the X11
interface.

Start the client by simply typing nessus. You should see a window like the
one shown in Figure 6-2.

Fill in the information for the user that you created and click the Log In but-
ton. You’ll be presented with a dialog that allows you to verify the informa-
tion contained in the server’s certificate.

To select which types of vulnerabilities to scan for, click on the Plugins tab
to display the screen shown in Figure 6-3.

In the top pane, you can enable or disable types of scans, and in the bottom
pane, you can disable individual vulnerability checks that belong to the cate-
gory selected in the top pane.

Scans listed in the bottom pane that have an exclamation
icon next to them will potentially crash the server against
which they’re run. If you want to enable all scans except for
these, you can click the “Enable all but dangerous plugins”
button. If you’re running Nessus on a noncritical machine,
you can probably leave these scans on, but you have been
warned!

Scan Your Network for Vulnerabilities #67

Chapter 6, Network Security | 199

HACK

You’ll probably want to disable several types of scans, unless you need to
scan a machine or group of machines that run a wide variety of services; oth-
erwise, you’ll waste time having Nessus scan for services that you aren’t run-
ning. For instance, if you want to scan a Solaris system, you might disable
CGI abuses, CISCO, Windows, Peer-To-Peer File Sharing, Backdoors, Fire-
walls, Windows User Management, and Netware plug-ins.

Figure 6-2. Nessus 2.x client setup

200 | Chapter 6, Network Security

#67 Scan Your Network for Vulnerabilities
HACK

To enable Nessus to more thoroughly test your services, you can supply it
with login information for various services. This way, it can actually log into
the services that it is testing and have access just like any normal user. You
can tell Nessus about the accounts to use with the Prefs tab, shown in
Figure 6-4.

In addition, you can tell Nessus to attempt brute-force logins to the services
it is scanning. This can be a good test not only of the services themselves,
but also of your intrusion detection system (IDS) [Hack #106] and log-monitor-
ing infrastructure.

Figure 6-3. Nessus 2.x plug-in selection

Scan Your Network for Vulnerabilities #67

Chapter 6, Network Security | 201

HACK

The “Scan options” tab lets you configure how Nessus conducts its port
scans. You can leave most of these settings at their default values, unless you
are also checking to see whether Nessus can evade detection by the hosts
that you are scanning. For instance, Nessus is configured by default to per-
form full TCP connect scans and to ping the remote host that it is scanning.
You can change this behavior by going to the “Scan options” tab, enabling
“SYN scans” instead of “TCP connect,” and disabling the ping. To specify
which hosts you want to scan, use the “Target selection” tab.

Figure 6-4. Nessus 2.x’s Prefs tab

202 | Chapter 6, Network Security

#67 Scan Your Network for Vulnerabilities
HACK

After you’ve made your selections, try scanning a host by clicking “Start the
scan” at the bottom of the window. You should now see a window similar
to Figure 6-5. In this case, Nessus is performing a scan against a Solaris
machine.

Figure 6-6 shows the results of the scan.

Figure 6-5. Performing a vulnerability scan in Nessus 2.x

Figure 6-6. The vulnerability scan results

Scan Your Network for Vulnerabilities #67

Chapter 6, Network Security | 203

HACK

If you scanned multiple subnets, you can select those in the Subnet pane.
Any hosts that are in the selected subnet will then appear in the Host pane.
Similarly, when you select a host, the list of open ports on it will appear in
the Port pane. You can select these to view the warnings, notes, and possi-
ble security holes that were found for the selected port.

You can view the information that Nessus provides for these by clicking on
them in the Severity pane. Don’t be too alarmed by most of Nessus’s secu-
rity notes and warnings; they are designed mainly to let you know what ser-
vices you are running and to tell you if those services present potential
vulnerabilities. Security holes are far more serious and should be investi-
gated.

To save the report that you are viewing, click the “Save report” button. Nes-
sus will let you save reports in a variety of formats. If you want to view the
report in Nessus again at a later date, use Nessus’s own report format
(NBE). To view reports in this format, click the “Load report” button in the
main Nessus client window. Additionally, you can save reports in XML,
HTML, ASCII, and even LaTeX format.

Nessus 3.x
As mentioned at the beginning of this hack, Nessus 3.0 and later are avail-
able only in package form for Linux, FreeBSD, Solaris, and Windows.
Download the package appropriate for your system and install it. In order to
do this, you’ll have to provide some personal information. You’ll also
receive a registration code that can be used to download the latest Nessus
plug-ins.

Nessus will install certificates as part of the installation process, so you no
longer need to run nessus-mkcert. You can also choose to install your own
certificates using the same method used for Nessus 2.x.

Once you’ve installed the package, you’ll need to create a user in the Nessus
system (unless you’re using Windows) by running nessus-adduser, which
will prompt you for a name and a password. Next, download the plug-ins.
Run nessus-fetch, specifying your registration code:

nessus-fetch --register XXXX-XXXX-XXXX-XXXX-XXXX
Your activation code has been registered properly - thank you.
Now fetching the newest plugin set from plugins.nessus.org...

Your Nessus installation is now up-to-date.
If auto_update is set to 'yes' in nessusd.conf, Nessus will
update the plugins by itself.

204 | Chapter 6, Network Security

#67 Scan Your Network for Vulnerabilities
HACK

As mentioned in the output, putting auto_update=yes in your nessusd.conf
file instructs Nessus to automatically update its plug-ins, but it should
already be set up to update its plug-ins every 24 hours.

Another key difference between Nessus 2.x and 3.x is that the latter doesn’t
come with a GUI client (the exception to this is the Windows package). For
that, you’ll need to go back to the Nessus site, download the NessusClient
package, and install it.

After you’ve installed the NessusClient package, you can launch it by sim-
ply typing NessusClient. Then, open the File menu and click Connect. You
should be presented with a dialog like the one shown in Figure 6-7, where
you can choose what server to connect to and specify your username and
password.

After you’ve connected to the Nessus server, you can configure the global
settings that will serve as a basis for all of the scans that you conduct. If you
want to limit the ports that are scanned on each host, whether to do TCP
connect() scanning or SYN scanning, or any other general scanning engine
parameters, click the General icon in the Options tab, as shown in
Figure 6-8.

Enable or disable plug-ins by clicking the Plugins icon. As shown in
Figure 6-9, Nessus 3 organizes the plug-ins into a categorized tree view,
unlike previous versions.

Figure 6-7. Logging in with NessusClient

Scan Your Network for Vulnerabilities #67

Chapter 6, Network Security | 205

HACK

Figure 6-8. Configuring general settings

Figure 6-9. Selecting plug-ins

206 | Chapter 6, Network Security

#67 Scan Your Network for Vulnerabilities
HACK

You can disable whole categories of plug-ins by unchecking them. Likewise,
you can disable an individual plug-in by using the checkbox next to it.

As in previous versions of Nessus, plug-ins with an exclama-
tion icon next to them are likely to disrupt service on the
device they’re scanning.

After you’re done configuring Nessus’s global settings, the easiest way to
start scanning your network is to use the Scan Assistant, which is accessible
under the File menu. This is where the new Nessus client departs greatly
from the 2.x version. NessusClient uses the concept of tasks and scopes. A
task is something like “Scan the local subnet” or “Scan a single host.” When
a task is being performed, it has a scope that defines what systems are
scanned in order to complete the task. The Scan Assistant prompts you to
create a task and then to define a scope. Once that’s been done, you can exe-
cute the scan.

After the scan has completed, you’ll see the task and scope that the Scan
Assistant created in the left pane of NessusClient. Here, you can also view
reports of the current and past scans, as shown in Figure 6-10, in just the
same way as in previous versions of Nessus.

Figure 6-10. Viewing reports

Keep Server Clocks Synchronized #68

Chapter 6, Network Security | 207

HACK

If you want to perform the scan again, simply open the Scope menu and
click Execute. You can also modify the scan settings for an individual scope
by selecting it and then changing any settings, just as you would for the Glo-
bal Settings.

While Nmap [Hack #66] is probably the champion of network reconnaissance,
Nessus goes even further to demonstrate whether your own services are vul-
nerable to known attacks. Of course, new exploits surface all the time, so
it’s important to keep your Nessus plug-ins up-to-date. Using Nessus, you
can protect your own services by attempting to break into them before the
bad boys do.

H A C K

#68
Keep Server Clocks Synchronized Hack #68

Make log analysis easier by keeping the time on your systems in sync.

Correlating events that have occurred on multiple servers can be a chore if
there are discrepancies between the machines’ clocks. Keeping the clocks on
your systems synchronized can save valuable time when analyzing router,
firewall, and host logs after a compromise, or when debugging everyday net-
working issues. Luckily, doing this isn’t hard, with a little help from the Net-
work Time Protocol (NTP).

NTP is a peer-to-peer protocol designed to provide subsecond precision and
accuracy between host clocks. To get it going, all you need is the NTP distri-
bution (http://www.ntp.org/downloads.html), which contains a daemon for
performing clock synchronization, plus other supporting tools. Though
NTP might not be installed on your system, it usually comes with the vari-
ous Linux distributions, FreeBSD, and OpenBSD as an optional package or
port, so poke around your installation media or the ports tree if it’s not
already installed. If it isn’t available with your OS of choice, you can still
download and compile it yourself.

Configuring ntpd as a client is a fairly simple process, but first you’ll need to
find out whether you have a local time server, either on your network or at
your ISP. If you don’t, you’ll have to locate an NTP server that will let you
query from it. You’ll want to find servers that are as geographically close to
you as possible. Don’t worry, though; a list of all the publicly accessible time
servers is available at http://www.eecis.udel.edu/~mills/ntp/servers.html.

One new term you will encounter when looking for a server is stratum (e.g.,
stratum 1 or stratum 2). This refers to the hierarchy of the server within the
public NTP infrastructure. A stratum 1 server will usually have a direct time-
sync source, such as a GPS or atomic clock signal that provides updates to
the daemon running on that machine. Stratum 2 servers obtain their time

208 | Chapter 6, Network Security

#68 Keep Server Clocks Synchronized
HACK

sync from stratum 1 servers. Using stratum 2 servers helps to reduce the
load on stratum 1 servers, and they’re accurate enough for this hack’s
purposes.

With this in mind, let’s look for some NTP servers that we can use (using
more than one is generally a good idea, in case one fails). I live in Colorado,
so after following the link to the stratum 2 server list (http://www.eecis.udel.
edu/~mills/ntp/clock2a.html), I found two entries:

US CO ntp1.linuxmedialabs.com
Location: Linux Media Labs LLC, Colorado Springs, CO
Service Area: US
Synchronization: NTP Secondary (stratum 2), i686/Linux
Access Policy: open access
Contact: ntp@linuxmedialabs.com
Note: ntp1 is an alias and the IP address may change, please use DNS

US CO ntp1.tummy.com
Location: tummy.com, ltd., Fort Collins, CO
Service Area: US
Synchronization: NTP Secondary (stratum 2), i686/Linux
Access Policy: open access.
Contact: ntp@tummy.com
Note: ntp1 is an alias and the IP address may change, please use DNS.

Because they’re both listed as open access, I can just add them to my /etc/
ntp.conf:

server ntp1.linuxmedialabs.com
server ntp1.tummy.com

Alternatively, you can simplify your configuration by using pool.ntp.org,
which is a round-robin DNS scheme to resolve to multiple time servers.
You’ll find these servers on the published lists of NTP servers, but they have
also elected to become a part of the pool. For instance:

server 0.pool.ntp.org
server 1.pool.ntp.org
server 2.pool.ntp.org

The following zones resolve to a pool of NTP servers that are located within
a given geographical region: asia.pool.ntp.org, europe.pool.ntp.org, north-
america.pool.ntp.org, oceania.pool.ntp.org, and south-america.pool.ntp.
org. Using these will cut down on Internet traffic and latency.

There are also zones that resolve to NTP servers in specific countries (e.g.,
us.pool.ntp.org); you can get a complete list of them at http://ntp.isc.org/
bin/view/Servers/NTPPoolServers.

In addition, ntpd can automatically correct for the specific clock frequency
drift of your machine. It does this by learning the average drift over time as it

Create Your Own Certificate Authority #69

Chapter 6, Network Security | 209

HACK

receives sync messages. Just add a line like this to your ntp.conf file to enable
this feature:

driftfile /etc/ntp.drift

Of course, if you’re keeping all of your ntpd configuration files in /etc/ntp,
you’ll want to use a directory similar to /etc/ntp/ntp.drift instead.

That’s it. Simply add ntpd to your startup scripts, start it up, and you’re
ready to go.

H A C K

#69
Create Your Own Certificate Authority Hack #69

Sign your own certificates to use in securing your network.

SSL certificates are usually thought of as being used for secure communica-
tions over the HTTP protocol. However, they are also useful in providing
both a means for authentication and a means for initiating key exchange for
a myriad of other services where encryption is desired, such as POP and
IMAP [Hack #54], SMTP [Hack #55], IPsec [Hack #93], and, of course, SSL tunnels
[Hack #100]. To make the best use of SSL, you will need to properly manage
your own certificates.

If an SSL client needs to verify the authenticity of an SSL server, the cert
used by the server needs to be signed by a Certificate Authority (CA) that is
already trusted by the client. Well-known CAs (such as Thawte and Veri-
Sign) exist to serve as authoritative, trusted third parties for authentication.
They are in the business of signing SSL certificates that are used on sites
dealing with sensitive information (such as account numbers or passwords).

If a trusted authority has signed a site’s SSL certificate, presumably it is pos-
sible to verify the identity of a server supplying that cert’s credentials. How-
ever, for anything other than e-commerce applications, a self-signed
certificate is usually sufficient for gaining all of the security advantages that
SSL provides. Of course, an authority that the client recognizes must sign
even a self-signed cert.

OpenSSL, a free SSL implementation, is perfectly capable of generating
everything you need to run your own Certificate Authority. The CA.pl util-
ity makes the process very simple.

In these examples, you’ll need to type anything in boldface,
and enter passwords wherever appropriate (they don’t echo
to the screen).

210 | Chapter 6, Network Security

#69 Create Your Own Certificate Authority
HACK

Creating the CA
To establish your new Certificate Authority, first change to the /misc
directory under wherever OpenSSL is installed (/System/Library/OpenSSL on
Mac OS X; /usr/ssl or /usr/local/ssl on most Linux systems). Then, use these
commands:

$./CA.pl -newca
CA certificate filename (or enter to create)

Making CA certificate ...
Generating a 1024 bit RSA private key
..........++++++
.....................++++++
writing new private key to './demoCA/private/cakey.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:US
State or Province Name (full name) []:Colorado
Locality Name (eg, city) []:Denver
Organization Name (eg, company) []:NonExistant Enterprises
Organizational Unit Name (eg, section) []:IT Services
Common Name (eg, fully qualified host name) []:ca.nonexistantdomain.com
Email Address []:certadmin@nonexistantdomain.com

Note that you don’t necessarily need root permissions, but you will need
write permissions on the current directory.

Congratulations! You’re the proud owner of your very own Certificate
Authority. Take a look around:

$ ls -l demoCA/
total 16
-rw-r--r-- 1 andrew andrew 1399 3 Dec 19:52 cacert.pem
drwxr-xr-x 2 andrew andrew 68 3 Dec 19:49 certs
drwxr-xr-x 2 andrew andrew 68 3 Dec 19:49 crl
-rw-r--r-- 1 andrew andrew 0 3 Dec 19:49 index.txt
drwxr-xr-x 2 andrew andrew 68 3 Dec 19:49 newcerts
drwxr-xr-x 3 andrew andrew 102 3 Dec 19:49 private
-rw-r--r-- 1 andrew andrew 3 3 Dec 19:49 serial

The public key for your new CA is contained in cacert.pem, and the private
key is in private/cakey.pem. You can now use this private key to sign other
SSL certs.

Create Your Own Certificate Authority #69

Chapter 6, Network Security | 211

HACK

By default, CA.pl creates keys that are good for only one year. To change
this behavior, edit CA.pl and change the line that reads:

$DAYS="-days 365";

Alternatively, you can forego CA.pl altogether and generate the public and
private keys manually with a command like this:

$ openssl req -new -x509 -keyout cakey.pem -out cakey.pem -days 3650

This creates a key pair that is good for the next 10 years (to change that
period, use a different argument to the -days switch). Additionally, you
should change the private key’s permissions to 600, to ensure that it is pro-
tected from being read by anyone.

Signing Certificates
So far, you’ve only created the Certificate Authority. To actually create keys
that you can use with your services, you need to create a certificate-signing
request and a key. Again, this can be done easily with CA.pl. First, create a
certificate-signing request:

$./CA.pl -newreq-nodes
Generating a 1024 bit RSA private key
...++++++
...++++++
writing new private key to 'newreq.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Colorado
Locality Name (eg, city) []:Denver
Organization Name (eg, company) [Internet Widgits Pty Ltd]:NonExistant
Enterprises
Organizational Unit Name (eg, section) []:IT Services
Common Name (eg, YOUR name) []:mail.nonexistantdomain.com
Email Address []:postmaster@nonexistantdomain.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:NonExistant Enterprises
Request (and private key) is in newreq.pem

If you want to encrypt the private key, you can use the -newreq switch in
place of -newreq-nodes. However, if you encrypt the private key, you will
have to enter the password for it each time the service that uses it is started.

212 | Chapter 6, Network Security

#69 Create Your Own Certificate Authority
HACK

If you decide not to use an encrypted private key, be extremely cautious
with your private key, as anyone who can obtain a copy of it can imperson-
ate your server.

Now, to actually sign the request and generate the signed certificate, issue
this command:

$./CA.pl -sign
Using configuration from /System/Library/OpenSSL/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem:
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number: 1 (0x1)
 Validity
 Not Before: Dec 3 09:05:08 2003 GMT
 Not After : Dec 3 09:05:08 2004 GMT
 Subject:
 countryName = US
 stateOrProvinceName = Colorado
 localityName = Denver
 organizationName = NonExistant Enterprises
 organizationalUnitName = IT Services
 commonName = mail.nonexistantdomain.com
 emailAddress = postmaster@nonexistantdomain.com
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 94:0F:E9:F5:22:40:2C:71:D0:A7:5C:65:02:3E:BC:D8:DB:10:BD:88
 X509v3 Authority Key Identifier:
 keyid:7E:AF:2D:A4:39:37:F5:36:AE:71:2E:09:0E:49:23:70:61:28:5F:
4A
 DirName:/C=US/ST=Colorado/L=Denver/O=NonExistant Enterprises/
OU=IT Services/
CN=Certificate Administration/emailAddress=certadmin@nonexistantdomain.com
 serial:00

Certificate is to be certified until Dec 7 09:05:08 2004 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]:y
Write out database with 1 new entries
Data Base Updated
Signed certificate is in newcert.pem

Now you can set up keys in this manner for each server that needs to pro-
vide an SSL-encrypted service. It is easier to do this if you designate a single
workstation to maintain the CA and all the files associated with it. Don’t
forget to distribute your CA cert [Hack #70] to programs that need to trust it.

Distribute Your CA to Clients #70

Chapter 6, Network Security | 213

HACK

H A C K

#70
Distribute Your CA to Clients Hack #70

Be sure all of your clients trust your new Certificate Authority.

Once you have created a Certificate Authority (CA) [Hack #69], any program
that trusts your CA will trust any certificates that are signed by your CA. To
establish this trust, you need to distribute your CA’s certificate to each pro-
gram that needs to trust it. This could include email programs, IP security
(IPsec) installations, or web browsers.

Because SSL uses public-key cryptography, there is no need to keep the cer-
tificate a secret. You can simply install it on a web server and download it to
your clients over plain old HTTP. While the instructions for installing a CA
cert are different for every program, this hack will show you a quick and
easy way to install your CA on web browsers.

Browsers accept two possible formats for new CA certs: pem and der. You
can generate a der from your existing pem with a single openssl command:

$ openssl x509 -in demoCA/cacert.pem -outform DER -out cacert.der

Then add the following line to the conf/mime.types file in your Apache
installation:

application/x-x509-ca-cert der pem crt

Restart Apache for the change to take effect. You should now be able to
place both the cacert.der and demoCA/cacert.pem files anywhere on your
web server and have clients install the new cert by simply clicking on either
link.

Early versions of Netscape expected the pem format, but recent versions
accept either. Internet Explorer is just the opposite (early IE accepted only
the der format, but recent versions take both). Other browsers generally
accept either format.

When downloading the new Certificate Authority, your browser will ask if
you’d like to continue. Accept the certificate, and that’s all there is to it.
Now, SSL certs that are signed by your CA will be accepted without warn-
ing the user.

Keep in mind that Certificate Authorities aren’t to be taken lightly. If you
accept a new CA in your browser, you had better trust it completely; a mis-
chievous CA manager could sign all sorts of certs that you should never
trust, but your browser would never complain (since you claimed to trust
the CA when you imported it). Be very careful about whom you extend your
trust to when using SSL-enabled browsers. It’s worth looking around in the
CA cache that ships with your browser to see exactly who you trust by
default. For example, did you know that AOL/Time Warner has its own

214 | Chapter 6, Network Security

#71 Back Up and Restore a Certificate Authority with Certificate Services
HACK

CA? How about GTE? Or Visa? CA certs for all of these entities (and many
others) ship with Netscape 7.0 for Linux, and they are all trusted authorities
for web sites, email, and application add-ons by default. Keep this in mind
when browsing to SSL-enabled sites: if any of the default authorities have
signed online content, your browser will trust it without requiring operator
acknowledgment.

If you value your browser’s security (and, by extension, the security of your
client machine), make it a point to review your trusted CA relationships.

—Rob Flickenger

H A C K

#71
Back Up and Restore a Certificate Authority with
Certificate Services Hack #71

Backing up your local Certificate Authority is essential, because it forms the
foundation for public-key cryptography for your organization.

If you’re thinking of using IPsec in an enterprise environment to encrypt vir-
tual private network (VPN) communications for your remote users, or if
you’re considering securing email communications in your enterprise by
encrypting messages and signing them digitally, chances are you’ve thought
of deploying your own local Certificate Authority by using the Certificate
Services component of Windows 2000 and Windows Server 2003.

The advantage of doing this using Certificate Services, instead of letting a
public third-party organization issue and manage your CA, is that it costs
nothing; you can issue, manage, renew, and revoke digital certificates for
users throughout your enterprise for free. However, the hidden cost of this
approach is that you need to know what you’re doing. What if something
goes wrong with the server that functions as your root CA? Proper backups
are the key, but knowing how to restore in different situations is even more
important.

At the heart of your certificate system is the root CA, which authorizes and
validates all digital certificates issued by your enterprise. A small or mid-
sized company will typically have only one CA, which functions as the root
CA and issues certificates for all users and systems on the network. A large
enterprise might find that this single-CA solution doesn’t scale well enough
and instead might choose to deploy a hierarchy of CAs, with a single root
CA at the top and one or more subordinate CAs underneath.

In a CA hierarchy, the job of the root CA is simpler: to issue certificates for
subordinate CAs, which then issue other certificates directly to users. In
either case, the key to holding the whole situation together is your root CA.
If it goes missing or becomes corrupt, all the certificates issued by the

Back Up and Restore a Certificate Authority with Certificate Services #71

Chapter 6, Network Security | 215

HACK

hierarchy become invalid, because they can’t be validated back to the root.
So, protecting your root CA is protecting the heart of your network’s whole
system of encrypted communication and certificate-based authentication.

Backing Up a CA
The simplest way to back up your root CA is the most straightforward: sim-
ply use the Backup utility (System Tools ➝ Accessories) and select the
option to back up the System State of the machine. This will back up every-
thing on the machine that is critical for restoring it, in case a disaster occurs
and your root CA server is toast. Then, if you ever need to rebuild your
server and restore the System State information from tape, your new server
will become the root CA for your enterprise, and all the certificates that were
previously issued by your old machine will still be valid.

To be safe, Microsoft generally recommends that you restore your root CA
on a machine with a hardware setup that is identical to your old machine.
But the critical issue here is that the disk layout must be similar to the lay-
out of the old machine, especially if you stored your certificate database and
log files in a nonstandard location (by default, they are located in the
%SystemRoot%\system32\CertLog folder, but you can change this location
when you install Certificate Services).

You also have to make sure your new server has the same name as the old
machine, as the name of a CA can’t be changed after Certificate Services is
installed. Because the name of the machine is included within the root CA’s
own certificate, changing its name would cause the whole certification-
validation process to fail (for a similar reason, you can’t change the domain
membership of a CA either).

However, System State backups are useful only for recovering from a com-
plete failure of your server, and other things might go wrong with your root
CA, such as corruption of the certificate database or certificate log files,
some unknown problem that prevents Certificate Services from starting and
requires you to reinstall this service, or the need to move your root CA to a
different machine on your network (something you might not have
considered).

To prepare for the eventuality of recovering a still-functioning but cor-
rupted root CA or moving the root CA role to another server, you need to
perform a different kind of backup, one that backs up only what’s essential
for the machine to function in that role. Fortunately, Microsoft has made
this easy by providing a Certification Authority Backup Wizard. Let’s see
how this wizard works and what it does.

216 | Chapter 6, Network Security

#71 Back Up and Restore a Certificate Authority with Certificate Services
HACK

The Certification Authority Backup Wizard
The Certification Authority Backup Wizard facilitates backing up key data
found on your root CA, including the server’s own digital certificate (called
a CA certificate), its private key (used for generating digital signatures and
decrypting encrypted information), the database and associated log files
containing certificates previously issued by the server, and the queue of
pending certificate requests waiting to be processed by the machine. This
information is sufficient to restore your root CA if it becomes corrupted and
Certificate Services stops working. As you’ll soon see, however, there’s one
additional piece of information you need to restore this data to a different
machine.

To start the Certification Authority Backup Wizard, open the Certification
Authority console under Administrative Tools. Then, right-click on the node
that represents your root CA (or the subordinate CA you want to back up in
a distributed enterprise scenario) and select All Tasks ➝ Backup CA to start
the wizard. The main screen of the wizard offers several choices, as shown in
Figure 6-11.

The first time you back up your CA using this method, be sure to at least
select the option to back up the private key and CA certificate for your CA.
This will ensure that you can at least restore your CA in the event of an
emergency. However, if you do only this, you will still have to reissue

Figure 6-11. Backing up key data for a CA

Back Up and Restore a Certificate Authority with Certificate Services #71

Chapter 6, Network Security | 217

HACK

certificates to users. Therefore, in addition to backing up the private key and
CA certificate, it’s a good idea to also include in your backup the issued cer-
tificate log and pending certificate request queue for your server (the “Certif-
icate database and certificate database log” option), which contain
information about all certificates already issued by your CA and any pend-
ing requests from clients. When you choose this option in the Certification
Authority Backup Wizard screen (shown in Figure 6-11), you also have the
option to perform an incremental backup of your CA, which makes a
backup of only those changes to the certificate database made since your last
full backup.

This is trickier than it looks, so let’s look deeper at the results of the backup
process. If you choose only the first option, to back up the private key and
CA certificate, and specify a folder such as C:\certback as the target for your
backup, the result of the backup will be a file named CA_Name.p12, where
CA_Name is the name you specified for your CA when you installed Certifi-
cate Services on the machine (the .p12 file extension means the file uses
standard PKCS #12 cryptographic syntax). Since you are required to specify
a password later in the wizard, this backup file is itself secured by being
password-protected. Best practice here is to choose a complex, difficult pass-
word to protect your backup, but make sure you don’t forget the password;
otherwise, you won’t be able to restore your root CA later.

If you choose the other option, to back up the issued certificate log and
pending certificate request queue, a subfolder named Database will be cre-
ated in your certback folder. Inside this Database folder, copies of the certifi-
cate database files and certificate database log files for your CA will be
created. The log files are basically transaction files that record changes made
and pending to the database.

Now, let’s say you backed up everything—private key, CA certificate, certifi-
cate log, and queue—on Monday, but on Thursday you processed a lot of
certificate requests from users and now you need to update the backup.
There are two ways you can do this. First, you can simply back up every-
thing again to a new (empty) folder and then discard your old backup—nice
and simple.

The other way (the way recommended by Microsoft) is to make an incre-
mental backup of your certificate log and queue. Now, if you try to save
your incremental backup in the certback folder, you’ll get an error saying
that you can make backups only to an empty folder. In this case, you might
then create a subfolder under certback—perhaps a folder such as certback\
17Nov03, which indicates the date you made your incremental backup—
and then back up to this folder instead of certback.

218 | Chapter 6, Network Security

#71 Back Up and Restore a Certificate Authority with Certificate Services
HACK

The result will be the creation of another folder named DataBase, this one
located at certback\17Nov03\DataBase. Within this folder, you’ll find trans-
action logs but no database. Then, the following week, you can perform an
incremental backup to a new folder named certback\24Nov03, and so on.

Now, should you ever need to restore your CA from backup, you’ll have to
restore the full backup first, followed by all your incremental backups, in
order. That’s a lot of work. See why you might want to just perform a full
backup every time instead?

By the way, if you’re wondering about the grayed-out “Configuration infor-
mation” option in Figure 6-11, that option is used only for backing up a
standalone CA (i.e., a CA installed on a standalone server in a workgroup
environment). If you’re working in an Active Directory environment (which
is more likely), the configuration information for your CA is stored in Active
Directory and therefore doesn’t need to be backed up separately like this.
The nice thing in Windows Server 2003 is that this option is not even visible
in the wizard when you’re backing up an enterprise CA (i.e., a CA installed
on a domain controller or member server in an Active Directory environ-
ment).

Restoring a CA to a Working Server
If your root CA becomes corrupt or Certificate Services fails to start but your
server is otherwise working fine, you can use your previously created backup
to restore the private key, root CA, certificate database, and transaction logs
to their most recent working state. Just start the Certification Authority con-
sole in Administrative Tools, right-click on the root CA node, and select
Restore CA to open the Certification Authority Restore Wizard, which is
basically a mirror image of the Backup Wizard.

If Certificate Services is running, it will be stopped temporarily to continue
the restore. Select which components you want to restore, browse to locate
the .p12 backup file created earlier, and enter your password to begin the
restore process. Once the restore is finished, Certificate Services will restart
and you should have a working CA again for your organization.

What if it still doesn’t work? In that case, you might have a corrupt meta-
base. Internet Information Services (IIS) is a supporting component for the
CA web enrollment portion of Certificate Services, and if the IIS metabase
becomes corrupt, your CA won’t be able to process CA enrollment requests.
The solution, once you’ve restored the CA, is to restore the metabase as
well. Once the metabase has been restored, you should be able to load the
Certificate Services web pages and process certificate requests again.

Back Up and Restore a Certificate Authority with Certificate Services #71

Chapter 6, Network Security | 219

HACK

If your root CA still doesn’t work, your only solution might be to rebuild the
machine from scratch and restore System State from tape backup media.
This is usually a time-consuming process, but if your server is running Win-
dows Server 2003 you might be able to speed it up by using that platform’s
new Automated System Recovery feature.

Restoring a CA to a Different Server
While root CAs are intended to last decades for large organizations, the
actual hardware platforms they run on become obsolete in time spans much
shorter than the projected lifetime of the CA. As a result, you might some-
day find yourself wanting to move the role of root CA from an old machine
to a more powerful new one. Once you’ve deployed a public-key infrastruc-
ture (PKI) within your organization and started issuing certificates to users
for encrypted messaging and secure communications, users become depen-
dent on the transparency of the whole process from their own point of view.
The last thing you want to do is build a nice, functional PKI system for your
network and have to tear it all down someday and build another, all because
you have to change which server hosts the role of root CA.

Leaving aside the problem of upgrading the operating system itself (who
knows what version of Windows we’ll be running 10 years from now?), here
we’ll look at how to move the root CA role from one server to another, a
process usually called “upgrading” your CA.

First, make a full backup of the private key, CA certificate, certificate data-
base, and transaction logs by using the wizard-based method described ear-
lier in this hack. The result of the backup process is a password-protected
file named CA_Name.p12 that contains the root CA’s own certificate and
private key, plus a Database folder that contains the database files and trans-
action logs.

Next, back up the following Registry key on your old root CA:

HKLM\SYSTEM\CurrentControlSet\Services\CertSvc\Configuration\CA_Name

This key contains critical information about how Certificate Services is con-
figured on your machine, and you will need this key to move your CA role
to a different machine. Make sure you also make a note of the location
where the certificate database and log files are located on your server. By
default, they are both in the %SystemRoot%\system32\CertLog folder, but
you might have placed them on a separate drive for increased performance
when you installed Certificate Services on your old machine.

Next, you need to prepare your new server to host the role of root CA for
your organization. Take the server off the network and rename it with the

220 | Chapter 6, Network Security

#71 Back Up and Restore a Certificate Authority with Certificate Services
HACK

same name as the old root CA. This step is essential, because the name of
the server is included in all certificates issued by the CA. In order for previ-
ously issued certificates to be validated, the new root CA must have the
same name as the old one. While Windows Server 2003 now supports a pro-
cess that lets you rename your domains and domain controllers, it’s obvi-
ously simplest if you use a member server for your root CA, because
member servers are easier to rename than domain controllers. Copy the CA_
Name.p12 file and Database folder from your old machine to a temporary
folder somewhere on your new machine, and have the Registry key exported
from the old machine ready to import as well.

Now, begin installing Certificate Services on your machine by using Add/
Remove Windows Components (Control Panel ➝ Add/Remove Programs).
When prompted to specify which kind of CA you want to install (enterprise
or standalone, root or subordinate), select “Advanced options” (Windows
Server 2003 replaces “Advanced options” with “Use custom settings to gen-
erate the key pair and CA certificate instead,” but everything else is similar)
and click Next to display the Public and Private Key Pair screen of the Win-
dows Components Wizard, shown in Figure 6-12.

Click the Import button, browse to locate the CA_Name.p12 backup file on
your server, and enter the password you specified when you backed up your

Figure 6-12. Importing backed-up information from your old root CA

Detect Ethernet Sniffers Remotely #72

Chapter 6, Network Security | 221

HACK

old CA. Complete the remaining steps of the wizard, being sure to specify
the same path for the certificate database and log files that you were using
on your old CA. Then, restore your database and log files from backup, as
discussed earlier in this hack. Finally, restore the Registry key you backed up
on the old CA to your new CA.

Restart Certificate Services, and you should now have a working root CA
running on new hardware that will last you…five years? Three years? Who
knows, the way hardware platforms are advancing these days! In any event,
be sure to test your new root CA thoroughly in all its aspects (e.g., process-
ing certificate requests, validating certificates, and renewing and revoking
certificates) before finally decommissioning your old root CA.

Decommissioning the Old CA
If you want to use your old server for some other purpose on your network
(as opposed to discarding it in the big blue bin behind your building), you
still have to do two things. First, you have to remove Certificate Services
from it. But before you do this, you need to remove the CA certificate and
private key themselves, because you don’t want them kicking around on
some old machine on your network.

To remove these cryptographic items, open a command prompt and type
certutil -shutdown to stop Certificate Services on the machine. Then, type
certutil -key to display a list of all cryptographic keys installed on the
machine. Contained within this list should be a key named for the CA itself
(CA_Name), which you can remove from the server by typing certutil -delkey
CA_Name (enclose CA_Name in quotes if it contains spaces). Now you can use
Add/Remove Programs in the Control Panel to uninstall Certificate Ser-
vices, allowing you to use your old machine for some other purpose on your
network.

But don’t forget this second step: rename your server so it won’t conflict
with the new root CA on your network!

—Mitch Tulloch

H A C K

#72
Detect Ethernet Sniffers Remotely Hack #72

Detect potential spies on your network without having to trust compromised
machines.

Ethernet sniffers are one of the most powerful tools in your network secu-
rity arsenal. However, in the wrong hands, they can be one of the biggest
threats to the security of your network. Once a system has been compro-
mised, whether by an insider or a malicious intruder, the attacker will most

222 | Chapter 6, Network Security

#72 Detect Ethernet Sniffers Remotely
HACK

likely begin sniffing the local network. This network reconnaissance will
help the “spy” to find his next target, or simply to collect juicy bits of infor-
mation (such as usernames and passwords, emails, or other sensitive data).

Sniffing Shared Mediums
Not too long ago, it was commonly thought that only shared-medium Ether-
net networks were vulnerable to being sniffed. These networks employed a
central hub, which rebroadcast every transmitted packet to each port on the
hub. In this configuration, every node on the local network segment receives
every frame sent by any network node. Each node’s network interface then
performs a quick check to see if it is the node for which the frame is des-
tined. If it is not the destination host, the frame is discarded. If it is, the
frame is passed up through the operating system’s protocol stack and is
eventually processed by an application.

Because of this, sniffing traffic meant for other systems on the network was
trivial. Since all the traffic reached each system, one needed only to disable
the check that the network interface performs to grant a system access to
traffic meant for others. This is usually referred to as putting the network
interface into promiscuous mode, which usually can be done only by a privi-
leged user.

Sniffing in Switched Environments
Eventually, switched Ethernet networks began to replace shared-medium
networks. Thus, the main facilitator of sniffing was removed. Unlike hubs,
Ethernet switches send traffic only to the device for which it is destined. To
do this, an Ethernet switch learns which network device’s MAC address cor-
responds to what port on the switch as traffic passes through the switch.
When the switch sees an Ethernet frame with a certain destination MAC
address, it looks up which port on the switch corresponds to it and for-
wards the frame to only that port. In doing this, the switch effectively cre-
ates a virtual dedicated connection from the sending station to the receiving
station every time an Ethernet frame is transmitted on the network. Thus,
only the machine that the frame was originally intended for is able to see it.
This would be fine, but certain aspects of the Ethernet specification and
TCP/IP can cause problems.

One problem is that switches can memorize only a limited number of MAC
addresses. The maximum number will often be several orders of magnitude
higher than the number of ports that the switch has, which allows switches
to be connected to each other hierarchically. In order to do this efficiently,
however, each switch must memorize the MAC addresses available on the
switches to which it is connected.

Detect Ethernet Sniffers Remotely #72

Chapter 6, Network Security | 223

HACK

For example, suppose you have a 24-port switch (switch A) with 23
machines plugged into it and the 24th port occupied by another switch. This
other switch (switch B) has 48 ports, with the 47 other ports being occupied
by machines. In this situation, switch A will learn the MAC addresses of the
47 systems on switch B and associate it with its 24th port, and switch B will
learn the MAC addresses of the 23 systems connected directly to switch A
and associate it with its own 48th port.

Even though the average switch can memorize upwards of several thousand
MAC addresses, it is still possible to overflow a switch’s MAC address table
by generating large amounts of traffic with fake MAC addresses. This tactic
is desirable for a malicious user because many switches will revert to behav-
ing like hubs once their MAC address tables have been filled. Once this hap-
pens, the network is no different from a shared-medium segment using a
hub. A malicious user can then sniff the network by simply putting her net-
work interface into promiscuous mode.

Luckily, this approach is fairly invasive; in order for it to work, the network
will need to be flooded with bogus traffic, which is something that can be
detected passively with a tool such as Arpwatch [Hack #62]. A flood of bogus
MAC and IP address pairings will cause Arpwatch to likewise flood your
system logs. As long as you’re good about monitoring your logs, this attack
should be fairly easy to spot. As mentioned in “Detect ARP Spoofing” [Hack

#62], Arpwatch is also capable of detecting ARP table poisoning. That makes
it an effective tool for detecting the two most common types of ARP attacks
that are usually precursors to data logging: ARP flooding and targeted ARP
poisoning.

Another way to monitor switched networks is to simply change the MAC
address of the Ethernet card in the system that is going to be used for sniff-
ing. In Linux and many other Unix and Unix-like operating systems, this
can be done with the ifconfig command:

/sbin/ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:E0:81:03:D8:8F
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
 Interrupt:11 Base address:0x1c80

/sbin/ifconfig eth0 hw ether 00:DE:AD:BE:EF:00
/sbin/ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:DE:AD:BE:EF:00
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

224 | Chapter 6, Network Security

#72 Detect Ethernet Sniffers Remotely
HACK

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
 Interrupt:11 Base address:0x1c80

The purpose of doing this is to trick the switch into forwarding the traffic to
two different nodes on the segment. This is sometimes a hit-or-miss deal,
since different switches will behave differently when there are duplicate
MAC addresses in use on the same network. The switch might forward traf-
fic to both ports, distribute the traffic unpredictably between them, stop
passing traffic altogether, or raise an error.

All of these methods can be detected and stopped with more expensive man-
aged switches, which allow you to specify what MAC addresses are allowed
on each individual port. This feature is sometimes called port security.

However, even if attackers choose not to employ these methods, they can
still gather quite a bit of information by just putting the network interface
into promiscuous mode. For example, broadcast traffic such as DHCP and
ARP requests will still be sent to every port on the switch.

Installing SniffDet
One tool that can help to detect promiscuous interfaces on both switched
and unswitched networks is SniffDet (http://sniffdet.sourceforge.net). For a
tool that really serves only a single purpose, SniffDet is fairly versatile, and it
can detect sniffers in several ways. The main difference between SniffDet
and a tool like Arpwatch is that SniffDet actively scans for sniffers. That is, if
you suspect that a machine might be running a sniffer, you can simply run
SniffDet and point it at that machine to determine whether its network
device is in promiscuous mode.

To build and install SniffDet, you will first have to obtain the libnet packet
injection library (http://www.packetfactory.net/projects/libnet/). Make sure to
download the latest 1.0.x version; the 1.1 versions of libnet are incompati-
ble with programs written for the 1.0.x versions.

To compile libnet, unpack the source distribution and go into the directory
that it creates. Then run this command:

$./configure && make

After it has finished compiling, become root and type make install.

Building SniffDet is a similar affair. As with libnet, you will need to unpack
the source distribution and change to the directory that it creates. Then, to
build and install it, do the same thing you did for libnet. You’ll also want to
download two patches: one that fixes several compilation issues and one

Detect Ethernet Sniffers Remotely #72

Chapter 6, Network Security | 225

HACK

that fixes a bug that limits the functionality of SniffDet (the latter has been
submitted to the authors of SniffDet but has not been integrated into a new
release at the time of this writing). Both patches can be obtained from http://
snort-wireless.org/other/patches/sniffdet-0.9.

Before compiling SniffDet, apply the patches using commands such as these:

$ tar xfz sniffdet-0.9.tar.gz
$ cd sniffdet-0.9
$ patch -p1 < sniffdet-get_mac.patch
$ patch -p1 < sniffdet-compile_fixes.patch

Testing with ARP Queries
SniffDet has several methods for determining whether a target machine is
running a sniffer. However, only two of the methods that it employs—the
ARP and DNS tests—will work with repeatable and predictable results.

The ARP test relies on how the sniffing system’s protocol stack deals with
ARP queries while in promiscuous mode. To run this test, SniffDet sends
out an ARP query to the target machine. This request has fake source and
destination MAC addresses but uses the correct IP address of the machine
being checked. If the target machine is in promiscuous mode, the ARP query
with the fake MAC address will be passed up the protocol stack, and the tar-
get machine will send a reply. If the machine is not in promiscuous mode,
this ARP query will be quietly discarded. This method is effective on both
switched and unswitched networks.

The ARP test works because of the way in which network adapters imple-
ment multicast addressing. IP multicast groups have associated MAC
addresses. In order to receive multicast data, a network interface will set
itself to not filter out data sent to the MAC address corresponding to the
multicast group to which it belongs, as well as to the broadcast address and
the interface’s normal address. One interesting side effect of the way this is
implemented is that when a network interface is in promiscuous mode it will
respond to any frame with the group bit set in the destination address, even
if the address does not correspond to a multicast group to which the host
belongs. This same bit will also cause the frame to be broadcast by the
switch. So, one only needs to send an ARP request with a destination
address like FF:00:00:00:00:00 instead of the normal broadcast address, FF:
FF:FF:FF:FF:FF, to detect if the machine is in promiscuous mode.

One interesting thing to note is that different operating systems will respond
to MAC addresses with the group bit set in different ways. For instance,
Linux and many other Unix-like operating systems will respond to the
address mentioned earlier when in promiscuous mode, but Windows

226 | Chapter 6, Network Security

#72 Detect Ethernet Sniffers Remotely
HACK

systems will not. On the other hand, both Unix-like and Windows systems
will respond when FF:FF:FF:FF:FF:FE is used as the destination address.
However, because of a bug in SniffDet’s MAC address parsing code, you
won’t be able to use FF:FF:FF:FF:FF:FE as a destination address unless you
apply the previously mentioned patch.

Let’s look at a sniffdet scan against sirius (192.168.0.2) from colossus (192.
168.0.64), two machines that are on the same switched network.

Here are the results of running sniffdet against sirius:

colossus # sniffdet -i eth0 -t arp sirius
--
Sniffdet Report
Generated on: Wed Dec 31 03:49:28 2003
--
Tests Results for target sirius
--
Test: ARP Test (single host)
 Check if target replies a bogus ARP request (with wrong MAC)
Validation: OK
Started on: Wed Dec 31 03:49:08 2003
Finished on: Wed Dec 31 03:49:28 2003
Bytes Sent: 252
Bytes Received: 0
Packets Sent: 6
Packets Received: 0
--
RESULT: NEGATIVE
--

--
Number of valid tests: #1
Number of tests with positive result: #0
--

Now start a sniffer on sirius and run the scan again:

sirius # tcpdump -i le0 arp
tcpdump: listening on le0
06:58:00.458836 arp who-has sirius.nnc tell colossus.nnc
06:58:00.458952 arp reply sirius.nnc is-at 8:0:20:81:a4:a3
06:58:00.466601 arp who-has sirius.nnc (ff:0:0:0:0:0) tell colossus.nnc
06:58:00.466928 arp reply sirius.nnc is-at 8:0:20:81:a4:a3

Here are the results of the scan:

--
Sniffdet Report
Generated on: Wed Dec 31 06:58:01 2003
--
Tests Results for target sirius
--
Test: ARP Test (single host)
 Check if target replies a bogus ARP request (with wrong MAC)

Help Track Attackers #73

Chapter 6, Network Security | 227

HACK

Validation: OK
Started on: Wed Dec 31 06:58:00 2003
Finished on: Wed Dec 31 06:58:01 2003
Bytes Sent: 84
Bytes Received: 60
Packets Sent: 2
Packets Received: 1
--
RESULT: POSITIVE
--

--
Number of valid tests: #1
Number of tests with positive result: #1
--

The DNS test also works very well, particularly on shared-medium net-
works such as hubs or wireless LANs. However, it does rely on name resolu-
tion being enabled in the sniffer. When performing DNS tests, sniffdet will
send bogus packets that contain IP addresses that are not in use on the local
network segment. If name resolution is enabled, the sniffer will attempt to
do a reverse lookup in order to determine the hostname that corresponds to
the IP addresses. Since these addresses are not in use, sniffdet will determine
that the target machine is in promiscuous mode when it sees the DNS
queries.

A DNS test is performed just like an ARP test, but using -t dns instead of -t
arp.

H A C K

#73
Help Track Attackers Hack #73

Contribute firewall logs to DShield to build a better picture of dangers on the
Internet.

The Internet can be a scary place, and given its sheer size it’s a probability
that at any moment numerous attacks are being carried out against net-
works and hosts across the globe. But what does this mean for you and your
network? Wouldn’t it be nice to know what the most commonly attacked
services are? One project that seeks to gather this information is DShield
(http://www.dshield.org), a project sponsored by the SANS Institute (http://
www.sans.org) that seeks to be a distributed IDS for the Internet.

DShield accomplishes its mission by allowing users across the globe to sub-
mit their firewall logs to be processed and correlated. This enables the
project to determine what ports are attacked the most and where those
attacks originate, and to inform the Internet community at large of these
facts. In addition, it can let you know if your systems have been used to

228 | Chapter 6, Network Security

#73 Help Track Attackers
HACK

attack other systems that are participating in the project (though, hopefully,
you already know if your system is being misused).

DShield includes a web interface (http://www.dshield.org/report.php) that
you can use to manually upload log files, though it supports only a few for-
mats: Linux ipchains and iptables, ZoneAlarm, SonicWall, and Raptor. If
you want to submit your logs automatically, there are many more options to
choose from (see http://www.dshield.org/howto.php). There are too many dif-
ferent types of logs that can be submitted to DShield to completely do jus-
tice to them all here, so we’ll focus on how to submit logs from a Linux
iptables firewall.

First, you’ll need to decide if you want to register with DShield. Although
registration isn’t required to submit logs, it is encouraged. One extra thing
that registration allows is participation in DShield’s FightBack initiative,
through which DShield submits reports to ISPs where attacks originate. By
registering and electing to participate in FightBack, you allow DShield to use
your logs for this purpose.

To submit logs for an iptables firewall, download the appropriate client
(http://www.dshield.org/clients/framework/iptables.tar.gz). Then, create a
user to run the client under (e.g., _dshield). When doing that, make sure to
create a valid home directory for the user; this is a good place to put the log
submission script and its accompanying configuration files.

After you’ve created the account, unpack the tarball and copy the submis-
sion script into the user’s bin directory (e.g., ~_dshield/bin):

cd /tmp
tar xvfz iptables.tar.gz && cd iptables
cp iptables.pl ~_dshield/bin

Then, copy the dshield.cnf and .lst files into /etc:

cp dshield.cnf *.lst /etc

Edit the configuration file, dshield.cnf, changing the from and userid lines to
the email address you registered with and the ID that you received after-
wards. If you didn’t register, you can leave these alone. You can also change
the cc and bcc lines to send yourself copies of the submissions. If your fire-
wall logs are stored in a file other than /var/log/messages, you’ll need to
change the log line as well.

If you are using /var/log/messages, you’ll have log entries for things other
than your firewall. These other entries are ignored via the line_filter vari-
able in the configuration file, which lets you specify a regular expression to
match the lines pertaining to the firewall. For most situations, the default

Scan for Viruses on Your Unix Servers #74

Chapter 6, Network Security | 229

HACK

should be fine. If you want to filter out some of the matching lines, set a reg-
ular expression for line_exclude.

To protect the information that’s leaving your network, you can also
exclude entries by their source or destination IP address and port number.
To exclude source and destination IP addresses, add individual IP addresses
or CIDR ranges on separate lines to dshield-source-exclude.lst and dshield-
target-exclude.lst, respectively. The dshield-source-exclude.lst file already
excludes RFC 1918 private IP addresses. To exclude source and destination
ports, add single ports or ranges (e.g., 21-25) to dshield-source-port-exclude.
lst and dshield-target-port-exclude.lst, respectively.

Additionally, to prevent your network’s vulnerabilities from being revealed
to a third party, you’ll probably want to set the obfus variable to Y. This will
cause the submission script to substitute 10 for the first octet of the target IP
addresses in your logs in order to obfuscate them. However, this will pre-
vent the logs from being used in FightBack.

After you’ve finished editing the configuration file, add an entry to the
DShield user’s crontab to run it periodically (once a day works well). For
instance, this entry will cause it to run each day at 11:59 P.M.:

23 59 * * * cd /home/dshield/bin; \
./iptables.pl > /home/dshield/bin/iptables_debug.txt

There are a few other options that can be configured, but this hack has cov-
ered the major ones. The dshield.cnf file is fully commented, so it’s pretty
easy to figure out what to do. If you want to check up on the statistics that
have been generated, go to http://www.dshield.org/reports.php.

H A C K

#74
Scan for Viruses on Your Unix Servers Hack #74

Use ClamAV to identify infected files under Unix.

Traditionally, antivirus concerns have been an afterthought in the Unix
world. After all, Unix machines don’t have the history of being attacked by
malware that Windows PCs (and Macs, to a lesser extent) have enjoyed.
However, with the widespread use of heterogeneous systems, it makes sense
to take a look at Unix antivirus approaches in a new light. While your Unix
servers might not themselves be targeted or affected by viruses, attackers
may try to use them for propagating malware to PCs on your network.

One software package that lets you scan for viruses under Unix is ClamAV
(http://www.clamav.net). ClamAV is especially useful on Samba servers and
on mail servers, where it can scan email attachments for virus payloads and
block them before they hit a user’s inbox. And best of all, it’s free!

230 | Chapter 6, Network Security

#74 Scan for Viruses on Your Unix Servers
HACK

Installing ClamAV
To get started with ClamAV, you’ll first need to create a user and group to
run it under (e.g., _clamav). Then, download the source tarball, unpack it,
change to the directory that it creates, and run ./configure. If you want to
use ClamAV to scan email, you can add the --enable-milter option, which
builds clamav-milter for you to tie in with Sendmail.

Once the configure script finishes executing, run the usual make command,
and then run make install as root. You’ll then need to update ClamAV’s
virus signature database by editing /usr/local/etc/freshclam.conf.

Locate the following two lines:

Comment or remove the line below.
Example

Simply comment out the Example line and run freshclam. The last line it out-
puts should look similar to the following, confirming that the signatures
have been updated:

Database updated (60082 signatures) from database.clamav.net
(IP: 199.239.233.95)

Now, you can test ClamAV by running the standalone command-line scan-
ner clamscan. The ClamAV source tree contains some files that ClamAV will
recognize as malware, so try scanning it:

clamscan -r -l scan.txt .
./FAQ: OK
./etc/Makefile.am: OK
./etc/Makefile.in: OK
./etc/clamd.conf: OK
./etc/freshclam.conf: OK
./etc/Makefile: OK
./BUGS: OK
./NEWS: OK
./TODO: Empty file
./docs/man/sigtool.1: OK
./docs/man/clamscan.1: OK
./docs/man/clamdscan.1: OK
./docs/man/freshclam.1: OK
./docs/man/freshclam.conf.5.in: OK
./docs/man/clamd.conf.5: OK
...
./test/clam.cab: ClamAV-Test-File FOUND
./test/clam.exe: ClamAV-Test-File FOUND
./test/clam.rar: ClamAV-Test-File FOUND
./test/clam.zip: ClamAV-Test-File FOUND
./test/clam.exe.bz2: ClamAV-Test-File FOUND

Scan for Viruses on Your Unix Servers #74

Chapter 6, Network Security | 231

HACK

----------- SCAN SUMMARY -----------
Known viruses: 60082
Engine version: 0.88.2
Scanned directories: 45
Scanned files: 757
Infected files: 5
Data scanned: 13.19 MB
Time: 33.362 sec (0 m 33 s)

Now, take a look at scan.txt:

cat scan.txt

Scan started: Sun Jun 25 21:43:00 2006

./test/clam.cab: ClamAV-Test-File FOUND

./test/clam.exe: ClamAV-Test-File FOUND

./test/clam.rar: ClamAV-Test-File FOUND

./test/clam.zip: ClamAV-Test-File FOUND

./test/clam.exe.bz2: ClamAV-Test-File FOUND

-- summary --
Known viruses: 60082
Engine version: 0.88.2
Scanned directories: 45
Scanned files: 757
Infected files: 5
Data scanned: 13.19 MB
Time: 33.362 sec (0 m 33 s)

As you can see, both the clamscan output and the contents of scan.txt show
the same five infected files. However, scan.txt only shows the infected files
and a summary of the scan, whereas the status of every scanned file is shown
in the clamscan output.

Configuring clamd
To get the ClamAV daemon (clamd) working, you’ll first need to remove or
comment out the Example line from /usr/local/etc/clamd.conf, just as you did
with the freshclam.conf file. Then you’ll need to tell clamd to run as the user
you created earlier, using the User option. Add a line like this:

User _clamav

There are many other configuration options you can change here, and the
configuration file is fully documented with comments to make choosing the
right options easy. One notable configuration option is LogSyslog, which
causes clamd to log any viruses that are detected via syslog.

232 | Chapter 6, Network Security

#74 Scan for Viruses on Your Unix Servers
HACK

To enable logging via syslog, simply locate the option and uncomment it. By
default, clamd uses the local6 facility, but you can change this with the
LogFacility option. Take a look at the syslog manpage to find other syslog
facilities that you can use.

Once you’re done editing the configuration file, start clamd; just typing
clamd should work. If you enabled logging via syslog, you should see some-
thing like the following in your logs:

Jun 25 22:29:12 mail clamd[15819]: Daemon started.
Jun 25 22:29:12 mail clamd[15819]: clamd daemon 0.88.2 (OS: freebsd5.4,
ARCH: i386, CPU: i386)
Jun 25 22:29:12 mail clamd[15819]: Log file size limited to 1048576 bytes.
Jun 25 22:29:12 mail clamd[15819]: Reading databases from /usr/local/share/
clamav
Jun 25 22:29:16 mail clamd[15819]: Protecting against 60082 viruses.
Jun 25 22:29:16 mail clamd[15828]: Unix socket file /tmp/clamd
Jun 25 22:29:16 mail clamd[15828]: Setting connection queue length to 15
Jun 25 22:29:16 mail clamd[15828]: Archive: Archived file size limit set to
10485760 bytes.
Jun 25 22:29:16 mail clamd[15828]: Archive: Recursion level limit set to 8.
Jun 25 22:29:16 mail clamd[15828]: Archive: Files limit set to 1000.
Jun 25 22:29:16 mail clamd[15828]: Archive: Compression ratio limit set to
250.
Jun 25 22:29:16 mail clamd[15828]: Archive support enabled.
Jun 25 22:29:16 mail clamd[15828]: Archive: RAR support disabled.
Jun 25 22:29:16 mail clamd[15828]: Portable Executable support enabled.
Jun 25 22:29:16 mail clamd[15828]: Mail files support enabled.
Jun 25 22:29:16 mail clamd[15828]: OLE2 support enabled.
Jun 25 22:29:16 mail clamd[15828]: HTML support enabled.
Jun 25 22:29:16 mail clamd[15828]: Self checking every 1800 seconds.

Now, try running the same AV scan with clamdscan:

/usr/local/bin/clamdscan -l scan.txt .
/usr/home/andrew/clamav-0.88.2/./test/clam.cab: ClamAV-Test-File FOUND
/usr/home/andrew/clamav-0.88.2/./test/clam.exe: ClamAV-Test-File FOUND
/usr/home/andrew/clamav-0.88.2/./test/clam.zip: ClamAV-Test-File FOUND
/usr/home/andrew/clamav-0.88.2/./test/clam.exe.bz2: ClamAV-Test-File FOUND

----------- SCAN SUMMARY -----------
Infected files: 4
Time: 32.749 sec (0 m 32 s)

Check your logs. You should see the same results reflected there:

Jun 25 22:29:31 freebsd5-vm1 clamd[15828]: /usr/home/andrew/clamav-0.88.2/./
test/clam.cab: ClamAV-Test-File FOUND
Jun 25 22:29:31 freebsd5-vm1 clamd[15828]: /usr/home/andrew/clamav-0.88.2/./
test/clam.exe: ClamAV-Test-File FOUND
Jun 25 22:29:31 freebsd5-vm1 clamd[15828]: /usr/home/andrew/clamav-0.88.2/./
test/clam.zip: ClamAV-Test-File FOUND
Jun 25 22:29:31 freebsd5-vm1 clamd[15828]: /usr/home/andrew/clamav-0.88.2/./
test/clam.exe.bz2: ClamAV-Test-File FOUND

Track Vulnerabilities #75

Chapter 6, Network Security | 233

HACK

Finally, if you want to have Sendmail use ClamAV to scan mail, you’ll need
to create a directory to hold the Unix sockets through which Sendmail,
clamd, and clamav-milter will communicate:

mkdir /var/run/clamav
chown _clamav:_clamav /var/run/clamav

Then, add the following line to /usr/local/etc/clamd.conf:

LocalSocket /var/run/clamav/clamd.sock

You’ll need to tell Sendmail to use clamav-milter to filter messages through
it. Add the following to the end of your sendmail.mc file:

INPUT_MAIL_FILTER(`clmilter',`S=local:/var/run/clamav/clmilter.sock, F=, \
T=S:4m;R:4m')
define(`confINPUT_MAIL_FILTERS', `clmilter')

After you’ve done that, rebuild your sendmail.cf and start clamav-milter:

/usr/local/sbin/clamav-milter -lo /var/run/clamav/clmilter.sock --external

Now, restart Sendmail. You can quickly test your new AV scanning setup by
trying to send the test files included with the ClamAV distribution as attach-
ments. You should see something similar to this in your logs:

Jun 26 00:08:03 freebsd5-vm1 sm-mta[27946]: k5Q6831t027946: Milter add:
header: X-Virus-Scanned: ClamAV version 0.88.2, clamav-milter version 0.88.2
on freebsd5-vm1.nnc
Jun 26 00:08:03 freebsd5-vm1 sm-mta[27946]: k5Q6831t027946: Milter add:
header: X-Virus-Status: Not Scanned
Jun 26 00:08:03 freebsd5-vm1 sm-mta[27946]: k5Q6831t027946: Milter: data,
reject=451 4.3.2 Please try again later

The client sending the message will be blocked from doing so.

