
www.pearson-books.com
An imprint of

Object-oriented

O
bject-oriented G

am
e

D
evelopm

ent

GAMEGAME
Development

Julian Gold is a software engineer at Microsoft Research
in Cambridge investigating advanced machine learning for
videogames. As Senior Programmer for Sony Computer
Entertainment Europe he developed the visually stunning
Colony Wars: Red Sun (BAFTA Nominee). At Six By Nine
he worked on the best-selling soccer management game
LMA Manager 2002 and his experience also includes
time with Sega and Argonaut.

Perfect the art of game development – read this book today!

No member of the game development team should work in isolation.
Whether you’re a producer, designer, artist or programmer this book will
help you develop today’s ever more complex entertainment software
within the constraints of deadlines, budgets and changing technologies.

If you’re a student taking a games degree or module, the balance of
best practice meets real-world know-how will give you the
understanding you need to begin your career with confidence.

‘I love this book’
Liam Hislop, Full Sail Real World Education, Florida, USA

‘Game developers can learn a lot from this book’
Eric Le, Ubisoft, Canada

‘I would wholeheartedly recommend it to my students’
Paul Parry, Sheffield Hallam University, UK

• Practical OO design methodologies with
examples from real commercial code.

• Design patterns that work in practice.
• Write reusable code that will be reused.
• Write games using component technology.
• Develop multi-platform games efficiently.
• Use iterative techniques in program and

schedule development.

Julian Gold

Gold
"LMA Manager"™ 2002/2003/2004 is a trademark of Codemasters. © The Codemasters
Software Company. All other copyrights or trademarks appearing in the game are the property of
their respective owners.

Colony Wars Red Sun is the copyright of Sony Computer Entertainment Europe Limited.

Object-oriented
Game Development

8985 OOGD_A01.QXD 2/12/03 12:57 pm Page i

We work with leading authors to develop the
strongest educational materials in computing,
bringing cutting-edge thinking and best
learning practice to a global market.

Under a range of well-known imprints, including
Addison Wesley, we craft high-quality print and
electronic publications which help readers to understand
and apply their content, whether studying or at work.

To find out more about the complete range of our
publishing, please visit us on the World Wide Web at:
www.pearsoned.co.uk

8985 OOGD_A01.QXD 2/12/03 12:57 pm Page ii

Julian Gold

Object-oriented
Game

Development

8985 OOGD_A01.QXD 2/12/03 12:57 pm Page iii

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoned.co.uk

First published 2004

© Pearson Education Limited 2004

The right of Julian Gold to be identified as author of this work has been asserted
by him in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved; no part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise without either the prior written permission of the
publisher or a licence permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP.

The programs in this book have been included for their instructional value. They have been
tested with care but are not guaranteed for any particular purpose. The publisher does not
offer any warranties or representations nor does it accept any liabilities with respect to the
programs.

All trademarks used herein are the property of their respective owners. The use of any
trademark in this text does not vest in the author or publisher any trademark ownership rights
in such trademarks, nor does the use of such trademarks imply any affiliation with or
endorsement of this book by such owners.

ISBN 0 321 17660 X

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Gold, Julian.

Object-oriented game development / Julian Gold.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-17660-X (pbk.)
1. Computer games--Programming. 2. Object-oriented programming (Computer science)

I. Title.

QA76.76.C672G65 2004
794.8’151--dc22

2003062857

10 9 8 7 6 5 4 3 2 1
09 08 07 06 05 04

Typeset in 9/12 pt Stone Serif by 30
Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn.

The publishers’ policy is to use paper manufactured from sustainable forests

8985 OOGD_A01.QXD 2/12/03 12:57 pm Page iv

To Sienna

8985 OOGD_A01.QXD 2/12/03 12:57 pm Page v

8985 OOGD_A01.QXD 2/12/03 12:57 pm Page vi

Contents

Acknowledgements xiii

1 Introduction 1

1.1 What is this book? 1
1.2 But why? 2
1.3 Who am I? 2
1.4 Who are you? 3
1.5 So what will you read about? 3
1.6 A brief history of games 4

1.6.1 The time that land forgot 4
1.6.2 It’s all academic 6
1.6.3 My! Hasn’t he grown? 7
1.6.4 From bedroom to boardroom 8
1.6.5 Summary 8

2 The game development process 9

2.1 Philosophy 9
2.1.1 Context 9
2.1.2 Iterate! 10
2.1.3 Not all statistics are damned lies 11
2.1.4 Don’t do it again 12
2.1.5 Do it again 13
2.1.6 Don’t do it again (again) 13
2.1.7 See it from all sides 13

2.2 Reality bites 14
2.2.1 Hard cash 14
2.2.2 The Hacker’s Charter 15
2.2.3 So why are games different? 18
2.2.4 Conclusion 20

2.3 Summary 21

8985 OOGD_A01.QXD 2/12/03 12:57 pm Page vii

3 Software engineering for games 23

3.1 The peasants are revolting 23
3.2 The lords are revolting 24
3.3 Stopping the rot 25

3.3.1 From bedroom to office 25
3.3.2 Working practices for programmers 26
3.3.3 Software standards 27
3.3.4 Good working practice 30
3.3.5 Good programming practice 30
3.3.6 Code reuse 33
3.3.7 Dependencies: the curse of Hades 38
3.3.8 Reuse granularity 45
3.3.9 When not to reuse 50

3.4 The choice of language 51
3.4.1 The four elements of object orientation 52
3.4.2 Problem areas 56
3.4.3 Standard Template Library 59
3.4.4 Templates 60

3.5 A C++ coding policy 63
3.5.1 General 64
3.5.2 Policy specifics 64

3.6 Summary 67

4 Object-oriented design for games 69

4.1 Notation 69
4.1.1 Classes 69
4.1.2 Relationships 70

4.2 The design process 71
4.2.1 Phase 1: brainstorming 71
4.2.2 Phase 2: prune the tree 72
4.2.3 Phase 3: draw the bubbles and lines 73
4.2.4 Phase 4: validate the design 75

4.3 Patterns 76
4.3.1 The interface 77
4.3.2 Singleton 81
4.3.3 Object factory 89
4.3.4 Manager 95
4.3.5 Visitor/iterator 96
4.3.6 Strawman 105

Object-oriented game developmentviii

8985 OOGD_A01.QXD 2/12/03 12:57 pm Page viii

4.3.7 Prototype 108
4.3.8 Russian doll 111

4.4 Summary 134

5 The component model for game development 135

5.1 Definition: game engine 135
5.2 Motivation 135

5.2.1 Your engine has stalled 135
5.2.2 The alternative 136

5.3 Some guiding principles 138
5.3.1 Keep things local 138
5.3.2 Keep data and their visual representations

logically and physically apart 140
5.3.3 Keep static and dynamic data separate 143
5.3.4 Avoid illogical dependencies 148
5.3.5 Better dead than thread? 149

5.4 Meet the components 149
5.4.1 Naming conventions 150
5.4.2 The application 150
5.4.3 Container components 152
5.4.4 Maths component 158
5.4.5 Text and language processing 178
5.4.6 Graphics 181
5.4.7 PRIM 186
5.4.8 Collision detection 189
5.4.9 Resource management 192
5.4.10 Newtonian physics 205
5.4.11 Network gaming 220
5.4.12 Summary 226

5.5 Summary 227

6 Cross-platform development 229

6.1 Introduction 229
6.1.1 Analyse this 229
6.1.2 Welcome to Fantasy Land 230
6.1.3 Same capability, different methodology 235
6.1.4 Platforms of different capability 251
6.1.5 Cross-platform component architecture 254

6.2 Summary 265

Contents ix

8985 OOGD_A01.QXD 2/12/03 12:57 pm Page ix

7 Game objects 267

7.1 Open your GOB 267
7.1.1 Collapsed hierarchy 267
7.1.2 Shallow hierarchy 269
7.1.3 Vertical hierarchy 270
7.1.4 Mix-in inheritance 274

7.2 Game object management 281
7.2.1 Creation and destruction 282
7.2.2 Referencing 296
7.2.3 Persistent damage 311

7.3 Summary 326

8 Design-driven control 329

8.1 Decoupling behaviour from game code 330
8.2 Simplifying the creation and management of

high-level behaviour 331
8.2.1 A functional paradigm 331
8.2.2 Task-based control 335

8.3 Event management details 341
8.4 Language issues 347
8.5 Summary 349

9 Iterative development techniques 351

9.1 Introduction 351
9.1.1 Prioritising tasks 351
9.1.2 How long is a piece of virtual string? 351

9.2 Incremental delivery 352
9.2.1 Milestones round my neck 352
9.2.2 Internal and external milestones 353
9.2.3 The breaking wheel of progress 354
9.2.4 Always stay a step ahead 354

9.3 Iterated delivery 355
9.3.1 Waste not, want not 361
9.3.2 Ordering using priorities and levels 361
9.3.3 Scheduling with an iterated delivery system 365

9.4 Summary 366

Object-oriented game developmentx

8985 OOGD_A01.QXD 2/12/03 12:57 pm Page x

10 Game development roles 367

10.1 The cultural divides 367
10.2 The programming team 368

10.2.1 Programming roles 369
10.2.2 Recruitment 373
10.2.3 Programming production phases 373

10.3 The art team 375
10.3.1 Art roles 375

10.4 The design team 379
10.4.1 Design risk management 379
10.4.2 Design personnel 383

10.5 Putting it all together 384
10.6 Summary 385

11 Case study: Cordite 387

11.1 Technical analysis 387
11.1.1 Low-level file management 388
11.1.2 Object streams 391
11.1.3 Collision 393
11.1.4 Scripted behaviour 395
11.1.5 Objects 398
11.1.6 Human control 401
11.1.7 Particles 404
11.1.8 And so on 412

11.2 Summary 414

Appendix: coding conventions used in this book 415
Bibliography 417
Web resources 419
Index 421

Contents xi

8985 OOGD_A01.QXD 2/12/03 12:57 pm Page xi

8985 OOGD_A01.QXD 2/12/03 12:57 pm Page xii

Acknowledgements

The following bright and kind souls are implicated in the writing of this book.
Sam Brown, Peter Bratcher, Adrian Hirst, Graeme Baird and Beverley Shaw

at Six By Nine Ltd – I pestered you with my ideas until you either agreed with
me, shot them down, or lost the will to argue back. What else are friends for?

Emma: you proofread this stuff and didn’t have a clue what you were read-
ing. You corrected my overenthusiastic, dodgy English (sic), and fear of your
incorrect apostrophe wrath kept me on the straight and narrow. Well, mostly
anyway! Thanks also for putting up with my antisocial hours of typing when
eating, drinking and not being grumpy were in order.

8985 OOGD_A01.QXD 2/12/03 12:57 pm Page xiii

8985 OOGD_A01.QXD 2/12/03 12:57 pm Page xiv

1.1 What is this book?

There’s a better than 50% chance that you have picked this title off the shelf in
a bookshop and are wondering if it’s going to be another one of those ‘secrets of
the inner circle’ type of titles. You know, the ones that promise to tell you
unspoken truths on how to write really cool games but in reality offer up a
rehash of a manual you may already have for free anyway. I should know, I’ve
bought a few of them in the past, and if you haven’t experienced the disap-
pointment getting to the end and thinking ‘Is that it?’ I don’t recommend it. I
certainly hope that this isn’t such a book, that it offers some useful insights that
you can’t really get from anywhere else, and that when you finish it you’re a
little wiser than you were.

The goal of this book is to discuss a pragmatic approach to computer game
development. It borrows some of the traditional philosophy of developers and
adds a smattering of software engineering principles, team-oriented processes,
project management and a dash of what passes for common sense around this
business. Although there have been many fine books written on each of these
topics – some used as references for this title – to my knowledge this hasn’t been
done in the context of games before, certainly not in any great detail and with
any non-trivial technical content relating to a broad set of disciplines, so it is
my hope that this book has something unique to offer.

I would hope to persuade and enlighten some of my audience to do things
as I would do them. However, I also expect some or even all of you to take issue
with some of the things I discuss and solutions I present in the book. I can’t put
forward hard and fast answers to either technical or management issues,
because if it was that easy to come up with them, we would all be doing it,
wouldn’t we? Rather, I intend to establish a few simple broad principles and
then present some solutions to the related problems which are ‘good enough’,
in that doing them is better than not doing them.

Introduction 1

1

8985 OOGD_C01.QXD 2/12/03 12:58 pm Page 1

Object-oriented game development2

1.2 But why?

Currently, as we begin the twenty-first century, commercial game development
is at a crossroads. As I type this, three new game platforms are launching or
queuing up for launch in Europe: Sony’s PlayStation™2, Nintendo’s
GameCube™ and Microsoft’s X-Box™. These consoles represent another quan-
tum leap in gaming technology; irrespective of their actual abilities, both the
expectations of the public and the corporate hype that will fuel them will leave
the world asking for ever prettier, ever more complex, ever more involved and
subtle or realistic gaming experiences.

This would be manageable if the timescales of projects could grow to match
their scope. In an industry where working overtime is already normal hours,
there soon will be a need to redefine the day as thirty hours if games are to be
delivered on time and on budget without disappointing the increasingly partic-
ular public.

How can we square this circle? Clearly adding more hours to the day isn’t
going to happen, so we shall need to fall back on the usual management consul-
tant cliché of working smarter, not harder.

This book describes, in short, ways of working smarter so that we can continue
to excel, push our technological envelopes and manage the growing complexity of
developing gobsmacking entertainment titles for the next-generation platforms.

1.3 Who am I?

I have spent the past ten years working in the games industry for both small
and big players. Prior to that, I have a strong academic mathematical back-
ground with a BSc in astronomy. I spent a few years writing image-processing
software in FORTRAN for the Royal Greenwich Observatory in England, before
starting in the video games business in 1993. Having experienced development
for PC and a plethora of consoles as a programmer and then a lead programmer,
it is my somewhat counterintuitive experience that the same – or at least similar
– mistakes are made, irrespective of company size or financial security. This
strongly suggests that it is the process that needs attention rather than the acqui-
sition of staff or other resources.

1.4 Who are you?

This book is intended for game programmers, though it is not exclusively about
programming. This is simply because game development today is a synthesis of
several disciplines:

8985 OOGD_C01.QXD 2/12/03 12:58 pm Page 2

● programming
● art
● design
● music.

Not to mention the management of all of these.
It’s a programmer’s daily job to liaise not only with other programmers but

also with those in the other disciplines. In short, very little that any one indi-
vidual does in the course of development happens in isolation, so it would be a
mistake to consider programming without specific reference to the other prac-
tices. For brevity, but with little loss of generality, I’ll stick to the holy trinity of
programming, art and design in this book.

So, you’re a programmer. Or you manage programmers. Or you simply work
with programmers on a day-to-day basis: a producer, perhaps. You are probably
working in a team and almost certainly in a commercial environment. Whilst
it’s great fun to develop software in leisure time with your friends – and this
book will still hopefully prove of some use if you are doing so – many of the
philosophies and practices that we’ll examine arise because of the way that
commercial pressures affect the development process. Similarly, if you are the
sole programmer/artist/designer/musician/teaperson, then you are not the
direct target but you may still gain benefit from a read through the book.

1.5 So what will you read about?

This book’s content can be divided into two main areas. The first will concern
the major issues (as I see them) involved in the commercial game development
process. This will be done at a level that is abstract enough to be generally
useful but pragmatic enough to be applicable to a real-world situation. In fact, it
is intended that the content remains as abstract as possible, since there is no
way I can know the specific technical problems you will need to solve.

The second area is game programming, or rather game software engineering.
I’ll talk about choice of language for development and the implications of this
choice. I’ll also look at the high-level design process and how it translates to source
code. I’ll discuss a way to analyse and approach cross-platform development. And
finally we’ll start applying the results to develop some specific game systems.

If you’re a lead programmer or a technical producer, you’ll probably want to
concentrate on the process sections. If you’re a programmer aspiring to senior or
lead roles, you’ll probably find the other sections focusing on development
more useful. But feel free to pick and choose, as they can be read in isolation
with a minimal amount of cross-referencing.

So without further ado, let’s start.

Introduction 3

8985 OOGD_C01.QXD 2/12/03 12:58 pm Page 3

1.6 A brief history of games

Though it is beyond the scope of this book to provide a detailed history of com-
puter games, it is well worth looking back to review some of their evolution,
and particularly to look at how development methodologies have changed over
time and who is developing them.

1.6.1 The time that land forgot
Computer games are older than many people may think. Indeed, games such as
chess and checkers have occupied (and continue to occupy) the efforts of many
academic and corporate researchers worldwide. (In fact, if there is a game played
by humans, then there is almost certainly a computer equivalent.) The develop-
ment of such gaming technology probably goes back to the 1950s, when
electronic computers – more often than not the playthings of the military, who
wanted them for ballistics calculations and such like – were becoming available
to civilian educational establishments and commercial enterprises. Samuel
Jackson’s checkers algorithm is a prime example of the progress of software
technology driven by games. Written around 1956, it is optimal in that if it can
win from a given situation, then it will. Checkers is one of the few games that is
considered ‘solved’.

More surprisingly, the first graphical video game appeared in 1958, when
William Higinbotham, a researcher at the Brookhaven National Laboratory in
New York, used a vacuum tube system to produce a very simple tennis game
with a small blob for a ball and an inverted ‘T’ for a net. Being entirely hard-
ware-based, the game was lost for ever when the system was dismantled a few
years later.

Typically, the development of gaming technology remained a broadly acad-
emic discipline, since hardware was grotesquely large and just as expensive and
unreliable. Indeed, it would remain so until the 1970s, when the mass produc-
tion of semiconductors became feasibly cheap.

If the hardware was impractical and unreliable, then the accompanying
software was equally so. Computer languages have evolved from literally setting
binary switches or wiring plug boards, to punched cards, to having a program –
be it a compiler, assembler or interpreter – that can translate near-English text
into the required binary instructions. Until relatively recently, programming
was done at a binary or near-binary level, which made the development of com-
plex algorithms and systems painstaking, time-consuming and error-prone.

In 1962, Steve Russell, a researcher at the Hingham Institute in Cambridge,
Massachusetts, came up with Spacewar, a two-player game featuring missile-
firing spaceships (see Figure 1.1).

Object-oriented game development4

8985 OOGD_C01.QXD 2/12/03 12:58 pm Page 4

By 1969, when Russell had transferred to Stanford University, Spacewar had
become a huge hit with visiting engineering students, one of whom was Nolan
Bushnell. Bushnell was working at a theme park while studying electrical engi-
neering and he thought it might be an idea to try to use a computer in an
amusement arcade. He spent his spare time designing a commercial version of
Russell’s Spacewar, which he called Computer Space. In 1971, Bushnell’s game
became the world’s first coin-operated computer game. Bushnell went on to
found the Atari Corporation, which was to dominate video game technology for
over a decade.

Introduction 5

Figure 1.1
Spacewar: the mother of
all video games?

8985 OOGD_C01.QXD 2/12/03 12:58 pm Page 5

1.6.2 It’s all academic
Meanwhile, in the late 1960s, what we know as the Unix operating system grew
out of what started as a multiuser gaming environment at AT&T Bell’s labs in
California. Though Unix is not usually associated with games, there was one
massive side effect that would affect games a decade down the line: the develop-
ment of the C programming language. The intention was to create a language
that could be used portably to write operating systems. Whilst the goal of porta-
bility was achieved only partially, the C programming language would
eventually become the staple of the games programming community. But there
was a lot of water to run under the bridge before that happened.

In the early 1970s, Intel produced the first commercially available single chip
with a modern central processing unit (CPU) architecture, the 4004. With the onset
of this very large-scale integration (VLSI) technology, it was starting to become pos-
sible for small computing devices to be manufactured cheaply and sold to the
public. A number of games consoles became commercially available, usually sup-
porting very simple games such as Pong – a descendant of Higinbotham’s tennis
game – on cartridge-based read-only memory (ROM) (see Figure 1.2).

So it was still the territory of hardware manufacturers to develop the fixed
content. But as the techniques for manufacturing silicon semiconductor devices
evolved at break-neck pace, it became possible for people to actually have their
own computers at home. Machines such as Sinclair Research’s ZX80 paved the
way for the (better-off) consumer to purchase a computer for their leisure use.
And almost all early computers came with a version of BASIC.

Object-oriented game development6

Figure 1.2
Pong. Anyone for tennis?

8985 OOGD_C01.QXD 2/12/03 12:58 pm Page 6

BASIC was never destined to become a game development tool. Most ver-
sions were interpreted and therefore too slow to perform the sort of number
crunching required for chess and checkers and to update graphics smoothly in
(say) a Pong-type game. But its simple and accessible syntax was to provide a
springboard for a generation to learn some of the principles of programming.
For some, this might have been enough in itself; but many were not satisfied
with the speed and facilities offered by their computer’s BASIC, so they started
using the PEEK and POKE commands to modify data to produce custom graph-
ics and even to write machine instructions. I fondly remember spending hours
typing pages of DATA statements in, usually to some disappointment or frustra-
tion as a typing error trashed my unsavable work.

The computer games business became serious when those who had perse-
vered with their home micros got hold of the second-generation systems:
machines such as the Atari 800, the Commodore 64, the BBC Micro and the
Sinclair Spectrum. These machines supported advanced versions of BASIC, but,
more importantly, assemblers would become available, which allowed program-
mers to ditch the BASIC operating system and program the CPU directly.
Cassette tape storage meant that software could be distributed in a sensible fash-
ion. And so the games industry was born.

1.6.3 My! Hasn’t he grown?
Over the course of the 1980s, game titles grew in scope and complexity. Starting
from Pong et al., games evolved from simple block sprites to the wire-frame
three-dimensional environment of David Braben’s Elite. The public wanted
more; programmers were learning and becoming more ambitious. Game tech-
nology started to grow correspondingly in size and complexity.

Initially, it had been possible for one individual to take a game idea, write the
code, draw the graphics, write the music and generally take charge of all the aspects
of game development. Typical project timescales were from one to six months. As
the games grew in scope and sophistication, two issues became apparent.

First, it might take two or more people to complete a game in a specified
time. Maybe this would be two coders, or maybe a coder and a specialised artist,
but some permutation of skills and people. Not too surprisingly, it would turn
out that two people could not do twice the work of one, irrespective of how the
tasks were divided up. In any case, commercial game development was becom-
ing a team sport.

Second, as the software techniques became more complex, assembly lan-
guage became quite an inefficient way to implement the algorithms. Assembly
programming is a time-intensive skill. Another pressure on assembly language
was the desire of the games companies to produce the same game for several
platforms. Assembly language is largely machine-specific, so the conversion1

process usually meant an entire rewrite.

Introduction 7

1 ‘Conversion’ meaning making a game work near-identically on two systems, as opposed to ‘port-
ing’, which implies simply making a program implemented on one machine work on another.

8985 OOGD_C01.QXD 2/12/03 12:58 pm Page 7

What was really needed was a language that was fast enough to run game
code smoothly but that was also portable, so that large portions could be writ-
ten as machine-independent chunks to speed up the lengthening development
process. Enter the C programming language, written initially for Unix, itself
spawned by game development. Suddenly it all made sense. By the time the 16-
bit consoles (SNES, Sega Megadrive) and 32-bit home computers (Commodore’s
Amiga and Atari’s ST) were on the market, C was gaining favour as a pragmatic
compromise for commercial development.

It was a strange synthesis. C is, like BASIC, a high-level language. But the
similarities stop there. C is a compiled language, and in the 1980s the compilers
– especially for the 16- and 32-bit targets – produced poor output code. More
importantly, C is a structured language written by academics for writing operat-
ing systems (as opposed to BASIC, which is an unstructured teaching language,
and any assembly language, which has no concept of structure). The transition
for many game programmers would be difficult, and there was a lot of very poor
C being written.

1.6.4 From bedroom to boardroom
Not that this was apparent to the consumer. The 1980s were a golden time for
game development, with sales of games on the 16- and 32-bit platforms making
fortunes for some and the development environment starting to move out of
the bedroom and into more formal offices, giving corporate respectability to the
industry. Much was being promised. How much would be delivered? I would
argue that, with a few exceptions, the games industry underperformed in the
1990s, a victim of its history and partially of its own success. It is also my con-
tention that it is easily fixed, that is if changing hearts and minds is ever easy.
To see how, I’ll start by examining the game development process, as it exists
today, in detail.

1.6.5 Summary

Game development has a curious mixture of academic and industrial influences in its
family tree. It has grown from a specialist subject of interest mainly to computer sci-
entists into a mainstream, mass-market, multimillion-pound business. Riding – and
eventually significantly driving – the development of consumer electronics, it has
gained importance and credibility both as a business venture and as a discipline
worthy of academic study.

Object-oriented game development8

8985 OOGD_C01.QXD 2/12/03 12:58 pm Page 8

2.1 Philosophy

To begin with, let’s discuss some of the important principles that govern not
only software development but just about any creative process. They may seem
trivial or obvious, and I hope that they do. If they are obvious, then we all agree
on them. Presuming then that our logic is sound, we cannot fail to agree with
any consequences derived deductively from them.

2.1.1 Context
Let me start with an analogy borrowed from science but applicable in any field.
Ultimately, almost all of modern physics can be described by three equations,
called the laws of quantum electrodynamics (QED). Here they are, in their full
tensor notation, for completeness:

1 1L = – – Fµν Fµν – Ψ
––

ϒµ – ∂µΨ + e Ψ
––

ϒµAµΨ
4 i

Now it turns out that these squiggles are very useful for determining the proper-
ties of photons – particles of light – but not at all useful in working out how
much beer you can drink before you feel very ill indeed. This is surprising, since
both these phenomena are consequences of QED. It’s just that one (the beer) is
very much further removed from the other (the photon).

So what is this metaphor telling us? Well, it’s basically saying that, as
well-meaning and correct as one particular system is, there are places where it
works, places where it still works but you could never tell, and ultimately maybe
places where it does not work at all.

This is a useful lesson: as well as having a system or philosophy, we need
to have some knowledge of how applicable that system or philosophy is to a
given situation.

That’s a bit abstract; so let me make it more concrete. Mr Jones1 has worked
in the Gooey widget factory for ten years, starting as a lowly floor sweeper and

The game development
process

2

9

1 All characters and situations contained in this story are only marginally fictional and have had
their names changed to prevent litigation.

8985 OOGD_C02.QXD 1/12/03 2:26 pm Page 9

rising to office manager. He knows that it takes ten minutes for a worker to make
a widget from the time the raw materials are placed in their hoppers to the
moment the formed components pop out of the press, on to the conveyor belt.
Therefore, it stands to reason and simple arithmetic that in an hour a single
person can make six widgets. Ergo, in an hour ten people can manufacture
60 widgets, and consequently the workforce of exactly 100 widget makers can, in
a ten-hour day, make a whopping 6000 widgets, assuming no mechanical failure.

Sure enough, that’s what his factory has done – more or less – in the time
he’s been there. Furthermore, if there is suddenly a huge demand for widgets,
then he knows he can scale up production by adding a widget maker and
widget-forming machine, or by the existing staff working longer hours.

Under Mr Jones, Gooey has prospered. But Mr Jones gets bored, and eventu-
ally he decides to answer that advertisement he saw in the paper. Another local
company, The Gadget Factory, is looking for a person with management skills to
oversee a software development house writing bespoke graphical user interface
components for a multitude of clients. Well, in short, he applies, gets the job
and utilises his well-founded management practices at The Gadget Factory. Six
months later, it folded due to staff expiring on late shifts.

You see, what Mr Jones failed to appreciate was that although you can make
six widgets in an hour and so you can make 12 in two, it was not the case that if
you can make one gadget in an hour, then you can make two in two hours.
There was a context – a range of validity – where Mr Jones’s management prac-
tices, as correct as they were, were just not very useful.

So our first broad principle is this:

Every principle or practice has a range of validity. There are places where it is
useful and places where it is not useful, irrespective of how true it might be.

It is certainly not true that you can apply simple scaling principles to software
development: increasing staff hours or numbers will not result in a proportionate
change in output, and under some circumstances it can even result in a fall in
productivity. This is due partly to human nature and partly to the nature of soft-
ware development as a creative process. It is a common failure of management to
assume that managing humans is a single skill or, conversely (and just as disas-
trously), that it is all about the technicalities of developing a specific product.

2.1.2 Iterate!
Iteration will be a common theme throughout this book. It is as powerful a
development paradigm as a programming tool, and it is fundamental to almost
all creative processes. Put simply, we expect our game to start simply, maybe
even from nothing whatsoever, and over the course of time to evolve into some-
thing more rich and complex. At times, the process may go backwards – we may
scrap or rewrite pieces entirely – but for most of the cycle we expect to see
growth and evolution.

Object-oriented game development10

8985 OOGD_C02.QXD 1/12/03 2:26 pm Page 10

So what? you say. Well quite a lot, I say. The point is that it’s considerably more
difficult to write a complex system in one step than it is to write a simple system
that exhibits the required behaviour roughly and then evolve towards the complete
requirement in small steps. It’s how Mother Nature does it, after all. As I’ll discuss
later, this powerful notion will allow us to control the progression in quality of all
components of the development process – programming, art and design.

Iteration is so fundamental that it is probably impossible to avoid it. Over
the course of most products, we’ll end up doing then redoing pieces of code, or
graphics, or levels. But there is a big difference between simply letting it happen
and formally embracing it, putting structures and practices in place to make
iteration work for us in some way. A wise saying comes to mind: What cannot
be avoided should be welcomed.

Our second development axiom is therefore this:

Start small. Get bigger through small, incremental steps.

2.1.3 Not all statistics are damned lies
If I throw a die a few times, then I am typically more surprised if the same
number turns up every time than if different numbers turn up. Generally, we
expect there to be some variation in the results of repeated tasks. For example, if
I draw ten circles freehand, then it is very hard to make them indistinguishable
from each other. In statistics, the relevant term is the ‘expected value’, the one
that has the highest probability of appearing. It is just that – the most likely. It
doesn’t preclude other values appearing.