These are just a few of the possibilities for using ClamAV. For another inter-
esting use, take a look at “Scan Network Traffic for Viruses” [Hack #118],
which shows how to integrate ClamAV with Snort.

H A C K

#75
Track Vulnerabilities Hack #75

Keep abreast of the latest vulnerabilities that affect your network.

One of the key steps toward keeping any network secure is making sure all
of the systems and devices connected to it are patched against the latest vul-
nerabilities that have been discovered. After all, if you spend all of your time
implementing some “gee whiz” security architecture but are compromised
due to unpatched vulnerabilities, you’ve been wasting your time.

Keeping track of all of the latest vulnerabilities that affect your systems and
the patches and workarounds for them can be quite time-consuming,
especially in highly heterogeneous environments. The most devastating

234 | Chapter 6, Network Security

#75 Track Vulnerabilities
HACK

vulnerabilities might make it to commonly read computer news sites, but
most are rarely reported on. It’s possible that the vendor of a program in
which a security hole is discovered will notify you if you have a support con-
tract, but where does that leave you if you don’t have such a contract, or if
you use open source software? This hack provides a few resources that can
be of help for not only open source projects, but commercial products as
well.

Mailing Lists
Mailing lists are some of easiest-to-use resources available. Many vendors and
open source projects report security advisories and patch notifications to
BugTraq (http://www.securityfocus.com/archive/1/description) and the Full-
Disclosure (http://lists.grok.org.uk/full-disclosure-charter.html) mailing lists.

At BugTraq, vendors publicly announce vulnerabilities that have been
reported to them by security researchers or have been discovered internally.
Vulnerabilities posted there usually have patches or workarounds available
at the time of announcement as well, since the vendors themselves are often
the ones disclosing them.

On the other hand, Full-Disclosure often includes vulnerabilities posted by
independent researchers who haven’t been able to get the vendors to
cooperate with them in fixing the flaws they’ve found.

Many open source projects also offer mailing lists to announce security
issues. Check the project pages for your favorite open source software pack-
ages to see if they have security-related lists, and subscribe to them.

Finally, the United States Computer Emergency Response Team (US CERT)
offers several security-related mailing lists (https://forms.us-cert.gov/maillists/).
However, usually only the most wide-reaching vulnerabilities are posted
there.

RSS Feeds
In addition to mailing lists, many resources that track vulnerabilities pro-
vide RSS feeds. SecurityFocus (http://www.securityfocus.com), the site that
hosts the BugTraq list, also offers an RSS feed (http://www.securityfocus.com/
rss/vulnerabilities.xml) that features selected postings from the list, and Secu-
nia offers an RSS feed (http://secunia.com/information_partner/anonymous/o.
rss) that distills information from various sources into a consistent format.

Another great resource is the Open Source Vulnerability Database (http://
www.osvdb.org), which offers an RSS feed of the most recent vulnerabilities
added to the database (http://www.osvdb.org/backend/rss.php?n=10).

Track Vulnerabilities #75

Chapter 6, Network Security | 235

HACK

However, since the OSVDB seeks to catalog historical vulnerabilities as well
as the most current ones, vulnerabilities that are several years old will often
show up in the feed.

If you’re interested in wireless-network-specific vulnerabilities, you can sub-
scribe to the Wireless Vulnerabilities and Exploits project’s RSS feed (http://
www.wirelessve.org/entries/rss2/). As the name suggests, this site seeks to
catalog wireless device- and application-specific vulnerabilities along with
the tools used to exploit them. There is often overlap with other vulnerabil-
ity databases, but the site also focuses on vulnerabilities that affect the vari-
ous wireless protocols themselves.

Cassandra
Subscribing to all of the available resources might seem like drinking from a
fire hose of information. One tool that can help stem the flood is Cassandra
(https://cassandra.cerias.purdue.edu), from Purdue University’s CERIAS
project (http://www.cerias.purdue.edu).

The beauty of Cassandra is that it monitors Secunia’s database as well as the
National Vulnerability Database (http://nvd.nist.gov), which also offers an
RSS feed (http://nvd.nist.gov/download.cfm#RSS), and figures out what new
vulnerabilities were added each day. You can register an account with Cas-
sandra and input what vendors and products you’re interested in, and Cas-
sandra will email you when any relevant vulnerabilities are reported.

Summary
Whatever information sources you decide to use, it’s of the utmost impor-
tance that you keep your systems and any devices attached to your network
up-to-date and free of known vulnerabilities. Failing to do so only makes it
easier for attackers to compromise your enterprise. After all, if they deter-
mine a certain software package or device is on your network, all they have
to do is look up what vulnerabilities have been published for it and attempt
to exploit them.

236

Chapter 7C H A P T E R S E V E N

Wireless Security
Hacks 76–78

Wireless networks have been plagued with many well-publicized issues since
they became popular at the end of the 1990s. Because of such problems and
the risks they pose, some people might argue that they shouldn’t be used at
all. But due to their ease of use and convenience, it’s clear that wireless net-
works are here to stay, so you’d better do everything you can to make them
as secure as possible.

Because of the many problems that have afflicted Wired Equivalent Privacy
(WEP), anyone seeking to implement a secure wireless network should real-
ize that it’s not a good solution. And, while the pre-shared key (PSK) variet-
ies of WiFi Protected Access (WPA) and WPA2 offer better security than
WEP, they still have their problems. As you’ll see in this chapter, the best
solution is to use WPA or WPA2 with 802.1X to provide fine-grained
authentication for your wireless network. You’ll also see how to unleash the
potential of your commodity wireless router or access point (AP) by replac-
ing its firmware with a compact Linux distribution.

For more community-minded users who want to share their wireless net-
works, this chapter also covers the use of captive portals. By using a captive
portal, you can provide open wireless access to nearby users but still main-
tain some control over who can access your network.

H A C K

#76
Turn Your Commodity Wireless Routers into a
Sophisticated Security Platform Hack #76

Upgrade your SOHO wireless router into a sophisticated network device with
OpenWRT.

As network device manufacturers have moved to cut costs and increase prof-
its, many have sought to utilize open source technologies wherever they can.
This has created a pool of hackable (in the good sense) devices that can

Turn Your Commodity Wireless Routers into a Sophisticated Security Platform #76

Chapter 7, Wireless Security | 237

HACK

easily be modified by tweaking their open source components. One such
line of devices is Linksys’s WRT54G line of low-end wireless routers. These
devices have proven so popular with the open source community that many
alternate firmware distributions have been created for them. In fact, when
Linksys recently made changes to the latest revisions of the WRT54G that
prevented it from running Linux, they created a new model for fans of the
earlier versions, the WRT54GL, that continued to use Linux for its
firmware.

One of the more flexible firmware distributions available is OpenWRT (http:
//openwrt.org). The beauty of OpenWRT as opposed to other alternative
firmwares is that it’s a bare-bones minimal system with a large set of pre-
compiled packages from which you can pick and choose, installing what-
ever suits your needs. For instance, you can easily use OpenWRT to monitor
wireless network traffic with the same tools you’d use with a Linux-based
laptop. OpenWRT also supports a significant number of other routers avail-
able from Linksys and other vendors that have been built on a common
hardware platform.

Before you begin installing OpenWRT, be sure to check the
rather lengthy list of supported models (http://wiki.openwrt.
org/TableOfHardware). Because so many models are sup-
ported, this hack covers only the most common: the Linksys
WRT54G. Supported models should have links to installa-
tion notes specific to them.

For the WRT54G, begin by downloading the firmware image, openwrt-
wrt54g-jffs2.bin, from http://downloads.openwrt.org/whiterussian/newest/bin.
Then, log into your router’s web administration interface and go to the
Administration section. After it loads, click the Firmware Upgrade link and
you’ll be presented with a page that allows you to upload a firmware image
with which the router will reflash itself. Select the firmware image that you
downloaded and click the Upgrade button. You should see a page like the
one shown in Figure 7-1.

Once the router has been reflashed with the OpenWRT image, you should
see a page letting you know that the upgrade was successful. The router will
also automatically reboot once the upgrade has completed. After it has
rebooted, you should be able to telnet to the IP address that you had the
router configured to use before you installed OpenWRT, using a command
like the following:

$ telnet 192.168.0.4
Trying 192.168.0.4...
Connected to 192.168.0.4.

238 | Chapter 7, Wireless Security

#76 Turn Your Commodity Wireless Routers into a Sophisticated Security Platform
HACK

Escape character is '^]'.
 === IMPORTANT ============================
 Use 'passwd' to set your login password
 this will disable telnet and enable SSH
 --

BusyBox v1.00 (2006.03.27-00:00+0000) Built-in shell (ash)
Enter 'help' for a list of built-in commands.

 _______ ______ _ _ _ _
 | |.-----.-----.-----.| | | |.----.| |_
 | - || _ | -_ _| || | | || _|| _|
 |_______|| __|_____|__|__||________||__| |_ _ _ _|
 |_ _| W I R E L E S S F R E E D O M
 WHITE RUSSIAN (RC5) -------------------------------
 * 2 oz Vodka Mix the Vodka and Kahlua together
 * 1 oz Kahlua over ice, then float the cream or
 * 1/2oz cream milk on the top.

root@openwrt:/#

When you log in, you should see a banner like the one shown in the previ-
ous output. The banner tells you two things. If you set a password for the
root account, the telnet daemon will be disabled and the SSH daemon will
be enabled, so that you can connect to your router securely. The banner also
tells you how to make a White Russian, which is the code name for this par-
ticular version of firmware (White Russian RC5).

Figure 7-1. Upgrading the WRT54G’s firmware

Turn Your Commodity Wireless Routers into a Sophisticated Security Platform #76

Chapter 7, Wireless Security | 239

HACK

Now, type reboot to reboot the router and unpack the JFFS2 filesystem.
After it has finished booting, log in again. Then set a password for the root
account by running passwd, and reboot the router yet again.

You should now be able to log in via SSH:

$ ssh root@192.168.0.4
The authenticity of host '192.168.0.4 (192.168.0.4)' can't be established.
RSA key fingerprint is 26:ed:7b:ae:7f:0d:aa:63:e8:f4:c1:6c:b3:09:8b:10.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.0.4' (RSA) to the list of known hosts.
root@192.168.0.4's password:
sh: /usr/X11R6/bin/xauth: not found

BusyBox v1.00 (2006.03.27-00:00+0000) Built-in shell (ash)
Enter 'help' for a list of built-in commands.

 _______ ______ _ _ _ _
 | |.-----.-----.-----.| | | |.----.| |_
 | - || _ | -_ _| || | | || _|| _|
 |_______|| __|_____|__|__||________||__| |_ _ _ _|
 |_ _| W I R E L E S S F R E E D O M
 WHITE RUSSIAN (RC5) -------------------------------
 * 2 oz Vodka Mix the Vodka and Kahlua together
 * 1 oz Kahlua over ice, then float the cream or
 * 1/2oz cream milk on the top.

root@openwrt:~#

Now you’ll need to set a DNS server for OpenWRT to use when resolving
DNS names. You might think this is as straightforward as just editing /etc/
resolv.conf, but this file is created dynamically at boot according to the con-
tents of the NVRAM. Therefore, you’ll need to set the lan_dns NVRAM vari-
able. You’ll also need to set the default gateway (lan_gateway):

nvram set lan_dns=192.168.0.2
nvram set lan_gateway=192.168.0.1
nvram commit
reboot

Now, log in again and run ipkg update:

ipkg update
Downloading http://downloads.openwrt.org/whiterussian/packages/Packages
Updated list of available packages in /usr/lib/ipkg/lists/whiterussian
Downloading http://downloads.openwrt.org/whiterussian/packages/non-free/
Packages
Updated list of available packages in /usr/lib/ipkg/lists/non-free
Successfully terminated.

This command contacts the OpenWRT package repositories and updates
the list of packages that are available for installation. After it’s finished

240 | Chapter 7, Wireless Security

#77 Use Fine-Grained Authentication for Your Wireless Network
HACK

updating, you can run ipkg list to see all of the packages. If you want to
see the ones that are actually installed, run ipkg list_installed instead. To
install a package, simply run ipkg install <package name>.

Out of the box, most of your wireless settings should carry over from the
standard Linksys firmware to OpenWRT. However, if you’re using WPA-
PSK or 802.1X instead of WEP (please do, because WEP is horribly inse-
cure), you’ll need to install the nas package. After you’ve done that and
rebooted, you should see the nas binary running:

ps -aux | grep nas
 431 root 480 S /usr/sbin/nas -P /var/run/nas.lan.pid -l br0 -H
34954 -i eth2 -A -m 132 -k XXXXXXXXXXXXXXX

You should now be able to connect to your router without reconfiguring any
of your wireless clients.

In the case shown in this example, WPA-PSK is being used and the Xs
correspond to the password, which is now set via the wl0_wpa_psk NVRAM
variable. For more information on what NVRAM variables you can use for
configuring your router, take a look at http://wiki.openwrt.org/
OpenWrtDocs/Configuration.

As you’ve seen, there are many more packages available for OpenWRT. For
instance, you can easily install TcpDump or Kismet through ipkg. The possi-
bilities are nearly limitless. For just two examples, you can set up a RADIUS
server to authenticate your wireless users [Hack #77] or turn your router into a
captive portal [Hack #78].

H A C K

#77
Use Fine-Grained Authentication for Your Wireless
Network Hack #77

Use RADIUS and 802.1X to offer per-user authentication for your 802.11
networks.

One of the big downsides of using WPA-PSK or WEP (which you shouldn’t
be using) to control access to a wireless network is that they require all valid
users to know the key to the network. Not only does this make changing the
key more difficult, but it also forces you to change it if you ever need to deny
access to a single user. Enter 802.1X, a port-based authentication protocol
originally developed for use on Ethernet LANs to control access to physical
ports on a switch.

802.1X came into play with wireless LANs when work began on the 802.11i
standard, which adds significant security features to 802.11-based net-
works. However, IEEE standards often take a long time to ratify (they’re
designed by committee), so the WiFi Alliance, an industry trade group,

Use Fine-Grained Authentication for Your Wireless Network #77

Chapter 7, Wireless Security | 241

HACK

adopted some portions of the standard under the WiFi Protected Access
(WPA) moniker. Once 802.11i was ratified, the designation of WPA2
became used to denote full compliance with the standard. For this reason,
you’ll often see the combined use of 802.1X and 802.11 referred to as WPA
Enterprise or WPA2 Enterprise.

To do its job, 802.1X makes use of a Remote Access Dial-In User Service
(RADIUS) server to provide authentication, authorization, and accounting.
Other components in an 802.1X-controlled network include the authentica-
tor and the supplicant. The authenticator is the device that provides access
to the network’s resources (e.g., a switch or AP). When a device is con-
nected to the network, the authenticator detects it and asks it to identify
itself. The supplicant is a piece of software on the connecting device that
responds. The authenticator then acts as an intermediary between the sup-
plicant and the authentication server until access is granted. This process is
governed by the Extensible Authentication Protocol (EAP), which, as the
name suggests, allows 802.1X to support many different authentication
mechanisms.

Of the many available authentication mechanisms, two are widely sup-
ported by Windows, Mac OS X, and Linux: EAP/TLS and Protected EAP
(PEAP). EAP/TLS makes use of your PKI infrastructure and the TLS proto-
col to provide authentication. That is, you need to have a Certificate Author-
ity set up and you must generate certificate/key pairs for your authentication
server and all of your clients. Many network administrators might see this as
a considerable amount of work. On the other hand, PEAP requires a certifi-
cate/key pair for the server only. This hack shows how to set up 802.1X to
use PEAP for authentication.

Deploying the RADIUS Server
The first thing to do is to set up a RADIUS server. One excellent (and free)
server is FreeRADIUS (http://www.freeradius.org). Begin by downloading the
FreeRADIUS tarball from the site’s download page (http://www.freeradius.
org/getting.html); then unpack it and change into the directory that it cre-
ates. Build it by running ./configure && make. After it finishes, become root
and run make install.

Now, you’ll need to create a user and group for it to run under (something
like _radiusd). After you’ve done that, edit FreeRADIUS’s configuration file,
radiusd.conf. If you didn’t specify an alternate installation prefix when run-
ning configure, it should be in /usr/local/etc/raddb.

242 | Chapter 7, Wireless Security

#77 Use Fine-Grained Authentication for Your Wireless Network
HACK

You’ll need to tell it the user and group that you just created. Search for user
= nobody to find a good location in the file to do this. Then, add a couple of
lines similar to these:

user = _radiusd
group = _radiusd

Now, edit the eap.conf file in the same directory and locate the following
line in the eap section:

default_eap_type = md5

Change it to read:

default_eap_type = peap

If you don’t already have a Certificate Authority, create one now [Hack #69]

and generate a certificate/key pair for the authentication server. You should
also distribute your CA’s certificate to your clients [Hack #70] so that they can
verify that the authentication server is legitimate when they connect to your
wireless network.

Once you’ve done this, uncomment the tls section and set all of the certifi-
cate variables to point to your server’s certificate, key, and CA certificate
files.

Also uncomment the following lines:

dh_file = ${raddbdir}/certs/dh
random_file = ${raddbdir}/certs/random

Now, uncomment the peap section and then uncomment the following line:

default_eap_type = mschapv2

You’re almost done configuring the RADIUS server. The only thing left is to
allow the authenticator to access it. Do this by editing clients.conf and add-
ing an entry similar to this:

client 192.168.0.5 {
secret = authpass
shortname = openwrt-ap

}

where secret is a password that the authenticator will use to access the
server and shortname is a short descriptive name for the device. Of course,
the password you use for secret should be a much longer, higher-quality
one than the example shown here.

To add users to the RADIUS server, edit the users file and add entries like
this:

andrew User-Password == "wlanpass"

Use Fine-Grained Authentication for Your Wireless Network #77

Chapter 7, Wireless Security | 243

HACK

After you’ve done that, you need to change the owner of radiusd’s log and
run directories to the user that you created:

chown _radiusd /usr/local/var/log/radius
chown _radiusd /usr/local/var/run/radiusd

Then, you can start radiusd:

/usr/local/sbin/radiusd

Configuring Your AP
If your AP supports 802.1X, there should be a WPA Enterprise, WPA2
Enterprise, or 802.1X setting in the section of the device’s configuration
interface where you tell it whether you want to use WEP, WPA-PSK, or no
authentication at all. Once you change it to use 802.1X, you’ll need to tell
your AP the IP address of your RADIUS server and the password to use
when talking to it.

If you’re using OpenWRT [Hack #76], it’s a little more complicated and
involves setting NVRAM variables. Still, it’s not very difficult.

First, log into your AP using SSH and enter commands similar to these:

nvram set wl0_akm="wpa wpa2"
nvram set wl0_crypto="aes+tkip"
nvram set wl0_radius_key="authpass"
nvram set wl0_radius_ipaddr=192.168.0.43
nvram get wl0_radius_port=1812
nvram commit

When running the preceding commands, be sure to substitute the IP address
of your RADIUS server for the value of wl0_radius_ipaddr. Also, replace
authpass with the password you set when configuring FreeRADIUS.

These commands allow your AP to support both WPA and WPA2. How-
ever, if you want to allow only WPA, you can substitute different values for
wl0_akm and wl0_crypto:

nvram set wl0_akm="wpa"
nvram set wl0_crypto="tkip"

For WPA2, use these:

nvram set wl0_akm="wpa2"
nvram set wl0_crypto="aes"

If you don’t have the nas package installed, you should install it now:

ipkg install nas

This is the piece of software that will talk to the supplicants and to your
authentication server.

244 | Chapter 7, Wireless Security

#78 Deploy a Captive Portal
HACK

After you’ve ensured that the nas package is installed and have set the
NVRAM variables, reboot your AP. You should now be able to access your
wireless network by setting your client to use 802.1X with PEAP and then
entering any of the usernames and passwords that you entered in the users
file.

Now, you can have the benefits of a well-protected wireless network with-
out the overhead of distributing keys to each of your users.

For deployments with a large number of users, the simple users text file
might become unwieldy. Fortunately, FreeRADIUS is flexible in being able
to interface with many different authentication mechanisms, from Unix
accounts to SQL databases and LDAP servers. If you need to interface with
any of those kinds of systems, be sure to check out FreeRADIUS’s documen-
tation.

H A C K

#78
Deploy a Captive Portal Hack #78

Use WiFiDog to loosely control access to your wireless network.

Having a secure wireless network is important not only for the protection of
your network infrastructure, but also to ensure against being liable for
attacks on other networks perpetrated through your own by malicious wire-
less users. This is easy if you’re using strong authentication mechanisms, but
what if you want to share your wireless network with guests and neighbors?

One way to do this is to employ a captive portal, which allows you to keep
tabs on who’s using your wireless network without anything like a WEP key
or password to authenticate with it. Instead, users who try to access the
Internet through your network are redirected to a web page where they can
register for an account that is linked to an email address. Once they register
and receive their confirmation emails, users can activate their accounts.

One incredibly flexible portal is WiFiDog (http://wifidog.org), which con-
sists of a central authentication server and a gateway component that can be
deployed on an AP running OpenWRT [Hack #76].

The Authentication Server
Before you begin, make sure you have set up a PostgreSQL (http://www.
postgresql.org) database server. This doesn’t need to be on the same machine
as your web server, but it can be. You’ll need PHP 5.x (http://www.php.net)
installed on your web server as well.

Deploy a Captive Portal #78

Chapter 7, Wireless Security | 245

HACK

After you’ve met these two conditions, you can install the authentication
server. Begin by checking out the source code from the project’s Subversion
repository:

$ svn checkout https://dev.wifidog.org/svn/trunk/wifidog-auth

Once the checkout has finished, change into the directory that it created and
move the contents of the wifidog directory along with the sql directory to an
area on your web server capable of executing PHP scripts.

After you’ve done that, browse to the URL corresponding to where you put
the files. You should see a page similar to Figure 7-2.

Follow the instructions on the page to create the PostgreSQL database. After
you’ve created the database and a user to access it, click Next. In order to
proceed, you’ll need to enter the password found in /tmp/dog_cookie.txt on
your web server. After the next page has loaded, you should see something
similar to Figure 7-3.

Install any prerequisites with ERROR listed next to them, and refresh the
page. The missing prerequisites should now have OK next to them.

Figure 7-2. The authentication server installation wizard

246 | Chapter 7, Wireless Security

#78 Deploy a Captive Portal
HACK

You might need to restart your web server for the changes to
take effect.

The rest of the installation process is pretty straightforward. The wizard will
make sure directory permissions are correct, allow you to automatically
install optional software packages, and configure access to the database that
you created. In addition, you’ll be prompted to create an administrator
account.

Once you’ve completed all the steps in the installation wizard, you can
browse to the authentication server’s home page, shown in Figure 7-4.

Here, you can log in with your administrator account and configure every
aspect of your portals. But first, let’s set up the gateway component.

Installing the Gateway
Installing the gateway component is incredibly easy, thanks to the availabil-
ity of prebuilt packages for OpenWRT. Log into your OpenWRT-based AP,

Figure 7-3. Status of prerequisite software packages

Deploy a Captive Portal #78

Chapter 7, Wireless Security | 247

HACK

download the WiFiDog gateway package from http://www.ilesansfil.org/dist/
wifidog/bin/openwrt/, and run the following commands:

cd /tmp
wget http://www.ilesansfil.org/dist/wifidog/bin/openwrt/whiterussian-rc3/
wifidog_1.1.3_beta2-1_mipsel.ipk

Then, install it:

ipkg install wifidog_1.1.3_beta2-1_mipsel.ipk

This command also downloads any missing packages that WiFiDog depends
on. Make sure you also have the libgcc package installed:

ipkg list_installed | grep gcc
libgcc - 3.4.4-8 - GCC support library

If you don’t get any output from the previous command, you can install the
libgcc package by running ipkg install libgcc.

Now, edit /etc/wifidog.conf, following the instructions in the file. At the very
minimum, you’ll need to tell it where to find the authentication server
you’ve set up. You can do this with an AuthServer statement, like so:

AuthServer {
 Hostname spek.nnc
 Path /
}

Once you’ve finished editing the configuration file, reboot your AP. After it
finishes booting, associate a wireless client with it and try to browse to a
web site. You should be automatically redirected to a page that looks like
Figure 7-5, your authentication server’s login page.

Figure 7-4. The authentication server’s main page

248 | Chapter 7, Wireless Security

#78 Deploy a Captive Portal
HACK

If you log in with your administrator account, you’ll be given access to the
Internet and the rest of the network. You can also create a regular user
account by clicking the Create Free Account button. If you decide to do this,
you’ll see a page like Figure 7-6.

Figure 7-5. The login page

Figure 7-6. Creating a user account

Deploy a Captive Portal #78

Chapter 7, Wireless Security | 249

HACK

Once you’ve filled in and submitted the form, you’ll be given access for a
short period of time, so that you can check your email for the validation
message. When you check your email, you should receive a message that
looks similar to this:

Hello,
Please follow the link below to validate your account.
http://spek.nnc/validate.php?user_
id=b1ffadf3826c1a6ad1fdb494f212a419&token=949baa02b3b3921bc4bd949c6f963400

Thank you,
The Team.

Go to the URL in the email, and the account will be given access without a
time limit.

Nearly every aspect of WiFiDog is configurable. Be sure to log into the
authentication server with your administrator account and take a look at all
of the options available to you. The user interface is friendly and easy to use.

250

Chapter 8C H A P T E R E I G H T

Logging
Hacks 79–86

Keeping logs is an important aspect of maintaining the security of your net-
work, because logs can assist in everything from alerting you to an impend-
ing attack to debugging network problems. After an incident has occurred,
good logs can help you track down how the attacker got in, fix the security
hole, and figure out which machines were affected. In addition, logs can
help with tracing the attack back to its source, so you can identify or take
legal action against the intruder. In short, log files are worth their weight in
gold (just pretend that bits and bytes weigh a lot). As such, they should be
given at least as much protection as any other information that’s stored on
your servers—even the patent schematics for your perpetual motion
machine.

This chapter deals mostly with various ways to set up remote logging,
whether you’re setting up a simple central syslogd for your servers to log to,
setting up your Windows machines to log events to your syslog server, or
using syslog-ng to collect logs from remote sites through an encrypted TCP
connection. Using these methods, you can ensure that your logs are sitting
safely on a dedicated server that’s running minimal services, to decrease the
chance that the logs will be compromised.

Once you have all your logs collected in a central place, what can you do
with them? This chapter also covers ways to summarize your logs into
reports that are easy to read and understand, so you can quickly spot the
most pertinent information. If that’s not fast enough for you, you’ll also
learn how to set up real-time alerts that will notify you as soon as a critical
event occurs. In some circumstances, responding immediately to an event—
rather than waiting around for it to end up in a report that you read the next
morning—can save hours of effort.

Run a Central Syslog Server #79

Chapter 8, Logging | 251

HACK

Finally, you’ll see how to set up a host intrusion detection system (IDS) that
goes the extra mile so that you don’t have to; it will monitor your logs, cor-
relate events, and respond to them automatically.

H A C K

#79
Run a Central Syslog Server Hack #79

Keep your logs safe from attackers by storing them remotely.

How do you find out when or if an intruder has gained entry into one of
your systems? By checking your logs, of course. But what if the intruder
modified the logs? In this situation, centralized logging definitely saves the
day. After all, if a machine is compromised but the log evidence isn’t kept on
that machine, it’s going to be much more difficult for the attacker to cover
his tracks. In addition to providing an extra level of protection, it’s much
easier to monitor the logs for a whole network of machines when they’re all
in one place.

To set up a central syslog server quickly, just start your syslogd with the
switch that causes it to listen for messages from remote machines on a UDP
port.

Under Linux, do this by specifying the -r command-line option:

/usr/sbin/syslogd -m 0 -r

Under FreeBSD, run syslogd without the -s command-line option:

/usr/sbin/syslogd

The -s option causes FreeBSD’s syslogd to not listen for remote connec-
tions. FreeBSD’s syslogd also allows you to restrict the hosts from which it
will receive messages. To set these restrictions, use the -a option, which has
the following forms:

ipaddr/mask[:service]
domain[:service]
*domain[:service]

The first form allows you to specify a single IP address or group of IP
addresses by using the appropriate netmask. The service option allows you
to specify a source UDP port. If nothing is specified, it defaults to port 514,
which is the default for the syslog service. The next two forms allow you to
restrict access to a specific domain name, as determined by a reverse lookup
of the IP address of the connecting host. The difference between the second
and third forms is the use of the * wildcard character, which specifies that all
machines ending in domain may connect.

Moving on, OpenBSD uses the -u option to listen for remote connections:

/usr/sbin/syslogd -a /var/empty/dev/log -u

252 | Chapter 8, Logging

#80 Steer Syslog
HACK

whereas Solaris’s syslogd uses -T:

/usr/sbin/syslogd -T

Now, let’s set up the clients. If you want to forward all logging traffic from a
machine to your central log host, simply put the following in your /etc/
syslog.conf file:

. @loghost

You can either make this the only line in the configuration file, in which case
messages will be logged only to the remote host, or add it to what is already
there, in which case logs will be stored both locally and remotely for safe-
keeping.

One drawback to remote logging is that the stock syslogd for most operating
systems fails to provide any measure of authentication or access control with
regard to who may write to a central log host. Firewalls can provide some
protection, keeping out everyone but those who are most determined to
undermine your logging infrastructure; however, intruders who have already
gained access to your local network can easily spoof their network connec-
tions and bypass any firewall rules that you set up. If you’ve determined that
this is a concern for your network, set up remote logging using public-key
authentication and SSL-encrypted connections [Hack #84].

H A C K

#80
Steer Syslog Hack #80

Make syslog work harder, and spend less time looking through huge log files.

The default syslog installation on many distributions doesn’t do a very good
job of filtering classes of information into separate files. If you see a jumble
of messages from Sendmail, sudo, BIND, and other system services in /var/
log/messages, you should probably review your /etc/syslog.conf file.

Syslog can filter on a number of facilities and priorities, including auth, auth-
priv, cron, daemon, kern, lpr, mail, news, syslog, user, uucp, and local0
through local7. In addition, each facility can have one of eight priorities:
debug, info, notice, warning, err, crit, alert, and emerg.

Note that most applications decide for themselves what facility and priority
to log at (although the best apps let you choose), so they might not be
logged as you expect. Here’s a sample /etc/syslog.conf that attempts to shuf-
fle around what gets logged where:

auth.warning /var/log/auth
mail.err /var/log/maillog
kern.* /var/log/kernel
cron.crit /var/log/cron
*.err;mail.none /var/log/syslog

Steer Syslog #80

Chapter 8, Logging | 253

HACK

*.info;auth.none;mail.none /var/log/messages

#*.=debug /var/log/debug

local0.info /var/log/cluster
local1.err /var/log/spamerica

All of the lines in this example log the specified priority (or higher) to the
respective file. The special priority none tells syslog not to bother logging the
specified facility at all. The local0 through local7 facilities are supplied for
use with your own programs, however you see fit. For example, the /var/log/
spamerica file fills with local1.err (or higher) messages that are generated by
our spam processing job. It’s nice to have those messages separate from the
standard mail delivery log (which is in /var/log/maillog).

The commented *.=debug line is useful when debugging daemonized ser-
vices. It tells syslog to specifically log only debug priority messages of any
facility, and it generally shouldn’t be running (unless you don’t mind filling
your disks with debug logs).

Another approach is to log debug information to a FIFO. This way, debug
logs take up no space, but they will disappear unless a process is watching
the FIFO. To log to a FIFO, first create it in the filesystem:

mkfifo -m 0664 /var/log/debug

Then, uncomment the debug line in syslog.conf and amend it to include a |,
like this:

*.=debug |/var/log/debug

Now, debug information will be constantly logged to the FIFO and can be
viewed with a command like less -f /var/log/debug.

A FIFO is also handy if you want a process to constantly watch all system
messages and perhaps notify you via email about any critical messages. Try
making a FIFO called /var/log/monitor and adding a rule like this to your
syslog.conf:

. |/var/log/monitor

Now, every message (at every priority) is passed to the /var/log/monitor
FIFO, and any process watching it can react accordingly, all without taking
up any disk space.

If you notice a bunch of lines like the following in /var/log/messages, you
might be wondering why they’re there:

Dec 29 18:33:35 catlin -- MARK --
Dec 29 18:53:35 catlin -- MARK --
Dec 29 19:13:35 catlin -- MARK --
Dec 29 19:33:35 catlin -- MARK --

254 | Chapter 8, Logging

#81 Integrate Windows into Your Syslog Infrastructure
HACK

Dec 29 19:53:35 catlin -- MARK --
Dec 29 20:13:35 catlin -- MARK --
Dec 29 20:33:35 catlin -- MARK --
Dec 29 20:53:35 catlin -- MARK --
Dec 29 21:13:35 catlin -- MARK --

These are generated by the mark functionality of syslog, as a way of “touch-
ing base” with the system, so that you can (theoretically) tell if syslog has
unexpectedly died. This generally only serves to fill up your log files, and
unless you are having problems with syslog, you probably don’t need it. To
turn this function off, pass the -m 0 switch to syslogd (after first killing any
running syslogd processes), like this:

killall syslogd; /usr/sbin/syslogd -m 0

If all of this fiddling about with facilities and priorities strikes you as arcane
Unix-speak, you’re not alone. These examples are provided for systems that
include the default (and venerable) syslogd. If you have the opportunity to
install a new syslogd, you will likely want to look into syslog-ng. This new
implementation of syslogd allows much more flexible filtering and offers a
slew of new features. “Aggregate Logs from Remote Sites” [Hack #84] takes a
look at some of what is possible with syslog-ng.

—Rob Flickenger

H A C K

#81
Integrate Windows into Your Syslog Infrastructure Hack #81

Keep track of all of your Windows hosts the Unix way.

Keeping tabs on all the Event Logs for all your Windows hosts can be hard
enough, but it’s even more difficult if your propensities predispose you to
Unix. After all, Unix systems keep their logs in plain-text files that are easily
searchable with common shell commands. This is a world apart from the
binary logs that Windows keeps in its Event Log.

Wouldn’t it be nice if you could have your Windows machines work more
like Unix machines? Fortunately, you’re not the first one to think that.
NTsyslog (http://ntsyslog.sourceforge.net) is a freely available service written
for Windows 2000 and XP that allows you to log to a remote syslogd. For
Windows 2003 Server, you can use EventLog to Syslog (https://engineering.
purdue.edu/ECN/Resources/Documents/UNIX/evtsys/).

Using NTsyslog
To set up NTsyslog, just download and unpack the ZIP file available at http://
sourceforge.net/projects/ntsyslog/, and then run the setup program (e.g.,
SetupNTSyslog-1.13.exe).

Integrate Windows into Your Syslog Infrastructure #81

Chapter 8, Logging | 255

HACK

To verify that it was installed, open up the Administrative Tools Control
Panel applet and double-click the Services icon. Then, scroll around and
look for the NTsyslog service. You should see something similar to
Figure 8-1.

By default, NTsyslog installs itself to run under the Local System account,
which has complete access to the resources of the local host. This is obvi-
ously not the optimal configuration, since the NTsyslog service needs access
to the Event Log and nothing else. You can change the default by double-
clicking the NTsyslog line in the Services Control Panel applet, as shown in
Figure 8-1, which brings up the Properties dialog for the service.

However, before you do this, you might want to create an account specifi-
cally for the NTsyslog service that has only the necessary privileges for
NTsyslog to run properly. To do this, go back to the Administrative Tools
window and double-click the Computer Management icon. After clicking
the Local Users and Groups icon, you should see something similar to
Figure 8-2.

Right-click the Users folder and click New User to bring up a dialog where
you can enter the information for the new user. Enter information similar to
that shown in Figure 8-3, and make sure you pick a strong password.

Figure 8-1. The Services Control Panel applet with the NTsyslog service shown

256 | Chapter 8, Logging

#81 Integrate Windows into Your Syslog Infrastructure
HACK

Now, you need to give your new user the rights it needs to do its job.
Double-click the Local Security Policy icon in the Administrative Tools win-
dow. Choose the Local Policies folder in the left pane of the Local Security
Settings window, and then double-click the User Rights Assignment folder in
the right pane of the window. You should now see something similar to
Figure 8-4.

Figure 8-2. The Computer Management Control Panel applet with the Users folder
shown

Figure 8-3. Creating a new user for NTsyslog

Integrate Windows into Your Syslog Infrastructure #81

Chapter 8, Logging | 257

HACK

The access right you’re looking for is “Manage auditing and security log.”
Double-click it in the Policy list to bring up a dialog like the one shown in
Figure 8-5.

Figure 8-4. Viewing the User Rights Assignments settings in the Local Security Settings
Control Panel applet

Figure 8-5. Settings for the “Manage auditing and security log” user right

258 | Chapter 8, Logging

#81 Integrate Windows into Your Syslog Infrastructure
HACK

Click the Add button, select the name of the user from the list, and then
click OK.

You now have the account and have given it the proper access rights, so go
back to the Services window and double-click the NTsyslog service to bring
up its Properties dialog. Click the Log On tab to bring up the dialog shown
in Figure 8-6.

Click the “This account” radio button to enable the Browse... button. Now,
click the Browse... button and locate and select the account that you cre-
ated. Then click the OK button. You should now see the account name in
the text box to the right of the “This account” radio button. Enter the pass-
word you set for the account and confirm it.

After you click the Apply button, a new dialog will confirm that the Log On
As A Service right has been granted to the account. Click the OK button,
and then go to the General tab in the Properties dialog. To start the service
as the new user that you created, click the Start button. If you get an error
dialog, you will need to change the ACL for the ntsyslog.exe file and add
Read and Execute permissions for the new account.

Now, you’ll use the included configuration program to configure the set-
tings particular to NTsyslog. You can use this to set up a primary and

Figure 8-6. The Log On tab for the NTsyslog service Properties dialog

Integrate Windows into Your Syslog Infrastructure #81

Chapter 8, Logging | 259

HACK

secondary syslogd to send messages to, as well as to specify the types of
Event Log events to send and their mappings to syslog facilities and severi-
ties. You can also start and stop the NTsyslog service from this screen. To
use the configuration program, run NTSyslogCtrl.exe. You should see a win-
dow like the one shown in Figure 8-7.

To start the service, click the Start Service button; to stop the service, click
the Stop Service button. Clicking the Syslog Daemons button brings up the
dialog shown in Figure 8-8.

Again, this is pretty straightforward. Just put in the host you want to log to,
and, if you have a secondary syslog host, put that in the appropriate field.

The most difficult part of the configuration is setting up the mappings of the
Event Log entry types to the syslog facilities and severity levels, but even this
is fairly easy. In the drop-down list (shown in Figure 8-7), you can select
between the Application, Security, and System Event Logs. To configure
one, simply select it and click the EventLog button. If you select the Secu-
rity log and click the EventLog button, you should see something similar to
Figure 8-9.

To enable the forwarding of a particular type of event, click the checkbox
next to it. Using the drop-down listboxes, you can also configure the facility
and severity mappings for each type. Since this is the Security log, you

Figure 8-7. The NTsyslog configuration program

260 | Chapter 8, Logging

#81 Integrate Windows into Your Syslog Infrastructure
HACK

should probably pick one of the security/auth syslog facilities. For the sever-
ity, choose something that sounds similar to the Event Log type. For exam-
ple, I selected (4)security/auth1 and (6)information for the Information
type for the Security Event Log.

Alternatively, you can select a facility and severity that are not used on any
of your Unix servers, and have your syslogd log all Windows events to a
common file separate from your Unix logs. Or, if you’re using syslog-ng [Hack

#84], you can use any facility you like and filter out your Windows hosts by
IP address.

Figure 8-8. Specifying a primary and backup syslog server

Figure 8-9. Mapping Security Event Log entries to syslog facilities and severities

Integrate Windows into Your Syslog Infrastructure #81

Chapter 8, Logging | 261

HACK

When you’re finished, try logging in and out a few times using an incorrect
password so that you can see that everything is working.

If it is, you should see login failure messages similar to this:

Oct 29 17:19:04 plunder security[failure] 529 NT AUTHORITY\\SYSTEM Logon
Failure:
Reason:Unknown user name or bad password User Name:andrew Domain:PLUNDER
Logon Type:2
Logon Process:User32 Authentication Package:Negotiate Workstation Name:
PLUNDER

Using Eventlog to Syslog
If you’re using Windows 2003, NTsyslog might appear to work, but in fact
it will repeatedly send the same log messages to your syslog server. If that’s
the case, you can use Eventlog to Syslog to fill in for NTsyslog. Setting up
Eventlog to Syslog involves downloading the prebuilt executables from its
project page, extracting them from their ZIP file, and then copying evtsys.dll
and evtsys.exe to your %systemroot%\system32 directory (e.g., C:\
WINDOWS\system32). Then, open a command prompt and run a com-
mand similar to the following:

C:\> WINDOWS\system32\evtsys -i -h 192.168.0.43

Replace the IP address with the IP address of your syslog server. While you
have the command prompt window open, you can then start the service by
running net start evtsys. As it starts, you should see entries similar to
these on your syslog server:

May 6 20:01:37 192.168.0.204 Eventlog to Syslog Service Started: Version 3.
4.1
May 6 20:01:43 192.168.0.204 Service Control Manager: Administrator: The
Eventlog to Syslog service was successfully sent a start control.
May 6 20:01:43 192.168.0.204 Service Control Manager: N/A: The Eventlog to
Syslog service entered the running state.

As with NTsyslog, you can create an account that has access only to the
Event Logs and have Eventlog to Syslog run with its privileges. Unfortu-
nately, unlike NTsyslog, Eventlog to Syslog won’t allow you to specify what
log facilities and levels to use.

Now that you have your Windows logs going to a Unix log host, you can
use the wealth of flexible Unix log-monitoring tools to keep tabs on all your
Windows systems.

262 | Chapter 8, Logging

#82 Summarize Your Logs Automatically
HACK

H A C K

#82
Summarize Your Logs Automatically Hack #82

Wade through that haystack of logs to find the proverbial needle.

If you’re logging almost every piece of information you can from all services
and hosts on your network, no doubt you’re drowning in a sea of informa-
tion. One way to keep abreast of the real issues affecting your systems is by
summarizing your logs. This is easy with the logwatch tool (http://www.
logwatch.org).

logwatch analyzes your system logs over a given period of time and automat-
ically generates reports, and it can easily be run from cron so that it can
email you the results. logwatch is available with most Red Hat Linux distri-
butions. You can also download RPM packages from the project’s web site if
you are using another RPM-based Linux distribution.

To compile logwatch from source, download the source code package. Since
it is a script, there is no need to compile anything. Thus, installing it is as
simple as copying the logwatch script to a directory.

You can install it by running these commands:

tar xfz logwatch-5.0.tar.gz
cd logwatch-5.0
mkdir /etc/log.d
cp -R conf lib scripts /etc/log.d

You can also install the manual page and, for added convenience, create a
link from the logwatch.pl script to /usr/sbin/logwatch:

cp logwatch.8 /usr/share/man/man8
(cd /usr/sbin && \
ln -s ../../etc/log.d/scripts/logwatch.pl logwatch)

Running the following command will give you a taste of the summaries log-
watch creates:

logwatch --print | less
################### LogWatch 4.3.1 (01/13/03) ####################
 Processing Initiated: Sat Dec 27 21:12:26 2003
 Date Range Processed: yesterday
 Detail Level of Output: 0
 Logfiles for Host: colossus
 ##

 --------------------- SSHD Begin ------------------------

Users logging in through sshd:
 andrew logged in from kryten.nnc (192.168.0.60) using password: 2 Time(s)

 ---------------------- SSHD End -------------------------

 ###################### LogWatch End #########################

Monitor Your Logs Automatically #83

Chapter 8, Logging | 263

HACK

If you have an /etc/cron.daily directory, you can simply make a symbolic link
from the logwatch.pl script to /etc/cron.daily/logwatch.pl, and the script will
run daily. Alternatively, you can create an entry in root’s crontab, in which
case you can also modify logwatch’s behavior by passing it command-line
switches. For instance, you can change the email address that logwatch
sends reports to by using the --mailto command-line option. They are sent
to the local root account by default, which is probably not what you want.

logwatch supports most standard log files without any additional configura-
tion, but you can easily add support for any other type of log file. To do this,
you first need to create a log file group configuration for the new file type in
/etc/log.d/conf/logfiles. This file just needs to contain an entry pointing
logwatch to the log file for the service and another entry specifying a glob-
bing pattern for any archived log files for that service.

For example, if you have a service called myservice, you can create /etc/log.d/
conf/logfiles/myservice.conf with these contents:

LogFile = /var/log/myservice
Archive = /var/log/myservice.*

Next, you need to create a service definition file. This should be called /etc/
log.d/conf/services/myservice.conf and should contain the following line:

LogFile = myservice

Finally, since logwatch is merely a framework for generating log file summa-
ries, you’ll also need to create a script in /etc/log.d/scripts/services called
myservice. When logwatch executes, it will strip all time entries from the logs
and pass the rest of the log entry through standard input to the myservice
script. Therefore, you must write your script to read from standard input,
parse out the pertinent information, and then print it to standard output.

This hack just scratches the surface of how to get logwatch running on your
system. There is a great deal of information in the HOWTO-Make-Filter,
which is included with the logwatch distribution.

H A C K

#83
Monitor Your Logs Automatically Hack #83

Use swatch to alert you to possible problems as they happen.

Automatically generated log file summaries are fine for keeping abreast of
what’s happening with your systems and networks, but if you want to know
about events as they happen, you’ll need to look elsewhere. One tool that can
help keep you informed in real time is swatch (http://swatch.sourceforge.net),
the “Simple WATCHer.”

264 | Chapter 8, Logging

#83 Monitor Your Logs Automatically
HACK

swatch is a highly configurable log file monitor that can watch a file for user-
defined triggers and dispatch alerts in a variety of ways. It consists of a Perl
program, a configuration file, and a library of actions to take when it sees a
trigger in the file it is monitoring.

Installing swatch
To install swatch, download the package, unpack it, and go into the direc-
tory that it creates. Then, run these commands:

perl Makefile.PL
make && make install

Before swatch will build, you’ll need to install the Date::Calc, Date::Parse,
and Time::HiRes Perl CPAN modules. If they’re not already installed, run-
ning perl Makefile.PL will produce the following error message:

Warning: prerequisite Date::Calc 0 not found.
Warning: prerequisite Date::Parse 0 not found.
Warning: prerequisite Time::HiRes 1.12 not found.
Writing Makefile for swatch

If you already have Perl’s CPAN modules installed, simply run these
commands:

perl -MCPAN -e "install Date::Calc"
perl -MCPAN -e "install Date::Parse"
perl -MCPAN -e "Time::HiRes"

By default, swatch looks for its configuration in a file called .swatchrc in the
current user’s home directory. This file contains regular expressions to
watch for in the file that you are monitoring with swatch. If you want to use
a different configuration file, tell swatch by using the -c command-line
switch.

For instance, to use /etc/swatch/messages.conf to monitor /var/log/messages,
invoke swatch like this:

swatch -c /etc/swatch/messages.conf -t /var/log/messages

Configuration Syntax
Here’s the general format for entries in the configuration file:

watchfor /<regex>/
<action1>
[action2]
[action3]
...

Monitor Your Logs Automatically #83

Chapter 8, Logging | 265

HACK

Alternatively, you can ignore specific log messages that match a regular
expression by using the ignore keyword:

ignore /<regex>/

You can also specify multiple regular expressions by separating them with
the pipe (|) character.

swatch is very configurable in terms of the actions it can take when a string
matches a regular expression. Some useful actions that you can specify in
your .swatchrc file are echo, write, exec, mail, pipe, and throttle.

The echo action simply prints the matching line to the console; additionally,
you can specify what text mode it will use. Thus, lines can be printed to the
console as bold, underlined, blinking, inverted, or colored text.

For instance, if you want to print a matching line in red, blinking text, use
the following action:

echo blink,red

The write action is similar to the echo action, except it does not support text
modes. It can, however, write the matching line to any specified user’s TTY:

write user:user2:...

The exec action allows you to execute any command:

exec <command>

You can use the $0 or $* variables to pass the entire matching line to the
command that you execute, or use $1 to pass the first field in the line, $2 for
the second, and so on. So, if you want to pass only the second and third
fields from the matching line to the command mycommand, use an action like
this:

exec "mycommand $2 $3"

In addition to the exec action, swatch can execute external commands with
the pipe action. The only difference is that instead of passing arguments to
the command, swatch will execute the command and pipe the matching line
to it. To use this action, just put the pipe keyword followed by the com-
mand you want to use.

Alternatively, to increase performance, you can use the keep_open option to
keep the pipe to the program open until swatch exits or needs to perform a
different pipe action:

pipe mycommand,keep_open

The mail action is especially useful if you have an email-enabled or text-
messaging-capable cell phone or pager. When using the mail action, you can
list as many recipient addresses as you like, in addition to specifying a

266 | Chapter 8, Logging

#84 Aggregate Logs from Remote Sites
HACK

subject line. swatch will send the line that matched the regular expression to
these addresses with the subject you set.

Here is the general form of the mail action:

mail addresses=address:address2:...,subject=mysubject

When using the mail action, be sure to escape the @ characters in the email
addresses (i.e., @ becomes \@). Escape any spaces in the subject of the email
as well.

One problem with executing commands or sending emails whenever a spe-
cific string occurs in a log message is that sometimes the same log message
might be generated over and over again rapidly. Clearly, if this were to hap-
pen, you wouldn’t want to get paged or emailed 100 times within a 10-
minute period. To alleviate this problem, swatch provides the throttle
action. This action lets you suppress a specific message or any message that
matches a particular regular expression for a specified amount of time.

The general form of the throttle action is:

throttle h:m:s

The throttle action will throttle based on the contents of the message by
default. If you would like to throttle the actions based on the regular expres-
sion that caused the match, you can add ,use=regex to the end of your
throttle statement.

swatch is an incredibly useful tool, but it can take some work to create a
good .swatchrc file. The best way to figure out what to look for is to exam-
ine your log files for behavior that you want to monitor closely.

H A C K

#84
Aggregate Logs from Remote Sites Hack #84

Integrate collocated and other remote systems or networks into your central
syslog infrastructure.

Monitoring the logs of a remote site or even a collocated server can often be
overlooked when faced with the task of monitoring activity on your local
network. You could use the traditional syslog facilities to send logging infor-
mation from the remote network or systems, but since the syslog daemon
uses UDP for sending to remote systems, this is not an ideal solution. UDP
provides no reliability in its communications, so you risk losing logging
information. In addition, the traditional syslog daemon has no means to
encrypt the traffic that it sends, so your logs might be viewable by anyone
with access to the intermediary networks between you and your remote
hosts or networks.

Aggregate Logs from Remote Sites #84

Chapter 8, Logging | 267

HACK

Compiling syslog-ng
To get around these issues, you’ll have to look beyond the syslog daemon
that comes with your operating system and find a replacement. One such
replacement syslog daemon is syslog-ng (http://www.balabit.com/products/
syslog_ng/). syslog-ng is not only a fully functional replacement for the tradi-
tional syslog daemon, but it also adds flexible message filtering capabilities,
as well as support for logging to remote systems over TCP (in addition to
support for the traditional UDP protocol). With the addition of TCP sup-
port, you can also employ stunnel or ssh to securely send the logs across
untrusted networks.

You can build syslog-ng by running commands like these:

$ tar xfz syslog-ng-1.6.11.tar.gz
$ cd syslog-ng-1.6.11
$./configure
$ make

If you want to compile in TCP wrappers support, add the --enable-tcp-
wrapper flag to the configure script. After syslog-ng is finished compiling,
become root and run make install. This will install the syslog-ng binary and
manpages. To configure the daemon, create the /usr/local/etc/syslog-ng
directory and then create a syslog-ng.conf file to put in it. To start, you can
use one of the sample configuration files in the doc directory of the syslog-ng
distribution.

Configuring syslog-ng
There are five types of configuration file entries for syslog-ng, each of which
begins with a specific keyword:

options
The options entry allows you to tweak the behavior of the daemon, such
as how often the daemon will sync (write) the logs to the disk, whether
the daemon will create directories automatically, and hostname expan-
sion behavior.

source
source entries tell syslog-ng where to collect log entries. Sources can
include Unix sockets, TCP or UDP sockets, files, or pipes.

destination
destination entries allow you to specify possible places for syslog-ng to
send logs to. You can specify files, pipes, Unix sockets, TCP or UDP
sockets, TTYs, or programs.

268 | Chapter 8, Logging

#84 Aggregate Logs from Remote Sites
HACK

filter
Sources and destinations are then combined with filters, which let you
select syslog facilities and log levels, using the filter keyword.

log
Finally, these are all used together in a log entry to define precisely
where the information is logged.

Thus, you can arbitrarily specify any source, select what syslog facilities and
levels you want from it, and then route it to any destination. This is what
makes syslog-ng an incredibly powerful and flexible tool.

Translating Your syslog.conf
To set up syslog-ng on the remote end so that it can replace syslogd on the
system and send traffic to a remote syslog-ng, you’ll first need to translate
your syslog.conf to equivalent source, destination, and log entries.

Here’s the syslog.conf for a FreeBSD system:

*.err;kern.debug;auth.notice;mail.crit /dev/console
*.notice;kern.debug;lpr.info;mail.crit;news.err /var/log/messages
security.* /var/log/security
auth.info;authpriv.info /var/log/auth.log
mail.info /var/log/maillog
lpr.info /var/log/lpd-errs
cron.* /var/log/cron
*.emerg *

First, you’ll need to configure a source. Under FreeBSD, /dev/log is a link to
/var/run/log. The following source entry tells syslog-ng to read entries from
this file:

source src { unix-dgram("/var/run/log"); internal(); };

Linux users specify unix-stream and /dev/log, like this:

source src { unix-stream("/dev/log"); internal() };

The internal() entry is for messages generated by syslog-ng itself. Notice
that you can include multiple sources in a source entry. Next, include
destination entries for each of the actual log files:

destination console { file("/dev/console"); };
destination messages { file("/var/log/messages"); };
destination security { file("/var/log/security"); };
destination authlog { file("/var/log/auth.log"); };
destination maillog { file("/var/log/maillog"); };
destination lpd-errs { file("/var/log/lpd-errs"); };
destination cron { file("/var/log/cron"); };
destination slip { file("/var/log/slip.log"); };
destination ppp { file("/var/log/ppp.log"); };
destination allusers { usertty("*"); };

Aggregate Logs from Remote Sites #84

Chapter 8, Logging | 269

HACK

In addition to these destinations, you’ll also want to specify one for remote
logging to another syslog-ng process. This can be done with a line similar to
this:

destination loghost { tcp("192.168.0.2" port(5140)); };

The port number can be any available TCP port.

Defining the filters is straightforward. You can simply create one for each
syslog facility and log level, or you can create them according to those used
in your syslog.conf. If you do the latter, you will only have to specify one
filter in each log statement, but it will still take some work to create your
filters.

Here are some example filters for the syslog facilities:

filter f_auth { facility(auth); };
filter f_authpriv { facility(authpriv); };
filter f_console { facility(console); };
filter f_cron { facility(cron); };
filter f_daemon { facility(daemon); };
filter f_ftp { facility(ftp); };
filter f_kern { facility(kern); };
filter f_lpr { facility(lpr); };
filter f_mail { facility(mail); };
filter f_news { facility(news); };
filter f_security { facility(security); };
filter f_user { facility(user); };
filter f_uucp { facility(uucp); };

and some examples for the log levels:

filter f_emerg { level(emerg); };
filter f_alert { level(alert..emerg); };
filter f_crit { level(crit..emerg); };
filter f_err { level(err..emerg); };
filter f_warning { level(warning..emerg); };
filter f_notice { level(notice..emerg); };
filter f_info { level(info..emerg); };
filter f_debug { level(debug..emerg); };

Now, you can combine the sources with the proper filters and
destinations within the log entries:

*.err;kern.debug;auth.notice;mail.crit /dev/console
log { source(src); filter(f_err); destination(console); };
log { source(src); filter(f_kern); filter(f_debug); destination(console); };
log { source(src); filter(f_auth); filter(f_notice); destination(console);
};
log { source(src); filter(f_mail); filter(f_crit); destination(console); };

*.notice;kern.debug;lpr.info;mail.crit;news.err /var/log/messages
log { source(src); filter(f_notice); destination(messages); };

270 | Chapter 8, Logging

#84 Aggregate Logs from Remote Sites
HACK

log { source(src); filter(f_kern); filter(f_debug); destination(messages);
};
log { source(src); filter(f_lpr); filter(f_info); destination(messages); };
log { source(src); filter(f_mail); filter(f_crit); destination(messages); };
log { source(src); filter(f_news); filter(f_err); destination(messages); };

security.* /var/log/security
log { source(src); filter(f_security); destination(security); };

auth.info;authpriv.info /var/log/auth.log
log { source(src); filter(f_auth); filter(f_info); destination(authlog); };
log { source(src); filter(f_authpriv); filter(f_info); destination(authlog);
};

mail.info /var/log/maillog
log { source(src); filter(f_mail); filter(f_info); destination(maillog); };

lpr.info /var/log/lpd-errs
log { source(src); filter(f_lpr); filter(f_info); destination(lpd-errs); };

cron.* /var/log/cron
log { source(src); filter(f_cron); destination(cron); };

*.emerg *
log { source(src); filter(f_emerg); destination(allusers); };

You can set up the machine that will be receiving the logs in much the same
way as if you were replacing the currently used syslogd.

To configure syslog-ng to receive messages from a remote host, you must
specify a source entry for that machine:

source r_src { tcp(ip("192.168.0.2") port(5140)); };

Alternatively, you can dump all the logs from the remote machine(s) into the
same destinations that you use for your local log entries. This is not really
recommended, because it can be a nightmare to manage, but you can do it
by including multiple source drivers in the source entry that you use for your
local logs:

source src {
 unix-dgram("/var/run/log");
 tcp(ip("192.168.0.2") port(5140));
 internal();
};

Now, logs gathered from remote hosts will appear in any of the destinations
that were combined with this source.

If you would like all logs from remote hosts to go into a separate file named
for each host in /var/log, you could use a destination entry like this:

destination r_all { file("/var/log/$HOST"); };

Aggregate Logs from Remote Sites #84

Chapter 8, Logging | 271

HACK

syslog-ng will expand the $HOST macro to the hostname of the system send-
ing it logs and create a file named after it in /var/log. This would be an
appropriate log entry to use in this case:

log { source(r_src); destination(r_all); };

However, an even better method is to recreate all of the remote syslog-ng log
files on your central log server. For instance, a destination for a remote
machine’s messages file would look like this:

destination fbsd_messages { file("/var/log/$HOST/messages"); };

Notice here that the $HOST macro is used in place of a directory name. If you
are using a destination entry like this, be sure to create the directory before-
hand, or use the create_dirs() option:

options { create_dirs(yes); };

syslog-ng’s macros are a powerful feature. For instance, if you want to sepa-
rate logs by hostname and day, you can use a destination like this:

destination fbsd_messages {
 file("/var/log/$HOST/$YEAR.$MONTH.$DAY/messages");
};

You can combine the remote source with the appropriate destinations for
the logs coming in from the network, just as you did when configuring
syslog-ng for local logging; just specify the remote source with the proper
destination and filters.

Another neat thing you can do with syslog-ng is collect logs from a number
of remote hosts and then send all of those to yet another syslog-ng daemon.
You can do this by combining a remote source and a remote destination
with a log entry:

log { source(r_src); destination(loghost); };

Since syslog-ng is now using TCP ports, you can use any encrypting tunnel
you like to secure the traffic between your syslog-ng daemons. You can use
SSH port forwarding [Hack #96] or stunnel [Hack #100] to create an encrypted
channel between each of your servers. By limiting connections on the listen-
ing port to include only localhost (using firewall rules, as in “Firewall with
Netfilter” [Hack #44] or “Firewall with OpenBSD’s PacketFilter” [Hack #45]), you
can eliminate the possibility of bogus log entries or denial-of-service attacks.

Server logs provide some of the most critical information that a system
administrator needs to do her job. Using new tools and strong encryption,
you can keep your valuable log data safe from prying eyes.

272 | Chapter 8, Logging

#85 Log User Activity with Process Accounting
HACK

H A C K

#85
Log User Activity with Process Accounting Hack #85

Keep a detailed audit trail of what’s being done on your systems.

Process accounting allows you to keep detailed logs of every command a user
runs, including CPU time and memory used. From a security standpoint,
this means the system administrator can gather information about what user
ran which command and at what time. This information is useful not only in
assessing a break-in or local root compromise, but also for spotting
attempted malicious behavior by legitimate users.