Yet I am continually amazed at how often developers expect one algorithm,
one model, one design, one level, whatever, to be the expected value – exactly
what is required. I have no doubt that there are genuinely talented individuals
who can, time after time, hit the nail on the head while blindfolded, so to
speak. But for the remainder of us mortals, there is a more useful pattern that
helps to guide our creativity.

For any skill that you currently have, if you use it a few times, the results
will – like the circles – not be identical. Some will be better than others (more
circular). Some will be poor, some will be average and some will be good.
Generally, as a skill is exercised over a period of time, the percentage in the
poor, average and good buckets change. When you start using your skill, most
of your hits will be in the poor and average buckets. Typically, with practice and
development, the fraction of poor will go down, the fraction of average may
drop slightly less and the fraction of good will increase. It would be quite
uncommon to produce all poor or all good.

This restates the well-known phases of learning:

● Unconscious incompetence: I didn’t even know I couldn’t do it.
● Conscious incompetence: I’m aware it’s not how I’d like it to be.
● Conscious competence: If I make the effort, I can get the desired result.
● Unconscious competence: I don’t even have to try and it works out.

The game development process 11

8985 OOGD_C02.QXD 1/12/03 2:26 pm Page 11

What can we learn from this progression? Clearly, if we are asked to use a given
skill once, whether it turns out poorly, average or well will depend largely upon
our intrinsic skill and experience levels, but there are no guarantees. The more
we exercise the skill, the more likely we are to hit the good zone.

Given only a single sample, there is also no opportunity to assess relative
merit – it may be difficult to define poor, average and good, with no standard to
compare with. It will be much easier to assess ‘poorest’, ‘OK’ and ‘best’.

Hence axiom three:

Avoid presenting single solutions to critical tasks.

2.1.4 Don’t do it again
Since we are now expecting a natural variation in the quality of work that we
present, we shouldn’t feel too embarrassed about the times when we do screw
up. We can screw up individually, or a whole bunch of us can get together and
screw up cooperatively – the same principle applies. And that’s OK so long as
we’re realising we’re screwing up and we’re willing to ask the question: how can
we prevent this happening again?

Unfortunately, it isn’t always easy to know that you’ve messed up. Here’s an
example from a project I worked on. Artists were producing models for us and
saving their work on to a common network drive. The models and their associated
textures were then built into a single resource file and imported into the game. As
well as building the models, our artists also had to attach null nodes into the
models – points from which we would hang stuff such as cameras and weapons.

On occasion, the number of nulls in a model would be changed and the
previous model on the network drive overwritten. It would then be imported
into the game, where, after an unspecified amount of time, something would
attempt to access a non-existent null and the game would crash. A programmer
would then spend an hour or three struggling to find out why the game hangs
with the poor debugging tools and long resource rebuild times. The artists were
unaware that this went on. Ask them today how things went on the project and
they’d say it was fine.

This was a terrible way to work! Without going into the specifics of what
went wrong, we needed a team member to point out what was going wrong to
all sides and help us find a way to fix it. The moral is:

If something does not work, stop doing it and replace it with something
that does.

And its corollary:

Acknowledge your mistakes. Learn from them, and ask yourself: how can I
prevent this happening again?

Object-oriented game development12

8985 OOGD_C02.QXD 1/12/03 2:26 pm Page 12

2.1.5 Do it again
Making mistakes is part and parcel of the creative process. As we discussed ear-
lier, it’s an almost vital part of tuning our medium- and long-term development
strategy to prune out redundant avenues of exploration. As long as we’re not
profligate in our research, and we make the conscious structural efforts to avoid
or minimise the mistakes of the past, we’ll improve our chances of delivering
our future products on time and within budget.

But rather obviously, making mistakes is only part of the story. Unless we do
(quite a lot of) stuff right, we’re not going to make any progress of any real form.
We would hope that, along the way, we are learning from the things we do right,
and that – where appropriate – in the future we’ll continue to do it. Thus:

If something works, keep doing it.

Whatever it was that worked really well, write it down, get it made into a huge
poster and make sure everyone walks past it on the way to their desks. The con-
tinual reinforcement of good practice can only benefit your business.

2.1.6 Don’t do it again (again)
If you collect up the things you do wrong and the things you do right, you end
up with experience. This is a precious resource for an individual, and an even
more valuable quantity for a development company. If a developer loses its
entire staff after the end of a project – and it happens – then the company’s abil-
ity to deliver within constraints the next time is seriously compromised. This
isn’t a situation we would invite. We would hope ideally to gain experience of
an aspect of development only once and to reuse that experience – in appropri-
ate contexts – in the future. There are several ways to interpret and implement
reuse, and we shall look at them in detail later.

Avoid repeating things you do wrong. Avoid having to redo things you’ve
already done right.

2.1.7 See it from all sides
Humans being what they are, there is a deep tendency for programmers to
exhibit the symptoms of ‘baby duck syndrome’: sticking rigidly and valiantly
with the things we learn first, despite the fact that the world is changing about
us. Being flexible and open-minded is not easy, and taking on new ideas and
concepts without prejudice is harder still, but it is a requirement of existence,
never mind video game development. We become better workers – and easier-
going people – when we are able to weigh up the pros and cons of several
options and decide which to take in a more objective fashion.

Weigh up the pros and cons for all the potential solutions to a problem.
Avoid being dogmatic.

The game development process 13

8985 OOGD_C02.QXD 1/12/03 2:26 pm Page 13

2.2 Reality bites

There is still an aura of glamour about the game development business. Many
people conjure up images of young entrepreneurs devoting their lives to sitting
in front of a keyboard typing, only stopping to wrap their latest Ferrari around a
lamp-post on their way home from another champagne-soaked party. There is a
little truth to this image, but by and large the game development community is
populated with people who would not look out of place in any branch of com-
puting, earning maybe a little less in salary, topped up with occasional bonuses.
In fact, even the Ferrari drivers can find the industry a tough place in which to
make a profit. Here’s a brief look at why.

2.2.1 Hard cash
So you want to write games? Games development in the twenty-first century is
an expensive business. Currently in the UK, an average title will take well over
£1m to develop, and this figure could easily top £2m soon. It is no longer the
domain of the bedroom coders and artists, attracting graduate- and postgraduate-
level programmers and film-industry-quality artists and animators.2 Projects have
grown in time from perhaps a few weeks from start to end in the 1970s to, on
average, between one and two years from concept to shrink-wrap. There is no
typical team size, but, as a rule of thumb, four to six programmers, six to eight
artists and two designers (plus production staff) is not uncommon.

With such a large fraction of costs being spent on salaries, one of the ways
that developers have limited the costs from spiralling out of control is by pre-
venting project timescales from increasing proportionally with the scope and
complexity of a product. When you factor in the likelihood that a product may
have to be developed on several platforms simultaneously, it is easy to see that
the pressures on development teams tend to increase rather than decrease or
even stay roughly static. With many teams already working long hours, there
will soon be no alternative but to work smarter.

For many independent developers, the problems are considerably worse.
The economics of starting and running a small business that generates no
income for the best part of two years force many to the receivers before they get
to mastering. More worryingly, the majority of start-ups that go under fail on
their second product, because when they presented their original demos to the
publishers they had that code and art to build on. For their next game, they
start from scratch.

Getting a good publishing deal is a must, but sadly this is beyond the scope
of this book. However, companies with an enlightened way of working will stand
a better chance of impressing a potential publisher than those who don’t, so I
hope that if what you read here makes sense and you take some of it on board,
then you have the edge over your competitors when going for that contract.

Object-oriented game development14

2 Design is a more eclectic affair, with no currently acknowledged formal discipline backing it.

8985 OOGD_C02.QXD 1/12/03 2:26 pm Page 14

This book is primarily about programming, and the games community has
a different feel to it from other branches. It definitely comes across as a less rig-
orous place, where there is less need to follow the rather restrictive disciplines
that a traditional suit-and-tie software engineering environment might enforce.
In the next section, I’ll look at how that has come about and what impact it has
had on development.

2.2.2 The Hacker’s Charter
Games programming started as an almost amateur affair, with titles being put
together in people’s houses by one or two friends using poor tools and working
stupidly long hours for the love of what they did. The lack of formal training,
lack of discipline, lack of a structured language in which to write their code and
lack of a robust supporting toolset to help the development process led to some
abysmal coding practices. What is worse, they led to an inverted snobbery that
somehow this was The Way to develop games. This has led to what I call the
‘Hacker’s Charter’, the notion that what games programmers do is different to
what other programmers do and therefore anything is justified. So, in this sec-
tion, we’ll look at how (or even whether) games software development differs
from other software development.

Every piece of software that is written has an associated set of priorities. For
example, it is much more important that an online banking system is secure than
that it runs quickly. It is much more important that a nuclear power station’s
monitoring system does not crash than that it has pretty graphics. It is much
more important that my bat responds to my controls in Pong than that there is a
speech-simulated scoring system. So here at least is a common thread for all pro-
gramming disciplines: for every application or library or even code fragment, a
programmer is assessing how to achieve subtasks by considering a set of priorities.

Indeed, for almost every line of code that a programmer writes, there is
often a choice of expression: integer or floating point? Single or double preci-
sion? Pointer or instance? Pass-by value or reference? Recursion or iteration?
And so on.

What the programmer chooses should be influenced by the priorities of the
task at hand. So if the priority is to be really accurate, then only double preci-
sion will do. If it has to be lightning fast, then maybe it should be floating- or
even fixed-point integer. If it has to be robust, then only allow pass-by value (no
invalid addresses to cope with) and use pre- and postconditional status checks
in every procedure and function.

What priorities do games have? That is too general a question. The priori-
ties of a text-based adventure such as NetHack will differ from the requirement
of Quake 3 in some respects. However, to be devil’s advocate for a while, let’s
choose the following relatively common priorities:

● Speed: the game has to run at 50 Hz (60 Hz NTSC). In other words, I must be
able to update the state and draw the world in 1/50 of a second or less.

The game development process 15

8985 OOGD_C02.QXD 1/12/03 2:26 pm Page 15

● Control: the object I’m controlling must respond (perceptibly) immediately
to my changing the physical controller state – whatever that might be.

● Robustness: the game should never crash, especially if that would result in
the loss of a player’s efforts.

How appropriate, then, is the hacker’s claim that these represent unique devel-
opment priorities for entertainment titles?

Robustness
‘Speed, control then robustness’ might be a typical programmer’s assessment of
the top three priorities for the title. However, it will almost certainly not match
your quality assurance (QA) department’s priorities. If your game crashes, then
there is not a shadow of doubt that the game will be returned to you with an A
class bug, irrespective of how well it performs in the other categories. In fact, it
is considerably more important for games to be rock-solid than other types of
software, for two reasons.

First, it is uncommon for games to have intermediate releases to fix prob-
lems found belatedly on released titles. Software patches are released
occasionally, but these are the exception rather than the rule.

Second, many games run from read-only media – a CD, DVD or cartridge –
and it is therefore impossible to patch them once released anyway.

It is undesirable to risk getting a name for unreliable software. This applies
to all kinds of software, not just games, but it doesn’t fit at all well with a busi-
ness model that means you need to shift over 100 000 units just to break even.
It is therefore totally reasonable to argue that – viewed from a commercial
standpoint – all software titles have robustness as their number-one priority. So,
we’ve found something in common between all strands of software develop-
ment: basically, we don’t want to get the customer angry.

Speed
The requirement that games run at 50 Hz (or 60 Hz) is perhaps a little strong. It’s
certainly true for some genres, but as the limits of consoles are pushed by sheer
game complexity, the one-frame update is usually relaxed to two frames. The goal
of the constraint is not to achieve a particular speed, but rather that the graphics
can be refreshed smoothly. The practical implication of the constraint is that we
limit the number and complexity of objects in our game and get them doing as
little as possible (but no less) to satisfy the requirements of their behaviour, as
well as making sure that the data-processing side of our game is efficient.3

These are hardly alien concepts to the world of software development. It is
naive to think that games are the only software systems that require fast data
processing. For example, telephony applications need to multiplex and demulti-

Object-oriented game development16

3 Being ‘optimally efficient’ is just one pie-in-the-sky delusion inspired by the Hacker’s Charter. All
non-trivial software can be optimised ad infinitum, given enough time, energy and inspired thought.

8985 OOGD_C02.QXD 1/12/03 2:26 pm Page 16

plex a vast number of audio streams in real time to avoid signal degradation.
The sort of code that performs this is every bit as optimal as inner-loop game
code, every bit as time-critical as game code, and maybe more so.

Indeed, it is difficult to think of many situations where developers would
not attempt to make sections of code run faster, where this would significantly
improve performance, not compromise other priorities and where the program
fragment in question is at all worth optimising. (A full and seminal treatise on
all aspects of optimisation is given in Abrash, 1994).

I was once in conversation with a proponent of the Hacker’s Charter, who
suggested to me that video games were to the software industry what Formula
One is to the automobile industry. Whilst that might sound very impressive, it
turns out to be a poor analogy. Formula One cars are built at extraordinarily high
cost for a few highly skilled individuals to drive with both financial and physical
risks undertaken to achieve high placing in a competition, and with a view to con-
sequent monetary gain and sporting achievement. The commercial risks are very
high and pay off for only a minority of manufacturers (witness Ferrari’s domi-
nance of Formula One over the years, with McLaren usually second).

On the other hand, developing games software is a business venture that
requires high-volume sales to achieve profitable status and so becomes a balance
between commercial factors and design ideals. Risk levels need to be low to moder-
ate because the one- to two-year lag between initial concept and shrink-wrapped
product will be filled with zero real income, and sales will need to fill that void.

To correct the original metaphor, commercial games development is proba-
bly more akin to mass-producing a sports car than Formula One vehicles.
However, the analogy has limits, and since neither I nor my opponent under-
stands much of the details of vehicle manufacture and research, it is probably
not worth pursuing further.

Control
The requirement that control be perceptibly immediate is a vital prerequisite for
so-called ‘twitch’ games, or indeed any situation where a potential opponent –
human or otherwise – can act or react in a similar space of time. Again, this is
hardly a unique constraint. Imagine a fly-by-wire aircraft control system that
did not service its controllers frequently enough, and then ask yourself if you
would fly with that airline.

Commercial realities
Thus far, no mention has been made of what is undoubtedly the highest prior-
ity of all in a commercial development environment: delivering on time within
budget. That this is considered a management issue rather than a development
issue is again due to the legacy of the game development process rather than
being intrinsic. It should be noted that many or even most commercial endeav-
ours, be they software, hardware or otherwise, overspend and deliver late. There
is no magic wand to wave.

The game development process 17

8985 OOGD_C02.QXD 1/12/03 2:26 pm Page 17

Nevertheless, a team that has delivering on time and within budget as a pri-
mary development goal will generally cost less and take less time than a team that
does not. Historically, the game development process has had a producer or man-
agement acting as a control valve on the developers to constrain their worst
excesses – the tendency of team members (programmers in particular) to ‘go off
on one’ and spend disproportionately large amounts of time on non-critical tasks.
There are two competing pressures here – the aforementioned desire (primarily of
management) to meet the scheduling requirement, and the need to push the
envelope of technology in what is a dynamic and competitive marketplace.

Clearly there are some compromises to be made. A team could spend an
indefinitely long time developing technology, adding features and optimising,
but that would be commercial suicide. It would also be quite dangerous to
release a partially completed game, but exactly how risky would depend on how
complete the game was and how closely it was meeting its other development
priorities. (This raises the interesting question of how we decide whether a game
is complete; we shall look at this issue more closely in a later chapter.) Given
that there needs to be a trade-off between development time and content, it
would be preferable if that balancing act were a part of the project plan rather
than the imposition of constraints on the team.

Many development teams are not used to factoring such considerations
into their plans (and some teams are even happy to work without a plan). The
Hacker’s Charter would have us believe that game development is a serendipi-
tous affair and any attempt to limit the process suppresses creativity. This is
quite incongruous with the reality of commercial software production, and it is
no surprise that many games developers – both small and large – are struggling
to meet the increasingly sophisticated requirements of the marketplace.

2.2.3 So why are games different?
You may be tempted to think that the argument presented here is that games
development is no different to any other sort of software development, but
there are differences and they will inevitably have a bearing on how we
approach the various phases of the product lifecycle. Here, I’ll take a brief look
at what actually makes developing commercial games software different from
other programming disciplines.

Open-ended design
We can draw a distinction between games that are ‘original’, in that they create
a game world that defines its own rules and mechanics, and ‘simuloid’4 games,
which are adaptations of an existing activity – e.g. chess and soccer. In the latter
case, customers would be understandably disappointed if some key feature had

Object-oriented game development18

4 I coin the term ‘simuloid’ to describe a game that looks like a simulation of some real-world activity
but has had adaptation to make it playable as a video game. For example, no soccer title simulates
ball physics, because that leads to an almost uncontrollable playing experience.

8985 OOGD_C02.QXD 1/12/03 2:26 pm Page 18

been omitted, whereas in the former there is greater scope for control of con-
tent. In both cases, we can distinguish three sets of features (see Figure 2.1):

1 Core: the set of features and mechanics that define the title and distinguish
it from other titles. A game comprised simply of core features would not
hang together and would not constitute a commercially releasable product.

2 Required: the set of features that make this a playable and internally consis-
tent title. A game consisting of core and required features is of releasable
quality. However, it lacks the polish that would make it a commercially
competitive product.

3 Desired: the set of features that make it a polished, rounded and complete-
feeling game. For example, visual candy or hidden levels.

Whilst it could be argued that (again) these feature sets are common to all
branches of software development, games – especially non-simuloid – have an
unprecedented amount of control over the feature sets. This ability to redefine
the scope of each of these classes – removing features from one or perhaps shift-
ing them into another – is unique in the scale in which it can take place.

Heuristic content
Because a game is typically more than the sum of many independent real-time
systems, often of moderate to high complexity, it is occasionally difficult to pre-
dict exactly how it will look and feel until the systems are in place. Prototyping
is useful, but often this determines only viability, not playability. It is relatively
common to have to amend content on the fly, or even remove it altogether,
simply because it results in an uncontrollable or dull game. Concepts such as
‘boring’ and ‘difficult’ are, of their nature, highly subjective. What is unchalleng-
ing or dreary for a hard-core gamer may be entertaining and taxing for a less
experienced player. This requirement to balance core content with the intended
user is somewhat atypical for software development, certainly to the degree of
prevalence in games programming.

The game development process 19

Core

Required

Desired
Figure 2.1
Classification of game
features.

8985 OOGD_C02.QXD 1/12/03 2:26 pm Page 19

Artistic content
Many other flavours of software contain artistically rich imagery, but games out-
strip all other kinds by a huge margin. The quantity of 2D – still images,
full-motion video (FMV), texturing, special effects, etc. – and 3D models sets
games aside from any other kind of software targeted at a mass audience. And
whilst this content is usually generated by artists, the impact on games program-
ming is significant: the mechanism by which a model or image moves from an
art package to being an active game object is one of the most crucial pieces of
the development jigsaw and will be looked at in detail in forthcoming chapters.

Control methodology
Most games have a control system that is quite different from other software
applications. For console games – whose host comes with a control pad having
maybe ten buttons and one or two analogue joypads – this is particularly so,
and much work will go into controlling what can often be a rich and complex
system with a particularly limited control set. As stated before, it is a high prior-
ity that game response to control input should be as close to perceptually
instantaneous as possible. Accordingly, user-interface design may be quite differ-
ent from a standard (PC-style) application.

Complexity reduction
At the time of writing, the 2.66-GHz PC has recently come on the market. The
Apple G series offers similar performance levels. This is an unprecedented
amount of processing power, several orders of magnitude more than any sensi-
ble developer can assume as a target machine. At the current time, the bottom
line is that a game should be playable on an Intel Pentium II 200 MHz. This is,
in a sense, annoying, since we don’t get the opportunity to write all the cool
algorithms we can now use with all those floating-point operations (FLOPs) at
our disposal. But it is an old story, and one of the benefits of the Hacker’s
Charter is that it has encouraged the ability to make complex, CPU-guzzling
algorithms work on low-end machines.

Of course, it is all smoke and mirrors, but no less of an achievement for
that. For example, making a realistic (and enjoyable) vehicle simulation run on
a 33-MHz CPU is a great accomplishment, and it is this challenge of reducing
the complexity of a problem whilst minimising the loss to the gamer’s experi-
ence that makes game development as addictive as it is.

2.2.4 Conclusion
It is evident that, like all software, games have a set of priorities that dictate devel-
opment strategies, choice of algorithm and programming paradigms. There are
many genres of game, and they will typically differ in the set of priorities they
observe. However, none of the constraints is unique in the sense that no other
software discipline observes them or at least something similar. It could be argued
that what makes game development unique is the synergy of constraints, the par-

Object-oriented game development20

8985 OOGD_C02.QXD 1/12/03 2:26 pm Page 20

ticular combination of requirements for the development. Whilst this might be
true, any other combination of constraints is just as unique, so in essence games
development is no more unique than any other strand of software development.

The essence of the Hacker’s Charter is that developing computer games is
different from developing other sorts of software and so does not benefit from
the structures and disciplines that have evolved elsewhere in the computing
industry. This turns out to be bunkum, and damaging bunkum at that! Just as
efficient code exploits structure to improve performance, so efficient develop-
ment practices exploit structure to reduce development time and increase
production efficiency. If game development is to avoid becoming prohibitively
expensive and time-consuming, then the Hacker’s Charter must be put to rest
once and for all. In the next chapter, I’ll look at the techniques I consider to be
fundamental to drag game software development kicking and screaming into
the twenty-first century.

2.3 Summary

● Practices have a range of validity, outside the bounds of which they are of limited
use. Knowing these bounds is as important as the practices themselves.

● Software development teams do not scale. Adding team members can actually
hurt productivity.

● Iteration is an intrinsic part of the software development process. We can – and
should – exploit it to our advantage.

● No problem has a single solution, and all solutions have pros and cons. Never
present a single solution for a given problem.

● Teams and team members that learn from their mistakes perform better next
time around.

● If you don’t need to do it more than once, don’t.

● Game development is a business, not a hobby. Its goal is to make money for the
company; great games are a by-product of that.

● The Hacker’s Charter has adversely affected the development, management and
production of games.

The game development process 21

8985 OOGD_C02.QXD 1/12/03 2:26 pm Page 21

8985 OOGD_C02.QXD 1/12/03 2:26 pm Page 22

Many books have been written on software engineering, and it would be
pointless simply to regurgitate their contents here. Instead, we can
apply our context principle and consider the question of what software

engineering practices we can borrow to make games development more effi-
cient. First, we should be clear about what ‘more efficient’ means. The central
problem is that games are getting more complex and resource-hungry but the
team size and project timescales are not expanding accordingly. So we are look-
ing for those software engineering practices that can reduce project timescales
and make better use of team members.

In this chapter, we will discuss some of the problems associated with soft-
ware engineering in the games industry, and their solutions, and then discuss
the most useful techniques and how to apply them in practice.

3.1 The peasants are revolting (or why the Hacker’s Charter
is bad for developers)

The Hacker’s Charter is a huge obstacle to putting in place any sort of structured
process. It is frighteningly widespread, almost ubiquitous. A naive optimist may
hope to reverse this trend locally, perhaps by example. ‘If I can show how much
more efficient it is to do these things than not do them, then they will almost
certainly take them on board’ could be the sentiment, which is fine except in so
much as it does not work. The problem is that it is not possible to stand by and
spectate – it requires active participation and support from all team members.
Clearly, if there is any initial resistance – and there will be! – then the practices
(at best) will fail due to passivity and (at worst and most likely) will fail due to
active resistance.

The best chance you have is to start a company with these practices built
into the working ethos and then enforce them rigorously from day one. You
would ideally recruit a team of like-minded, or at least open-minded, individu-
als who can implement the practices. However, this will be a realistic proposal
for only a minority of cases. Most of the time, there will already be a team of
programmers with varying skills and attitudes, and somehow we must persuade
them to adopt our practices.

Software engineering for
games

3

23

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 23

It is obvious that tough but fair management is required. Teams need to
understand that these practices are being implemented not as some crusade of
pedantry but as a means of generating profit, and that they are the rules.
However, there is a hidden problem.

3.2 The lords are revolting (or why the Hacker’s Charter is
bad for management)

You see, it is not only programmers who subscribe to the Hacker’s Charter; you
will very often find management buying into it too. The reasons are legacies of
the 1980s, when bedroom programmers were turning round software titles in
next to no time. During the explosion of development that occurred in that
decade, there were many cowboy outfits that promised much to publishers but
delivered very little. Trust between publisher and developer became under-
mined; at the same time, the legal issues surrounding deliverables were
tightened in order to prevent those errant developers haemorrhaging money.

As a direct result of the growing mistrust, developers were encouraged to
show significant progress at project milestones to reassure their backers that
work was indeed being done. The term ‘significant’ implies ‘visible’, largely
because the management in publishers is generally not technically minded and
may not be hugely computer-literate. Rather like Mr Jones in The Gadget
Factory in Chapter 2, its evaluation of how things are produced may just not be
applicable in the software business.

This illustrates a clear ignorance of the software development process,
because although (by the Iterate! principle) we are supposedly starting small and
getting larger, we also acknowledge – and carefully encourage – the possibility
that from time to time we can scrap what isn’t working (Don’t do it again). Or,
indeed, we may be writing (say) a memory manager that reduces fragmentation:
no visible result, improved performance after an overnight soak test, perhaps,
but it is uncommon for publishers to watch a game for that long to see nothing
untoward happen.

Clearly, these practices violate the Context and Don’t do it again axioms of devel-
opment. The usual result is that teams are forced to produce visual results – flash
graphics – at the expense of all the other priorities of the game, possibly including
robustness, controllability and even speed. This usually takes place in the period
before milestones; worse still, some time may have to be spent after the milestones,
unpicking the changes that were made, before development can progress.

All this leads to a false belief in what can be achieved in a particular
amount of time. Programmers have been happy to work outrageous hours to
achieve superficial visual deadlines, resulting in a false sense of progress and
even a complete change in the emphasis of the game.

In short, the Hacker’s Charter, which originated in a cottage industry devel-
opment environment, has infiltrated larger-scale commercial development and

Object-oriented game development24

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 24

dominated development practice. Consequently, it has set an unrealistic base-
line that has been taken on board by management, to the detriment of the
products and their profit margins. Since the ultimate objective of any commer-
cial enterprise is to continually increase its profitability or stock value, it is clear
that if you are working for a company exhibiting these modes of behaviour,
then there is something very rotten in the state.

3.3 Stopping the rot

Having been presented with a bleak diagnosis, be reassured that the prognosis is
still reasonable. Development is, by its nature, a synthesis of both risky and
dependable strategies, and it is in the management of the strategies that we seek
to improve the situation. As stated earlier, the discrepancies between the goals
of development teams and management, and a general lack of trust between
them, are a major source of concern, and it is to this that we shall turn and seek
ways of improvement.

3.3.1 From bedroom to office
The transition from game programming as a bedroom hobby to a large-scale
commercial venture was very rapid, arguably too rapid for its own good. As pro-
ject sizes grew, there came a point when one or two individuals just could not
turn them around in a realistic timescale. Individuals who were unused to work-
ing in teams, sometimes with unfamiliar people, would bring programming
practices that were suited to only one person – themselves. The metric for
recruitment was not how team- or product-oriented candidates were, but simply
how technically proficient they were: usually in the form of a demo. For a
while, the demo scene became a major target for acquiring programmers and
artists, but many companies subsequently discovered that a good demo coder is
not necessarily a good game programmer. So what makes a game programmer?
It is up to employers to define the role of programmers within their corporate
environment. Defining exactly what skills are required for a professional game
programmer is the first stepping-stone to stopping the rot.

A programmer’s lot
It goes without saying that a game programmer should be able to program.
Nevertheless, on closer inspection it is a bit more of an open-ended issue. For
example, if you are seeking a C++ programmer, do you consider a very compe-
tent C programmer? How about a Java programmer?

While these are pertinent questions that form the core of many an inter-
view, they are not the whole story. A programmer does more than program in
their day-to-day course of work. Here is a (non-exhaustive) list of the sort of
tasks a programmer will perform during the course of a project:

Software engineering for games 25

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 25

● contribution to the overall design and plan of the project;1

● bottom-up and top-down analyses of the respective parts of the problem
domain;

● scheduling of the respective components as a result of the analyses;
● implementation and maintenance of appropriate algorithms in a fashion

compatible with the goals and priorities of the project;
● monitoring of progress of their tasks;
● liaison with art, design, music and production as required;
● liaison with the lead programmer;
● participation in technical review;
● occasional support of other programmers.

Clearly, there is quite a bit more to the role of programmer than simply pro-
gramming. Communication skills, design skills and even production skills are
required for a programmer to perform their daily duties effectively. Candidates
will vary in their abilities to perform any one of their tasks, and it is therefore
an employer’s responsibility, having employed a candidate, to provide any extra
support and training required to improve their skills in these areas.

The more observant of you may have noticed a dirty word in that last sen-
tence. The concept of ‘training’ is often laughed at in the games industry, at
least as far as programming is concerned. There is an attitude that games pro-
gramming cannot be learnt, that it is simply in the blood – yet another
hangover from the Hacker’s Charter. Technical proficiency – writing the fastest,
smallest, most gee-whiz code – has been valued over and above other skills that
a programmer can bring to the team and the company.

The training need not be formal. It can be an initial induction followed by
occasional but regular support by lead and head programmers (and no doubt in
the other disciplines). Nevertheless, before training can be introduced into the
workplace, there is something that has to be put in place: a set of clear working
practices to support the list of duties.