Remember that intrusions don’t always come from the out-
side.

To enable process accounting, run these commands:

mkdir /var/account
touch /var/account/pacct && chmod 660 /var/account/pacct
/sbin/accton /var/account/pacct

Alternatively, if you are running Red Hat or SuSE Linux and have the pro-
cess accounting package installed, you can run a startup script to enable
process accounting. On Red Hat, try this:

chkconfig psacct on
/sbin/service psacct start

On SuSE, use these commands:

chkconfig acct on
/sbin/service acct start

The process accounting package provides several programs to make use of
the data being logged. The ac program analyzes total connect time for users
on the system. Running it without any arguments prints out the number of
hours logged by the current user:

[andrew@colossus andrew]$ ac
 total 106.23

If you want to display connect time for all users who have logged onto the
system, use the -p switch:

ac -p
 root 0.07
 andrew 106.05
 total 106.12

The lastcomm command lets you search the accounting logs by username,
command name, or terminal:

lastcomm andrew
ls andrew ?? 0.01 secs Mon Dec 15 05:58

Centrally Monitor the Security Posture of Your Servers #86

Chapter 8, Logging | 273

HACK

rpmq andrew ?? 0.08 secs Mon Dec 15 05:58
sh andrew ?? 0.03 secs Mon Dec 15 05:44
gunzip andrew ?? 0.00 secs Mon Dec 15 05:44

lastcomm bash
bash F andrew ?? 0.00 secs Mon Dec 15 06:44
bash F root stdout 0.01 secs Mon Dec 15 05:20
bash F root stdout 0.00 secs Mon Dec 15 05:20
bash F andrew ?? 0.00 secs Mon Dec 15 05:19

To summarize the accounting information, you can use the sa command. By
default, it lists all the commands found in the accounting logs and prints the
number of times that each one has been executed:

sa
 14 0.04re 0.03cp 0avio 1297k troff
 7 0.03re 0.03cp 0avio 422k lastcomm
 2 63.90re 0.01cp 0avio 983k info
 14 34.02re 0.01cp 0avio 959k less
 14 0.03re 0.01cp 0avio 1132k grotty
 44 0.02re 0.01cp 0avio 432k gunzip

You can also use the -u flag to output per-user statistics:

sa -u
root 0.01 cpu 344k mem 0 io which
root 0.00 cpu 1094k mem 0 io bash
root 0.07 cpu 1434k mem 0 io rpmq
andrew 0.02 cpu 342k mem 0 io id
andrew 0.00 cpu 526k mem 0 io bash
andrew 0.01 cpu 526k mem 0 io bash
andrew 0.03 cpu 378k mem 0 io grep
andrew 0.01 cpu 354k mem 0 io id
andrew 0.01 cpu 526k mem 0 io bash
andrew 0.00 cpu 340k mem 0 io hostname

Peruse the output of these commands every so often to look for suspicious
activity, such as increases in CPU usage or commands that are known to be
used for mischief.

H A C K

#86
Centrally Monitor the Security Posture of Your
Servers Hack #86

Use OSSEC HIDS to monitor logs and the filesystem integrity of your servers
and to correlate events.

Securing a server doesn’t end with locking it down. Servers need to be moni-
tored constantly. While network intrusion detection systems are invaluable
for alerting you to possible attacks against any number of systems on your
network, they should really only be thought of as early warning systems.
Ultimately, you’ll need to monitor each of your systems in greater detail.

274 | Chapter 8, Logging

#86 Centrally Monitor the Security Posture of Your Servers
HACK

This involves keeping an eye on many different pieces of information for
each system, watching multitudes of different log files for evidence of
attacks, and inspecting important binaries for signs of tampering.

While you can use a variety of tools to aggregate logs from multiple systems
[Hack #79], automatically alert on certain strings [Hack #83], and check for modi-
fied files [Hack #122] and rootkits [Hack #124], these tools lack integration and, in
the end, become just more things that need to be monitored.

Thankfully, one tool can perform all of these tasks and more: OSSEC HIDS
(http://www.ossec.net). This leads to a sort of synergy that is not achievable
with the separate monitoring systems without additional integration work.
For instance, OSSEC can correlate events across different log files to trigger
specialized alerts. You can also deploy OSSEC in a client/server architecture
and easily scale it to monitor additional servers as you add them to your
infrastructure. And OSSEC is available for both Windows and Unix sys-
tems, which enables you to monitor the integrity of all your systems with a
single tool.

Installation
Getting started with OSSEC is easy. To install it, download the tarball from
the OSSEC HIDS web site and unpack it. Then, change into the directory
that was created (e.g., ossec-hids-0.8) and run the install.sh script. After
being asking which language to use for the installation, you’ll see a prompt
like this:

1- What kind of installation do you want (server, agent, local or help)?

If you want to install OSSEC on only a single machine, choose local. Of
course, if you want to set up an OSSEC client or a server, choose either
agent or server, respectively.

After you’ve chosen the type of installation to perform, the script will ask
you where to install it and where to send email alerts. At this point, you can
choose whether to install the system integrity checking and rootkit detec-
tion components and whether to enable active responses. This feature
allows you to react to events automatically as they happen, so you can pre-
vent intrusions from succeeding.

If you chose to do a local installation, all you need to do is configure
OSSEC. But before we look at how to do that, let’s look at how to do a cli-
ent/server installation.

First, you’ll need to perform a server installation on a machine. Then, you’ll
need to perform an agent install on one or more hosts. When selecting an
agent install, you’ll get this additional prompt:

 3.1- What's the IP Address of the OSSEC HIDS server?:

Centrally Monitor the Security Posture of Your Servers #86

Chapter 8, Logging | 275

HACK

Type the IP address of the machine on which you performed the server
installation. The rest of the prompts will be the same. The process that lis-
tens for agents, ossec-remoted, uses UDP port 1514, so make sure that your
firewall rules will let traffic from the agents reach it.

Adding Agents
After you’ve installed an agent, go to the system where you’ve installed the
server and add the agent:

/var/ossec/bin/manage_agents

**
* OSSEC HIDS v0.8 Agent manager. *
* The following options are available: *
**
 (A)dd an agent (A).
 (E)xtract key for an agent (E).
 (L)ist already added agents (L).
 (R)emove an agent (R).
 (Q)uit.
Choose your actions: A,E,L,R or Q: a

- Adding a new agent (use '\q' to return to main menu).
 Please provide the following:
 * A name for the new agent: spek
 * The IP Address for the new agent: 192.168.0.62
 * An ID for the new agent[001]:
Agent information:
 ID:001
 Name:spek
 IP Address:192.168.0.62

Confirm adding it?(y/n): y
Added.

You’ll then need to extract the key that was generated for the agent and
import it into the agent itself, so that it can talk to the server. Do this by run-
ning manage_agents again and typing e at the prompt:

...
Choose your actions: A,E,L,R or Q: e

Available agents:
 ID: 001, Name: spek, IP: 192.168.0.62
Provide the ID of the agent to extract the key (or '\q' to quit): 1
Agent key information for '001' is:
MDAxIHNwZWsgMTkyLjE2OC4wLjYyIDhhNzVmNGY1ZjBmNTIzNzI5NzAzMTRjMTFmNGVlOWZhZDEz
Y2QxZWY1ODQyZDEyMmFjYjM2YzVmY2JmYTg5OGM=

** Press ENTER to return main menu.

276 | Chapter 8, Logging

#86 Centrally Monitor the Security Posture of Your Servers
HACK

Now, go to the agent and do the following:

/var/ossec/bin/manage_agents

**
* OSSEC HIDS v0.8 Agent manager. *
* The following options are available: *
**
 (I)mport key for the server (I).
 (Q)uit.
Choose your actions: I or Q: i

* Provide the Key generated from the server.
* The best approach is to cut and paste it.
*** OBS: Do not include spaces or new lines.

Paste it here (or '\q' to quit):
MDAxIHNwZWsgMTkyLjE2OC4wLjYyIDhhNzVmNGY1ZjBmNTIzNzI5NzAzMTRjMTFmNGVlOWZ
hZDEzY2QxZWY1ODQyZDEyMmFjYjM2YzVmY2JmYTg5OGM=

Agent information:
 ID:001
 Name:spek
 IP Address:192.168.0.62

Confirm adding it?(y/n): y
Added.
** Press ENTER to return main menu.

Then start the server:

/var/ossec/bin/ossec-control start
Starting OSSEC HIDS v0.8 (by Daniel B. Cid)...
Started ossec-maild...
Started ossec-execd...
Started ossec-analysisd...
Started ossec-logcollector...
Started ossec-remoted...
Started ossec-syscheckd...
Completed.

Finally, start the agents:

/var/ossec/bin/ossec-control start
Starting OSSEC HIDS v0.8 (by Daniel B. Cid)...
Started ossec-execd...
Started ossec-agentd...
Started ossec-logcollector...
Started ossec-syscheckd...
Completed.

Unfortunately, the server will not provide any indication that the client can
or has connected to it until an alert is generated, so you’ll want to test it out

Centrally Monitor the Security Posture of Your Servers #86

Chapter 8, Logging | 277

HACK

by attempting to generate an alert. For instance, if you’re running an SSH
daemon on the agent system, you could try to SSH to the root account
(hopefully, you have root logins disabled, so this will be innocuous). If you
chose the default installation location for the server, you should be able to
find the alerts in /var/ossec/logs/alerts. Alerts are organized into directories
by year and month with separate files for each day (e.g., 2006/Jun/ossec-
alerts-01.log).

Check the proper alerts file, and you should see something similar to this:

** Alert 1149663466.1082:
2006 Jun 01 00:57:46 (spek) 192.168.0.62->/var/log/messages
Rule: 401 (level 5) -> 'User authentication failure.'
Src IP: (none)
User: (none)
sshd(pam_unix)[7917]: authentication failure; logname= uid=0 euid=0 tty=ssh
ruser= rhost=kryten.nnc user=root

** Alert 1149663468.1362:
2006 Jun 01 00:57:48 (spek) 192.168.0.62->/var/log/secure
Rule: 1516 (level 5) -> 'SSHD authentication failed.'
Src IP: 192.168.0.60
User: root
sshd[7917]: Failed password for root from 192.168.0.60 port 64206 ssh2

** Alert 1149663480.1604: mail
2006 Jun 01 00:58:00 (spek) 192.168.0.62->/var/log/messages
Rule: 402 (level 10) -> 'User missed the password more than one time'
Src IP: (none)
User: (none)
sshd(pam_unix)[7917]: 2 more authentication failures; logname= uid=0 euid=0
tty=ssh ruser= rhost=kryten.nnc user=root

You should also receive these alerts at the email address you specified on the
server during the installation process.

Installing a Windows Agent
The Windows version of OSSEC supports only the agent installation, which
you can set up by simply downloading the installer and launching it. When
it starts, it will ask you where to install the files and then execute the
manage_agents program. Here, you can import the key that you’ve gener-
ated for it the same way you did for the Unix version of the agent. After
you’ve entered the key and exited the agent management program, the
installer will present you with the OSSEC configuration file ossec.conf,
which is stored in the directory into which you chose to install the agent.

278 | Chapter 8, Logging

#86 Centrally Monitor the Security Posture of Your Servers
HACK

Unfortunately, the Windows installer isn’t as automated as the Unix install
script is, so you’ll have to enter the IP address of your OSSEC server manu-
ally. Locate the line that looks like this:

<server-ip>a.b.c.d</server-ip>

and replace a.b.c.d with the IP address of your server. After the installation
has completed, go to the Services Control Panel applet, locate the OSSEC
HIDS service, and start it. While you’re at it, you’ll probably want to also set
it to start automatically at system boot.

Now you can test it out with an approach similar to the one previously used
to test out the Unix agent. If you have account login auditing enabled for the
system, you can attempt to log into an account with an incorrect password,
which should create something like this in the current log file on your
OSSEC server:

** Alert 1149742916.124085:
2006 Jun 02 23:01:56 (blackbird) 192.168.0.67->WinEvtLog
Rule: 8005 (level 4) -> 'Windows audit failure event.'
Src IP: (none)
User: SYSTEM
WinEvtLog: Security: AUDIT_FAILURE(680): Security: SYSTEM: NT AUTHORITY:
BLACKBIRD: Logon attempt by: MICROSOFT_AUTHENTICATION_PACKAGE_V1_0 Logon
account: andrew Source Workstation: BLACKBIRD Error Code: 0xC000006A

Configuration
OSSEC’s default configuration file is formatted in XML and located at /var/
ossec/etc/ossec.conf (on Windows, this file will be in the directory into which
you chose to install OSSEC). Sections of particular interest for servers are
the <syscheck>, <localfile>, <alerts>, and <global> sections. The
<syscheck> section defines what files and directories OSSEC should check
for signs of tampering. The <frequency> tag specifies how often to perform
the check:

<frequency>7200</frequency>

7200 seconds (every two hours) is the default. If you’re running services that
are highly taxing on your disk subsystem, you might want to increase this
value, because checksumming files can be quite I/O intensive.

Specify which directories to check with the <directories> tag. The default is
to perform all checks on the files in each of the directories enclosed within
the tag in a comma-delimited list. This means that OSSEC will compare
each file’s MD5 checksum to previous values, as well as its size, owner,

Centrally Monitor the Security Posture of Your Servers #86

Chapter 8, Logging | 279

HACK

group, and permissions. The default configuration file checks in the follow-
ing directories:

<directories check_all="yes">/etc,/usr/bin,/usr/sbin</directories>
<directories check_all="yes">/bin,/sbin</directories>

Turn individual checks on or off by replacing the check_all attribute with
any combination of check_sum, check_size, check_owner, check_group, or
check_perm and setting them to either yes or no. If you want to ignore a par-
ticular file or directory, enclose it in <ignore> tags:

<ignore>/etc/mtab</ignore>

Moving on, <localfile> sections are used to specify log files to monitor.
Within them, you can use the <location> tag to specify the full path to the
log file. Specify the format of the file with the <log_format> tag. Valid values
for the format are syslog, snort-full, snort-fast, squid, or apache. Addi-
tionally, Windows users will find the iis and eventlog formats to be of par-
ticular interest, because they allow OSSEC to parse your IIS and Event Logs.

When an alert is triggered, OSSEC associates a severity level with it (from 1
to 16). You can use the <alerts> section to set the threshold at which to log
an alert or generate an email. Here are the defaults for these settings:

<alerts>
 <log_alert_level>1</log_alert_level>
 <email_alert_level>7</email_alert_level>
 </alerts>

Finally, use the <globals> section to define miscellaneous options that affect
OSSEC as a whole. For instance, you can modify the email settings that the
install script configured for you in this section.

This is also where you can use the <white_list> tag to specify the hosts that
should never be blocked with active responses. For instance, to make sure
that 10.0.0.123 is never blocked, add a line like this to the <globals> section:

<white_list>10.0.0.123</white_list>

Now, let’s look at how to configure active responses.

Active Responses
Active responses can vary from blocking hosts via firewalls to automatically
disabling user accounts. This is a powerful feature, but take special care
when using it. An active response might cause you to inadvertently DoS
yourself or provide easy means for an attacker to do so. That’s why OSSEC
provides a white-listing feature, to make sure dynamically added firewall
rules don’t lock out trusted hosts.

280 | Chapter 8, Logging

#86 Centrally Monitor the Security Posture of Your Servers
HACK

Active responses in OSSEC work by tying a command to an alert level and
any number of rule IDs. The active response is triggered when an alert for
one of the rules you’ve specified is generated and its level meets or exceeds
the one specified.

When setting up an active response, you must first define the command to
run and its parameters. Within a <command> block, define a name for the
command that will be executed when the command is associated with one
or more rules in an <active-response> block.

Here’s an example from OSSEC’s default configuration file. The following
command locks out a user account that is associated with an alert:

<command>
 <name>disable-account</name>
 <executable>disable-account.sh</executable>
 <expect>user</expect>
 <timeout_allowed>yes</timeout_allowed>
</command>

You can later reference this <command> block in an <active-response> block,
like this:

<active-response>
 <command>disable-account</command>
 <location>local</location>
 <level>10</level>
 <rules_id>402</rules_id>
 <timeout>900</timeout>
</active-response>

This response will cause any accounts that trigger the 'User missed the
password more than one time' alert shown earlier to be locked out for 15
minutes. One thing to note in this example is the <location> tag. This tag
lets you specify where you’d like the response to be triggered. Using local
will cause the response to be triggered on the machine that generated the
alert, whereas analysis-server will cause it to be triggered on the server.
Alternatively, you can use all or defined-agent to cause the response to be
triggered on all of the systems or a specific agent, respectively. In the latter
case you’ll also need to use the <agent_id> tag to specify the agent on which
to trigger the response.

When a response is triggered, an entry will appear in /var/ossec/active-
response/ossec-hids-responses.log. For instance, when the response shown
above is triggered, something similar to this will appear:

Thu Jun 2 04:01:31 MDT 2006 ../active-response/bin/disable-account.sh add
andrew

Centrally Monitor the Security Posture of Your Servers #86

Chapter 8, Logging | 281

HACK

As you can see, OSSEC’s active response feature can be very powerful. You
can even write your own active response scripts, which gives you a literally
unlimited number of possibilities in automatically reacting to attacks. This
and many other features of OSSEC can be replicated by combining other
tools. However, OSSEC provides them in an integrated manner and saves
you the time spent gluing them together with your favorite scripting lan-
guage—time that you can spend dealing with actual security issues.

See Also
• The OSSEC HIDS Usage Manual (http://www.ossec.net/en/manual.html)

282

Chapter 9C H A P T E R N I N E

Monitoring and Trending
Hacks 87–91

While the importance of reliable system logs can’t be overestimated, logs tell
only part of the story of what is happening on your network. When some-
thing out of the ordinary happens, the event is duly logged to the appropri-
ate file, where it waits for a human to notice and take the appropriate action.
But logs are valuable only if someone actually reads them. When log files
simply add to the deluge of information that most network administrators
must wade through each day, they might be put aside and go unread for
days or weeks. This situation is made worse when the log files are clogged
with irrelevant information. For example, a cry for help from an overbur-
dened mail server can easily be lost if it is surrounded by innocuous entries
about failed spam attempts. All too often, logs are used as a resource to fig-
ure out what happened when systems fail, rather than as a guide to what is
happening now.

Another important aspect of log entries is that they only provide a “spot
check” of your system at a particular moment. Without a history of what
normal performance looks like, it can be difficult to tell the difference
between ordinary network traffic, a denial-of-service (DoS) attack, and a vis-
itation from Slashdot readers. While you can easily build a report on how
many times the /var partition filled up, how can you track what normal
usage looks like over time? Is the mail spool clogged due to one inconsider-
ate user, or is it part of an attack by an adversary? Or is it simply a general
trend that is the result of trying to serve too many users on too small a disk?

This chapter describes a number of methods for tracking the availability of
services and resources over time. Rather than having to watch system logs
manually, it is usually far better to have the systems notify you when there is
a problem—and only when there is a problem. This chapter also contains a
number of suggestions about how to recognize trends in your network traf-
fic by monitoring flows and plotting the results on graphs. Sure, you might

Monitor Availability #87

Chapter 9, Monitoring and Trending | 283

HACK

know what your average outbound Internet traffic looks like, but how much
of that traffic is made up of HTTP versus SMTP requests? You may know
roughly how much traffic each server on your network generates, but what if
you want to break the traffic down by protocol? The hacks in this chapter
will show you how.

H A C K

#87
Monitor Availability Hack #87

Use Nagios to keep tabs on your network.

Remote exploits can often crash the service that is being broken into or
cause its CPU use to skyrocket, so it’s essential to monitor the services that
are running on your network. Just looking for an open port (using a tool
such as Nmap [Hack #66]) isn’t enough. The machine may be able to respond
to a TCP connect request, but the service may be unable to respond (or
worse, could have been replaced by a different program entirely!). One tool
that can help you verify your services at a glance is Nagios (http://www.
nagios.org).

Nagios is a network-monitoring application that monitors not only the ser-
vices running on the hosts on your network, but also the resources on each
host, such as CPU usage, disk space, memory usage, running processes, log
files, and much more. In the advent of a problem, it can notify you via email,
a pager, or any other method that you define, and you can check the status
of your network at a glace by using its web GUI. Nagios is also easily exten-
sible through its plug-in API.

Installing Nagios
To install Nagios, download the source distribution from the Nagios web
site. Then, unpack the source distribution and go into the directory it
creates:

$ tar xfz nagios-1.1.tar.gz
$ cd nagios-1.1

Create a user and group for Nagios to run as (e.g., nagios), and then run the
configure script:

$./configure --with-nagios-user=nagios --with-nagios-grp=nagios

This installs Nagios in /usr/local/nagios. As usual, you can modify this
behavior by using the --prefix switch. After the configure script finishes,
compile Nagios by running make all. Then, become root and run make
install to install it. You can optionally install Nagios’s initialization scripts
by running make install-init.

284 | Chapter 9, Monitoring and Trending

#87 Monitor Availability
HACK

If you look in the /usr/local/nagios directory at this point, you will see four
directories. The bin directory contains nagios, which is the core of the pack-
age. This application does the actual monitoring. The sbin directory con-
tains the CGI scripts that will be used in the web-based interface. Inside the
share directory, you’ll find the HTML files and documentation. Finally, the
var directory is where Nagios stores its information once it starts running.

Before you can use Nagios, you will need to run the following command:

$ make install-config

This command creates an etc directory populated with a sample copy of
each configuration file required by Nagios. We’ll look at how to configure
those files shortly.

The Nagios installation is now complete. However, it is not very useful in its
current state, because it lacks the actual monitoring applications. These
applications, which check whether a particular monitored service is func-
tioning properly, are called plug-ins. Nagios comes with a default set of plug-
ins, but they must be downloaded and installed separately.

Installing Plug-ins
Download the latest Nagios Plugins package and decompress it. You will
need to run the provided configure script to prepare the package for compi-
lation on your system. You will find that the plug-ins are installed in a fash-
ion similar to the actual Nagios program.

To compile the plug-ins, run these commands:

$./configure --prefix=/usr/local/nagios \
--with-nagios-user=nagios --with-nagios-group=nagios
$ make all

You might get notifications about missing programs or Perl modules while
the script is running. These are mostly fine, unless you specifically need the
mentioned applications to monitor a service.

After compilation is finished, become root and run make install to install
the plug-ins. The plug-ins will be installed in the libexec directory of your
Nagios base directory (e.g., /usr/local/nagios/libexec).

There are a few options that all Nagios plug-ins should implement, making
them suitable for use by Nagios. Each plug-in provides a --help option that
displays information about the plug-in and how it works. This feature is
helpful when you’re trying to monitor a new service using a plug-in you
haven’t used before.

Monitor Availability #87

Chapter 9, Monitoring and Trending | 285

HACK

For instance, to learn how the check_ssh plug-in works, run the following
command:

$ /usr/local/nagios/libexec/check_ssh
check_ssh (nagios-plugins 1.4.3) 1.27
Copyright (c) 1999 Remi Paulmier <remi@sinfomic.fr>
Copyright (c) 2000-2004 Nagios Plugin Development Team
 <nagiosplug-devel@lists.sourceforge.net>

Try to connect to an SSH server at specified server and port

Usage: check_ssh [-46] [-t <timeout>] [-r <remote version>] [-p <port>]
<host>

Options:
 -h, --help
 Print detailed help screen
 -V, --version
 Print version information
 -H, --hostname=ADDRESS
 Host name, IP Address, or unix socket (must be an absolute path)
 -p, --port=INTEGER
 Port number (default: 22)
 -4, --use-ipv4
 Use IPv4 connection
 -6, --use-ipv6
 Use IPv6 connection
 -t, --timeout=INTEGER
 Seconds before connection times out (default: 10)
 -r, --remote-version=STRING
 Warn if string doesn't match expected server version (ex: OpenSSH_3.9p1)
 -v, --verbose
 Show details for command-line debugging (Nagios may truncate output)

Send email to nagios-users@lists.sourceforge.net if you have questions
regarding use of this software. To submit patches or suggest improvements,
send email to nagiosplug-devel@lists.sourceforge.net

Now that both Nagios and the plug-ins are installed, you’re almost ready to
begin monitoring servers. However, Nagios will not even start before it’s
configured properly.

Configuring Nagios
Configuring Nagios can be an arduous task, but the sample configuration
files provide a good starting point:

$ cd /usr/local/nagios/etc
$ ls -1
bigger.cfg-sample
cgi.cfg-sample
checkcommands.cfg-sample

286 | Chapter 9, Monitoring and Trending

#87 Monitor Availability
HACK

minimal.cfg-sample
misccommands.cfg-sample
nagios.cfg-sample
resource.cfg-sample

Since these are sample files, the Nagios authors added a .cfg-sample suffix to
each file. First, you’ll need to copy or rename each one to end in .cfg, so that
the software can use them properly.

If you don’t change the file extensions, Nagios will not be
able to find the configuration files.

You can either rename each file manually or use the following command to
take care of them all at once:

for i in *.cfg-sample; do mv $i `basename $i .cfg-sample`.cfg; done;

To get Nagios running, you must modify all but a few of the sample configu-
ration files. First, there is the main configuration file, nagios.cfg. You can
pretty much leave everything as is here; the Nagios installation process will
make sure the file paths used in the configuration file are correct. There’s
one option, however, that you might want to change: check_external_
commands, which is set to 0 by default. If you would like to run commands
directly through the web interface, set this to 1. Depending on your network
environment, this may or may not be an acceptable security risk, because
enabling this option permits the execution of scripts from the web interface.
Other options you need to set in cgi.cfg configure which usernames are
allowed to run external commands.

Configuring Nagios to monitor your servers is not as difficult as it looks. To
help you, you can use the verbose mode of the Nagios binary by running this
command:

/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

This goes through the configuration files and reports any errors. Start fixing
the errors one by one, running the command again to find the next error.

Adding hosts to monitor. You’ll first need to add your host definition and con-
figure some options for that host. You can add as many hosts as you like,
but here we will stick with one for the sake of simplicity.

Here are the contents of hosts.cfg:

Generic host definition template
define host{
 # The name of this host template - referenced in other host definitions,
 # used for template recursion/resolution
 name generic-host

Monitor Availability #87

Chapter 9, Monitoring and Trending | 287

HACK

 # Host notifications are enabled
 notifications_enabled 1
 # Host event handler is enabled
 event_handler_enabled 1
 # Flap detection is enabled
 flap_detection_enabled 1
 # Process performance data
 process_perf_data 1
 # Retain status information across program restarts
 retain_status_information 1
 # Retain non-status information across program restarts
 retain_nonstatus_information 1
 # DONT REGISTER THIS DEFINITION - ITS NOT A REAL HOST,
 # JUST A TEMPLATE!
 register 0
 contact_groups flcd-admins
}

Host Definition
define host{
 # Name of host template to use
 use generic-host
 host_name freelinuxcd.org
 alias Free Linux CD Project Server
 address www.freelinuxcd.org
 check_command check-host-alive
 max_check_attempts 10
 notification_interval 120
 notification_period 24x7
 notification_options d,u,r
}

Be sure to remove the lines beginning with # when creating your hosts.cfg;
otherwise, you’ll receive errors.

The first host defined is not a real host but a template from which other host
definitions are derived. This mechanism is used in other configuration files
as well and makes configuration based on a predefined set of defaults a
breeze.

With this setup, we are monitoring only one host, www.freelinuxcd.org, to
see if it is alive. The host_name parameter is important because other config-
uration files will refer to this server by this name.

Once you’ve finished editing hosts.cfg, uncomment the line that includes it
in nagios.cfg:

#cfg_file=/usr/local/nagios/etc/hosts.cfg

288 | Chapter 9, Monitoring and Trending

#87 Monitor Availability
HACK

Creating host groups. Now that you have a host to monitor, it needs to be
added to a hostgroup, so that the application knows which contact group to
send notifications to. Here’s what hostgroups.cfg looks like:

define hostgroup{
 hostgroup_name flcd-servers
 alias The Free Linux CD Project Servers
 contact_groups flcd-admins
 members freelinuxcd.org
}

This defines a new hostgroup and associates the flcd-admins contact_group
with it. As with hosts.cfg, you’ll need to edit nagios.cfg and uncomment the
following line to include your hostgroups.cfg:

#cfg_file=/usr/local/nagios/etc/hostgroups.cfg

Creating contacts and contact groups. Now, you’ll need to define the flcd-
admins contact group in contactgroups.cfg:

define contactgroup{
 contactgroup_name flcd-admins
 alias FreeLinuxCD.org Admins
 members oktay, verty
}

Here, the flcd-admins contact_group is defined with two members, oktay
and verty. This configuration ensures that both users will be notified when
something goes wrong with a server that flcd-admins is responsible for. The
next step is to set the contact information and notification preferences for
these users.

Here are the definitions for those two members in contacts.cfg:

define contact{
 contact_name oktay
 alias Oktay Altunergil
 service_notification_period 24x7
 host_notification_period 24x7
 service_notification_options w,u,c,r
 host_notification_options d,u,r
 service_notification_commands notify-by-email,notify-by-epager
 host_notification_commands host-notify-by-email,host-notify-by-epager
 email oktay@freelinuxcd.org
 pager dummypagenagios-admin@localhost.localdomain
 }

define contact{
 contact_name verty
 alias David 'Verty' Ky
 service_notification_period 24x7
 host_notification_period 24x7

Monitor Availability #87

Chapter 9, Monitoring and Trending | 289

HACK

 service_notification_options w,u,c,r
 host_notification_options d,u,r
 service_notification_commands notify-by-email,notify-by-epager
 host_notification_commands host-notify-by-email
 email verty@flcd.org
 }

In addition to providing contact details for a particular user, the contact_
name in the contacts.cfg file is also used by the CGI scripts (i.e., the web inter-
face) to determine whether a particular user is allowed to access a particular
resource.

Configuring services to monitor. Now that your hosts and contacts are config-
ured, you can start to configure monitoring for individual services on your
server.

This is done in services.cfg (remove the comments when creating yours):

Generic service definition template
define service{
The 'name' of this service template, referenced in other service
definitions
 name generic-service
 # Active service checks are enabled
 active_checks_enabled 1
 # Passive service checks are enabled/accepted
 passive_checks_enabled 1
 # Active service checks should be parallelized
 # (disabling this can lead to major performance problems)
 parallelize_check 1
 # We should obsess over this service (if necessary)
 obsess_over_service 1
 # Default is to NOT check service 'freshness'
 check_freshness 0
 # Service notifications are enabled
 notifications_enabled 1
 # Service event handler is enabled
 event_handler_enabled 1
 # Flap detection is enabled
 flap_detection_enabled 1
 # Process performance data
 process_perf_data 1
 # Retain status information across program restarts
 retain_status_information 1
 # Retain non-status information across program restarts
 retain_nonstatus_information 1
 # DONT REGISTER THIS DEFINITION - ITS NOT A REAL SERVICE, JUST A TEMPLATE!
 register 0
 }

Service definition
define service{

290 | Chapter 9, Monitoring and Trending

#87 Monitor Availability
HACK

 # Name of service template to use
 use generic-service
 host_name freelinuxcd.org
 service_description HTTP
 is_volatile 0
 check_period 24x7
 max_check_attempts 3
 normal_check_interval 5
 retry_check_interval 1
 contact_groups flcd-admins
 notification_interval 120
 notification_period 24x7
 notification_options w,u,c,r
 check_command check_http
 }

Service definition
define service{
 # Name of service template to use
 use generic-service
 host_name freelinuxcd.org
 service_description PING
 is_volatile 0
 check_period 24x7
 max_check_attempts 3
 normal_check_interval 5
 retry_check_interval 1
 contact_groups flcd-admins
 notification_interval 120
 notification_period 24x7
 notification_options c,r
 check_command check_ping!100.0,20%!500.0,60%
 }

This setup configures monitoring for two services. The first service defini-
tion, which has been called HTTP, monitors whether the web server is up and
notifies you if there’s a problem. The second definition monitors the ping
statistics from the server and notifies you if the response time or packet loss
becomes too high. The commands used are check_http and check_ping,
which were installed into the libexec directory during the plug-in installa-
tion. Please take your time to familiarize yourself with all the other available
plug-ins and configure them similarly to the previous example definitions.

Defining time periods. Now, you’ll need to define the time periods that
you’ve been using in the notification_period directives by creating a
timeperiods.cfg file. The previous examples use a time period. Here’s a defi-
nition for it that can be put in your timeperiods.cfg:

define timeperiod{
 timeperiod_name 24x7
 alias 24x7

Graph Trends #88

Chapter 9, Monitoring and Trending | 291

HACK

 sunday 00:00-24:00
 monday 00:00-24:00
 tuesday 00:00-24:00
 wednesday 00:00-24:00
 thursday 00:00-24:00
 friday 00:00-24:00
 saturday 00:00-24:00
 }

Now, all you need to do is to include each of these files within your main
nagios.conf by using the cfg_file directive. The sample nagios.cfg contains a
directive to load all of the configuration files mentioned here, but they’re
commented out by default. Locate the entries and uncomment them.

Once you’re happy with your configuration, run Nagios with the -v switch
one last time to make sure everything checks out. Then, run it as a daemon
by using the -d switch:

/usr/local/nagios/bin/nagios -d /usr/local/nagios/etc/nagios.cfg

After you’ve gotten Nagios up and running, point your favorite web server
to Nagios’s sbin directory (it contains CGI scripts) and restart it. That’s all
there is to it. Give Nagios a couple of minutes to generate some data, and
then point your browser to the machine and look at the pretty service warn-
ing lights.

H A C K

#88
Graph Trends Hack #88

Use RRDtool to easily generate graphs for just about anything.

You might be familiar with graphing bandwidth usage with tools such as
MRTG. From a security standpoint, graphing bandwidth usage is useful
because it can help you spot anomalous behavior. Having a history of typi-
cal bandwidth usage gives you a baseline to judge activity. This can make it
easier to determine if somebody is performing a DoS attack on your site, or
if a machine on your network is acting as a Warez depot.

RRDtool (http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/) provides func-
tionality similar to MRTG, but it is much more flexible. RRDtool is basi-
cally a tool for storing data in a general-purpose database that will never
grow in size. RRD stands for round-robin database, which is a special type of
database that maintains a fixed number of entries: the oldest entry is con-
stantly being replaced by the newest data. RRDtool also has the ability to
generate graphs of the data contained in this database.

The most common use of RRDtool is to make pretty bandwidth graphs,
which is easily done with RRDtool and snmpget, a utility that queries devices

292 | Chapter 9, Monitoring and Trending

#88 Graph Trends
HACK

managed with SNMP. First, you’ll need to create a round-robin database by
running a command similar to this one:

$ rrdtool create zul.rrd --start N \DS:de0_in:COUNTER:600:U:U \DS:de0_out:
COUNTER:600:U:U \RRA:AVERAGE:0.5:1:600 \RRA:AVERAGE:0.5:6:700 \RRA:AVERAGE:
0.5:24:775 \RRA:AVERAGE:0.5:288:797 \RRA:MAX:0.5:1:600 \RRA:MAX:0.5:6:700 \
RRA:MAX:0.5:24:775 \RRA:MAX:0.5:288:797

This command creates a database containing entries for two separate
counters: de0_in and de0_out. These entries store samples of interface statis-
tics collected every five minutes from an SNMP daemon on a router. In addi-
tion, the database contains several fields for automatically maintaining
running averages.

You can populate the database by running a command like this:

$ rrdtool update zul.rrd N:\`snmpget -Oqv zul public interfaces.ifTable.
ifEntry.ifInOctets.4`:\`snmpget -Oqv zul public interfaces.ifTable.ifEntry.
ifOutOctets.4`

This command queries the input and output statistics for the de0 interface
on a computer named zul. To schedule it to run every five minutes, you can
make a crontab entry similar to the following:

0-55/5 * * * * rrdtool update /home/andrew/rrdbs/zul.rrd N:`snmpget -Oqv zul
public
interfaces.ifTable.ifEntry.ifInOctets.4`:`snmpget -Oqv zul public
interfaces.ifTable.ifEntry.ifOutOctets.4`

However, you can use whatever methods you want to collect the data. To
generate hourly graphs of the data, you can run a command like this:

$ rrdtool graph zul_de0-hourly.png -t "Hourly Bandwidth" --start -3600 \
DEF:inoctets=zul.rrd:de0_in:AVERAGE \
DEF:outoctets=zul.rrd:de0_out:AVERAGE \
AREA:inoctets#00FF00:"de0 In" \
LINE1:outoctets#0000FF:"de0 Out"

This command creates an image like the one shown in Figure 9-1.

Figure 9-1. A graph generated by RRDtool

Get Real-Time Network Stats #89

Chapter 9, Monitoring and Trending | 293

HACK

The -3600 in the command tells rrdtool that you want to graph the data col-
lected over the last hour (there are 3,600 seconds in an hour). Likewise, if
you want to create a graph over the course of a day, use -86400.

But that’s just the beginning. After collecting multiple data sources, you can
combine them all into a single graph that gives you a great deal of informa-
tion at a glance. Figure 9-2 shows the relative outbound usage of several
servers simultaneously, with the total average for all servers just below it.
While this figure is in grayscale, the actual graph uses a different color for
each server, making it easy to tell at a glance which one is hogging all of the
bandwidth.

As you can see, RRDtool is a flexible tool. All you need to do is tell it how
much data you want to store and then set up some method to collect the
data at a regular interval. Then, you can easily generate a graph of the data
whenever you want it.

H A C K

#89
Get Real-Time Network Stats Hack #89

See who’s doing what on your network over time with ntop.

If you’re looking for real-time network statistics, check out the terrific ntop
tool (http://www.ntop.org), a full-featured protocol analyzer with a web fron-
tend, complete with SSL and graphing support. ntop isn’t exactly light-
weight (the precise amount of resources required depends on the size of
your network and the volume of network traffic), but it can give you a very
nice picture of who’s talking to whom on your network.

Figure 9-2. Multiple servers on a single graph

294 | Chapter 9, Monitoring and Trending

#89 Get Real-Time Network Stats
HACK

ntop needs to run initially as root, to throw your interfaces into promiscu-
ous mode and start capturing packets, but it then releases its privileges to a
user that you specify. If you decide to run ntop for long periods of time,
you’ll probably be happiest running it on a dedicated monitoring box (with
few other services running on it, for security and performance reasons).

Here’s a quick reference on how to get ntop up and running. First, create an
ntop user and group:

groupadd ntop
useradd -c "ntop user" -d /usr/local/etc/ntop -s /bin/true -g ntop ntop

Then, unpack and build ntop per the instructions in docs/BUILD-NTOP.txt.
After ntop has finished compiling, install it by running make install as root.
During the installation process, a directory for ntop to store its databases in
will be created. If you didn’t use the --prefix option when running
configure, this directory should be /usr/local/var/ntop. It will be created as
root during the install, so you’ll need to change its owner to the user you’ll
be running ntop as in order for ntop to be able to write to it.

ntop will also copy a self-signed certificate to /usr/local/etc/ntop/ntop-cert.
pem as part of the install process, so that you can securely access its web
interface. Note that the default SSL key will not be built with the correct
hostname for your server, so you’ll probably want to generate your own SSL
certificate and key pair [Hack #69].

Now, you’ll need to set an administrative password to be used when config-
uring ntop through its web interface:

ntop -A -u ntop
Fri May 5 22:03:27 2006 NOTE: Interface merge enabled by default
Fri May 5 22:03:27 2006 Initializing gdbm databases

ntop startup - waiting for user response!

Please enter the password for the admin user:
Please enter the password again:
Fri May 5 22:03:31 2006 Admin user password has been set

Finally, run ntop as a daemon, and start the SSL server on your favorite port
(4242, for example):

ntop -u ntop -W4242 -d

By default, ntop also runs a standard HTTP server on port 3000. You should
seriously consider locking down access to these ports, either at your firewall
or by using command-line iptables rules [Hack #44].

Collect Statistics with Firewall Rules #90

Chapter 9, Monitoring and Trending | 295

HACK

Let ntop run for a while, and then connect to https://your.server.here:4242/.
You can find out all sorts of details about what traffic has been seen on your
network, as shown in Figure 9-3.

While tools like tcpdump and Ethereal give you detailed, interactive analyses
of network traffic, ntop delivers a wealth of statistical information in a very
slick and easy-to-use web interface. When properly installed and locked
down, it will likely become a favorite tool in your network analysis tool
chest.

—Rob Flickenger

H A C K

#90
Collect Statistics with Firewall Rules Hack #90

Make your firewall ruleset do the work for you when you want to collect
statistics.

If you want to start collecting statistics on your network traffic but dread
setting up SNMP, you don’t have to worry. You can use the firewalling code
in your operating system to collect statistics for you.

Figure 9-3. Displaying a host’s statistics in ntop’s web interface

296 | Chapter 9, Monitoring and Trending

#90 Collect Statistics with Firewall Rules
HACK

For instance, if you are using Linux, you can use iptables commands simi-
lar to the following to keep track of bandwidth consumed by a particular
machine that passes traffic through your firewall:

iptables -N KRYTEN && iptables -A KRYTEN -j ACCEPT
iptables -N KRYTEN_IN && iptables -A KRYTEN_IN -j KRYTEN
iptables -N KRYTEN_OUT && iptables -A KRYTEN_OUT -j KRYTEN
iptables -A FORWARD -s 192.168.0.60 -j KRYTEN_OUT
iptables -A FORWARD -d 192.168.0.60 -j KRYTEN_IN

This approach leverages the packet and byte counters associated with each
iptables rule to provide input and output bandwidth statistics for traffic for-
warded through the firewall. It works by first defining a chain named KRYTEN,
which is named after the host on which the statistics will be collected. This
chain contains an unconditional accept rule and will be used to quickly add
up the total bandwidth that kryten consumes.

To compute the downstream bandwidth kryten is using, another chain
called KRYTEN_IN is created. Likewise, to compute the outbound bandwidth
kryten is using, a chain called KRYTEN_OUT is created. Each of these chains
contains only one rule, which unconditionally jumps to the KRYTEN chain.
This enables the outbound bandwidth to be added to the inbound band-
width being consumed. Finally, rules are added to the FORWARD chain that
direct each packet to the correct chain, depending on whether it’s coming
from or going to kryten.

After applying these rules, you can view the total bandwidth (inbound and
outbound) consumed by kryten by running a command like this:

iptables -vx -L KRYTEN
Chain kryten (2 references)
 pkts bytes target prot opt in out source destination
 442 46340 ACCEPT all -- any any anywhere anywhere

You can easily parse out the bytes field, and thereby generate graphs with
RRDtool [Hack #88], by using a command like this:

iptables -vx -L KRYTEN | egrep -v 'Chain|pkts' | awk '{print $2}'

To get the amount of inbound or outbound bandwidth consumed, just
replace KRYTEN with KRYTEN_IN or KRYTEN_OUT, respectively. Of course, you
don’t have to limit your statistic collection criteria to just per-computer
bandwidth usage. You can collect statistics on anything that you can create
an iptables rule for, including specific ports, MAC addresses, or just about
anything else that passes through your gateway.

You can also do something similar for systems using OpenBSD’s
PacketFilter [Hack #45]. For every rule, PF keeps track of how many times it has
been evaluated, how many packets have triggered the rule, how many bytes

Sniff the Ether Remotely #91

Chapter 9, Monitoring and Trending | 297

HACK

were in those packets, and how many states were created (in the case of
stateful rules). The problem is getting at the data. You can view the rule sta-
tistics by running pfctl -s rules -vv, but the data is not in an easily
parseable form:

@3 pass inet from 192.168.0.60 to any
[Evaluations: 125 Packets: 60 Bytes: 4976 States: 0

]
 [Inserted: uid 0 pid 15815]
@4 pass inet from any to 192.168.0.60
[Evaluations: 128 Packets: 65 Bytes: 7748 States: 0

]
 [Inserted: uid 0 pid 15815]

However, you can add the label keyword to the end of each rule, so that
they read like this:

pass inet from 192.168.0.60 to any label "KRYTEN_OUT"
pass inet from any to 192.168.0.60 label "KRYTEN_IN"

Then, you can get the statistics on the rules by running pfctl -s labels:

KRYTEN_OUT 175 77 6660 77 6660 0 0
KRYTEN_IN 176 93 11668 0 0 93 11668

Not only are the statistics easier to parse, but you also get more of them.
The numbers above, from left to right, represent the number of evaluations,
total packets, total bytes, outgoing packets, total outgoing bytes, incoming
packets, and total incoming bytes.

Just as with iptables, you can collect statistics on anything for which you
can create a rule.

H A C K

#91
Sniff the Ether Remotely Hack #91

Monitor your networks remotely with rpcapd.

If you’ve ever tried to monitor network traffic from another segment using a
graphical protocol analyzer such as Ethereal (http://www.ethereal.com), you
know how time-consuming it can be. First, you have to capture the data.
Then you have to get it onto the workstation on which you’re running the
analyzer, and then you have to load the file into the analyzer itself. This cre-
ates a real problem because it increases the time between performing an
experiment and seeing the results, which makes diagnosing and fixing net-
work problems take much longer than it should.

One tool that solves this problem is rpcapd, a program included with WinP-
cap (http://winpcap.polito.it). rpcapd is a daemon that monitors network
interfaces in promiscuous mode and sends the data that it collects back to a
sniffer running on a remote machine. You can run rpcapd either from the
command line or as a service.

298 | Chapter 9, Monitoring and Trending

#91 Sniff the Ether Remotely
HACK

To start rpcapd, you will probably want to use the -n flag, which tells the
daemon to use null authentication. Using this option, you will be able to
monitor the data stream that rpcapd produces with any program that uses
the WinPcap capture interface. Otherwise, you’ll have to add special code to
the program you are using to allow it to authenticate itself with rpcapd.
Since the -n option allows anyone to connect to the daemon, you’ll also
want to use the -l option, which allows you to specify a comma-separated
list of hosts that can connect.

So, to run rpcapd from the command line, use a command similar to this:

C:\Program Files\WinPcap>rpcapd -l obsidian -n
Press CTRL + C to stop the server...

When run as a service, rpcapd uses the rpcapd.ini file for its configuration
information. This file resides in the same directory as the executable and is
easily created by running rpcapd with the -s switch, which instructs rpcapd
to save its configuration to the file you specify.

To create a file called rpcapd.ini, run a command like this:

C:\Program Files\WinPcap>rpcapd -l obsidian -n -s rpcapd.ini
Press CTRL + C to stop the server...

Now, press Ctrl-C to see what the file contains:

C:\Program Files\WinPcap>type rpcapd.ini
Configuration file help.

Hosts which are allowed to connect to this server (passive mode)
Format: PassiveClient = <name or address>

PassiveClient = obsidian

Hosts to which this server is trying to connect to (active mode)
Format: ActiveClient = <name or address>, <port | DEFAULT>

Permit NULL authentication: YES or NOT

NullAuthPermit = YES

To start the service, you can either use the Services Control Panel applet or
use the net command from the command line:

C:\Program Files\WinPcap>net start rpcapd

The Remote Packet Capture Protocol v.0 (experimental) service was started
successfully.

Now, to connect to the daemon, you will need to find out the name that
WinPcap uses to refer to the network device you want to monitor. To do
this, you can use either WinDump, a command-line packet sniffer for

Sniff the Ether Remotely #91

Chapter 9, Monitoring and Trending | 299

HACK

Windows, or Ethereal. WinDump is available from the same web site as
WinPcap.

To get the device name with WinDump, simply run it with the -D flag:

C:\Program Files\WinPcap>windump -D
1.\Device\NPF_{EE07A5AE-4D19-4118-97CE-3BF656CD718F} (NDIS 5.0 driver)

You can use Ethereal to obtain the device name by starting up Ethereal,
going to the Capture menu, and clicking Start. After you do that, a dialog
containing a list of the available adapters on the system will open, as shown
in Figure 9-4. The device names in the list are those that you will later spec-
ify when connecting to rpcapd from a remote system.

Figure 9-4. Ethereal Capture Options dialog

300 | Chapter 9, Monitoring and Trending

#91 Sniff the Ether Remotely
HACK

When you connect to a remote machine with your favorite sniffer, simply
put the device name for the interface you want to monitor prefixed by rpcap
and the hostname, like this:

rpcap://plunder/\Device\NPF_{EE07A5AE-4D19-4118-97CE-3BF656CD718F}

Figure 9-5 shows an example of using a remote capture source with Ethereal.

If you’ve set up everything correctly, you should see traffic streaming from
the remote end into your sniffer, just as if it were being captured from a local
interface.

Figure 9-5. Using a remote capture source with Ethereal

301

Chapter 10 C H A P T E R T E N

Secure Tunnels
Hacks 92–105

Untrusted computer networks (such as the Internet and public wireless net-
works) can be pretty hostile environments, but they can be tamed to some
degree. This chapter primarily deals with how to set up secure, encrypted
communications over networks that you don’t completely trust. Some of the
hacks focus mainly on providing a secure and encrypted transport mecha-
nism, while others discuss how to create a virtual private network (VPN). As
you’ll see here, by leveraging encryption and some encapsulation tricks you
can build more trustworthy networks on top of an untrusted network, even
if the latter is full of miscreants trying to spy on or otherwise manipulate
your data.

By reading this chapter, you’ll learn how to set up IPsec-based encrypted
links on several operating systems, how to create virtual network interfaces
that can be tunneled through an encrypted connection, and how to forward
TCP connections over an encrypted channel. In addition, you’ll learn how to
set up a cross-platform VPN solution.

The beauty of most of these hacks is that after reading them, you can mix
and match transport-layer encryption solutions with whatever virtual-net-
work-oriented approach best meets your needs. In this way, you can safely
build vast, powerful private networks leveraging the public Internet as infra-
structure. You can use these techniques for anything from securely connect-
ing two remote offices to building a completely routed private network
enterprise on top of the Internet.

H A C K

#92
Set Up IPsec Under Linux Hack #92

Secure your traffic in Linux with Openswan.

The most popular way of configuring IPsec connections under Linux is by
using the Openswan (http://www.openswan.org) package. Openswan is made

302 | Chapter 10, Secure Tunnels

#92 Set Up IPsec Under Linux
HACK

up of two components: pluto and, optionally, KerneL IP Security (KLIPS). As
of Version 2.6, the Linux kernel includes support for IPsec, but KLIPS can
be used instead for some additional features. pluto is the user-land daemon
that controls Internet Key Exchange (IKE) negotiation.

To get started, download the latest source for the Openswan tools from the
project’s web site and unpack the source tree. Then, change to the directory
that was extracted and build it:

$ tar xfz openswan-2.4.6rc3.tar.gz
$ cd openswan-2.4.6rc3
$ make programs

After it finishes compiling, become root and run make install.

If you want to try out Openswan’s opportunistic encryption support [Hack

#95], use KLIPS instead of native IPsec support in the kernel. To do this,
download the appropriate patch from the Openswan download page. Apply
the patch to your kernel source with the following commands:

cd /usr/src/kernels/linux-2.6.14.6
zcat /tmp/openswan-2.4.6rc3.kernel-2.6-klips.patch.gz | patch -p1

If you configured your kernel source prior to applying the patch, you can
quickly and easily enable KLIPS by running make oldconfig. Here are the
options that you need enabled:

Openswan IPsec (KLIPS26) (KLIPS) [N/m/y/?] (NEW) m
 *
 * KLIPS options
 *
 Encapsulating Security Payload - ESP ("VPN") (KLIPS_ESP) [Y/n/?] (NEW)
 Authentication Header - AH (KLIPS_AH) [N/y/?] (NEW) y
 HMAC-MD5 authentication algorithm (KLIPS_AUTH_HMAC_MD5) [Y/n/?] (NEW)
 HMAC-SHA1 authentication algorithm (KLIPS_AUTH_HMAC_SHA1) [Y/n/?] (NEW)
 CryptoAPI algorithm interface (KLIPS_ENC_CRYPTOAPI) [N/y/?] (NEW)
 3DES encryption algorithm (KLIPS_ENC_3DES) [Y/n/?] (NEW)
 AES encryption algorithm (KLIPS_ENC_AES) [Y/n/?] (NEW)
 IP compression (KLIPS_IPCOMP) [Y/n/?] (NEW)
 IPsec debugging (KLIPS_DEBUG) [Y/n/?] (NEW)

This output shows KLIPS set up to be compiled as a module; however, you
can link it into the kernel statically if you prefer.

If you patched your kernel for KLIPS, rebuild it and reboot with it. When
you next boot up, the ipsec service will automatically start. If you chose to
use the kernel’s built-in IPsec support, you can go ahead and start it now:

/etc/init.d/ipsec start
ipsec_setup: Starting Openswan IPsec 2.4.6rc3...
ipsec_setup: insmod /lib/modules/2.6.16-1.2115_FC4/kernel/net/key/af_key.ko
ipsec_setup: insmod /lib/modules/2.6.16-1.2115_FC4/kernel/net/ipv4/ah4.ko
ipsec_setup: insmod /lib/modules/2.6.16-1.2115_FC4/kernel/net/ipv4/esp4.ko

Set Up IPsec Under Linux #92

Chapter 10, Secure Tunnels | 303

HACK

ipsec_setup: insmod /lib/modules/2.6.16-1.2115_FC4/kernel/net/ipv4/ipcomp.ko
ipsec_setup: insmod /lib/modules/2.6.16-1.2115_FC4/kernel/net/ipv4/xfrm4_
tunnel.ko
ipsec_setup: insmod /lib/modules/2.6.16-1.2115_FC4/kernel/crypto/des.ko
ipsec_setup: insmod /lib/modules/2.6.16-1.2115_FC4/kernel/crypto/aes.ko

Now, verify that your system settings are configured correctly to use IPsec:

/usr/local/sbin/ipsec verify
Checking your system to see if IPsec got installed and started correctly:
Version check and ipsec on-path [OK]
Linux Openswan U2.4.6rc3/K2.6.16-1.2115_FC4 (netkey)
Checking for IPsec support in kernel [OK]
NETKEY detected, testing for disabled ICMP send_redirects [FAILED]

 Please disable /proc/sys/net/ipv4/conf/*/send_redirects
 or NETKEY will cause the sending of bogus ICMP redirects!

NETKEY detected, testing for disabled ICMP accept_redirects [FAILED]

 Please disable /proc/sys/net/ipv4/conf/*/accept_redirects
 or NETKEY will accept bogus ICMP redirects!

Checking for RSA private key (/etc/ipsec.secrets) [OK]
Checking that pluto is running [OK]
Two or more interfaces found, checking IP forwarding [FAILED]
Checking for 'ip' command [OK]
Checking for 'iptables' command [OK]
Opportunistic Encryption Support [DISABLED]

Be sure to investigate any item that shows up as FAILED. The previous exam-
ple shows that you’ll need to disable sending and accepting ICMP redirects
and enable IP forwarding. To disable ICMP redirects, run the following
commands:

for f in /proc/sys/net/ipv4/conf/*/accept_redirects; do echo 0 > $f; done
for f in /proc/sys/net/ipv4/conf/*/send_redirects; do echo 0 > $f; done

To disable IP forwarding, run this:

echo 1 > /proc/sys/net/ipv4/ip_forward

Now, verify the settings again to make sure that everything shows up as OK:

/usr/local/sbin/ipsec verify
Checking your system to see if IPsec got installed and started correctly:
Version check and ipsec on-path [OK]
Linux Openswan U2.4.6rc3/K2.6.16-1.2115_FC4 (netkey)
Checking for IPsec support in kernel [OK]
NETKEY detected, testing for disabled ICMP send_redirects [OK]
NETKEY detected, testing for disabled ICMP accept_redirects [OK]
Checking for RSA private key (/etc/ipsec.secrets) [OK]
Checking that pluto is running [OK]
Two or more interfaces found, checking IP forwarding [OK]
Checking NAT and MASQUERADEing [N/A]

304 | Chapter 10, Secure Tunnels

#92 Set Up IPsec Under Linux
HACK

Checking for 'ip' command [OK]
Checking for 'iptables' command [OK]
Opportunistic Encryption Support [DISABLED]

Now, you can get on with the task of configuring Openswan. Openswan’s
configuration is controlled by two configuration files: /etc/ipsec.conf and /etc/
ipsec.secrets. The ipsec.conf file breaks a VPN connection into right and left
segments. This is merely a logical division. The segment on the left can be
either the internal or the external network; this allows the same configura-
tion file to be used for both ends of a VPN network-to-network tunnel.

Now, start with a simple ipsec.conf to test out Openswan. Adding an entry
like this creates an encrypted tunnel between two hosts:

conn host-to-host
 left=192.168.0.64
 leftid=@colossus.nnc
 #leftnexthop=%defaultroute
 right=192.168.0.62
 rightid=@spek.nnc
 #rightnexthop=%defaultroute
 auto=add

This will work if the hosts are both on the same network. If they’re not, you
can uncomment the leftnexthop and rightnexthop entries. For authentica-
tion purposes, this connection uses RSA signatures, which are obtained by
running /usr/local/sbin/ipsec showhostkey on both hosts.

Log into the host that you specified for left, run the following command,
and then paste the output into your configuration file:

/usr/local/sbin/ipsec showhostkey --left
 # RSA 2192 bits colossus.nnc Thu Jul 13 20:48:58 2006
 leftrsasigkey=0sAQNpOndA2SO5aQnEmxqlM5c3JerA9cMwGB0wPE9PshVFBgY44
Ml8Lw7usdMzZTMNaSeXu3+80fK7aXWqBGVXWpIEw2EAFlGcbg1mrEoAVpLwbpM7ZmZPr6Cl0A
dFyTFxFK4k52y702h6xsdSoeTWabs2vkzPLDR8QqvlzIzPkDHE+MQG4q/F+fVUkn/TNeGL7ax
xfVkepqTHI1nwbNsLdPXdWGKL9c28ho8TTSgmVMgr9jVLYMNwWjN/BgKMF5J/glALr6kjy19u
NEpPFpcq9d0onjTMOts1xyfj0bst2+IMufX21ePuCRDkWuYsfcTMlo7o7Cu+alW0AP4mZHz8Z
e8PzRm9h3oGrUMmwCoLWzMeruud

Now, get the key to paste in for the right host by logging into it and run-
ning the same command, this time replacing --left with --right.

Copy the configuration file to both hosts and restart the ipsec service on
both systems:

/etc/init.d/ipsec restart
ipsec_setup: Stopping Openswan IPsec...
ipsec_setup: Starting Openswan IPsec 2.4.6rc3...
ipsec_setup: insmod /lib/modules/2.6.16-1.2115_FC4/kernel/net/key/af_key.ko
ipsec_setup: insmod /lib/modules/2.6.16-1.2115_FC4/kernel/net/ipv4/xfrm4_
tunnel.ko

Set Up IPsec Under Linux #92

Chapter 10, Secure Tunnels | 305

HACK

Then, create the IPsec connection by running the following command on
one of the hosts:

/usr/local/sbin/ipsec auto --up host-to-host
104 "host-to-host" #6: STATE_MAIN_I1: initiate
003 "host-to-host" #6: received Vendor ID payload [Openswan (this version)
2.4.6rc3 X.509-1.5.4 PLUTO_SENDS_VENDORID PLUTO_USES_KEYRR]
003 "host-to-host" #6: received Vendor ID payload [Dead Peer Detection]
003 "host-to-host" #6: received Vendor ID payload [RFC 3947] method set
to=110
106 "host-to-host" #6: STATE_MAIN_I2: sent MI2, expecting MR2
003 "host-to-host" #6: NAT-Traversal: Result using 3: no NAT detected
108 "host-to-host" #6: STATE_MAIN_I3: sent MI3, expecting MR3
004 "host-to-host" #6: STATE_MAIN_I4: ISAKMP SA established {auth=OAKLEY_
RSA_SIG cipher=oakley_3des_cbc_192 prf=oakley_md5 group=modp1536}
117 "host-to-host" #7: STATE_QUICK_I1: initiate
004 "host-to-host" #7: STATE_QUICK_I2: sent QI2, IPsec SA established {ESP=>
0x070009a9 <0xca6c0796 xfrm=AES_0-HMAC_SHA1 NATD=none DPD=none}

If you want to test out your connection, ping one of the hosts in the tunnel
from the other one:

$ ping spek.nnc
PING spek.nnc (192.168.0.62) 56(84) bytes of data.
64 bytes from spek.nnc (192.168.0.62): icmp_seq=0 ttl=64 time=3.56 ms
64 bytes from spek.nnc (192.168.0.62): icmp_seq=1 ttl=64 time=0.975 ms
64 bytes from spek.nnc (192.168.0.62): icmp_seq=2 ttl=64 time=1.73 ms
64 bytes from spek.nnc (192.168.0.62): icmp_seq=3 ttl=64 time=2.29 ms
...

Now, start tcpdump on the other host:

/usr/sbin/tcpdump -n -i eth0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes
23:57:35.280722 IP 192.168.0.43 > 192.168.0.62: ESP(spi=0x070009a9,seq=0x18)
23:57:35.280893 IP 192.168.0.43 > 192.168.0.62: icmp 64: echo request seq 19
23:57:35.280963 IP 192.168.0.62 > 192.168.0.43: ESP(spi=0xca6c0796,seq=0x18)
23:57:36.267451 IP 192.168.0.43 > 192.168.0.62: ESP(spi=0x070009a9,seq=0x19)
23:57:36.267451 IP 192.168.0.43 > 192.168.0.62: icmp 64: echo request seq 20
23:57:36.269713 IP 192.168.0.62 > 192.168.0.43: ESP(spi=0xca6c0796,seq=0x19)

Notice the ESP packets in the output. The contents of these packets are
encrypted using IPsec’s Encapsulated Security Payload. Don’t worry about
the ICMP echo (ping) packets that you see, though. They show up because
the kernel’s IPsec stack uses the same interface for encrypted and decrypted
packets, rather than using a virtual interface for the decrypted packets. If
you’re able to sniff the packets from a third host, you’ll see only the ESP
ones.

Congratulations! All traffic between the two hosts you configured will now
be seamlessly encrypted. However, Openswan has many possible

306 | Chapter 10, Secure Tunnels

#93 Set Up IPsec Under FreeBSD
HACK

configurations, such as network-to-network and host-to-network tunnels,
as well as seamless opportunistic encryption [Hack #95]. For more informa-
tion, check out the ipsec.conf manual page (man ipsec.conf), as well as the
examples in the /etc/ipsec.d/examples directory and in the doc/examples file
distributed with the Openswan source code.

H A C K

#93
Set Up IPsec Under FreeBSD Hack #93

Use FreeBSD’s built-in IPsec support to secure your traffic.

Using IPsec with IKE under FreeBSD requires enabling IPsec in the kernel
and installing a user-land program, racoon, to handle the IKE negotiations.

Make sure that your kernel has been compiled with the following options:

options IPSEC #IP security
options IPSEC_ESP #IP security (crypto; define w/IPSEC)
options IPSEC_DEBUG #debug for IP security

If it hasn’t, you’ll need to define them and then rebuild and install the ker-
nel. After you’ve done that, reboot to verify that it works.

You can install racoon by using the network section of the ports tree or by
downloading it from ftp://ftp.kame.net/pub/kame/misc/. Install raccoon per
the instructions provided with the distribution.

On the client, you should first configure racoon by modifying this example
racoon.conf file to suit your needs:

path include "/usr/local/etc/racoon" ;
path pre_shared_key "/usr/local/etc/racoon/psk.txt" ;
remote anonymous
{
 exchange_mode aggressive,main;
 my_identifier user_fqdn "user1@domain.com";
 lifetime time 1 hour;
 initial_contact on;

 proposal {
 encryption_algorithm 3des;
 hash_algorithm sha1;
 authentication_method pre_shared_key ;
 dh_group 2 ;
 }
}
sainfo anonymous
{
 pfs_group 1;
 lifetime time 30 min;
 encryption_algorithm 3des ;
 authentication_algorithm hmac_sha1;
 compression_algorithm deflate ;
}

Set Up IPsec Under FreeBSD #93

Chapter 10, Secure Tunnels | 307

HACK

In your firewall configuration, be sure you allow IKE connections to your
machine (UDP port 500). You must configure racoon to start at boot time.

Client Configuration
The /usr/local/etc/racoon/psk.txt file contains your credentials. This file must
be readable by root only. If the permissions are not set correctly, racoon will
not function. For a shared-secret IPsec connection, the file contains your
identification (in this case, your email address) and the secret, in this format:

user1@domain.com supersecret

Now, set up the security policy, using the setkey utility to add entries to the
kernel Security Policy Database (SPD). Create a client.spd file for setkey to
load, with entries like the following:

spdadd 192.168.0.104/32 0.0.0.0/0 any -P out ipsec \
 esp/tunnel/192.168.0.104-192.168.0.1/require ;
spdadd 0.0.0.0/0 192.168.0.104/32 any -P in ipsec \
 esp/tunnel/192.168.0.1-192.168.0.104/require ;

For this setup, the station IP is 192.168.0.104 and the gateway is 192.168.0.
1. The first entry creates a security policy that sends all traffic to the VPN
endpoint. The second entry creates a security policy that allows all traffic
back from the VPN endpoint.

In this configuration, the client is unable to talk to any hosts
on the local subnet, except for the VPN gateway. In a wire-
less network where the client is a prime target for attack, this
is probably a good thing for your workstation.

Load the SPD by running the following command:

setkey -f client.spd

The gateway racoon.conf is the same as the file for the client side. This
allows any client to connect. The psk.txt file must contain the identifica-
tions and shared secrets of all clients who can connect:

user1@domain.com supersecret
user2@domain.com evenmoresecret
user3@domain.com notsosecret

Gateway Configuration
Again, make sure psk.txt is readable by root only. Start racoon and make
sure there are no errors. Finally, set up a gateway.spd file that creates an SPD

308 | Chapter 10, Secure Tunnels

#93 Set Up IPsec Under FreeBSD
HACK

for each client. The following example assumes your clients are at 192.168.
0.10[4-6]:

spdadd 0.0.0.0/0 192.168.0.104/32 any -P out ipsec \
 esp/tunnel/192.168.0.1-192.168.0.104/require ;
spdadd 192.168.0.104/32 0.0.0.0/0 any -P in ipsec \
 esp/tunnel/192.168.0.104-192.168.0.1/require ;
spdadd 0.0.0.0/0 192.168.0.105/32 any -P in ipsec \
 esp/tunnel/192.168.0.1-192.168.0.105/require ;
spdadd 192.168.0.105/32 0.0.0.0/0 any -P out \
 ipsec esp/tunnel/192.168.0.105-192.168.0.1/require ;
spdadd 0.0.0.0/0 192.168.0.106/32 any -P in ipsec \
 esp/tunnel/192.168.0.1-192.168.0.106/require ;
spdadd 192.168.0.106/32 0.0.0.0/0 any -P out ipsec \
 esp/tunnel/192.168.0.106-192.168.0.1/require ;

Load the SPD by issuing setkey -f gateway.spd. Verify the SPD entries using
the spddump command in setkey. At this point, you should be able to ping a
client from the gateway. It might take a packet or two for the VPN negotia-
tion to complete, but the connection should be solid after that. If you are
unable to ping, examine your syslog output for errors and warnings.

Using x.509 Certificates
You can use x.509 certificates to perform authentication instead of a pre-
shared key, but if you’re going to do this, you’ll first need to set up a
Certificate Authority (CA) [Hack #69]. After you’ve done that, modify your
racoon.conf file to look like this:

path certificate "/etc/ssl";
remote anonymous
{
 exchange_mode main;
 lifetime time 1 hour;
 certificate_type x509 "cletus.crt" "cletus.key";
 verify_cert on;
 my_identifier asn1dn;
 peers_identifier asn1dn;

 proposal {
 encryption_algorithm 3des;
 hash_algorithm sha1;
 authentication_method rsasig;
 dh_group 2;
 }
}
sainfo anonymous
{
 pfs_group 1;
 lifetime time 30 min;
 encryption_algorithm 3des ;

Set Up IPsec in OpenBSD #94

Chapter 10, Secure Tunnels | 309

HACK

 authentication_algorithm hmac_sha1;
 compression_algorithm deflate ;
}

With this configuration, racoon expects to find the x.509 certificates in /etc/
ssl, so copy your certificate/key pair (cletus.crt and cletus.key) to the loca-
tion you decide to use. On your other systems, modify the configuration file
accordingly, replacing the certificate and key filenames with the proper ones
for each system.

Copy your CA’s certificate to your certificate directory. This will be used to
verify that your CA has signed the certificates on each system. If it has,
they’ll be allowed to connect.

You’ll notice that the CA certificate isn’t specified anywhere in the configu-
ration file. This is because racoon looks for it in a filename named after a
hash of it. To enable racoon to find the CA cert, run a command similar to
this:

ln -s CA.crt `openssl x509 -noout -hash < CA.crt`.0

The previous command assumes that you’ve copied your CA
certificate to /etc/ssl and named it CA.crt.

Restart racoon by running /usr/local/etc/rc.d/racoon restart. Now, you
can test it by having the hosts ping each other. Then, run tcpdump on one of
your systems. You should begin to see ESP packets:

tcpdump -n
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on lnc0, link-type EN10MB (Ethernet), capture size 96 bytes
03:35:57.481254 IP 192.168.0.40 > 192.168.0.41: ESP(spi=0x05d628a3,seq=0xd)
03:35:57.483451 IP 192.168.0.41 > 192.168.0.40: ESP(spi=0x0c53fadb,seq=0xd)
03:35:58.490287 IP 192.168.0.40 > 192.168.0.41: ESP(spi=0x05d628a3,seq=0xe)
03:35:58.491160 IP 192.168.0.41 > 192.168.0.40: ESP(spi=0x0c53fadb,seq=0xe)
03:35:59.500509 IP 192.168.0.40 > 192.168.0.41: ESP(spi=0x05d628a3,seq=0xf)
03:35:59.501289 IP 192.168.0.41 > 192.168.0.40: ESP(spi=0x0c53fadb,seq=0xf)

These are the ping packets in encrypted form.

H A C K

#94
Set Up IPsec in OpenBSD Hack #94

Use IPsec the OpenBSD way.

Setting up IPsec in OpenBSD is fairly easy, because it’s compiled into the
kernel that ships with each release and is enabled by default. All that is left
to do is to create the appropriate /etc/isakmpd/isakmpd.conf and /etc/
isakmpd/isakmpd.policy files and start isakmpd (the IPsec key-management
daemon).

310 | Chapter 10, Secure Tunnels

#94 Set Up IPsec in OpenBSD
HACK

This might sound daunting, but OpenBSD’s outstanding documentation
and example configuration files make it easier than you might think.

Password Authentication
First, to set a password to use for the IPsec connection, you’ll need to put
these lines in your /etc/isakmpd/isakmpd.policy:

KeyNote-Version: 2
Authorizer: "POLICY"
Licensees: "passphrase:squeamishossifrage"
Conditions: app_domain == "IPsec policy" &&
 esp_present == "yes" &&
 esp_enc_alg == "aes" &&
 esp_auth_alg == "hmac-sha" -> "true";

Now, edit your /etc/isakmpd/isakmpd.conf file to contain the following lines:

[General]
Listen-on= 10.1.0.11
Shared-SADB= Defined
Policy-File= /etc/isakmpd/isakmpd.policy

[Phase 1]
10.1.0.11= ISAKMP-peer-west
10.1.0.12= ISAKMP-peer-east
Default= ISAKMP-peer-east-aggressive

[Phase 2]
Connections= IPsec-west-east

[ISAKMP-peer-east]
Phase= 1
Local-address= 10.1.0.11
Address= 10.1.0.12
Configuration= Default-main-mode
Authentication= squeamishossifrage

[ISAKMP-peer-west]
Phase= 1
Local-address= 10.1.0.12
Address= 10.1.0.11
Configuration= Default-main-mode
Authentication= squeamishossifrage

[ISAKMP-peer-east-aggressive]
Phase= 1
Local-address= 10.1.0.11
Address= 10.1.0.12
Configuration= Default-aggressive-mode
Authentication= squeamishossifrage

Set Up IPsec in OpenBSD #94

Chapter 10, Secure Tunnels | 311

HACK

[ISAKMP-peer-west-aggressive]
Phase= 1
Local-address= 10.1.0.12
Address= 10.1.0.11
Configuration= Default-aggressive-mode
Authentication= squeamishossifrage

[IPsec-east-west]
Phase= 2
ISAKMP-peer= ISAKMP-peer-west
Configuration= Default-quick-mode
Local-ID= Host-east
Remote-ID= Host-west

[IPsec-west-east]
Phase= 2
ISAKMP-peer= ISAKMP-peer-east
Configuration= Default-quick-mode
Local-ID= Host-west
Remote-ID= Host-east

[Host-west]
ID-type= IPV4_ADDR
Address= 10.1.0.11

[Host-east]
ID-type= IPV4_ADDR
Address= 10.1.0.12

[Default-main-mode]
EXCHANGE_TYPE= ID_PROT
Transforms= 3DES-SHA

[Default-aggressive-mode]
EXCHANGE_TYPE= AGGRESSIVE
Transforms= 3DES-SHA-RSA

[Default-quick-mode]
DOI= IPSEC
EXCHANGE_TYPE= QUICK_MODE
Suites= QM-ESP-AES-SHA-PFS-SUITE

The same configuration file can be used on both endpoints of the tunnel,
with only a few changes. First, the example configuration shown above is for
use on a machine with an IP address of 10.1.0.11. You can modify it to work
on the other endpoint (10.1.0.12) by changing the IP address specified in
Listen-on:

Listen-on= 10.1.0.12

Then, change the Default line to this:

Default= ISAKMP-peer-west-aggressive

312 | Chapter 10, Secure Tunnels

#94 Set Up IPsec in OpenBSD
HACK

Finally, change the Connections line:

Connections= IPsec-east-west

After you’ve edited the configuration files, you can start isakmpd by running
this command:

/sbin/isakmpd

Then, use one host in your tunnel to ping the other host. While doing this,
start tcpdump on one of the systems. You should see some ESP packets:

tcpdump -n
tcpdump: listening on pcn0, link-type EN10MB
21:19:38.920316 esp 10.1.0.11 > 10.1.0.12 spi 0xB9C862E7 seq 1 len 132
21:19:38.921420 esp 10.1.0.12 > 10.1.0.11 spi 0xBC4069F4 seq 1 len 132
21:19:39.926389 esp 10.1.0.11 > 10.1.0.12 spi 0xB9C862E7 seq 2 len 132
21:19:39.927216 esp 10.1.0.12 > 10.1.0.11 spi 0xBC4069F4 seq 2 len 132
21:19:40.940115 esp 10.1.0.11 > 10.1.0.12 spi 0xB9C862E7 seq 3 len 132
21:19:40.940711 esp 10.1.0.12 > 10.1.0.11 spi 0xBC4069F4 seq 3 len 132

If you want to see the decrypted packet contents, you can use tcpdump to
monitor the enc0 interface:

tcpdump -n -i enc0
tcpdump: WARNING: enc0: no IPv4 address assigned
tcpdump: listening on enc0, link-type ENC
21:21:53.281316 (authentic,confidential): SPI 0xb9c862e7: 10.1.0.11 > 10.1.
0.12: icmp: echo request (encap)
21:21:53.281480 (authentic,confidential): SPI 0xbc4069f4: 10.1.0.12 > 10.1.
0.11: icmp: echo reply (encap)
21:21:54.240855 (authentic,confidential): SPI 0xb9c862e7: 10.1.0.11 > 10.1.
0.12: icmp: echo request (encap)
21:21:54.241059 (authentic,confidential): SPI 0xbc4069f4: 10.1.0.12 > 10.1.
0.11: icmp: echo reply (encap)

Certificate Authentication
The configuration shown in the previous section allows anyone to connect
with the password squeamishossifrage, but what if you want to use x.509
certificates for authentication? You’ll first need to set up a Certificate
Authority (CA) [Hack #69], if you don’t already have one. Once you’ve done
that, you’ll need to make sure that each of your certificates has a
subjectAltName, so that isakmpd can identify what certificate to use for a
connection.

If you’re using a version of OpenBSD prior to 3.8, you can do this easily
with the certpatch tool. Otherwise, you’ll need to regenerate the certificates
for each endpoint from their certificate signing requests.

Using certpatch is easy; you supply the certificate to modify, the IP address
or fully qualified domain name (FQDN), and the CA’s key required to sign

Set Up IPsec in OpenBSD #94

Chapter 10, Secure Tunnels | 313

HACK

the modified certificate. If you want to patch a certificate to include an IP
address in the subjectAltName field, use certpatch like this:

$ certpatch -i 10.1.0.11 -k CA.key 10.1.0.11.crt 10.1.0.11.crt
Reading ssleay created certificate 10.1.0.11.crt and modify it
Enter PEM pass phrase:
Creating Signature: PKEY_TYPE = RSA: X509_sign: 128 OKAY
Writing new certificate to 10.1.0.11.crt

If you want to use the FQDN, run something like this:

$ certpatch -t fqdn -i puffy -k CA.key puffy.crt puffy.crt
Reading ssleay created certificate asdf.crt and modify it
Enter PEM pass phrase:
Creating Signature: PKEY_TYPE = RSA: X509_sign: 128 OKAY
Writing new certificate to puffy.crt

To add the subjectAltName field when signing a certificate, add -extfile
/etc/ssl/x509v3.cnf -extensions x509v3_IPAddr to the openssl command
you use to sign your certificates. If you want to use an FQDN rather than an
IP address, replace x509v3_IPAddr with x509v3_FQDN. If your CA resides on a
non-OpenBSD system, you’ll need to copy /etc/ssl/x509v3.cnf to it from an
OpenBSD system.

Once you’re done adding the subjectAltName field, copy your CA’s certifi-
cate to /etc/isakmpd/ca. Then, copy your certificates to /etc/isakmpd/certs on
their corresponding host. Likewise, you’ll need to copy your keys to /etc/
isakmpd/private/local.key.

After you’ve gotten the certificate business out of the way, it’s time to mod-
ify your isakmpd.conf and isakmpd.policy files. First, remove all of the
Authenticate lines in the isakmpd.conf file. Then, locate the Transforms line
in the Default-main-mode section and change it to read 3DES-SHA-RSA_SIG.
This is what tells isakmpd to use the x.509 certificates for authentication.

To tell isakmpd to allow only systems that are using certificates signed by
your CA to connect, you need to modify your isakmpd.policy and tell it the
distinguished name (DN) of your CA certificate:

$ openssl x509 -subject -noout -in ca/CA.crt
subject= /C=GB/ST=Berkshire/L=Newbury/O=My Company Ltd/CN=CA Root

Then, replace the Licensees line in your isakmpd.policy:

KeyNote-Version: 2
Comment: This policy accepts ESP SAs from hosts with certs signed by our CA
Authorizer: "POLICY"
Licensees: "DN: /C=GB/ST=Berkshire/L=Newbury/O=My Company Ltd/CN=CA Root"
Conditions: app_domain == "IPsec policy" &&
 esp_present == "yes" &&
 esp_enc_alg != "null" -> "true";

314 | Chapter 10, Secure Tunnels

#95 Encrypt Traffic Automatically with Openswan
HACK

Finally, to have isakmpd start up with each system boot, edit your /etc/rc.
conf.local file (or create one if it doesn’t exist) and put the following line in
it:

isakmpd_flags=""

That should do it. As usual, check your system logs if your tunnel has trou-
ble connecting.

H A C K

#95
Encrypt Traffic Automatically with Openswan Hack #95

Use Openswan and DNS TXT records to automatically create encrypted
connections between machines.

One particularly cool feature supported by Openswan [Hack #92] is opportunis-
tic encryption with other hosts running Openswan. This allows Openswan
to transparently encrypt traffic between all hosts that also support opportu-
nistic encryption. For this to work, each host must have a public key gener-
ated to use with Openswan. This key can then be stored in a DNS TXT record
for that host. When a host that is set up for opportunistic encryption wants
to initiate an encrypted connection with another host, it looks up the host’s
public key through DNS and uses it to initiate the connection.

Before you get started, if you’re using a 2.6.x Linux kernel,
make sure that you’ve installed Openswan with KLIPS [Hack
#92] rather than Linux’s native IPsec support. The native sup-
port in the kernel doesn’t work properly with opportunistic
encryption.

You’ll need to generate a key for each host with which you want to use this
feature. Usually, Openswan creates a key for you when you install it. You
can check if you have one by running the following command:

/usr/local/sbin/ipsec showhostkey --left

If you see the following output, you’ll need to create one:

ipsec showhostkey: no default key in "/etc/ipsec.secrets"

You can do that by running this command:

/usr/local/sbin/ipsec newhostkey --output - >> /etc/ipsec.secrets

Next, you’ll need to generate a TXT record to put into your DNS zone, using
a command like the following:

/usr/local/sbin/ipsec showhostkey --txt @colossus.nnc
; RSA 2192 bits colossus Mon Jul 13 03:02:07 2004
 IN TXT "X-IPsec-Server(10)=@colossus.nnc" "
AQOR7rM7ZMBXu2ej/1vtzhNnMayZO1jwVHUyAIubTKpd/

Encrypt Traffic Automatically with Openswan #95

Chapter 10, Secure Tunnels | 315

HACK

PyTMogJBAdbb3I0xzGLaxadPGfiqPN2AQn76zLIsYFMJnoMbBTDY/2xK1X/
pWFRUUIHzJUqCBIijVWEMLNrIhdZbei1s5/
MgYIPaX20UL+yAdxV4RUU3JJQhV7adVzQqEmdaNUnCjZOvZG6m4zv6dGROrVEZmJFP54v6WhckYf
qSkQu3zkctfFgzJ/rMTB6Y38yObyBg2HuWZMtWI"
"8VrTQqi7IGGHK+mWk+wSoXer3iFD7JxRTzPOxLk6ihAJMibtKna3j7QP9ZHG0nm7NZ/
L5M9VpK+Rfe+evUUMUTfAtSdlpus2BIeXGWcPfz6rw305H9"

Add this record to your zone (be sure to add the hostname to the beginning
of the record) and reload it . By default, opportunistic encryption support is
disabled. To enable it, open /etc/ipsec.conf and comment out the following
line:

include /etc/ipsec.d/examples/no_oe.conf

Save the file, and then restart the ipsec service by running /etc/init.d/ipsec
restart.

Verify that DNS is working correctly by running this command:

/usr/local/sbin/ipsec verify
Checking your system to see if IPsec got installed and started correctly
Version check and ipsec on-path [OK]
Checking for KLIPS support in kernel [OK]
Checking for RSA private key (/etc/ipsec.secrets) [OK]
Checking that pluto is running [OK]
DNS checks.
Looking for TXT in forward map: colossus [OK]
Does the machine have at least one non-private address [OK]

Now, just restart Openswan:

/etc/init.d/ipsec restart

You should now be able to connect to any other host that supports opportu-
nistic encryption. But what if other hosts want to connect to you? To allow
this, you’ll need to create a TXT record for your machine in your reverse DNS
zone:

ipsec showhostkey --txt 192.168.0.64
; RSA 2192 bits colossus Tue Jan 13 03:02:07 2004
 IN TXT "X-IPsec-Server(10)=192.168.0.64" "
AQOR7rM7ZMBXu2ej/1vtzhNnMayZO1jwVHUyAIubTKpd/
PyTMogJBAdbb3I0xzGLaxadPGfiqPN2AQn76zLIsYFMJnoMbBTDY/2xK1X/
pWFRUUIHzJUqCBIijVWEMLNrIhdZbei1s5/
MgYIPaX20UL+yAdxV4RUU3JJQhV7adVzQqEmdaNUnCjZOvZG6m4zv6dGROrVEZmJFP54v6WhckYf
qSkQu3zkctfFgzJ/rMTB6Y38yObyBg2HuWZMtWI"
"8VrTQqi7IGGHK+mWk+wSoXer3iFD7JxRTzPOxLk6ihAJMibtKna3j7QP9ZHG0nm7NZ/
L5M9VpK+Rfe+evUUMUTfAtSdlpus2BIeXGWcPfz6rw305H9"

Add this record to the reverse zone for your subnet, and other machines will
be able to initiate encrypted connections with your machine. With opportu-
nistic encryption in use, all traffic between the hosts will be encrypted auto-
matically, protecting all services simultaneously. Pretty neat, huh?

316 | Chapter 10, Secure Tunnels

#96 Forward and Encrypt Traffic with SSH
HACK

H A C K

#96
Forward and Encrypt Traffic with SSH Hack #96

Keep network traffic to arbitrary ports secure with SSH port forwarding.

In addition to providing remote shell access and command execution,
OpenSSH can forward arbitrary TCP ports to the other end of your connec-
tion. This can be extremely handy for protecting email, web, or any other
traffic that you need to keep private (at least, all the way to the other end of
the tunnel).

ssh accomplishes local forwarding by binding to a local port, performing
encryption, sending the encrypted data to the remote end of the ssh connec-
tion, and then decrypting it and sending it to the remote host and port you
specify. Start an ssh tunnel with the -L (short for “local”) switch:

ssh -f -N -L 110:mailhost:110 user@mailhost

Naturally, substitute user with your username and mailhost with your mail
server’s name or IP address. Note that you will have to be root for this
example, since you’ll be binding to a privileged port (110, the POP3 port).
You should also disable any locally running POP3 daemon (look in /etc/
inetd.conf); otherwise, it will get in the way.

Now, to encrypt all of your POP3 traffic, configure your mail client to con-
nect to localhost port 110. It will happily talk to mailhost as if it were con-
nected directly, except that the entire conversation will be encrypted.
Alternatively, you could tell ssh to listen on a port above 1024 and eliminate
the need to run it as root; however, you would have to configure your email
client to also use this port, rather than port 110.

-f forks ssh into the background, and -N tells it not to actually run a com-
mand on the remote end, but just to do the forwarding. One interesting fea-
ture when using the -N switch is that you can still forward a port, even if you
do not have a valid login shell on the remote server. However, for this to
work you’ll need to set up public-key authentication with the account
beforehand.

If your ssh server supports it, you can also try the -C switch to turn on com-
pression. This can significantly reduce the time it takes to download email.
To speed up connections even more, try using the blowfish cipher, which is
generally faster than 3des (the default). To use the blowfish cipher, type -c
blowfish.

You can specify as many -L lines as you like when establishing the connec-
tion. To also forward outbound email traffic, try this:

ssh -f -N -L 110:mailhost:110 -L 25:mailhost:25 user@mailhost

Now, set your outbound email host to localhost, and your email traffic will
be encrypted as far as mailhost. Generally, this is useful only if the email is

Forward and Encrypt Traffic with SSH #96

Chapter 10, Secure Tunnels | 317

HACK

bound for an internal host or if you can’t trust your local network connec-
tion (as is the case with most wireless networks). Obviously, once your
email leaves mailhost, it will be transmitted in the clear, unless you’ve
encrypted the message with a tool such as PGP or GPG [Hack #42].

If you’re already logged into a remote host and need to forward a port
quickly, try this:

1. Press Enter.

2. Type ~C (it doesn’t echo).

3. You should be at an ssh> prompt; enter the -L line as you would from
the command line.

For example:

rob@catlin:~$
rob@catlin:~$ ~C
ssh> -L8000:localhost:80
Forwarding port.

Your current shell will then forward local port 8000 to catlin’s port 80, as if
you had entered it in the first place.

You can also allow other (remote) clients to connect to your forwarded port,
with the -g switch. If you’re logged into a remote gateway that serves as a
network address translator for a private network, use a command like this:

$ ssh -f -g -N -L8000:localhost:80 10.42.4.6

This forwards all connections from the gateway’s port 8000 to internal host
10.42.4.6’s port 80. If the gateway has a live Internet address, this allows
anyone from the Net to connect to the web server on 10.42.4.6 as if it were
running on port 8000 of the gateway.

One last point worth mentioning is that the forwarded host doesn’t have to
be localhost; it can be any host that the machine you’re connecting to can
access directly. For example, to forward local port 5150 to a web server
somewhere on an internal network, try this:

$ ssh -f -N -L5150:intranet.insider.nocat:80 gateway.nocat.net

Assuming that you’re running a private domain called .nocat, and that
gateway.nocat.net also has a connection to the private network, all traffic to
port 5150 of the remote host will be obligingly forwarded to intranet.insider.
nocat:80. The address intranet.insider.nocat doesn’t have to resolve in DNS
to the remote host; it isn’t looked up until the connection is made to
gateway.nocat.net, and then it’s gateway that does the lookup. To securely
browse that site from the remote host, try connecting to http://localhost:
5150/.

—Rob Flickenger

318 | Chapter 10, Secure Tunnels

#97 Automate Logins with SSH Client Keys
HACK

H A C K

#97
Automate Logins with SSH Client Keys Hack #97

Use SSH keys instead of password authentication to speed up and automate
logins.

When you’re an admin on more than a few machines, being able to navi-
gate quickly to a shell on any given server is critical. Having to type ssh my.
server.com (followed by a password) is not only tedious, but also breaks
your concentration. Suddenly having to shift from “Where’s the problem?”
to “Getting there” and then back to “What’s all this, then?” has led more
than one admin to premature senility. It promotes the digital equivalent of
“Why did I come into this room, anyway?”

At any rate, more effort spent logging into a machine means less effort spent
solving problems. Fortunately, recent versions of SSH offer a secure alterna-
tive to endlessly entering passwords: public key exchange.

The following examples assume you’re using OpenSSH v3.
4p1 or later.

To use public keys with an SSH server, you’ll first need to generate a public/
private key pair:

 $ ssh-keygen -t rsa

You can also use -t dsa for DSA keys, or -t rsa1 if you’re using protocol v1.

Shame on you if you are using v1! There are well-known vul-
nerabilities in v1 of the SSH protocol. If you’re using
OpenSSH, you can disable v1 by modifying your sshd_config
and making sure that the Protocol line only lists 2.

If at all possible, use RSA keys; though rare, there are some problems with
DSA keys.

After you enter the command, you should see something like this:

 Generating public/private rsa key pair.
 Enter file in which to save the key (/home/rob/.ssh/id_rsa):

Just press Enter. It will then ask you for a passphrase; again, just press Enter
twice (but read on for some caveats). Here’s what the results should look
like:

 Enter passphrase (empty for no passphrase):
 Enter same passphrase again:
 Your identification has been saved in /home/rob/.ssh/id_rsa.
 Your public key has been saved in /home/rob/.ssh/id_rsa.pub.
 The key fingerprint is:
 a6:5c:c3:eb:18:94:0b:06:a1:a6:29:58:fa:80:0a:bc rob@localhost

Automate Logins with SSH Client Keys #97

Chapter 10, Secure Tunnels | 319

HACK

This creates two files: ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub. To use this key
pair on a server, try this:

$ cat .ssh/id_rsa.pub | ssh server \
"mkdir .ssh && chmod 0700 .ssh && cat > .ssh/authorized_keys2"

Of course, substitute your server name for server. Now, simply run ssh
server and it should log you in automatically, without a password. And yes,
it will use your shiny new public key for scp, too.

If this doesn’t work for you, check your file permissions on both ~/.ssh/* and
server:~/.ssh/*. Your private key (id_rsa) should be mode 0600 (and be
present only on your local machine).

In addition, your home directory on the server will need to be mode 711or
better. If it is group-writable, someone that belongs to the group that owns
your home directory could remove ~/.ssh, even if ~/.ssh is not writable by
that group. This might not seem obvious at first, but if he can do that, he
can create his own ~/.ssh and an authorized_keys2 file, which can contain
whatever keys he wants. Luckily, the SSH daemon will catch this and deny
public-key authentication until your permissions are fixed.

Some people consider the use of public keys a potential security risk. After
all, an intruder just has to steal a copy of your private key to obtain access to
your servers. While this is true, the same is certainly true of passwords.

Ask yourself, how many times a day do you enter a password to gain shell
access to a machine (or scp a file)? How frequently is it the same password
on many (or all) of those machines? Have you ever used that password in a
way that might be questionable (on a web site, on a personal machine that
isn’t quite up-to-date, or possibly with an SSH client on a machine that you
don’t directly control)? If any of these possibilities sound familiar, consider
that using an SSH key in the same setting would make it virtually impossi-
ble for an attacker to later gain unauthorized access (providing, of course,
that you keep your private key safe).

Another way to balance ease of use with security is to use a passphrase on
your key, but use the SSH agent to manage your key for you. When you start
the agent, it will ask you for your passphrase once and cache it until you kill
the agent. Some people even go so far as to store their SSH keys on remov-
able media (such as USB keychains) and take their keys with them wherever
they go. However you choose to use SSH keys, you’ll almost certainly find
that they’re a very useful alternative to traditional passwords.

—Rob Flickenger

320 | Chapter 10, Secure Tunnels

#98 Use a Squid Proxy over SSH
HACK

H A C K

#98
Use a Squid Proxy over SSH Hack #98

Secure your web traffic from prying eyes, and improve performance in the
process.

squid (http://www.squid-cache.org) is normally used as an HTTP accelerator.
It is a large, well-managed, full-featured caching HTTP proxy that is finding
its way into many commercial web platforms. Best of all, squid is open
source and freely available. Since it performs all of its magic on a single TCP
port, squid is an ideal candidate for use with an SSH tunnel. This will not
only help to secure your web browser when using wireless networks, but
may even make it run faster.

First, choose a server on which to host your squid cache. Typically, this will
be a Linux or BSD machine on your local wired network, although squid
also runs in Windows, under Cygwin (http://www.cygwin.com). You want to
have a fast connection to your cache, so choosing a squid cache at the other
end of a dial-up connection is probably a bad idea (unless you enjoy simulat-
ing what the Internet was like in 1995). On a home network, the server you
use for your squid cache is typically the same machine you use as a firewall
or DNS server. Fortunately, squid isn’t very demanding when it supports
only a few simultaneous users, so it can happily share a box that runs other
services.

Full squid installation instructions are beyond the scope of this hack, but
configuration isn’t especially difficult. Just be sure to check your access rules
and set a password for the management interface. If you have trouble get-
ting it to run, check out Jennifer Vesperman’s “Installing and Configuring
Squid” (http://linux.oreillynet.com/pub/a/linux/2001/07/26/squid.html).

When squid is installed and running, it binds to TCP port 3128 by default.
Once you have it running, you should test it manually by setting your HTTP
proxy to the server. For example, suppose your server is running proxy.
example.com. In Mozilla, go to Preferences ➝ Advanced ➝ Proxies, as shown
in Figure 10-1.

Enter proxy.example.com as the HTTP proxy host and 3128 for the port.
Click OK, and try to load any web page. You should immediately see the
page you requested. If you see an Access Denied error, look over the http_
access lines in your squid.conf, and restart squid if necessary.

Once you are satisfied that you have a happy squid, you need only forward
your connection to it over SSH. Set up a local listener on port 3128, for-
warding to proxy.example.com:3128 like this:

rob@caligula:~$ ssh -L 3128:localhost:3128 proxy.example.com -f -N

Use a Squid Proxy over SSH #98

Chapter 10, Secure Tunnels | 321

HACK

This sets up an SSH tunnel and forks it into the background automatically.
Next, change the HTTP proxy host in your browser to localhost, and reload
your page. As long as your SSH tunnel is running, your web traffic will be
encrypted all the way to proxy.example.com, where it is decrypted and sent
onto the Internet.

The biggest advantage of this technique (compared to using the SSH SOCKS
4 proxy [Hack #99]) is that virtually all browsers support the use of HTTP prox-
ies, while not every browser supports SOCKS 4. Also, if you are using Mac
OS X, support for HTTP proxies is built into the OS itself. This means that
every properly written application will use your proxy settings transparently.

Note that HTTP proxies have the same difficulties with DNS as SOCKS 4
proxies, so keep those points in mind when using your proxy. Typically,
your squid proxy will be used from a local network, so you shouldn’t run
into the DNS schizophrenia issue. But your squid can theoretically run any-
where (even behind a remote firewall), so be sure to check out the notes on
DNS in “Use SSH As a SOCKS Proxy” [Hack #99].

Running squid takes a little bit of preparation, but it can both secure and
accelerate your web traffic when you’re going wireless. squid will support as
many simultaneous wireless users as you care to throw at it, so be sure to set
it up for all of your regular wireless users, and keep your web traffic private.

—Rob Flickenger

Figure 10-1. Testing squid using the HTTP Proxy field in Mozilla

322 | Chapter 10, Secure Tunnels

#99 Use SSH As a SOCKS Proxy
HACK

H A C K

#99
Use SSH As a SOCKS Proxy Hack #99

Protect your web traffic using the basic VPN functionality built into SSH itself.

In the search for the perfect way to secure their wireless networks, many
people overlook one of the most useful features of SSH: the -D switch. This
simple little switch is buried near the bottom of the SSH manpage. Here is a
direct quote from the manpage:

-D port

Specifies a local “dynamic” application-level port forwarding. This works by
allocating a socket to listen to port on the local side, and whenever a connec-
tion is made to this port, the connection is forwarded over the secure chan-
nel, and the application protocol is then used to determine where to connect
to from the remote machine. Currently the SOCKS 4 protocol is supported,
and SSH will act as a SOCKS 4 server. Only root can forward privileged
ports. Dynamic port forwardings can also be specified in the configuration
file.

This turns out to be an insanely useful feature if you have software that is
capable of using a SOCKS 4 proxy. It effectively gives you an instant
encrypted proxy server to any machine to which you can SSH, and it does so
without the need for further software on either your machine or the remote
server.

Just as with SSH port forwarding [Hack #96], the -D switch binds to the speci-
fied local port, encrypts any traffic to that port, sends it down the tunnel,
and decrypts it on the other side. For example, to set up a SOCKS 4 proxy
from local port 8080 to remote, type the following:

rob@caligula:~$ ssh -D 8080 remote

That’s all there is to it. Now you simply specify localhost:8080 as the
SOCKS 4 proxy in your application, and all connections made by that appli-
cation will be sent down the encrypted tunnel. For example, to set your
SOCKS proxy in Mozilla, go to Preferences ➝ Advanced ➝ Proxies, as shown
in Figure 10-2.

Select “Manual proxy configuration” and type in localhost as the SOCKS
host. Enter the port number that you passed to the -D switch, and be sure to
check the SOCKSv4 button.

Click OK, and you’re finished. All of the traffic that Mozilla generates is
now encrypted and appears to originate from the remote machine that you
logged into with SSH. Anyone listening to your wireless traffic now sees a
large volume of encrypted SSH traffic, but your actual data is well protected.

Use SSH As a SOCKS Proxy #99

Chapter 10, Secure Tunnels | 323

HACK

One important point is that SOCKS 4 has no native support for DNS traffic.
This has two important side effects to keep in mind when using it to secure
your wireless transmissions.

First of all, DNS lookups are still sent in the clear. This means that anyone
listening in can still see the names of sites that you browse to, although the
actual URLs and data are obscured. This is rarely a security risk, but it is
worth bearing in mind.

Second, you are still using a local DNS server, but your traffic originates
from the remote end of the proxy. This can have interesting (and undesir-
able) side effects when attempting to access private network resources.

To illustrate the subtle problems that this can cause, consider a typical cor-
porate network with a web server called intranet.example.com. This web
server uses the private address 192.168.1.10 but is accessible from the Inter-
net through the use of a forwarding firewall. The DNS server for intranet.
example.com normally responds with different IP addresses depending on
where the request comes from, perhaps using the views functionality in
BIND 9. When coming from the Internet, you would normally access
intranet.example.com with the IP address 208.201.239.36, which is actually
the IP address of the outside of the corporate firewall.

Now, suppose that you are using the SOCKS proxy example just shown,
and remote is actually a machine behind the corporate firewall. Your local

Figure 10-2. Proxy settings in Mozilla

324 | Chapter 10, Secure Tunnels

#100 Encrypt and Tunnel Traffic with SSL
HACK

DNS server returns 208.201.239.36 as the IP address for intranet.mybusiness.
com (since you are looking up the name from outside the firewall), but the
HTTP request actually comes from remote and attempts to go to 208.201.
239.36. This is often forbidden by the firewall rules, because internal users
are supposed to access the intranet by its internal IP address, 192.168.1.10.
How can you work around this DNS schizophrenia?

One simple method to avoid this trouble is to make use of a local hosts file
on your machine. Add an entry like this to /etc/hosts (or the equivalent on
your operating system):

192.168.1.10 intranet.example.com

In this manner, you can list any number of hosts that are reachable only
from the inside of your corporate firewall. When you attempt to browse to
one of those sites from your local machine through remote (via the SOCKS
proxy), the local hosts file is consulted before DNS, so the private IP address
is used. Since this request is actually made from remote, it finds its way to
the internal server with no trouble. Likewise, responses arrive back at the
SOCKS proxy on remote, are encrypted and forwarded over your SSH tun-
nel, and appear in your browser as if they came in from the Internet.

SOCKS 5 support is planned for an upcoming version of SSH, which will
also make tunneled DNS resolution possible. This is particularly exciting for
Mac OS X users, as there is support in the OS for SOCKS 5 proxies. Once
SSH supports SOCKS 5, every native OS X application will automatically be
able to take advantage of encrypting SSH SOCKS proxies. In the meantime,
we’ll just have to settle for encrypted HTTP proxies [Hack #98].

—Rob Flickenger

H A C K

100
Encrypt and Tunnel Traffic with SSL Hack #100

Use stunnel to add SSL encryption to any network service.

stunnel (http://www.stunnel.org) is a powerful and flexible program that,
using SSL, can encrypt traffic to and from any TCP port in several different
ways. stunnel can tunnel connections, much like SSH can, by providing a
local port to connect to. It encrypts the traffic sent to this port, forwards it
to a remote system, decrypts the traffic, and finally forwards it to a local port
on that system. stunnel can also provide transparent SSL support for inetd-
compatible services.

Encrypt and Tunnel Traffic with SSL #100

Chapter 10, Secure Tunnels | 325

HACK

Building Stunnel
To install stunnel, simply run ./configure from the directory that was cre-
ated when you unpacked the archive file that you downloaded. Since stunnel
requires OpenSSL (http://www.openssl.org), download and install that first if
it is not already installed. If you would like to compile stunnel with TCP
wrappers support or install OpenSSL in a nonstandard location, you’ll prob-
ably want to make use of the --with-tcp-wrappers or --with-ssl command-
line options for configure.

For example, the following command configures stunnel to include TCP
wrapper support, using the OpenSSL installation under /opt:

$./configure --with-tcp-wrappers --with-ssl=/opt/openssl

After the script runs, run make to actually compile stunnel. You will then be
prompted for information to create a self-signed certificate. This self-signed
certificate will be valid for only one year. If this is not what you want, you
should create your own certificate and Certificate Authority [Hack #69].

With the older 3.x versions of stunnel, it was possible to configure all options
from the command line. The newer 4.x versions make use of a configuration
file, stunnel.conf. A sample configuration file can usually be found in /etc/
stunnel/stunnel.conf-sample or /usr/local/etc/stunnel/stunnel.conf-sample.

Configuring stunnel
Let’s take a look at the basic form of a configuration file used to forward a
local port to a remote port with stunnel.

Here’s the client side:

pid =
client = yes

[<server port>]
accept = <forwarded port>
connect = <remote address>:<server port>

And here’s the server side:

cert = /etc/stunnel/stunnel.pem
pid =
client = no

[<forwarded port>]
accept = <server port>
connect = <forwarded port>

You can use the default configuration file or choose another file. If you want
to use the default configuration file, you can start stunnel without any

326 | Chapter 10, Secure Tunnels

#100 Encrypt and Tunnel Traffic with SSL
HACK

arguments. Otherwise, specify the configuration file as the first argument to
stunnel.

With the above setup, a program will be able to connect to <forwarded port>
on the client side. Then stunnel will encrypt the traffic it receives on this port
and send it to <server port> on the remote system specified by <remote
address>. On the remote system, stunnel will decrypt the traffic that it
receives on this port and forward it to the program that is listening on
<forwarded port> on the remote system.

Here’s the format for the equivalent ssh port-forwarding command:

ssh -f -N -L <forwarded port>:<remote address>:<forwarded port> \
<remote address>

If you want to specify a process ID file, you can set the pid variable to
whatever filename you wish. Leaving the pid variable in the configuration
file without giving it a value causes stunnel to not create a PID file. How-
ever, if you leave out the pid variable completely, stunnel will try to create
either /var/run/stunnel.pid or /usr/local/var/run/stunnel.pid (i.e., $prefix/var/
run/stunnel.pid), depending on how you configured it at compile-time.

Encrypting Services
In addition to providing SSH-style port forwarding, stunnel can also be used
to add SSL capabilities to inetd-style services that don’t have native SSL
functionality, such as email or other services.

Here’s an inetd.conf entry for the Samba Web Administration Tool (SWAT):

swat stream tcp nowait.400 root /usr/local/samba/bin/swat swat

To add SSL support to SWAT, you first need to create a configuration file
for stunnel to use. Call it swat.conf and put it in /etc/stunnel:

cert = /etc/stunnel/swat.pem
exec = /usr/local/samba/bin/swat
execargs = swat

Modify the entry in inetd.conf to look like this:

swat stream tcp nowait.400 root /usr/sbin/stunnel stunnel \
 /etc/stunnel/swat.conf

Now, you can access SWAT securely with your favorite SSL-enabled web
browser.

Alternatively, you can do away with inetd altogether and have stunnel listen
for connections from clients and then spawn the service process itself. Cre-
ate a configuration file with contents similar to these:

Tunnel Connections Inside HTTP #101

Chapter 10, Secure Tunnels | 327

HACK

cert = /etc/stunnel/swat.pem

[swat]
accept = 901
exec = /usr/local/samba/bin/swat
execargs = swat

Then, start stunnel with the path to the configuration file:

stunnel /etc/stunnel/swat.conf

In addition, you can start it at boot time by putting the previous command
in your startup script (i.e., /etc/rc.local).

stunnel is a powerful tool: not only can it forward connections through an
encrypted tunnel, but it can also be used to add SSL capabilities to common
services. This is especially nice when clients with SSL support for these ser-
vices already exist. In this case, you can use stunnel solely on the server side,
enabling encryption for the service with no need for the client to install any
extra software.

H A C K

101
Tunnel Connections Inside HTTP Hack #101

Break through draconian firewalls by using httptunnel.

If you’ve ever been on the road and found yourself in a place where the only
connectivity to the outside world is through an incredibly restrictive fire-
wall, you probably know the pain of trying to do anything other than send-
ing and receiving email or basic web browsing.

Here’s where httptunnel (http://www.nocrew.org/software/httptunnel.html)
comes to the rescue. httptunnel is a program that allows you to tunnel arbi-
trary connections through the HTTP protocol to a remote host. This is espe-
cially useful in situations like the one mentioned earlier, when web access is
allowed but all other services are denied.

Of course, you could just use any kind of tunneling software and configure
it to use port 80, but where will that leave you if the firewall is actually a
web proxy? This is roughly the same as an application-layer firewall and will
accept only valid HTTP requests. Fortunately, httptunnel can deal with these
as well.

To compile httptunnel, download the tarball and run ./configure and make:

$ tar xfz httptunnel-3.3.tar.gz
$ cd httptunnel-3.3
$./configure && make

328 | Chapter 10, Secure Tunnels

#101 Tunnel Connections Inside HTTP
HACK

Install it by running make install, which installs everything under /usr/local.
If you want to install it somewhere else, you can use the standard --prefix=
option to the configure script.

The httptunnel client program is called htc, and the server is hts. Like stun-
nel [Hack #100], httptunnel can be used to listen on a local TCP port for connec-
tions, forward the traffic that it receives on this port to a remote server, and
then decrypt and forward the traffic to another port outside of the tunnel.

Try tunneling an SSH connection over HTTP. On the server, run a com-
mand like this:

hts -F localhost:22 80

Now, run a command like this on the client:

htc -F 2222 colossus:80

In this case, colossus is the remote server and htc is listening on port 2222.
You can use the standard port 22 if you aren’t running a local sshd. If you’re
curious, you can verify that htc is now listening on port 2222 by using lsof:

/usr/sbin/lsof -i | grep htc
htc 2323 root 6u IPv4 0x02358a30 0t0 TCP *:2222 (LISTEN)

Now, try out the tunnel:

[andrew@kryten andrew]$ ssh -p 2222 localhost
andrew@localhost's password:
[andrew@colossus andrew]$

You can also forward connections to machines other than the one on which
you’re running hts. Just replace the localhost in the hts command with the
remote host to which you want to forward.

For instance, to forward the connection to example.com instead of colossus,
run this command:

hts -F example.com:22 80

If you’re curious to see what an SSH connection tunneled through the HTTP
protocol looks like, you can take a look at it with a packet sniffer. Here’s the
initial portion of the TCP stream that is sent to the httptunnel server by the
client:

POST /index.html?crap=1071364879 HTTP/1.1
Host: example.com:80
Content-Length: 102400
Connection: close

SSH-2.0-OpenSSH_3.6.1p1+CAN-2003-0693

If your tunnel needs to go through a web proxy, no additional configuration
is needed as long as the proxy is transparent and does not require

Tunnel with VTun and SSH #102

Chapter 10, Secure Tunnels | 329

HACK

authentication. If the proxy is not transparent, you can specify it with the -P
switch. Additionally, if you do need to authenticate with the proxy, you’ll
want to make use of the -A or --proxy-authorization options, which allow
you to specify a username and password with which to authenticate.

Here’s how to use these options:

htc -P myproxy:8000 -A andrew:mypassword -F 22 colossus:80

If the port that the proxy listens on is the standard web proxy port (8080),
you can just specify the proxy by using its IP address or hostname.

H A C K

102
Tunnel with VTun and SSH Hack #102

Connect two networks using VTun and a single SSH connection.

VTun is a user-space tunnel server, allowing entire networks to be tunneled to
each other using the tun universal tunnel kernel driver. An encrypted tunnel
such as VTun allows roaming wireless clients to secure all of their IP traffic
using strong encryption. It currently runs under Linux, BSD, and Mac OS X.

The examples in this hack assume that you are using Linux.

The following procedure allows a host with a private IP address (10.42.4.6)
to bring up a new tunnel interface with a real, live, routed IP address (208.
201.239.33) that works as expected, as if the private network weren’t even
there. You can accomplish this by bringing up the tunnel, dropping the
default route, and then adding a new default route via the other end of the
tunnel.

Here is the beginning, pretunneled network configuration:

root@client:~# ifconfig eth2
eth2 Link encap:Ethernet HWaddr 00:02:2D:2A:27:EA
inet addr:10.42.3.2 Bcast:10.42.3.63 Mask:255.255.255.192
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:662 errors:0 dropped:0 overruns:0 frame:0
TX packets:733 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:105616 (103.1 Kb) TX bytes:74259 (72.5 Kb)
Interrupt:3 Base address:0x100

root@client:~# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
10.42.3.0 * 255.255.255.192 U 0 0 0 eth2
loopback * 255.0.0.0 U 0 0 0 lo
default 10.42.3.1 0.0.0.0 UG 0 0 0 eth2

330 | Chapter 10, Secure Tunnels

#102 Tunnel with VTun and SSH
HACK

As you can see, the local network is 10.42.3.0/26, the IP address is 10.42.3.
2, and the default gateway is 10.42.3.1. This gateway provides network
address translation (NAT) to the Internet. Here’s what the path to yahoo.
com looks like:

root@client:~# traceroute -n yahoo.com
traceroute to yahoo.com (64.58.79.230), 30 hops max, 40 byte packets
1 10.42.3.1 2.848 ms 2.304 ms 2.915 ms
2 209.204.179.1 16.654 ms 16.052 ms 19.224 ms
3 208.201.224.194 20.112 ms 20.863 ms 18.238 ms
4 208.201.224.5 213.466 ms 338.259 ms 357.7 ms
5 206.24.221.217 20.743 ms 23.504 ms 24.192 ms
6 206.24.210.62 22.379 ms 30.948 ms 54.475 ms
7 206.24.226.104 94.263 ms 94.192 ms 91.825 ms
8 206.24.238.61 97.107 ms 91.005 ms 91.133 ms
9 206.24.238.26 95.443 ms 98.846 ms 100.055 ms
10 216.109.66.7 92.133 ms 97.419 ms 94.22 ms
11 216.33.98.19 99.491 ms 94.661 ms 100.002 ms
12 216.35.210.126 97.945 ms 93.608 ms 95.347 ms
13 64.58.77.41 98.607 ms 99.588 ms 97.816 ms

In this example, we are connecting to a tunnel server on the Internet at 208.
201.239.5. It has two spare live IP addresses (208.201.239.32 and 208.201.
239.33) to be used for tunneling. We’ll refer to that machine as the server
and our local machine as the client.

Configuring VTun
Now, let’s get the tunnel running. First, load the tun driver on both
machines:

modprobe tun

It is worth noting that the tun driver will sometimes fail if the
server and client kernel versions don’t match. For best
results, use a recent kernel (and the same version) on both
machines.

On the server machine, save this file to /usr/local/etc/vtund.conf:

options {
 port 5000;
 ifconfig /sbin/ifconfig;
 route /sbin/route;
 syslog auth;
}

default {
 compress no;
 speed 0;

Tunnel with VTun and SSH #102

Chapter 10, Secure Tunnels | 331

HACK

}

home {
 type tun;
 proto tcp;
 stat yes;
 keepalive yes;

 pass sHHH; # Password is REQUIRED.

 up {
 ifconfig "%% 208.201.239.32 pointopoint 208.201.239.33";
 program /sbin/arp "-Ds 208.201.239.33 %% pub";
 program /sbin/arp "-Ds 208.201.239.33 eth0 pub";
 route "add -net 10.42.0.0/16 gw 208.201.239.33";
 };

 down {
 program /sbin/arp "-d 208.201.239.33 -i %%";
 program /sbin/arp "-d 208.201.239.33 -i eth0";
 route "del -net 10.42.0.0/16 gw 208.201.239.33";
 };
}

Launch the vtund server, like so:

root@server:~# vtund -s

Now, you’ll need a vtund.conf file for the client side. Try this one, again in
/usr/local/etc/vtund.conf:

options {
 port 5000;
 ifconfig /sbin/ifconfig;
 route /sbin/route;
}

default {
 compress no;
 speed 0;
}

home {
 type tun;
 proto tcp;
 keepalive yes;

 pass sHHH; # Password is REQUIRED.

 up {
 ifconfig "%% 208.201.239.33 pointopoint 208.201.239.32 arp";
 route "add 208.201.239.5 gw 10.42.3.1";
 route "del default";
 route "add default gw 208.201.239.32";

332 | Chapter 10, Secure Tunnels

#102 Tunnel with VTun and SSH
HACK

 };

 down {
 route "del default";
 route "del 208.201.239.5 gw 10.42.3.1";
 route "add default gw 10.42.3.1";
 };
}

Testing VTun
Finally, it’s time to test VTun by running this command on the client:

root@client:~# vtund -p home server

Presto! Not only do you have a tunnel up between the client and the server,
but you also have a new default route via the other end of the tunnel. Take a
look at what happens when you traceroute to yahoo.com with the tunnel in
place:

root@client:~# traceroute -n yahoo.com
traceroute to yahoo.com (64.58.79.230), 30 hops max, 40 byte packets
1 208.201.239.32 24.368 ms 28.019 ms 19.114 ms
2 208.201.239.1 21.677 ms 22.644 ms 23.489 ms
3 208.201.224.194 20.41 ms 22.997 ms 23.788 ms
4 208.201.224.5 26.496 ms 23.8 ms 25.752 ms
5 206.24.221.217 26.174 ms 28.077 ms 26.344 ms
6 206.24.210.62 26.484 ms 27.851 ms 25.015 ms
7 206.24.226.103 104.22 ms 114.278 ms 108.575 ms
8 206.24.238.57 99.978 ms 99.028 ms 100.976 ms
9 206.24.238.26 103.749 ms 101.416 ms 101.09 ms
10 216.109.66.132 102.426 ms 104.222 ms 98.675 ms
11 216.33.98.19 99.985 ms 99.618 ms 103.827 ms
12 216.35.210.126 104.075 ms 103.247 ms 106.398 ms
13 64.58.77.41 107.219 ms 106.285 ms 101.169 ms

This means that any server processes running on the client are now fully
available to the Internet, at IP address 208.201.239.33. This has all
happened without making a single change (e.g., port forwarding) on the
gateway 10.42.3.1.

Here’s what the new tunnel interface looks like on the client:

root@client:~# ifconfig tun0
tun0 Link encap:Point-to-Point Protocol
inet addr:208.201.239.33 P-t-P:208.201.239.32 Mask:255.255.255.255
UP POINTOPOINT RUNNING MULTICAST MTU:1500 Metric:1
RX packets:39 errors:0 dropped:0 overruns:0 frame:0
TX packets:39 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:10
RX bytes:2220 (2.1 Kb) TX bytes:1560 (1.5 Kb)

Tunnel with VTun and SSH #102

Chapter 10, Secure Tunnels | 333

HACK

And here’s the updated routing table:

root@client:~# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
208.201.239.5 10.42.3.1 255.255.255.255 UGH 0 0 0 eth2
208.201.239.32 * 255.255.255.255 UH 0 0 0 tun0
10.42.3.0 * 255.255.255.192 U 0 0 0 eth2
10.42.4.0 * 255.255.255.192 U 0 0 0 eth0
loopback * 255.0.0.0 U 0 0 0 lo
default 208.201.239.32 0.0.0.0 UG 0 0 0 tun0

You’ll need to keep a host route to the tunnel server’s IP
address via the old default gateway; otherwise, the tunnel
traffic can’t get out.

To bring down the tunnel, simply kill the vtund process on the client. This
restores all network settings back to their original states.

Encrypting the Tunnel
This method works fine if you trust VTun to use strong encryption and to be
free from remote exploits. Personally, I don’t think you can be too paranoid
when it comes to machines connected to the Internet. To use VTun over
SSH (and therefore rely on the strong authentication and encryption that
SSH provides), simply forward port 5000 on the client to the same port on
the server:

root@client:~# ssh -f -N -c blowfish -C -L5000:localhost:5000 server
root@client:~# vtund -p home localhost
root@client:~# traceroute -n yahoo.com
traceroute to yahoo.com (64.58.79.230), 30 hops max, 40 byte packets
1 208.201.239.32 24.715 ms 31.713 ms 29.519 ms
2 208.201.239.1 28.389 ms 36.247 ms 28.879 ms
3 208.201.224.194 48.777 ms 28.602 ms 44.024 ms
4 208.201.224.5 38.788 ms 35.608 ms 35.72 ms
5 206.24.221.217 37.729 ms 38.821 ms 43.489 ms
6 206.24.210.62 39.577 ms 43.784 ms 34.711 ms
7 206.24.226.103 110.761 ms 111.246 ms 117.15 ms
8 206.24.238.57 112.569 ms 113.2 ms 111.773 ms
9 206.24.238.26 111.466 ms 123.051 ms 118.58 ms
10 216.109.66.132 113.79 ms 119.143 ms 109.934 ms
11 216.33.98.19 111.948 ms 117.959 ms 122.269 ms
12 216.35.210.126 113.472 ms 111.129 ms 118.079 ms
13 64.58.77.41 110.923 ms 110.733 ms 115.22 ms

To discourage connections to vtund on port 5000 of the server, add a Netfil-
ter rule to drop connections from the outside world:

root@server:~# iptables -A INPUT -t filter -i eth0 \
-p tcp --dport 5000 -j DROP

334 | Chapter 10, Secure Tunnels

#103 Generate VTun Configurations Automatically
HACK

This allows local connections to get through (since they use loopback) and
therefore requires an SSH tunnel to the server before accepting a connection.

As you can see, VTun can be an extremely handy tool to have around. In
addition to giving live IP addresses to machines behind a NAT device, you
can effectively connect any two networks if you can obtain a single SSH con-
nection between them (originating from either direction).

If your head is swimming from this VTun setup or you’re feeling lazy and
don’t want to figure out what to change when setting up your own client’s
vtund.conf file, take a look at the automatic vtund.conf generator [Hack #103].

—Rob Flickenger

H A C K

103
Generate VTun Configurations Automatically Hack #103

Generate a vtund.conf file on the fly to match changing network conditions.

If you’ve just come from “Tunnel with VTun and SSH” [Hack #102], the fol-
lowing script will automatically generate a working vtund.conf file for the cli-
ent side.

If you haven’t read the previous hack (or if you’ve never used VTun), go
back and read it before attempting to grok this bit of Perl. Essentially, it
attempts to take the guesswork out of changing around the routing table on
the client side by auto-detecting the default gateway and building vtund.conf
accordingly.