3.3.2 Working practices for programmers
The company should invest some time in creating a working practice definition
for each role it defines within the organisation. It should be thin enough to be
unintimidating but comprehensive in its scope. Generally, it’s best to leave out
the justifications for why the practices are the way they are, lest you end up with
a War and Peace-size document that people can still take issue with. It should be
unambiguous in its statement that ‘this is how we do things’, and it should be
enforced by senior staff and management as firmly and as fairly as possible.

There are many subscribers to the Hacker’s Charter who will not take at all
well to this document and its enforcement, or indeed to any attempt to for-

Object-oriented game development26

1 I define a ‘design’ as a description of technical content; a ‘plan’ is how one intends to go about
implementing that design.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 26

malise working practice. Though not unique to the games industry, they are
very prevalent, and they represent one of the biggest challenges facing commer-
cial game development. These individuals – usually exceptionally talented on
the technical side of development – believe (among other things) that their pro-
gramming is an articulation of their creativity and that any attempt to formalise
it is tantamount to suppression of their freedom of expression. To be fair, there
is a grain of truth in this: it takes effort to learn new systems, and that effort
could presumably be deployed elsewhere, sometimes with beneficial effect.
Nevertheless, the practice of laissez-faire programming is better suited to individ-
ual R&D projects than to team-based development, and there are few
commercially successful disciplines in the world – not just in software but in
any profit-driven creative discipline of sufficient maturity – that do not have a
working practice policy. The author can find no justification why the games
industry should be any different.

This poses a dilemma for an employer, illustrated by the following joke:

Patient: Doctor, please help. My husband thinks he’s a chicken.
Doctor: My word, that’s awful. How long has this been going on?
Patient: About three years.
Doctor: That long? Why didn’t you see me sooner?
Patient: Well, we really needed the eggs.

Many employers are happy to put up with proponents of the Hacker’s Charter
because they are often technically gifted and prolific. The lack of skills in other
areas (the communication and design and support sides) is overlooked or tolerated,
usually to the long-term detriment of the studio and the products, because on the
surface there is no better alternative. The skills are difficult to replace because at
present the demand for highly skilled technicians hugely outstrips supply.

Conversely, the scarcity of sufficiently competent games programmers in
the labour market is such that any individual who can show the requisite tech-
nical skills and does not otherwise fluff their interview stands a considerably
better than even chance of employment.

As a consequence, most games companies have recruited one or more
‘chickens’ and have become dependent on their ‘eggs’ ever since.

This is not to suggest that their eggs are not tasty and nutritious. Or, to col-
lapse the metaphor, that they do not produce competent or even more than
competent software. It is the impact they have on the development culture of
the team and the studio that is at issue. ‘Chickens’ require sensitive but firm
management if they are to be prevented from perverting company objectives in
favour of their own.

3.3.3 Software standards
A component of many working practice policies is a software standard, a set of
rules and conventions governing how code is produced and evolved. This is an
area that can spawn religious wars about minor technical details, so it needs to

Software engineering for games 27

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 27

be handled with some sensitivity. It is true that many projects have, in the
past, been completed successfully without the need for a team or a studio to
agree on a set of standards. It is also true that most large developers adopt one,
most commercial libraries are written with one, and many teams end up agree-
ing on one.

It is important to keep the issue in proportion. Software standards are only
a part of development, and a small part at that. Creating over-proscriptive and
pedantic standards probably does more harm than good: it becomes difficult for
programmers to memorise a huge volume of rules, it is correspondingly difficult
to enforce a large policy, and there may well be a case that such an emphasis on
presentation detracts from the substance of what is being presented.

A standard is simply a beginning point, a place where a professional team
(and your studio is just one big team) agrees on how it’s going to do things.
Having agreed upon this, it should be pointed out that it is a programmer’s profes-
sional responsibility to follow the standard (except in a few circumstances when it
makes more sense not to). Most will. You may be unlucky enough to have a
‘chicken’ in the company who objects to either a particular standard or standards
in general. If this is the case, then you should be concerned: if they object to
something as simple and commonplace as having to follow a software standard,
then they are more than likely to be a source of agitation with weightier matters.

As mentioned above, particular standards comprise a topic that generates
heated and technical debate. One thing if any is apparent: you cannot create a
standard that will please2 all of the people all of the time. Or to put it another
way, for every individual there will be some feature of the standard they don’t
like. Such is (professional) life. It is useful to divide individual elements of a
standard into those that are made for a specific purpose, e.g. enforcing good
practice, a particular naming convention, and those that are apparently arbi-
trary, e.g. do we use Kernighan and Ritchie-style braces

void SomeFunction() {

}

or the more modern style

void SomeFunction()

{

}

which is largely a matter of personal taste and habit.
It is important to be pragmatic when it comes to the enforcement of software

standards. No one is going to enjoy pernickety policing where minor deviations
from the standard are pointed out in copious numbers. Most conscientious pro-

Object-oriented game development28

2 ‘Please’ meaning ‘be acceptable to’ in this context.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 28

grammers will deviate from a standard that is not their adopted or habitual stan-
dard some of the time, so it is best to simply hope for (say) an 80% hit rate. We
can then decide which aspects are solid (you must do it this way) and which
aspects are flexible.

Context is important here. It is usually of greater importance to enforce a
policy more rigorously in shared or public code than in private or implementa-
tion code, though it should be borne it mind that any healthy development
philosophy will propagate useful or generic pieces of specific private code into
the public shared area. In other words, private code should be written as if it is
going to be public some day.

Getting over the hurdle of there actually being a software standard is simply
the first obstacle. However it is approached, there is still the debate over the
content of the standard to come. There is almost a law in development circles
that says that the intensity of the debate about an issue of policy is proportional
to some positive power of how far you try to spread the debate. In more con-
crete terms, it is trivially easy to create a standard yourself; it is mildly awkward
to create a standard for your team; it is difficult to create a standard for a studio;
and it is very difficult to create a policy for a set of geographically separate stu-
dios. In general, it is also harder to set a standard when a studio has been up
and running for some time than it is to impose one at day one. So there is a
strong motivation to keep decision making as local as possible and to make the
decisions as early as possible. For this reason, the most efficacious method of
introducing a software standard can be divided into two stages:

1 Decide what the abstract goals of the standard are. For example, many stan-
dards require that a programmer prefix global variable3 names with ‘g_’.
The abstract version of this is to require that global variables are named in a
clear and consistent way that distinguishes them from local and module-
scoped variables. A set of these abstract goals taken together becomes the
large-scale software standards policy.

2 Allow each team to implement the standards policy in a way that they
agree on. In the case of the example above, some teams may decide to use
the ‘g_’ convention for globals, others may prefer just a ‘g’ prefix, while
others may still prefer a module identifier prefix – ‘<MODULE NAME>_’.
These should be agreed on (if necessary) at the start of a project if possible.

It is then up to the teams to police their own standards in the way they see fit.
As far as management policy should be considered, it is part of a programmer’s
job description that they follow the standards agreed by the team they are work-
ing in. Deliberate failure to do so should be treated in an analogous fashion to a
programmer who refuses to write any code. No team should be allowed to be an

Software engineering for games 29

3 Not that I am suggesting that your code should contain global variables. They are the spawn of the
devil and should be avoided.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 29

exception. It is difficult to defend the plea of ‘They’re not putting “g_” in front
of globals, so why should we?’ If that is allowed to stand, the chickens will
really run the roost.

Often, a studio runs an anarchic system for a while and then realises that
the code it is producing is just not of a professional standard: there is confusion
about inconsistent naming, no one can tell the difference between pointers and
instances, global variables and local variables clash causing unpredictable
behaviour, etc. Introducing a standard to a project that has been running for
some time often has programmers performing days of boring multiple search
and replaces and rebuilds, ending up with an identical-looking game and a heap
of frustration with the whole standards business. This is clearly an undesirable
state of affairs, and the only sane way to avoid it is by a change-as-you-go
policy: it’s still search and replace, but it happens during the normal course of
development so that programmers are still progressing the code base. It is still
not ideal and, as stated earlier, it is always easier on everyone involved to set the
standard sooner rather than later.

So what would the content of a software standard policy be? There will be a
distinction between features that are common to all relevant languages and
those required for a specific language. Since we have not discussed the issues
around choice of language yet, we defer the presentation of an actual policy to
that section.

3.3.4 Good working practice
A software standard is a start, but no more than that. Over and above that, there
are other working practices that help a professional and their manager to moni-
tor their work throughout the course of a project. These techniques are
discussed at programmer level in McConnell (1993) and at production level in
Maguire (1994).

3.3.5 Good programming practice
All computer languages currently in use for game development have idiosyncrasies
that catch out the inexperienced or unwary programmer. Often, it is a mistake
made once and never made again. Just as often, it is a recurrence of a previous mis-
take, albeit in a slightly different form. Many of the common – and subtle – pitfalls
are well documented in books, e.g. Maguire (1993), Myers (1995) and Myers
(1997). What is evident from such books and personal experience is that the learn-
ing of a computer language does not stop at mastering the syntax – not even
nearly! An employer should therefore seek to continue the education of its staff.

A well-stocked library is an essential component of this ongoing education
process. Making a title such as Maguire (1993) a required part of an induction
process for a new employee can be a good start. Similarly, a good-practice docu-
ment that distils the important elements of both books and experience into a
series of short ‘try to do this, try to avoid that’ bullet points is well worth con-
sidering (but keep it separate from the coding policy).

Object-oriented game development30

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 30

However, the tendency is for the programmer to read these, get sucked into
work and subsequently never find the time to further their reading. If we are to
make the education of staff an ongoing process, it is therefore desirable to make
learning part of the corporate culture.

This is not such a huge step. The predominant learning mechanism in the
industry is by osmosis: programmer A talks to programmer B and passes on a snip-
pet of information, or B reads some source code. The main problem with this is that
we are as likely to pass on poor practices as good ones, so although we do need to
encourage osmosis, we also need to be actively supporting the process. There are
two ways of accomplishing this (and other) end: peer review and paired tasks.

Peer review
It is a good idea generally for a team to take a day once in a while to review the
work they have done so far. An ideal time for this is just after a milestone. This
prevents the review process breaking the flow of development. Peer reviews
need to be as informal as possible; there’s nothing much worse than participat-
ing in a witch-hunt4 and the emphasis of the process should be on:

● ensuring that what has been implemented corresponds to the design (and
ascertaining any reasons for departing from the design);

● disseminating broad implementation details to the team;
● sharing programming paradigms with the team;
● monitoring individual skill levels and performances;
● re-evaluating the next stage in the plan: has anything changed since the

initial design that has generated extra requirements, or even invalidated
certain areas?

● what is working? What is not working?

In essence, the review should be a positive process from which everyone can
gain. So although the feel should be informal, there needs to be some structure
imposed. Here is a suggestion for how the process should be handled:

● Decide on a review date. Book a meeting room for the whole day. Large
teams may need several days, or alternatively create several parallel mini-
reviews where subteams handle certain parts of the source tree.

● Decide what code is to be reviewed. As the code base grows during develop-
ment, it will become impractical to review it all. Typically, review the larger
systems, the newer systems, and those systems earmarked for modification
in previous reviews.

● At least 48 hours before the review day, make sure all programmers have
a copy of the relevant source code. A printout is preferable, since the best
time to look over code can often be on the bus or train home or in the bath.

Software engineering for games 31

4 Being a witch during a witch-hunt springs to mind.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 31

Fan-fold printout is preferable to A4 laser copy because you can see long
lines in entirety and there’s no need for stapling so page order is preserved.

● On the review day, get each programmer to present the design for the
module he or she is reviewing, then its implementation. Keep each presenta-
tion as short as possible: no line-by-line dissertations. The team should then
discuss any issues arising, including where the code is going in the future.

● After review day, any necessary changes should be made. It may be neces-
sary to rerun the review if significant alterations or additions are required.
Otherwise, the lead programmer can approve the modifications.

Special mention is required for a review held at the end of a project. Often called
a ‘post mortem’, it is perhaps surprisingly the most important review of all. If you
hold no other reviews, hold this one. The good news is that there is usually more
time to spare during a product’s ramp-down phase, so finding a day – or possibly
more – can be easier and well worth the effort. Several important issues (over and
above those mentioned previously) need resolving at the end of a product:

● Is this a one-off product or could/will there be a sequel? How much – if
any – of the code base can be used in the sequel?

● Has the product spawned ‘core’ technology: components that can be reused
in other products?

● Again, the most important issues: what went right, what went wrong, and
how would we do it differently if given the opportunity?

Paired tasks
A problem with the peer-review process is that it is a discrete process: it only
happens once every few weeks or months, meaning that there is often a large
bulk of source code to review. It may be preferable to make reviewing a more
continuous process, and one way to achieve this is to pair up programmers on
significant tasks in the project. There are two ways of making this work:

● one of the pair – usually the more senior – is appointed to a ‘reviewer’ role; or
● each of the pair is jointly responsible for reviewing the other’s code.

Which of these two methods to adopt will depend largely on the distribution of
experience within the team.

Making two people jointly responsible has a number of benefits and costs,
which we shall examine here.

Pros
● Critical tasks become less prone to slippage because of an individual becom-

ing ill, going on holiday or even resigning. This loss of specialised skills is
one of the banes of the business (and is, of course, a consequence of the
Hacker’s Charter).

Object-oriented game development32

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 32

● Code designed, written, maintained and policed by two programmers can
be considerably more robust.

● It provides an effective way of implementing ongoing training and staff
assessment if a trainee is paired with an experienced programmer.

Cons
● Two paired programmers do ‘less’ work than two individual programmers

working on separate tasks. The quotation marks suggest that although a
smaller volume of code is produced per working day, the code may be more
bug-resistant and that therefore time may be saved in the long run.

● It is not clear who watches the watchers. Monitoring and supervising the
pairs may require effort in itself if dysfunction becomes evident.

Interestingly, since the peer-review and paired-task methodologies are not
mutually exclusive, the author suspects it may be beneficial to run both sys-
tems, thereby annulling the opposed pro/con features (as well as reinforcing the
independent pros and cons).

3.3.6 Code reuse
The Hacker’s Charter generates a diverse and destructive mythology in its wake.
What is amazing – and equally infuriating – is when intelligent programmers
who subscribe to the charter transform the personal statement ‘I don’t know
how to do it’ into ‘It can’t be done’. Amazing because these individuals are
happy to solve other problems of considerably greater intractability. Amazing
because not only do they make the statements, but they can also provide a rich
framework of supporting ‘evidence’ as to why ‘it can’t be done’.

Code reusability is one of the issues that provokes the strongest reaction
from charter proponents. They will claim that it can’t be done, and if it can be
done then it isn’t worth doing, and if it is worth doing then it probably isn’t
reusable. Disingenuous philosophies such as these present an almost impenetra-
ble barrier to what is a difficult software engineering discipline.

It is tempting to attribute this to the history of game development, but it
turns out that while there is truth in the idea that the attitude is a hangover
from the 1970s, it is not the whole story. Speak to many of the seasoned devel-
opers still battling away in the industry today, and you will realise that their
livelihoods once depended on having reusable code.

Working as freelance programmers from home with amusingly short turn-
around times, their bottom line was that if they did not deliver, they were not
paid and so did not eat. In order to shorten the development period, they
spent some time coding their keyboard readers, sprite renderers and other com-
monly used code segments. It is interesting that this pragmatic strategy was
being used at the same time as the Hacker’s Charter was evolving. Clearly, it
shows that making code reusable was simply a question of attitude, not of
technical difficulty.

Software engineering for games 33

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 33

Today the issues are similar. Though most employed programmers are not
living hand to mouth, with projects (and hardware architectures) becoming
larger and more complex the cost of development is continuously increasing. It
is the author’s assertion that code reusability will become a more and more
important priority of development teams, and the difference between the com-
panies that are profitable and those that fold will be in how and whether they
manage the issue.

Now we do need to be a little careful here. Today’s game architectures are
considerably more complex than those of the 1970s, and what worked then
may not work very well now. Most games are considerably more than a few
input routines and a few sprite drawers, and it could – and has – been argued
that reusable code can form only a small percentage of the final product. This is
far from the truth, mainly because reusability, on closer examination, is a little
more complex than it appears initially.

To start with, we can define more than one flavour of reusability. (Note that
at this point we do not imply any particular reuse mechanism – it could be any-
thing from cut-and-paste of code to libraries.) These classes of reusability may
coexist and even overlap within a project or set of projects:

● Functional reuse: software development would be a tedious and error-prone
process if we could not write functions or subroutines to perform tasks that
are required in several places. When we take a piece of code and place it in a
function that we call multiple times, we are performing one of the simplest
kinds of reuse that there is.

● Horizontal reuse: a piece of software is reused horizontally if it is specifically
intended to be shared by a number of projects being developed simultane-
ously. Horizontally reused software entities have a typically short lifespan in
that they are not intended for use in future developments (though they
may end up so through either deliberate policy or inertia.)

● Vertical reuse: a piece of software is reused vertically if it is intended for use
in current and future products. Vertically reused software needs to be rather
more future-proof than horizontally reused software and is, in general,
quite a bit more difficult to write.5 Pragmatism dictates that the software
has a well-defined shelf life – a number of titles it will be used in – before it
is re-engineered or replaced.

● General reuse: a piece of software that is intended to be reused both horizon-
tally and vertically is said to be reused generally. It is a little more difficult
to write a generally reusable system than a horizontally or vertically
reusable system.

● Engine reuse: often, a system (or set of systems) can be comprehensive
enough to support the majority of game functionality. Such a code base –

Object-oriented game development34

5 The difficulty comes in avoiding writing systems that are so general that they are awkward to use
and suffer performance degradation, or too specific to be useful in more than one product.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 34

often referred to as an engine – can form the basis of many products. For
example, Epic’s Unreal engine is a licensed first-person viewpoint renderer
that integrates an object-oriented scripting system.

● Pattern reuse: very frequently we find ourselves writing pieces of code that
look almost identical to others we wrote earlier, maybe with only semantic
differences. Many languages provide a mechanism for reusing these code
snippets: C and assembly have their preprocessor macros; C++ has a power-
ful template paradigm on top of its C heritage. Patterns are a currently
popular topic in the C++ development community and are discussed in
detail in such books as Gamma et al. (1994).

● Framework reuse: similar to pattern reuse, frameworks are systems that do
little or nothing in themselves but provide a paradigm from which to hang
functionality. For example, an application may not have much more than
an abstract application type and an abstract data model type, but it guides
the development of an application in a logical and consistent way.

● Placeholder reuse: not all software written is intended for release. Often we
write a simple version of something to get the ball rolling and replace it
with a production version later on when it makes sense to do so. Just
because we don’t release it doesn’t mean we throw it away. If it was useful
as a placeholder in one project, then it will be useful as a placeholder in
another project.

● Component reuse: sometimes we write code for one project that later turns out
to be reusable in another. A set of files that can be lifted out of one project
and placed in another with minimal integration work is termed a ‘compo-
nent’. Components should be as simple as possible and should not be
dependent on resources that are not common to all projects (dependencies
increase the size of the component and thus reduce their reusability, draw in
features that may not be wanted or may even cause compile and run-time
issues within their new environment, and increase compile and link times).
For a detailed treatment of component development, see Lakos (1995).

● Copy-and-paste reuse: in some circumstances, we may want to avoid making
two discrete systems dependent via a reusable element even though they
require the same functionality. In this case, we may be tempted to create a
private function or object, test it, then copy it from one file and paste it in
the other. This is fine, but there are a couple of gotchas that should be
heeded. First, there is the increased maintenance. If we need to add extra
functionality in one place, then we may need to propagate it to all the
places where we pasted. Second, if we find a bug in one copy, then we can
be sure it exists in all the other copies and we need to be very sure that
we’ve changed all the instances before proclaiming the bug as ‘fixed’.
Clearly, copy-and-paste reuse is applicable only for small and relatively
simple systems – the larger the element, the greater potential for hidden
problems and for addition of non-generic behaviour. If the component does
something non-trivial, then it will be a candidate for sharing publicly and

Software engineering for games 35

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 35

we start introducing the dependencies we tried to avoid. We can make our
lives easier by ensuring that these reused elements are 100% private – they
appear in no public code, are not externally accessible and are mentioned
nowhere in interfaces.

So there are several ways to develop reusable code, from the humblest macro to
the most powerful template libraries. What they all have in common is the fol-
lowing question at their root:

Will we need this more than once?

It’s an easy question to ask and it isn’t all that hard to answer. Indeed, answer-
ing ‘yes’ in as many cases as possible tends to lead to projects that even in the
worst-case scenario of ‘canning’ can be happily cannibalised for many features
that would otherwise draw valuable time from the team.

Hacker’s Charter proponents may argue that it is difficult6 to write reusable
complex systems, and that it is pointless writing simple ones. Experience tends
to show the contrary: indeed, the more complex the system, the better is the case
for reuse (though other factors will be taken into account as well). As for simple
systems, they tend to be what complex systems are built out of. Besides, the word
‘simple’ is misleading. Consider, for example, the requirement of storing objects
in a linked list. This is a fairly atomic operation and certainly very common. To
write a linked list module every time one is required would be a particularly risky
way to develop: the probability of creating new bugs in every implementation is
very close to 1. It makes much more sense to write a list module, test it thor-
oughly – once! – and reuse it (by some mechanism) where it is needed.7

The core myth
Central to the resistance to writing reusable systems is the belief that it takes
longer to write a reusable entity than a bespoke one. There is certainly some
truth in this assertion, though again the implication is that because it takes
longer it therefore takes prohibitively longer. It is difficult to justify this view on
any timescale longer than the duration of one product. Clearly, if the code we
are writing already exists and has been incorporated into a previous product,
then it takes no time at all to write and test. So even if we accept the notion
that it takes longer to develop the reusable software, we can consider the extra
time as an investment and be happy with that.

However, the author thinks this is a little conservative and offers the propo-
sition that writing reusable code is a skill that improves with practice. The more
experienced the programmer, the smaller will be the difference between the
development time for non-reusable code and that for the reusable code.

Object-oriented game development36

6 Prohibitively difficult is what they imply.
7 Though often the reuse mechanism will depend on the context in which the list will be used.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 36

Exactly what the time difference will be depends upon many factors and
probably cannot be generalised. For small systems, the difference will be small.
For large systems, it will depend on the proportion of reused functionality from
small systems to the amount of specific functionality and new reusable function-
ality required. In other words, design is critical to creating large reusable systems.

How to write reusable code
So far, we have established that writing reusable code is both fundamentally
required if development is to be an economic process and certainly possible, if
only because there are so many ways to do it. That does not mean that it is triv-
ial to implement, and it requires developing the attitudes and skills of
programmers who have become used to more focused development strategies.

The simplest way of achieving this end is to set specific reusability targets at
the outset of the project; in other words, one of the project priorities is to produce
a set of reusable systems, in whatever sense the reuse is implied. Exactly what – if
anything – these systems are will depend on the design phase of the project.
Typically, at the start of the development lifecycle, we will have a design docu-
ment that in general should not be treated as complete or even comprehensive.
The technical design process will translate the design into a set of core mechanics
that form the foundation of the game, and a top-down analysis then yields a set
of systems that will be required to implement the core behaviours.

During the course of this top-down analysis, it will be possible to identify
systems with reuse potential.8

However, this will pick out only the vertically reusable components:9 to
find the horizontally reusable parts (in those studios where more than one pro-
ject is developed simultaneously), it will be necessary to broaden the scope of
the search and involve other teams. In general, communication between teams
can benefit all parties, and it is therefore useful to involve at least the lead pro-
grammers of all the development teams in some of the proceedings of the
technical design. The author recommends a design summary meeting after the
major details have been thrashed out, at which the horizontally reusable com-
ponents can be identified.

Summary

● Reusability has a broad scope, from writing single functions to creating entire
architectures.

● Reusable systems rarely happen by accident. They may need designing and plan-
ning on a team-, studio- or company-wide scale.

Software engineering for games 37

8 And, indeed, a corresponding bottom-up analysis will yield a number of existing reusable systems
that can be incorporated at little or no cost.

9 In the weaker form of the term ‘component’.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 37

● Writing reusable code is an acquired skill that needs to be fostered.

● It need not hurt development time to create a reusable system where appropriate.

3.3.7 Dependencies: the curse of Hades
One of the major obstacles to code reuse is when you cannot take what you
want without having to take stuff that you don’t want, stuff you don’t need or
stuff that will actually cause you problems. Much of what we’ll talk about in
this section will boil down to eradicating, or at least minimising, dependencies
between classes, components and other levels of the hierarchy.

Dependency is insidious. The more you allow it to creep into your code, the
less reusable your systems become. Remember that dependency is transitive: if A
depends on B and C depends on B, then C also depends on A. Or to put it
another way, dependencies are difficult to sweep under the carpet. In the long
run, it is easier to write and maintain reusable systems if you keep the depen-
dencies at bay, and people are more likely to reuse your code and be able to
understand your code if they have one or two components to consider rather
than a bunch of interlinked spaghetti.

However, there are dependencies and there are Dependencies. Within the
context of C++ development, let’s enumerate the major types of dependency we
will encounter in the following subsections. We’ll say that two components – a
single cpp/hpp file pair – are dependent on each other if there exists any sort of
dependency between A and B or B and A.

Strong dependency
A strong dependency exists between components A and B if A.hpp must include
B.hpp to compile and link successfully:

// B.hpp

#include "A.hpp"

class B

{

A m_A;

};

Hard dependency
A hard dependency exists between components A and B if A is strongly depen-
dent on B and B is dependent on A:

// B.hpp

#include "A.hpp"

Object-oriented game development38

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 38

class B

{

public:

B();

B(int i);

private:

A m_A;

};

// A.hpp

class B;

class A

{

public:

A(int i);

B Foo();

private:

int m_iData;

};

// A.cpp

#include "A.hpp"

#include "B.hpp"

B A::Foo()

{

return(B(m_iData));

}

Weak dependency
A weak dependency exists between components A and B if A.cpp needs to
include B.hpp to compile and link successfully:

// B.hpp

class B

{

public:

B();

private:

};

Software engineering for games 39

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 39

// A.hpp

class B;

class A

{

public:

A(int i);

B Foo();

private:

int m_iData;

};

// A.cpp

#include "A.hpp"

#include "B.hpp"

B A::Foo()

{

return(B(m_iData));

}

Soft dependency
A soft dependency exists between A and B if A uses only pointers or references
to B:

// A.hpp

class B;

class A

{

public:

A(B * pB);

private:

B * m_pB;

};

In terms of seriousness, these dependencies order themselves this way (from
most to least damaging):

1 hard
2 strong
3 weak
4 soft

Object-oriented game development40

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 40

It is usually possible to move at least one step down this order: given a system
with hard dependency, a variety of software engineering techniques can be used
to turn it into a strong dependency, and so on. Sometimes, though, a hard
dependency is exactly what is wanted – for example, to optimise the communi-
cation between classes in the components – so it would be quite wrong to
suggest that all dependencies can and should be reduced in strength.
Nevertheless, it is unusual to require a hard dependency, and if you end up cre-
ating one – by accident or by design – it may be worth re-evaluating the
components to see if a cleaner implementation can be engineered.

Often, the dependency is quite unnecessary and may result from accidental or
legacy inclusion of a header file. Tools exist that detect whether header files that
are included are actually required – for example, Gimpel Software’s PC-Lint. But
usually, a casual inspection can weed out the totally unnecessary ones: the ones
where the classes, types and free functions declared in the header are unused.

Then there are the cases where we refer to objects by pointer, reference or as
a return type or typedef only. Again, if the header file has been pulled in, it can
easily be pushed out and replaced with a forward reference. Remember, it’s not
just a better design when you do this: it compiles and links faster too.

// All these just need a forward reference to MyClass.

class MyClass;

void Foo(MyClass * pClass);

void Foo(MyClass & aClass);

void Foo(MyClass aClass);

MyClass Foo();

typedef std::stack<MyClass> MyList;

For the remainder of the dependencies, you can try a number of techniques.

Strength reduction
The idea with strength reduction is to replace strongly binding relationships
with less binding ones. Inheritance is the most strongly binding: not only do
you need the declaration of the inherited class to implement it, but also once
you’ve done it then you can’t undo it, i.e. inheritance graphs are static by
nature. There is, however, a distinction between public, protected and private
inheritance. Private inheritance hides the inherited class and is more akin to
ownership. Protected inheritance falls somewhere in between.

#include "Base.hpp"

class Derived : public Base

{

};

Software engineering for games 41

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 41

Next most strongly binding is ownership, which is only slightly less strong than
inheritance, and most closely resembles private inheritance. To grant owner-
ship, you still need the header file declaring the owned class, and once you’ve
decided what the owned class will be, there’s no going back.

#include "Owned.hpp"

class Thing

{

public:

private:

Owned m_Owned;

};

Least binding of all is reference. You don’t need a header file to use a reference:
just forward declare the class. There are two types of referencing in C++, one
confusingly called a reference and the other called a pointer. Of the two types,
reference is the stronger binding because a reference can be set only once
during construction:

class Referred;

class HasReference

{

private:

Referred & m_pInstance;

public:

HasReference(Referred & aThing)

: m_rInstance(aThing) // Can’t be changed after this.

{

}

};

Pointers are the most flexible of the bindings (and, consequently, the hardest to
manage). They can be set and reset at will, and they provide much of the flexi-
bility in design and richness that C++ offers.

class Referred;

class HasPointer

{

private:

Referred * m_pInstance;

Object-oriented game development42

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 42

public:

HasReference(Referred * pThing)

: m_pInstance(pThing) // Changeable anytime

{

}

};

By replacing a more strongly binding relationship with a weaker one, we can
reduce the interdependency of components. So, for example, we may consider
replacing ownership with holding a pointer:

There are a couple of (small) penalties to pay for this strength reduction: a slight
drop in performance for that extra dereference, and the need to use dynamic
memory management.