The Code
Save this file as vtundconf, and run the script each time you use a new wire-
less network to generate an appropriate vtund.conf on the fly:

#!/usr/bin/perl -w
#
vtund wrapper in need of a better name.
#
(c)2002 Schuyler Erle & Rob Flickenger
#
################ CONFIGURATION

If TunnelName is blank, the wrapper will look at @ARGV or $0.
#
Config is TunnelName, LocalIP, RemoteIP, TunnelHost, TunnelPort, Secret
#
my $TunnelName = "";
my $Config = q{
 home 208.201.239.33 208.201.239.32 208.201.239.5 5000 sHHH
 tunnel2 10.0.1.100 10.0.1.1 192.168.1.4 6001 foobar
};

Generate VTun Configurations Automatically #103

Chapter 10, Secure Tunnels | 335

HACK

################ MAIN PROGRAM BEGINS HERE

use POSIX 'tmpnam';
use IO::File;
use File::Basename;
use strict;

Where to find things...
#
$ENV{PATH} = "/bin:/usr/bin:/usr/local/bin:/sbin:/usr/sbin:/usr/local/
[RETURN]sbin";
my $IP_Match = '((?:\d{1,3}\.){3}\d{1,3})'; # match xxx.xxx.xxx.xxx
my $Ifconfig = "ifconfig -a";
my $Netstat = "netstat -rn";
my $Vtund = "/bin/echo";
my $Debug = 1;

Load the template from the data section.
#
my $template = join("",);

Open a temp file -- adapted from Perl Cookbook, 1st Ed., sec. 7.5.
#
my ($file, $name) = ("", "");
$name = tmpnam()
 until $file = IO::File->new($name, O_RDWR|O_CREAT|O_EXCL);
END { unlink($name) or warn "Can't remove temporary file $name!\n"; }

If no TunnelName is specified, use the first thing on the command line,
or if there isn't one, the basename of the script.
This allows users to symlink different tunnel names to the same script.
#
$TunnelName ||= shift(@ARGV) || basename($0);
die "Can't determine tunnel config to use!\n" unless $TunnelName;

Parse config.
#
my ($LocalIP, $RemoteIP, $TunnelHost, $TunnelPort, $Secret);
for (split(/\r*\n+/, $Config)) {
 my ($conf, @vars) = grep($_ ne "", split(/\s+/));
 next if not $conf or $conf =~ /^\s*#/o; # skip blank lines, comments
 if ($conf eq $TunnelName) {
 ($LocalIP, $RemoteIP, $TunnelHost, $TunnelPort, $Secret) = @vars;
 last;
 }
}

die "Can't determine configuration for TunnelName '$TunnelName'!\n"
 unless $RemoteIP and $TunnelHost and $TunnelPort;

Find the default gateway.
#
my ($GatewayIP, $ExternalDevice);

336 | Chapter 10, Secure Tunnels

#103 Generate VTun Configurations Automatically
HACK

for (qx{ $Netstat }) {
 # In both Linux and BSD, the gateway is the next thing on the line,
 # and the interface is the last.
 #
 if (/^(?:0.0.0.0|default)\s+(\S+)\s+.*?(\S+)\s*$/o) {
 $GatewayIP = $1;
 $ExternalDevice = $2;
 last;
 }
}

die "Can't determine default gateway!\n" unless $GatewayIP and
$ExternalDevice;

Figure out the LocalIP and LocalNetwork.
#
my ($LocalNetwork);
my ($iface, $addr, $up, $network, $mask) = "";

sub compute_netmask {
 ($addr, $mask) = @_;
 # We have to mask $addr with $mask because linux /sbin/route
 # complains if the network address doesn't match the netmask.
 #
 my @ip = split(/\./, $addr);
 my @mask = split(/\./, $mask);
 $ip[$_] = ($ip[$_] + 0) & ($mask[$_] + 0) for (0..$#ip);
 $addr = join(".", @ip);
 return $addr;
}

for (qx{ $Ifconfig }) {
 last unless defined $_;

 # If we got a new device, stash the previous one (if any).
 if (/^([^\s:]+)/o) {
 if ($iface eq $ExternalDevice and $network and $up) {
 $LocalNetwork = $network;
 last;
 }
 $iface = $1;
 $up = 0;
 }

 # Get the network mask for the current interface.
 if (/addr:$IP_Match.*?mask:$IP_Match/io) {
 # Linux style ifconfig.
 compute_netmask($1, $2);
 $network = "$addr netmask $mask";
 } elsif (/inet $IP_Match.*?mask 0x([a-f0-9]{8})/io) {
 # BSD style ifconfig.
 ($addr, $mask) = ($1, $2);
 $mask = join(".", map(hex $_, $mask =~ /(..)/gs));
 compute_netmask($addr, $mask);

Generate VTun Configurations Automatically #103

Chapter 10, Secure Tunnels | 337

HACK

 $network = "$addr/$mask";
 }

 # Ignore interfaces that are loopback devices or aren't up.
 $iface = "" if /\bLOOPBACK\b/o;
 $up++ if /\bUP\b/o;
}

die "Can't determine local IP address!\n" unless $LocalIP and $LocalNetwork;

Set OS dependent variables.
#
my ($GW, $NET, $PTP);
if ($^O eq "linux") {
 $GW = "gw"; $PTP = "pointopoint"; $NET = "-net";
} else {
 $GW = $PTP = $NET = "";
}

Parse the config template.
#
$template =~ s/(\$\w+)/$1/gee;

Write the temp file and execute vtund.
#
if ($Debug) {
 print $template;
} else {
 print $file $template;
 close $file;
 system("$Vtund $name");
}

_ _DATA_ _

options {
 port $TunnelPort;
 ifconfig /sbin/ifconfig;
 route /sbin/route;
}

default {
 compress no;
 speed 0;
}

'mytunnel' should really be `basename $0` or some such
for automagic config selection
$TunnelName {
 type tun;
 proto tcp;
 keepalive yes;

 pass $Secret;

338 | Chapter 10, Secure Tunnels

#103 Generate VTun Configurations Automatically
HACK

 up {
 ifconfig "%% $LocalIP $PTP $RemoteIP arp";
 route "add $TunnelHost $GW $GatewayIP";
 route "delete default";
 route "add default $GW $RemoteIP";
 route "add $NET $LocalNetwork $GW $GatewayIP";
 };

 down {
 ifconfig "%% down";
 route "delete default";
 route "delete $TunnelHost $GW $GatewayIP";
 route "delete $NET $LocalNetwork";
 route "add default $GW $GatewayIP";
 };
}

Running the Hack
To configure the script, take a look at its Configuration section. The first
line of $Config contains the addresses, port, and secret used in “Tunnel with
VTun and SSH” [Hack #102]. The second line simply serves as an example of
how to add more.

To run the script, either call it as vtundconf home or set $TunnelName to the
name of the tunnel you would like to be the default. Better yet, make sym-
links to the script, like this:

ln -s vtundconf home
ln -s vtundconf tunnel2

Then, you can generate the appropriate vtund.conf by calling the symlink
directly:

vtundconf home > /usr/local/etc/vtund.conf

You might be wondering why anyone would go to all of the trouble of mak-
ing a vtund.conf-generating script in the first place. Once you get the set-
tings right, you’ll never have to change them, right?

Well, usually, that’s true. But consider the case of a Linux laptop that uses
many different networks in the course of the day (say, a DSL line at home,
Ethernet at work, and maybe a wireless connection at the local coffee shop).
Running vtundconf once at each location will give you a working configura-
tion instantly, even if your IP address and gateway are assigned by DHCP.
This makes it easy to get up and running quickly with a live, routable IP
address, regardless of the local network topology.

—Rob Flickenger

Create a Cross-Platform VPN #104

Chapter 10, Secure Tunnels | 339

HACK

H A C K

104
Create a Cross-Platform VPN Hack #104

Use OpenVPN to easily tie together your networks.

Creating a VPN can be quite difficult, especially when dealing with clients
using multiple platforms. Quite often, a single VPN implementation isn’t
available for all of them. As an administrator, you can be left trying to get
different VPN implementations to operate on all the different platforms that
you need to support, which can become a nightmare.

Luckily, someone has stepped in to fill the void in cross-platform VPN pack-
ages by writing OpenVPN (http://openvpn.sourceforge.net). OpenVPN sup-
ports Linux, Solaris, OpenBSD, FreeBSD, NetBSD, Mac OS X, and
Windows 2000/XP. It achieves this by implementing all of the encryption,
key-management, and connection-setup functionality in a user-space dae-
mon, leaving the actual tunneling portion of the job to the host operating
system.

To accomplish the tunneling, OpenVPN makes use of the host operating
system’s virtual TUN or TAP device. These devices export virtual network
interfaces, which are then managed by the openvpn process to provide a
point-to-point interface between the hosts participating in the VPN.

Instead of being sent and received by the virtual device, traffic is sent and
received from a user-space program. Thus, when data is sent across the vir-
tual device, it is relayed to the openvpn program, which then encrypts it and
sends it to the openvpn process running on the remote end of the VPN link.
When the data is received on the other end, the openvpn process decrypts it
and relays it to the virtual device on that machine. It is then processed just
like a packet being received on any other physical interface.

OpenVPN uses SSL and relies on the OpenSSL library (http://www.openssl.
org) for encryption, authentication, and certificate verification functionality.
Tunnels created with OpenVPN can either use preshared static keys or take
advantage of TLS dynamic keying and digital certificates. Since OpenVPN
makes use of OpenSSL, it can support any cipher that OpenSSL supports.
The main advantage of this is that OpenVPN will be able to transparently
support any new ciphers as they are added to the OpenSSL distribution.

Installing OpenVPN
If you’re using a Windows-based operating system or Mac OS X, all you
need to do is download the installer, run it, and configure OpenVPN. On all
other platforms, you’ll need to compile OpenVPN yourself. Before you com-
pile and install OpenVPN, make sure that you have OpenSSL installed.

340 | Chapter 10, Secure Tunnels

#104 Create a Cross-Platform VPN
HACK

Installing the LZO compression library (http://www.oberhumer.com/
opensource/lzo/) is also generally a good idea. Using LZO compression can
make much more efficient use of your bandwidth, and it may even greatly
improve performance in some circumstances.

To compile and install OpenVPN, download the tarball and type something
similar to this:

$ tar xfz openvpn-2.0.7.tar.gz
$ cd openvpn-2.0.7
$./configure && make

If you installed the LZO libraries and header files somewhere other than
/usr/lib and /usr/include, you will probably need to use the --with-lzo-
headers and --with-lzo-lib configure script options.

For example, if you have installed LZO under the /usr/local hierarchy, you’ll
want to run the configure script like this:

$./configure --with-lzo-headers=/usr/local/include \
--with-lzo-lib=/usr/local/lib

If the configure script cannot find the LZO libraries and headers, it will print
out a warning that looks like this:

LZO library and headers not found.
LZO library available from http://www.oberhumer.com/opensource/lzo/
configure: error: Or try ./configure --disable-lzo

If the script does find the LZO libraries, you should see output on your ter-
minal that is similar to this:

configure: checking for LZO Library and Header files...
checking lzo1x.h usability... yes
checking lzo1x.h presence... yes
checking for lzo1x.h... yes
checking for lzo1x_1_15_compress in -llzo... yes

Now that that’s out of the way, you can install OpenVPN by running the
usual make install. If you are running Solaris, you’ll also need to install a
TUN/TAP driver. The other Unix-based operating systems already include
one, and the Windows and Mac OS installers will install the driver for you.
You can get the source code to the Solaris driver from the SourceForge
project page (http://vtun.sourceforge.net/tun/).

Testing OpenVPN
Once you have LZO, OpenSSL, the TUN/TAP driver, and OpenVPN
installed, you can test everything by setting up a rudimentary VPN (that
isn’t so private) from the command line.

Create a Cross-Platform VPN #104

Chapter 10, Secure Tunnels | 341

HACK

On machine A (kryten in this example), run a command similar to this one:

openvpn --remote zul --dev tun0 --ifconfig 10.0.0.19 10.0.0.5

The command that you’ll need to run on machine B (zul) is a lot like the
previous command, except the arguments to --ifconfig are swapped:

openvpn --remote kryten --dev tun0 --ifconfig 10.0.0.5 10.0.0.19

The first IP address is the local end of the tunnel, and the second is the
remote end; this is why you need to swap the IP addresses on the other end.
When running these commands, you should see a warning about not using
encryption, as well as some status messages. Once OpenVPN starts, run
ifconfig to verify that the point-to-point tunnel device has been set up:

[andrew@kryten andrew]$ /sbin/ifconfig tun0
tun0: flags=51<UP,POINTOPOINT,RUNNING> mtu 1300
 inet 10.0.0.19 --> 10.0.0.5 netmask 0xffffffff

Now, try pinging the remote machine, using its tunneled IP address:

[andrew@kryten andrew]$ ping -c 4 10.0.0.5
PING 10.0.0.5 (10.0.0.5): 56 data bytes
64 bytes from 10.0.0.5: icmp_seq=0 ttl=255 time=0.864 ms
64 bytes from 10.0.0.5: icmp_seq=1 ttl=255 time=1.012 ms
64 bytes from 10.0.0.5: icmp_seq=2 ttl=255 time=0.776 ms
64 bytes from 10.0.0.5: icmp_seq=3 ttl=255 time=0.825 ms

--- 10.0.0.5 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 0.776/0.869/1.012 ms

Creating Your Configuration
Now that you have verified that OpenVPN is working properly, it’s time to
create a configuration that’s a little more useful in the real world. First, you
will need to create SSL certificates [Hack #69] for each end of the connection.
After you’ve done this, you’ll need to create configuration files on your
server and clients. For these examples, zul will be the gateway into the pri-
vate network and kryten will be the external client.

The configuration file for zul will be stored in /etc/openvpn/openvpn.conf.
Here are the contents:

port 5000
dev tun0

tls-server
dh /etc/ssl/dh1024.pem
ca /etc/ssl/CA.crt
cert /etc/ssl/zul.crt
key /etc/ssl/private/zul.key

342 | Chapter 10, Secure Tunnels

#104 Create a Cross-Platform VPN
HACK

mode server
ifconfig 192.168.1.1 192.168.1.2
ifconfig-pool 192.168.1.4 192.168.1.255

push "route 192.168.0.0 255.255.255.0"
route 192.168.1.0 255.255.255.0

ping 10
ping-restart 120
push "ping 10"
push "ping-restart 60"

daemon
user _openvpn
group _openvpn
chroot /var/empty
writepid /var/run/openvpn.pid
verb 1

The port and dev options are used to specify what port to listen on and what
TUN device to use. The tls-server option enables TLS mode and specifies
that you want to designate this side of the connection as the server during
the TLS handshaking process. The dh option specifies the Diffie-Hellman
parameters to use during key exchange. These are encoded in a .pem file and
can be generated with the following openssl command:

openssl dhparam -out dh1024.pem 1024

The next few configuration options deal with the SSL certificates. The ca
option specifies the Certificate Authority’s public certificate, and the cert
option specifies the public certificate to use for this side of the connection.
Similarly, the key option specifies the private key that corresponds to the
public certificate.

The next option, server, tells OpenVPN to act as a multi-client UDP server.
This means that the server will dynamically allocate an IP address for any
VPN client that connects to it. The range that the server uses to allocate
these addresses is set with the ifconfig-pool option. However, as you’re still
really using a TUN interface to send and receive traffic, you’ll need to spec-
ify the addresses for each end of your TUN interface by using the ifconfig
option.

Next, set up routing between the VPN subnet and the rest of the network.
Set the route on the server with the route option, which takes a network
address and netmask as its arguments. Set the route on the client via the
push command, which lets you send configuration information to authenti-
cated clients.

Create a Cross-Platform VPN #104

Chapter 10, Secure Tunnels | 343

HACK

To help ensure that the VPN tunnel doesn’t get dropped from any interven-
ing firewalls that are doing stateful filtering, use the ping option. This causes
OpenVPN to ping the remote host every n seconds so that the tunnel’s entry
in the firewall’s state table does not time out. If the client or server doesn’t
receive a ping within 60 or 120 seconds, respectively, the ping-restart
option will cause them to attempt to reconnect to each other.

Finishing up, tell OpenVPN to fork into the background by using the daemon
option, drop its privileges to the _openvpn user and group with the user and
group options, and tell it to chroot() to /var/empty by using the chroot
option.

On kryten, the following configuration file is used:

port 5000
dev tun0
remote zul
tls-client
ca /etc/ssl/CA.crt
cert /etc/ssl/kryten.crt
key /etc/ssl/private/kryten.key
pull
verb 1

The main differences in this configuration file are that the remote and tls-
client options have been used. Other than that, kryten’s public and private
keys are used instead of zul’s, and the pull option is used to request that the
server push additional configuration information to the client. To turn on
compression, add the comp-lzo option to the configuration files on both
ends of the VPN.

Now, the only thing to worry about is firewalling. You’ll want to allow traf-
fic coming through your tun0 device, as well as UDP port 5000.

Finally, you are ready to run openvpn on both sides, using a command like
this:

openvpn --config /etc/openvpn.conf

Using OpenVPN and Windows
Setting up OpenVPN under Windows is even easier. Simply run the Open-
VPN GUI installer (http://openvpn.se/download.html), and everything you
need will be installed onto your system. This includes OpenSSL, LZO, the
TUN/TAP driver, and OpenVPN itself. During the install process, you’ll be
prompted about what to install and about whether or not to hide the
TUN/TAP interface so that it won’t appear in your Network Connections
folder, as shown in Figure 10-3.

344 | Chapter 10, Secure Tunnels

#104 Create a Cross-Platform VPN
HACK

Accepting the defaults should be okay in most situations. The Certificate
Wizard is provided so that users can generate certificate requests to have
their network administrators create certificates for them.

As part of the install process, files with the .ovpn extension are associated
with OpenVPN. After the installation has completed, go into the config
directory where you installed OpenVPN (e.g., C:\Program Files\OpenVPN\
config if you accepted the defaults).

Now, create a file with an .ovpn extension and put your configuration set-
tings in it. You’ll need to put your certificate and key files into the config
directory as well. You should now be able to connect to your VPN by click-
ing on the OpenVPN GUI System Tray icon.

Using OpenVPN with Mac OS X
With the aid of Tunnelblick (http://www.tunnelblick.net), installing Open-
VPN under Mac OS X is just as easy as it is under Windows. Simply go to the
Tunnelblick site and download the disk image appropriate for your version of
Mac OS (Panther or Tiger). After you’ve opened the disk image, double-click
on the Tunnelblick-Complete.mpkg package file. Once installation has com-
pleted, go to your Applications folder, find Tunnelblick, and launch it.

Figure 10-3. Choosing components to install with the OpenVPN GUI

Tunnel PPP #105

Chapter 10, Secure Tunnels | 345

HACK

Tunnelblick will then prompt you to create a configuration file and open a
window in which you can paste your settings. The file that you create here
will be stored in ~/Library/openvpn. After you’ve done this, copy your key
and certificates to ~/Library/openvpn.

You’re almost done now. Locate the icon that looks like a tunnel in the
right-most position of the menu bar, click it, and then click Connect. With
luck, you should be connected to your VPN in moments.

This hack should get you started using OpenVPN, but it has
far too many configuration options to discuss here. Be sure
to look at the OpenVPN web site for more information.

H A C K

105
Tunnel PPP Hack #105

Use PPP and SSH to create a secure VPN tunnel.

There are so many options to choose from when creating a VPN or tun-
neled connection that it’s mind-boggling. You might not be aware that all
the software you need to create a VPN—namely, PPP and SSH daemons—is
probably already installed on your Unix machines.

If you used PPP back in the day to connect to the Internet over a dial-up
connection, you might be wondering how the same PPP can operate over
SSH. Well, when you used PPP in conjunction with a modem, it was talking
to the modem through what the operating system presented as a TTY inter-
face, which is, in short, a regular terminal device. The PPP daemon on your
end sent its output to the TTY, and the operating system then sent it out via
the modem; it then traveled across the telephone network until it reached
the remote end, where the same thing happened in reverse.

The terminals on which you run shell commands (e.g., the console or an
xterm) use pseudo-TTY interfaces, which are designed to operate similarly
to TTYs. Because of this, PPP daemons can also operate over pseudo-TTYs.
So, you can replace the serial TTYs with pseudo-TTYs, but you still need a
way to connect the local pseudo-TTY to the remote one. Here’s where SSH
comes into the picture.

You can create the actual PPP connection in one quick command. For
instance, if you want to use the IP address 10.1.1.20 for your local end of the
connection and 10.1.1.1 on the remote end, run a command similar to this:

/usr/sbin/pppd updetach noauth silent nodeflate \
pty "/usr/bin/ssh root@colossus /usr/sbin/pppd nodetach notty noauth" \
ipparam 10.1.1.20:10.1.1.1
root@colossus's password:
local IP address 10.1.1.20
remote IP address 10.1.1.1

346 | Chapter 10, Secure Tunnels

#105 Tunnel PPP
HACK

The first line of the command starts the pppd process on the local machine
and tells it to fork into the background once the connection has been estab-
lished (updetach). It also tells pppd to not do any authentication (noauth),
because the SSH daemon already provides very strong authentication, and
turns off deflate compression (nodeflate).

The second line of the command tells pppd to run a program and to commu-
nicate with it through the program’s standard input and standard output.
This is used to log into the remote machine and run a pppd process there.
Finally, the last line specifies the local and remote IP addresses that are to be
used for the PPP connection.

After the command returns you to the shell, you should be able to see a ppp
interface in the output of ifconfig:

$ /sbin/ifconfig ppp0
ppp0 Link encap:Point-to-Point Protocol
 inet addr:10.1.1.20 P-t-P:10.1.1.1 Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:58 errors:0 dropped:0 overruns:0 frame:0
 TX packets:50 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:3
 RX bytes:5372 (5.2 Kb) TX bytes:6131 (5.9 Kb)

Now, try pinging the remote end’s IP address:

$ ping 10.1.1.1
PING 10.1.1.1 (10.1.1.1) 56(84) bytes of data.
64 bytes from 10.1.1.1: icmp_seq=1 ttl=64 time=4.56 ms
64 bytes from 10.1.1.1: icmp_seq=2 ttl=64 time=4.53 ms
64 bytes from 10.1.1.1: icmp_seq=3 ttl=64 time=5.45 ms
64 bytes from 10.1.1.1: icmp_seq=4 ttl=64 time=4.51 ms

--- 10.1.1.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3025ms
rtt min/avg/max/mdev = 4.511/4.765/5.451/0.399 ms

And finally, the ultimate litmus test—actually using the tunnel for some-
thing other than ping:

$ ssh 10.1.1.1
The authenticity of host '10.1.1.1 (10.1.1.1)' can't be established.
RSA key fingerprint is 56:36:db:7a:02:8b:05:b2:4d:d4:d1:24:e9:4f:35:49.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.1.1.1' (RSA) to the list of known hosts.
andrew@10.1.1.1's password:
[andrew@colossus andrew]$

Tunnel PPP #105

Chapter 10, Secure Tunnels | 347

HACK

Before deciding to keep this setup, you might want to generate login keys to
use with ssh [Hack #97], so that you don’t need to type in a password each
time. In addition, you might want to create a separate user for logging in on
the remote machine and starting pppd. However, pppd needs to be started as
root, so you’ll have to make use of sudo [Hack #6]. Also, you can enable SSH’s
built-in compression by adding a -C to the ssh command. In some circum-
stances, SSH compression can greatly improve the speed of the link. Finally,
to tear down the tunnel, simply kill the ssh process that pppd spawned.

Although it’s ugly and might not be as stable and full of features as actual
VPN implementations, the PPP and SSH combination can help you create an
instant encrypted network without the need to install additional software.

See Also
• The section “Creating a VPN with PPP and SSH” in Virtual Private Net-

works, Second Edition, by Charlie Scott, Paul Wolfe, and Mike Erwin
(O’Reilly)

348

Chapter 11C H A P T E R E L E V E N

Network Intrusion Detection
Hacks 106–120

One type of tool that’s come to the forefront in network security in recent
years is the network intrusion detection system (NIDS). These systems can
be deployed on your network and monitor the traffic until they detect suspi-
cious behavior, when they spring into action and notify you of what is going
on. They are excellent tools to use in addition to your logs, since a network
IDS can often spot an attack before it reaches the intended target or has a
chance to end up in your logs.

Currently, there are two main types of NIDS. The first type detects intru-
sions by monitoring network traffic for specific byte patterns that are simi-
lar to known attacks. A NIDS that operates in this manner is known as a
signature-based intrusion detection system. The other type of network IDS is
a statistical monitor. These systems also monitor the traffic on the network,
but instead of looking for a particular pattern or signature, they maintain a
statistical history of the packets that pass through the network and report
when they see a packet that falls outside of the normal network traffic pat-
tern. NIDSs that employ this method are known as anomaly-based intrusion
detection systems.

In this chapter, you’ll learn how to set up Snort, a signature-based IDS.
You’ll also learn how to set up Snort with SPADE, which adds anomaly-
detection capabilities to Snort, giving you the best of both worlds. This
chapter also demonstrates how to set up several different applications that
can help you to monitor and manage your NIDS once you have it deployed.
In addition, you’ll learn how to leverage Snort and ClamAV to scan your
network traffic for viruses and prevent them from propagating.

Finally, you’ll see how to set up a system that appears vulnerable to attack-
ers, but is actually quietly waiting and monitoring everything it sees. These
systems are called honeypots. The last few hacks will show you how to
quickly and easily get a honeypot up and running, and how to monitor
intruders that have been fooled and trapped by it.

Detect Intrusions with Snort #106

Chapter 11, Network Intrusion Detection | 349

HACK

H A C K

106
Detect Intrusions with Snort Hack #106

Use one of the most powerful (and free) network intrusion detection systems
available to keep an eye on your network.

Monitoring your logs can take you only so far in detecting intrusions. If the
logs are being generated by a service that has been compromised, welcome
to one of the security admin’s worst nightmares: you can no longer trust
your logs. This is where network intrusion detection systems come into
play: they can alert you to intrusion attempts, or even intrusions in progress.

The undisputed champion of open source NIDSs is Snort (http://www.snort.
org). Some of the features that make Snort so powerful are its signature-
based rule engine and its easy extensibility through plug-ins and preproces-
sors. These features allow you to extend Snort in any direction you need.
Consequently, you don’t have to depend on anyone else to provide you with
rules when a new exploit comes to your attention: with a basic knowledge of
TCP/IP, you can write your own rules quickly and easily. This is probably
Snort’s most important feature, since new attacks are invented and reported
all the time. Additionally, Snort has a very flexible reporting mechanism that
allows you to send alerts to a syslogd, flat files, or even a database.

Installing Snort
To compile and install a plain-vanilla version of Snort, download the latest
version and unpack it. Run the configure script and then make:

$./configure && make

Then become root and run:

make install

Note that all the headers and libraries for libpcap (http://www.tcpdump.org)
and PCRE (http://www.pcre.org) must be installed before you start building
Snort; otherwise, compilation will fail. Additionally, you might need to
make use of the --with-libpcap-includes, --with-libpcre-includes, --with-
libpcap-libraries, or --with-libpcre-libraries configure script options to
tell the compiler where it can find the libraries and headers. However, you
should need to do this only if you have installed the libraries and headers in
a nonstandard location (i.e., somewhere other than the /usr or /usr/local
hierarchy).

For example, if you have installed libpcap within the /opt hierarchy, you
would use this:

$./configure --with-libpcap-includes=/opt/include \
--with-libpcap-libraries=/opt/lib

350 | Chapter 11, Network Intrusion Detection

#106 Detect Intrusions with Snort
HACK

Snort is capable of flexible response: the ability to respond to the host that
has triggered one of its rules. To enable this functionality, you’ll also need to
use the --enable-flexresp option, which requires the libnet packet injection
library (http://www.packetfactory.net/projects/libnet/). After ensuring that
this package is installed on your system, you can use the --with-libnet-
includes and --with-libnet-libraries switches to specify its location.

If you want to include support for sending alerts to a database, you will need
to make use of either the --with-mysql, --with-postgresql, or --with-oracle
option. To see the full list of configure script options, type ./configure
--help.

Testing Snort
After you have installed Snort, test it out by using it in sniffer mode. You
should immediately see some traffic:

snort -evi eth0
Running in packet dump mode

Initializing Network Interface eth0

 --== Initializing Snort ==--
Initializing Output Plugins!
Decoding Ethernet on interface eth0

 --== Initialization Complete ==--

 ,,_ -*> Snort! <*-
 o")~ Version 2.4.4 (Build 28)
 '''' By Martin Roesch & The Snort Team: http://www.snort.org/team.html
 (C) Copyright 1998-2005 Sourcefire Inc., et al.
 NOTE: Snort's default output has changed in version 2.4.1!
 The default logging mode is now PCAP, use "-K ascii" to activate
 the old default logging mode.

05/06-14:16:13.214265 0:C:29:C3:C8:3B -> 0:A:95:F5:F1:A5 type:0x800 len:0x92
192.168.0.43:22 -> 192.168.0.60:63126 TCP TTL:64 TOS:0x10 ID:29515 IpLen:20
DgmLen:132 DF
AP Seq: 0x7FCD85CF Ack: 0xA75EBFF2 Win: 0x9E8 TcpLen: 32
TCP Options (3) => NOP NOP TS: 486412346 1797431762
=+

05/06-14:16:13.252177 0:A:95:F5:F1:A5 -> 0:C:29:C3:C8:3B type:0x800 len:0x42
192.168.0.60:63126 -> 192.168.0.43:22 TCP TTL:64 TOS:0x10 ID:38015 IpLen:20
DgmLen:52 DF
A* Seq: 0xA75EBFF2 Ack: 0x7FCD861F Win: 0xFFFF TcpLen: 32
TCP Options (3) => NOP NOP TS: 1797431762 486412307
=+

Detect Intrusions with Snort #106

Chapter 11, Network Intrusion Detection | 351

HACK

Configuring Snort
The Snort source distribution provides some configuration files in the etc
directory, but they are not installed when running make install. You can
create a directory to hold these in /etc or /usr/local/etc and copy the perti-
nent files to it by running something similar to this:

mkdir /usr/local/etc/snort && cp etc/[^Makefile]* /usr/local/etc/snort

You’ll probably want to copy the rules directory to that location as well.
Note that, as of Version 2.4.0, rules are not distributed with the source but
can be downloaded from http://www.snort.org/rules/. Unregistered users
have access to rulesets that are updated only with every major version
release (e.g., 2.4.0, 2.5.0, etc.), whereas registered users can receive rulesets
that trail the current rules offered to paying subscribers by five days. In addi-
tion, you can download community rules that are contributed by the OSS
community to the Snort team.

Now, you need to edit the snort.conf file. Snort’s sample snort.conf file lists a
number of variables. Some are defined with default values, and all are
accompanied by comments that make this section mostly self-explanatory.
Of particular note, however, are these two variables:

var HOME_NET any
var EXTERNAL_NET any

HOME_NET specifies which IP address spaces should be considered local. The
default is set so that any IP address is included as part of the home network.
Networks can be specified using CIDR notation (i.e., xxx.xxx.xxx.xxx/yy).
You can also specify multiple subnets and IP addresses by enclosing them in
brackets and separating them with commas:

var HOME_NET [10.1.1.0/24,192.168.1.0/24]

To automatically set HOME_NET to the network address of a particular inter-
face, set the variable to $eth0_ADDRESS. In this particular case, $eth0_ADDRESS
sets it to the network address of eth0.

The EXTERNAL_NET variable allows you to explicitly specify IP addresses and
networks that are not part of HOME_NET. Unless a subset of HOME_NET is consid-
ered hostile, you can just keep the default value, which is any.

The rest of the variables that deal with IP addresses or network ranges— DNS_
SERVERS, SMTP_SERVERS, HTTP_SERVERS, SQL_SERVERS, and TELNET_SERVERS—are
set to $HOME_NET by default. These variables are used within the ruleset that
comes with the Snort distribution and can be used to fine-tune a rule’s behav-
ior. For instance, rules that deal with SMTP-related attack signatures use the
SMTP_SERVERS variable to filter out traffic that isn’t actually related to those
rules. Fine-tuning with these variables leads not only to more relevant alerts
and fewer false positives, but also to higher performance.

352 | Chapter 11, Network Intrusion Detection

#106 Detect Intrusions with Snort
HACK

Another important variable is RULE_PATH, which is used later in the
configuration file to include rulesets. The sample configuration file sets it to
../rules, but to be compatible with the previous examples you should
change it to ./rules, since snort.conf and the rules directory are both in /usr/
local/etc/snort.

The next section in the configuration file allows you to configure Snort’s
built-in preprocessors. These do anything from reassembling fragmented
packets to decoding HTTP traffic to detecting port scans. For most situa-
tions, the default configuration is sufficient. However, if you need to tweak
any of these settings, the configuration file is fully documented with each
preprocessor’s options.

If you’ve compiled in database support, you’ll probably want to enable the
database output plug-in, which will cause Snort to store any alerts that it
generates in your database. Enable this plug-in by putting lines similar to
these in your configuration file:

output database: log, mysql, user=snort password=snortpass dbname=SNORT \
 host=dbserver
output database: alert mysql, user=snort password=snortpass dbname=SNORT \
 host=dbserver

The first line configures Snort to send any information generated by rules
that specify the log action to the database. Likewise, the second line tells
Snort to send any information generated by rules that specify the alert
action to the database. For more information on the difference between the
log and alert actions, see “Write Your Own Snort Rules” [Hack #110].

If you’re going to use a database with Snort, you’ll need to create a new
database, and possibly a new database user account. The Snort source
code’s schemas directory includes scripts to create databases of the sup-
ported types: create_mssql, create_mysql, create_oracle.sql, and create_
postgresql.

If you are using MySQL, you can create a database and then create the
proper tables by running a command like this:

mysql SNORT -p < ./schemas/create_mysql

This lets you easily organize your alerts and logs and enables you to take
advantage of user-friendly systems that can be used to monitor your IDS,
such as BASE [Hack #107].

The rest of the configuration file deals mostly with the rule signatures Snort
will use when monitoring network traffic for intrusions. These rules are cate-
gorized and stored in separate files and are activated by using the include
directive. For testing purposes (or on networks with light traffic) the default

Keep Track of Alerts #107

Chapter 11, Network Intrusion Detection | 353

HACK

configuration is sufficient, but you should look over the rules and decide
which rule categories you really need and which ones you don’t.

Now that all of the hard configuration and setup work is out of the way, you
should test your snort.conf file. You can do this by running something simi-
lar to the following command:

snort -T -c /usr/local/etc/snort/snort.conf

Snort will report any errors that it finds and then exit. If there aren’t any
errors, run Snort with a command similar to this:

snort -Dd -c /usr/local/etc/snort/snort.conf

Two of these flags, -d and -c, were used previously (to tell Snort to decode
packet data and to use the specified configuration file, respectively). The -D
flag tells Snort to print out some startup messages and then fork into the
background.

Some other useful options are -u and -g, which let Snort drop its privileges
and run under the user and group that you specify. These are especially use-
ful with the -t option, which will chroot() Snort to the directory that you
specify.

Now you should start to see logs appearing in /var/log/snort, if you’re not
logging to a database. The alerts file is a text file that contains human-read-
able alerts generated by Snort. The snort.log files are tcpdump capture files
containing the packets that triggered the alerts.

See Also
• Chapter 11, “Simple Intrusion Detection Techniques,” in Building

Secure Servers with Linux, by Michael D. Bauer (O’Reilly)

H A C K

107
Keep Track of Alerts Hack #107

Use BASE to make sense of your IDS logs.

Once you have set up Snort to log information to your database [Hack #106],
you might find it hard to cope with all the data that it generates. Very busy
and high-profile sites can generate a huge number of Snort warnings that
eventually need to be followed up on. One way to alleviate the problem is to
install the Basic Analysis and Security Engine (BASE).

BASE (http://secureideas.sourceforge.net) is a web-based interface to Snort alert
databases. It features the ability to search for alerts based on a variety of crite-
ria, such as alert signature, time of detection, source and destination addresses
and ports, as well as payload or flag values. BASE can display the packets that
triggered the alerts and can decode their layer-3 and layer-4 information.

354 | Chapter 11, Network Intrusion Detection

#107 Keep Track of Alerts
HACK

BASE also contains alert-management features that allow you to group alerts
related to a specific incident, delete acknowledged or false-positive alerts,
email alerts, or archive them to another database. It also provides many dif-
ferent statistics on the alerts in your database based on time, the sensor they
were generated by, signature, and packet-related statistics such as protocol,
address, or port.

To install BASE, you’ll first need a web server and a working installation of
PHP (e.g., Apache and mod_php), as well as a Snort installation that has been
configured to log to a database (e.g., MySQL). You will also need a couple
of PHP code libraries: ADODB (http://adodb.sourceforge.net) for database
abstraction and PEAR::Image_Graph (http://pear.veggerby.dk) for graphics
rendering.

After you have downloaded ADODB, unpack it into a suitable directory. You’ll
then need to install Image_Graph. Download the Image_Graph package and its
dependencies, Image_Color and Image_Canvas, and then run the following
commands:

pear install Image_Color-1.0.2.tgz
install ok: Image_Color 1.0.2
pear install Image_Canvas-0.3.0.tgz
install ok: Image_Canvas 0.3.0
pear install Image_Graph-0.7.2.tgz
Optional dependencies:
package `Numbers_Roman' is recommended to utilize some features.
package `Numbers_Words' is recommended to utilize some features.
install ok: Image_Graph 0.7.2

Next, unpack BASE and rename the directory that was created (e.g., base-1.
2.4) to base. Then, change to the directory and copy the base_conf.php.dist
file to base_conf.php. Now, edit that file to tell BASE where to find ADODB, as
well as how to connect to your Snort database.

You can do this by changing these variables to similar values that fit your
situation:

$DBlib_path = "../..adodb";
$DBtype = "mysql";
$alert_dbname = "SNORT";
$alert_host = "localhost";
$alert_port = "";
$alert_user="snort";
$alert_password = "snortpass";

This configuration tells BASE to look for the ADODB code in the adodb direc-
tory one level above the base directory. In addition, it tells BASE to connect
to a MySQL database called SNORT that is running on the local machine,
using the user snort with the password snortpass. Since it is connecting to a

Keep Track of Alerts #107

Chapter 11, Network Intrusion Detection | 355

HACK

MySQL server on the local machine, there is no need to specify a port num-
ber. If you want to connect to a database running on another system, you
should specify 3389, which is the default port used by MySQL.

Additionally, you can configure an archive database for BASE using vari-
ables that are similar to the ones used to configure the alert database. You’ll
need to set the following variables to use BASE’s archiving features:

$archive_dbname
$archive_host
$archive_port
$archive_user
$archive_password

You’ll also need to set $archive_exists to 1.

Congratulations! You’re finished mucking about in configuration files for
the time being. Now, open a web browser and go to the URL that corre-
sponds to the directory where you unpacked BASE. You should be greeted
with the database setup page shown in Figure 11-1.

Before you can use BASE, you must tell it to create some database tables for
its own use. To do this, click the Create BASE AG button. You should see a
screen confirming that the tables were created. In addition, you can have
BASE create indexes for your events table if this was not done before.
Indexes will greatly speed up queries as your events table grows, at the
expense of using a little more disk space.

Figure 11-1. The BASE database setup page

356 | Chapter 11, Network Intrusion Detection

#108 Monitor Your IDS in Real Time
HACK

Once you are done with the setup screen, click the Home link to go to the
main BASE page, shown in Figure 11-2.

BASE has a fairly intuitive user interface. The main table provides plenty of
links to display many useful views of the database at a glance, such as lists of
the source or destination IP addresses or ports associated with the alerts in
your database.

H A C K

108
Monitor Your IDS in Real Time Hack #108

Use Sguil’s advanced GUI to monitor and analyze IDS events in a timely
manner.

One thing that’s crucial when analyzing IDS events is the ability to correlate
all your audit data from various sources, so you can determine the exact trig-
ger for an alert and what actions should be taken. This could involve any-
thing from simply querying a database for similar alerts to viewing TCP
stream conversations. One tool to help facilitate this correlation is Sguil
(http://sguil.sourceforge.net).

Figure 11-2. The BASE home page

Monitor Your IDS in Real Time #108

Chapter 11, Network Intrusion Detection | 357

HACK

In case you’re wondering, Sguil is pronounced “sgweel” (to
rhyme with “squeal”).

Sguil is a graphical analysis console written in Tcl/Tk that brings together
the power of such tools as Ethereal (http://www.ethereal.com), TcpFlow
(http://www.circlemud.org/~jelson/software/tcpflow/), and Snort’s port scan
and TCP stream decoding preprocessors into a single unified application,
where it correlates all the data from each of these sources. Sguil uses a cli-
ent/server model and is made up of three parts: a plug-in for Barnyard, a
server (sguild), and a client (sguil.tk). Agents installed on each of your NIDS
sensors report back information to the Sguil server. The server takes care of
collecting and correlating all the data from the sensor agents and handles
information and authentication requests from the GUI clients.

Before you begin using Sguil, you’ll need to download the Sguil distribution
from the project’s web site and unpack it. This creates a directory that
reflects the package and its version number (e.g., sguil-0.6.1).

Creating the Database
The first step in setting up Sguil is creating a MySQL database to store its
information. You should also create a user that Sguil can use to access the
database:

$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 546 to server version: 3.23.55

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> CREATE DATABASE SGUIL;
Query OK, 1 row affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES ON SGUIL.* TO sguil IDENTIFIED BY 'sguilpass' \
WITH GRANT OPTION;
Query OK, 0 rows affected (0.06 sec)

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.06 sec)

mysql>

Now, you’ll need to create Sguil’s database tables. Locate the create_sguildb.
sql file (it should be in the server/sql_scripts subdirectory of the directory

358 | Chapter 11, Network Intrusion Detection

#108 Monitor Your IDS in Real Time
HACK

that was created when you unpacked the Sguil distribution) and feed it as
input to the mysql command, like this:

$ mysql -u root -p SGUIL < create_sguildb.sql

Setting Up the Server
sguild requires several Tcl packages in order to run. The first is Tclx (http://
tclx.sourceforge.net), which is an extensions library for Tcl. The second is
mysqltcl (http://www.xdobry.de/mysqltcl/). Both of these can be installed by
running./configure && make, and then becoming root and running make
install.

You can verify that the packages were installed correctly by running the fol-
lowing commands:

$ tcl
tcl>package require Tclx
8.3
tcl>package require mysqltcl
3.02
tcl>

If you want to use SSL to encrypt the traffic between the GUI and the
server, you will also need to install tcltls (http://sourceforge.net/projects/tls/).
To verify that it was installed correctly, run this command:

$ tcl
tcl>package require tls
1.40
tcl>

Now, you’ll need to configure sguild. First, create a directory suitable for
holding its configuration files (e.g., /etc/sguild):

mkdir /etc/sguild

Then, copy sguild.users, sguild.conf, sguild.queries, sguild.access, and autocat.
conf to the directory that you created:

cd server
cp autocat.conf sguild.conf sguild.queries \
sguild.users sguild.access /etc/sguild

This assumes that you’re in the directory that was created when you
unpacked the Sguil distribution. You’ll also want to copy the sguild script to
somewhere more permanent, such as /usr/local/sbin or something similar.

Now, edit sguild.conf to tell it how to access the database you created. If you
used the database commands shown previously to create the database and
user for Sguil, set these variables to the following values:

set DBNAME SGUIL
set DBPASS sguilpass

Monitor Your IDS in Real Time #108

Chapter 11, Network Intrusion Detection | 359

HACK

set DBHOST localhost
set DBPORT 3389
set DBUSER sguil

In addition, sguild requires access to the Snort rules used on each sensor so
that it can correlate the different pieces of data it receives from the sensors.
You can tell sguild where to look for these by setting the RULESDIR variable.
For instance, the following line tells sguild to look for rules in /etc/snort/
rules:

set RULESDIR /etc/snort/rules

However, sguild needs to find rules for each sensor that it monitors here, so
this is really just the base directory for the rules. When looking up rules for a
specific host, it looks in a directory corresponding to the hostname within
the directory that you specify (e.g., zul’s rules will be in /etc/snort/rules/zul).

To set where sguild archives the data it retrieves from sensors, change the
LOCAL_LOG_DIR variable to something like the following:

set LOCAL_LOG_DIR /var/log/snort/archive

You’ll also need to install tcpflow (http://www.circlemud.org/~jelson/
software/tcpflow/) and p0f (http://www.stearns.org/p0f/) on the host on which
you decide to run sguild. Once you’ve done that, set their locations so that
sguild can find the programs using the TCPFLOW and P0F_PATH variables:

set TCPFLOW "/usr/bin/tcpflow"
set P0F_PATH "/usr/sbin/p0f"

If you want to use SSL to encrypt sguild’s traffic (which you should), you’ll
now need to create an SSL certificate/key pair [Hack #69]. After you’ve done
that, move them to /etc/sguild/certs and make sure they’re named sguild.key
and sguild.pem.

Next, you’ll need to add users for accessing sguild from the Sguil GUI:

sguild -adduser andrew
Please enter a passwd for andrew:
Retype passwd:
User 'andrew' added successfully

You can test out the server at this point by connecting to it with the GUI cli-
ent. All you need to do is edit the sguil.conf file and change the SERVERHOST
variable to point to the machine on which sguild is installed. In addition, if
you want to use SSL, you’ll need to change the following variables to values
similar to these:

set OPENSSL 1
set TLS_PATH /usr/lib/tls1.4/libtls1.4.so

360 | Chapter 11, Network Intrusion Detection

#108 Monitor Your IDS in Real Time
HACK

Now, test out the client and server by running sguil.tk. After a moment, you
should see a login window, as shown in Figure 11-3.

Enter the information that you used when you created the user and click
OK. You should then see the dialog shown in Figure 11-4.

Since you won’t have any sensors to monitor yet, click Exit.

Figure 11-3. The Sguil login dialog

Figure 11-4. Sguil’s no available sensors dialog

Monitor Your IDS in Real Time #108

Chapter 11, Network Intrusion Detection | 361

HACK

Installing a Sensor
Setting up a sensor involves installing a patched version of Snort that uses
modified versions of the portscan and stream4 preprocessors. You’ll also
need to patch Barnyard to use Sguil’s special output plug-in. Sguil’s sensor
agent script will then collect data from Snort and Barnyard and forward it to
sguild.

Patching Snort. To set up a Sguil sensor, you’ll need to patch your Snort
source code. You can find the patches you need in the sensor/snort_mods/2_1
subdirectory of the Sguil source distribution. Now, change to the directory
that contains the Snort source code, go to the src/preprocessors subdirectory,
and patch spp_portscan.c and spp_stream4.c:

$ cd ~/snort-2.4.4/src/preprocessors
$ patch spp_portscan.c < \
~/sguil-0.6.1/sensor/snort_mods/2_1/spp_portscan_sguil.patch
patching file spp_portscan.c
Hunk #4 succeeded at 1252 (offset 2 lines).
Hunk #6 succeeded at 1285 (offset 2 lines).
Hunk #8 succeeded at 1416 (offset 2 lines).
$ patch spp_stream4.c < \
~/sguil-0.6.1/sensor/snort_mods/2_1/spp_stream4_sguil.patch
patching file spp_stream4.c
Hunk #1 succeeded at 72 with fuzz 1 (offset 39 lines).
Hunk #3 succeeded at 197 (offset 47 lines).
Hunk #4 succeeded at 254 with fuzz 2 (offset 32 lines).
Hunk #5 succeeded at 300 (offset -12 lines).
Hunk #6 succeeded at 421 (offset 46 lines).
Hunk #7 succeeded at 419 with fuzz 2 (offset -8 lines).
Hunk #8 succeeded at 1069 with fuzz 1 (offset 82 lines).
Hunk #9 succeeded at 1117 (offset 14 lines).
Hunk #10 succeeded at 3609 (offset 296 lines).
Hunk #11 succeeded at 3361 (offset 14 lines).
Hunk #12 succeeded at 4002 (offset 327 lines).

Compile Snort [Hack #106] as you normally would. After you’ve done that, edit
your snort.conf and enable the portscan and stream4 preprocessors:

preprocessor portscan: $HOME_NET 4 3 /var/log/snort/portscans gw-ext0
preprocessor stream4: detect_scans, disable_evasion_alerts, keepstats db \
 /var/log/snort/ssn_logs

The first line enables the portscan preprocessor and tells it to trigger a ports-
can alert if connections to four different ports are received from the same
host within a three-second interval. Next, it specifies that the portscan pre-
processor will keep its logs in /var/log/snort/portscans. The last field on the
line is the name of the sensor. The second line enables the stream4
preprocessor, directs it to detect stealth port scans, and tells it not to alert on

362 | Chapter 11, Network Intrusion Detection

#108 Monitor Your IDS in Real Time
HACK

overlapping TCP datagrams. It also tells the stream4 preprocessor to keep its
logs in /var/log/snort/ssn_logs.

You’ll also need to set up Snort to use its unified output format, so that you
can use Barnyard to handle logging of Snort’s alert and log events:

output alert_unified: filename snort.alert, limit 128
output log_unified: filename snort.log, limit 128

Next, create a crontab entry for the log_packets.sh script that comes with
Sguil. This script starts an instance of Snort solely to log packets. This
crontab line will have the script restart the Snort logging instance every
hour:

00 0-23/1 * * * /usr/local/bin/log_packets.sh restart

Edit the variables at the beginning of the script, changing them to suit your
needs. These variables tell the script where to find the Snort binary (SNORT_
PATH), where to have Snort log packets to (LOG_DIR), which interface to sniff
on (INTERFACE), and which command-line options to use (OPTIONS).

Pay special attention to the OPTIONS variable, where you can tell Snort what
user and group to run as; the default won’t work unless you’ve created a
sguil user and group. In addition, you can specify what traffic to not log by
setting the FILTER variable to a BPF (i.e., tcpdump-style) filter. You should
also configure the sensor’s name by setting the HOSTNAME variable.

Patching Barnyard. Next, compile and install Barnyard [Hack #116]. You’ll need
to patch it, which you can do by running these commands:

$ cd ~/barnyard-0.2.0
$ cp ~/sguil-0.6.1/sensor/barnyard_mods/configure.in .
$./autojunk.sh
$ cd src/output-plugins/
$ cp ~/sguil-0.6.1/sensor/barnyard_mods/op_* .
$ patch op_plugbase.c < op_plugbase.c.patch

After you’ve done that, run the configure script with the --enable-tcl option
in addition to any other options that you want to use. Then, run make from
the current directory; when that completes, change to the top-level direc-
tory of the source distribution and run make install. To configure Barnyard
to use the Sguil output plug-in, add this line to your barnyard.conf file:

output sguil

Now, you can start Barnyard as you would normally.

Finishing Up
Finally, you’ll need to set up Sguil’s sensor agent script, sensor_agent.tcl,
which you’ll find in the sensor directory of the source distribution. Before

Manage a Sensor Network #109

Chapter 11, Network Intrusion Detection | 363

HACK

running the script, you’ll need to edit several variables in its configuration
file, sensor_agent.conf, to fit your situation. For example:

set SERVER_HOST localhost
set SERVER_PORT 7736
set HOSTNAME gw-ext0
set LOGDIR /var/log/snort

Now that everything’s set up, create a user to run sguild under and start it
like this:

$ sguild -O /usr/lib/tls1.4/libtls1.4.so

Make sure that the argument to -O points to the location of libtls on your
system, or, if you’re not using SSL, omit the -O /usr/lib/tls1.4/libtls1.4.
so portion of the command.

Now, start the sensor agent by running a command like the following:

$ sensor_agent.tcl -o -O /usr/lib/tls1.4/libtls1.4.so

As with the daemon, omit the command-line options if you don’t want to
use SSL encryption. However, using it is recommended.

Getting Sguil running isn’t trivial, but it is well worth the effort. Once it’s in
place, Sguil will provide you with a very good overview of precisely what is
happening on your network. Sguil presents data from a bunch of sources
simultaneously, giving you a good view of the big picture that is sometimes
impossible to see when simply looking at your NIDS logs.

H A C K

109
Manage a Sensor Network Hack #109

Use SnortCenter’s easy-to-use web interface to manage your NIDS sensors.

Managing an IDS sensor and keeping track of the alerts it generates can be
a daunting task, and it’s even more difficult when you’re dealing with
multiple sensors. One way to unify all your IDS-management tasks into a
single application is to use SnortCenter (http://sourceforge.net/projects/
snortcenter2/), a management system for Snort.

SnortCenter is comprised of a web-based console and sensor agents that run
on each machine in your NIDS infrastructure. It lets you unify all of your
management and monitoring duties into one program, which can help you
get your work done quickly. SnortCenter has its own user authentication
scheme, and it supports encrypted communication between the web-based
management console and the individual sensor agents. This enables you to
update multiple sensors with new Snort rules or create new rules of your
own and push them to your sensors securely.

364 | Chapter 11, Network Intrusion Detection

#109 Manage a Sensor Network
HACK

SnortCenter also allows you to start and stop your sensors remotely through
its management interface. To help you monitor the alerts from your sen-
sors, SnortCenter can integrate with BASE [Hack #107].

To set up SnortCenter, you’ll first need to install the management console
on a web server that has both PHP support and access to a MySQL data-
base server where SnortCenter can store its configuration database. To
install the management console, download the distribution from its Source-
Forge project page and unpack it:

tar xfz snortcenter-console-3-31-05.tar.gz

This will create a directory containing SnortCenter’s PHP scripts, graphics,
and SQL schemas. Now, copy the contents of the directory to a suitable
location within your web server’s document root using commands like the
following:

cp -R snortcenter-release /var/www/html
mv snortcenter-release snortcenter

Installing the Prerequisites
To enable SnortCenter to communicate with your database, you’ll also need
to install ADODB (http://adodb.sourceforge.net), a PHP package that provides
database abstraction functionality. After you’ve downloaded the ADODB code,
unpack it to a location where CGI scripts can access it.

Next, install curl (http://curl.haxx.se). Download the source distribution and
unpack it. Run ./configure && make, and then become root and run make
install. (Alternatively, curl might be available with your operating system:
Red Hat has a curl RPM, and *BSD includes it in the ports tree.)

Setting Up the Console
After that’s out of the way, you’ll need to edit SnortCenter’s config.php file
(e.g., /var/www/html/snortcenter/config.php) and change these variables to
similar values that fit your situation:

$DBlib_path = "../../adodb/";
$curl_path = "/usr/bin";
$DBtype = "mysql";
$DB_dbname = "SNORTCENTER";
$DB_host = "localhost";
$DB_port = "";
$DB_user = "snortcenter";
$DB_password = "snortcenterpass";
$hidden_key_num =1823701983719312;

Manage a Sensor Network #109

Chapter 11, Network Intrusion Detection | 365

HACK

This configuration tells SnortCenter to look for the ADODB code in the adodb
directory two directory levels above the one containing SnortCenter. In
addition, it tells SnortCenter to connect to a MySQL database called
SNORTCENTER that is running on the local machine as the user
snortcenter with the password snortcenterpass.

Since it is connecting to a MySQL server on the local machine, there is no
need to specify a port. If you want to connect to a database running on
another system, you should specify 3389, which is the default port used by
MySQL. Set $hidden_key_num to a random number. It is used to make sure
only your console can talk to your SnortCenter agents, and vice-versa.

After you’re done editing config.php, you’ll need to create the database and
user you specified and set the proper password:

$ mysql -u root -p mysql
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 72 to server version: 4.1.16

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> create database SNORTCENTER;
Query OK, 1 row affected (0.01 sec)

mysql> GRANT SELECT,INSERT,UPDATE,DELETE ON SNORTCENTER.* TO \
snortcenter@localhost IDENTIFIED BY 'snortcenterpass';
Query OK, 0 rows affected (0.00 sec)

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.02 sec)

mysql> exit
Bye

Then, create the database tables:

$ mysql -u root -p SNORTCENTER < snortcenter_db.mysql

Now, use your web browser to load the URL corresponding to where you
installed it. The first time SnortCenter loads, it will connect to the database
that you specified and create the required database tables. After the page has
loaded, you should see something similar to Figure 11-5.

The page should refresh after a few moments and you should see the login
page shown in Figure 11-6.

Enter the default login/password admin/change and then click the Login
button. You should see a page similar to Figure 11-7.

366 | Chapter 11, Network Intrusion Detection

#109 Manage a Sensor Network
HACK

Now that you know that the management console has been installed suc-
cessfully, you can move on to installing the agent. But first, you should
change the password for the admin account. Choose Admin ➝ User Admin-
istration ➝ View Users to bring up the user listing page shown in
Figure 11-8.

Clicking the icon to the left of the username should bring you to a page simi-
lar to Figure 11-9, where you can edit the admin account’s information
(including the password).

Figure 11-5. Automatic creation of SnortCenter database tables

Figure 11-6. The SnortCenter login page

Manage a Sensor Network #109

Chapter 11, Network Intrusion Detection | 367

HACK

Figure 11-7. The initial SnortCenter main page

Figure 11-8. SnortCenter’s user listing page

Figure 11-9. Changing the admin account’s password and email address

368 | Chapter 11, Network Intrusion Detection

#109 Manage a Sensor Network
HACK

Setting Up an Agent
Now you can go on to set up your sensor agents (really, I’m serious this
time).

SnortCenter’s sensor agents are written in Perl and require the Net::SSLeay
module to communicate with the management console through a secure
channel. If you have Perl’s CPAN module installed, you can install Net::
SSLeay easily by running the following command:

perl -MCPAN -e "install Net::SSLeay"

To install the sensor code, you’ll first need to unpack it:

tar xfz /tmp/snortcenter-agent-v1.0-RC1.tar.gz

This will create a directory called sensor containing all of the sensor agent
code. Copy that directory to a suitable permanent location. For example:

cp -R sensor /usr/local/snortcenter

Finally, run the sensor agent’s setup script:

sh setup.sh
**
* Welcome to the SnortCenter Sensor Agent setup script, version 1.0 RC1 *
**

Installing Sensor in /usr/local/snortcenter ...

**
The Sensor Agent uses separate directories for configuration files and log
files.
Unless you want to place them in another directory, you can just accept the
defaults.

Config file directory [/usr/local/snortcenter/conf]:

This script will prompt you for several pieces of information, such as the
sensor agent’s configuration file and log directories, the full path to the perl
binary (e.g., /usr/bin/perl), and the location of your snort binary and rules. It
will also ask you questions about your operating system, what port and IP
address you want the sensor agent to listen on (the default is TCP port
2525), and what IP addresses are allowed to connect to the agent (e.g., the
IP address of the SnortCenter console).

You’ll be asked to set a login and password that the management console
will use for logging into the agent, and during the setup process a self-signed
certificate will be copied to conf/sensor.pem for the agent to use when com-
municating with the console. Alternatively, you can create a signed certifi-
cate [Hack #69] and use that. Once the certificate is in place, open conf/
miniserv.conf and change the line that says ssl=0 to say ssl=1.

Manage a Sensor Network #109

Chapter 11, Network Intrusion Detection | 369

HACK

After SnortCenter has prompted you for all the information it needs, it will
start the sensor agent on the port and IP address specified in the configura-
tion file. You can now test out the sensor agent by accessing it with your
web browser (be sure to use https instead of http).

After entering the login information contained in the setup script, you
should see the direct console page shown in Figure 11-10.

Adding an Agent to the Console
Now, you can go back to the main management console and add the sensor
to it. Log in and select Add Sensor from the Sensor Console menu. You
should see the dialog shown in Figure 11-11.

Figure 11-10. The sensor agent direct console page

Figure 11-11. Adding a sensor agent

370 | Chapter 11, Network Intrusion Detection

#110 Write Your Own Snort Rules
HACK

Fill in the information you used when running the setup script and click the
Save button. When the next page loads, the sensor you just added should
appear in the sensor list. You can push a basic configuration to the sensor by
opening the Admin menu, selecting the Import/Update Rules item, and
choosing Update from Internet.

Go back to the sensor list by clicking View Sensors in the Sensor Consoles
menu, and then click the Push hyperlink for the sensor. To start Snort on
that particular sensor, click the Start link. After Snort has started on the sen-
sor, SnortCenter’s sensor list should look similar to Figure 11-12.

You can now configure your sensor by using the Sensor Config and
Resources menus. Once you’ve created a configuration you’re satisfied with,
you can push it to your sensor(s) by going back to the sensor list and select-
ing Push.

H A C K

110
Write Your Own Snort Rules Hack #110

Customize Snort for your own needs quickly and easily by leveraging its
flexible rule engine and language.

One of the best features of Snort [Hack #106] is its rule engine and language.
Snort’s rule engine provides an extensive language that enables you to write
your own rules, allowing you to extend it to meet the needs of your net-
work.

A Snort rule can be broken down into two basic parts: the rule header and
options for the rule. The rule header contains the action to perform, the pro-
tocol that the rule applies to, and the source and destination addresses and

Figure 11-12. SnortCenter’s sensor list after starting a sensor

Write Your Own Snort Rules #110

Chapter 11, Network Intrusion Detection | 371

HACK

ports. The rule options allow you to create a descriptive message to associ-
ate with the rule, as well as check a variety of other packet attributes by
making use of Snort’s extensive library of plug-ins.

Rule Basics
Here’s the general form of a Snort rule:

action proto src_ip src_port direction dst_ip dst_port (options)

When a packet comes in, its source and destination IP addresses and ports
are compared to the rules in the ruleset. If any of the rules is applicable to
the packet, its options are then compared to the packet. If all of these com-
parisons return a match, the specified action is taken.

Actions. Snort provides several built-in actions you can use when crafting
your rules. To simply log the packet that matches a rule, use the log action.
The alert action generates an alert using the method specified in your con-
figuration file or on the command line, in addition to logging the packet.

One nice feature is that you can establish very general rules and then create
exceptions by writing rules that use the pass action. This works especially
well when you are using the rules distributed with Snort but are getting fre-
quent false positives for some of them. If it’s not a security risk to ignore
them, you can simply write pass rules that will exclude the packets in
question.

The last two built-in rule actions, activate and dynamic, are used together to
dynamically modify Snort’s ruleset at runtime. Rules that use the dynamic
action are just like log rules, except they will be considered only after they
have been enabled by an activate rule. To determine what dynamic rules to
enable once an activate rule has been triggered, Snort enforces the use of
the activates and activated_by rule options. In addition, dynamic rules are
required to specify a count option so that Snort can limit how many packets
the rules will record.

For instance, if you want to start recording packets after an exploit of an
SSH daemon on 192.168.1.21 has been noticed, use a couple of rules similar
to these:

activate tcp any any -> 192.168.1.21 22 (content:"/bin/sh"; activates:1; \
 msg:"Possible SSH buffer overflow";)
dynamic tcp any any -> 192.168.1.21 22 (activated_by:1; count:100;)

These two rules aren’t completely foolproof, but if someone were to run an
exploit with shell code against an SSH daemon, it would most likely send

372 | Chapter 11, Network Intrusion Detection

#110 Write Your Own Snort Rules
HACK

the string /bin/sh in the clear in order to spawn a shell on the system being
attacked.

In addition, since SSH is encrypted, strings like that wouldn’t be sent to the
daemon under normal circumstances. Once the first rule is triggered, it will
activate the second one, which will record 100 packets and then stop. This is
useful, since you might be able to catch the intruder downloading or install-
ing a rootkit within those first few packets, and recording them will help you
to analyze the compromised system much more quickly.

You can also define custom rule actions, in addition to Snort’s built-in
actions. This is done with the ruletype keyword:

ruletype redalert
{
 type alert
 output alert_syslog: LOG_AUTH LOG_ALERT
 output database: log, mysql, user=snort dbname=snort host=localhost
}

This custom rule action tells Snort that it behaves like the alert rule action,
but specifies that the alerts should be sent to the syslog daemon, while the
packets will be logged to a database. When defining a custom action, you
can use any of Snort’s output plug-ins, just as you would if you were config-
uring them as your primary output method.

Protocols. Snort’s detection engine supports several protocols. The proto
field is used to specify the protocol to which your rule applies. Valid values
for this field are ip, icmp, tcp, and udp.

IP addresses. The next fields in a Snort rule are used to specify the source
and destination IP addresses and ports of the packet, as well as the direction
in which the packet is traveling. Snort can accept a single IP address or a list
of addresses. When specifying a list of IP address, you should separate each
one with a comma and then enclose the list within square brackets, like this:

[192.168.1.1,192.168.1.45,10.1.1.24]

When doing this, be careful not to use any whitespace. You can also specify
ranges of IP addresses using CIDR notation, or even include CIDR ranges
within lists. Snort also allows you to apply the logical NOT operator (!) to
an IP address or CIDR range to specify that the rule should match all but
that address or range of addresses.

Ports. As with IP addresses, Snort can accept single ports as well as ranges.
To specify a range, use a colon character to separate the lower bound from

Write Your Own Snort Rules #110

Chapter 11, Network Intrusion Detection | 373

HACK

the upper bound. For example, if you want to specify all ports from 1 to
1024, do it like this:

1:1024

You can also apply the NOT operator to a port, and you can specify a range
of ports without an upper or lower bound.

For instance, if you want to examine only ports greater than 1024, do it this
way:

1024:

Similarly, you can specify ports less than 1024 by doing this:

:1024

If you do not care about the IP address or port, you can simply specify any.

Moving on, the direction field is used to tell Snort which are the source IP
address and port and which are the destination. In earlier versions of Snort,
you could use either -> or <- to specify the direction. However, the <- opera-
tor has been removed, since you can make either one equivalent to the other
by just switching the IP addresses and port numbers. Snort does have
another direction operator in addition to ->, though. Specifying <> as the
direction tells Snort that you want the rule to apply bidirectionally. This is
especially useful when using log rules or dynamic rules, since it enables you
to log both sides of the TCP stream rather than just one.

Options
The next part of the rule includes the options. This part lets you specify
many other attributes to check against. Each option is implemented through
a Snort plug-in. When a rule that specifies an option is triggered, Snort runs
through the option’s corresponding plug-in to perform the check against the
packet. Snort has over 40 plug-ins—too many to cover in detail in this
hack—but we will look at some of the more useful ones.

Adding human-readable messages. The most useful option is msg. This option
allows you to specify a custom message that will be logged in the alert when
a packet matching the rule is detected. Without it, most alerts wouldn’t
make much sense at first glance. This option takes a string enclosed in
quotes as its argument.

For example, this specifies a logical message whenever Snort notices any
traffic that is sent from 192.168.1.35:

alert tcp 192.168.1.35 any -> any any (msg:"Traffic from 192.168.1.35";)

374 | Chapter 11, Network Intrusion Detection

#110 Write Your Own Snort Rules
HACK

Be sure not to include any escaped quotes within the string. Snort’s parser is
a simple one and does not support escaping characters.

Inspecting packet content. Another useful option is content, which allows
you to search a packet for a sequence of characters or hexadecimal values. If
you are searching for a string, you can just put it in quotes; to specify a case-
insensitive search, add nocase; to the end of all your options. If you are
looking for a sequence of hexadecimal digits, you must enclose them in |
characters. For example, this rule will trigger when the digit 0x90 is spotted
in a packet’s data payload:

alert tcp any any -> any any (msg:"Possible exploit"; content:"|90|";)

This digit is the hexadecimal equivalent of the NOP instruction on the x86
architecture and is often seen in exploit code because it can be used to make
buffer overflow exploits easier to write.

The offset and depth options can be used in conjunction with the content
option to limit the searched portion of the data payload to a specific range of
bytes. For example, if you want to limit content matches for NOP instruc-
tions to between bytes 40 and 75 of the data portion of a packet, you can
modify the previously shown rule to look like this:

alert tcp any any -> any any (msg:"Possible exploit"; content:"|90|"; \
 offset:40; depth:75;)

You can also match against packets that do not contain the specified
sequence by prefixing it with a !.

Another thing you might want to check is the size of a packet’s data pay-
load. Many shell code payloads can be large compared to the normal
amount of data carried in a packet sent to a particular service. You can
check the size of a packet’s data payload by using the dsize option. This
option takes a number as an argument. In addition, you can specify an
upper bound by using the < operator, or you can choose a lower bound by
using the > operator. Upper and lower bounds can be expressed with <>. For
example, the following line modifies the previous rule to match only if the
data payload’s size is greater than 6000 bytes, in addition to the other
options criteria:

alert tcp any any -> any any (msg:"Possible exploit"; content:"|90|"; \
 offset:40; depth:75; dsize: >6000;)

Matching TCP flags. To check the TCP flags of a packet, Snort provides the
flags option. This option is especially useful for detecting port scans that
employ various invalid flag combinations.

Write Your Own Snort Rules #110

Chapter 11, Network Intrusion Detection | 375

HACK

For example, this rule will detect when the SYN and FIN flags are set at the
same time:

alert any any -> any any (flags:SF,12; msg:"Possible SYN FIN scan";)

Valid flags are S for SYN, F for FIN, R for RST, P for PSH, A for ACK, and U for URG.
In addition, Snort lets you check the values of the two reserved flag bits. You
can specify these by using either 1 or 2. You can also match packets that
have no flags set by using 0. The flags option will accept several operators.
You can prepend either a +, *, or ! to the flags, to match on all the flags plus
any others, any of the flags, or only if none of the flags are set, respectively.

Thresholding
In practice, you might find that some of your rules are a bit noisy and trig-
ger alerts too often to be useful. A way to overcome this is to use Snort’s
thresholding feature. This feature allows you to specify a minimum number
of times a rule needs to be matched for a particular IP address before it actu-
ally generates an alert, or limit the number of alerts a rule can generate dur-
ing an arbitrary interval of time.

You can use thresholding in two different ways.

Thresholding by signature ID. You can specify a threshold for a rule sepa-
rately by referencing its ID. Threshold statements take the following form
and are usually put in threshold.conf (located in the same directory as your
snort.conf):

threshold gen_id <generator ID>, sig_id <signature ID>, \
 type <limit | threshold | both>, \
 track <by_src | by_dest>, count <n>, seconds <m>

The <generator ID> is the portion of Snort that generates the alert you want
to threshold. This is used to track which preprocessor an alert came from.
Since all alerts for signatures are generated by Snort’s signature engine, this
should always be set to 1. The <signature ID> corresponds to the signa-
ture’s ID. This, of course, means that you’ll need to specify IDs when writ-
ing your own rules. This is done with the sid option. You’ll also want to
specify the rule’s revision with the rev option.

For example, here’s a rule that we looked at before, but with sid and rev
options added:

alert tcp any any -> any any (msg:"Possible exploit"; content:"|90|"; \
 offset:40; depth:75; dsize: >6000; sid:1000001; rev:1;)

Note that only signature IDs greater than one million can be used for local
rules.

376 | Chapter 11, Network Intrusion Detection

#110 Write Your Own Snort Rules
HACK

When specifying thresholds, you can choose between three types. limit
thresholds cause an alert to be generated up until the signature has been
matched a set number of times (specified with the count option) during the
chosen interval (specified with the seconds parameter). The threshold type is
used to prevent an alert from being generated unless the signature has been
matched at least count times during the specified time interval. Specifying
both as the type produces a mixture of the two techniques: it will cause one
alert to be generated only after count has been reached during the specified
time period. To indicate whether the thresholding should apply to the
source or destination IP address, use by_src or by_dest, respectively.

Thresholding with rule options. The other way to use thresholding is to
include the thresholding parameters in the rule itself. For instance, if some-
one were to actually send a bunch of packets toward your IDS with the SYN
and FIN flags set, the previously shown rule that would match them would
generate far too many alerts to be useful. So, let’s add some thresholding to
it:

alert any any -> any any (flags:SF,12; msg:"Possible SYN FIN scan"; \
 threshold: type both, track by_dest, count 100, seconds 60)

Now, the alert will trigger only once every minute for each IP address that it
sees receiving at least 100 SYN/FIN packets during that time period.

Suppression
If you find that a rule is still too noisy, you can disable it either altogether or
for specific IP addresses by using Snort’s suppression feature. Suppression
statements take the following form and are usually also kept in threshold.conf:

suppress gen_id <generator ID>, sig_id <sid>, [track <by_src | by_dest>,
ip[/mask]]

The IDs are specified just like in a threshold statement; however, the track
and ip parameters can be omitted to completely suppress alerts generated by
the signature. Use them if you want to limit the suppression to a specific
source or destination IP address (or range of addresses). Ranges of IP
addresses and networks can be entered in CIDR format.

One of the best features of Snort is that it provides many plug-ins that can
be used in the options field of a rule. The options discussed here should get
you off to a good start. However, if you want to write more complex rules,
consult Snort’s excellent rule documentation, which contains full descrip-
tions and examples for each of Snort’s rule options. The Snort User’s Man-
ual is available at http://www.snort.org/docs/writing_rules/.

Prevent and Contain Intrusions with Snort_inline #111

Chapter 11, Network Intrusion Detection | 377

HACK

H A C K

111
Prevent and Contain Intrusions with Snort_inline Hack #111

Install Snort_inline on your firewall to contain intrusions, or stop them as
they’re happening.

Wouldn’t it be nice if your NIDS could not only detect intrusions, but also
do something about them? It would be great if it could actually stop an
intrusion occurring on the host that was being attacked, but the next best
thing would be to block the network traffic propagating the attack. One tool
that can do this for you is Snort_inline, which has been integrated into the
main Snort source tree as of Snort 2.3.0.

Snort_inline allows Snort to read data from the Linux kernel’s Netfilter
queue, which enables Snort to effectively integrate itself with the firewall.
This allows it not only to detect intrusions, but also to decide whether to
drop packets or to forward them to another host (using libnet). This, of
course, requires that your kernel be compiled with IP queue support, either
statically or as a module.

You can see if you have the module by running a command like this:

$ locate ip_queue.ko
/lib/modules/2.6.16/kernel/net/ipv4/netfilter/ip_queue.ko

In this case, the output shows that the module is available. If it isn’t, check
to see whether the file /proc/net/ip_queue exists. If you can’t find the mod-
ule, but that file exists, it means IP queue support is compiled into your ker-
nel statically. If neither file exists, you’ll need to enable IP queue support in
your kernel and recompile.

Snort_inline also requires libipq, a library that comes with Netfilter and is
used by applications to communicate with Netfilter’s queue. You can check
to see if it’s installed on your system by running this command:

$ locate libipq
/usr/include/libipq.h
/lib/libipq.a

If you don’t see output similar to this, chances are that you don’t have libipq
installed. You can install it by downloading the iptables source from the Net-
filter distribution site (http://www.netfilter.org). For instructions on compil-
ing it, refer to “Fool Remote Operating System Detection Software” [Hack #65].
After compilation is finished, run make install-devel, since libipq is not
installed by default.

You might encounter an error that looks like this:

Extensions found: IPv4:dccp IPv4:recent IPv4:string IPv6:REJECT
cc -O2 -Wall -Wunused -I/usr/src/kernels/2.6.14/include -Iinclude/ -
DIPTABLES_VERSION=\"1.3.5\" -fPIC -o extensions/libipt_ah_sh.o -c
extensions/libipt_ah.c

378 | Chapter 11, Network Intrusion Detection

#111 Prevent and Contain Intrusions with Snort_inline
HACK

In file included from /usr/src/kernels/2.6.14/include/linux/netfilter_ipv4.
h:8,
 from /usr/src/kernels/2.6.14/include/linux/netfilter_ipv4/
ip_tables.h:26,
 from include/libiptc/libiptc.h:6,
 from include/iptables.h:5,
 from extensions/libipt_ah.c:8:
/usr/src/kernels/2.6.14/include/linux/config.h:6:2: error: #error including
kernel header in userspace; use the glibc headers instead!
make: *** [extensions/libipt_ah_sh.o] Error 1

If you do, you’ll need to edit the config.h file mentioned in the error mes-
sage (e.g., /usr/src/kernels/2.6.14/include/linux/config.h in this example) and
comment out the line that begins with #error by adding two slashes at the
start of the line.

In addition to IP queue support and the libipq package, you’ll need the libnet
packet injection library (http://www.packetfactory.net/projects/libnet/). Sim-
ply download the source distribution, unpack it, run ./configure && make,
and then become root and run make install.

Now that all the prerequisites are out of the way, you can compile Snort_
inline. First, download and unpack the source distribution and change to the
directory that is created. Then, run this command:

$./configure --enable-inline && make

You can use any options to configure that you’d normally use with Snort,
since at its heart Snort_inline is still Snort.

Don’t be alarmed if your compile aborts with the following error:

gcc -DHAVE_CONFIG_H -I. -I. -I../.. -I../.. -I../../src -I../../src/sfutil -
I/usr/include/pcap -I../../src/output-plugins -I../../src/detection-plugins
-I../../src/preprocessors -I../../src/preprocessors/flow -I../../src/
preprocessors/portscan -I../../src/preprocessors/flow/int-snort -I../../
src/preprocessors/HttpInspect/include -I/usr/include -g -O2 -Wall -DGIDS -
D_BSD_SOURCE -D_ _BSD_SOURCE -D_ _FAVOR_BSD -DHAVE_NET_ETHERNET_H -DLIBNET_
LIL_ENDIAN -c spo_alert_fast.c
In file included from /usr/include/linux/netfilter_ipv4/ip_queue.h:10,
 from /usr/local/include/libipq.h:37,
 from ../../src/inline.h:8,
 from ../../src/snort.h:36,
 from spo_alert_fast.c:51:
/usr/include/linux/if.h:59: error: redefinition of 'struct ifmap'
/usr/include/linux/if.h:77: error: redefinition of 'struct ifreq'
/usr/include/linux/if.h:126: error: redefinition of 'struct ifconf'
spo_alert_fast.c: In function 'AlertFastInit':
spo_alert_fast.c:124: warning: pointer targets in passing argument 1 of
'ParseAlertFastArgs' differ in signedness
make[3]: *** [spo_alert_fast.o] Error 1
make[3]: Leaving directory `/tmp/snort-2.4.4/src/output-plugins'
make[2]: *** [all-recursive] Error 1

Prevent and Contain Intrusions with Snort_inline #111

Chapter 11, Network Intrusion Detection | 379

HACK

make[2]: Leaving directory `/tmp/snort-2.4.4/src'
make[1]: *** [all-recursive] Error 1
make[1]: Leaving directory `/tmp/snort-2.4.4'
make: *** [all] Error 2

This error is caused by the kernel headers in /usr/include/linux being out of
sync with the headers of the kernel for which you’re building Netfilter. To
fix this, create a symbolic link from the /include/linux directory in the kernel
source tree to /usr/include/linux:

cd /usr/include
mv linux linux.orig
ln -s /usr/src/kernels/2.6.14/include/linux .

You can then restart the compilation from where it left off by simply typing
make, or, if you’re paranoid, you can use this command to completely start
over:

$ make clean && make

After compilation has finished, become root and type make install.

You can now configure Snort_inline just as you would configure Snort regu-
larly [Hack #106]. However, it’s recommended that you run a separate instance
of Snort if you want alerting and use Snort_inline solely for setting firewall
rules.

In addition to modifying Snort to capture packets from Netfilter rather than
libpcap, the Snort_inline patch adds three new rule types—drop, sdrop, and
reject—as well as a new rule option. The drop rule type drops the packet
that triggered the rule without notifying the sending host, much like the
iptables DROP target, and logs that it has done so. The sdrop rule type is sim-
ilar, except that it drops the packet silently, with no log entry to inform you.
Using the reject rule type blocks the offending packet but notifies the send-
ing host with either a TCP RST or an ICMP port unreachable message,
depending on whether the packet that triggered the rule used the TCP or
UDP protocol, respectively.

The new rule option added by Snort_inline allows you to replace arbitrary
content within a packet with whatever you choose. The only restriction is
that the replacement byte stream must be the same length as the original.
This is implemented with the replace rule option, which is used in conjunc-
tion with the content rule option to select what is to be replaced.

To run Snort_inline, start it just as you would start Snort. If you want to use it
in inline mode, though, use its -Q command-line switch, which tells Snort_
inline to use IP queues rather than libpcap to gather packets. In this case,

380 | Chapter 11, Network Intrusion Detection

#112 Automatically Firewall Attackers with SnortSam
HACK

you’ll also need to configure the kernel to send the packets to the IP queues
before starting Snort_inline. This is done with the iptables command:

iptables -F
iptables -A INPUT -j QUEUE
iptables -A OUTPUT -j QUEUE
iptables -A FORWARD -j QUEUE

This pushes all traffic going in, out, and through the machine into an IP
queue from which Snort_inline will read its packets. You can then start snort
(just don’t forget to use the -Q option):

snort -Qvc /etc/snort/snort_inline.conf

If you’re using a version that isn’t from Snort.org, substitute snort_inline
for snort.

If you’re administering the machine remotely, you’ll probably want to start
snort before enabling the QUEUE targets, since it’s snort that will actually pass
the packets back and forth. Otherwise, your remote logins will be dropped
as soon as you put the iptables rules in place. To be extra cautious, have
your QUEUE target rules ignore packets coming from a certain IP address or
range of addresses.

H A C K

112
Automatically Firewall Attackers with SnortSam Hack #112

Use SnortSam to prevent intrusions by putting dynamic firewall rules in place
to stop in-progress attacks.

An alternative to running Snort on your firewall and having it activate filter-
ing rules on the machine it’s running on [Hack #111] is to have Snort communi-
cate which filtering rules should be put in place when an intrusion is
detected on an external firewall. To do this, you can use SnortSam (http://
www.snortsam.net).

SnortSam is made up of two components: a Snort plug-in and a daemon. It
uses Snort’s plug-in architecture and extends Snort with the ability to com-
municate with a remote firewall, which then dynamically applies filtering
rules to stop attacks that are in progress. Unlike Snort_inline, which is highly
dependent on Linux, SnortSam supports a wide variety of firewalls, such as
Check Point’s FireWall-1, various Cisco firewalls, NetScreen, Firebox,
OpenBSD’s PF, and Linux’s ipchains and iptables interfaces to Netfilter.

Installing SnortSam
To set up SnortSam, first download the source distribution and then unpack
it. After you’ve done that, go into the directory it created and run this
command:

$ sh makesnortsam.sh

Automatically Firewall Attackers with SnortSam #112

Chapter 11, Network Intrusion Detection | 381

HACK

This will build the snortsam binary, which you can then copy to a suitable
place in your path (e.g., /usr/bin or /usr/local/bin).

Now, download the patch for Snort, which you can get from the same site as
SnortSam. After you’ve done that, unpack it:

$ tar xvfz snortsam-patch.tar.gz
patchsnort.sh
patchsnort.sh.asc
snortpatch8
snortpatch8.asc
snortpatch9
snortpatch9.asc
snortpatchb
snortpatchb.asc

Next, run patchsnort.sh and specify the directory where you’re keeping
Snort’s source:

$ patchsnort.sh snort-2.4.4
Patching Snort version 2.x...
patching file spo_alert_fwsam.c
patching file spo_alert_fwsam.h
patching file twofish.c
patching file twofish.h
rm: cannot remove `spo_alert_fwsam.?.orig': No such file or directory
rm: cannot remove `twofish.?.orig': No such file or directory
patching file plugbase.c
Hunk #1 succeeded at 114 with fuzz 2 (offset 4 lines).
Hunk #2 succeeded at 588 with fuzz 2 (offset 13 lines).
patching file plugin_enum.h
Hunk #1 succeeded at 37 with fuzz 1.
Patching Makefiles...
Done

Finally, compile Snort [Hack #106] as you would normally, except run the fol-
lowing commands before running ./configure:

$ aclocal
$ autoheader
$ automake --add-missing
$ autoconf

Configuring SnortSam
Before running SnortSam, you must create a configuration file for it. Snort-
Sam’s configuration syntax is pretty easy to use, but there are quite a few
options, so only a subset of the available ones will be discussed here.

One useful option is accept, which lets you tell SnortSam what Snort sensors
are allowed to connect to it. This option can take a CIDR-format address
range, a hostname, or a single IP address. You can optionally specify a

382 | Chapter 11, Network Intrusion Detection

#112 Automatically Firewall Attackers with SnortSam
HACK

password as well. If you don’t specify a password, the one specified by the
defaultkey option is used.

For example, if you want to allow all hosts from the network 192.168.1.0/24
with the password qwijybo, you can put a line like this in your configuration
file:

accept 192.168.1.0/24, qwijybo

To specify multiple hosts or network address ranges, you can use multiple
accept entries.

Another useful option is dontblock, which enables you to construct a
whitelist of hosts and networks that SnortSam will not block under any cir-
cumstances. This option takes hostnames, single IP addresses, and CIDR
address ranges; you can also use multiple dontblock entries, just as you can
with accept.

To improve SnortSam’s performance, you might want to use the
skipinterval option, which lets you tell SnortSam how long to skip identi-
cal blocking requests before it resumes applying rules for that request. This
ensures that SnortSam isn’t constantly requesting the firewall to block the
same IP address and port over and over again. The skipinterval option
takes a single number as its argument, specifying how many seconds to wait.

You’ll probably want to keep tabs on what SnortSam’s doing, since you’re
allowing it to modify your firewall’s rules. One way is to use the logfile
option, which will cause SnortSam to log events such as program starts,
blocking and unblocking requests, and any errors that were encountered.
This option takes a single argument: the filename to which the logs will be
written. The log file that you specify will be created in /var/log.

A couple of other useful options are daemon and bindip. The daemon option
simply tells SnortSam to fork into the background and run as a daemon; it
does not take any arguments. The bindip option allows you to specify which
IP address to listen on, which is useful when the machine that SnortSam is
running on has multiple addresses available.

For instance, if you want SnortSam to listen on only 192.168.1.15, use a line
like this:

bindip 192.168.1.15

You can also change the port that SnortSam listens on (898, by default) with
the port option.

After you’re done with SnortSam’s options, you’ll need to tell it what kind of
firewall to communicate with and how to do it. For example, to use Snort-
Sam with a Check Point firewall, you can specify either the fwexec or fwsam

Automatically Firewall Attackers with SnortSam #112

Chapter 11, Network Intrusion Detection | 383

HACK

keywords. Use fwexec when you want to run SnortSam on the host that the
firewall is installed on, and use fwsam when you want to communicate with a
remote firewall. The fwexec keyword takes the full pathname to the fw exe-
cutable as its only argument, whereas the fwsam keyword uses the hostname
or IP address of the firewall.

In addition, you’ll need to modify the fwopsec.conf file on your firewall to
include the following line:

sam_server port 1813

To use SnortSam with a PIX firewall, you’ll need to use the pix keyword and
specify the IP address of the firewall as well as the telnet and enable mode
passwords:

pix 192.16.1.2 telnetpw enablepw

Or, if your firewall is set up to do user authentication, you can use user/
password in place of the telnet password.

If you want to use SnortSam with OpenBSD’s PF or Linux’s iptables, you’ll
need to use the pf or iptables keywords. For basic usage, all you need to do
is specify the interface on which to block packets.

To configure the Snort side of things, you’ll need to add the alert_fwsam
output plug-in to the output plug-ins that you’re already using. This plug-in
takes a hostname and an optional port to connect to, along with a pass-
word. If SnortSam is using the default port, you don’t need to specify the
port here:

output alert_fwsam: firewall/mypassword firewall2:1025/mypassword

Notice that you can list multiple instances of SnortSam to send block
requests to by separating them with whitespace.

You should modify any rules that you want to trigger a firewall rule to use
the fwsam rule option. This option takes as its arguments what to block, and
how long the block should be in effect. To block the source of the packet
that caused the alert, use src; to block the destination, use dst. If you want
to block both, use either. For the duration, you can use a number along
with a modifier specifying what unit it’s in (i.e., seconds, minutes, hours,
days, weeks, months, or years), or you can use 0 to specify an indefinite
period of time.

For instance, to block the source address of the packet that triggered a rule
for five minutes, you could add this to your rule options:

fwsam: src, 5 minutes;

384 | Chapter 11, Network Intrusion Detection

#113 Detect Anomalous Behavior
HACK

Now that everything is configured, start SnortSam by running a command
similar to this:

snortsam /usr/local/etc/snortsam.conf

Of course, you’ll need to substitute the full path to your configuration file if
it’s not /usr/local/etc/snortsam.conf. As for Snort, just start it as you nor-
mally would.

See Also
• For more information on using SnortSam with other types of firewalls,

be sure to check out the README files included with the source distri-
bution

• “Prevent and Contain Intrusions with Snort_inline” [Hack #111] discusses
installing Snort_inline on your firewall

H A C K

113
Detect Anomalous Behavior Hack #113

Detect attacks and intrusions by monitoring your network for abnormal
traffic, regardless of the actual content.

Most NIDSs monitor the network for specific signatures of attacks and trig-
ger alerts when one is spotted on the network. Another means of detecting
intrusions is to generate a statistical baseline of the traffic on the network
and flag any traffic that doesn’t fit the statistical norms. One intrusion detec-
tion system of this type is the Statistical Packet Anomaly Detection Engine
(SPADE).

SPADE is actually a modified version of Snort that extends its functionality
into the realm of anomaly-based intrusion detection. The SPADE preproces-
sor uses Snort to monitor the network and constructs a probability table
based on the traffic that it sees. It then uses this table to generate an anom-
aly score of between 0 and 1 for each packet (0 is definitely normal, and 1 is
a definite anomaly).

Installing SPADE is easy. Just download the pre-patched source distribu-
tion, which includes the Snort and SPADE source code, unpack it, and
change into the directory that it created. Now compile and install Snort [Hack

#106] as you normally would.

Once you’ve done that, you’ll need to configure Snort to use SPADE. You
have two choices here: you can set it up to use only SPADE functionality or
to use normal Snort functionality along with SPADE. For the former, you
can use the spade.conf file located in the SPADE source distribution as a
starting point.

Automatically Update Snort’s Rules #114

Chapter 11, Network Intrusion Detection | 385

HACK

Most of the defaults are fine. However, you will need to set the SPADEDIR
variable to a place where Snort has read and write access:

var SPADEDIR /var/log/snort/spade

SPADE will keep various logs and checkpointing information here so that it
does not lose its probability table whenever Snort is restarted.

It is also important that you tell SPADE what network is your home net-
work. You can do this by using a line similar to this one in your configura-
tion file:

preprocessor spade-homenet: 192.168.1.0/24

You can specify multiple networks by separating them with commas and
enclosing the list in square brackets.

If you want to run Snort with SPADE and traditional Snort functionality,
you can just include your spade.conf in your snort.conf with a line like this:

include spade.conf

Run Snort just as you did before. SPADE will now send its output to any of
the output plug-ins that you have configured when it detects anomalous
behavior. This is triggered when a given packet’s anomaly score is in the
range .8 to .9 (it depends on the type of packet). Any alerts generated by
SPADE will be prefixed with Spade: and will include a description of the
packet’s deviant behavior and its anomaly score.

H A C K

114
Automatically Update Snort’s Rules Hack #114

Keep your Snort rules up-to-date with Oinkmaster.

If you have only a handful of IDS sensors, keeping your Snort rules up-to-date
is a fairly quick and easy process. However, as the number of sensors grows,
it can become more difficult. Luckily, you can automatically update your
Snort rules with Oinkmaster (http://oinkmaster.sourceforge.net/news.shtml).

Oinkmaster is a Perl script that does much more than just download new
Snort signatures. It will also modify the newly downloaded signatures
according to rules that you specify or selectively disable them, which is use-
ful when you’ve modified the standard Snort rules to fit your environment
more closely or have disabled a rule that was reporting too many false
positives.

To install Oinkmaster, simply download the source distribution and unpack
it. Then, copy the oinkmaster.pl file from the directory that it created to
some suitable place on your system. In addition, you’ll need to copy the
oinkmaster.conf file to either /etc or /usr/local/etc. The oinkmaster.conf file

386 | Chapter 11, Network Intrusion Detection

#114 Automatically Update Snort’s Rules
HACK

that comes with the source distribution is full of comments explaining all
the minute options that you can configure.

Oinkmaster is most useful for when you want to update your rules but have
a set of rules that you don’t want enabled and that are already commented
out in your current Snort rules. To have Oinkmaster automatically disable
these rules, use the disablesid directive with the Snort rule IDs (separated
by commas) that you want disabled when your rules are updated.

For instance, if you get a lot of ICMP unreachable datagrams on your net-
work, you might have decided that you don’t want to receive alerts when
Snort detects this type of traffic and commented out the following rule in
your icmp.rules file:

#alert icmp any any -> any any (msg:"ICMP Destination Unreachable
(Communication Administratively Prohibited)"; itype: 3; icode: 13; sid:485;
classtype:misc-activity; rev:2;)

This is only one rule, so it’s easy to remember to go back and comment it
out again after updating your rules, but this can become quite a chore when
you’ve done the same thing with several dozen other rules. If you use Oink-
master, putting the following line in your oinkmaster.conf file will disable
the preceding rule after Oinkmaster has updated your rules with the newest
ones available from Snort.org:

disablesid 485

Then, when you want to update your rules, run oinkmaster.pl and tell it
where you’d like the updated rules to be placed:

oinkmaster.pl -o /etc/snort/rules
/oinkmaster.pl -o /usr/local/etc/snort/rules
Loading /usr/local/etc/oinkmaster.conf
Downloading file from http://www.snort.org/pub-bin/downloads.cgi/Download/
comm_rules/Community-Rules-2.4.tar.gz... done.
Archive successfully downloaded, unpacking... done.
Downloading file from http://www.bleedingsnort.com/bleeding.rules.tar.gz...
done.
Archive successfully downloaded, unpacking... done.
Setting up rules structures... done.
Processing downloaded rules... disabled 0, enabled 0, modified 0, total=1912
Setting up rules structures... done.
Comparing new files to the old ones... done.
Updating local rules files... done.

[***] Results from Oinkmaster started 20060511 20:21:18 [***]

[*] Rules modifications: [*]
 None.

[*] Non-rule line modifications: [*]
 None.

Automatically Update Snort’s Rules #114

Chapter 11, Network Intrusion Detection | 387

HACK

[+] Added files (consider updating your snort.conf to include them if
needed): [+]

 -> bleeding-attack_response.rules
 -> bleeding-dos.rules
 -> bleeding-drop-BLOCK.rules
 -> bleeding-drop.rules
 -> bleeding-dshield-BLOCK.rules
 -> bleeding-dshield.rules
 -> bleeding-exploit.rules
 -> bleeding-game.rules
 -> bleeding-inappropriate.rules
 -> bleeding-malware.rules
 -> bleeding-p2p.rules
 -> bleeding-policy.rules
 -> bleeding-scan.rules
 -> bleeding-sid-msg.map
 -> bleeding-virus.rules
 -> bleeding-web.rules
 -> bleeding.conf
 -> bleeding.rules
 -> community-bot.rules
 -> community-dos.rules
 -> community-exploit.rules
 -> community-ftp.rules
 -> community-game.rules
 -> community-icmp.rules
 -> community-imap.rules
 -> community-inappropriate.rules
 -> community-mail-client.rules
 -> community-misc.rules
 -> community-nntp.rules
 -> community-oracle.rules
 -> community-sid-msg.map
 -> community-sip.rules
 -> community-smtp.rules
 -> community-sql-injection.rules
 -> community-virus.rules
 -> community-web-attacks.rules
 -> community-web-cgi.rules
 -> community-web-client.rules
 -> community-web-dos.rules
 -> community-web-iis.rules
 -> community-web-misc.rules
 -> community-web-php.rules

You’ve now updated the rules from BleedingSnort.com, a community site
used for disseminating Snort signatures, and the community rules main-
tained by Snort.org. If you also want to have Oinkmaster automatically
update Sourcefire VRT Certified Rules (see http://www.snort.org/rules/), you
can add a line like this to your oinkmaster.conf file:

url = http://www.snort.org/pub-bin/oinkmaster.cgi/ \
 5f6e64e16258a2f94dd7e7b0ef4e5c59cf4216a3/snortrules-snapshot-2.4.tar.gz

388 | Chapter 11, Network Intrusion Detection

#115 Create a Distributed Stealth Sensor Network
HACK

Replace the long substring that looks like an SHA1 hash with the code you
received when registering for access to the rules.

Now, just add a crontab entry to run Oinkmaster regularly and to restart
Snort when it’s finished updating the rules, and you’ll always be up-to-date
on the most current Snort signatures. And, as a plus, you won’t have to
remember which rules to disable ever again.

H A C K

115
Create a Distributed Stealth Sensor Network Hack #115

Keep your IDS sensors safe from attack, while still giving yourself access to
their data.

Your IDS sensors are the early warning system that can both alert you to an
attack and provide needed evidence for investigating a break-in after one has
occurred. You should take extra care to protect them and the data that they
collect. One way to do this is to run your IDS sensors in stealth mode.

To do this, simply don’t configure an IP address for the interface from which
your IDS software will be collecting data:

tcpdump -i eth1
tcpdump: bind: Network is down
ifconfig eth1 up promisc
ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:DE:AD:BE:EF:00
 UP BROADCAST PROMISC MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
 Interrupt:11 Base address:0x1c80

/usr/sbin/tcpdump -i eth1
tcpdump: WARNING: eth1: no IPv4 address assigned
tcpdump: listening on eth1

After you’ve put up the interface, just start your IDS. It will run as normal,
but since there is no way to directly access the machine, it will be very diffi-
cult to attack.

However, like any potential attackers, you will also be unable to access the
machine remotely. Therefore, if you want to manage the sensor remotely,
you’ll need to put in a second network interface. Of course, if you did this
and hooked it up to the same network that the IDS sensor was monitoring,
it would totally defeat the purpose of running the other interface without an
IP address. To keep the traffic isolated, you should create a separate net-
work for managing the IDS sensors. Attach this network to one that is
remotely accessible, and then firewall it heavily.

Use Snort in High-Performance Environments with Barnyard #116

Chapter 11, Network Intrusion Detection | 389

HACK

Another approach is to access the box using an alternate channel, such as a
serial port connected to another machine that does have a network connec-
tion. Just run a console on the serial port, and take care to heavily secure the
second machine. You could also connect a modem (remember those?) to an
unlisted phone number or, better yet, an unlisted extension on your office’s
private branch exchange. Depending on your situation, simply using the
console for access may be the simplest and most secure method.

Which method to use for remote access is a choice you’ll have to make by
weighing the value of increased security against the inconvenience of jump-
ing through hoops to access the machine. Security nearly always involves a
trade-off between convenience and confidence.

H A C K

116
Use Snort in High-Performance Environments with
Barnyard Hack #116

Decouple Snort’s output stage so it can keep pace with the packets.

By itself, Snort is fine for monitoring small networks or networks with low
amounts of traffic, but it does not scale very well without some additional
help. The problem is not with Snort’s detection engine itself, but rather
stems from the fact that Snort is a single-threaded application. Because of
this, whenever an alert or log event is triggered, Snort must first send the
alert or log entry to its final destination before it can go back to looking at
the incoming data stream.

This isn’t such a big deal if you’re just having Snort write to a file, but it can
become a problem if you are logging to a database because Snort will have to
wait a relatively long time for the database insert to complete. This prob-
lem, of course, is exacerbated when you’re having Snort log to a remote
database server.

Barnyard (http://www.snort.org/dl/barnyard/) was written to solve this prob-
lem. Functionally, Barnyard is the equivalent of Snort’s output plug-ins all
rolled into one program, with a frontend for reading in files that Snort gener-
ates and then sending them to the same database or other destination that
you would normally have Snort log to. The only draw back to Barnyard is its
limited database support: Barnyard supports only MySQL and PostgreSQL,
whereas Snort supports MySQL, PostgreSQL, Oracle, and ODBC outputs.

Installation
After downloading Barnyard and unpacking it, change to the directory it cre-
ated and run its configure script:

$./configure --enable-mysql

390 | Chapter 11, Network Intrusion Detection

#116 Use Snort in High-Performance Environments with Barnyard
HACK

This will enable MySQL support when Barnyard is compiled. If you’ve
installed your MySQL libraries and include files in a nonstandard place (i.e.,
somewhere other than the the /usr or /usr/local hierarchy), you’ll probably
need to add the --with-mysql-includes and --with-mysql-libraries com-
mand-line options. If you’re using Postgres, you’ll need to use --enable-
postgres. Likewise, use --with-postgres-includes and --with-postgres-
libraries to specify where Postgres’s headers and libraries are located.

After you’re done with the configure script, you can compile Barnyard by
running make. When it finishes compiling, install it by becoming root and
running make install.

Configuring Snort
Before you use Barnyard, you’ll need to configure Snort to use its unified
output format. This is a binary format that includes both the alert informa-
tion and the data for the packet that triggered the alert, and it is the only
type of input that Barnyard will understand.

To configure Snort to use the unified output format for both alert and log
events, add lines similar to these to your Snort configuration (e.g., /etc/snort/
snort.conf or /usr/local/etc/snort/snort.conf):

output alert_unified: filename snort.alert, limit 128
output log_unified: filename snort.log, limit 128

The filenames specified here are the basenames for the files to which Snort
will write its alert and log event information. When it writes a file, it will
append the current Unix timestamp to the end of the basename. These lines
also specify that the size of these files will be limited to 128 MB.

Configuring Barnyard
Now, you’ll need to create a configuration file for use with Barnyard. To run
Barnyard in daemon mode and have it automatically fork itself into the
background, add this line to your configuration file:

config daemon

If you’re going to be logging to a database for use with BASE [Hack #107],
you’ll also want to add two lines similar to these:

config hostname: colossus
config interface: eth0

These two lines should be set to the name of the machine on which you’re
running Barnyard and the interface from which Snort is reading packets.

Use Snort in High-Performance Environments with Barnyard #116

Chapter 11, Network Intrusion Detection | 391

HACK

Note that Barnyard can process only one type of unified log at a time. So, if
you want it to process both alert and log events, you’ll need to run an
instance of Barnyard for each type.

All that’s left to configure is where Barnyard will send the data. If you want
to use Snort’s fast alert mode to generate single-line abbreviated alerts, use
the alert_fast output plug-in:

output alert_fast: fast_alerts.log

Or, if you want Barnyard to generate ASCII packet dumps of the data con-
tained in the unified logs, use a line like this:

output log_dump: ascii_dump.log

To have Barnyard output to your syslog daemon, you can use the alert_
syslog plug-in just like you would in your snort.conf. For instance, if you
want to send data to the local syslogd and use the auth facility and the alert
log level, use a line like this:

output alert_syslog: LOG_AUTH LOG_ALERT

Or, if you want to send to a remote syslog daemon, use a line similar to this:

output alert_syslog: hostname=loghost, LOG_AUTH LOG_ALERT

You can also have Barnyard create Pcap-formatted files from the data in the
unified logs. This is useful for analyzing the data later in tools such as Ethe-
real. To do this, use the log_pcap plug-in:

output log_pcap: alerts.pcap

Finally, you can also have Barnyard output to a database by using the alert_
acid_db plug-in for logging alert events and the log_acid_db plug-in for cap-
turing log events.

For instance, this line would send alerts to the SNORT MySQL database
running on dbserver using the username snort:

output alert_acid_db: mysql, sensor_id 1, database SNORT, server dbserver, \
 user snort, password snortpw, detail full

The sensor_id is the one BASE assigned to the particular instance of Snort
that is gathering the data. You can find what sensor ID to use by clicking on
the Sensors link on BASE’s front page [Hack #107], which will show you a list of
the sensors that are currently logging to BASE.

The log_acid_db plug-in is similar:

output log_acid_db: mysql, sensor_id 1, database SNORT, server dbserver, \
 user snort, password snortpw, detail full

392 | Chapter 11, Network Intrusion Detection

#117 Detect and Prevent Web Application Intrusions
HACK

Testing Barnyard
You can start Barnyard by simply using a command similar to the follow-
ing, if Snort’s configuration files are stored in /etc/snort and Snort is set to
keep its logs in /var/log/snort:

barnyard -f snort.alert

You should then see new records in your database’s events table.

Of course, this assumes that you used snort.alert when configuring Snort’s
alert_unified plug-in. If your Snort configuration files aren’t stored in /etc/
snort, you can specify the locations of all the files that Barnyard needs to
access by running a command similar to this one:

barnyard -c /usr/local/etc/snort/barnyard.conf -f snort.alert

This tells Barnyard where to find all the files it needs if they are in /usr/local/
etc/snort, since it will automatically look for the sid-msg.map and gen-msg.
map files in the same directory as the Barnyard configuration file. If you’re
using a directory other than /var/log/snort to store Snort’s logs, you can spec-
ify it with the -d option, and Barnyard will look for input files there.

Congratulations. With Barnyard running, you should be able to handle
much larger volumes of traffic without dropping log entries or missing a
single packet.

H A C K

117
Detect and Prevent Web Application Intrusions Hack #117

Protect your web server and dynamic content from intrusions.

Network intrusion detection systems are well suited to detecting intrusions
that utilize common protocols and services, such as those used by web
applications. However, due to the complexity of these applications and the
variety of attacks they are vulnerable to, it can be difficult to detect and pre-
vent intrusions without generating many false positives. This is especially
true for web applications that use SSL, since this requires you to jump
through hoops to enable the NIDS to actually get access to the unencrypted
traffic coming to and from the web server.

One way to get around these issues is to integrate the intrusion detection
system into the web server itself. This is just what mod_security (http://
www.modsecurity.org) does for the popular Apache (http://www.apache.org)
web server.

mod_security, as the name suggests, is a module for the Apache web server
that is meant to increase its security by providing facilities for filtering
requests and performing arbitrary actions based on user-specified rules. In
addition, mod_security performs various sanity checks that normalize the

Detect and Prevent Web Application Intrusions #117

Chapter 11, Network Intrusion Detection | 393

HACK

requests that the web server receives. With the proper filtering rules, mod_
security can defeat directory traversal, cross-site scripting, SQL injection,
and buffer overflow attacks.

Installing mod_security
To install mod_security, download and unpack the source distribution. If
you want to install it as a DSO (i.e., a module), you can do so easily with the
apxs utility. First, change to the directory appropriate for the version of
Apache that you are using: apache1 or apache2. Then, run a command like
this:

apxs -cia mod_security.c

This compiles mod_security and configures Apache to load it at startup. If
you want to statically compile mod_security, you will have to rebuild
Apache. If you are using Apache 1.x, you can compile it statically by copy-
ing mod_security.c to the src/modules/extra directory in the Apache source
tree. Then, when you run Apache’s configure script, use these command-line
switches:

--activate-module=src/modules/extra/mod_security
--enable-module=security

For Apache 2.x, copy mod_security.c from the apache2 directory to the
modules/proxy directory in the Apache 2.x source tree. Then, use these com-
mand-line switches when running the configure script:

--enable-security
--with-module=proxy:mod_security.c

Enabling and Configuring mod_security
Once you’ve installed mod_security, you’ll need to enable it. You can do this
by putting the following lines in your httpd.conf file:

<IfModule mod_security.c>
 SecFilterEngine On
</IfModule>

This enables the request normalization features of mod_security for all
requests made to the web server. When mod_security is enabled, it inter-
cepts all requests coming into the web server and performs several checks on
them before passing the requests through any user-defined filters and finally
either servicing or denying them.

During these sanity checks, mod_security converts several types of evasive
character sequences to their more commonly used equivalent forms. For
example, it transforms the character sequences // and /./ to /, and on

394 | Chapter 11, Network Intrusion Detection

#117 Detect and Prevent Web Application Intrusions
HACK

Windows, it converts the \ character to /. It also decodes any URL-encoded
characters.

In addition to these checks, you can configure mod_security to scan the pay-
load of POST method requests and to validate URL and Unicode encoding
within requests. To enable these features, add these lines to your httpd.conf:

SecFilterScanPOST On
SecFilterCheckURLEncoding On
SecFilterCheckUnicodeEncoding On

URL encoding allows someone making a request to encode characters by
using hexadecimal values, which use the numbers 0 through 9 and the let-
ters A through F, prefixed by the % character. When URL-encoding valida-
tion is enabled, mod_security simply ensures that any URL-encoded
characters don’t violate the hexadecimal numbering system. Similarly, when
performing Unicode validation, mod_security ensures that the string seen by
the web server in fulfilling the request is a valid Unicode string. Unicode val-
idation is useful if your web server is running on an operating system that
supports Unicode or your web application makes use of it.

To avoid buffer overflow exploits, you can also limit the range of bytes that
are allowed in request strings. For instance, to allow only printable charac-
ters (and not ones that might show up in exploit shell code), add a line like
this to your httpd.conf file:

SecFilterForceByteRange 32 126

Creating Filters
You can create user-defined filters with either the SecFilter or the
SecFilterSelective keyword. Use SecFilter to search just the query string,
or use SecFilterSelective if you would like to filter requests based on the
value of an internal web server variable. Both of these filtering keywords can
accept regular expressions.

Let’s look at a few filtering rules can help prevent some common attacks.

This rule filters out requests that contain the character sequence ../:

SecFilter "\.\./"

Even though the web server will interpret the ../ correctly and disallow
access if it ends up resolving to something outside of its document root, that
might not be the case for scripts or applications that are on your server. This
rule prevents such requests from being processed.

Cross-site scripting (XSS) attacks are invoked by inserting HTML or
JavaScript into an existing page so that other users will execute it. Such

Detect and Prevent Web Application Intrusions #117

Chapter 11, Network Intrusion Detection | 395

HACK

attacks can be used to read a user’s session cookie and gain full control of that
user’s information. You can prevent these attacks by having mod_security
filter out requests that contain JavaScript.

To disallow JavaScript in requests, use a rule like this:

SecFilter "<[[:space:]]*script"

However, there are many other ways in which JavaScript can be inserted
into a request. It is safer to simply disallow HTML, which can be done by
using this rule:

SecFilter "<.+>"

SQL injection attacks are similar to XSS attacks, except in this case attack-
ers modify variables that are used for SQL queries in a way that enables
them to execute arbitrary SQL commands.

This rule prevents SQL injection in a cookie called sessionid:

SecFilterSelective COOKIE_sessionid "!^(|[0-9]{1,9})$"

If a sessionid cookie is present, the request can proceed only if the cookie
contains one to nine digits.

This rule requires HTTP_USER_AGENT and HTTP_HOST headers in every request:

SecFilterSelective "HTTP_USER_AGENT|HTTP_HOST" "^$"

You can search on multiple variables by separating each variable in the list
with a | character. Attackers often investigate using simple tools (even tel-
net) and don’t send all headers, as browsers do. Such requests can be
rejected, logged, and monitored.

This rule rejects file uploads:

SecFilterSelective "HTTP_CONTENT_TYPE" multipart/form-data

This is a simple but effective protection, rejecting requests based on the con-
tent type used for file upload.

Again, manual requests frequently do not include all HTTP headers. This
rule logs requests without an Accept header, so you can examine them later:

SecFilterSelective "HTTP_ACCEPT" "^$" log,pass

The Keep-Alive header is another good candidate. Notice that in addition to
the variable and search string this rule contains the keywords log and pass,
which specify the actions to take if a request matches the rule. In this case,
any requests that match will be logged to Apache’s error log, and then the
request will go on for further processing by the web server. If you do not
specify an action for a filter rule, the default action will be used.

396 | Chapter 11, Network Intrusion Detection

#117 Detect and Prevent Web Application Intrusions
HACK

You can specify the default action like this:

SecFilterDefaultAction "deny,log,status:500"

If you set this as the default action, the web server will deny all requests that
match filter rules and that do not specify a custom action. These requests
will be logged and then redirected to an HTTP 500 status page, which will
inform the client that an internal server error occurred. Other possible
actions include allow, which is similar to pass but stops other filters from
being tried; redirect, which redirects the client to an arbitrary URL; exec,
which executes an external binary or script; and chain, which allows you to
effectively AND rules together.

In addition to filtering, mod_security provides extensive auditing features,
allowing you to keep logs of all the requests sent to the server. To turn on
audit logging, add lines similar to these to your httpd.conf:

SecAuditEngine On
SecAuditLog logs/audit_log

Bear in mind, though, that this option can generate quite a lot of data very
quickly. To log only requests that trigger a filter rule, set the SecAuditEngine
variable to RelevantOnly. Alternatively, you can set this variable to
DynamicOrRelevant, which will log requests for dynamic content as well as
requests that trigger a filter rule.

As with most other Apache configuration directives, you can enclose mod_
security configuration directives within a <Location> tag to specify individ-
ual configurations for specific scripts or directory hierarchies.

For more examples of useful mod_security rules, be sure to look at
modsecurity-rules-current.tar.gz, which is available from the mod_security
download page and includes an extensive list of rules that can be included in
your Apache configuration using the Include directive.

mod_security is a powerful tool for protecting your web applications, but it
should not take the place of actually validating input in your application or
other secure coding practices. If possible, it is best to use a tool such as mod_
security in addition to employing such methods.

See Also
• “Introducing mod_security”: http://www.onlamp.com/pub/a/apache/

2003/11/26/mod_security.html

• Mod_security Reference Manual v1.7.4: http://www.modsecurity.org/
documentation/modsecurity-apache/1.9.3/modsecurity-manual.pdf

Scan Network Traffic for Viruses #118

Chapter 11, Network Intrusion Detection | 397

HACK

H A C K

118
Scan Network Traffic for Viruses Hack #118

Use Snort and ClamAV to detect viruses as they cross your network.

Much focus in recent years has been given to email attachments as an ave-
nue for viruses and worms to infiltrate a network. The Melissa and I Love
You viruses are infamous examples. You can easily set up a system to scan
your users’ email for such things [Hack #74], but there are many more vectors
for virus propagation, such as web pages, IRC, IM file transfers… there’s
really no limit. So, how do you scan for viruses and prevent them from prop-
agating over those services?

One way is to modify Snort using the useful ClamAV [Hack #74] patch, which
integrates the two packages. The patch adds a clamav preprocessor to Snort
that monitors network traffic and uses the ClamAV engine to scan it for
viruses. When ClamAV matches a virus definition, it generates a Snort alert.
Even better, you can use this functionality with Snort_inline [Hack #111] to
actually drop the traffic containing the viral payload before it can propagate.

Patching Snort
To get started, download the ClamAV patch (http://www.bleedingsnort.com/
cgi-bin/viewcvs.cgi/snort-clamav/?root=Snort-Clamav) that’s appropriate for
the version of Snort you’re using. Then, change to the directory into which
you’ve unpacked the Snort source code and apply the patch:

$ cd snort-2.4.3
$ patch -p1 < ../snort-2.4.3-clamonly.diff
$ find . -name *.rej

You’ll then need to regenerate all of the files used by the build system. Do so
by running the following command:

$ libtoolize -f && aclocal -I ./m4 && autoheader && automake && autoconf

Notice that there are a few more options for the configure script now:

$./configure --help | grep -i clam
 --enable-clamav Enable the clamav preprocessor
 --with-clamav-includes=DIR clamav include directory
 --with-clamav-defdir=DIR clamav virusdefinitions directory

Run configure with all three of these options, in addition to any others that
you want to use. If you’ve installed ClamAV in its default location, you’ll
want to use /usr/local/include and /usr/local/share/clamav for the --with-
clamav-includes and --with-clamav-defdir options, respectively. After the
configure script has finished, type make to start compiling.

398 | Chapter 11, Network Intrusion Detection

#118 Scan Network Traffic for Viruses
HACK

Configuring the Preprocessor
Once the build has finished, install Snort as normal. Enable the clamav pre-
processor by editing your Snort configuration file and adding a preprocessor
clamav directive.

Make sure you enable the clamav preprocessor after enabling
the stream4_reassemble preprocessor in your configuration
file; otherwise, the clamav preprocessor might miss some
viral payloads that span multiple IP datagrams or arrive out
of order. Also be sure to put it before the directive enabling
the http_inspect preprocessor.

The clamav preprocessor has several options that you can use to specify
which ports to scan for viral traffic, which direction of a TCP stream to scan,
what to do in inline mode if a virus is found, and a few other miscellaneous
things. To specify options, put a colon after the preprocessor name (e.g.,
clamav:) and list the options separated by commas. The examples shown
here are complete preprocessor directives. When you edit your configura-
tion file, you should combine all of the options you want to use into one
preprocessor clamav line.

Ports to scan. By default, ClamAV scans only ports 21, 25, 80, 81, 110, 119,
139, 143, and 445 for viral payloads. To add ports, use the ports option fol-
lowed by a space-delimited list of the ports to include. You can also exclude
a port from being scanned by using the ! operator. This is especially useful
when you’re using the all keyword, which specifies all ports for scanning.

For instance, you might want to scan all ports, except for some that usually
carry encrypted traffic:

preprocessor clamav: ports all !22 !443 !993 !995

Direction to scan. For TCP streams, you can opt to scan traffic going to the
client, to the server, or in either direction. By default ClamAV scans both
directions, but if you want to scan only traffic going to clients, to lessen the
load on your IDS, you can use the toclientonly option:

preprocessor clamav: toclientonly

Alternatively, if you feel that viruses being sent to your servers is a bigger
issue, you can use the toserveronly option.

Blocking propagation. Determining when viruses are loose on your network is
very different from being able to proactively block them. When using Snort
in inline mode with the clamav preprocessor, it’s possible to automatically

Scan Network Traffic for Viruses #118

Chapter 11, Network Intrusion Detection | 399

HACK

stop a viral payload from reaching its destination. The only thing in ques-
tion is which method to use. If you want Snort to silently drop any packets
in which it detects a viral payload, use the action-drop option. If you want
to perform a TCP reset instead, use the action-reset option:

preprocessor clamav: action-reset

Miscellaneous options. If the location of the virus definitions (specified when
running configure with --with-clamav-defdir) has changed since you com-
piled Snort, you can use the dbdir option to specify the new location. The
preprocessor also allows you to specify how often to reload the virus defini-
tions with the dbreload-time option. This defaults to 600 seconds, but you’ll
probably want to change it to a longer time period (for example, 86400 sec-
onds if you update your virus definitions once a day).

The following directive specifies /opt/clamav/share as the directory to read
virus definitions from and indicates that they should be reloaded once per
day:

preprocessor clamav: dbdir /opt/clamav/share, dbreload-time 86400

To increase the preprocessor’s reliability, you can use the file-descriptor-
mode option, which causes it to write packet payloads to a file before scan-
ning them. Otherwise, it holds them in memory when doing the scanning.
When this option is enabled, the payloads are written to /tmp by default. If
you want to change this, use the descriptor-temp-dir option. The following
directive tells Clam AV to write payloads to /var/tmp/clamav before scan-
ning them for viral content:

preprocessor clamav: file-descriptor-mode, descriptor-temp-dir /var/tmp/
clamav

Bear in mind, however, that the file-descriptor-mode option can reduce
performance significantly, since the preprocessor is constantly writing to
disk. To alleviate this problem, use a memory-based filesystem. For
instance, in Linux you can create a 256MB filesystem that is backed by
memory at /var/tmp/clamav by running the following command:

mount -t tmpfs tmpfs /var/tmp/clamav -o size=256M

Of course, you should make sure you have plenty of RAM to do this.

Similarly, under FreeBSD, you can add the following lines to /etc/rc.conf to
cause /tmp to use the Virtual Memory Manager (VMM) for storage rather
than a disk:

tmpmfs="YES"
tmpsize="256m"

After you’ve done that, reboot to let the change take effect.

400 | Chapter 11, Network Intrusion Detection

#119 Simulate a Network of Vulnerable Hosts
HACK

Trying It Out
Once you’ve configured the preprocessor, start Snort as you normally
would. If you didn’t use the -q command-line option, which suppresses out-
put, you should see some lines similar to these, signifying that the clamav
preprocessor was loaded properly:

ClamAV config:
 Ports: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
 Virus definitions dir: '/usr/local/share/clamav'
 Virus DB reload time: '86400'
 Scan only traffic to the client
 File descriptor scanning mode: Enabled, using cl_scandesc
 Directory for tempfiles (file descriptor mode): '/tmp'

As a quick test, you can use Netcat (http://www.vulnwatch.org/netcat/) on
another system to have it send one of the ClamAV test files to a system that
is visible to your IDS sensor. Do so by running something like this on the
server:

$ nc -l 65535 < clam.cab

Of course, make sure to use a port that you’re actually monitoring for
viruses. Then, use Netcat on the client system to connect to it. Once the cli-
ent system connects and is sent the test file, you should see Snort generate
an alert similar to this:

06/24-00:30:45.562228 [**] [125:1:1] (spp_clamav) Virus Found: ClamAV-Test-
File [**] {TCP} 192.168.0.62:65535 -> 192.168.0.40:65129

Now that you have it working, you can deploy the clamav preprocessor
across all of your Snort sensors. Doing so will give you a heads-up on any
viruses that might be propagating across your network and give you time to
take action before any outbreaks get too serious.

H A C K

119
Simulate a Network of Vulnerable Hosts Hack #119

Use honeyd to fool would-be attackers into chasing ghosts.

As the saying goes, you’ll attract more flies with honey than with vinegar.
(I’ve never understood that saying; who wants to attract flies, anyway?) A
honeypot is used to attract the “flies” of the Internet: script kiddies and
hacker wannabes who have nothing better to do with their time than scan
for vulnerable hosts and try to attack them. A honeypot does this by pre-
tending to be a server running vulnerable services, while in fact collecting
information about the attackers who think themselves so clever.

Whether you want to simulate one or one thousand vulnerable network
hosts, honeyd (http://www.honeyd.org) makes the job as simple as editing a
configuration file and running a daemon. The honeyd daemon can simulate

Simulate a Network of Vulnerable Hosts #119

Chapter 11, Network Intrusion Detection | 401

HACK

thousands of hosts simultaneously and lets you configure what operating
system each host will appear as when scanned with operating-system-detec-
tion tools such as Nmap [Hack #66].