Notice that there is an intimate connection between the strength of a rela-
tionship and the requirement to include a header file. Reducing the strength of
relationships often goes hand in hand with speeding up compile and link times
too. But before you go away and start chopping away at your inheritance graphs
and replacing instances with pointers, bear in mind that:

● If you want to in-line public or protected functions in a class, you will need
to include the header irrespective of the strength of binding. Private in-lines
can – and should – be defined in the cpp file.

● Weakened bindings do not necessarily result in better code: it’s possible to
compromise designs by strength reduction for the sake of it.

Refactoring
Maybe we can’t get rid of the dependency entirely, but perhaps we can make
our less derived classes more reusable by pushing the dependency into sub-
classes. For example, consider the pair of classes shown here:

Software engineering for games 43

#include "Owned.hpp"

class Thing

{

private:

Owned m_Owned;

};

Class Owned

class Thing

{

private:

Owned * m_Owned;

};

➞

Object AnimationAnimation

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 43

This has a dependency (implied by the ownership) that says all objects have ani-
mations. But hold on! I have a type of object that never gets animated, so why
do I need all the other stuff – the header and the interface – that goes with being
animated? The refactored design is shown here:

Dependency localisation
The trick here is to take all the dependencies that exist in a number of classes
and lump them all into a single component that encapsulates them all. This is
often called a ‘utility’ or ‘toolkit’ component.

Consider a rendering system that consists of the renderer itself, a scene
graph package for the high-level tasks, and a file system for loading and saving
data – in this grossly oversimplified case, models and textures. One way to
organise this is shown in Figure 3.1.

Both models and textures can be read from a stream defined in the file
system. Thus, both the scene and renderer components are dependent on the
file component even though conceptually they bear no relation. Though we
can’t do much about the presence of any dependency between the scene
system, the renderer system and the file system – we do want to be able to load
stuff, after all – remember we are trying to weaken those dependencies as much
as we can. So we consider removing the direct coupling, which requires file
system header files, and replace them with calls to dumb toolkit functions, as
shown in Figure 3.2.

This is a much cleaner design at the scene and renderer level – all signs of
files and streams have been encapsulated in the toolkit package. By localising

Object-oriented game development44

Animated object AnimationAnimation

Object

Stream

Model

Scene

Texture

Renderer

Stream Stream

*Textures

File system

Figure 3.1
Strongly coupled

components.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 44

the dependency, we have simplified the design and also made maintenance less
of a chore by keeping all the unpleasant code in a single component. In game
code, we will mix scene, renderer and toolkit classes to get our desired result,
but the mishmash of unrelated classes – and hence the lack of reusability – has
been moved to where it can do less harm.

When you write code, think about the dependencies you are creating. Are
they necessary? Can you weaken them? Can you remove them altogether? I’ll
wager a pile of doubloons that you can.

3.3.8 Reuse granularity
Another important parameter to consider when developing reusable systems is
the granularity of reuse. A component – a single source and associated header file
– is the smallest possible reusable unit and, in general, can be reusable if it
requires no external resources to compile and link. Some components bind
together to form what is often referred to as a subsystem. A bunch of header
and include files form a single cohesive unit that can be imported into other
programs. Extending this concept, a complete package is the next level of reuse.

The key question is this: is there a relationship between the size – the
number of components – of a potentially reusable system and the likelihood
that it will actually be reused? This is not a simple question to answer, but the
answer is almost certainly ‘maybe’.

Consider the case of a single component. If it compiles and links with no
inclusion and linkage of external resources, then we are clearly dealing with a
potentially highly reusable component. This is weakened only slightly with the
inclusion and implicit linkage to standard library files. (The weakening is due to

Software engineering for games 45

Model

Scene

Texture

Renderer

Stream

*Textures

Toolkit

Stream

File system

TextureLoaderTextureLoader

Stream

Figure 3.2
A less strongly coupled
design.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 45

the rather annoying habit of ‘standard’ libraries to be anything but.) When it
comes to multicomponent packages, there are two schools of thought:

● The component must be entirely self-contained: no linkage to external systems
is allowed, other than to packages that reside at a lower level in the system.

● The component can depend on a broadly static external context composed
of standard libraries and other, more atomic components.

In the case of the first philosophy, we often need to supply multiple files to get a
single reusable component, because we cannot rely on standard definitions. For
example, each component may have to supply a ‘types’ file that defines atomic
integral types (int8, uint8, int16, uint16, etc.) using a suitable name-spacing
strategy. If we subscribe to the belief that more files means less reusable, then we
slightly weaken the reusability of single components to bolster the larger ones.
We should also note that it is quite difficult to engineer a system that relies on
privately defined types and that does not expose them to the client code.
Systems that do so end up coupling components and have a multiplicity of
redundant data types that support similar – but often annoyingly slightly differ-
ent – functionality.

On the other hand, systems written using the latter scheme are better suited
for single-component reuse, with the penalty that common functionality is
moved to an external package or component. It then becomes impossible to
build without that common context.

As a concrete example, consider a library system that has two completely
self-contained packages: collision and rendering. The collision package contains
the following files (amongst others):

coll_Types.hpp

Defines signed and unsigned integer types.

coll_Vector3.hpp

Defines 3D vector class and operations.

coll_Matrix44.hpp

Defines 4x4 matrix class and operations.

Note the use of package prefixes (in this case coll_) to denote unambiguously
where the files reside. Without them, a compiler that sees

#include <Types.hpp>

may not do what you intend, depending on search paths, and it’s harder to read
and understand for the same reasons. Similarly, the renderer package has the files

Object-oriented game development46

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 46

rend_Types.hpp

Defines signed and unsigned integer types.

rend_Vector3.hpp

Defines 3D vector class and operations.

rend_Matrix44.hpp

Defines 4x4 matrix class and operations.

In terms of the contents of these files (and their associated implementations),
they are broadly similar, but not necessarily identical, because one package may
make use of functionality not required by the other. Indeed, there is a reason-
able software engineering precedent to suggest that in general types that look
similar (e.g. coll_Vector3 and rend_Vector3, as in Figure 3.3) may have a
completely different implementation, and that in general a reinterpret_cast
is an unwise or even illegal operation. Usually, though, the files implement the
same classes with perhaps some differing methods.

Some difficulties arise immediately. What does the remainder of the ren-
derer and collision package do when it requires the user to pass in (say) a
three-dimensional vector?

class coll_Collider

{

public:

// …

void SetPosition(const ??? & vPos);

};

If it requires a coll_Vector3, does the user need to represent all their 3-vectors
using the collision package’s version? If so, then what happens if the renderer
package exposes the following?

class rend_Light

{

public:

void SetPosition(const ??? vPos);

};

Software engineering for games 47

rend_Vector3

Renderer

coll_Vector3

Collision
Figure 3.3
Stand-alone
components.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 47

The multiplicity of definitions of (near) identical types that are exposed in the
interface of the package means that the classes are much harder, if not impossi-
ble, to reuse safely. We can get over the immediate difficulty by using an
application toolkit component, as we discussed earlier, to provide classes or
functions to convert between the required types. But this doesn’t really solve
the longer-term problem of reusability.

So instead, let’s assume the user defines their own vector class. Now, when-
ever they need to call coll_Collider::SetPosition() and rend_ Light::
SetPosition(), they must convert their vector to the required type. This implies
knowledge of how the library systems work and – one way or the other – tightly
couples the code modules: exactly what we were trying to avoid!

So let’s adopt the following rule:

Never expose an internal type in a public interface.

There are still problems to solve, however. Since libraries have a habit of
expanding, there is a distinct possibility that the various vector libraries will,
over time, converge as they grow. While a basic vector class may be considered a
trivial system to implement, a mature module that has been debugged and opti-
mised is almost always preferable to one that has been copied and pasted from
elsewhere or written from scratch. Indeed, this is one of the major motivations
for reuse – to avoid having to reinvent the wheel every time you need some-
thing that rolls.

In the light of the evolutionary, incremental, iterative nature of software
systems, it becomes difficult to pin down what a ‘simple’ system is. A colleague
once quipped to me that a linked-list class was elementary: ‘We all know how to
write those’ he suggested, and indicated that list classes were candidates for
copy-and-paste reuse.

On closer inspection, a list class is far from simple. There are many choices
to make that dictate the usefulness, robustness and efficiency of a list. To name
a few:

● Singly or doubly linked?
● Direct or indirect entries (direct elements contain the linkage data, indirect

elements are linkage plus a reference to the stored data)?
● Static head and tail nodes?
● Nul-terminated? Or even circular?
● Dynamic memory allocation?
● Shallow and/or deep copy?
● Single-thread and/or multi-thread access?

A well-written list class would seem to implement less than trivial functionality.
Proponents of independent components counter this by suggesting that since
each component requires different functionality from their own variation of list

Object-oriented game development48

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 48

class, there is no point creating a dependency on an external module, and intro-
ducing methods that are not used just wastes memory. However, consider the
usage diagram in Figure 3.4. Despite modules A and B supporting different list
functionality, by the time we get to linking the application we’ve effectively
included all the methods of an entire list class and have redundant methods to
boot.10

A further reason why we may get nervous is the difficulty in maintaining a
set of disparate near-identical systems that may well have evolved from one or
several common sources. If we find a bug in one version, then we have the oner-
ous task of fixing all the other versions. If we add a feature to one version (say,
the rend_Vector3), then do we add it to the coll_Vector3 too? If the class is
private (not mentioned or has its header included in a public interface), then
probably not. However, if the new functionality is in some way non-trivial (per-
haps it’s a hardware optimisation for the arithmetic operations), you would
actively like to benefit from the new methods in many other places simply by
altering it in one.

In other words, there is a principle (less strong than a rule) that the
common components are trivially simple systems (for some suitable definition
of ‘trivial’) and that the more orthogonal the various versions of the component
are, the better. These somewhat arbitrary constraints tend to weaken the power
of the independent component system.

These difficulties can be contrasted with those encountered by adopting a
shared component strategy. In this scheme, we remove the separate (private)
modules and import the services from another place, as in Figure 3.5.

This is certainly easier to maintain – changes and bug fixes are automati-
cally propagated to the client systems. However, its strength is also its weakness.
If it is a genuinely useful sharable component and it is reused in many places,

Software engineering for games 49

10 We can avoid the generation of unused methods using templates. Only the used functions will be
instantiated.

Application

a_List

void Add()
void Clear()

Module A

b_List

void Add()
void Remove()

Module B

Figure 3.4
Illustrating method
usage.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 49

then any changes, however trivial, to the interface and even some of the imple-
mentation could force the recompilation of all the dependent subsystems. In a
large game system, rebuilding everything may take up to an hour, even on a fast
machine. Multiply this by the number of programmers forced to wait this time
because of what may be a trivial change and it is easy to appreciate why it is
desirable to avoid the dependency.

We can mostly avoid the dependency – or at least the negative conse-
quences of it – by ensuring that the header file (i.e. the interface and some of
the implementation) of the shared component changes infrequently, if ever.
This is feasible for a mature component – one that has grown, had its interface
refined and problems eradicated, and been used for some amount of time with-
out issue. How could we obtain such a component? One possibility is to start
with a system with independent components; the particular subsystem can be
matured, logically and physically isolated from all the others. When it is con-
sidered ready, it can be placed into the common system and the various versions
removed.

This hybrid approach removes some – but not all – of the pain of mainte-
nance. Perhaps the simplest – but not the cheapest – solution to this dilemma
is offered by a few commercially available version-control packages, such as
Microsoft Visual SourceSafe. The sharing capability of this software allows
exactly what is needed: several packages to share a single version of a compo-
nent they depend on, with optional branching facilities to tailor parts of the
shared components to the client package’s needs.

Now, you are using a version-control system aren’t you? Please say ‘yes’,
because I’ve worked for companies that said they couldn’t afford such luxuries,
and the results were less than profitable. If you are serious about engineering
your software components, then consider upgrading to one that supports shar-
ing and branching. Otherwise, the hybrid solution works quite nicely.

3.3.9 When not to reuse
If it is possible to choose to reuse code, then it is logically possible that we may
opt not to reuse it. Not all code is reusable and even potentially reusable systems

Object-oriented game development50

Renderer

maths_Vector3

Maths

Collision
Figure 3.5

Shared component.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 50

or subsystems should not necessarily be reused in any given context. It is there-
fore wise to look at the sorts of circumstances that may make it disadvantageous
to reuse.

Prototyping code
Not all code is destined to make it to release. Some code may never even get
into the game. If the project required a prototyping phase to prove concept via-
bility, then a lot of suck-it-and-see code will have been written, and this should
be marked as disposable from the day the first character is typed. What is impor-
tant is the heuristic process involved in creating the prototype, and it is much
more important to reuse the ideas than their first – usually rough and ready –
implementations. Indeed, to do so can often become a bugbear for the project,
whose entire future development is dictated by the vagaries of the first attempt.

It may be frightening to discard perhaps two or three months of toil. The
tendency to avoid doing so is what might be described as the ‘sunken cost fal-
lacy’. Experience shows that keeping it can cause more problems than it solves,
and it is usually the case that a rewrite produces a better, faster and cleaner
system than the original.

Past the sell-by date
A lot of code has an implicit lifetime, beyond which it will still work happily
but will prove to be technically inferior to any competitors. Vertically reusable
systems need to be designed with this lifespan in mind. As a rule of thumb,
graphical systems have the shortest lifespan because, typically, graphical hard-
ware capability changes faster than less visible (literally and metaphorically)
components. For example, a scripting language may work well – with additions
and modifications – for many products over the course of several years.
Programmers need to monitor the systems and their lifespans, and either ditch
them entirely or cannibalise them to create a new system when appropriate.

3.4 The choice of language

ANSI C has become the adopted standard language of video game develop-
ment, alongside any required assembly language for optimisation of critical
systems. C has the advantages of a structured high-level language but still
retains the ability to access and manipulate memory in a low-level byte or bit-
wise fashion. Modern C compilers generate reasonably efficient code – though
there is some variability in the range of commonly used toolsets – and the lan-
guage is mature and stable.

So is the language issue settled? Not a bit of it. First and foremost, a devel-
opment language is a tool, a means to an end and not the end itself. Each
language has its own weaknesses and strengths, so it is a technical decision as
to which language should be used to achieve which end.

Software engineering for games 51

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 51

For some tasks, only assembly language will suffice11 because it requires
access to particular hardware details beyond the scope of the high-level lan-
guages to provide; because maybe you’re squeezing the last few cycles from a
highly optimised system; or because, occasionally, there is just no support for
high-level languages on the processor. Writing assembly language is a labour-
intensive process, taking about half as long again to create and test as
higher-level code. It is also usually machine-specific, so if large parts of the game
are written in assembly, then there will be considerable overhead in parallel
target development. Therefore, it is best saved for the situations that demand it
rather than those we want to run quickly.

Modern C compilers do a reasonable job of producing acceptable assembly
language. For non-time-critical systems this is fine; the code runs fast enough,
and portability – whilst not always being the trivial process Kernighan and
Ritchie may have imagined – is relatively straightforward. The combination of
structured language constructs and bit-wise access to hardware makes the C lan-
guage very flexible for simple to moderately simple tasks. However, as systems
become more complex, their implementation becomes proportionately complex
and awkward to manage, and it is easy to get into the habit of abusing the lan-
guage just to get round technical difficulties.

If computer games tend to increase in complexity, then there will come a
point – which may already have been reached – where plain old ANSI C makes
it difficult to express and maintain the sort of sophisticated algorithms and rela-
tionships the software requires, which is why some developers are turning to
C++: an object-oriented flavour of C.

It’s hard to tell how widespread the usage of C++ is in game development.
Many developers consider it to be an unnecessary indulgence capable of wreak-
ing heinous evil; most commonly, others view it as a necessary evil for the use
of programming tools in Microsoft Foundation Classes (MFC) on the PC side
but the work of Satan when it comes to consoles; and a few embrace it (and
object orientation, hereafter OO) as a development paradigm for both dedicated
games machines and PC application development.

For the computing community in general, the advent of OO promised to
deliver developers from the slings and arrows of outrageous procedural con-
structs and move the emphasis in programming from ‘How do I use this?’ to
‘What can I do with this?’ This is a subtle shift, but its implications are huge.

3.4.1 The four elements of object orientation
In general, an object-oriented language exhibits the following four characteristics:

1 Data abstraction: an OO language does not distinguish between the data
being manipulated and the manipulations themselves: they are part and
parcel of the same object. Therefore, it is obvious by looking at the declara-
tion of an object what you can do with it.

Object-oriented game development52

11 In production code at least, placeholder code can be high-level.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 52

2 Encapsulation: an OO language distinguishes between what you can do with
an object and how it is done. The latter is an implementation detail that a
user should not, in general, depend on. By separating what from how, it
allows the implementer freedom to change the internal details without
requiring external programmatic changes.

3 Inheritance: objects can inherit attributes from one or more other objects.
They can then be treated exactly as if they were one of those other objects
and manipulated accordingly. This allows engineers to layer functionality:
common properties of a family of related data types can be factored out and
placed in an inherited object. Each inherited type is therefore reduced in
complexity because it need not duplicate the inherited functionality.

4 Polymorphism: using just inheritance we cannot modify a particular behav-
iour – we have to put up with what we get from our base type. So an OO
language supports polymorphism, a mechanism that allows us to modify
behaviours on a per-object-type basis.

In the 1980s and 1990s, OO was paraded – mistakenly, of course – as a bit of a
silver bullet for complexity management and software reusability. The problem
was not with the paradigm, which is fine in theory, but with the implementa-
tions of the early tools. As it turned out, C++ would require a number of tweaks
over a decade (new keywords, sophisticated macro systems, etc.) and has
become considered as a stable development platform only since the 1997 ANSI
draft standard.

However, even being standard is not enough. The use of C++ and OO is an
ongoing field of research because developers are still working out exactly what
to do with the language, from simple ideas such as pattern reuse through to the
complex things such as template meta-programming.

Stable it may be, but there is still a profound hostility to C++ in the games
development community. There are any number of semi-myths out there relating
to the implementation of the language that have a grain of truth but in no way
represent the real picture. Here’s a typical example: C programmers insist that C++
code is slower than C because the mechanism of polymorphism involves access-
ing a table. Indeed, as we can see from Table 3.1, polymorphic function calls do
indeed take longer than non-polymorphic – and C procedural – function calls.12

Software engineering for games 53

12 Timings made on a 500-MHz mobile Intel Pentium III laptop PC with 128 MB RAM. Measurements
made over 100 000 iterations.

Type of call Actual time (s) Relative times (s)

Member function 0.16 1.33
Virtual function 0.18 1.5
Free function 0.12 1

Table 3.1

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 53

However, take a look at a non-trivial system written in C, and chances are you
will find something resembling the following construct:

struct MyObject

{

/* data */

};

typedef void (*tMyFunc)(MyObject *);

static tMyFunc FuncTable[] =

{

MyFunc1,

MyFunc2,

/* etc */

};

Tables of functions are a common – and powerful – programming tool. The only
difference between real-world C and C++ code is that in the latter the jump
table is part of the language (and therefore can benefit from any optimisation
the compiler is able to offer), whereas in the former it is an ad hoc user feature.
In other words, we expect that in real-world applications, C++ code performs at
least similarly to C code executing this type of operation, and C++ may even
slightly outperform its C ‘equivalent’.

To be a little more precise, we can define the metric of ‘function call over-
head’ by the formula

function call time
overhead = –––––––––––––––––––––

function body time

where the numerator is how long it takes to make the function call itself and
the denominator is how long is spent in the function doing stuff (including
calling other functions). What this formula suggests is that we incur only a
small relative penalty for making virtual function calls if we spend a long time
in the function. In other words, if the function does significant processing, then
the call overhead is negligible.

Whilst this is welcome news, does this mean that all virtual functions
should consist of many lines of code? Not really, because the above formula
does not account for how frequently the function is called. Consider the follow-
ing – ill-advised – class defining a polygon and its triangle subclass:

class Polygon

{

public:

Polygon(int iSides);

Object-oriented game development54

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 54

/* … */

virtual void Draw(Target * pTarget) const = 0;

};

class Triangle

{

public:

Triangle() : Polygon(3) { ; }

/*…*/

void Draw(Target * pTarget) const;

};

Many games will be drawing several thousand triangles per frame, and although
the overhead may be low, it must be scaled by the frequency of calling. So a
better formula to use would be this

function call time
total overhead = call frequency* ––––––––––––––––––––––

function body time

where the call frequency is the number of function invocations per game loop.
Consequently, we can minimise the moderate relative inefficiency of virtual

function calls by either

● ensuring that the virtual function body performs non-trivial operations; or
● ensuring that a trivial virtual function is called relatively infrequently per

game loop.

This is not to proclaim glibly that whatever we do in C++ there is no associated
penalty as compared with C code. There are some features of C++ that are pro-
hibitively expensive, and perhaps even unimplemented on some platforms –
exception handling, for example. What is required is not some broad assump-
tions based on some nefarious mythology but implementation of the following
two practices:

● Get to know as much as you can about how your compiler implements par-
ticular language features. Note: it is generally bad practice to depend in
some way upon the specifics of your toolset, because you can be sure that
the next version of the tool will do it differently.

● Do not rely on the model in your head to determine how fast code runs. It
can – and will – be wrong. Critical code should be timed – a profiling tool
can be of great assistance – and it is the times obtained from this that
should guide optimisation strategy.

Software engineering for games 55

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 55

Just as it is possible to write very slow C code without knowledge of how it
works, it is possible to write very fast C++ using knowledge of compiler strategy.
In particular, the ability of OO design to make the manipulation of complex
data structures more tangible leads to code that is better structured at the high
level, where the mass processing of information yields significantly higher opti-
misation ratios than small ‘local’ optimisations (see Abrash, 1994).

Since C is a subset of C++, it is very hard to make out a case to use C exclu-
sively; indeed, it is often a first step to simply use the non-invasive features that
C++ has to offer – such as in-line functions – while sticking to a basically proce-
dural methodology. Whilst this approach is reasonable, it misses the point: that
OO design is a powerful tool in the visualisation and implementation of soft-
ware functionality. We’ll look at a simple way to approach object-oriented
design in the next section.

3.4.2 Problem areas
There are still some no-go (or at least go rarely or carefully) areas in the C++
language.

‘Exotic’ keywords
Obviously, if a compiler does not support some of the modern esoteric features,
such as

● namespace
● mutable
● explicit
● in-place static constant data initialisers
● general template syntax (template<>)
● templated member functions
● template arguments to templates: template<template <class> class T>

then you really ought to avoid using them. Luckily, this is not difficult and one
can write perfectly viable systems without them.

Exception handling
As mentioned earlier, exceptions are to be avoided in game code because some
console compilers simply do not implement them. Whilst it is quite acceptable
to use them in PC tool development, their use in games makes relatively little
sense. If your compiler does implement them, then bear in mind that they can
gobble CPU time and do strange things with the stack. Better to avoid them
altogether and pepper your game code with assertions and error traps (see
Maguire, 1993).

Object-oriented game development56

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 56

Run-time-type information
Again, run-time-type information (RTTI) may not be available on all platforms
or compilers, even if they aspire to be ANSI-compliant. But even if it is, there is
the hidden cost that any class that you want to use RTTI with needs to be poly-
morphic, so there can be a hidden size, run-time and layout penalty. Rather
than use RTTI, roll your own system-specific type information system with
embedded integer identifiers:

class MyClass

{

public:

// Classes needing simple RTTI implements

// this function.

int GetId() const { return s_iId; }

private:

// Each class needs one of these.

static int s_iId;

};

int MyClass::s_iId = int(&s_iId);

Since RTTI is intimately related to the dynamic_cast<>() operator, do not use
dynamic casting in game code. However, the other casts

static_cast<>()

reinterpret_cast<>()

const_cast<>()

are free of baggage and can (and should) be used where required.13 Aside from
the space cost of RTTI (potentially four bytes in every class instance that has no
polymorphic interface), there is also a computational overhead. That’s because
RTTI works with strings, and string compares can sap cycles from your game.

Multiple inheritance
This is an area to be traversed carefully rather than avoided. Multiple inheri-
tance (MI) sometimes turns out to be the best theoretical way of implementing
a behaviour. Other times, inheritance is just too strong a binding and a similar
effect can be achieved without invoking MI. Also, the implications of using MI
as implemented in C++ can often lead to complicated issues involving virtual
base classes and clashing identifiers.

Software engineering for games 57

13 And used in preference to the much-abused C-style cast.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 57

In short, MI can look neat on a diagram but generate messy and confusing
code. There is also a (small) performance hit when using MI (as opposed to
single inheritance). This is because inheritance is implemented using aggregation
(Figure 3.6). Classes are simply made contiguous in memory:

class A

{

/* stuff */

};

class B : public A

{

/* more stuff */

};

When it comes to MI, the inherited classes are aggregated in the order they are
specified, meaning that the physical offsets to the two child classes are different,
even though they should logically be the same (Figure 3.7):

class A

{

/* stuff */

};

class B

{

/* more stuff */

};

class C : public A, public B

{

/* yet more data */

};

Object-oriented game development58

Padding

A

BIn
cr

ea
si

ng
 m

em
or

y

Figure 3.6
Aggregation of class data

(single inheritance).

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 58

Logically speaking, a class of type C can be considered to be of type A or type B.
Since A comes first in the aggregation, this involves no extra work, but if we try
to convert a C to a B, then the pointer requires amending by the size of an A plus
any padding for alignment. It is this that makes MI more expensive.

So, the reality of MI is that it can be more expensive, depending on how the
object is treated. The expense is limited to the occasional addition of a constant
to a pointer – a single instruction on most CPUs and a single cycle on many.
This is a negligible cost compared with (say) a divide (typically about 40 cycles
on some systems).

3.4.3 Standard Template Library
When we learned C, our first program probably contained a line that looked
rather like this:

printf("Hello World\n");

I’ll also wager that a good deal of code today still contains printf or scanf or
one of their relatives. Generally, the C libraries – despite their vagaries – are very
useful for a limited number of tasks, and all compilers on almost all platforms –
even the consoles – support them.

C++ has had a chequered history when it comes to supplying standard
libraries. Originally, the equivalent of C’s input/output (IO) functions iostream,
istream, ostream, strstream, etc. – were supplied but were not at all standard.
Now it turns out that these objects are less efficient than their less OO cousins
and consequently aren’t much use for game code. Nevertheless, it took a long
time for vendors to consistently support the functionality.

Thanks to the ANSI committee, the stream library is a standard part of a
C++ distribution these days, and it now comes as part of a larger set of objects
called the Standard Template Library (STL). We’ll discuss general use of

Software engineering for games 59

Padding

A

B

In
cr

ea
si

ng
 m

em
or

y

Padding

A

Figure 3.7
Aggregation of class data
(multiple inheritance).

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 59

templates in the next subsection, but some of these objects are very useful
indeed and C++ programmers ignore them at their peril. However, STL is a two-
edged blade, and it is worth examining it in a little detail to make a balanced
assessment of its usefulness.

First, the ‘Standard’ part of the name is a bit of a misnomer, because
although the interfaces are (very nearly) identical between compiler vendors and
other public domain authors, the internal details vary wildly. Some STL imple-
mentations are rather more efficient than others, and one should be careful not
to rely blindly on things being fast when developing for several platforms.

Second, STL has a serious image problem. It is not particularly user-friendly.
As anyone who has opened an STL header file can testify, the actual code is for-
matted poorly, almost to the extent of impenetrability. Web searches in a quest
to find out how to use it result in trawling through equally impenetrable help
files and documents, and even buying a book can leave the programmer
bemused enough to write off STL as impenetrable.

Now, the Hacker’s Charter has encouraged a culture of ‘If I didn’t write it, I
won’t use it’, so it is difficult to encourage use of any library code, let alone C++
template systems that sell themselves short. Yet it remains the case that if one
makes the effort to get over the initial conceptual barriers that STL raises, then it
can become as or even more useful – in specific circumstances – as printf()
and friends are to C programmers.

What STL supports
STL provides a bunch of type-safe container classes that hold collections of
objects in interesting ways: dynamic arrays, lists, queues, double-ended queues
(deques), stacks, heaps, sets, hash tables, associative maps, trees and strings are all
supplied with STL free of charge with every compiler that supports the C++ ANSI
standard. Coupled with some careful typedef-ing, one can swap the containers
arbitrarily, more complex containers can be constructed using the simpler ones,
and all these classes can have custom memory managers added on a per-instance
basis that efficiently allocate and free blocks using one’s own algorithms.

There is little doubt that this is useful – and powerful – functionality that
comes for free and is robust and portable, and there is surely a place for STL in
every programmer’s repertoire.

3.4.4 Templates
C++ templates are a powerful construct that combine preprocessor-like macro
flexibility with the safety of strong type checking. It is a relatively straightfor-
ward way of writing virtually the same piece of code for an arbitrary and
previously unspecified number of data types, without the risk of introducing
cut-and-paste errors. At the extreme, templates provide a mechanism to perform
complex operations through meta-programming, and therefore it is suggested
respectfully that no C++ programmer write off using templates lightly.

Object-oriented game development60

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 60

There are several flipsides to templates, though. First, they are supported
almost exclusively via inclusion in a project. This means that the entire imple-
mentation – sometimes complex and involved – needs to be included in a
compilation, leading to significantly higher compile times. Changes to files in
the template include graph will force these compiles more frequently than you
would wish. From a commercial point of view, it’s also undesirable to make your
algorithms public for everyone to see (and potentially abuse).

Second, the mechanisms (there are several) that compilers use to instantiate
template classes are less than lightning quick. This means that significant use of
templates can lead to increased compile times (again!) and now increased link
times too.