Each system that honeyd simulates will appear to be a fully functioning node
on the network. Besides simply creating hosts that respond to pings and trac-
eroutes, honeyd also lets you configure what services each host appears to be
running. You can either use simple scripts to emulate a given service or have
honeyd act as a proxy and forward requests to another host for servicing.

Compiling honeyd
As a daemon that has extensive capabilities in mimicking other daemons,
honeyd has several prerequisites you’ll need to install before building the
daemon itself:

• libevent (http://www.monkey.org/~provos/libevent/)

• libdnet (http://libdnet.sourceforge.net)

• libpcap (http://www.tcpdump.org)

• PCRE (http://www.pcre.org)

• Readline (http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html)

• Zlib (http://www.zlib.net)

• Python (http://www.python.org)

libpcap, PCRE, Readline, Zlib, and Python should be available with most
Linux and BSD flavors. You can easily install any of these prerequisites by
downloading and unpacking them, running./configure && make, and then
running make install as root.

After you’ve installed the libraries, install honeyd the same way. Then, copy
the service emulation scripts from the source distribution to somewhere
more permanent (e.g., /usr/local/share/honeyd/scripts). Only a few scripts
come with honeyd itself, but additional service emulation scripts are avail-
able on honeyd’s contributions page (http://www.honeyd.org/contrib.php).

Configuring honeyd
Once you’ve installed honeyd, you’ll need to create a configuration file that
defines the types of operating systems and services honeyd will emulate and
the IP addresses to which honeyd will respond. First, create some operating
system templates:

Windows computers
create windows-web
set windows-web personality "Microsoft Windows Millennium Edition (Me),
Windows 2000 Professional or Advanced Server, or Windows XP"

402 | Chapter 11, Network Intrusion Detection

#119 Simulate a Network of Vulnerable Hosts
HACK

set windows-web default tcp action reset
set windows-web default udp action reset
set windows-web default icmp action open
add windows-web tcp port 80 "perl scripts/win2k/iisemulator-0.95
/iisemul8.pl"
add windows-web tcp port 139 open
add windows-web tcp port 137 open
add windows-web tcp port 5900 "sh scripts/win2k/vnc.sh"
add windows-web udp port 137 open
add windows-web udp port 135 open

create windows-xchng
set windows-xchng personality "Microsoft Windows Millennium Edition (Me),
Windows 2000 Professional or Advanced Server, or Windows XP"
set windows-xchng default tcp action reset
set windows-xchng default udp action reset
set windows-xchng default icmp action open
add windows-xchng tcp port 25 "sh scripts/win2k/exchange-smtp.sh"
add windows-xchng tcp port 110 "sh scripts/win2k/exchange-pop3.sh"
add windows-xchng tcp port 119 "sh scripts/win2k/exchange-nntp.sh"
add windows-xchng tcp port 143 "sh scripts/win2k/exchange-imap.sh"
add windows-xchng tcp port 5900 "sh scripts/win2k/vnc.sh"
add windows-xchng tcp port 139 open
add windows-xchng tcp port 137 open
add windows-xchng udp port 137 open
add windows-xchng udp port 135 open

Solaris
create sol-mail
set sol-mail personality "Sun Solaris 9"
set sol-mail default tcp action reset
set sol-mail default udp action reset
set sol-mail default icmp action open
add sol-mail tcp port 110 "sh scripts/pop3.sh"
add sol-mail tcp port 25 "sh scripts/smtp.pl"
add sol-mail tcp port 22 open
add sol-mail tcp port 143 open
add sol-mail tcp port 993 open

Then bind them to the IP addresses that you want to use:

bind 192.168.0.210 windows-web
bind 192.168.0.211 windows-xchng
bind 192.168.0.212 sol-mail

Save this configuration file in a good place (e.g., /usr/local/share/honeyd/
honeyd.conf).

Instead of configuring IP aliases on your NIC for each IP address listed in your
configuration file, you can use arpd (http://www.honeyd.org/tools.php) to
respond to the IP addresses. You can install arpd by running ./configure &&
make and then make install as root. However, if you’re using a recent version
of GCC, you might encounter the following error:

Simulate a Network of Vulnerable Hosts #119

Chapter 11, Network Intrusion Detection | 403

HACK

arpd.c: In function 'arpd_lookup':
arpd.c:285: error: syntax error before string constant
arpd.c:294: error: syntax error before string constant
arpd.c:297: error: syntax error before string constant
arpd.c: In function 'arpd_recv_cb':
arpd.c:426: error: syntax error before string constant
make: *** [arpd.o] Error 1

This is because, as of Version 3.4 of the compiler, it’s no longer possible to
concatenate _ _FUNCTION_ _ with other strings. To fix this problem, see http://
seclists.org/lists/honeypots/2005/Jul-Sep/0035.html for a patch to arpd.c.

Running honeyd
After you have installed arpd and honeyd, you can start them:

arpd 192.168.0.210-192.168.0.212
cd /usr/local/share/honeyd
honeyd -p nmap.prints -x xprobe2.conf -a nmap.assoc -0 pf.os -f honeyd.
conf
honeyd[5861]: started with -p nmap.prints -x xprobe2.conf -a nmap.assoc -0
pf.os -f
honeyd.conf
honeyd[5861]: listening on eth0: (arp or ip proto 47 or (ip)) and not ether
src
00:0c:29:e2:2b:c1
Honeyd starting as background process

The most recent version of honeyd now includes a built-in web server, which
lets you view the current status of your honeynet as well as its configura-
tion, as shown in Figure 11-13.

Figure 11-13. honeyd’s web interface

404 | Chapter 11, Network Intrusion Detection

#119 Simulate a Network of Vulnerable Hosts
HACK

The web interface allows you to view active TCP and UDP connections
along with bandwidth statistics for your honeynet. In addition, you can view
the settings for the different virtual hosts you have configured. If you don’t
want to use the web interface, you can use the --disable-webserver option
when starting honeyd.

Testing honeyd
Now, try running Nmap on the IP addresses that honeyd is handling:

nmap -sS -sU -O 192.168.0.210-212

Starting nmap 3.70 (http://www.insecure.org/nmap/) at 2006-05-06 15:45 MDT
Interesting ports on 192.168.0.210:
(The 3132 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
80/tcp open http
135/udp open|filtered msrpc
137/tcp open netbios-ns
137/udp open|filtered netbios-ns
139/tcp open netbios-ssn
5900/tcp open vnc
MAC Address: 08:00:46:0C:AA:DF (Sony)
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional or Advanced Server, or Windows XP

Interesting ports on 192.168.0.211:
(The 3129 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
25/tcp open smtp
110/tcp open pop3
119/tcp open nntp
135/udp open|filtered msrpc
137/tcp open netbios-ns
137/udp open|filtered netbios-ns
139/tcp open netbios-ssn
143/tcp open imap
5900/tcp open vnc
MAC Address: 08:00:46:0C:AA:DF (Sony)
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000
Professional or Advanced Server, or Windows XP

Interesting ports on 192.168.0.212:
(The 3133 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp

Simulate a Network of Vulnerable Hosts #119

Chapter 11, Network Intrusion Detection | 405

HACK

110/tcp open pop3
143/tcp open imap
993/tcp open imaps
MAC Address: 08:00:46:0C:AA:DF (Sony)
Device type: general purpose
Running: Sun Solaris 9
OS details: Sun Solaris 9
Uptime 0.080 days (since Sat May 6 13:50:40 2006)

You can certainly see that honeyd fools Nmap. You’ll notice that the MAC
address reported for each host is the same as the network interface of the
host on which honeyd is being run, though, which is a dead giveaway that
something fishy is going on. This can be fixed by assigning a MAC address
to each of the host templates in the configuration file:

create sol-mail
set sol-mail personality "Sun Solaris 9"
set sol-mail ethernet "08:00:20:23:45:EE"
set sol-mail default tcp action reset
set sol-mail default udp action reset
set sol-mail default icmp action open
add sol-mail tcp port 110 "sh scripts/pop3.sh"
add sol-mail tcp port 25 "sh scripts/smtp.pl"
add sol-mail tcp port 22 open
add sol-mail tcp port 143 open
add sol-mail tcp port 993 open

Now, run Nmap again:

nmap -sS -sU -O 192.168.0.212

Starting nmap 3.70 (http://www.insecure.org/nmap/) at 2006-05-06 15:52 MDT
Interesting ports on 192.168.0.212:
(The 3133 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
110/tcp open pop3
143/tcp open imap
993/tcp open imaps
MAC Address: 08:00:20:F9:6A:F3 (SUN Microsystems)
Device type: general purpose
Running: Sun Solaris 9
OS details: Sun Solaris 9
Uptime 0.023 days (since Sat May 6 15:18:57 2006)

Nmap run completed -- 1 IP address (1 host up) scanned in 7.394 seconds

One thing to note is that if you specify a MAC address for a host template,
you do not need to have arpd answering ARP requests for the IP address
associated with it. honeyd will handle this for you.

406 | Chapter 11, Network Intrusion Detection

#119 Simulate a Network of Vulnerable Hosts
HACK

Everything has appeared to be realistic so far, but what happens when you
try to access one of the services that are purportedly running? Try connect-
ing to port 25 of the fake Windows mail server:

$ telnet 192.168.0.211 25
Trying 192.168.0.11...
Connected to 192.168.0.11.
Escape character is '^]'.
220 bps-pc9.local.mynet Microsoft ESMTP MAIL Service, Version: 5.0.2195.5329
ready at
Mon Jan 12 12:55:04 MST 2004
EHLO kryten
250-bps-pc9.local.mynet Hello [kryten]
250-TURN
250-ATRN
250-SIZE
250-ETRN
250-PIPELINING
250-DSN
250-ENHANCEDSTATUSCODES
250-8bitmime
250-BINARYMIME
250-CHUNKING
250-VRFY
250-X-EXPS GSSAPI NTLM LOGIN
250-X-EXPS=LOGIN
250-AUTH GSSAPI NTLM LOGIN
250-AUTH=LOGIN
250-X-LINK2STATE
250-XEXCH50}
250 OK

Pretty effective at first glance, isn’t it? If you’d like to specify some real services
for attackers to play with, you can use the proxy keyword to forward any port
to a port on another machine. For example, the following line will forward
SSH requests from our imaginary Linux host to the machine at 192.168.0.100:

add linux tcp port 22 proxy 192.168.0.100:22

Proxying works especially well when utilizing honeypots created from full-
blown systems. This enables you to create a handful of dedicated honeypot
machines and then set up honeyd to act as a frontend to them. The end
result is that you appear to have more vulnerable systems than you actually
have, and you can monitor any intruder’s activities in more detail in the
richer user environment.

In addition to running the service emulation scripts, honeyd can limit
inbound or outbound bandwidth, or even slow down access to a particular
service. This can be used to tie up spammers’ resources, by holding open an
apparently open mail relay. The possibilities provided by honeyd are limited
only by your imagination and the time you’re willing to spend building your
virtual fly-catching network.

Record Honeypot Activity #120

Chapter 11, Network Intrusion Detection | 407

HACK

H A C K

120
Record Honeypot Activity Hack #120

Keep track of everything that happens on your honeypot.

Once an attacker has fallen prey to your honeypot and gained access to it, it
is critical that you monitor all activity on that machine. By monitoring every
tiny bit of activity on your honeypot, you can not only learn the intentions
of your uninvited guest, but often also learn about new techniques for com-
promising a system as the intruder tries to gain further access. Besides, if
you’re not interested in what attackers are trying to do, why run a honeypot
at all?

One of the most effective methods for tracking every packet and keystroke is
to use a kernel-based monitoring tool. This way, you can monitor nearly
everything that attackers do on your honeypot, even if they use encryption
to protect their data or network connections. One powerful package for
monitoring a honeypot at the kernel level is Sebek (http://www.honeynet.org/
tools/sebek/).

Sebek is a loadable kernel module for the Linux, Solaris, BSD, and Windows
operating systems that intercepts key system calls in the kernel and monitors
them for interesting information. It then transmits the data to a listening
server, hiding the presence of the transmissions from the local system.

Installing the Linux Client
To build the kernel modules on Linux, first make sure that the build direc-
tory within your modules directory points to the source code of the kernel
for which you want to compile the modules:

$ ls -lad /lib/modules/2.6.16/build
lrwxrwxrwx 1 root root 47 Apr 10 22:55 /lib/modules/2.6.16/build -> ../../.
./usr/src/linux-2.6.16

Then, run the usual ./configure command. Alternatively, you can build
Sebek for another version of the kernel by adding the --with-kernel-dir
switch and specifying a directory containing the kernel source code:

$./configure --with-kernel-dir=/usr/src/linux-2.6.11

Note, however, that if you specify an alternative version of the kernel, you’ll
need to have the kernel source at the specified location configured and set
up. Run the following commands from within the directory containing the
kernel source to do this:

$ make oldconfig
$ make prepare

408 | Chapter 11, Network Intrusion Detection

#120 Record Honeypot Activity
HACK

Now that all of that is out of the way, run ./configure and then make. The
latter will generate a tarball containing the kernel modules and an installer
script. Copy this archive to your honeypot to complete the installation.

Here’s what’s inside:

$ tar tfz sebek-lin26-3.1.2b-bin.tar.gz
sebek-lin26-3.1.2b-bin/
sebek-lin26-3.1.2b-bin/parameters.sh
sebek-lin26-3.1.2b-bin/sbk_install.sh
sebek-lin26-3.1.2b-bin/README
sebek-lin26-3.1.2b-bin/sbk.ko

Before installing the modules on your honeypot, you’ll need to edit the sbk_
install.sh script and modify three variables that tell sebek.ko where to send
the information that it collects: DESTINATION_MAC, DESTINATION_IP, and
DESTINATION_PORT. These should all be set to point to the Sebek server that
you will build in a moment. If the server is on a different subnet, set
DESTINATION_MAC to your router’s MAC address.

Additionally, you can optionally configure the source port that Sebek uses
by setting SOURCE_PORT. Make sure to use the same DESTINATION_PORT for all
honeypots that you’ll be operating. You’ll also need to set INTERFACE to the
interface that should be used to send data to DESTINATION_IP.

Set the MAGIC_VAL variable to the same value on all your honeypots. This
variable, in conjunction with DESTINATION_PORT, hides traffic from other hon-
eypots you are operating.

If you want Sebek to collect only keystrokes from your honeypot, you can
set the KEYSTROKE_ONLY variable to 1. The SOCKET_TRACKING and WRITE_
TRACKING variables also control what Sebek records. If the former is set to 1,
Sebek will collect information on socket usage. If the latter is enabled, Sebek
will track all write operations. This can be quite a lot of activity, so it’s rec-
ommended that you leave this variable at its default setting: -- disabled.

Once you’re satisfied with your configuration, set the TESTING variable to 0.
This will cause Sebek to hide itself once it’s loaded into the kernel.

Now, run the install script on your honeypot:

./sbk_install.sh
Installing Sebek:
 358887816.o installed successfully

The 358887816.o file contains the contents of sebek.ko. The new filename is
randomly generated at compile-time in order to obscure its presence from
intruders, who might try to detect its presence by examining kernel memory
directly. Alternatively, you can set the MODULE_NAME variable in sbk_install.sh
to a name of your choosing. Once Sebek is installed, be sure to remove the

Record Honeypot Activity #120

Chapter 11, Network Intrusion Detection | 409

HACK

archive and installation files. The presence of these files on a system is a
pretty clear indication that it is a honeypot and could tip off intruders.

Setting Up the Server
There are two ways to collect the data from a system running Sebek. The
simplest is to run the Sebek server, which will sniff for the information and
automatically extract it for you. If you prefer to collect the data manually,
you can use a sniffer and later use Sebek’s data extraction utility to pull the
information out of your packet dumps.

To install the server, download the source distribution from the project
page, unpack it, and go into the directory that it created. Then, run this
command:

$./configure && make

After compilation has finished, become root and run make install. This will
install sbk_extract, sbk_ks_log.pl, and sbk_upload.pl. To extract information
sent from a honeypot, use sbk_extract. You can run it in sniffer mode by
using the -i and -p options to specify which interface to listen on and which
destination port to look for, respectively.

If you want to process packets that have already been captured using a
packet capture tool, use the -f option to specify the location of the packet
dump file. sbk_extract also gives the option of running in a chroot() jail:
simply use the -c option and specify a directory to chroot() to. It’s recom-
mended that you do this when collecting data in the wild because of the
chance (however remote it may be) that an intruder could exploit an
unknown vulnerability in sbk_extract by sending specially crafted data.

Once you’ve extracted the data, you can use sbk_ks_log.pl to display the
attacker’s keystrokes. It’s also possible to monitor keystrokes in real time, by
piping the output of sbk_extract into sbk_ks_log.pl:

./sbk_extract -c /var/empty -i eth0 -p 65000 | ./sbk_ks_log.pl
 monitoring eth0: looking for UDP dst port 65000
192.168.0.43 2006/05/04 05:12:48 record 362 recieved 1 lost 0 (0.00
percent)
[2006-05-04 01:38:48 Host:192.168.0.43 UID:0 PID:9958 FD:0 INO:4 COM:bash
]#cat /etc/shadow
192.168.0.43 2006/05/04 05:13:50 record 539 recieved 177 lost 0 (0.00
percent)

Installing the Windows Client
Installing the Sebek client under Windows is much more straightforward,
especially when using the precompiled binaries (http://www.savidtech.com/
sebek/latest/), which walk you through the installation process via wizards.

410 | Chapter 11, Network Intrusion Detection

#120 Record Honeypot Activity
HACK

After you’ve downloaded and unpacked the .zip archive, run the included
Setup.exe program, which installs Sebek.sys. By default, the wizard will
install it into C:\Windows\system32\drivers, but the wizard allows you to
change this location.

Once Sebek.sys has been installed, you can configure it by launching
Configuration Wizard.exe. Here, you can specify all of the parameters that
were specified in sbk_install.sh (see “Installing the Linux Client”). In the first
step of this process, you’ll need to tell the wizard where you installed Sebek.
sys. Then, click the Next button to bring up the dialog shown in
Figure 11-14.

The fields in Figure 11-14 correspond to the DESTINATION_MAC, DESTINATION_
IP, and DESTINATION_PORT variables in sbk_install.sh. In the next step, you’ll
need to input a magic value. The configuration wizard thoughtfully includes
the ability to randomly generate this number for you; simply click the Ran-
dom Value button, as shown in Figure 11-15.

After you’ve done that, click Next and select the network adapter that will
be used to send data to your Sebek server.

So far, the entire configuration process has pretty much corresponded with
variables used in setting up Sebek under Linux. The only difference is the
next screen, shown in Figure 11-16.

Figure 11-14. Setting the MAC address, IP address, and port of your Sebek server

Record Honeypot Activity #120

Chapter 11, Network Intrusion Detection | 411

HACK

Figure 11-15. Generating a random magic value

Figure 11-16. Choosing the configuration program’s name

412 | Chapter 11, Network Intrusion Detection

#120 Record Honeypot Activity
HACK

What if you want to reconfigure Sebek at some point? You can run the con-
figuration wizard again, but what’s to stop intruders from using it to disable
Sebek after they’ve compromised the system? This screen helps you to make
it a lot harder for someone to do that by allowing only programs with a cer-
tain name to alter Sebek’s configuration. By default, this name is the first 12
characters of the filename you used to launch the current instance of the
configuration wizard (e.g., Configuration, if you didn’t rename it). At this
point, it’s best to use a random password generator to generate a filename.
Then, rename Configuration Wizard.exe to the randomly generated name
and keep it in a safe place (i.e., not on a system running Sebek).

After you’ve done this, click Next, and you’re finished. After you reboot the
system, it will begin sending data to your Sebek server.

Sebek also has an optional web interface called Walleye, which allows you
to analyze the collected data easily. In addition to logged keystrokes, the
web interface can extract files that have been uploaded to the honeypot.
Walleye is part of the Roo Honeywall CD-ROM distribution, a hardened
Fedora Core 3-based Linux distribution designed with honeynet data collec-
tion and analysis in mind. More information about it can be found at http://
www.honeynet.org/tools/cdrom/.

413

Chapter 12 C H A P T E R T W E L V E

Recovery and Response
Hacks 121–125

Incident recovery and response is a broad topic, and there are many opin-
ions on the proper methods to use and actions to take once an intrusion has
been discovered. Just as the debate rages on regarding vi versus emacs,
Linux versus Windows, and BSD versus everything else, there is much
debate in the computer forensics crowd on the “clean shutdown” versus
“pull the plug” argument. Whole books have been written on recovering
from and responding to incidents. There are many things to consider when
doing so, and the procedures you should use are far from well defined.

With this in mind, this chapter is not meant to be a guide on what to do
when you first discover an incident, but it does show you how to perform
tasks that you might decide to undertake in the event of a successful intru-
sion. By reading this chapter, you will learn how to properly create a filesys-
tem image to use for forensic investigation of an incident, methods for
verifying that files on your system haven’t been tampered with, and some
ideas on how to quickly track down the owner of an IP address.

H A C K

121
Image Mounted Filesystems Hack #121

Make a bit-for-bit copy of your system’s disk for forensic analysis.

Before you format and reinstall the operating system on a recently compro-
mised machine, you should take the time to make duplicates of all the data
stored on the system. Having an exact copy of the contents of the system is
not only invaluable for investigating a break-in, but might also be necessary
for pursuing any future legal actions. Before you begin, you should make
sure that your md5sum, dd, and fdisk binaries are not compromised.

But hang on a second. Once you start wondering about the integrity of your
system, where do you stop? Hidden processes could be running, waiting for
the root user to log in on the console and ready to remove all evidence of the

414 | Chapter 12, Recovery and Response

#121 Image Mounted Filesystems
HACK

break-in. Likewise, there could be scripts installed to run at shutdown to
clean up log entries and delete any incriminating files.

Once you’ve determined that it is likely that a machine has been compro-
mised, you might want to simply power down the machine (yes, just switch
it off!) and boot from alternate media, such as a Knoppix boot CD (http://
www.knoppix.org) or another hard drive that has a known good copy of the
operating system. That way, you can be absolutely sure that you are starting
the system from a known state, eliminating the possibility of hidden pro-
cesses that could taint your data before you can copy it.

The downside to this procedure is that it will destroy any evidence of run-
ning programs or data stored on a RAM disk. However, chances are good
that the intruder has installed other backdoors that will survive a reboot,
and these changes will most certainly be saved to the disk.

To make a bit-for-bit copy of your disk, use the dd command. But first, gen-
erate a checksum for the disk so that you can check your copy against the
disk contents, to ensure that it is indeed an exact copy.

To generate a checksum for the partition you want to image (in this exam-
ple, the second partition of the first IDE disk on a Linux system), run this
command:

md5sum /dev/hda2 > /tmp/hda2.md5

It’s wise to use other types of hashes as well, such as SHA1 or RMD160, if
you have commands to generate them. You can usually do this with the
sha1sum and rmd160 commands.

Now that that’s out of the way, it’s time to make an image of the disk:

dd if=/dev/hda of=/tmp/hda.img

Note that you will need enough space in /tmp to hold a copy of the entire
/dev/hda hard drive. This means that /tmp shouldn’t be a RAM disk and
should not be stored on /dev/hda. Write it to another hard disk altogether.

Why do you want to image the whole disk? If you image just a partition, it is
not an exact copy of what is on the disk. An attacker could store informa-
tion outside of the partition, and this information wouldn’t be copied if you
just imaged the partition itself. In any case, you can always reconstruct a
partition image as long as you have an image of the entire disk.

To create separate partition images, though, you’ll need some more informa-
tion. Run fdisk to get the offsets and sizes for each partition in sectors. To
get the sectors offsets for the partition, run this command:

fdisk -l -u /dev/hda
Disk /dev/hda: 4294 MB, 4294967296 bytes

Verify File Integrity and Find Compromised Files #122

Chapter 12, Recovery and Response | 415

HACK

255 heads, 63 sectors/track, 522 cylinders, total 8388608 sectors
Units = sectors of 1 * 512 = 512 bytes

 Device Boot Start End Blocks Id System
/dev/hda1 * 63 208844 104391 83 Linux
/dev/hda2 208845 7341704 3566430 83 Linux
/dev/hda3 7341705 8385929 522112+ 82 Linux swap

Be sure to save this information for future reference.

Now, create an image file for the second partition:

dd if=hda.img of=hda2.img bs=512 skip=208845 count=$[7341704-208845]
7132859+0 records in
7132859+0 records out

Note that the count parameter does some shell math for you: the size of the
partition is the location of the last block (7341704) minus the location of the
first block (208845). Be sure that the bs parameter matches the block size
reported by fdisk (usually 512, but it’s best to check it when you run fdisk).

Finally, generate a checksum of the image file and then compare it against
the original one you created:

md5sum hda2.img > /tmp/hda2.img.md5 && diff /tmp/hda2.md5 /tmp/hda2.img.
md5

The checksum for the image matches that of the actual partition exactly, so
you know you have a good copy. Now, you can rebuild the original machine
and look through the contents of the copy at your leisure.

H A C K

122
Verify File Integrity and Find Compromised Files Hack #122

Use Tripwire to alert you to compromised files or verify file integrity in the
event of a compromise.

One tool that can help you detect intrusions on a host and also ascertain
what happened after the fact is Tripwire (http://sourceforge.net/projects/
tripwire). Tripwire is part of a class of tools known as file integrity checkers,
which can detect the presence of important changed files on your systems.
This is desirable because intruders who have gained access to a system often
install what’s known as a rootkit [Hack #124], in an attempt to both cover their
tracks and maintain access to the system.

A rootkit usually accomplishes these goals by modifying key operating sys-
tem utilities such as ps, ls, and other programs that could give away the pres-
ence of a backdoor program. This usually means that the rootkit patches
these programs to not report that a certain process is active or that certain
files exist on the system. Attackers might also modify the system’s MD5
checksum program (e.g., md5 or md5sum) to report correct checksums for

416 | Chapter 12, Recovery and Response

#122 Verify File Integrity and Find Compromised Files
HACK

all the binaries that they have replaced. Since using MD5 checksums is usu-
ally one of the primary ways to verify whether a file has been modified, it
should be clear that another measure is sorely needed.

This is where Tripwire comes in handy. It stores a snapshot of your files in a
known state, so you can periodically compare the files against the snapshot
to discover discrepancies. With this snapshot, Tripwire can track changes in
a file’s size, inode number, permissions, or other attributes, such as the file’s
contents. To top it all off, Tripwire encrypts and signs its own files, so it can
detect if it has been compromised itself.

Tripwire is driven by two main components: a policy and a database. The
policy lists all the files and directories that Tripwire should snapshot, along
with rules for identifying violations (i.e., unexpected changes). For example,
a simple policy might treat any changes in /root, /sbin, /bin, and /lib as viola-
tions. The Tripwire database contains the snapshot itself, created by evaluat-
ing the policy against your filesystems. Once setup is complete, you can
compare filesystems against the snapshot at any time, and Tripwire will
report any discrepancies.

Along with the policy and database, Tripwire has configuration settings,
stored in a file that controls global aspects of its behavior. For example, the
configuration specifies the locations of the database, policy file, and tripwire
executable.

Tripwire uses two cryptographic keys to protect its files. The site key pro-
tects the policy file and the configuration file, and the local key protects the
database and generated reports. Multiple machines with the same policy and
configuration can share a site key, but each machine must have its own local
key for its database and reports.

One caveat with Tripwire is that its batch-oriented method of integrity
checking gives intruders a window of opportunity to modify a file after it has
been legitimately modified and before the next integrity check has been run.
Tripwire flags the modified file, but you’ll probably expect that (because you
know that the file has been modified) and dismiss the flag as indicating a
legitimate change to the file. For this reason, it is best to update your Trip-
wire snapshot as often as possible. Failing that, you should note the exact
time that you modify any file that is being monitored, so you can compare it
with the modification time that Tripwire reports.

Building and Installing Tripwire
Tripwire is available with the latest versions of Fedora and as a port on
FreeBSD. If you’re not running either of those, you’ll need to compile it

Verify File Integrity and Find Compromised Files #122

Chapter 12, Recovery and Response | 417

HACK

from source. To compile Tripwire, download the source package and
unpack it. Next, check whether you have a symbolic link from /usr/bin/
gmake to /usr/bin/make. If you don’t have such a link, create one.

Operating systems outside the world of Linux don’t always
come with GNU make, so Tripwire explicitly looks for gmake,
but this is simply called make on most Linux systems.

Another thing to check for is a full set of subdirectories in /usr/share/man.
Tripwire will need to place manpages in man4, man5, and man8. On sys-
tems where these are missing, the installer will create files named after those
directories, rather than creating directories and placing the appropriate files
within them. For instance, the installer will create a file called /usr/man/
man4 instead of a directory of the same name containing the appropriate
manual pages.

Change your working directory to the Tripwire source’s root directory (e.g.,
./tripwire-2.3.1-2), and read the README and INSTALL files. Both are brief
but important.

Finally, change to the source tree’s src directory (e.g., ./tripwire-2.3.1-2/src)
and make any necessary changes to the variable definitions in src/Makefile.
Be sure to verify that the appropriate SYSPRE definition is uncommented
(SYSPRE = i686-pc-linux, SYSPRE = sparc-linux, etc.).

Now, you’re ready to compile. While still in Tripwire’s src directory, enter
this command:

$ make release

After compilation has finished, run these commands:

$ cd ..
$ cp ./install/install.cfg .
$ cp ./intall/install.sh

Open install.cfg in your favorite text editor to fine-tune the configuration
variables. While the default paths are probably fine, you should at the very
least examine the Mail Options section, which is where you initially tell
Tripwire how to route its logs. Note that you can change these settings later.

If you set TWMAILMETHOD=SENDMAIL and specify a value for TWMAILPROGRAM, Trip-
wire will use the specified local mailer (sendmail by default) to deliver its
reports to a local user or group. If instead you set TWMAILMETHOD=SMTP and
specify values for TWSMTPHOST and TWSMTPPORT, Tripwire will mail its reports
to an external email address via the specified SMTP server and port.

418 | Chapter 12, Recovery and Response

#122 Verify File Integrity and Find Compromised Files
HACK

Once you are done editing install.cfg, it’s time to install Tripwire. While still
in the root directory of the Tripwire source distribution, enter the following
command:

sh ./install.sh

You will be prompted for site and local passwords: the site password pro-
tects Tripwire’s configuration and policy files, whereas the local password
protects Tripwire’s databases and reports. This allows the use of a single
policy across multiple hosts, to centralize control of Tripwire policies but
distribute responsibility for database management and report generation.

If you do not plan to use Tripwire across multiple hosts with shared poli-
cies, there’s nothing wrong with setting the site and local Tripwire pass-
words on a given system to the same string. In either case, choose a strong
passphrase that contains some combination of upper- and lowercase letters,
punctuation (which can include whitespace), and numerals.

Configuring Tripwire
Installing Tripwire (whether via binary package or source build) creates a
default configuration file: /etc/tripwire/tw.cfg. You can’t edit this file because
it’s an encrypted binary, but for your convenience, a clear-text version of it,
twcfg.txt, should also reside in /etc/tripwire. If it does not, you can create the
text version with this command:

twadmin --print-cfgfile > /etc/tripwire/twcfg.txt

You can edit this file to make changes to the settings you used when install-
ing Tripwire, and you can change the location where Tripwire will look for
its database by setting the DBFILE variable. One interesting use of this vari-
able is to set it to a directory within the /mnt directory hierarchy. Then, after
the database has been created you can copy it to a CD-ROM and remount it
there whenever you need to perform integrity checks.

After you are done editing the configuration file, encrypt it again by running
this command:

twadmin --create-cfgfile --site-keyfile ./site.key twcfg.txt

You should also remove the twcfg.txt file.

You can then initialize Tripwire’s database by running this command:

tripwire --init

Since this uses the default policy file that Tripwire installed, you will proba-
bly see errors related to files and directories not being found. These errors
are nonfatal, and the database will finish initializing. If you want to get rid of

Verify File Integrity and Find Compromised Files #122

Chapter 12, Recovery and Response | 419

HACK

these errors, you can edit the policy and remove the files that were reported
as missing.

First, you’ll need to decrypt the policy file into an editable plain-text format:

twadmin --print-polfile > twpol.txt

Then, comment out any files that were reported as missing. You should also
look through the file and determine whether any files that you would like to
catalog are absent. For instance, you will probably want to monitor all SUID
files on your system [Hack #2]. Tripwire’s policy-file language can allow for far
more complex constructs than simply listing one file per line; read the
twpolicy(4) manpage for more information if you’d like to use some of these
features.

After you’ve updated your policy, you’ll also need to update Tripwire’s
database:

tripwire --update-policy twpol.txt

Day-to-Day Use
To perform checks against your database, run this command:

tripwire --check

This prints a report to the screen and leaves a copy of it in /var/lib/tripwire/
report. If you want Tripwire to automatically email the report to the config-
ured recipients, add --email-report to the end of the command. You can
view the reports by running twprint:

twprint --print-report --twrfile \
/var/lib/tripwire/report/colossus-20040102-205528.twr

Finally, to reconcile changes that Tripwire reports with its database, you can
run a command similar to this one:

tripwire --update --twrfile \
/var/lib/tripwire/report/colossus-20040102-205528.twr

You can and should schedule Tripwire to run its checks as regularly as pos-
sible. In addition to keeping your database in a safe place, such as on a CD-
ROM, you’ll want to make backup copies of your configuration, policy, and
keys. Otherwise, you will not be able to perform an integrity check in the
event that someone (malicious or not) deletes them.

See Also
• twpolicy(4)

• The section “Using Tripwire” in Linux Server Security, Second Edition,
by Michael D. Bauer (O’Reilly)

420 | Chapter 12, Recovery and Response

#123 Find Compromised Packages
HACK

H A C K

123
Find Compromised Packages Hack #123

Verify operating system managed files with your system’s package
management system.

So, you’ve had a compromise and you need to figure out which files (if any)
the intruder modified, but you didn’t install Tripwire? Well, all is not lost if
your distribution uses a package management system.

While not as powerful as Tripwire, package management systems can be
useful for finding to what degree a system has been compromised. They usu-
ally keep MD5 signatures for all the files the package has installed. You can
use this functionality to check the packages on a system against its signature
database.

Using RPM
To verify a single package on a system that uses RPM, run this command:

rpm -V package

If the intruder modified any binaries, it’s likely that the ps command was
one of them. Use these commands to check its signature:

which ps
/bin/ps
rpm -V `rpm -qf /bin/ps`
S.5....T /bin/ps

Here, the S, 5, and T show us that the file’s size, checksum, and modifica-
tion time have changed since it was installed—not good at all. Note that
only files that do not match the information contained in the package data-
base will result in output.

To verify all packages on the system, use the usual rpm option that specifies
all packages, -a:

rpm -Va
S.5....T /bin/ps
S.5....T c /etc/pam.d/system-auth
S.5....T c /etc/security/access.conf
S.5....T c /etc/pam.d/login
S.5....T c /etc/rc.d/rc.local
S.5....T c /etc/sysconfig/pcmcia
.......T c /etc/libuser.conf
S.5....T c /etc/ldap.conf
.......T c /etc/mail/sendmail.cf
S.5....T c /etc/sysconfig/rhn/up2date-uuid
.......T c /etc/yp.conf
S.5....T /usr/bin/md5sum
.......T c /etc/krb5.conf

Find Compromised Packages #123

Chapter 12, Recovery and Response | 421

HACK

There are other options you can use to limit what gets checked on each file.
Some of the more useful ones are -nouser, -nogroup, -nomtime, and -nomode,
which can eliminate a lot of the output that results from configuration files
that you’ve modified.

Note that you’ll probably want to redirect the output to a file, unless you
narrow down what gets checked by using the command-line options. Run-
ning rpm -Va without any options can result in quite a lot of output from
modified configuration files and such.

This is all well and good, but it ignores the possibility that an intruder has
compromised key system binaries and might have compromised the RPM
database as well. If this is the case, you can still use RPM, but you’ll need to
obtain the file the package was installed from in order to verify the installed
files against it.

The worst-case scenario is that the rpm binary itself has been compromised.
It can be difficult to be certain of this unless you boot from alternate media,
as mentioned in “Image Mounted Filesystems” [Hack #121]. If this is the case,
you should locate a safe rpm binary to use for verifying the packages.

First, find the name of the package that owns the file:

rpm -qf filename

Then, locate that package from your distribution media, or download it
from the Internet. After doing so, verify the installed files against what’s in
the package using this command:

rpm -Vp package file

Using Other Package Managers
Under systems that use Debian’s packaging system, you can use the debsums
command to achieve mostly the same results. Run this to verify all packages
installed on the system:

debsums -ac

Or, if you want to verify them against packages stored on distribution
media, you can use the following command instead:

debsums -cagp path_to_packages

Under FreeBSD, you can use the -g option with pkg_info to verify the check-
sums of files that have been installed via a package:

$ pkg_info -g jpeg-6b_1
Information for jpeg-6b_1:

Mismatched Checksums:

422 | Chapter 12, Recovery and Response

#124 Scan for Rootkits
HACK

/usr/local/bin/cjpeg fails the original MD5 checksum
/usr/local/bin/djpeg fails the original MD5 checksum
/usr/local/bin/jpegtran fails the original MD5 checksum
/usr/local/bin/rdjpgcom fails the original MD5 checksum
/usr/local/bin/wrjpgcom fails the original MD5 checksum
/usr/local/lib/libjpeg.a fails the original MD5 checksum
/usr/local/lib/libjpeg.so.9 fails the original MD5 checksum

To do this for all packages, run a command like this:

$ pkg_info -g `pkg_info | awk '{print $1}'`

Package managers can be used for quite a number of useful things, includ-
ing verifying the integrity of system binaries. However, you shouldn’t rely on
them for this purpose. If possible, you should use a tool such as Tripwire
[Hack #122] or AIDE (http://sourceforge.net/projects/aide).

H A C K

124
Scan for Rootkits Hack #124

Use chkrootkit to determine the extent of a compromise.

If you suspect that you have a compromised system, it is a good idea to
check for a rootkit, which is a collection of programs that intruders often
install after they have compromised the root account of a system. These pro-
grams help the intruders clean up their tracks and provide access back into
the system.

Rootkits sometimes leave processes running to allow the intruder to return
easily and without the system administrator’s knowledge. This means that
the rootkit needs to modify some of the system’s binaries (such as ps, ls, and
netstat) in order to not give away the backdoor processes that the intruder
has put in place. Unfortunately, there are so many different rootkits that it
would be far too time-consuming to learn the intricacies of each one and
look for them manually. Thankfully, scripts like chkrootkit (http://www.
chkrootkit.org) will do the job for you automatically.

The main chkrootkit script calls various C programs to perform all of the
tests it carries out. In addition to detecting over 50 different rootkits,
chkrootkit detects network interfaces that are in promiscuous mode, altered
lastlog files, and altered wtmp files. These files contain times and dates when
users have logged on and off the system, so if they have been altered, this is
evidence of an intruder. chkrootkit also performs tests to detect kernel-mod-
ule-based rootkits.

It isn’t a good idea to install chkrootkit on your system and simply run it
periodically, since an attacker might simply find the installation and change
it so that it doesn’t detect his presence. A better idea is to compile it and put
it on removable or read-only media. To compile chkrootkit, download the

Scan for Rootkits #124

Chapter 12, Recovery and Response | 423

HACK

source package and extract it. Then, go into the directory that it created and
run the make sense command.

Running chkrootkit is as simple as typing ./chkrootkit from the directory in
which it was built. When you do this, it will print each test that it performs
and the result of the test:

./chkrootkit
ROOTDIR is `/'
Checking `amd'... not found
Checking `basename'... not infected
Checking `biff'... not found
Checking `chfn'... not infected
Checking `chsh'... not infected
Checking `cron'... not infected
Checking `date'... not infected
Checking `du'... not infected
Checking `dirname'... not infected
Checking `echo'... not infected
Checking `egrep'... not infected
Checking `env'... not infected
Checking `find'... not infected
Checking `fingerd'... not found
Checking `gpm'... not infected
Checking `grep'... not infected
Checking `hdparm'... not infected
Checking `su'... not infected
...

That’s not very interesting, because the machine hasn’t been infected (yet).
In contrast, here’s some output from a machine that has been infected by a
simple rootkit that replaces system binaries with versions that have been
modified to hide the intruder’s presence:

ROOTDIR is `/'
Checking `amd'... not found
Checking `basename'... not infected
Checking `biff'... not found
Checking `chfn'... not infected
Checking `chsh'... not infected
Checking `cron'... not infected
Checking `date'... not infected
Checking `du'... not infected
Checking `dirname'... not infected
Checking `echo'... not infected
Checking `egrep'... not infected
Checking `env'... not infected
Checking `find'... not infected
Checking `fingerd'... not found
Checking `gpm'... not infected
Checking `grep'... not infected
Checking `hdparm'... not infected

424 | Chapter 12, Recovery and Response

#124 Scan for Rootkits
HACK

Checking `su'... not infected
Checking `ifconfig'... INFECTED
Checking `inetd'... not tested
Checking `inetdconf'... not found
Checking `identd'... not found
Checking `init'... not infected
...

As you can see, the ifconfig command has been replaced. This is because
it’s possible for a system administrator to easily see if a sniffer is active by
running the ifconfig command and checking to see if it shows the network
interface in promiscuous mode.

More sophisticated rootkits insert code into the kernel to subvert key sys-
tem calls in order to hide an intruder’s activities. If you see something simi-
lar to the following, it means a rootkit that uses loadable kernel modules
(LKMs) to do this has been installed on the system:

Checking `lkm'... You have 1 process hidden for readdir command
You have 1 process hidden for ps command
chkproc: Warning: Possible LKM Trojan installed

chkrootkit can also be run on disks mounted in another machine; just spec-
ify the mount point for the partition with the -r option, like this:

./chkrootkit -r /mnt/hda2_image

Also, since chkrootkit depends on several system binaries, you might want to
verify them before running the script (using the Tripwire [Hack #122] or RPM
[Hack #123] methods). These binaries are awk, cut, egrep, find, head, id, ls,
netstat, ps, strings, sed, and uname. If you have known good backup copies
of these binaries, you can specify the path to them instead by using the -p
option. For instance, if you copied them to a CD-ROM and then mounted it
under /mnt/cdrom, use a command like this:

./chkrootkit -p /mnt/cdrom

You can also add multiple paths by separating each one with a colon (:).

Alternatively, instead of maintaining a separate copy of each of these bina-
ries, you can simply keep a statically compiled copy of BusyBox (http://www.
busybox.net) handy. Intended for embedded systems, BusyBox can perform
the functions of over 200 common binaries, and it does so using a very tiny
binary with symlinks. A floppy, CD, or USB keychain (with the read-only
switch enabled) with chkrootkit and a static BusyBox installed can be a
quick and handy tool for checking the integrity of your system.

Find the Owner of a Network #125

Chapter 12, Recovery and Response | 425

HACK

H A C K

125
Find the Owner of a Network Hack #125

Track down network contacts using WHOIS databases.

Looking through your IDS logs, you’ve seen some strange traffic coming
from another network across the Internet. When you look up the IP address
in DNS, it resolves as something like dhcp-103.badguydomain.com. Whom
do you contact to help track down the person who sent this traffic?

Getting DNS Information
You’re probably already aware that you can use the whois command to find
out contact information for owners of Internet domain names. If you
haven’t used whois, it’s as simple as typing, well, “whois”:

$ whois badguydomain.com
Registrant:
 Dewey Cheatum

 Registered through: GoDaddy.com
 Domain Name: BADGUYDOMAIN.COM

 Domain servers in listed order:
 PARK13.SECURESERVER.NET
 PARK14.SECURESERVER.NET
 For complete domain details go to:
 http://whois.godaddy.com

Unfortunately, this whois entry isn’t as helpful as it might be. Normally,
administrative and technical contacts are listed, complete with a phone
number and email and snail mail addresses. Evidently, godaddy.com has a
policy of releasing this information only through its web interface, appar-
ently to cut down on spam harvesters. But if the registrant’s name is listed as
“Dewey Cheatum,” how accurate do you think the rest of this domain
record is likely to be? Although domain registrants are “required” to give
legitimate information when setting up domains, I can tell you from experi-
ence that using whois in this way is actually only a great way to track down
honest people.

Since this approach doesn’t get you anywhere, what other options do you
have? Well, you can use the whois command again, this time using it to
query the number registry for the IP address block containing the offending
address.

Getting Netblock Information
Number registries are entities with which owners of large blocks of IP
addresses must register, and they are split up according to geographic

426 | Chapter 12, Recovery and Response

#125 Find the Owner of a Network
HACK

region. The main difficulty is picking the correct registry to query. The
WHOIS server for the American Registry for Internet Numbers (ARIN) is
generally the best bet; it tells you the correct registry to query if the IP
address is not found in its own database.

With that in mind, let’s try out a query using the offending IP address:

whois -h whois.arin.net 208.201.239.103
[Querying whois.arin.net]
[whois.arin.net]
Final results obtained from whois.arin.net.
Results:
UUNET Technologies, Inc. UUNET1996B (NET-208-192-0-0-1)
 208.192.0.0 - 208.255.255.255
SONIC.NET, INC. UU-208-201-224 (NET-208-201-224-0-1)
 208.201.224.0 - 208.201.255.255

ARIN WHOIS database, last updated 2004-01-18 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

Our query returned multiple results, which will happen sometimes when an
owner of a larger IP block has delegated a sub-block to another party. In this
case, UUNET has delegated a sub-block to Sonic.net.

Now we’ll run a query with Sonic.net’s handle:

whois -h whois.arin.net NET-208-201-224-0-1
Checking server [whois.arin.net]
Results:

OrgName: SONIC.NET, INC.
OrgID: SNIC
Address: 2260 Apollo Way
City: Santa Rosa
StateProv: CA
PostalCode: 95407
Country: US

ReferralServer: rwhois://whois.sonic.net:43

NetRange: 208.201.224.0 - 208.201.255.255
CIDR: 208.201.224.0/19
NetName: UU-208-201-224
NetHandle: NET-208-201-224-0-1
Parent: NET-208-192-0-0-1
NetType: Reallocated
Comment:
RegDate: 1996-09-12
Updated: 2002-08-23

Find the Owner of a Network #125

Chapter 12, Recovery and Response | 427

HACK

OrgTechHandle: NETWO144-ARIN
OrgTechName: Network Operations
OrgTechPhone: +1-707-522-1000
OrgTechEmail: noc@sonic.net

ARIN WHOIS database, last updated 2004-01-18 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

From the output, you can see that we have a contact listed with a phone
number and email address. This information is most likely for the ISP that
serves the miscreant who is causing the trouble. Now, you have a solid con-
tact who should know exactly who is behind badguydomain.com. You can
let them know about the suspicious traffic you’re seeing and get the situa-
tion resolved.

Incidentally, you might have trouble using whois if you are querying some of
the new top-level domains (TLDs), such as .us, .biz, .info, and so on. One
great shortcut for automatically finding the proper WHOIS server is to use
the GeekTools Whois Proxy (http://geektools.com/tools.php). It automati-
cally forwards your request to the proper WHOIS server, based on the TLD
you are requesting. I specify an alias such as this in my .profile to always use
the GeekTools proxy:

alias whois='whois -h whois.geektools.com'

Now, when I run whois from the command line, I don’t need to remember
the address of a single WHOIS server. The folks at GeekTools have a bunch
of other nifty tools to make sysadmin tasks easier, too. Check them out at
http://geektools.com.

—Rob Flickenger

429

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
< > (direction operator), in Snort

rules, 373
* flag matching in Snort rules, 375
| character

enclosing hexadecimal vales in Snort
rules, 374

logical OR operator, 44
searching on multiple variables, 395

! (logical NOT) operator, 44
applied to IP address or CIDR range

in Snort rules, 372
matching flags in Snort rules, 375

+ operator, TCP flag matching in Snort
rules, 375

Numbers
802.1X, 240

configuring your AP, 243

A
A (address) records, 175
ac command (process accounting), 272
Accept header, logging requests

without, 395
accept option, SnortSam, 381
access point (AP), configuring for

802.1X with PEAP, 243
access.conf file (pam_access

module), 43

ACLs (access control lists), 5–8
grsecurity, 29, 34
setting, modifying, and removing, 7
Windows event logs, securing, 73

actions, Snort rules, 371
defining custom, 372

activate and dynamic actions, Snort
rules, 371

Active Directory environment
configuration information for your

CA, 218
using Group Policy to configure

Automatic Updates, 63–66
active responses (OSSEC HIDS), 279
Address Resolution Protocol (see ARP)
address space layouts, randomization

with grsecurity, 32
address spoofing

preventing for internal addresses with
PacketFilter, 126

(see also ARP; spoofing)
administrative roles, delegating, 11
ADODB (PHP code library), 354, 364
agents, OSSEC HIDS

adding, 275–277
installing Windows agent, 277

AIDE, 422
alerts

generated by Spade, 385
generating to test OSSEC HIDS, 277
IDS sensor, tracking, 363
Snort NIDS, 352, 390

tracking, 353

430 | Index

American Registry for Internet Numbers
(ARIN), 426

Analysis Console for Intrusion
Databases, 353

analysis programs for logs, 135
anomaly-based IDS, 348, 384
anonymity

SSH connections, using Tor, 95
web browsing, using Tor and

Privoxy, 91–94
AP (access point), configuring for

802.1X with PEAP, 243
Apache web server

CA certificate, installing, 213
configuring to listen on specific

interface, 17
installing with SSL and

suEXEC, 164–169
Apache 1.x, 165–168
Apache 2.x, 168

mod_security, 392
protecting from intrusions, 392–396
verifying signature with GnuPG, 13

append-only (file attribute), 9
preventing removal of, 10

applications, restricting with
grsecurity, 33–35

ARIN (American Registry for Internet
Numbers), 426

ARP (Address Resolution Protocol)
cache poisoning, 185
creating static ARP table, 186–188
detecting ARP spoofing, 184–186
SniffDet, testing, 225–227
spoof attacks

in switched network, 223
preventing with SSH session

timeouts, 149
statelessness, 184

arp command, 186
finding system MAC address, 155

arpd, 402
Arpwatch, 185

detecting ARP flooding and ARP
table poisoning, 223

asymmetric encryption, 81
attacks

ARP cache poisoning, 185
ARP flooding and ARP table

poisoning, 223
format-string, 28

phishing, guarding against with
SpoofGuard, 100–104

preventing with mod_security
filtering rules, 394

SSH brute-force attacks, 188–190
stack-smashing, 26
tracking attackers with DShield, 227

auditing
enabling on Windows, 69–71
mod_security features for, 396
user activity with process

accounting, 272
authenticated gateway,

creating, 147–149
authentication

fine-grained, for wireless
networks, 240

MySQL source, using with
proftpd, 23

one-time passwords (OTPs),
using, 49–52

PAM, controlling login
access, 41–46

password, disabling to thwart
brute-force SSH attack, 189

RADIUS server, 241
server for captive portal, 244–246
using x.509 certificates

IPsec connection on
OpenBSD, 312

IPsec connection under
FreeBSD, 308

authenticator, 241
allowing access to RADIUS

server, 242
authpf shell (OpenBSD), 147–149

rule templates, 147
automated probes looking for vulnerable

PCs, 129
Automatic Updates, configuring using

Group Policy, 63–66
customizing policies for users or

computers, 65
preventing manual updates by

users, 65
AutoRPM (system update package), 56
Autoruns, 71
AutoShareWks Registry key, 78
Avaya Labs, LibSafe technology, 27
AWStats, 135

Index | 431

B
Back Orifice Trojan, 129

ports used by, 137
backdoors

checking for, 3
installed during rootkit attacks, 422
listening services that check for, 15

backing up Windows Event logs, 75–77
bandwidth usage

graphing, 291
tracking for machine with firewall

rules, 296
Barnyard

compiling and installing for
Sguil, 362

logging Snort alert and log
events, 362

using with Snort, 389–392
configuring Barnyard, 390
configuring Snort, 390
installing Barnyard, 389
testing Barnyard, 392

BASE (Basic Analysis and Security
Engine), 353–356

configuring, 354
archive database, 355

database tables, creating, 355
logging to database used with

BASE, 390
PHP and required libraries, 354

bash shell
restricted, 53
setting up in chroot()

environment, 20
binaries, disallowing execution of, 2

on Linux, 3
setuid, cautions with sudo utility, 12
SUID or SGID bit, 4

BIND, securing, 169–172
disabling recursion on publicly facing

name server, 171
restricting zone transfers, 171
running in sandboxed

environment, 169
bindip option, SnortSam, 382
bit-for-bit copy of system disks, 414
BleedingSnort.com, 387

block-policy option (PacketFilter), 124
modifying for specific rules, 126

Blowfish, 99
Boolean operators, 44
booting compromised machine from an

alternate media, 414
broadband Internet connections, attack

staging with, 128
browsers

Internet Explorer, listing files opened
by, 67

Mozilla, testing squid proxy, 320
securing and accelerating with squid

proxy over SSH, 320
toolbars monitoring web

browsing, 72
brute-force attacks, 188–190

conducting with Nessus, 200
BSDs

authpf shell on OpenBSD, 147–149
firewalling with

PacketFilter, 122–128
IPsec connections under

FreeBSD, 306–309
IPsec connections under

OpenBSD, 309–314
netstat program, listing listening

ports, 16
OPIE under FreeBSD, 50
securelevels, 10
S/Key under OpenBSD, 51
starting syslogd, 251
systrace, restricting system calls

with, 36
verifying packages under

FreeBSD, 421
buffer overflow attacks

0x90 in, 374
avoiding by limiting range of bytes in

request strings, 394
kernel-based, preventing with

grsecurity, 32
stack-based, preventing, 26

BugTraq mailing list, 234
BusyBox, performing functions of

system binaries, 424

432 | Index

C
C library calls supported by Unix, 36
cache poisoning (ARP), 185
canary, using to prevent stack-smashing

attacks, 26
capabilities model (Linux),

modifying, 10
captive portal, 244–249

authentication server, 244–246
gateway, installing, 246–249

CAs (Certificate Authorities), 209–212
backing up/restoring with Certificate

Services, 214–221
creating your own, 210–212

signing certificates, 211
distributing your CA to clients, 213
well-known, 209
(see also certificates)

Cassandra (vulnerability tracking), 235
CERT (Computer Emergency Response

Team), 234
Certificate Import Wizard, 84
certificates

Apache SSL installation, 166
Certificate Services

backing up CA, 214–218
decommissioning old CA, 221
restoring CA to different

server, 219–221
restoring CA to working

server, 218
creating and using with

OpenVPN, 341
creating for IMAP and POP, 159
creating for Sguil, 359
creating to use with Sendmail, 161
creating your own CA, 209–212
distributing your CA to clients, 213
EAP/TLS and PEAP, 241
EFS

backing up for recovery
agents, 86

backing up for users, 82
generating for Nessus, 197
IPsec connection on OpenBSD, 312
ntop tool, 294
self-signed, creating for stunnel, 325
x.509

authentication for IPsec
connection, OpenBSD, 312

authentication on IPsec
connection, FreeBSD, 308

certificate-signing request, 211
Certification Authority Backup

Wizard, 216–218
Certification Authority Restore

Wizard, 218
certpatch tool, 312
cfg_file directive (Nagios), 291
CGI interface, running Perl scripts and

PHP programs through, 169
CGI scripts, enabling for user

directories, 167
chains (Netfilter), 118
Check Point firewall, using with

SnortSam, 382
checkpassword program, 164
check_ssh plug-in (Nagios), 285
checksums

MD5, maintained by RPM for
installed files, 420

modification of system MD5
program by attackers, 415

system disk, generating for, 414
chkrootkit, 422–424

compiling and storing on removable
read-only media, 422

output from infected machine, 423
running, 423
verifying system binaries for, 424

chmod command, 5
chroot() environment, 19

availability of other programs
within, 20

BIND, running in, 169
configuring for rssh, 47
enhanced security using

grsecurity, 31
MySQL, running in, 176
running sbk_extract, 409
services running in, 3
UID 0, risks of, 19

chroot command, 20
CIDR notation, 140

for network addresses, 351
ranges of IP addresses for Snort

rules, 372
ClamAV, 229–233

configuring clamd, 231
using with Snort to detect

viruses, 397–400

Index | 433

Classless Inter-Domain Routing (see
CIDR notation)

clearing Windows Event logs, 75–77
clocks, keeping in sync on your

systems, 207–209
code examples, using, xx
command line, Mac OS X, 113
commands

logging use by users, 272
OSSEC HIDS active responses, 280
running directly through web

interface, 286
compiler-based solutions to

stack-smashing attacks, 26
compression

LZO, use with OpenVPN, 340
SSH, built-in, 347

Computer Emergency Response Team
(CERT), 234

connect time, analyzing for users on
system, 272

connect.c program, 95
contactgroups.cfg file (Nagios), 288
contacts.cfg file (Nagios), 288
content option, Snort rules, 374, 379
content type for file upload, 395
cookies

preventing SQL injection, 395
use in cross-site scripting

attacks, 395
copying system disks, bit-for-bit, 414
CORE FORCE firewall, 139–147

configuration wizard, 139–143
installing, 139
manual configuration, 143–147

Courier MTA, TLS support, 162
crackers, xv, 129
cross-site scripting (XSS) attacks, 394
cryptographic signature verification,

automating, 13
cryptography

EFS, backing up, 80–86
encrypted tunnel, VTun, 329
encrypting email in Mac OS

X, 112–115
encrypting email with

Thunderbird, 107–112
encrypting IMAP and POP with

SSL, 158–160
encrypting temp folder on

Windows, 79

encrypting traffic with SSH, 316
encryption algorithms, 80
file encryption on Windows with

TrueCrypt, 96–100
keys for protection of Tripwire

files, 416
opportunistic encryption with

Openswan, 314
public keys, security concerns

with, 319
SFS (Self-certifying File

System), 179–182
SSL encryption, 324
TLS encryption, setting up for

SMTP, 161
TLS-enabled SMTP, using with

Qmail, 163
Cscript.exe, 77
curses-based GUI, configuring kernel to

enable grsecurity, 29

D
daemon option, SnortSam, 382
daemontools, 172

starting tinydns, 174
data size for packets (Snort, dsize

option), 374
databases

Barnyard output to, 391
limited Barnyard support, 389
MySQL

creating for Sguil, 357
NIDS, tracking alerts with

BASE, 353
round-robin database (RRD), 291
Snort, configuring to use, 352
Tripwire database, 416, 419

dd command, 414
Debian-based Linux

packaging system, verifying
packages, 421

system upgrades, 57
debsums command, 421
debugging, logging information for, 253
default shares (Windows networks), 62
defaultkey option, SnortSam, 382
denial of service (DoS) attacks,

preventing on BIND name
server, 171

deny policy (PacketFilter), 126

434 | Index

depth and offset options, Snort
rules, 374

der and pem formats (CA
certificates), 213

destination entries
(syslog-ng.conf), 267, 268

device nodes
in chroot() environment, 3
created from other programs in

chroot() environment, 20
for daemons in sandbox

environment, 22
preventing creation of with

grsecurity, 31
direction to scan, specifying for

ClamAV, 398
directories

dividing into read-only and
read-write, 2

loose permissions, scanning for, 5
distance between domains, 104
Djbdns, 172–176

installing, 173
setting up authoritative zone, 174

dmesg utility, preventing use by nonroot
users, 31

DNS (Domain Name System)
finding domain name owners, 425
HTTP proxy difficulties with, 321
minimal and secure server, setting

up, 172–176
Netfilter rules for, 119
PacketFilter rules for DNS

server, 127
queries, making through Tor, 96
restricting network clients to internal

server, 150
setting server for OpenWRT, 239
setting up BIND as secondary

server, 170
SOCKS 4 problems with, 323
testing with SniffDet, 227
TXT records, using in encrypted

connections, 314
domain name, scanning remote

Windows systems by, 62
domain registrants, finding, 425
domains, top-level, querying, 427
dontblock option, SnortSam, 382