Third, if you use a lot of template classes, or a few template classes with lots
of different types, then you can start to bloat your application with many copies
of virtually identical code segments. On console architectures with limited
memory, this could prove to be a significant contribution to the code footprint.

Fortunately, for at least some classes there is a solution. Many container
classes are used for manipulating pointer types, and if many of these are being
used then we can fall back on our C programming friend, the void pointer, to
reduce the size of the bloat. Here is an outline of a simple pointer list class:

template<class TPTR>

class PtrList

{

public:

// All methods inline’d.

inline PtrList()

{

ASSERT(sizeof(TPTR)==sizeof(void *));

}

inline ~PtrList()

{

}

inline void AddHead(TPTR pItem) { … }

inline void AddTail(TPTR pItem) { … }

inline int Size() const { … }

// etc.

private:

// Use a list from (say) the STL.

std::list<void *> m_VoidList;

};

Software engineering for games 61

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 61

In the above example, we have used a list class from the STL to hold a collection
of generic pointers. Note that because this is still a class based on a supplied
parameter, we have preserved the type safety of templates, one of their major
advantages over macros.

By in-lining all the methods of the class, we ensure that – to the best of our
ability – there is no additional memory or execution overhead for using this
wrapper class. For example, consider the AddHead() member function:

template<class TPTR>

inline void PtrList<TPTR>::AddHead(TPTR pItem)

{

ASSERT(pItem != NULL);

m_VoidList.push_back(pItem);

}

Calls are simply forwarded to the encapsulated container in this fashion.
Writing a class in this way will ensure that the compiler only ever instanti-

ates one version of the complex system – the void * version – irrespective of
how many types the template is invoked with.

Type conversions
C++ allows us to define a way to overload – provide a custom implementation
of – just about any behaviour. In general, this can lead to confusing code that
does not behave as it ought to; in particular, type conversions can not only hide
complex operations but also invoke those operations considerably more fre-
quently than desired.

There are, in fact, two ways of implementing type conversions: one through
operator overloads, the other via conversion constructors. The operator version
basically creates a user-defined cast that says, ‘If you have one of these, do this
sequence of operations and you will end up with one of those’:

class Banana;

class Apple

{

/* … */

// This method turns an apple into a banana.

operator Banana() const;

};

The other variant is a constructor taking a single argument of a type. For exam-
ple – preserving the fruity theme:

Object-oriented game development62

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 62

class Pear;

class Fig

{

public:

// Converts a pear to a fig.

Fig(const Pear &);

};

Both of these constructs give the compiler an opportunity to invisibly perform
type conversions and generally to bloat the code with potentially unnecessary
function invocations. The good news is that you can prevent this overzealous-
ness by one of two methods:

1 Do not use conversion operators and avoid single-argument constructors.14

If you need to convert from one type to another make sure it is in a fashion
the compiler cannot make use of:

class Durian;

class Rasperry

{

public:

// Non-compiler usurpable conversion.

Durian ToDurian() const;

};

2 If you have single-argument constructors that can’t be gotten rid of easily,
and your compiler supports it, prefix them with the relatively new keyword
‘explicit’:

class Quince;

class Kumquat

{

explicit Kumquat(const Quince &);

};

3.5 A C++ coding policy

Now that we have pinned our colours to the mast and declared that we shall be
developing predominantly in C++, we can be a little more explicit about our
coding policy. Once we have declared the policy, we can then illustrate it with a
definite example, which will be used in all code samples (except where indi-
cated otherwise) throughout the rest of the book.

Software engineering for games 63

14 Copy constructors are fine though.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 63

3.5.1 General
● New projects: programmers should agree on the conventions required by the

policy. The conventions should be followed in all shared project code.
● Existing projects: if the project has an existing set of conventions, then they

should be followed. If the project has several localised conventions, then
the local conventions should be observed.

In all other circumstances, the programmers should agree on the conventions
required by the policy. They should then be applied incrementally.15

Library code – code that is shared or reused by some mechanism – should
be written according to a policy that is applied consistently across all common
code, paying particular attention to interfaces.

3.5.2 Policy specifics
A policy detail is a requirement that needs to be fulfilled by a particular standard.
While teams are free to choose exactly what that standard is (allowing for the
restrictions detailed above), the standard must be to some extent self-documenting
and applied consistently by all team members in all non-pathological situations.

Naming conventions
● However we choose to name our variables, members and functions, it

should be ANSI-compliant. For example, naming single-character identifiers
by prepending an underscore (e.g. _x) is illegal under the latest ANSI C++
standard, which requires that these names be reserved for compiler use.

Justification: your code may not compile on some platforms simply due to
their naming of compiler-specific private identifiers.

● The policy should distinguish between identifiers at global, module, class
and local scopes.

Justifications:
● All sorts of problems can occur when names with different scopes clash:

int x = 0;

void f()

{

int x;

// What you want?

x = 2;

}

Object-oriented game development64

15 The process of search and replace when coercing code into a new set of conventions is time-con-
suming and tedious and shows no external progress, which can often affect morale adversely. It is
far easier and better to change code as you go along, as systems are modified and added.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 64

● Global variables and functions can severely limit reuse potential by
binding modules together. We want to highlight the places where the
binding takes place so we know what we’re dealing with when it comes
to cannibalisation.

● The policy should distinguish between the public interface of a class and
the private or protected implementation details.

Justification: it’s useful to know by looking at a member function whether
we can call it as a user or an implementer.

● The policy should distinguish between pointer types and instances.

Justifications: C++ distinguishes pointers and instances semantically via the
*, . and -> operators. It’s useful to know which we can use. It’s also quite
important because we can safely pass pointers as function arguments but we
can’t always safely pass instances. Also, pointer types that are typically
new’d need to be delete’d on destruction. Distinguishing pointers
reminds us to do this and avoids memory leaks, which can cause nasty
problems over the course of time.

● The policy should distinguish between preprocessor symbols and other
identifiers.

Justification: preprocessor macros can have unusual side effects: for example,
max(x++,y) will increment x more than once. Disguising macros as vari-
ables or functions can therefore cause all sorts of pain.

● The policy should distinguish between namespaces and other identifiers.

Justification: name spaces are designed to avoid identifier clashes. Naming
them similarly to classes or other identifiers rather weakens their usefulness.

Code layout
● The policy should specify a suitable layout for braces and scope indentation.

Justifications: people get used to seeing code layout patterns as well as
semantic conventions, so keeping a consistent format makes maintenance
and learning a touch easier. Using indentation to indicate logical flow of
control is so useful – and commonplace – that most editors support auto-
matic context-sensitive indentation.

● The policy should specify a layout for class declarations.

Justification: keeping public and private/protected data and methods physi-
cally separate makes classes easier to take in at a glance.

● The policy should decide on a size for tabs, and editors should be set to con-
vert tabs to spaces. The editor should use a non-proportional font.

Justification: keeping code and spacing similar on a variety of machines and
monitors becomes easier.

Software engineering for games 65

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 65

● The policy should specify a layout for source and header files, including
some concept of ordering and sectioning.

Justifications: keeping related things together makes them easier to find –
you know where to look; C/C++ is very sensitive to order of declaration and
definition, so a policy that enforces an order makes it easier (most of the
time) to write code that compiles soon after writing.

C++ specifics
● Source files should have the suffix .cpp, header file .hpp.

Justification: distinguishing C++ source and header files from C source and
header files is important!

● All libraries should have namespaces.

Justification: namespaces help to prevent identifier name clashes. Since
libraries are shared between projects, they will be the major cause of symbolic
conflict.

● The keyword ‘using’ should never appear in a header file in a namespace
context.

Justification: the keyword effectively nullifies the namespace, and since a
header cannot know which other headers – and namespaces – it will be
included along with, the chance of identifier name clashing is increased.

● All code should be ‘const’ correct.

Justifications: ‘const’ allows compilers the opportunity to perform some
local optimisations on code; more importantly, it enforces a logical struc-
ture that dictates what should and should not be modified. Subverting that
can cause code abuses, confusion and obfuscation.

● Class data members should be private.

Justification: public data members violate encapsulation – our ability to
change implementations without changing interfaces; protected data mem-
bers are public to classes that inherit them, so encapsulation is violated
simply by derivation.

● No data at file scope should have external linkage: No globals!

Justification: global variables unnecessarily bind modules together, and
because they can be read from and written to arbitrarily, they make control
flow harder to predict.

● Source files should include their respective header file as the first inclusion.16

Justification: a header file should contain all the information – including ref-
erences to other header files – required to declare their contents.

Object-oriented game development66

16 An exception: in some PC development environments, the use of precompiled headers can vastly
increase the speed of a build, and it is required that the include file associated with the precompiled
header be included before all others.

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 66

The actual implementation of this policy as used in this book is presented in
Appendix A.

Summary

● The Hacker’s Charter hurts development, production and management.

● A programmer has a number of roles other than programming.

● Code reuse is possible. It is an acquired skill, and it does not happen by accident.

● Dependencies make reuse harder and inflate compilation and link times. Make
every effort to minimise them.

● Object orientation provides a good paradigm for writing reusable code, but it also
gives the opportunity to vanish over the dependency event horizon, so to speak.
Put simply, it is possible – with effort – to write good (reusable, robust, efficient,
encapsulated) code in C++; it is just as easy or maybe easier to write bad code
in C++ than in C.

● We distinguish between a coding policy and a standard – an implementation of the
intent of the policy. Decide on the policy, and allow teams to define their standard.

Software engineering for games 67

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 67

8985 OOGD_C03.QXD 1/12/03 2:27 pm Page 68

Object orientation can – like most software engineering techniques – be
taken to a ridiculously thorough level. Given that we have established
some amount of flexibility in both technological and game-play content,

we should be looking to borrow salient features from OO design that allow us to
visualise and manipulate the logical structure of our software without necessar-
ily committing us to any particular strategy.

Most of the commercially available OO design tools are capable of generat-
ing source code as well as providing a visible representation of our classes.
Though these tools prove useful as a concepting medium, the author considers
them to be of limited use: their layout algorithms often require dedicated input
from the user to make them clear, not to mention aesthetic; they do not
respond well to heuristic or ad hoc development strategies; and they do not
always respond well to fine-tune editing of the source files. Overwhelmingly it is
the graphical functionality that is useful in these packages. The ability to
reverse-engineer an object diagram from a set of existing header files is a power-
ful tool, but if we are starting from scratch, wish to create a diagram for a design
document and aren’t too bothered about automatic source code generation,
then it may be a better investment to use a general-purpose diagramming pack-
age such as Microsoft’s Visio®.

4.1 Notation

A number of formal notation systems are in use by software engineers. They all
share certain common elements, so we shall distil out these collective compo-
nents and use a related but simpler notation for them.

4.1.1 Classes
We shall use bubbles to denote class declarations (not instances). For example,
this denotes a declaration of a (concrete) class called ‘Sprite’:

Object-oriented design for
games

4

69

Sprite

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 69

It’s the equivalent of the C++ code

// File: sprite.hpp

class Sprite

{

public:

private:

protected:

};

An abstract class – one that cannot be instantiated – is denoted by a shaded
bubble, shown here:

4.1.2 Relationships
There are two significant types of relationship that can exist between classes:
inheritance and ownership.1 Inheritance (sometimes termed an ‘is a’ relationship)
is indicated by a dotted arrow drawn between the derived class and the base
class, with the head pointing to the base object (implying that the derived is
dependent on the base), as shown here:

The equivalent source code is as follows:

// File: shape.hpp

class Shape

{

public:

// Just to make me abstract.

virtual ~Shape() = 0;

};

// File: circle.hpp

#include "shape.hpp"

Object-oriented game development70

Sprite

Circle

Shape

1 There are other relationship types, such as uses in the interface and uses in the implementation, but
these are not considered here.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 70

class Circle : public Shape

{

public:

Circle(float fRadius);

~Circle() { ; }

};

The ownership relationship – sometimes called ‘has a’ – is indicated by a solid
arrow drawn between the owner and the owned in the direction of the owned
class (again, implying dependency, although a weaker one than ‘is a’), as
shown here:

Note that the relationship has an associated name. The name string has a syntax
that indicates the multiplicity of the owned object, as shown in Table 4.1.

No inference should be drawn as to how the owned entity is stored. For
example, if A ‘has a’ B, then we may write:

// File A.hpp

class B;

class A

{

private:

B * m_pB;

};

or

// File A.hpp

#include "B.hpp"

Object-oriented design for games 71

Object
Visual

Visual

Syntax Meaning

Name Has exactly 1
*Name Has 0 to N
#Name Has 1 to N
Name[k] Has exactly k

Table 4.1

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 71

class A

{

private:

B m_B;

};

with the choice of how we choose a particular implementation governed by
factors such as how big B is, what it is dependent on, whether B is a base class
for a hierarchy of subclasses, etc.

4.2 The design process

The bubble-and-arrow notation system allows us to move away from specific
implementation details to a generalised, more conceptual overview of our software
designs. By working in the problem domain rather than the code domain, we can
postpone certain types of implementation decision that would otherwise distract
us from the design process. So we now need to be able to translate the – potentially
still hazy – ideas we have in our head into some classes and relationships.

4.2.1 Phase 1: brainstorming
The idea is to start with some vague notion of what we want to do and move
towards a concrete representation of it. Brainstorming is an important step in this
process (and in many other areas, too), but it is not always done very well. Though
this may be because different people have different takes on solving particular prob-
lems, usually it is because we all tend to apply a certain amount of self-censorship
to the things we contribute to a public forum. Questions such as ‘Is this relevant?’
or ‘Will they think I’m dumb?’ tend to block the free flow of concepts. This is a
hurdle that needs to be cleared because often, the ipsitive assessment – the one you
make of yourself – is clouded by any number of contributory and not necessarily
accurate judgements. The idea is to get people to contribute the things at the top of
their head when they think about the problem: often, this will generate random
noise as a simple by-product of human psychology.

Consequently, the brainstorming sessions should be as non-judgemental as
possible, and there should be no (or little) censorship or even evaluation of
ideas until later on. The team should be encouraged to generate a significant
number of concepts related to the design, and the vast majority of them should
be written down. Each concept should be limited to a single word or phrase that
will represent a class, be it abstract or concrete. At this stage, we keep the granu-
larity larger than the simple data types: we don’t mention characters, integers or
floats/doubles, since these are typically implementation details.

Object-oriented game development72

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 72

Case study 4.1: a car

We’ll start with a simple notional breakdown of a car that might appear in a game.
Though much detail will be required for a working implementation, we are concerned
at this stage with big brushstrokes, and we’ll evolve and refine the design as we
progress through the various phases of the process. So here’s a non-definitive list of
top-of-the-head car-related concepts:

Car, wheel, engine, gearbox, automatic gearbox, door, bonnet, clutch, radio, fuel tank,
suspension, brakes, exhaust, tyre.

4.2.2 Phase 2: prune the tree
At the end of the first phase, the team should be bled dry of ideas. There will be
a whiteboard full of word and concept associations, and this now needs to be
knocked into shape. Too many ideas will end up with a spaghetti diagram that
is hard to follow; too few will not solve the problem at hand. The simplest place
to start is to remove anything that is obviously irrelevant or unhelpful. Care
should be taken here, as something that appears to be unrelated could actually
turn out to be very useful when the mist starts to clear. So stick to removing the
obviously out-of-place concepts.

Once the irrelevant things have been removed, it is best to remove the redun-
dant. These are ideas that are duplicated, and if you did Phase 1 properly these
will have been left in place. Again, some care should be taken not to remove
things that look similar but turn out to be different in some important respects.

Case study 4.1 (cont.)

We can immediately remove the following irrelevant items:

● Radio: though there are undeniably several subclasses of radio, unless they form
a vital part of the game play it is wise to omit them.

● Doors: if drivers can get in and out of cars, we may wish to keep doors. Also, if the
cars can be damaged then we may want doors to flap open and even rip off entirely.
Otherwise, it is hard to see them being anything other than a graphical nicety.

● Bonnet: ditto the case with doors.

● Fuel tank: although the size of a fuel tank determines how far the vehicle can
travel, we are assuming for the purposes of the design that the car has an infi-
nite amount of fuel. It’s a game, not a driving simulator.

Interestingly and importantly, these decisions are made on the basis that we know
what the features of the simulated concepts are. In other words, we are following a
definite design. Whilst it is possible to keep open as many possibilities as we can,
our OO models will be simpler and less expensive on the code side if we can a priori
filter out unnecessary detail.

Object-oriented design for games 73

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 73

Now we have rejected the obviously superfluous, what else can we do? Well we notice
that the word ‘gearbox’ appears twice, suggesting some common functionality that
can be factorised. We would like to generalise automatic and manual shifts into one
manageable class with subclasses implementing specific behaviours. So we can
replace both gearboxes with the one abstract concept, ‘transmission’. Note that
because clutches are present only in manual systems, they can now be hidden as an
implementation detail of the subclass and the gearbox class now need appear only
once as a common property of manual and automatic transmissions.

Our concept list has now been pruned to:

Car, wheel, engine, transmission, automatic transmission, manual transmission, gear-
box, clutch, suspension, brake, tyre.

4.2.3 Phase 3: draw the bubbles and lines
Now we take each of the remaining concepts and put bubbles around them, thereby
creating a set of classes that currently have no relationships. Then they need to be
moved around and the appropriate relationships drawn in, along with the names of
ownerships and their multiplicities. There may be more than one way to do this. If
there is, then it is often best to carry on with one way to see if there are any undesir-
able repercussions. Then backtrack and try it the other way, noting what changes.
You’ll then be in a position to determine the relative merit of either method.

Case study 4.1 (cont.)

Figure 4.1 shows our first stab at diagramming the relationships between the classes
we’ve talked about.

Notice that many parts of the car may need to know about what other parts are
doing, so they all point back to the car object. This is not always desirable – in princi-
ple, an object should exist in its own right without reference to other non-related

Object-oriented game development74

Wheel

Tyre

Tyre

Brake

Brake
TransmissionManual

Clutch

Clutch

Car

Engine

Car
*Wheels

Suspension

*Wheels

Suspension

Engine

Gearbox

Transmission

Gearbox

TransmissionAuto

Transmission

Car

Figure 4.1
Class diagram for a

basic car.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 74

objects – but it does allow us to break up a large, monolithic task such as ‘update
the car’ into smaller ‘update the component parts of the car’ tasks. What would
happen if we wanted to (say) use the transmission component in a truck? Then we
would abstract the concept of ‘car’, as shown here:

and adjust all the appropriate ‘car’ pointers to ‘vehicle’ pointers.

4.2.4 Phase 4: validate the design
The whiteboard diagram should now be nice and clean, and it should be possi-
ble to start with a class and ensure that it can gain access to all of the data it will
need in order to perform its function. This will involve tracing the relationships
carefully, and adding new relationships and maybe even new classes to ensure
that the squiggles on the board reflect the logical relationships between the con-
cepts you wrote down earlier.

Case study 4.2

Here is a top-of-the-head brainstorm of the classes required for a simple renderer. I’ll
evolve the design as we progress through the phases:

Renderer, Transform, Texture, Screen, Camera, Font, Image, Display, Mesh, Model,
Frame, Position, Rotation, Viewport, Triangle, Polygon, Quad, Animation, Palette, Colour,
Light, Ambient, Directional, Spotlight, Shadow.

I’ve decided not to include the following classes:

● Animation, since that is a system complex enough to merit its own design.

● Shadows, because they are beyond the scope of the renderer we are designing,
and even if they weren’t we really ought not to attempt shadows without a work-
ing renderer.

● Font, as we can certainly add a font later using textures.

We can also remove the redundant items:

● Image, as it is interchangeable with Texture.

● Display, as it is the same as Screen.

We can also strike the Polygon concept, mainly because most renderers deal with tri-
angles and quads, not n-sided primitives. It also turns out to be quite hard to come

Object-oriented design for games 75

Car Truck

Vehicle

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 75

up with a satisfactory structure for supporting arbitrary primitive types – virtual func-
tions are too inefficient because primitives are quite low-level and there are therefore
lots of them in a typical scene, which rather knocks inheritance of a primitive abstract
type on the head.

This leaves us with the following associations:

Renderer, Transform, Texture, Screen, Camera, Mesh, Model, Frame, Position, Rotation,
Viewport, Triangle, Quad, Palette, Colour, Light, Ambient, Directional, Spotlight.

Their relationships are shown in Figure 4.2.

4.3 Patterns

Patterns were made popular in the 1990s by the ‘Gang of Four’ (GoF) book
(Gamma et al., 1994). They represent the logical relationships between classes
that just keep appearing in your software, irrespective of whether you are writ-
ing spreadsheets, missile-guidance systems or resource managers.

Patterns are, at the very least, interesting, and more often than not they are
extremely useful. Often, you’re sitting there trying to work out how to get func-

Object-oriented game development76

Light

Light spot

*Quads

Model

Quads

*Triangles

Mesh

Triangles

*Textures

Texture

Clut

Clut

*Meshes

Frame

Position Rotation Renderer Screen

Screen

Viewport

Viewport

Camera

Transform

Position Rotation

Transform

Camera

*Children

Frame
Frame

Frame

Figure 4.2
Class diagram for a

basic renderer.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 76

tionality from one class to be utilised by another without violating encapsula-
tion, or how to construct mechanisms to perform complex functions, and a flick
through the GoF book is all you need to gain the required insight. But this is
only half the battle – we still need to implement the pattern, and writing useful
pattern code still takes a bit of thought and effort. This section looks at a few of
the useful patterns and shows how they can be implemented with a reasonable
degree of generality and efficiency.

4.3.1 The interface
Also known as ‘protocol’, ‘compilation firewall’, ‘pimpl’
The first pattern we’ll look at is both simple and important. Remember earlier
we were concerned about dependencies in common components? When a
common component’s header file changed, all the dependent source modules
had to be recompiled. Any action, adding a method, changing an implementa-
tion detail or indeed the implementation, will trigger this rebuild. It’s an
irritating and schedule-consuming waste of time. Can we do anything about it?

The short answer is ‘Yes, we can’. However, the solutions (they are similar in
philosophy) are not applicable to all classes. Let’s look at the solution methods
before discussing their merits.

Interface
In Java, there is a specification of an interface – a set of functions that a class
that supports the interface must supply. We can do a similar thing in C++ by
defining a dataless class that consists of pure virtual functions.

// Foo.hpp

class Foo

{

public:

Foo();

virtual ~Foo();

virtual void Bar() = 0;

virtual void Pub() = 0;

};

// Foo.cpp

#include "Foo.hpp"

Foo::Foo()

{

}

Foo::~Foo()

{

Object-oriented design for games 77

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 77

// Always put an empty virtual destructor in the

// cpp file.

// Being virtual, it won’t be inlined anyway, and

// some compilers have problems with virtual

// destructors defined within headers

}

Since there is no implementation to change, the only condition that might trig-
ger a cross-package rebuild of many modules would be the addition or removal
of a method. For mature interfaces, this is considerably less likely than for an
‘in-progress’ module.

Now the trick. Define an instantiable class that uses the Foo interface. Call
it FooImpl to indicate that it’s an implementation of an interface:

// FooImpl.hpp

#include "Foo.hpp"

class FooImpl : public Foo

{

public:

FooImpl();

/*virtual*/ void Bar();

/*virtual*/ void Pub();

private:

int m_iData;

};

// FooImpl.cpp

#include "FooImpl.hpp"

FooImpl::FooImpl()

: Foo()

, m_iData(0)

{

}

void FooImpl::Bar()

{

m_iData = 1;

}

void FooImpl::Pub()

{

m_iData /= 2;

}

Object-oriented game development78

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 78

Let’s assume for the moment that we have some way of creating a FooImpl that
is internal to the component. What we get back is a pointer to a Foo, which has
an identical virtual interface. We are free to modify FooImpl as we please,
because external modules only ever include Foo.hpp. The only snag is that since
we never see FooImpl.hpp, we have no way of creating a FooImpl on the client
side. The solution is to have a manager class do the allocation for us:

// FooManager.hpp

class Foo;

struct FooManager

{

static Foo * CreateFoo();

};

// FooManager.cpp

#include "FooManager.hpp"

#include "FooImpl.hpp"

/*static*/

Foo * FooManager::CreateFoo()

{

return new FooImpl();

}

Pimpl
The name of the pattern is a contraction of ‘pointer to implementation’. Instead
of defining member data in the header file, we gather the data into a structure
that we place in the source file and forward declare a pointer to this structure as
the only member of our class:

// Foo.hpp

struct FooImpl;

class Foo

{

public:

Foo();

~Foo();

void Bar();

void Pub();

private:

FooImpl * m_this;

};

Object-oriented design for games 79

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 79

// Foo.cpp

struct FooImpl

{

int m_iData;

};

Foo::Foo()

: m_this(new FooImpl)

{

}

Foo::~Foo()

{

delete m_this;

}

void Foo::Bar()

{

m_this->m_iData = 1;

}

void Foo::Pub()

{

m_this->m_iData /= 2;

}

The interface method is cleaner but requires the extra manager or utility compo-
nent to create the instances. The pimpl method requires no virtual functions;
however, there is an extra dynamic allocation for every instance new’d (and a
corresponding dynamic deallocation on destruction), and the m_this-> nota-
tion is slightly unpleasant.

In the end, both solutions are essentially the same: in the interface method,
the m_this is logically replaced by the implicit pointer to the class’s virtual
function table. Both use indirection to decouple their interfaces from their
implementation. So a similar analysis will work for both cases.

The first thing to notice is that neither system has any data in its header, so
we cannot in-line any functions. This is doubly so for the interface method
because, except in very rare circumstances, virtual functions cannot be in-
lined.2 Also, since both systems require indirection, there is a performance
penalty for creating a class in this way.

Object-oriented game development80

2 A function that is declared in-line virtual will be in-lined if, and only if, it is invoked explicitly via
the class::method() notation and there are no uses of references or pointers to base classes calling
that method.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 80

What this means is that the interface is unsuitable for ‘light’ classes that
have high-performance requirements. For example, a vector class would not be
a good candidate for interface abstraction. However, a renderer or manager class
whose methods support non-trivial functionality (i.e. the overhead incurred by
the indirection is small compared with the amount of time spent in the func-
tion) may well be suitable. If many other components will be dependent on
ours, then there is some motivation to protect those clients from the evolution-
ary tos and fros of interface design and, more importantly, implementation
details of which class behaviour should be independent.

4.3.2 Singleton
A singleton is a class that logically has only a single instance in any application.
It is a programmatic error to create more than one of these, and the implemen-
tation should prevent a user doing so. There are several ways to achieve this,
and in this section we’ll evaluate their merits and the value of the pattern.

Introduction
First, what sort of classes are singletons? Well, what do we have only one of?
How about a display? That is a better candidate, though some systems may sup-
port multiple monitors. Since it is conceptually possible to have more than one
display, chances are that it is not a clear-cut choice for a singleton. A 3D model
is also not a good candidate – most games will have more than one! However, if
we keep all the game’s 3D models in one place (perhaps along with other data),
then we have a system that there is logically only one of – after all, if there are
several repositories, where do the models go? And in the end, we would need to
keep a repository of repositories, so the repository is a fundamental singleton.

In general, this reflects a pattern: large database objects that oversee a set of
controlled objects are natural singletons. Many other possibilities exist, though.

Implementation
Back in the bad old days of hack-and-hope C programming, we might have
declared a singleton as a global object, thus:

#include "ModelDatabase.h"

struct ModelDatabase g_ModelDatabase;

Yikes, a global variable! Anyone can read or write it from anywhere. Perhaps, a
little more safely, we can write;

#include "ModelDatabase.h"

static struct ModelDatabase s_ModelDatabase;

Object-oriented design for games 81

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 81

and we can control access to the model database via a suitable API:

void modeldb_Initialise();

void modeldb_Terminate();

void modeldb_LoadModel(const char * pModelName);

void modeldb_FreeModel(struct Model * pModel);

So far, so good. There is one instance of a model database in the module.
However, nothing prevents the user creating one of their own. If it controls
access to some set of system-wide resources, that might create all sorts of unde-
fined havoc.

Also notice the Initialise and Terminate calls. At some suitable points in the
game, we need to call these. When we graduate to C++, we get the opportunity
to call these automatically via constructors and destructors:

#include "ModelDatabase.hpp"

namespace

{

// Data declared in here is private to this module.

ModelDatabase s_ModelDatabase;

}

ModelDatabase::ModelDatabase()

{

// Do what we did in modeldb_Initialise().

Initialise();

}

ModelDatabase::~ModelDatabase()

{

// Do what we did in modeldb_Terminate().

Terminate();

}

We’re still stuck with the fact that we can create any number of model data-
bases. And now that there is a physical object rather than a procedural interface
to interact with, the user needs to get hold of the single instance. We solve these
(linked) problems with the following structure:

// ModelDatabase.hpp

class ModelDatabase

{

Object-oriented game development82

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 82

public:

// There’s only one of a static object – just what

// we need!

static ModelDatabase & Instance();

// …

private:

// Private ctor and dtor!

ModelDatabase();

~ModelDatabase();

static ModelDatabase c_Instance;

};

// ModelDatabase.cpp

#include "ModelDatabase.hpp"

ModelDatabase ModelDatabase::c_Instance;

/*static*/

ModelDatabase & ModelDatabase::Instance()

{

return c_Instance;

}

We can now access the instance in this fashion:

#include "ModelDatabase.hpp"

int main(int argc, char ** argv)

{

ModelDatabase & aDb = ModelDatabase::Instance();

//…

return 0;

}

The private lifecycle (constructor and destructor) of the class prevents users
from creating instances. The only instance that can be created is the
c_Instance static member – and since it is a member, its constructor and
destructor can be called in member functions. Voila!