DoS (denial of service) attacks,
preventing on BIND name
server, 171

Dovecot, 159
downloadonly plug-in (yum), 57
drop option (PacketFilter), 124
drop, sdrop, and reject rules, Snort_

inline, 379
dropped packets, 134
DShield, 227
dsize option, Snort rules, 374
Dsniff, 185
dynamic and activate actions, Snort

rules, 371

E
EAP (Extensible Authentication

Protocol), 241
EAP/TLS, 241
Protected EAP (PEAP), 241

echo action, swatch, 265
effective UID (EUID), changing to 0 in

chroot() environment, 19
EFS (Encrypting File System), backing

up, 80–86
backing up encrypted data and EFS

keys, 82–84
backing up recovery agent keys, 85
restoring EFS keys, 84

efsinfo utility, 85
egress filtering, 149

crafting rules, 150
preventing users from bypassing by

blocking Tor, 156–157
email

encrypting IMAP and POP with
SSL, 158–160

encrypting in Mac OS X, 112–115
encrypting with

Thunderbird, 107–112
restricting network clients to use of

internal mail server, 151
spoofed, 104
TLS-enabled SMTP, using with

Qmail, 163
Windows Firewall, problems

with, 136
Encapsulated Security Payload

(ESP), 305

Index | 435

encryption algorithms
DSA, 318
RSA, 318
TrueCrypt, 98

Enigmail (Thunderbird), 107–111
downloading, 107
installing, 108
public/private key pair, 109–111

generating new key pair, 111
importing existing key pair, 110

ESP (Encapsulated Security
Payload), 305

/etc/rc.conf file, starting jails
automatically at boot, 22

/etc/services file, 16
Ethereal protocol analyzer, 297

device name for monitoring,
obtaining, 299

remote capture device, using
with, 300

Sguil, use with, 357
Ethernet addresses, translation of IP

addresses to, 184
Ethernet sniffers, detecting

remotely, 221–227
installing SniffDet, 224
shared mediums, 222
switched environments, 222–224

Ettercap, 185
Event IDs, machine reboots after system

updates, 65
Event logs (Windows), 254

backing up and clearing, 75–77
mapping entries to syslog, 259
securing, 73

Event Viewer, 73
saving and clearing Event logs, 75

EventLog to Syslog, 254, 261
exec action, swatch, 265
execution of binaries, disallowing, 2

on Linux, 3
Exim MTA, TLS support, 162
exporting EFS keys and certificates

recovery agent, 86
user, 83

exports file (NFS), 180
Extended Log (.log) format, 135
Extensible Authentication Protocol (see

EAP)
external commands, configuring for

Nagios, 286

F
FAT filesystem, TrueCrypt volumes, 98
fdisk command, 414
Fedora Linux, configuring

AutoRPM, 56
FEK (File Encryption Key), 81
FIFO

logging debug information to, 253
restrictions on (grsecurity), 30

file attributes, protecting logs with, 9
file command, 4
File Encryption Key (FEK), 81
file uploads, filter rule that rejects, 395
files

disabling default sharing on
Windows, 78

encrypting on Windows with
TrueCrypt, 96–100

open
listing with lsof, 17
listing with owning processes on

Windows, 66–68
verifying integrity and finding

compromised files, 415–419
filesystems

controlling access to, 32
Encrypting File System (EFS), 80–86
image mounted, 413
JFFS2, 239
memory-based, using with

ClamAV, 399
NFS, security problems, 178
securing mount points, 2
SFS (Self-certifying File

System), 178–182
filter entries (syslog-ng.conf), 268, 269
filtering

mod_security features for, 394
PF (PacketFilter) rules for, 126
setting policy for Netfilter, 118

find command
files ending in .rej, locating, 29
scanning directories for loose

permissions, 5
scanning for SUID and SGID

binaries, 4
firewall rules, nmap and, 15
firewalling the SSH daemon, 189

436 | Index

firewalls
collecting statistics with

ruleset, 295–297
configuring to allow IKE connections

on FreeBSD, 307
contributing logs to DShield, 227
CORE FORCE, 139–147
egress filtering, 149

preventing users bypassing by
blocking Tor access, 156–157

HTTP tunneling and, 327
Netfilter, 117–122

extending with IP
Personality, 190–194

integrated with Snort, 377
MAC filtering, 154–155

PacketFilter (PF), 122–128
creating authenticated

gateway, 147–149
testing, 151–154
using SnortSam with, 380–384
Windows Firewall, 128

problems with email, 136
flags option, Snort rules, 374
format-string attacks, 28
FORWARD chain, 118
forwarding traffic with SSH, 316
FPort tool (for Windows), 68
FQDN (fully qualified domain

name), 312
fragment reassembly (PacketFilter), 124,

125
FreeBSD

enabling ACLs, 6
(see also BSDs)

FreeBSD Handbook, 122
FreeRADIUS, 241
fsread and fswrite aliases (systrace), 38
FTester (firewall tester), 151
ftp daemon (proftpd), using with

MySQL authentication
source, 23

FTP, problems with Windows
firewall, 130

Full-Disclosure mailing list, 234
fully qualified domain name

(FQDN), 312

G
gateways

creating authenticated
gateway, 147–149

default gateway for OpenWRT, 239
installing for WiFiDog captive

portal, 246–249
SPD file for clients, IPsec connection

on FreeBSD, 307
GCC compilers

-fomit-frame-pointer flag, LibSafe
and, 28

preventing stack-smashing
attacks, 26–28

trampoline functions, PaX and, 33
GeekTools Whois Proxy, 427
getfacl command, 8
gmake, 417
GMP (GNU Multiple Precision math

library), 179
GNU make, 417
GnuPG

querying key servers for key ID and
downloading result, 14

verifying signature of software, 13
for Windows, 107

GPG, 112
creating public/private key pair, 113
installing, 113

gpg executable, 109
GPGMail, 114
gradm utility, 29

restricting specific applications, 33
graphical analysis console (Sguil), 357
graphics rendering packages (PHP), 354
graphing network trends, 291–293
Group Policy

configuring Automatic
Updates, 63–66

customized policies for different
users or computers, 65

preventing manual updates by
users, 65

specifying additional recovery
agents, 82

groups
privileged, GIDs for, 166
resource limits, enforcing, 54

Index | 437

specifying for scripts executed within
virtual host, 168

specifying for use of sudo, 12
group-writable permissions for

directories, 5
grsecurity, 28–33

configuring kernel options, 30
High security, 32
Low security, 30
Medium security, 31

PaX code, enabling nonexecutable
memory pages, 32

restricting applications with, 33–35
GTK-based GUI for grsecurity, 29
guest user, limiting resources for, 55

H
hackers, xv
Handle tool (for Windows), 67
hashing algorithms

PwdHash, 105
TrueCrypt encryption keys, 98

hexadecimal values
searching packets for with Snort, 374
URL encoding with, 394

HFNetChk tool (for Windows), 59–63
checking update status of local

system, 60
scanning remote machines, 61
storing scan results, 62

hidden volumes, 97
honeyd, 400, 400–406

changing host MAC addresses
for, 405

configuring, 401
running, 403
running Nmap on IP addresses

handled by, 404
services emulated by, attempts to

access, 406
honeypots, 348, 400

recording activity on, 407–412
$HOST macro (syslog-ng), 271
hostgroups.cfg file (Nagios), 288
hosts, ntop statistics for, 295
hosts.cfg file (Nagios), 286
HTML, use in cross-site scripting

attacks, 394

HTTP
monitoring service with Nagios, 290
squid proxy over SSH, running, 320
tunnel connections inside, 327

HTTP headers
HTTP_ACCEPT header, logging

requests without, 395
HTTP_USER_AGENT and HTTP_

HOST, requiring in
requests, 395

HTTP proxy, 93
configuring web browser to use

Privoxy, 94
httpd.conf file, limiting range of bytes in

request strings, 394
httptunnel

downloading and compiling, 327
web site, 327

I
IBM’s ProPolice patches for GCC, 26
ICMP (Internet Control Message

Protocol)
disabling redirects on Linux, 303
types and codes, 153

id command, 167
identd daemon

running under grsecurity, 32
systrace policy for, 40

IDN spoofing, 100
IDS (see intrusion detection; NIDS)
ifconfig command

changing MAC address of Ethernet
card used for sniffing, 223

finding MAC address of an
interface, 155

grsecurity ACLs and, 34
replaced by rootkit, 424

IKE (Internet Key Exchange)
negotiations

FreeBSD, controlling with
racoon, 306

Linux, controlling with pluto, 302
images (web page), checking with

SpoofGuard, 104
IMAP

encrypting with SSL, 158–160
Netfilter rules for, 119

438 | Index

IMAP+SSL access, Netfilter rules
for, 119

incident recovery and
response, 413–427

finding compromised
packages, 420–422

finding the owner of a
network, 425–427

image mounted filesystems, 413
rootkits, scanning for, 422–424
verifying file integrity and finding

compromised files, 415–419
inetd

inetd.conf entry for SWAT, 326
systrace policy, generating for, 39

initial sequence number (ISN), 127
INPUT chain, 118
instant messaging programs, problems

with Windows Firewall, 130
interfaces

collecting statistics on with
PacketFilter, 124

finding MAC address, 155
promiscuous mode, 222

Internet
building trustworthy networks

on, 301
domain name, finding owner of, 425

Internet Explorer
listing files opened by, 67
SpoofGuard extension, 101–104

Internet Information Services (IIS),
corrupted metabase, 218

Internet Key Exchange (see IKE
negotiations)

intrusion attempts, tracking with
Windows Firewall, 134

intrusion detection, 348–412
detecting and preventing web

application
intrusions, 392–396

detecting anomalous behavior, 384
distributed stealth sensor

network, 388
firewall attackers with

SnortSam, 380–384
IDS, types of, 348
network intrusion detection systems

(NIDS), 348

recording honeypot
activity, 407–412

scanning network traffic for
viruses, 397–400

sensor network, managing, 363–370
simulating network of vulnerable

hosts, 400–406
Snort NIDS, 349–353

automatic rule updates, 385–388
monitoring with Sguil, 356–363
tracking alerts, 353
writing your own rules, 370–376

Snort_inline, preventing and
containing
intrusions, 377–380

web application intrusions, 392
inventorying your network, 194
IP addresses

blocking after failed login
attempts, 190

delegated by block owners to other
parties, 426

direction, specifying for Snort
rules, 373

for honeyd responses, 401
nonroutable RFC 1918 address,

handling with
PacketFilter, 126

owners of large blocks of, 425
pairing with MAC addresses,

monitoring, 185
querying number registry for address

blocks, 425
remote system, resolving to MAC

address, 155
scanning ranges of with nmap, 195
Snort variables for, 351
SnortSam, specifying for, 381
source and destination, in Snort

rules, 372
specifying for Sebek server, 410
spoofing of, preventing with egress

filtering, 151
tables of, PacketFilter, 123
translation to hardware Ethernet

addresses, 184
IP forwarding, disabling on Linux, 303
IP IDs, randomizing for protection, 125
IP Personality, 190–194

Index | 439

IP protocols, blocking on
Windows, 138

IP queue support, Linux kernel, 377
ipkg update command, 239
IPsec connections

configuring under
FreeBSD, 306–309

configuring under Linux, 301–306
configuring under

OpenBSD, 309–314
opportunistic encryption with

Openswan, 314
ipsec.conf file, 304
iptables command, 118

allowing a particular MAC
address, 154

bandwidth used by particular
machine, tracking, 296

configuring kernel to send packets to
IP queues, 380

extending with IP Personality, 190
Netfilter rules, constructing, 119
-P (policy) switch, 118
patching for IP Personality, 191
SnortSam, using with, 383
stateful inspection by Netfilter, 120

isakmpd (IPsec key-management
daemon), 309

certificate authentication, 312–314
password authentication, 310–312

ISN (initial sequence number), 127

J
jail(), 19, 21
jail command, 22
JavaScript, use in cross-site scripting

attacks, 394
JFFS2 filesystem, 239

K
kernel

FreeBSD, customizing, 122
FreeBSD, enabling IPsec, 306
IP queue support, 377
locking down with grsecurity, 28–33

KerneL IP Security (KLIPS), 302
kernel-module-based rootkits,

chkrootkit tests for, 422
key pairs (see public/private key pair)

key servers, 14
keyloggers, lack of protection from using

Windows Firewall, 139
keyring, specifying for key IDs, 14
keystrokes, monitoring in real time, 409
KLIPS (KerneL IP Security), 302
Knoppix boot CD, 414
ksh shell, restricted, 53

L
lan_dns NVRAM variable, 239
lastcomm command (process

accounting), 272
lastlog files (altered), detection by

chkrootkit, 422
lcap utility, 10
ldd command, 20
libdnet, 401
libevent, 92, 401
libgcc package, 247
libipq library (Netfilter), 377
libnet packet injection library, 224, 350,

378
libpcap, 401

Snort and, 349
libraries

C library calls supported by Unix, 36
GMP (GNU Multiple Precision math

library), 179
prerequisite for honeyd, 401

LibSafe
preventing stack-based buffer

overflows, 27
protection against format-string

attacks, 28
web site, 26

limit thresholds (Snort rules), 376
limits.conf file (pam_limits module), 54
Linksys, WRT54G line of wireless

routers, 237
Linux

binary formats used by, 4
bypassing noexec option for

filesystem mount, 3
capabilities model, modifying, 10
enabling ACLs, 6
/etc/pam.d contents on RedHat

Linux system, 44
firewalling with Netfilter, 117–122

440 | Index

Linux (continued)
grsecurity kernel patch, 28
IPsec connections,

configuring, 301–306
kernel support for IP queue, 377
LibSafe technology, 27
listening ports and their owning

processes, listing, 15
Sebek honeypot monitoring

module, 407
starting syslogd, 251
system update package

(AutoRPM), 56
tunneling with VTun and SSH, 329

list open files (lsof) utility, 17
listening services, checking for, 15–17

listing ports and owning processes
with sockstat, 17

lsof utility, 17
netstat program, 15
netstat program, using on BSD, 16

loadable kernel modules (LKMs), use by
rootkit, 424

log entries (syslog-ng.conf), 268, 269
log files, protecting from tampering, 9
log levels for syslog facilities, 269
logging, 250–281

aggregating logs from remote
sites, 266–271

Barnyard, used with Snort, 390
centrally monitoring security of

servers, 273–281
changing maximum log file size (on

Windows), 73
contributing firewall logs to

DShield, 227
disabling on Privoxy, 93
filesystem mounting with

grsecurity, 32
firewall-testing script, 153
managing Event logs on

Windows, 75–77
monitoring logs automatically with

swatch, 263–266
named (BIND), 170
parsing logs for failed login

attempts, 190
securing Windows event logs, 73
Snort NIDS, 352, 362, 390
SnortSam, 382

SPADE IDS, 385
summarizing logs automatically, 262
synchronizing server clocks for easier

log analysis, 207–209
syslog

filtering information into separate
files, 252

integrating Windows
into, 254–261

running central server, 251
syslogd, 254

tinydns program, 173
Tripwire, 417
user activity with process

accounting, 272
Windows Firewall, 134–136

login access, controlling with
PAM, 41–46

login keys for SSH, 318, 346
logon event auditing (Windows), 70
logwatch tool, 262
loopback interface

keeping unfiltered
(PacketFilter), 126

removing filtering, 119
ls -l command, 3
lsof (list open files) utility, 17
LZO compression, 340

M
MAC (Media Access Control)

addresses, 184
changing for hosts when running

honeyd, 405
filtering with Netfilter, 154–155
pairing with IP addresses,

monitoring, 185
specifying for Sebek server, 410
switched Ethernet

networks, 222–224
Mac OS X

encrypting email, 112–115
creating GPG key pair, 113
installing GPG, 113
installing GPGMail, 114
sending/receiving encrypted

email, 115
file command, running on a

binary, 4

Index | 441

HTTP proxies, built-in support
for, 321

SOCKS 5 proxies, support for, 324
TUN/TAP driver, 340

macros (pf.conf file), 122
mail action, swatch, 265
Mail Options (Tripwire), 417
mail server, Netfilter rules for, 119
mail transfer agents (MTAs)

setting up to use TLS, 161
support for TLS, 162

Mail.app, 112
PGP Preferences window, 114

MailDir mailboxes, 159
mailing lists for tracking network

vulnerabilities, 234
make, 417
manage_agents program, 277
man-in-the-middle attacks

ARP spoofing, 184
tools for performing, 185

manpages, Tripwire, 417
mark functionality of syslog, 254
masks, ACL, 6
math library, GMP, 179
maximum log size

changing Windows behavior upon
reaching, 75

increasing on Windows, 73
mbox mailboxes, 159, 160
MD5 checksums

maintained by RPM for installed
files, 420

modification of system program by
attackers, 415

system binary, compromise of, 413
Media Access Control (see MAC

addresses)
memory

address space protections,
grsecurity, 28

filesystem (memory-based), using
with ClamAV, 399

nonexecutable pages, 32
tuning use by PacketFilter, 124
virtual memory management

(VMM), 87
Microsoft Baseline Security

Analyzer, 59–63
Microsoft Exchange server, 136

Microsoft Knowledge Base articles, 60
Microsoft Network Security Hotfix

Checker, 63
Microsoft Windows (see Windows)
mknod or mount program in chroot

environment, 20
mod_perl and mod_php, incompatibility

with suEXEC, 169
mod_security (Apache), 392–396

auditing features, 396
creating filters, 394
filtering features, 394
POST method requests,

scanning, 394
request normalization features, 393
URL encoding validation, 394

mod_sql, 24
mod_ssl, 165
modules (Perl), for use with Ftester, 152
monitor port, 185
mounting filesystems

in chroot() environment, 20
logging of with grsecurity, 32
securing mount points, 2

Mozilla Foundation,
Thunderbird, 107–112

Mozilla, testing squid proxy in, 320
msg option, Snort rules, 373
MX record, 175
MySQL

authentication source, using with
proftpd, 23

Barnyard, using with, 389
configuring BASE to connect to

database, 354
creating database for Sguil, 357
listening on TCP socket,

disabling, 18
securing, 176–178

chroot()-ed environment, 176
disabling data loading from local

files, 178
separate my.conf files for utilities

and server, 178
Snort NIDS, using with, 352
SnortCenter database, 364

mysqltcl package, 358

442 | Index

N
Nagios, 283–291

adding hosts to monitor, 286
configuration files, 284, 285

including in main
nagios.conf, 291

nagios.cfg, 286
contacts and contact groups,

creating, 288
host groups, creating, 288
installing, 283
plug-ins, downloading and

installing, 284
services to monitor, configuring, 289
time periods, defining, 290

name server, attacker scans for
vulnerable versions of
BIND, 171

named (BIND), 169
named policy (systrace), 37
nas package, 240, 243
NAT (network address translation)

provided by Internet gateway, 330
randomizing IP IDs to prevent

counting of machines on
network, 125

National Vulnerability Database, 235
Nessus security scanner, 197–206

brute-force logins to services, 200
clients, 198
generating certificate for, 197
hosts, scanning, 202
logging into services being

tested, 200
options for port scans, 201
reports on scans, 203
versions 2.x, 197
versions 3.x, 203

automatic updates of
plug-ins, 204

configuring general
settings, 204–206

reports on scans, 206
vulnerability types, selecting, 198

net share command, 78
NetBIOS name, specifying for remote

system, 61
Netcat, 400

Netfilter, 117–122
chains, 118
extending with IP

Personality, 190–194
integrated with Snort, 377
iptables command, 118
libipq library, 377
MAC filtering, 154–155
restricting network clients to use of

internal DNS server, 150
restricting network clients to use of

internal email server, 151
rule examples, 119
rule order, 120
saving all rules, 121
setting filtering policy, 118
stateful packet-inspection

engine, 120
web site for downloads, 191

NetPacket Perl module, 152
Net::PcapUtils Perl module, 152
Net::RawIP Perl module, 152
Net::SSLeay Perl module, 368
netstat program, 15

BSD version, 16
network address translation (see NAT)
network intrusion detection systems (see

intrusion detection; NIDS)
network monitoring, 282–300

collecting statistics with firewall
rules, 295–297

contact groups for hosts, 288
contacts for notification

messages, 288
graphing trends, 291–293
hosts, 286
real-time statistics with

ntop, 293–295
remote monitoring with

rpcapd, 297–300
services, 289
services and resources, using

Nagios, 283–291
time periods for notification

messages, 290
network owner, finding, 425–427
network security checker for

Windows, 63
network segment, scanning under

Windows, 62

Index | 443

Network Time Protocol (see NTP)
NFS (Network File System)

exports file, creating for SFS, 180
security problems, 178

NIDS (network intrusion detection
system), 348

anomaly-based, 384
detecting and preventing web

application
intrusions, 392–396

scanning for viruses with Snort and
ClamAv, 397–400

Snort, 349–353
automatic rule updates, 385–388
firewalling attackers with

SnortSam, 380–384
increasing performance with

Barnyard, 389–392
managing sensor

network, 363–370
monitoring with Sguil, 356–363
preventing and containing

intrusions with Snort_
inline, 377–380

tracking alerts, 353–356
writing your own rules, 370–376

types of, 348
Nmap

fooling by emulating another
operating system, 193

inventorying your network, 194–196
XML output, 196

running before setting up IP
Personality, 193

running on IP addresses handled by
honeyd, 404

Nmap::Parser Perl module, 196
nobody account (Apache), 166
nodev, noexec, and nosuid flags

(mount), 2
nonroutable RFC 1918 IP

addresses, 123
NOPASSWD: flag (sudo), 12
notification feature (email), problems

with Windows Firewall, 136
notification_period directives

(Nagios), 290
NS records, 174
NTFS filesystem, TrueCrypt

volumes, 98

ntop tool, 293–295
creating user and group, 294
host’s statistics, displaying, 295
self-signed certificate, 294

NTP (Network Time
Protocol), 207–209

correcting clock frequency drift for a
machine, 208

list of publicly accessible time
servers, 207

resolving to multiple time
servers, 208

NTsyslog, 254
configuration program, using, 258
downloading and installing, 254
user account, setting up, 255–258
Windows 2003 and, 261

number registries for IP address
blocks, 425

NVRAM variables
configuring AP for OpenWRT, 243
configuring OpenWRT router,

information on, 240
lan_dns, 239
lan_gateway, 239

O
offset and depth options, Snort

rules, 374
Oinkmaster, automatically updating

Snort rules, 385–388
one-time passwords (see OTPs)
onion routing, 92
Open Source Vulnerability Database

(OSVDB), 234
OpenPGP standard, 107
OpenSSL, 92, 209, 339

installing for Apache, 166
use of libraries by OpenVPN, 339

Openswan, 301–306
configuring, 304
opportunistic encryption with, 302,

314
resources for further

information, 305
OpenVPN, 339

compiling and installing, 340
LZO compression, using, 340

444 | Index

OpenVPN (continued)
tunneling with host system virtual

TUN or TAP device, 339
web site, 339

OpenWall patch, 28
OpenWRT, 237

DNS server, setting, 239
downloading WRT54G firmware

image, 237
NVRAM variables, configuring, 243
updating packages available for

installation, 239
WiFiDog gateway package, 246
WPA-PSK or 802.1X, 240

operating system detection
fooling remote OS detection

software, 190–194
Nmap, using for, 195

operating systems
emulation by honeyd, 401
MAC addresses with group bit

set, 225
OPIE (One-time Passwords in

Everything), 50
opportunistic encryption with

Openswan, 302, 314
options entry (syslog-ng.conf), 267
origins (access.conf file), 44
OS fingerprinting, 128
OSSEC HIDS, 274–281

active responses, 279
adding agents, 275–277
configuration, 278
installation, 274
installing Windows agent, 277

OSVDB (Open Source Vulnerability
Database), 234

OTPs (one-time passwords), 49–52
OPIE under FreeBSD, 50
S/Key under OpenBSD, 51

outbound network traffic, filtering, 149
OUTPUT chain, 118
owner of a network, finding, 425–427

P
p0f (OS fingerprinting tool), 128
packages (compromised),

finding, 420–422

packet content, inspecting with Snort
rules, 374

packet sniffers
examining SSH connection tunneled

through HTTP, 328
rpcapd remote capture device, using

with, 297
WinDump, 298

PacketFilter (see PF)
paging file (Windows), clearing at

shutdown, 87
Palm OS devices, OTP generator, 51
PAM (pluggable authentication

modules), 41–46
pam_access module, 42

limiting access by origin, 42
pam_limits module, 54
pam_stack module, 42
pam_time module, 42

restricting access by time, 44–46
partitions (disk), imaging, 414
passwd program, SUID or SGID bit, 3
passwords

brute-force SSH attacks, 188–190
checking with SpoofGuard, 104
checkpassword program, 164
command execution without

password, 12
generating with PwdHash, 105
IPsec connection on

OpenBSD, 310–312
nonexpiring, checking on

Windows, 88
one-time (OTPs), using for

authentication, 49–52
patch notifications, 234
patch utility, applying grsecurity patch

to kernel, 29
patching system security holes,

automating, 55–57
PaX (grsecurity), 32
paxctl utility, 32
Pcap-formatted files, creating with

Barnyard, 391
PCRE, 349, 401
PEAP (Protected EAP), 241
PEAR::Image_Graph PHP module, 354
pem and der formats (CA

certificates), 213

Index | 445

Perl
FTester scripts, 151
modules necessary for swatch

tool, 264
Nmap::Parser module, 196
Oinkmaster script for automatic

Snort rule updates, 385–388
scripts, running through CGI

interface, 169
sensor agents for SnortCenter, 368

permissions
access.conf file entry, 43
creating flexible hierarchies with

POSIX ACLs, 5–8
Personal Information Exchange (.pfx)

file, 83
importing EFS certificate and private

key, 84
PF (PacketFilter), 122–128

authenticated gateway,
creating, 147–149

blocking access to Tor directory
servers, 156

collecting statistics with ruleset, 296
configuring, 122

filtering rules, 126
global options, 123
macros, 122
tables of IP addresses, 123
traffic normalization rules, 125

enabling and loading
configuration, 128

limiting connections to sshd, 189
rate limit for stateful rule, 190
using SnortSam, 383
Windows port (see CORE FORCE

firewall)
pf.conf file, 148
pfctl command, 122
PGP Preferences window in

Mail.app, 114
phishing attacks

guarding against with
SpoofGuard, 100–104

mitigating results with
PwdHash, 105

PHP, 244
libraries for SnortCenter, 364
programs, running through CGI

interface, 169
using with BASE, 354

PIDs (process IDs)
listing for listening services, 15
named (BIND), 170
stunnel PID file, 326

PilOTP, 51
ping program

finding system MAC address, 155
monitoring statistics from web

server, 290
pipe action, swatch, 265
PIX firewall, using with SnortSam, 383
PKI (public-key infrastructure), 219

use by EAP/TLS, 241
pluggable authentication modules (see

PAM)
pluto, 302
poisoning the ARP cache, 185
policies, systrace, 36

automated generation of, 39
policy (Tripwire), 416, 418
POP, encrypting with SSL, 158–160
POP3

encrypting and forwarding traffic
with SSH, 316

Netfilter rules for, 119
port forwarding

honeyd, using with, 406
httptunnel, using, 328
SSH, using as SOCKS proxy, 322
SSH, using for, 316
stunnel, using, 325

port security (Ethernet switches), 224
ports

changing for SSH daemon, 189
closing down manually, 137
commonly used numbers, checking

with SpoofGuard, 104
monitor port, 185
open, listing on Windows, 68
scanning for listening services, 15–17
SnortSam port option, 382
specifying for packets in Snort

rules, 372
specifying for scanning by

ClamAV, 398
specifying for Sebek server, 410
TCP port 80, 119
tracking attackers with DShield, 227
well-known, complete list, 137

portscan and stream4 preprocessors,
Snort, 361

446 | Index

POST method requests, scanning by
mod_security, 394

Postfix, TLS support, 162
PostgreSQL, 244

Barnyard support of, 389
preprocessors, Snort

clamav, 398
portscan and stream4, 361

pre-shared key (PSK) varieties,
WPA, 236

priorities (logging), 252
configuring for syslog-ng, 269

privacy
insuring in remote accesses to shell

accounts, 95
protecting on the Internet, 91–94

Privoxy, 93
configuring for Tor, 93

probes for vulnerable PCs, 129
/proc restrictions with grsecurity, 32
process accounting

lastcomm command, 272
summarizing with sa command, 273

processes
increasing security with

grsecurity, 28
listing for listening services, 15
listing for open files on

Windows, 66–68
listing for running services on

Windows, 68
proftpd, using with MySQL

authentication source, 23
promiscuous mode (network

interfaces), 222
detecting to prevent intrusion, 224
detection with chkrootkit, 422
monitoring with rpcapd, 297
SniffDet ARP test, 225

propagation of viruses, blocking with
Snort and ClamAV, 398

Protected EAP (PEAP), 241
protocol analyzers, 293

graphical, 297
(see also Ethereal)

protocols
blocking, 137
for Snort rule application, 370, 372
stateless, 184

proxies
httptunnel connections through web

proxy, 328
SSH connections, 95
SSH, using as SOCKS proxy, 322
using with honeyd, 406
whois proxy, geektools.com, 427

ProxyCommand option (SSH), 95
pseudo-TTY interfaces, PPP daemons

operating over, 345
psk.txt file (racoon), 307
PTR records, 175
public-key cryptography, 81

OpenPGP standard, 107
Temp folder on Windows, 80

public-key infrastructure (PKI), 219
use by EAP/TLS, 241

public/private key pair
CA (Certificate Authority), 211
creating for GPG, 113
creating for Sendmail, 161
EAP/TLS and PEAP, 241
EFS, 81

backing up for each user, 82
backing up recovery agent

keys, 85
exporting private key for

storage, 83
reinstalling, 84
restoring, 84

generating for use with SSH
server, 318

Nessus, 198
providing for Enigmail, 109–111
security concerns with public

keys, 319
SFS server, 180, 181
SSL, creating for Sguil, 359
used for authentication, 189

PwdHash, 105
Remote PwdHash, 106

Python, 401

Q
Qmail

TLS support, 162
TLS-enabled SMTP, using, 163

QT-based GUI for grsecurity, 29

Index | 447

R
race conditions in /tmp

preventing exploitation of, 30
prevention with grsecurity, 28

racoon program, 306–309
client configuration, 307
configuring on the client, 306
gateway configuration, 307
starting at boot, 307
using x.509 certificates for

authentication, 308
RADIUS server

IP address, substituting for NVRAM
variable, 243

setting up FreeRADIUS, 241
use by 802.1X networks, 241

ranges of IP addresses, scanning with
nmap, 195

raw I/O, removing ability for, 10
rc.conf file, starting jails automatically at

boot, 22
Readline, 401
records, DNS, 174–176
recovery agents (EFS on Windows), 81

backing up keys, 85
restoring EFS keys, 84

recovery (see incident recovery and
response)

Red Hat Linux, AutoRPM, 56
referrer field, checking with

SpoofGuard, 104
Registry

disabling default shares, 78
Memory Management key,

editing, 88
regular expressions for swatch tool, 265
reject rule, Snort_inline, 379
Remote Access Dial-In User Service (see

RADIUS server)
remote machines (Windows), scanning

for system updates, 61
remote procedure calls (RPCs), email

notifications sent by, 136
Remote PwdHash, 106
replace rule option, Snort_inline, 379
request normalization features, mod_

security, 393
resolving hostnames to IP addresses with

DNS queries through Tor, 96
resource limits, enforcing, 54

response (see incident recovery and
response)

responses, active (OSSEC HIDS), 279
return option (PacketFilter), 124
roaming user profiles, backing up EFS

certificates and key pairs, 82
Roo Honeywall CD-ROM

distribution, 412
root access, selectively granting, 11
root CA, 214
root privileges

administrative role delegation
and, 11

effective UID (EUID) of 0, 19
Linux, modifying capabilities for, 10
services not needing, 21

root user, running nmap as, 195
root-exploitable programs, checking

for, 3
rootkits, 415

scanning for, 422–424
code inserted into kernel, 424

round-robin database (see RRDtool)
rpcapd, remote monitoring

with, 297–300
RPCs (remote procedure calls), email

notifications sent by, 136
RPM

AutoRPM for system updates, 56
finding compromised packages, 420

RRDtool, 291–293
hourly graphs of data, 292
multiple servers on a single

graph, 293
RSS feeds, tracking network

vulnerabilities, 234
rssh, 46–49

configuring to use chroot(), 47
supported services, 49

rules
CORE FORCE, 144
egress filtering, 150
Netfilter

examples, 119
ordering, 120
saving all, 121

PacketFilter
DNS server, 127
filtering rules, 126
scrub rules, 125
traffic normalization, 125

448 | Index

rules (continued)
Snort, 351, 352

RULE_PATH variable, 352
updating automatically, 385–388
writing your own, 370–376

ruletype keyword, 372

S
sa command (process accounting), 273
Samba, SWAT configuration tool, 326
sandboxed environments

BIND, running in, 169
restricting services with, 19–23

jail(), FreeBSD, 21
security enhancement with

grsecurity, 31
setting up for rssh, 48

SANS Institute, DShield project, 227
SCP, 46–49

copying binaries and their
libraries, 48

enabling in rssh.conf, 47
script kiddies, 129
scrub rules (PacketFilter), 125
searching packets, Snort rule

options, 374
Sebek (honeypot monitoring

package), 407–412
installing Linux client, 407
installing Windows client, 409
setting up the server, 409

SecFilter keyword, 394
SecFilterSelective keyword, 394
secret-key encryption, 81
sectors offsets for a partition, 414
Secunia, RSS feed on

vulnerabilities, 234
securelevels (BSD systems), 10
security advisories, 234
security holes (system), automating

patching of, 55–57
security policy

auditing on Windows, 69
setting up for IPsec connections on

FreeBSD, 307
Security Policy Database (see SPD)
security scanner (Nessus), 197–206
SecurityFocus, 234
self-signed certificates, 209–212

ntop, 294

Sendmail
scanning mail for viruses with

ClamAV, 233
setting up to use TLS, 161

sensor_id (BASE), 391
sensors, IDS

distributed stealth sensor
network, 388

managing sensor network with
SnortCenter, 363–370

setting up for Sguil, 361
Sguil sensor_agent.tcl script, 362

server clocks, keeping
synchronized, 207–209

services
common port numbers, 16
emulated by honeyd, 401, 406
encrypting IMAP and POP with

SSL, 158–160
internal, restricting network users

to, 150
most commonly attacked, tracking

with DShield, 227
preventing from binding to an

interface, 17
restricting with sandboxed

environments, 19–23
jail(), FreeBSD, 21

running, listing on Windows, 68
scanning for vulnerabilities with

Nessus, 197–206
services.cfg file (Nagios), 289
session cookies, attacks using, 395
session-timeout values,

PacketFilter, 124
seteuid(), 21
setfacl command, 7
setkey utility, 307
setuid(), 21
SFS (Self-certifying File

System), 179–182
building and installing, 179
code, most recent version, 179
key pair, creating and registering with

sfskey command, 181
setting up server, 180
user and group for SFS

daemons, 179
sfscd (SFS client daemon), 180

Index | 449

SFTP, 46–49
copying binaries and their

libraries, 48
enabling in rssh.conf, 47
rssh connection, testing, 49

Sguil, 356–363
client and server, testing, 359
compiling and installing

Barnyard, 362
components of, 357
configuring sguild, 358
creating a MySQL database, 357
database tables, creating, 357
log_packets.sh script, setting up, 362
sensor agent script, setting up, 362
sensors, setting up, 361
setting up server, required Tcl

packages, 358
SSL, encrypting traffic between GUI

and server, 358
shared-medium Ethernet networks,

sniffers and, 222
shares (default), disabling on

Windows, 78
shell scripts

mysqld_safe, 177
resolving IP address to MAC

address, 155
SUID or SGID bits on, 4

shells
authpf (OpenBSD), 147–149
exploit with shell code against SSH

daemon, 371
insuring privacy in remote access to

accounts, 95
restricted, 52–54
running inside a jail, 22

signatures
signature-based IDS, 348
thresholding Snort rules by ID, 375

Simple WATCHer (see swatch)
single-use passwords (see OTPs)
S/Key, 51
skipinterval option, SnortSam, 382
SMTP (TLS-enabled)

setting up, 161
using with Qmail, 163

SniffDet, 224
testing DNS, 227
testing with ARP queries, 225–227

sniffers
Ethernet sniffers, detecting

remotely, 221–227
installing SniffDet, 224
shared mediums, 222
switched environments, 222–224

SNMP interface statistics, 292
snmpget utility, 291
Snort NIDS, 349–353

Barnyard, using to increase
performance, 389–392

configuring Snort, 390
configuring, 351

database, 352
database support, enabling output

plug-in, 352
preprocessors, 352
rule signatures, 352

downloading and installing, 349
firewalling with SnortSam, 380, 382,

383
configuring SnortSam, 381–384
installing SnortSam, 380

flexible response, 350
managing sensor network, 363–370
monitoring in real time with

Sguil, 356–363
preventing and containing intrusions

with Snort_inline, 377–380
new rules, 379

sending alerts to a database, 350
testing in sniffer mode, 350
tracking alerts, 353–356
updating rules

automatically, 385–388
using with ClamAV to detect

viruses, 397–400
writing your own rules, 370–376

actions, 371
inspecting package content, 374
IP addresses of packets, 372
matching TCP flags, 374
messages, human-readable, 373
options, 373
ports, 372
Snort rule documentation, 376
specifying protocols, 372
suppression, 376
thresholding, 375

450 | Index

SnortCenter, 363–370
admin account information,

editing, 366
MySQL database, 365
sensor agent, adding to main

management console, 369
sensor agents, setting up, 368
setting up, 364
setting up console, 364

SOA records, 174
sockets (open), listing with lsof

utility, 17
sockstat command, 16
software authenticity, checking, 13
Software Update Services (SUS), 64
Solaris

Sebek honeypot monitoring
module, 407

starting syslogd, 252
TUN/TAP driver, 340

source entries (syslog-ng.conf), 267, 268
Sourcefire VRT Certified Rules, 387
SourceForge patches page for IP

Personality project, 190
SPADE IDS, 384

alerts, 385
SPD (Security Policy Database)

FreeBSD, IPsec connections, 307
gateway.spd files for clients, 307

SpoofGuard, 101–104
how it works, 103
installing, 102

spoofing
ARP spoof attacks

combatting with static ARP
table, 186–188

detecting, 184–186
preventing with SSH session

timeouts, 149
IDN spoofing, 100
preventing IP spoofing with egress

filtering, 151
preventing with FilterPacket, 126

spyware, detecting and removing on
Windows, 71

SQL database for MySQL
authentication, 24

SQL-injection attacks, 395

SSH
authpf shell and, 149
brute-force attacks, protecting

against, 188–190
firewalling SSH daemon, 189

check_ssh plug-in, Nagios, 285
-D switch, 322
exploit launched against daemon,

monitoring, 371
forwarding and encrypting

traffic, 316
keys, automating client logins, 318,

319
login keys, generating for, 346
PPP, using with to create secure VPN

tunnel, 345
SOCKS proxy, using as, 322
tunneling connection over HTTP

with httptunnel, 328
tunneling through Tor, 95
VTun, using over, 333

SSL
certificates

creating your own CA, 209–212
encrypting IMAP and POP, 158–160
installing Apache with, 164–169

Apache 1.x, 165–168
Apache 2.x, 168

OpenVPN, use by, 339
Sguil, using with, 358, 359

stacks
buffer overflows based on, 26

prevention with grsecurity, 28
PAM modules for, 42

startup
enumerating automatically executed

programs on Windows, 71
running commands out of system rc

files, 12
startx command, -nolisten tcp

option, 19
stateful packet inspection

(Netfilter), 120
stateless protocol, 184
states, setting number for PF, 124
statistical monitor IDS, 348
Statistical Packet Anomaly Detection

Engine (SPADE), 384
statistics (network), collecting with

firewall rules, 295

Index | 451

stealth mode, running IDS sensors
in, 388

sticky bit set on directories, scanning
for, 5

stratum (NTP server), 207
stream4 preprocessor, enabling for

Snort, 361
strings, searching packets for with

Snort, 374
stunnel, 159, 324

configuration file, stunnel.conf, 325
forwarding local port to remote

port, 325
su utility, 12
subnets, specifying for Snort, 351
successful connections, 134
sudo utility, 11
suEXEC (Apache), 165

enabling and configuring, 166
enabling in Apache 2.x, 168
incompatibility with mod_perl and

mod_php, 169
SUID binaries

LibSafe and, 28
setting up rssh to use chroot(), 47

SUID bit, disabling, 2
SUID files, monitoring on your

system, 419
SUID wrapper program, used by

Apache, 166
supplicant, 241
suppression (Snort rules), 376
SUS (Software Update Services), 64
swapping, 87
SWAT (Samba’s web-based

configuration tool), 326
swatch (log file monitor), 263–266

configuring, 264
actions taken for regular

expression matches, 265
regular expressions to match log

messages, 265
installing, 264

switched Ethernet networks, sniffing
in, 222–224

symlink restrictions (grsecurity), 30
symmetric encryption, 81
SYN packets, rate-limiting, 190
sysctl.conf file, Netfilter

configuration, 121

Sysinternals
Autoruns program, 71
Handle tool, 67

syslog
aggregating logs from remote

sites, 266
Barnyard output to, 391
filtering information into separate

files, 252
integrating Windows into, 254–261

Eventlog to Syslog, 261
running central server, 251
syslogd

creating a socket for chroot()-ed
named process to write
to, 170

replacing with syslog-ng, 254
syslog.conf file, translating to syslog-ng

configuration entries, 268
syslog-ng, 254, 267–271

compiling, 267
configuration file entries, 267
encrypting tunnel for secure traffic

between daemons, 271
filters, defining, 269
macros, 271
TCP support, 267
translating syslogd entries from

syslog.conf, 268
web site, 267

system binaries
modification by rootkits, 422
performing functions of with

BusyBox, 424
verifying for chkrootkit, 424

system calls
definition of, 36
interception by Sebek, 407
restricting, 36

system groups, specifying for use of
sudo, 12

system logs, protecting from tampering
by intruders, 9

system updates
automating, 55–57
Windows, checking for, 59

system-auth file (PAM), 43
systrace utility, 36

aliases, 38
policies, 36
policy-generation tool, 39

452 | Index

T
tables of IP addresses (PacketFilter), 123
Tcl packages, required for Sguil, 358
tcltls package, 358
Tclx package, 358
TCP

general packet form in test.conf
file, 152

packet flags, checking with
Snort, 374

support by syslog-ng, 267
tcpdump, 305, 309
TcpFlow, 357, 359
TCP/IP

blocking ports, 138
disguising stack to prevent remote

OS detection, 190
temporary files folder, encrypting on

Windows, 79
Terminal.app, 113
terminals, specifying in pam_time

configuration file, 45
thresholding (Snort rules), 375

including parameters in the rule, 376
throttle action, swatch, 266
Thunderbird, 107–112

Enigmail extension
public/private key pair, 109–111

sending/receiving encrypted
email, 111

setting up, 107
time

connect time for users,
analyzing, 272

restricting access by, 44–46
synchronizing on network

systems, 207–209
time.conf file, 44
timeouts (SSH sessions), setting to guard

against ARP spoof
attacks, 149

timeperiods.cfg file (Nagios), 290
tinydns program, 172–176

authoritative DNS records, 174
user accounts, 173

TLDs (top-level domains), querying with
whois, 427

TLS (Transport Layer Security)
EAP/TLS, 241
setting up for SMTP, 161
using TLS-enabled SMTP with

Qmail, 163
VPN connections, 342

Tor (Onion Router), 91–95
blocking user access, 156–157
testing, web page, 94
tor-resolve program, 96
tunneling SSH through, 95
using with Privoxy, 93

ToS (Type-of-Service) field in IP
header, 152

traffic analysis, evading on the
Internet, 91–94

traffic normalization rules
(PacketFilter), 125

trampoline functions, 33
Transport Layer Security (see TLS)
trends on the network,

graphing, 291–293
Tripwire, 415–419

compiling from source, 416
configuration file, editing, 418
configuration settings, 416
configuration variables,

fine-tuning, 417
cryptographic keys that protect its

files, 416
database, 416
database, updating, 419
day-to-day use, 419
installing, 418
policy, 416
policy file, decrypting and

editing, 419
stored snapshots of files, 416
subdirectories, 417
vulnerability to file modification by

intruders, 416
Trojan horses

distribution in software, 13
inability of Windows Firewall to

protect against, 129
ports used, 137
preventing in common directories, 3

TrueCrypt, 96–100

Index | 453

TTYs, PPP daemons operating over
pseudo-TTYs, 345

tunnels, secure, 301–347
cross-platform VPN, creating, 339
encrypting traffic automatically with

Openswan, 314
forwarding and encrypting traffic

with SSH, 316
HTTP, tunnel connections

inside, 327
IPsec

setting up under
FreeBSD, 306–309

setting up under Linux, 301–306
setting up under

OpenBSD, 309–314
PPP and SSH, using to create secure

VPN tunnel, 345
squid proxy over SSH, 320
SSH client keys, quick logins

with, 318
VTun and SSH, using, 329
vtund.conf, automatically

generating, 334
TUN/TAP driver for Solaris or Mac OS

X, 340
TXT records, 314
Type-of-Service (ToS) field in IP

header, 152

U
UDP

general packet form in test.conf
file, 152

use by syslogd, 266
UDP DNS traffic

rule for FilterPacket, 127
rules for Netfilter, 119

UDP ports
blocking, 138
listening services and, 16

UID 0, risks posed in chroot()
environment, 19

UIDs for privileged accounts and
groups, 166

ulimit command, 54
Unicode validation, mod_security, 394
United States Computer Emergency

Response Team, 234

Unix
host security, 1
restricted shell environments, 52–54
scanning for viruses with

ClamAV, 229–233
secure mount points, 2
sharing files securely, 178–182
system updates, automating, 55–57
VPN, built-in software for, 345

untrusted networks, secure
communication over, 301

URL encoding, validation by mod_
security, 394

URLs, checking with SpoofGuard, 104
user profiles, backing up EFS certificates

and keys, 82
user-defined security filters, 394
usernames, checking with

SpoofGuard, 104
users

access.conf file entry, 44
creating for Nessus, 197
resource limits, enforcing, 54
specifying for scripts executed within

virtual host, 168

V
virtual host, configuring for

suEXEC, 168
virtual memory management

(VMM), 87, 399
viruses

scanning for on Unix with
ClamAV, 229–233

scanning network traffic
for, 397–400

volumes, TrueCrypt, 97–100
VPNs (virtual private networks)

built-in functionality in SSH, 322
cross-platform, creating, 339
FreeBSD, security policies for, 307
IPsec connections under Linux, 304
PPP and SSH, using to create secure

tunnel, 345
VTun

tunneling with VTun and SSH, 329,
330, 331, 332, 333

vtund.conf, automatically
generating, 334

454 | Index

vulnerabilities, network
keeping up with the latest, 233–235
scanning for, 197–206

vulnerable network hosts,
simulating, 400

W
W3C Extended Log (.log) format, 135
Walleye web interface (Sebek), 412
web applications, protecting from

intrusions, 392–396
web browsers, 321

CA certificates, installing, 213
configuring to use Privoxy as HTTP

proxy, 94
PwdHash, 105
trusted CA relationships, 213
using Privoxy, 93

web page (for this book), xx
web servers

built-in, honeyd, 403
monitoring with Nagios, 290
Netfilter rules for, 119

web sites
spoofed, 100

spotting with SpoofGuard, 101
spoofed, spotting with

SpoofGuard, 101–104
Well-known Certificate Authorities, 209
well-known ports, complete list, 137
WEP (Wired Equivalent Privacy), 236
whois command

finding owner of Internet
domain, 425

querying new TLDs with, 427
querying number registry for IP

address block, 425
WiFiDog, 244–249

authentication server, 244–246
editing configuration file, 247
gateway, installing, 246–249

Windows
auditing, enabling, 69–71
backing up and clearing event

logs, 75–77
backing up and restoring CA with

Certificate Services, 214–221
changing maximum log file size, 73
checking for nonexpiring

passwords, 88

checking servers for applied
patches, 59

configuring Automatic Updates using
Group Policy, 63–66

default shares, disabling, 78
EFS (Encrypting File System),

backing up, 80–86
encrypting temp folder, 79
enumerating automatically executed

programs, 71
file encryption with

TrueCrypt, 96–100
GnuPG, 107
installing Sebek client, 409
integrating into syslog, 254–261
listing open files and owning

processes, 66–68
listing running services and open

ports, 68
network security checker, 63
OpenVPN, 339, 343
OSSEC HIDS agent, installing, 277
paging file, clearing at shutdown, 87
remote network monitoring with

rpcapd, 297–300
securing system logs, 73

Windows Firewall, 128
allowing programs to bypass, 130
checking whether turned on, 130
disabling file/printer sharing when

using at WiFi hotspots, 137
email, problems with, 136
inability to protect against

Trojans, 129
logging, 134–136
replacing with CORE

FORCE, 139–147
Windows Script Host (WSH), 77
Windows Update web site, 65
WinDump (command-line packet

sniffer), 298
WinPcap, rpcapd program, 297
wireless networks, 236–249

commodity wireless routers, turning
into security
platform, 236–240

deploying captive portal, 244–249
authentication server, 244–246
installing gateway, 246–249

fine-grained authentication, 240

Index | 455

Wireless Vulnerabilities and Exploits
project, 235

wl0_wpa_psk NVRAM variable, 240
WPA (WiFi Protected Access), 236

802,1X, 241
configuring AP to support, 243

WPA2, 241
configuring AP to support, 243

WPA-PSK, 240
write action, swatch, 265
WRT54G wireless routers, 237

downloading OpenWRT firmware
image, 237

WSH (Windows Script Host), 77
wtmp files (altered), detection by

chkrootkit, 422

X
X11

Nessus client, 198
preventing server from listening on

TCP port, 18
x.509 certificates

authentication on FreeBSD IPsec
connection, 308

authentication on OpenBSD IPsec
connection, 312

XML, output from nmap, 196
XSS (cross-site scripting) attacks, 394

Y
yum program, 57

Z
Zlib, 92, 401
zone transfers, restricting for DNS

servers, 171

Colophon
The image on the cover of Network Security Hacks, Second Edition, is
barbed wire. The type of barbed wire pictured in the cover image was
patented by Joseph Glidden in 1874. Glidden improved on earlier attempts
at manufacturing wire fencing by fashioning sharp barbs, spacing them
along a smooth wire, and then twisting another wire around the first to hold
the barbs in place. Advertised as “cheaper than dirt and stronger than steel,”
barbed wire was immediately adopted by farmers in the American west as a
way to control their herds. The days of free-roaming cattle and cowboys
were soon numbered, but battles over barbs were fought both in court and
on the ranch. Opponents called barbed wire “the Devil’s rope,” and the
Cole Porter song “Don’t Fence Me In” mourned this change in the western
landscape. Barbed wire was here to stay, though—in addition to agricul-
tural use, it has become a ubiquitous component of warfare and is a
common feature of high-security areas such as prisons.

The cover image is a photograph from gettyimages.com. The cover font is
Adobe ITC Garamond. The text font is Linotype Birka; the heading font is
Adobe Helvetica Neue Condensed; and the code font is LucasFont’s
TheSans Mono Condensed.

	Contents
	Credits
	About the Author
	Contributors
	Acknowledgments

	Preface
	Why Network Security Hacks?
	How This Book Is Organized
	Conventions Used in This Book
	Safari® Enabled
	Using Code Examples
	How to Contact Us
	Got a Hack?

	Unix Host Security
	Secure Mount Points
	Scan for SUID and SGID Programs
	Scan for World- and Group-Writable Directories
	Create Flexible Permissions Hierarchies with POSIX ACLs
	Enabling ACLs
	Managing ACLs

	Protect Your Logs from Tampering
	Delegate Administrative Roles
	Automate Cryptographic Signature Verification
	Check for Listening Services
	Prevent Services from Binding to an Interface
	Restrict Services with Sandboxed Environments
	Using chroot(��)
	Using FreeBSD’s jail(��)

	Use proftpd with a MySQL Authentication Source
	See Also

	Prevent Stack-Smashing Attacks
	Lock Down Your Kernel with grsecurity
	Patching the Kernel
	Configuring Kernel Options
	Low security
	Medium security
	High security
	Customized security settings

	Restrict Applications with grsecurity
	Restrict System Calls with systrace
	Create systrace Policies Automatically
	Control Login Access with PAM
	Limiting Access by Origin
	Restricting Access by Time

	Restrict Users to SCP and SFTP
	Setting Up rssh
	Configuring chroot(��)

	Use Single-Use Passwords for Authentication
	OPIE Under FreeBSD
	S/Key Under OpenBSD

	Restrict Shell Environments
	Enforce User and Group Resource Limits
	Automate System Updates

	Windows Host Security
	Check Servers for Applied Patches
	Using HFNetChk
	See Also

	Use Group Policy to Configure Automatic Updates
	Some Recommendations
	Digging Deeper

	List Open Files and Their Owning Processes
	List Running Services and Open Ports
	Enable Auditing
	Enumerate Automatically Executed Programs
	Secure Your Event Logs
	Change Your Maximum Log File Sizes
	Back Up and Clear the Event Logs
	The Code
	Running the Hack

	Disable Default Shares
	Encrypt Your Temp Folder
	Back Up EFS
	Backing Up Encrypted Data and EFS Keys
	Restoring EFS Keys
	Backing Up Recovery Agent Keys

	Clear the Paging File at Shutdown
	Check for Passwords That Never Expire
	The Code
	Running the Hack

	Privacy and Anonymity
	Evade Traffic Analysis
	Onion Routing
	Installing Tor
	Installing Privoxy
	Configuring Privoxy for Tor
	See Also

	Tunnel SSH Through Tor
	See Also

	Encrypt Your Files Seamlessly
	Guard Against Phishing
	SpoofGuard
	Installing SpoofGuard
	How SpoofGuard Works

	Use the Web with Fewer Passwords
	PwdHash
	Remote PwdHash

	Encrypt Your Email with Thunderbird
	Setting Up Thunderbird
	Providing a Public/Private Key Pair
	Importing an existing key pair
	Generating a new key pair

	Sending and Receiving Encrypted Email

	Encrypt Your Email in Mac OS X
	Installing GPG
	Creating a GPG Key
	Installing GPGMail
	Sending and Receiving Encrypted Email

	Firewalling
	Firewall with Netfilter
	Setting the Filtering Policy
	Rule Examples
	A Word About Stateful Inspection
	Ordering Rules

	Firewall with OpenBSD’s PacketFilter
	Configuring PF
	Global Options
	Traffic Normalization Rules
	Filtering Rules

	Protect Your Computer with the Windows Firewall
	Allow Programs to Bypass the Firewall
	Tracking Firewall Activity with a Windows Firewall Log
	Problems with Email and the Windows Firewall
	Hacking the Hack
	See Also

	Close Down Open Ports and Block Protocols
	Replace the Windows Firewall
	Installing CORE FORCE
	The Configuration Wizard
	Manual Configuration

	Create an Authenticated Gateway
	Keep Your Network Self-Contained
	Test Your Firewall
	MAC Filter with Netfilter
	Block Tor

	Encrypting and Securing Services
	Encrypt IMAP and POP with SSL
	Use TLS-Enabled SMTP with Sendmail
	Use TLS-Enabled SMTP with Qmail
	Install Apache with SSL and suEXEC
	Apache 1.x
	Apache 2.x

	Secure BIND
	See Also

	Set Up a Minimal and Secure DNS Server
	Installing daemontools
	Installing Djbdns
	Adding Records

	Secure MySQL
	Share Files Securely in Unix

	Network Security
	Detect ARP Spoofing
	Create a Static ARP Table
	Protect Against SSH Brute-Force Attacks
	Changing the Port
	Disabling Password Authentication
	Firewalling the SSH Daemon
	Limiting connections to your sshd
	Parsing logs and blocking an IP
	Rate-limiting SYN packets

	Fool Remote Operating System Detection Software
	Keep an Inventory of Your Network
	Scan Your Network for Vulnerabilities
	Nessus 2.x
	Nessus 3.x

	Keep Server Clocks Synchronized
	Create Your Own Certificate Authority
	Creating the CA
	Signing Certificates

	Distribute Your CA to Clients
	Back Up and Restore a Certificate Authority with Certificate Services
	Backing Up a CA
	The Certification Authority Backup Wizard
	Restoring a CA to a Working Server
	Restoring a CA to a Different Server
	Decommissioning the Old CA

	Detect Ethernet Sniffers Remotely
	Sniffing Shared Mediums
	Sniffing in Switched Environments
	Installing SniffDet
	Testing with ARP Queries

	Help Track Attackers
	Scan for Viruses on Your Unix Servers
	Installing ClamAV
	Configuring clamd

	Track Vulnerabilities
	Mailing Lists
	RSS Feeds
	Cassandra
	Summary

	Wireless Security
	Turn Your Commodity Wireless Routers into a Sophisticated Security Platform
	Use Fine-Grained Authentication for Your Wireless Network
	Deploying the RADIUS Server
	Configuring Your AP

	Deploy a Captive Portal
	The Authentication Server
	Installing the Gateway

	Logging
	Run a Central Syslog Server
	Steer Syslog
	Integrate Windows into Your Syslog Infrastructure
	Using NTsyslog
	Using Eventlog to Syslog

	Summarize Your Logs Automatically
	Monitor Your Logs Automatically
	Installing swatch
	Configuration Syntax

	Aggregate Logs from Remote Sites
	Compiling syslog-ng
	Configuring syslog-ng
	Translating Your syslog.conf

	Log User Activity with Process Accounting
	Centrally Monitor the Security Posture of Your Servers
	Installation
	Adding Agents
	Installing a Windows Agent
	Configuration
	Active Responses
	See Also

	Monitoring and Trending
	Monitor Availability
	Installing Nagios
	Installing Plug-ins
	Configuring Nagios
	Adding hosts to monitor
	Creating host groups
	Creating contacts and contact groups
	Configuring services to monitor
	Defining time periods

	Graph Trends
	Get Real-Time Network Stats
	Collect Statistics with Firewall Rules
	Sniff the Ether Remotely

	Secure Tunnels
	Set Up IPsec Under Linux
	Set Up IPsec Under FreeBSD
	Client Configuration
	Gateway Configuration
	Using x.509 Certificates

	Set Up IPsec in OpenBSD
	Password Authentication
	Certificate Authentication

	Encrypt Traffic Automatically with Openswan
	Forward and Encrypt Traffic with SSH
	Automate Logins with SSH Client Keys
	Use a Squid Proxy over SSH
	Use SSH As a SOCKS Proxy
	Encrypt and Tunnel Traffic with SSL
	Building Stunnel
	Configuring stunnel
	Encrypting Services

	Tunnel Connections Inside HTTP
	Tunnel with VTun and SSH
	Configuring VTun
	Testing VTun
	Encrypting the Tunnel

	Generate VTun Configurations Automatically
	The Code
	Running the Hack

	Create a Cross-Platform VPN
	Installing OpenVPN
	Testing OpenVPN
	Creating Your Configuration
	Using OpenVPN and Windows
	Using OpenVPN with Mac OS X

	Tunnel PPP
	See Also

	Network Intrusion Detection
	Detect Intrusions with Snort
	Installing Snort
	Testing Snort
	Configuring Snort
	See Also

	Keep Track of Alerts
	Monitor Your IDS in Real Time
	Creating the Database
	Setting Up the Server
	Installing a Sensor
	Patching Snort
	Patching Barnyard

	Finishing Up

	Manage a Sensor Network
	Installing the Prerequisites
	Setting Up the Console
	Setting Up an Agent
	Adding an Agent to the Console

	Write Your Own Snort Rules
	Rule Basics
	Actions
	Protocols
	IP addresses
	Ports

	Options
	Adding human-readable messages
	Inspecting packet content
	Matching TCP flags

	Thresholding
	Thresholding by signature ID
	Thresholding with rule options

	Suppression

	Prevent and Contain Intrusions with Snort_inline
	Automatically Firewall Attackers with SnortSam
	Installing SnortSam
	Configuring SnortSam
	See Also

	Detect Anomalous Behavior
	Automatically Update Snort’s Rules
	Create a Distributed Stealth Sensor Network
	Use Snort in High-Performance Environments with Barnyard
	Installation
	Configuring Snort
	Configuring Barnyard
	Testing Barnyard

	Detect and Prevent Web Application Intrusions
	Installing mod_security
	Enabling and Configuring mod_security
	Creating Filters
	See Also

	Scan Network Traffic for Viruses
	Patching Snort
	Configuring the Preprocessor
	Ports to scan
	Direction to scan
	Blocking propagation
	Miscellaneous options

	Trying It Out

	Simulate a Network of Vulnerable Hosts
	Compiling honeyd
	Configuring honeyd
	Running honeyd
	Testing honeyd

	Record Honeypot Activity
	Installing the Linux Client
	Setting Up the Server
	Installing the Windows Client

	Recovery and Response
	Image Mounted Filesystems
	Verify File Integrity and Find Compromised Files
	Building and Installing Tripwire
	Configuring Tripwire
	Day-to-Day Use
	See Also

	Find Compromised Packages
	Using RPM
	Using Other Package Managers

	Scan for Rootkits
	Find the Owner of a Network
	Getting DNS Information
	Getting Netblock Information

	Index