A variant of this approach is to declare the static instance of the singleton
inside the Instance() function:

/*static*/

ModelDatabase & ModelDatabase::Instance()

{

static ModelDatabase anInstance;

Object-oriented design for games 83

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 83

return(&anInstance);

}

The bonus here is that the instance is not constructed until the first time
Instance() is called. C++ has added an invisible code block to construct the
object the first time the thread of execution enters the code block, and it uses
the standard library call atexit() to schedule calling the destructor. One prob-
lem with this variant is that (at least currently) some compilers have trouble
with the private constructors and destructors, to the extent that you may have
to make them public, thus weakening the intent of the pattern.

This is a common way of implementing singletons. It will work for a large
number of applications, but the pattern of implementation has a flaw or two.
First, the single instance is constructed at file scope. Regrettably, C++ has no
rules about the order of construction – if another object at file scope in another
module requires ours and the model database has not yet been constructed,
well, whatever happens is not good. Similarly, our class can fail to initialise cor-
rectly if it depends on another system not yet constructed. Second, by
constructing a static instance, we allow for only a single behaviour of the single-
ton. What would happen if we wanted – or needed – to allow the user to
subclass the singleton? For example, supposing we wanted to change the behav-
iour of the database depending on a variable read at run time from an
initialisation file. Then it makes sense to have a pointer to an instance instead
of an object itself:

// ModelDatbase.hpp

class ModelDatabase

{

public:

// as before

private:

static ModelDatabase * c_pInstance;

};

class ModelDatabaseFast : public ModelDatabase

{

//…

};

// ModelDatabase.cpp

#include "ModelDatabase.hpp"

#include "IniFile.hpp"

ModelDatabase * ModelDatabase::c_pInstance = 0;

Object-oriented game development84

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 84

/*static*/

ModelDatabase & ModelDatabase::Instance()

{

if (c_pInstance == 0)

{

if (IniFile::GetString("modeldb")== "fast")

{

c_pInstance = new ModelDatabaseFast;

}

else

{

c_pInstance = new ModelDatabase;

}

}

return(*c_pInstance);

}

That solves that problem. However, we have a new one (no pun intended!) – we
have dynamically allocated the object on the heap and will have to delete it at
some point around program termination. I say ‘at some point’ because in a non-
trivial application many classes will delete resources at shutdown and we need
to avoid deleting objects twice or not at all, or accessing an already deleted
resource in a destructor.

We could add a static Terminate() method, but it could be a thorny issue
as to when we call it. We’d really like it to be called at global scope because most
systems will have purged their resources by then. Can we arrange that? Well, yes
we can. We can use the STL’s template class auto_ptr, which I summarise here:

namespace std

{

template<class T>

class auto_ptr

{

public:

explicit auto_ptr(T * pItem);

~auto_ptr() { delete m_pItem; }

T * operator->() { return m_pItem; }

private:

T * m_pItem;

};

}

Object-oriented design for games 85

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 85

The important part is that destructor: the pointer is deleted when the auto_ptr
created with it goes out of scope.

We can plug this into our singleton class:

// ModelDatabase.hpp

#include <memory>

class ModelDatabase

{

private:

// Since the destructor is private, the template

// class needs permission to delete it. There is

// no violation of encapsulation, though.

friend class std::auto_ptr<ModelDatabase>;

static std::auto_ptr<ModelDatabase> c_InstancePtr;

};

// ModelDatbase.cpp

#include "ModelDatabase.hpp"

std::auto_ptr<ModelDatabase>

ModelDatabase::c_InstancePtr(0);

/*static*/

ModelDatabase & ModelDatabase::Instance()

{

if (c_InstancePtr.get() == 0)

{

c_InstancePtr = new ModelDatbase;

}

return(*c_InstancePtr.get());

}

So have we finally arrived at our ‘perfect’ singleton? Well, not quite. We can still
have problems with the order of destruction of file-scope objects and, frustrat-
ingly, there is no simple solution to this.3

Object-oriented game development86

3 One solution is to specify an integer order of destruction of singletons. A management API then
uses the standard library function atexit() to schedule the deletions in the required order.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 86

In use
Singletons can reduce the amount of unnecessary dependencies that creep into
your code. Consider the model database class existing in the object framework
shown here:

If we’re in the Draw() routine in the Level class, here’s a snippet of the code we
might need to use:

// Level.cpp

#include "Level.hpp"

#include "Game.hpp"

#include "DataModel.hpp"

#include "ModelDatabase.hpp"

#include "Renderer.hpp"

//…

void Level::Draw(Renderer * pRenderer)

{

ModelDatabase & aModelDb =

g_pGame->GetDataModel()->GetModelDatabase();

Model * pSkyModel = aModelDb.GetModel("sky");

}

Notice that we have to go to the top of the inheritance hierarchy (Game), then
descend all the way down to get the class we require. To do this, we need to
include files that may have little or no other relevance to us, which increases
coupling, compile and link time and decreases reusability.

Contrast the same code using a singleton:

// Level.cpp

#include "Level.hpp"

#include "ModelDatabase.hpp"

#include "Renderer.hpp"

Object-oriented design for games 87

DataModel

Level ModelDatabase

Model databaseLevel

Game

Data model

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 87

// …

void Level::Draw(Renderer * pRenderer)

{

ModelDatabase & aDb = ModelDatabase::Instance();

Model * pSkyModel = aDb.GetModel("sky");

}

Since we don’t own the model database, we are not responsible for creating it or
destroying it, we don’t need to cache references to it and we reduce coupling to
auxiliary classes.

Before we get too carried away with ourselves, though, we should perhaps
reflect on the fact that much the same effect can be obtained using a C-style
procedural interface

void Level::Draw(Renderer * pRenderer)

{

Model * pSkyModel = modeldb_GetModel("sky");

}

which is a little more readable. The singleton only really improves on this by
the ability to have polymorphic behaviour determined at run time. If you do
not need this, then there may be a convincing argument about using a proce-
dural interface rather than a singleton.

There is a related pattern that is a hybrid of the singleton and the proce-
dural interface. Its technical name is a monostate. This is slightly misleading,
since there may be no state (i.e. dynamic member data) associated with the
class. The implementation looks like this:

class ModelDatabase

{

public:

static Model * GetModel(const char * pName);

static void Initialise();

static void Terminate();

private:

static std::list<Model *> c_Models;

};

Other than being pure C++, there is little reason to favour this over a procedural
interface. There are some very minor annoyances – a user can create an instance
of this class, though they can’t do much with it. Typically, it’s poor form to
write a class and then actively prevent polymorphic extension, and I would sug-
gest that monostates are poor compromises.

Object-oriented game development88

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 88

A generic implementation?
After writing a few singletons, you’ll notice that you get a bit bored with writing
the near-same Instance() function every time (our current application has at
least five singletons and is growing). Can we write a template to automatically gen-
erate a singleton? Well, the answer is a qualified ‘yes’. Here is an example template:

template<class T>

class Singleton

{

public:

static T & Instance();

private:

Singleton();

~Singleton();

};

template<class T>

T & Singleton<T>::Instance()

{

T anInstance;

return(anInstance);

}

Certainly, that saves our fingers from typing unnecessarily repetitive characters.
To create a singleton, we need to declare only:

class ModelDatabase { /*…*/ };

Singleton<ModelDatabase> s_ModelDatabase;

Excellent – except for one thing. It is the Singleton<ModelDatabase> that there
is exactly one of, not the ModelDatabase. The user is free to create any number
of additional instances other than the specified one. The definition of a single-
ton was that there could be only a single instance by definition. What we have
created is, alas, not a singleton.

4.3.3 Object factory
The object factory allows us to address a shortcoming of C++. We’d like to be
able to write

class Object { /*…*/ };

class Rocket : public Object { /*…*/ };

class Npc : public Object { /*…*/ };

Object-oriented design for games 89

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 89

Type aType = Rocket;

// Allocates a rocket.

Object * pObject = new aType;

but (alas) the language does not support type semantics in this way. The object
factory pattern applies when you have a hierarchy of objects that need to be cre-
ated dynamically. Typically, you do not know ahead of time exactly what types
of object, or how many, you will create. For example, you could be creating
objects based on the contents of an external script file.

A simple – and common – approach to writing a factory is to create an enu-
merated type that represents the different flavours of object you can create:

// Object.hpp

class Object

{

public:

enum Type

{

NPC,

ROCKET,

DUCK,

// New types above here.

NUM_TYPES

};

// This is the ‘factory’.

static Object * Create(Type eType);

};

// Object.cpp

#include "Object.hpp"

#include "Rocket.hpp"

#include "Duck.hpp"

#include <cassert>

/*static*/

Object * Object::Create(Type eType)

{

switch(eType)

{

case NPC : return new Npc;

case ROCKET: return new Rocket;

Object-oriented game development90

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 90

case DUCK : return new Duck;

default:

// Handle the error.

assert(!"Object::Create(): unknown type");

break;

}

}

Common this may be, but there are two big problems with this method, and
both are related to the enumeration Type. First, if we are loading and saving the
integer values of the type, then the application that writes them must be syn-
chronised with the game that reads them. This may involve sharing the
Object.hpp include file, which may or may not be possible or convenient.

Even if it is possible and convenient, there is a bigger problem: mainte-
nance. In order to add a class to the factory, we need to update the
enumeration. That means editing the header file of the base class. And that
forces a rebuild of the base class and all of the subclasses. Ouch! We’d really like
to be able to add classes at will without recompiling the project.

Note also that the Object.cpp file includes all the headers of all the sub-
classes. As the number of subclasses grows, this becomes a compilation and
linking bottleneck – much thrashing of disk to be suffered. Clearly, we need to
do better than this.

First, those enumerations: bin them! If you can afford the hit, replace them
with string constants: although string compares are relatively inefficient next to
integer comparisons, the act of creating an object is relatively expensive com-
pared with either, and if your game is manufacturing many classes every frame,
you may need to have a really hard look at your architecture.

// Object.hpp

class Object

{

public:

static Object * Create(const char * pType);

};

// Object.cpp

#include "Object.hpp"

#include "Rocket.hpp"

#include "Npc.hpp"

#include "Duck.hpp"

#include <cassert>

#include <cstring>

/*static*/

Object-oriented design for games 91

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 91

Object * Object::Create(const char * pType)

{

if (!strcmpi(pType, "rocket"))

return new Rocket;

else if (!strcmpi(pType, "npc"))

return new Npc;

else if (!strcmpi(pType, "duck"))

return new Duck;

else

{

assert(!"CreateObject() : unknown type");

}

return 0;

}

Note the use of case-insensitive compares: life is just too short to track down
bugs due to case issues.

This removes the dependency on the Object.hpp header file. Now we can add
a manufactured class, and only the implementation file need change. We can
weaken the dependencies further by moving the factory to a separate component:

// ObjectFactory.hpp

class Object;

struct ObjectFactory

{

static Object * CreateObject(const char* pType);

};

// ObjectFactory.cpp

#include "ObjectFactory.hpp"

#include "Object.hpp"

#include "Rocket.hpp"

#include "Npc.hpp"

#include "Duck.hpp"

/*static*/

Object * ObjectFactory::CreateObject(const char *pType)

{

// As before.

}

We are still left with a compilation and linkage bottleneck due to these includes,
and we are still a bit worried about all those string compares. What can we do

Object-oriented game development92

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 92

about these? Quite a bit, as it happens. We need to alter things a little, but don’t
worry: it’s for the better.

We move from a hard-coded (compile-time) set of objects we can make to a
run-time set. Each class that requires being manufactured in a factory is obliged
to register itself at startup. When it does so, it supplies its name and a pointer to
a function that manufactures an object instance. We store these in an associa-
tive map, such as the STL’s std::map. Storing the entries in this data structure
will greatly increase the efficiency of the look-up process. (Note that because all
object classes are registered with a single instance, an object factory is a good
candidate for being a singleton.)

// ObjectFactory.hpp

#include <map>

#include <string>

class ObjectFactory

{

public:

typedef Object * (*tCreator)();

// Note that we need to associate strings, not

// char *s because a map requires strict ordering:

// the keys must define the operators < and ==.

typedef std::map<std::string,tCreator> tCreatorMap;

bool Register(const char *pType, tCreator aCreator);

Object * Create(const char * pType);

static ObjectFactory & Instance();

private:

ObjectFactory();

~ObjectFactory();

tCreatorMap m_Creators;

};

// ObjectFactory.cpp

#include "ObjectFactory.hpp"

// Ugly macro for brevity.

#define VT(t,c) tCreatorMap::value_type((t),(c))

using std::string;

Object-oriented design for games 93

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 93

bool ObjectFactory::

Register(const char * pType, tCreator aCreator)

{

string str = string(pType);

return m_Creators.insert(VT(str,aCreator)).second;

}

Object * ObjectFactory::Create(const char * pType)

{

tCreatorMap::iterator i =

m_Creators.find(string(pType));

if (i != m_Creators.end())

{

tCreator aCreator = (*i).second;

return aCreator();

}

return 0;

}

// Rocket.cpp

#include "Rocket.hpp"

#include "ObjectFactory.hpp"

// Another macro to save printing space.

#define OF ObjectFactory::Instance()

namespace

{

Object * createRocket()

{

return new Rocket;

}

// This code ensures registration will be invoked at some

// time before entering main().

bool s_bRegistered =

OF.RegisterClass("rocket",createRocket);

}

Object-oriented game development94

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 94

One further point is worth making: this implementation can be made generic
very easily via the use of templates:

// GenericFactory.hpp

#include <map>

#include <string>

template<class T>

class GenericFactory

{

public:

typedef T * (*tCreator)();

typedef std::map<std::string,tCreator> tCreatorMap;

bool Register(const char *pType, tCreator aCreator);

T * Create(const char * pType);

static GenericFactory<T> & Instance();

private:

// Much as before.

};

// Implementation goes here.

// ObjectFactory.hpp

#include "GenericFactory.hpp"

#include "Object.hpp"

typedef GenericFactory<Object> ObjectFactory;

Unlike the singleton pattern, the object factory pattern generalises very nicely. By
using a registration method rather than a static compile-time implementation, we
can decouple the created data types from each other as well as from the factory.

4.3.4 Manager
A common pattern is when a number of similar, hierarchically related classes
exhibit some collective, intelligent behaviour. This is often quite difficult to code
and results in a rather un-object-oriented structure: objects that need to be aware
of other, similar objects. This often results in increased complexity in otherwise
simple objects, and it may even lead to significant coupling between classes.

In such situations, a manager class can help sometimes. It takes responsibil-
ity for creation, deletion and – more to the point – the cooperative (synergistic)
behaviour between the classes it manages. A manager is a hybrid pattern. First,
it is a very likely candidate to be a singleton. Second, since it may well be able
to create and destroy families of classes, it will behave like an object factory.
Figure 4.3 shows A typical manager pattern.

Object-oriented design for games 95

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 95

4.3.5 Visitor/iterator
Looking at the manager pattern above, we can see that the controlled objects will
be stored in some kind of container class: an array, list, or more exotic animals
such as hash tables or binary trees. Whichever we choose – which will depend on
how the manager needs to access the contained objects – will be a private encap-
sulated detail of the manager’s implementation. Consider a ThingManager that
manages a bunch of classes called Things. Assume we have a dynamic array class
that expands (and maybe shrinks) according to the storage requirements:

class Thing;

class ThingManager

{

public:

void AddThing(Thing * pThing);

// etc

private:

array<Thing *> m_Things;

};

This is fine, so long as we don’t need to give anything outside of manager some
access to the Things. Do we then add the following line?

class ThingManager

{

public:

const array<Thing *> & GetThings() const;

// as before

};

Object-oriented game development96

Derived class 2

Manager

Base class Factory

Derived class 2

*Managed objects

Factory

Figure 4.3
Class diagram for an

abstract manager.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 96

Consider the following code that uses Things (which have a Print() method,
for argument’s sake):

const array<Thing *> & Things = aManager.GetThings();

for(int j = 0; j < Things.size(); ++j)

{

Thing * pThing = Things[j];

pThing->Print();

}

Fine, that works – until we have the bright idea that storing Things in a hash
table is a much better approach because we do a lot of name- or ID-based
look-up:

class ThingManager

{

public:

private:

hash_table<string,Thing *> m_Things;

};

Now we’re a little bit stuck. We may have written a lot of random-access code
that plays with arrays of Things, and now that code is useless. The exposure of
the Thing array has poked a great big hole in our encapsulation, and now that
we’ve changed the manager – as is our wont – we’re faced with maintenance
when we really wanted to get a move on.

In general, anything that exposes how your implementation works to the
outside world, which should not really care, is not a good thing. Note that we
don’t have to expose an internal type: only something that behaves like that type!

class ThingManager

{

public:

int GetNumberOfThings() const;

const Thing * GetThing(int n) const;

};

is nearly as bad, as it still has the smell of an array.

How, then, do we access internal data in a way that’s independent of how the
data are stored in the manager class? That’s where visitors and iterators come in.

Object-oriented design for games 97

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 97

Visitor classes
Visitors are controversial. They can turn into a maintenance bottleneck, which
can easily defeat the benefit gained by using them. For this reason, they are best
used in limited circumstances, particularly when the controlled classes are in a
shallow hierarchy (i.e. there are only a few well-defined concrete subclasses).

To start with, let’s look at the visitor pattern when dealing with only a
single class. We’ll stick with our Things for this. Then we’ll look at how to
extend the concept to larger hierarchies.

Visitors are the modern-day equivalent of enumerator-like callback func-
tions, as seen all over the place in Windows SDK and DirectX. For example, we
may write the manager class in pseudo-code, thus:

class ThingManager

{

public:

typedef void (*tThingCb)(Thing *, void *);

void VisitThings(tThingCb aThingCb, void * pUser)

{

for_each pThing in m_Things

{

aThingCb(pThing, pUser);

}

}

private:

Collection<Thing *> m_Things;

};

The problem with this is that only one parameter is supplied to pass in context
information, and that parameter is the nasty typeless void *. That can lead to
all sorts of fun and games, not to mention bugs. For instance, what happens if
we need to pass two pieces of context information into the callback? Then we
might be forced to write

struct Context

{

int iData1;

int iData2;

};

Context * pContext = new Context;

pContext->iData1 = //…

pContext->iData2 = //…

aThingManager.VisitThings(MyCallback, pContext);

delete pContext;

Object-oriented game development98

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 98

which is not exactly performance code and can easily result in memory leaks
or worse.

Consider the alternative:

class ThingVisitor

{

public:

virtual void VisitThing(Thing * pThing) = 0;

};

In itself, it does nothing. But – by the power of inheritance – we can define our
subclass like this:

class MyThingVisitor : public ThingVisitor

{

public:

MyThingVisitor(int iData1, int iData2)

: m_iData1(iData1)

, m_iData2(iData2)

{

}

void VisitThing(Thing * pThing)

{

pThing->DoSomething(m_iData1,m_iData2);

}

private:

int m_iData1;

int m_iData2;

};

Now we can write our visitor call as:

class ThingManager

{

public:

void VisitThings(ThingVisitor & aVisitor)

{

for_each pThing in m_Things

{

aVisitor.VisitThing(pThing);

}

}

};

Object-oriented design for games 99

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 99

What we’ve effectively done here is add a new virtual function to the
ThingManager from the outside. Clearly, this is a powerful paradigm. We have
extended the functionality of the manager without rupturing the encapsulation
of the class.

It gets a little more fiddly when there is a hierarchy of managed objects.
Here’s a subset of a real example taken from the project we’re currently working
on. A class diagram will set the scene succinctly (see Figure 4.4).

Our LightManager supervises the creation, destruction and use of a number
of lights, each of which can be one of several flavours – here, limited to two –
point and directional. This gives us a choice of how to store the lights within
the manager class: either we store the different types of light in separate collec-
tions, or we maintain a single heterogeneous collection of all lights. We choose
to do the latter as it simplifies what follows.

As part of the lighting calculations, we need to be able to determine which
lights affect which objects in the world, as to light every object with every light
would degrade performance and not be visually correct. Since the light manager
should not be required to know of the existence of objects in the world, it is
therefore the duty of the objects themselves to work out which lights affect
them. We decided to use the Visitor pattern to implement this. The difference
here is that different types of light need to be treated differently by the objects.
The LightVisitor looks like this:

class LightVisitor

{

public:

virtual void VisitPoint(PointLight *) = 0;

virtual void VisitDirectional(DirectionalLight *) = 0;

};

Object-oriented game development100

PointLight

LightManager

Light

DirectionalLight

*Lights

Vector3Float

Position
Radius

Position Direction

Figure 4.4
Light manager

framework.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 100

Now we have a problem: the visitor loop looks like this

for_each pLight in m_Lights

{

aVisitor.Visit???Light(pLight);

}

We don’t know what type of light pLight is, so we don’t know what method to
call. To get around this, we use the technique of double dispatching. Since each
light type intrinsically ‘knows’ what type it is, the light itself can call the
required method.

class Light

{

public:

virtual void AcceptVisitor(LightVisitor &) = 0;

};

class PointLight : public Light

{

public:

void AcceptVisitor(LightVisitor & aVisitor)

{

aVisitor.VisitPoint(this);

}

};

class DirectionalLight : public Light

{

public:

void AcceptVisitor(LightVisitor & aVisitor)

{

aVisitor.VisitDirectional(this);

}

};

Our visiting loop then looks like this:

for_each pLight in m_Lights

{

pLight->AcceptVisitor(aVisitor);

}

Object-oriented design for games 101

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 101

There is an obvious drop in efficiency when using a polymorphic visitor: two
virtual function calls per iteration. Nevertheless, this is not the primary prob-
lem. The issue is that if we add a new light subclass, then we need to update not
only the base visitor class with a ‘VisitNewType’ method but all the subclasses
too. Ouch!

The caveat is therefore this: visitors are powerful, but if they operate on het-
erogeneous collections whose inheritance graphs have a habit of growing, then
they can cause a lot of maintenance to be undertaken.

Iterators
An iterator can be viewed as a generalised pointer. How does that help us? Well,
suppose our Thing manager could return a pointer to the first Thing and an
end-of-Things pointer:

class ThingManager

{

public:

pointer FirstThing();

pointer EndOfThings();

};

Then to step through the collection of Things, we write:

pointer p = aThingManager.FirstThing();

while(p != aThingManager.EndOfThings())

{

Thing * t = *p;

t->Print();

++p;

}

Notice that the generalised pointer supports incrementation (++) and derefer-
ence (*),4 just like a vanilla pointer. However, a plain pointer supports iteration
this way only if the Things are contiguous in memory. A generalised pointer can
hide how the elements are ordered in RAM, just so long as ++ gets the next
pointer, and * accesses the referenced object. Iterators come with a guarantee:
they will visit all the valid elements in a collection. They are, however, free to
do it in any order they see fit. This is just what we want: as long as our collec-
tion of Things supports iterators, we can avoid exposing clients to the gory
implementation details.

Object-oriented game development102

4 It is almost always preferable to use ++p as opposed to p++. The latter needs to return the value
before the increment, therefore it has to construct and cache it. Since this happens many times, it
can accumulate to a big waste of cycles.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 102

How might we implement a generalised pointer? The first thought that
occurs is virtual functions, and many textbooks on C++ data structures present
such schemes. However, historically this implementation strategy has fallen out
of favour because of the computational overhead of vtable indirection. Template
containers make a much more efficient iterator.

STL shows us how to do this. All of its container classes define a type called
iterator, which does all – and more – of what we need above. Using a typedef
or two, we can easily expose the required interface:

#include <vector>

class ThingManager

{

typedef std::vector<Thing *> tThingList;

public:

typedef tThingList::iterator iterator;

iterator FirstThing()

{

return(m_Things.begin());

}

iterator EndOfThings()

{

return(m_Things.end());

}

private:

std::vector<Thing *> m_Things;

};

In our client code:

ThingManager::iterator itThing = aManager.FirstThing();

ThingManager::iterator itEnd = aManager.EndOfThings();

while(itThing != itEnd)

{

(*itThing)->Print();

++itThing;

}

Object-oriented design for games 103

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 103

It’s a bit syntactically yucky. If – as STL does – the iterator defines the method
operator->, then we can write

itThing->Print();

without the * and the (required) brackets.
Note that we don’t have to use STL containers. We can write our own col-

lections – as efficient or robust as we need – and supply iterators for them. In
doing so, don’t be tempted to nest classes:

template<class T>

class container

{

public:

class iterator

{

// …

};

//…

};

The iterator may need to be a friend class of the container, which is a pity
because you can’t forward reference nested classes. Usually the resulting code
leaks encapsulation. The best way to define it is:

template<class T>

class container_iterator

{

// …

};

template<class T>

class container

{

friend class container_iterator<T>;

public:

typedef container_iterator<T> iterator;

// …

};

In conclusion, visitors and iterators can help us out of the problem of violating
encapsulation in a contained system. Visitors are powerful but can be problem-
atic if applied to the wrong sort of system. Iterators are lower-level entities,

Object-oriented game development104

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 104

generalised pointers that have a negligible efficiency penalty but result in some-
what verbose source.

4.3.6 Strawman
The Strawman is almost certainly the simplest of all patterns and is unusual in that
it defines – explicitly or implicitly – absolutely no behaviour whatsoever. ‘What use
is it, then?’ I hear you ask. Well, it exists mainly to carry type information. Suppose
we have a package that requires the user to pass in a pointer (or reference) to a user-
defined class. That pointer will then be returned later to the user so that they can
perform some operation on it. What would the signature of the function that
passes the pointer in look like?

// MyClass.hpp

class MyClass

{

};

// package_TheirClass.hpp

void package_TheirClass::RegisterPointer(?? pYourData);

The package can’t know anything about your classes:

void package_TheirClass::RegisterPointer(MyClass *);

If it does, then you’ve done it wrong because you’re binding systems that don’t
otherwise need to know about each other. The solution is to use a Strawman, a
class with no insides.

// package_Type.hpp

class package_Type

{

public:

package_Type() {}

virtual ~package_Type() {}

};

// package_TheirClass.hpp

class package_Type;

class package_TheirClass

{

public:

void RegisterPointer(package_Type * pType);

};

Object-oriented design for games 105

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 105

// MyClass.hpp

#include "package\package_Type.hpp"

class MyClass : public package_Type

{

public:

// Your operations here.

};

If this is a bit too abstract, let’s look at a real-life example. One project had a
package to handle game controllers. These game controllers could come in vari-
ous flavours: joypad, keyboard, mouse, etc. The package defined a polymorphic
handler class that accepted different types of input data:

class ctrl_InputHandler

{

public:

virtual void HandleJoy(ctrl_Joypad & aJoy, ???);

// Other controller types handled similarly.

};

The idea is that the client writes their own input handler to do whatever they
require it to do. However, there are a couple of things we needed to specify:
something about who was using the controller, and something about what was
being controlled. This was done by using two Strawman classes:

class ctrl_User

{

public:

ctrl_User() {}

virtual ~ctrl_User() {}

};

class ctrl_Target

{

public:

ctrl_Target() {}

virtual ~ctrl_Target() {}

};

The handler class now has member functions of the form:

void HandleJoy(ctrl_Joy & aData,

ctrl_User * pUser,

ctrl_Target * pTarget);

Object-oriented game development106

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 106

At the game level, we had a player owning a controller and using it to move a
cursor to drive it around the screen (Figure 4.5).

The game’s input handler code looked something like this:

// GameInputHandler.hpp

#include "controller\ctrl_InputHandler.hpp"

class GameInputHandler : public ctrl_InputHandler

{

public:

void HandleJoy(ctrl_Joy& aData,

ctrl_User * pUser,

ctrl_Target * pTarget);

};

// GameInputHandler.cpp

#include "GameInputHandler.hpp"

#include "Player.hpp"

#include "Cursor.hpp"

void GameInputHandler::HandleJoy(ctrl_Joy& aData,

ctrl_User * pUser,

ctrl_Target * pTarget)

{

// This upcast is fine because we know what

// the final user type is at the game level.

Player * pPlayer = static_cast<Player *>(pUser);

// Similarly, at this level that target is always

// the cursor.

Cursor * pCursor = static_cast<Cursor *>(pTarget);

// Code to do things with players and cursors…

}

Object-oriented design for games 107

ctrl_InputHandler

Controller

GameInputHandler

Game

ctrl_User Player

ctrl_Target Cursor

Figure 4.5
The game subclasses of
the abstract component
classes.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 107

4.3.7 Prototype
A prototype is similar to a factory, in as much as it creates new object instances.
However, it does this not by taking some type identifier and returning an associ-
ated class, but by cloning itself:

class PrototypeBase

{

public:

virtual PrototypeBase * Clone() = 0;

};

class Prototype1 : public PrototypeBase

{

public:

// Cloning without copying makes no sense!

Prototype1(const Prototype1 & that)

{

// …

}

// Note the use of the ‘covariant return type’

// rule now supported by most C++ compilers: a

// virtual function that returns a base class

// pointer or reference

// with an override in a subclass can declare its

// return type to be the subclass type.

Prototype1 * Clone()

{

return new Prototype1(*this);

}

};

Another factory-like class then uses the prototype thus:

class PrototypeFactory

{

public:

void SetPrototype(PrototypeBase * pBase)

{

delete m_pPrototype;

m_pPrototype = pBase;

}

PrototypeBase * Create()

{

return(m_pPrototype->Clone());

}

Object-oriented game development108

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 108

private:

PrototypeBase * m_pPrototype;

};

The prototype is useful because it can be used to set default values in a dynamic
way:

PrototypeFactory MyFactory;

Prototype1 * pProto1 = new Prototype1(10);

MyFactory.SetPrototype(pProto1);

PrototypeBase * pInstance1 = MyFactory.Create();

Prototype1 * pProto2 = new Prototype1(20);

MyFactory.SetPrototype(pProto2);

PrototypeBase * pInstance2 = MyFactory.Create();

Here’s an example of a prototype system in action. We have a game in which a
player has a weapon that can shoot various types of bullets (see Figure 4.6 for
some lines and bubbles). This translates into the following code skeleton:

// Weapon.hpp

class Bullet;

class Weapon

{

public:

Bullet * CreateBullet();

void SetBulletPrototype(Bullet * pBullet);

private:

Bullet * m_pBulletPrototype;

};

Object-oriented design for games 109

BulletStandard

Weapon

Bullet

BulletArmourPiercing

BulletPrototype

Figure 4.6
Class diagram for
weapon and bullet
management system.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 109

// Weapon.cpp

#include "Weapon.hpp"

#include "Bullet.hpp"

void Weapon::SetBulletPrototype(Bullet * pProto)

{

delete m_pBulletPrototype;

m_pBulletPrototype = pProto;

}

/*virtual*/

Bullet * Weapon::CreateBullet()

{

return(m_pBulletPrototype->Clone());

}

//---

// Bullet.hpp

class Bullet

{

public:

Bullet();

Bullet(const Bullet & that);

virtual Bullet * Clone() = 0;

// and other methods.

private:

// some data fields.

};

//---

// BulletStandard.hpp (BulletArmourPiercing is similar)

#include "Bullet.hpp"

#include "maths\maths_Vector3.hpp"

class BulletStandard : public Bullet

{

public:

BulletStandard();

BulletStandard(const BulletStandard & that);

BulletStandard * Clone();

private:

maths_Vector3 m_vPosition;

// and other fields

};

//---

Object-oriented game development110

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 110

// BulletStandard.cpp

#include "BulletStandard.hpp"

BulletStandard::

BulletStandard(const BulletStandard & that)

: Bullet(that)

, m_vPosition(that.m_vPosition)

{

}

/*virtual*/

BulletStandard * BulletStandard::Clone()

{

return(new BulletStandard(*this));

}

Now the player (say) can change the type of ammo their weapon shoots by writing:

Weapon * pWeapon = GetWeapon();

pWeapon->SetBulletPrototype(new BulletStandard);

4.3.8 Russian doll
The aim of this mini-pattern is to eliminate global-like objects, by which we
mean real globals (which are anathema) or singletons (which are tolerable but
not aesthetically satisfying).

I was tempted to call this pattern a Trojan horse, but that had certain nega-
tive connotations. However, the idea is much the same – allow an object type to
hide encapsulated details of other objects from a system that it passes through
on its way into another system further down the hierarchy. The bypassed
system therefore remains oblivious – and therefore independent – of anything
contained in the object itself (the ‘Trojans’, if you will).

We will call the global-like objects ‘services’ and consider a non-horizontal
object hierarchy where the objects all depend on a selection of those services, a
bit like that shown in Figure 4.7.

Object-oriented design for games 111

Object

Subclass 1

Subclass 2

Service 1

Service 2s2

s1

Figure 4.7
The ‘Russian doll’
pattern works well for
object hierarchies that
look like this.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 111

Let’s look at how the constructors of the subclasses might appear:

// Subclass1.cpp

Subclass1::Subclass1(Service1 * pService1)

: m_pService1(pService1)

{

/* Service1 assumed to be private */

}

// Subclass2.cpp

Subclass2::

Subclass2(Service2 *pService2, Service1 *pService1)

: Subclass1(pService1)

, m_pService2(pService2)

{

}

Notice that the deeper the hierarchy gets, the more arguments the constructors
need. Long argument lists aren’t just ugly; they are also a fertile source of mis-
takes because of things like automatic type conversion. Furthermore, notice that
Subclass2 gets to see a Service1 pointer even though it never uses or cares about
it. To create a Subclass2, we’d write something like:

// Things.cpp

#include "Service1.hpp"

#include "Service2.hpp"

//…

Service1 * pService1 = Service1::Instance();

Service2 * pService2 = Service2::Instance();

Subclass2 * pThing = new Subclass2(pService1, pService2);

Those global-like objects have a habit of popping up everywhere and getting
passed around everywhere. We can tame this sort of creeping disease quite
simply by using a container class – a Russian doll:

// ServiceProvider.hpp

class ServiceProvider

{

public:

Service1 * GetService1();

Service2 * GetService2();

Object-oriented game development112

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 112

private:

Service1 * m_pService1;

Service2 * m_pService2;

};

Now we can write our constructors like this:

// Subclass1.cpp

#include "ServiceProvider.hpp"

Subclass1::Subclass1(ServiceProvider & rServices)

: m_pService1(rServices.GetService1())

{

}

// Subclass2.cpp

#include "ServiceProvider.hpp"

Subclass2::Subclass2(ServiceProvider & rServices)

: Subclass1(rServices)

, m_pService2(rServices.GetService2())

{

}

No more growing argument lists, and only the classes that actually require par-
ticular services need request and use them.

Case study 4.3: patterns in practice – the ‘state manager’

Having talked quite abstractly about patterns, we’ll now demonstrate their use in a
case study. We’ll discuss in detail the development of a state manager for a game (or
indeed any other sort of application).

First, what (in this context) is a state? It is a single mode of behaviour that deter-
mines what the game is doing at any one time. For example, the game may be playing
a cut scene, in a menu hierarchy, running the main game or paused. Each of these
behaviours we call a state; Figure 4.8 shows some state classes. As always, we start
by factoring out common behaviours: what is there that is similar to all states?

Looking at the examples above, we can infer that there is a concept of time passing
(a cut scene plays or the game evolves): the state can be updated with respect to
time. How do we measure time? In a game, we can either count elapsed frames or
measure actual elapsed time. Which is better? That’s another argument, which we’ll
deal with in a later chapter. For now, let’s just assume we have a type Time that rep-
resents the elapsed interval since the last update.

Object-oriented design for games 113

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 113

What else is common to state? We’d certainly like to be able to see some visual dif-
ference between states, so we’d like to Draw what’s going on. Again, for argument’s
sake, we’ll assume we have a Renderer class that can draw stuff:

class state_State

{

public:

state_State();

virtual ~state_State();

virtual void Update(Time dt) = 0;

virtual void Draw(Renderer * pRenderer) const = 0;

};

Note that the Draw member is declared const: it shouldn’t modify the state. What
else can we say about states? Well, our application will, at some point, have to
change state. Zero or one state will be outgoing and another one other will be incom-
ing. These states may require initialisation and clean-up operations, so to this end we
extend the interface by adding two virtual methods, OnEnter() and OnLeave():

class state_State

{

public:

state_State();

virtual ~state_State();

virtual void Update(Time dt) = 0;

virtual void Draw(Renderer * pRenderer) const = 0;

virtual void OnEnter() { ; }

virtual void OnLeave() { ; }

};

Object-oriented game development114

CutSceneState

MenuState

OptionsMenuStateMainMenuState

State

PauseStateGameState

Figure 4.8
Examples of state

subclasses.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 114

We have avoided passing the outgoing and incoming states as parameters into these
member functions, even though that might give more power and flexibility. Why?
Because at this relatively low level, binding states to each other makes it harder to write
a higher-level state that is as autonomous as it needs to be. If we really need to imple-
ment this sort of behaviour, then we can still do so further down the class hierarchy.

The sequence of operations involved in a state change is detailed in this code fragment:

void ChangeState(state_State *pFrom, state_State *pTo)

{

if (pFrom != 0)

{

pFrom->OnLeave();

}

pTo->OnEnter();

}

Simple enough. (Of course, production code would be more robust – what happens if
pTo is NULL? Nothing good, that’s for sure, so the validity of the parameters needs to
be asserted on entry.)

Now, a more awkward question: who owns the states? Who is responsible for creat-
ing, deleting and using states? The most obvious candidate is the application itself,
as shown in Figure 4.9.

But – as ever – ‘obvious’ is not necessarily best. Anyone can create and destroy
states arbitrarily, and that can lead anywhere from crashes – immediate or latent – to
memory leaks, and we would like to avoid these if possible. This is just the sort of
situation where a manager can help, centralising the point of creation and helping us
to enforce the correct transitions from state to state.

Object-oriented design for games 115

Application

Application State

ConcreteState

*StatesCurrent

state_State

Figure 4.9
The application
subclasses of the
abstract state class.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 115

class state_StateManager

{

public:

state_StateManager();

~state_StateManager();

void SwitchToState(state_State * pState)

{

if (m_pCurrentState != 0)

{

m_pCurrentState->OnLeave();

}

m_pCurrentState = pState;

m_pCurrentState->OnEnter();

}

private:

state_State * m_pCurrentState;

};

The revised layout is shown in Figure 4.10.

Fine. But now we have another problem: the state manager is now creating the states
that are required to make our application tick. How do we avoid coupling the state
manager to our particular application manufacturing concrete states? Sounds like a
job for a factory:

class state_Factory

{

public:

state_State * CreateState(/*???*/) = 0;

};

Object-oriented game development116

Application

Application State

ConcreteState state_State

state_StateManager

*States Current

State manager

Figure 4.10
The application

implements concrete
versions of the abstract

state class.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 116

This is illustrated in Figure 4.11. Now, about that comment in the parameter list of
CreateState(). Although an enumerated integer would suffice to describe the vari-
ous states required, we have seen that this results in a highly coupled and therefore
dependent set of modules that will force rebuilds left, right and centre. So let’s avoid
that and use names to uniquely identify states.5 We’re not dealing with inner-loop code
that needs to run lightning quick – the application changes state relatively infrequently,
so the occasional string compare won’t hurt at all.

class state_Factory

{

public:

state_State * CreateState(const char * pName) = 0;

};

This forms the basis of our state management system. There are still some details to
thrash out, though. Remember our state change pattern ‘leave current, enter new’?
Sometimes we might need to have a more complex behaviour, because we shall want
to change behaviour of the state we are entering depending on what state we are
leaving. Earlier, we rejected putting this sort of behaviour into the state class to keep
the design simple and clean. Now we can see that it is the job of the state manager
to control the transitions between application states. So we make that
SwitchToState() method virtual, allowing the application to subclass and override
to get the required specific behaviour (Figure 4.12):

Object-oriented design for games 117

Application

Application State

ConcreteState state_State

state_StateManager

*States Current

State manager

ConcreteStateFactory state_Factory

Factory

Figure 4.11

State manager with
factory.

5 For the sake of sanity, ensure case-independent comparison of names.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 117

class state_StateManager

{

public:

state_StateManager();

virtual ~state_StateManager();

virtual void SwitchToState(state_State * pState)

{

/* As before */

}

private:

state_State * m_pCurrentState;

};

Another inspection of our class diagram might suggest that the state manager class
might be a candidate for a singleton. Quite so! There is logically only one state man-
ager – why would we need more? – but since it is hard, nay impossible, to inherit from
a singleton (what with those private constructors and destructors), it is important that
it is the subclass, not the base class, of state_StateManager that is a singleton.

In fact, the manager is not the only class in the system that is a natural singleton.
The state subclasses themselves are unique, so the creation functions passed to the
concrete state factory can return the singleton instance rather than new’ing a sub-
class. This hugely reduces the likelihood of memory leaking, being multiply deleted,
or other related horrors.

// ConcreteState.hpp

#include "state_State.hpp"

Object-oriented game development118

Application

Application State

ConcreteState state_State

state_StateManager

*States Current

State manager

ConcreteStateFactory state_Factory

FactoryAppStateManager

Figure 4.12
Custom state
management.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 118

class ConcreteState : public state_State

{

public:

static ConcreteState & Instance();

void Update(Time dt);

void Draw(Renderer * pRenderer) const;

private:

// …

};

// ConcreteState.cpp

#include "ConcreteState.hpp"

#include "ConcreteStateManager.hpp"

#include "ConcreteStateFactory.hpp"

namespace

{

state_State * createState()

{

return(&ConcreteState::Instance());

}

bool registerState()

{

ConcreteStateManager & aSM =

ConcreteStateManager::Instance();

state_Factory * pSF = aSM.GetFactory();

return(pSF->Register("Concrete", createState));

}

}

/*static*/

ConcreteState & ConcreteState::Instance()

{

static ConcreteState anInstance;

return(anInstance);

}

Object-oriented design for games 119

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 119

In engineering the state package in this fashion, we have established a paradigm: the
way a system works. Take a look at how the application’s main loop might be written:

Time t1 = GetTime();

Time dt = 0;

for(;;)

{

ConcreteStateManager & aSM =

ConcreteStateManager::Instance();

state_State * pState = aSM.GetCurrentState();

if (pState != 0)

{

pState->Update(dt);

pState->Draw(pRenderer);

}

Time t2 = GetTime();

dt = t2 – t1;

t1 = t2;

}

We have a simple main loop, and a set of decoupled, largely independent states that can
benefit further from inheritance to propagate common behaviours to state subclasses.
This illustrates the benefits of moving to a pattern-driven, object-oriented programming
methodology. Although a similar state system could, in principle, be written in C, the
semantics of C++ make the code clear to understand, extend and maintain.

We’ll return to the state management system later when we discuss adding actual
data and graphics to the model.

Case study 4.4: graphical user interface

There isn’t a game on the planet that doesn’t have a user interface (UI), a method for
taking changes in a controller and translating that into actions and responses in the
game. This suggests that UIs are eminently abstractable, but we need to be a bit care-
ful here because modern UIs usually come with complex graphical representations and
we should be watchful to abstract only the generic behaviour common to all interface
systems, lest we end up with specific behaviour at too low a level for reusability.

The graphical bit
For historical and habitual reasons, we’ll assume that the basic package name for
the GUI graphical bit is called ‘view’. In order to keep the view package clean and
simple, we need to avoid references to particular platforms and particular ways of

Object-oriented game development120

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 120

drawing things. We’ll make an assumption first: all graphical elements are repre-
sented by 2D rectangular areas. This isn’t necessarily the most general way of
storing region data, and it is possible to use non-rectangular regions for a truly univer-
sal representation. Nevertheless, whatever shape we choose, it will be bounded by a
rectangle. For a few shapes, the rectangle will be a less efficient bound, but for the
current purpose rectangles will do fine.

We’ll look at the representation of the rectangle soon. But let’s define the class that
drives the whole GUI system – the View. A View is a rectangular region of screen that
knows how to draw itself. It also supports the notion of hierarchy. A View can have
child Views: when you perform an operation on a View, you implicitly affect all of its
children as well (Figure 4.13).

This translates naturally to code that might look something like this:

// File: view_View.hpp

#include <list>

#include "view_Rectangle.hpp"

class view_View;

typedef std::list<view_View *> tViewList;

class view_View : public view_Rectangle

{

public:

view_View();

virtual ~view_View();

virtual void Render()const = 0;

void AddChild(view_View * const pChild);

void RemoveChild(view_View * const pChild);

void RemoveAllChildren();

Object-oriented design for games 121

view_View

View

*Children

view_Rectangle

Figure 4.13
Basic view classes.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 121

private:

std::list<view_View *> m_Children;

};

// File: view_View.cpp

#include "view_View.hpp"

#include <algorithm>

// Function objects that perform per-view tasks.

struct ViewDeleter

{

inline void operator()(view_View * pView)

{

delete pView;

}

};

struct ViewRenderer

{

inline

void operator()(view_View const * pView) const

{

pView->Render();

}

};

view_View::view_View()

: view_Rectangle()

{

}

view_View::~view_View()

{
// Delete all child views.

std::for_each(m_Children.begin(),

m_Children.end(),

ViewDeleter());

}

/*virtual*/ void view_View::Render() const

{

// Base class must render all child views.

std::for_each(m_Children.begin(),

m_Children.end(),

ViewRenderer());

}

Object-oriented game development122

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 122

Notice that the Render() method is pure but implemented. This keeps the
view_View class abstract, as at this level we don’t define so much what we do as
how we do it. This has a subtle repercussion on how we define the base rectangle.
The key question is ‘How do we represent a 2D position on the view?’ Consider a
game that uses a type of view called a layered view. This defines a precise order of
drawing for a series of controlled views called layers. Each of the layers has an associ-
ated integer depth and the layers are rendered in order lowest to highest (Figure 4.14).

(You are permitted to either shudder or marvel at the recursivity here: a layered view is a
view that contains layers that are also views, ergo they can be layered views.)

Now, consider how we might define the concept of position for a View. In the base
system, an x and a y ordinate suffice. However, in the layered system, the depth is
required to define a position uniquely. This suggests that making the concept of loca-
tion abstract is essential to a generic representation (Figure 4.15).

Now it becomes the job of the view subclasses to redefine the concept of position
should it be required. Each view supports a factory method, a virtual function that
manufactures the correct type of positional descriptor.

Object-oriented design for games 123

Layer

Application

depth

LayeredView

view_View

View

*Children

view_Rectangle

int

*Layers

Figure 4.14
Using the view_View
class.

view_View

View

view_Rectangle

view_View

*Children

view_Position

view_Scalar

x y

Position

Height

Width

Figure 4.15
Adding position to the
rectangle.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 123

// File: view_Types.hpp

typedef float view_Scalar;

// File: view_Position.hpp

#include "view_Types.hpp"

class view_Position

{

public:

// Public interface omitted for brevity.

private:

view_Scalar m_x;

view_Scalar m_y;

};

// File: view_Rectangle.hpp

#include "view_Position.hpp"

class view_Rectangle

{

public:

// Public interface omitted for brevity.

private:

view_Position * m_pPosition;

view_Scalar m_Width;

view_Scalar m_Height;

};

// File: view_View.hpp

#include "view_Rectangle.hpp"

class view_View : public view_Rectangle

{

public:

virtual view_Position * CreatePosition()

{

return new view_Position;

}

// Remainder omitted for brevity.

Object-oriented game development124

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 124

private:

};

// File: LayeredView.hpp

#include "view_View.hpp"

class LayeredPosition : public view_Position

{

public:

// Public interface omitted for brevity.

private:

int m_iDepth;

};

class LayeredView : public view_View

{

// Class body omitted for brevity.

};

There’s one more issue to cover: drawing the view. Notice that we provided an
abstract method

virtual void view_View::Render() const = 0;

to do our rendering. It is a bit annoying that we cannot pass a parameter in to say
what we are rendering to, and how. Of course, if we did that, then we could start to
eat away at a generic representation. So how do we pass in context information with-
out resorting to specific implementation details? We use a Strawman object. Recall
that this is an empty class used to supply type information only. In this example, we
are passing in an arbitrary context, which the concrete rendering method will know
how to convert into something useful:

// File: view_Context.hpp

class view_Context

{

public:

view_Context();

virtual ~view_Context();

private:

};

// File: view_View.hpp

Object-oriented design for games 125

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 125

class view_Context;

class view_View

{

// As before, except –

virtual void Render(view_Context *pContext) const=0;

};

Now, supposing that our application has a render package that defines a renderer
class:

class rndr_Renderer

{

// Lots of funky graphics stuff

};

Then we can define the application renderer thus:

class Renderer

: public rndr_Renderer

, public view_Context

{

};

which allows us to pass renderers directly into the application views:

void MyView::Render(view_Context * pContext)

{

rndr_Renderer * pRenderer =

static_cast<rndr_Renderer *>(pContext);

// Draw the view.

// Important and easily forgotten call to render the

// child views.

view_View::Render(pContext);

}

A couple of points. First, if you are still mistrustful of multiple inheritance, you can get
a functionally (but not syntactically elegant) equivalent class by using single inheri-
tance and embedding a renderer instance member with accessors:

class RenderContext : public view_Context

{

public:

rndr_Renderer & GetRenderer() { return m_Renderer; }

Object-oriented game development126

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 126

private:

rndr_Renderer m_Renderer;

};

Second, we need to rewrite the function object that does the rendering in
view_View.cpp, given that we have added a parameter:

class ViewRenderer

{

public:

// ‘explicit’ stops the compiler trying to convert

// contexts to ViewRenderers at the drop of a hat.

explicit inline

ViewRenderer(view_Context * pContext)

: m_pContext(pContext)

{

}

inline

void operator()(view_View const * pView) const

{

pView->Render(m_pContext);

}

}

/*virtual*/

void view_View::Render(view_Context * pContext) const

{

std::for_each(m_Children.begin(),

m_Children.end(),

ViewRenderer(pContext));

}

The input system
Now we want to define how player input data are managed. Note that this system is
most definitely not a controller system. It is an adapter component that takes data
from an external controller system (the specifics of which are intentionally not
detailed here) and converts them into a form that is usable by the package and
allows them to be passed to the appropriate subsystem.

The atomic class is naturally called Input and is an abstract object (Figure 4.16).
However, there is one item of data that we associate with all flavours of input data,
and that is an owner tag. This allows us to distinguish where the data came from,
and it should be unique for every potential source of input data. We’ll use an integer
tag field here, though others are feasible.

Object-oriented design for games 127

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 127

So far, so simple. Assuming that we subclass input_Input to give us a concrete
object, we then need a mechanism to propagate the associated data to some sort of
handler. A C-like solution would be to add a type field to the input data and then
switch that on to pass on the correct data:

void HandleInput(input_Input * pInput)

{

switch(pInput->eType)

{

case IT_JOYPAD:

handleJoypad(((InputJoypad *)pInput)->m_Data);

break;

case IT_KEYBOARD:

handleKeys(((InputKeyboard *)pInput)->m_Data);

break;

// etc

default:

break;

}

}

This isn’t a very flexible system. Adding controller types is a pain – the switch state-
ment can become large and unwieldy and, as we’ve seen before, enumerations are
generally a bit of a bind and a compilation bottleneck. Ideally, if we wanted to extend
an enumerated type, we might like to express it thus:

enum Thing

{

ZERO, /* = 0 */

ONE, /* = 1 */

TWO /* = 2 */

};

Object-oriented game development128

input_Input

Input

int

Owner

Figure 4.16
The input object.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 128

enum ExtendedThing : public Thing

{

THREE, /* = 3 */

FOUR, /* = 4 */

};

But since this isn’t allowed, and it could have horrendous side effects if it were, then
it’s better to abandon enums in favour of our flexible friend polymorphism.

The idea is to have a separate object that the application defines and that handles
the various types of input that the application is interested in (and nothing else). This
prevents the clogging effect of low-level monolithic systems. The object that provides
this functionality is called an InputMap. A base InputMap supports a single virtual
function, HandleInput:

class input_InputMap

{

public:

virtual void HandleInput(input_Input & anInput)

{

}

};

Which does precisely nothing. The cunning bit takes place in your subclasses, where
you provide the overloads of HandleInput that do your bidding:

class MyInput : public input_Input

{

// Class body omitted for brevity.

};

class MyInputMap : public input_InputMap

{

public:

virtual void HandleInput(MyInput & anInput)

{

// Do something groovy.

}

};

The hope is that when you call HandleInput with an object of type MyInput, then your
‘Do something groovy’ code gets executed. Sadly, that hope is in vain. What actually
happens is that input_InputMap::HandleInput() is called. Why? Because C++
can’t do the doubly polymorphic thing – you want it to call the right function depending
not only on the type of input map but also on the type of input. In the lingo, only the

Object-oriented design for games 129

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 129

static type of arguments can be used to select the function to call (at compile time),
not the dynamic type (at run time like you need).

Thankfully, there are work-arounds. One possibility is to use dynamic_cast to see
whether type conversions exist, but this leads to inefficient code that is effectively
just a type with a switch – the solution we rejected a while back. The solution we’ll
use here is called ‘double dispatching’. We add an extra virtual function to the Input
class called Dispatch:

class input_InputMap;

class input_Input

{

public:

// As before.

virtual void Dispatch(input_InputMap * pMap) = 0;

};

Within your own subclasses of input, you then implement Dispatch as follows:

class MyInput : public input_Input

{

public:

void Dispatch(input_InputMap * pMap)

{

pMap->HandleInput(*this);

}

};

This basically turns a dispatch based on two values into two single dispatches, and it
works a treat. That’s because within MyClass, the type of *this is known at compile
time (it’s always MyClass), so the compiler always generates exactly the right call.

An InputMap can – and should – support as many types of input subclass as you
need. If you fail to provide a HandleInput for a particular input class, then the base
class (do-nothing) HandleInput is automatically invoked, so you can either flag an
error or ignore the data.

Figure 4.17 summarises the input components.

class MyInputMap

{

public:

void HandleInput(MyInput & anInput);

void HandleInput(InputKeyboard & anInput);

void HandleInput(InputJoypad & anInput);

};

Object-oriented game development130

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 130

The GUI bit
Now that we have defined a basic graphical element – a View – and a way of passing
input data around, we can combine these elements into an interface package.

So what do we want the GUI package to do? Well, it must support the concept of
menus and gadgets (or controls). Notice that both of these elements should respond
to user input. However, we also want to classify the in-game state as part of the inter-
face. That requires either thinking of the game as a menu (not very elegant, intuitive
or useful) or separating out the entity that receives input behaviour into a property
class (Figure 4.18).

Notice here how the packages enforce the separation of the visual representation
from the data representation: menus and gadgets have references to their views.
This is a sign of a well-ordered system, as it allows the decoupling of how it looks
from what it does.

We’ve added a new type of input map at the GUI level. This input map ‘knows’ which
menu and which gadget it belongs to, so that when a gadget gets input that instructs
it to (say) lose focus (i.e. move from being the active gadget to being inactive and
change the active gadget to be another one), it can invoke the required functionality
in the menu.

Object-oriented design for games 131

input_Input

Input

int

Owner

input_InputMap

Figure 4.17
Input component
summary.

gui_InputReceiver

GUI

Input map

gui_InputMap

Input

input_InputMap

View

view_View

gui_Gadget

Gadget

gui_Menu *Gadgets

Focus
View

View

Menu

Figure 4.18
The GUI classes.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 131

Strictly speaking, this isn’t ideal, allowing lower-level objects (gadgets) to talk to
higher-level objects (menus). Also note an implicit circularity (menu has a gadget,
gadget has a menu via the input map) and an explicit circularity (gadget has an input
map, input map has a gadget). Can we get rid of these traits? More importantly,
should we?

Let’s deal with the latter question first. We should be concerned if the reusability of
our classes is compromised by their relationships to one another. If classes A and B
are mutually dependent but we only need A, then there’s clearly a potential problem if
B must come along too. In this case, we have abstract classes – Menu and Gadget –
that must be reused. The design tells us that the concept of a menu without a gadget
is impossible. However, the raison d’être of a menu is to have gadgets (and if we
really need a menu with no gadget, we can subclass to create a ‘null’ gadget).
Conversely, the idea of using a gadget without a menu is bogus. So in the end,
although our design is not purist, there is no problem with it as it stands.

Nevertheless, it’s an interesting exercise to try to remove the circularities. One way
that leaps out is to replace the references one way with dumb data. Instead of having
pointers to gadgets (say), give gadgets integer IDs and refer to them that way. This is,
in fact, the preferred solution of most GUIs.

Finally, let’s look at adding the input-receiving behaviour to the game as we stated
above. We need somewhere to inherit or own the behaviour class, and a state class
(as discussed in preceding sections) is a very good candidate. Indeed, there are
apparently close ties between the state system and the GUI system, and it is tempt-
ing to devise the sort of scheme shown in Figure 4.19.

This is a temptation that is well worth resisting. By linking packages at such a funda-
mental level, we are heading towards the sort of monolithic code systems that we
would like to avoid. By keeping systems small and light, we increase the probability of
reuse. Looked at another way, there is no necessarily logical or conceptual connec-
tion between states and views, so why should we create one?

That’s not to say that states shouldn’t own views. Quite the reverse. We want to reuse
the View package in the game. All that we’re saying is that the dependency should be
at a higher level than the View and State packages live at, because we might not
always want or be able to use views with states. We might create a new package –
called Framework, say – that binds the packages at a higher level, as in Figure 4.20.

This is considerably better: we don’t impact on the reusability of State and View
classes and we create a new, higher-level package that is reusable in its own right.

Object-oriented game development132

state_State

State

view_View

View

*Views

Figure 4.19
A poor way to associate

states and views.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 132

So let’s assume that there is a class called GameState that updates and draws the
game. Figure 4.21 shows how the classes might relate. This works exactly as
required and shows the advantages of factoring common functionality and postponing
the binding of packages to higher levels.

Object-oriented design for games 133

state_State

State

view_View

View

fmwk_State

Framework

fmwk_View*Views

Figure 4.20
A better way to associate
states and views.

GameView GameInputRecvrGameState

Input receiver

Game

fmwk_View gui_InputReceiverfmwk_State

Framework

view_Viewstate_State

State View

GUI
*Views

Figure 4.21
The intermediate
Framework component
avoids logically or
physically binding the
View and State
components.

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 133

4.4 Summary

● Object orientation fits well with game development.

● C++ may not be the most object-oriented of languages, but it is a good compromise
between the speed and power of C and the more ‘correct’ languages out there.

● GoF patterns have their uses but they also have their costs in terms of both effi-
ciency and impact on the surrounding architecture. Use with care.

Object-oriented game development134

8985 OOGD_C04.QXD 1/12/03 2:32 pm Page 134

5.1 Definition: game engine

A series of modules and interfaces that allows a development team to focus
on product game-play content rather than technical content.

This chapter is about game engines. Or rather, it is about avoiding game engines.
Game engines, as we may infer from the above definition, tend to be monolithic
procedural systems, and since this book is banging on about the object-oriented
development of architectures, you can safely assume that the author doesn’t think
too highly of them (or at least the monolithic procedural ones).

5.2 Motivation

There are, of course, some really famous and commercially successful game
engines. ID Software’s Quake engine, (the appropriately named) Monolith’s
Lithtech and Epic Software’s Unreal engine are prime examples of well-written
modern game construction systems. They all offer just about everything you’d
need to write a game (though there are applicability issues that depend on your
target genre).

However, this isn’t the place to review specific engines. Rather, we are going
to question the usefulness of the concept of an engine and consider the benefits
instead of writing games aided by software components.

5.2.1 Your engine has stalled
So what have I got against game engines? Well, first off, there is that habit they
have of being monolithic. Suppose there’s a game engine that has really good
non-player character (NPC) behaviour control, and you’d like to use that in
your game. Can you do it? Chances are you can’t. You see, the monolithic
nature of the engine means that the NPC control system uses at least the basic
definitions of the engine, and the artificial intelligence (AI) itself may depend
on extracting information from the environment that the engine itself supports

The component model for
game development

5

135

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 135

– for example, line-of-sight calculations might refer to the portals the graphics
system uses to prune visible data.

Now what that means in practice is that I cannot use one part of the game
engine – the NPC AI – without taking another – the environmental system.
Now, what’s the betting that the environment system comes with strings too?
Perhaps the rendering API? Too bad that our game already has a renderer.

This is our dependency demon from previous chapters rearing its ugly
horned head again. This time it’s busy gobbling precious RAM and making life
more complex than it needs to be. This is illustrated beautifully in Figure 5.1.

This isn’t just a matter of losing memory, though. If the engine gains own-
ership of system hardware, then your objects can be locked out. And the reverse
is true, of course: the game engine may fail because you have allocated a
resource that it needs, even if that resource is in a part of the engine you do not
use. If you have the luxury of being able to modify engine code, then you may
be able to fix this problem. However, this is frequently not the case.

For these reasons, it is really very difficult to write a game engine to please
most of the people most of the time. The best engines are limited in scope: first-
person shooter engines, extreme sports engines, and so on. Which is fine if your
company is continually churning out the same sort of game over the course of
several years, but the moment you diversify it’s back to the drawing board for a
new game engine.

5.2.2 The alternative
We really, really, really want to take a big hammer to the idea of an engine and
break down the monolith into a series of components. The ideal is to turn the
relationships in Figure 5.1 into those shown in Figure 5.2.

The first big change is (as promised) that we’ve hit the engine with our
hammer, and broken it down into two packages: one for rendering, one for AI.
There is no logical or physical connection between these packages, and why
should there be? Why would renderers need to know anything about AI? And
what interest would the AI have in a renderer? (Suggested answers: absolutely
no reason whatsoever, absolutely none.)

Object-oriented game development136

NPC AI EnvironmentRenderer

Maths

Your engine

NPC AI EnvironmentRenderer

My game

Figure 5.1
Duplication of code and

functionality within an
application when using a

game engine.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 136

Now, we can’t break the relationship between the NPC AI and the environ-
ment the AI must traverse. However, we can move the complexity to where it
belongs – in the game code. OK, I can hear you grumbling at that, so let’s back
up a little. The idea is to keep everything that is specific to your game environ-
ment in the game and to move everything that is generic about environments
into the AI package’s environment component. Nothing is stopping us from
adding a whole bunch of toolkit routines and classes to the AI package that do a
lot of common mathematical or logical operations; and we can declare virtual
functions in the abstract environment base class that we implement in our con-
crete environment.

Let’s generalise this to define a component architecture. This is a set of
independent packages that:

● implements toolkit classes and functions for general common operations;
● declares concrete and abstract classes in such a way as to define a template

for how the game classes should be organised.

So far, so grossly simplified. However, it illustrates the point that we have taken
a strongly coupled engine and converted it into a series of loosely coupled or
even independent building blocks.

Consider, then, the possibilities of working with a component architecture.
Writing a game becomes a matter of choosing a set of components and then
gluing them together. Where the components define abstract, partial or just
plain incorrect functionality, we can override the default behaviours using the
help of our friends polymorphism and inheritance. Instead of facing the cre-
ation of an entire game engine from scratch, we – in effect – create a bespoke
one from off-the-shelf building blocks that can be made into just what we need
and little or no more. No need to put up with redundant systems and data any
more. No more monolithic engines. Product development time is reduced to
writing the glue code, subclassing the required extra behaviour and writing the
game. Welcome to a brave new world!

The component model for game development 137

AIRenderer

My Environment

Environment

My NPC AI

NPC AI

My Renderer

Renderer

My game

Environment
Figure 5.2
Game architecture using
a component philosophy.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 137

Before we get too carried away, let’s apply the brakes ever so gently. The pre-
ceding paragraph describes the goal of component-based development. In
reality, there is still a lot of hard work, especially in writing those subclasses.
However, bear in mind that if written with sufficient care and attention these
subclasses become reusable components in themselves. Can you see now why
the component model is appealing?

Notice that the component architecture model remains open – it is not
geared to write a particular type of game; it remains flexible because behaviours
can always be overridden when required; and if a component runs past its sell-
by date, it’s only a small system to rewrite and there’s no worrying about
dependency creep because there are no – or, at worst, few – dependencies.

All right, enough of the hard sell. Let’s look at how we might go about cre-
ating a component architecture. Because this is – as stressed above – an open
system, it would be impossible to document every component that you could
write, but we’ll deal with the major ones in some detail here:

● application-level components
● containers
● maths
● text and language processing
● graphics
● collision
● resource management
● Newtonian physics
● networking.

5.3 Some guiding principles

Before we look in detail at the components, we shall discuss some basic princi-
ples – philosophies, if you will – that we will use in their architecture. These
principles apply to game software in general, so even if you don’t buy the com-
ponent architecture model wholesale, these are still useful rules to apply.

5.3.1 Keep things local
Rule number 1 is to keep things as local as you can. This applies to classes, macros
and other data types; indeed, anything that can be exported in a header file. To
enforce this to some extent, we can use either a namespace for each component
or some kind of package prefix on identifier names.1 Keep the namespace (or
prefix) short: four or five characters will do (we use upper-case characters for
namespaces).

Object-oriented game development138

1 There may even be an argument for using both prefixes and name spaces. The reason for presenting
a choice is that there are still compilers out there that don’t like name spaces.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 138

The first practical manifestation of this is to stick to C++’s built-in data
types wherever possible:

int, char, short, long, float, double

and any unsigned variants of these (should you need them). This is in prefer-
ence to creating type definitions such as:

typedef unsigned char uint8;

You may recall from previous chapters that definitions such as these are fre-
quently overused with little justification for their existence. If you need these
sort of constructs, make sure they are included in the name space and keep
them out of public interfaces:

namespace COMP

{

typedef unsigned char uint8;

}

or

typedef unsigned char comp_Uint8;

Remember that macros do not bind to name spaces and so should be replaced
by other constructs (such as in-line functions) where possible, prefixed with the
component identifier or perhaps removed altogether.

There is a balance to be struck here. If we were to apply this locality princi-
ple universally, we would end up with components that were so self-contained
that they would include vast amounts of redundancy when linked into an
application. Clearly, this would defeat the object of the exercise. So, for the
moment, let’s say that there’s a notional level of complexity of a class or other
construct, which we’ll denote by C0, below which a component can happily
implement its own version, and above which we’re happy to import the defini-
tion from elsewhere. Using C0 we can define three sets:

● S– is the set of classes whose complexity is much less than C0.
● S+ is the set of classes whose complexity is much greater than C0.
● S0 is the set of classes whose complexity is about C0.

Now although these are very vague classifications, they do give us a feel for
what goes into our components and what needs to be brought in (see Table 5.1).

The idea behind the vagueness is to give you, the programmer, some flexi-
bility in your policy. For example, suppose a component requires a very basic

The component model for game development 139

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 139

container (implementing addition, removal and iteration only, say). Even if our
policy says containers are imported, simple (‘diet’, if you will) containers can be
defined within our component (and if we’ve written our containers using tem-
plates, then the size of redundant code is exactly zero bytes).

To summarise: by keeping appropriate C++ constructs local to a component
you will improve the chances that this component can exist as a functional entity
in its own right without the requirement to pull in definitions from elsewhere.

5.3.2 Keep data and their visual representations logically and
physically apart

This is an old principle in computer science, and it’s still a good one. When we
bind any data intimately with the way we visualise those data, we tend to make
it awkward if we decide to change the way we view the data in the future.
Consider an explosion class. In the early phases of development, we may not
have the required artwork or audio data to hand, yet we still wish to present
some feedback that an explosion has occurred. One way of doing this might be
to simply print the word ‘BANG!’ in the output console with a position. Here’s
some abridged sample code to illustrate this:

// File: fx_Explosion.hpp

#include <stdio.h>

namespace FX

{

class Explosion

{

public:

void Render()

{

printf("BANG! (%f,%f,%f)\n", …);

}

private:

float m_Pos[3];

};

}

Object-oriented game development140

S– S0 S+

Integral types … Containers, vectors, Everything else
matrices …

Table 5.1

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 140

We have introduced a dependency between an explosion and the way we view
it. When the real artwork finally arrives, we’re going to have to change that ren-
dering function even though the explosion has not physically changed. It is
always a good idea to keep the simulation and your visualisation of it separate.
That way, you can change the representation with the object itself being utterly
oblivious. This general principle is shown in Figure 5.3.

The base class Object is a data holder only. Apart from a polymorphic
method for rendering, nothing more need be specified regarding its visualisation:

class Object

{

public:

virtual void Render(/*?*/) {}

};

(We haven’t specified how we’re going to render yet, and it’s superfluous to this
discussion for the moment, hence the commented question mark.)

Each object that requires to be viewed is subclassed as an ObjectVisual,
which contains a pointer to a visual. This abstract class confers some kind of
renderability on the object, though the object instance neither is aware of nor
cares about the details:

The component model for game development 141

ObjectVisual

Object

Visual3D

Visual

VisualText

Rend

Component

Visual

Figure 5.3
Keeping object data
and their visual
representation separate.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 141

class ObjectVisual : public Object

{

public:

void Render(/*?*/) const

{

m_pVisual->Render(/*?*/);

}

private:

REND::Visual * m_pVisual;

};

The purpose of this principle will become apparent when we consider the his-
torical precedents. In a previous era, with target platforms that were not so
powerful, the luxury of having separate functions to update an object and then
to render it was often avoided. Code for drawing the object and refreshing its
internal state was mixed freely. And, of course, this made changing how the
object was viewed next to impossible in the midst of development. By keeping
the visual representation separate from the internal state of the object, we
make life easier for ourselves in the long run. And we like it when it’s easier,
don’t we?

Let’s just sum this principle up in a little snippet of code:

class Object

{

public:

void Render(/*?*/) const

{

m_pVisual->Render(/*?*/);

}

virtual void Update(Time aDeltaT);

private:

REND::Visual * m_pVisual;

};

Note that the Render() method is kept const as it should not modify the
internal state – when we need to do that, we call Update(). This allows us to
maintain frame-rate independence – the update makes no assumptions about
how long it takes to draw a scene, and we can call it as many times as we wish
before calling Render() and still get a scene that is visually consistent with the
internal state.

Object-oriented game development142

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 142

5.3.3 Keep static and dynamic data separate
Like separating state and visual representation, this principle makes code main-
tenance simpler. However, it can also greatly improve code performance and
can reduce bloating with redundant data.

The principle is very simple at heart. If you have an object that controls a
number of sub-objects, and you want to update the parent, then that involves
updating all of the child objects as well. If there aren’t too many children, then
the cost may be negligible, but if there are lots of objects or the objects have lots
of children, then this could become costly.

However, if you know that some of the children are static, then there’s no
need to update them, so we can reduce the overhead by placing the data that do
not change in a separate list.

So that, in a nutshell, is how we can make our code more efficient. Now
here’s the way we can save data bloating. By recognising the existence of static,
unchanging data and separating them from the dynamic data, we can confi-
dently share those static data between any number of objects without fear of
one object corrupting everyone else’s data (see Figure 5.4).

We’ll see this sort of pattern time and time again, so we should formalise it
a little. We make a distinction between an object and an object instance. The
former is like a template or blueprint and contains the static data associated
with the class. The latter contains the dynamic data (see Figure 5.5).

The component model for game development 143

Static Data

Object NObject 2Object 1
Figure 5.4
Many objects referring to
a single static dataset.

Dynamic

ObjectInstance

ObjectData

Static

Object

DataData

Object Figure 5.5
Separating static and
dynamic data using
instancing.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 143

The equivalent code is shown below:

// File: Object.hpp

class ObjectInstance;

class Object

{

public:

ObjectInstance * CreateInstance();

private:

StaticData m_StaticData;

};

// File: ObjectInstance.hpp

class Object;

class ObjectInstance

{

public:

ObjectInstance(Object & anObject);

private:

DynamicData m_DynamicData;

Object & m_Object;

};

Notice that the Object contains a factory method for creating instances. This
method can be polymorphic in hierarchies, and the object classes can easily
keep track of all the instances of that object in the game.

That’s all pretty abstract – the Object could be anything (including a Game
Object, a class that gets a whole chapter to itself later on). So let’s take a rela-
tively simple example – a 3D model.

We’ll assume we have some way of exporting a model from the artist’s
authoring package, converting that to some format that can be loaded by our
game. This format will consist of the following data: a hierarchy description and
a series of associated visuals (presumably, but not necessarily, meshes of some
kind), as shown in Figure 5.6.

Notice that the abstract Visual class can represent a single or multiple
Visuals using the VisualPlex class (which is itself a Visual). This is another
common and useful pattern. Now we can think about static and dynamic data.
Suppose we have an Animation class in another component. This will work by
manipulating the transformation data inside the hierarchy of an object, which
means that our hierarchy data will be dynamic, not static. Also, consider that
our model might be skinned. Skinning works by manipulating vertex data

Object-oriented game development144

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 144

within a mesh – which is the Visual side of things. In other words, the Visual
can be dynamic too. So we consider separating out the static and dynamic data
in these classes into instances, and in doing so we create a new class – the
ModelInstance shown in Figure 5.7.

We use factory methods to create instances from the static classes, as illus-
trated in the following code fragments (as ever, edited for brevity):

// File MODEL_Model.h

namespace MODEL

{

class Hierarchy;

class Visual;

class ModelInstance;

class Model

{

public:

ModelInstance * CreateInstance();

The component model for game development 145

HierarchyDesc

Model

Visual

VisualPlex

Visual Hierarchy definition

*Visual

Figure 5.6
Object diagram for the
Model class.

HierarchyInstance

ModelInstance

VisualInstance

VisualPlexInstance

Visual Hierarchy

*Instances

Figure 5.7
Object diagram for the
ModelInstance class.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 145

private:

Visual * m_pVisual;

Hierarchy * m_pHierarchy;

};

}

// File MODEL_Model.cpp

#include "MODEL_Model.hpp"

#include "MODEL_ModelInstance.hpp"

#include "MODEL_Visual.hpp"

#include "MODEL_Hierarchy.hpp"

ModelInstance * Model::CreateInstance() const

{

VisualInstance * pVI =

m_pVisual->CreateInstance();

Hierarchy * pHier = m_pHierarchy->CreateInstance();

return new ModelInstance(pVI, pHier);

}

// File:MODEL_Visual.hpp

namespace MODEL

{

class VisualInstance;

class Visual

{

public:

virtual VisualInstance * CreateInstance() = 0;

};

}

// File:MODEL_VisualPlex.hpp

#include "MODEL_Visual.hpp"

#include "MODEL_Array.hpp"

namespace MODEL

{

class VisualPlexInstance;

class VisualPlex : public Visual

{

Object-oriented game development146

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 146

public:

VisualInstance * CreateInstance() const

{

return new VisualPlexInstance(*this);

}

private:

array<Visual *> m_Visuals;

};

}

// File:MODEL_VisualPlexInstance.hpp

#include "MODEL_VisualInstance.h"

#include "MODEL_Array.h"

namespace MODEL

{

class VisualPlex;

class VisualPlexInstance : public VisuaInstance

{

public:

VisualPlexInstance(VisualPlex const &);

private:

array<VisualInstance *> m_Visuals;

};

}

// File:MODEL_Hierarchy.hpp

namespace MODEL

{

class HierarchyInstance;

class Hierarchy

{

public:

HierarchyInstance * CreateInstance() const

{

return new HierarchyInstance(*this);

}

};

}

The component model for game development 147

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 147

5.3.4 Avoid illogical dependencies
Boy, am I fed up of seeing code that looks something like this:

#include "FileSystem.h"

class Whatever

{

public:

// Stuff…

void Load(FileSystem & aFileSys);

void Save(FileSystem & aFileSys);

// More stuff.

};

Remember: the idea is that the class should contain just enough data and ways
to manipulate those data as necessary, and no more. Now, if the class is related
to a file system, then there may be a case for these methods being there, but
since the vast majority of classes in a game aren’t, then it’s safe to assume that
they are unjustified in being class members.

So how do we implement loading (and maybe saving)? We delegate it to
another object (Figure 5.8).

Rather than create a dependency between component (or package or class) A
and element B, we create a new element, AB, which absorbs that dependency. Not
only does this keep A and B clean and simple to maintain; it also protects users
who need the services of A or B from needing to include and link with the other.

With specific reference to serialisation, for each class that requires the abil-
ity to be loaded (or saved), we usually write a loader class to decouple the object
from the specifics of the input or output classes.

Object-oriented game development148

A B

AB

Figure 5.8
Avoiding the binding of

components A and B by
creating a third

component, AB.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 148

5.3.5 Better dead than thread?
Modern computer and console operating systems almost ubiquitously provide
some sort of facility for running concurrent threads of execution within the
game. This is a powerful paradigm, but – as always – with power comes danger.
Often, less experienced programmers are lured into making such pronounce-
ments as ‘Wouldn’t it be really cool if, like, each game object ran its AI on a
separate thread? Then the objects would just run autonomously, and I could use
the threading API to control how the AI was scheduled so I don’t overrun
frames and …’

Well, my opinion is: ‘No, it would not be cool’. If you catch yourself saying
something like that in the previous paragraph, step back and take a deep breath.
I offer you two very good reasons why you should avoid the use of threads in
your game wherever possible:

● The technicalities of thread synchronisation will cause you major
headaches, obfuscate code, make debugging difficult and significantly
impact development times in the wrong direction.

● If you are considering multiplatform development, then the threading facil-
ities will vary widely from machine to machine, making it difficult to
guarantee identical behaviour on the various versions of the game.

In most circumstances, it is both possible and desirable to avoid using threads,
and it is easier to not use them than to use them. In other situations, you may
find that a thread is required, for example in a network manager that needs to
respond to asynchronous events on a socket. However, in these situations the
‘threadedness’ of the component should be utterly hidden from the user. All the
unpleasantness with mutexes (or other flavours of synchronisation object)
should be encapsulated logically and preferably physically within the compo-
nent. A pollable interface should be provided so that any of the asynchronous
stuff that may have occurred since the last update can be queried; effectively, a
threaded component becomes a message queue that can be interrogated at will
when the game dictates, rather than when the kernel decides that it feels like it.
In this way, you localise the problems of thread synchronisation and keep con-
trol of your code.

5.4 Meet the components

It’s now time to look at what goes into making components. The discussions
won’t be about how to implement the specifics of each component. Instead,
we’ll discuss something much more powerful: the architectural issues lying
behind the component design.

The component model for game development 149

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 149

5.4.1 Naming conventions
Within the component architecture, we shall make extensive use of name
spaces to (i) group logically and physically related entities and (ii) prevent iden-
tifier name collisions. Now – incredibly – some compilers out there still can’t
handle namespaces, in which case you will have to fall back on the prefixing of
class names with component tags. Physically, the components will reside in a
subdirectory called ‘components’ (rocket science, huh?), and a component lives
in a single flat subdirectory of that. Files within that directory are named COM-
PONENT_FileName.Extension.

5.4.2 The application
The application component is extremely simple. We can assume confidently
and almost universally that an application will have the following three discrete
phases of execution:

● initialisation
● main loop
● shutdown.

The class therefore practically writes itself:

namespace APP

{

class Application

{

public:

virtual bool Initialise() = 0;

virtual void Terminate() = 0;

virtual void MainLoop() = 0;

};

}

The user’s concrete subclass of APP::Application can then be used to hang
global data from (with, of course, the requisite access control). It is also a good –
if not the prototypical – candidate to be a singleton.

Now let’s go a step further with the application class: we can add internal
state management and user interface components to it (like MFC does, only ele-
gantly). We have already met the state manager and the GUI components in
earlier chapters, and they can be built into the application class wholesale
because they are entirely generic:

Object-oriented game development150

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 150

// File: APP_Application.hpp

namespace STATE

{

class StateManager;

}

namespace GUI

{

class ViewManager;

}

class Renderer;

namespace APP

{

class Application

{

public:

Application();

virtual ~Application();

virtual bool Initialise() = 0;

virtual void Terminate() = 0;

virtual void MainLoop() = 0;

virtual bool Run()

{

Time aDeltaT = /* Get elapsed time */;

bool b = m_pStateMgr->Update(aDeltaT);

m_pViewMgr->Render(m_pRenderer);

return(b);

}

private:

STATE::StateManager * m_pStateMgr;

GUI::ViewManager * m_pViewMgr;

Renderer * m_pRenderer;

}

}

The component model for game development 151

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 151

We shall have more to say about applications when we look at cross-platform
development in a later chapter.

5.4.3 Container components
Where do containers fit in the grand scheme of things? They are extremely
common data structures, and it’s essential to have a library of various types to
hand. But (you may ask), what about the STL, which provides containers for
free? Why go to the trouble of creating a core component?

The simple answer is: power and control. STL is big and unwieldy. Its scope
is much greater than just the container classes it supports, so to use it simply for
that purpose is the sledgehammer/nut scenario. Also, more practically, STL can
seriously hurt your compilation and link times, and one of the goals of the com-
ponent system is to make things go faster.

Nevertheless, it does no harm and quite a lot of good to keep the container
classes STL-compatible. There are all these STL algorithms, functors and opera-
tors out there to use that will magically work with your own containers
provided they support a subset of the public interface’s methods and type defin-
itions. Here, for example, is an example of an array class, kept broadly
interface-compatible with STL:

namespace CONT

{

template<class T> class array;

template<class T>

class array_iterator

{

friend class array<T>;

private:

T * m_pItem;

public:

inline array_iterator() : m_pItem(0) { ; }

inline array_iterator(T * pItem)

: m_pItem(pItem) { ; }

inline array_iterator(const array_iterator & that)

: m_pItem(that.m_pItem) { ; }

inline

bool operator==(const array_iterator & that) const

{ return(m_pItem == that.m_pItem); }

Object-oriented game development152

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 152

inline array_iterator &

operator=(const array_iterator & that)

{ m_pItem = that.m_pItem; return(*this); }

inline T & operator*()

{ assert(m_pItem != 0); return(*m_pItem); }

inline

bool operator!=(const array_iterator & that) const

{ return !operator==(that); }

// Postfix increment.

inline array_iterator operator++(int)

{

assert(m_pItem != 0);

T * pNow = m_pItem;

++m_pItem;

return(array_iterator(pNow));

}

// Prefix increment.

inline array_iterator & operator++()

{

assert(m_pItem != 0);

++m_pItem;

return(*this);

}

};

//---

template<class T>

class array_const_iterator

{

// Much the same as above but const-correct.

};

//---

template <class T>

class array

{

The component model for game development 153

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 153

public:

/*

* Constants/typedefs/enums.

*/

enum { GROW_FACTOR = 2 };

typedef array_iterator<T> iterator;

typedef array_const_iterator<T> const_iterator;

typedef T data_type;

/*

* Lifecycle.

*/

array();

array(int iInitialSize);

array(const array<T> & that);

~array();

/*

* Polymorphism.

*/

/*

* API.

*/

T & operator [] (int n);

const T & operator [] (int n) const;

int size() const;

bool empty() const;

int capacity() const;

void resize(int iNewSize);

void reserve(int iSize);

void clear();

void push_back(const T & anItem);

void push_front(const T & anItem);

void pop_front();

void pop_back();

void insert(iterator i, const T & anItem);

void erase(const iterator & iPos);

void erase(const iterator & iStart,

const iterator & iEnd);

Object-oriented game development154

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 154

void remove(const T & anItem);

void remove_at(int iIndex);

iterator begin();

const_iterator begin() const;

iterator end();

const_iterator end() const;

T & back();

const T & back() const;

T & front();

const T & front() const;

array<T> & operator=(const array<T> & that);

private:

/*

* Helpers.

*/

/*

* Data.

*/

int m_iNumItems;

int m_iNumAllocated;

T * m_Items;

}; // end class

The implementation can be kept clean, simple and efficient, yet STL’s algo-
rithms can be used seamlessly (and because it is interface-compatible):

#include <algorithm>

// An array.

CONT::array<int> aSomeInts(10);

// A function object

struct MyFunctor

{

public:

// Some compilers will only inline code

// if the data declarations are made first.

int m_iCount;

The component model for game development 155

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 155

public:

inline MyFunctor()

: m_iCount(0)

{}

inline void operator()(int & n)

{

n = m_iCount++;

}

};

std::for_each(aSomeInts.begin(),

aSomeInts.end(),

MyFunctor());

The array class still has quite a rich interface – there is a lot of control over size,
and the array can grow when data are added for example. In some cases, even
this is overkill when all that is required is an integer-indexed array of fixed size
but (unlike a C array data type) that has controlled access,2 so we have a set of
‘fast, fixed-size’ container classes denoted by an _ff postfix:

namespace CONT

{

template<class T,int N>

class pocket

{

public:

// Types.

typedef T data_type;

typedef pocket_iterator<T> iterator;

typedef pocket_const_iterator<T> const_iterator;

// Lifecycle.

pocket();

// API

void Clear();

void AddItem(const T& Item);

void RemoveItem(const T & Item);

void RemoveAt(int iIndex);

int GetSize() const;

Object-oriented game development156

2 Many of the most hideous bugs I have met are manifestations of writing data past the end or before
the beginning of an array. There is, therefore, great benefit from controlling access to a standard array.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 156

T & operator[](int n);

const T & operator[](int n) const;

bool Full() const;

bool Find(const T & Item) const;

T * Get(const T & Item) const;

int GetIndex(const T & Item) const;

iterator begin();

const_iterator begin() const;

iterator end();

const_iterator end() const;

private:

T m_aItem[N];

int m_iIndex;

};

}

The most commonly used container classes in the component system are
as follows:

● arrays
● lists
● queues
● hash tables
● set
● bit set
● stack
● heap
● string.

Your container component should ideally support all these types as well as their
_ff variants, if appropriate. When writing them, it is important to try to min-
imise the number of dynamic memory operations they make, for two reasons.
First, they are typically expensive operations and they may be invoked frequently.
Second, data scattered in memory will almost certainly cause data cache misses,
and iteration over the controlled elements will be slow because of this.

As an example of designing with this in mind, consider the hash table con-
tainer. A common way to implement this is as follows:

template<class Type,class Key>

class hash_table

{

The component model for game development 157

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 157

public:

// Interface.

private:

enum { NUM_BUCKETS = 31 };

std::list<Type> m_aBuckets[NUM_BUCKETS];

};

This open hashing system is technically superior in performance to a closed
system (where we insert a new colliding element in the next available space in a
fixed-size table), but those list classes can scatter nodes randomly in memory
and the actual performance will be desperately poor, as I found out to my sur-
prise and horror when writing a high-level collision management component.

5.4.4 Maths component
There are three tiers of maths components: low-level, intermediate-level and
high-level classes. Low-level classes comprise:

● 2D, 3D and 4D vectors
● 2×2, 3×3 and 4×4 matrices
● quaternions
● random numbers
● transcendental functions.

Intermediate-level classes include:

● general vector class
● general mxn matrix.

High-level classes comprise:

● complex numbers
● interpolators
● integrators.

We’ll examine these in turn. The low-level classes essentially support data types,
and these will be used extensively by other components. They will therefore
need to be high-performance classes: no virtual functions, no heavy memory
management, and no flexible data representations. We have already implied this
by separating out the 2D, 3D and 4D vectors and matrices. Though it is initially
tempting to write a totally generic vector or matrix class using templates and
then specialise for both stored data type and dimension, this isn’t a good
choice. Consider the constructor of a generic n-dimensional vector:

Object-oriented game development158

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 158

template<class T,int N>

inline Vector<T>::Vector(T v[])

{

for(int j = 0; j < N; ++j)

{

m_v[j] = v[j];

}

}

That for loop is particularly inefficient, and it will appear in many places in the
vector class implementation. In some places (the example above is one of
them), it can be replaced by more efficient constructs, but generally it is
unavoidable. The only recourses are to use some nasty template trickery to effec-
tively write:

template<class T,int N>

inline Vector<T>::Vector(T v[])

{

m_v[0] = v[0];

m_v[1] = v[1];

//…

m_v[N] = v[N];

}

(the details of which are opaque and may not be supported over all toolsets), or
to relax the requirement to specify the dimension as a template parameter and
write separate Vector2, Vector3 and Vector4 classes (and similarly for matrices).
We’ll go the latter route for the moment. Here’s the 2D class body:

// File: MATHS_Vector2.hpp

namespace MATHS

{

template<class T>

class Vector2

{

private:

T m_v[2];

public:

// Deliberately empty default ctor.

inline Vector2()

{

}

The component model for game development 159

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 159

inline Vector2(T v0, T v1)

{

m_v[0] = v0;

m_v[1] = v1;

}

inline Vector2(T v[])

{

m_v[0] = v[0];

m_v[1] = v[1];

}

//

// Access.

//

T & x() { return m_v[0]; }

T & y() { return m_v[1]; }

T x() const { return m_v[0]; }

T y() const { return m_v[1]; }

T & operator[](int Element);

T operator[](int Element) const;

//

// Arithmetic.

//

// Addition and subtraction.

Vector2<T> operator+(const Vector2<T> & v) const;

Vector2<T> operator-(const Vector2<T> & v) const;

Vector2<T> & operator+=(const Vector2<T> & v);

Vector2<T> & operator-=(const Vector2<T> & v);

// Unary minus.

const Vector2<T> operator-() const;

// Scale by constant.

friend Vector2<T> operator*(T s,const Vector2<T>&v);

friend Vector2<T> operator*(const Vector2<T>&v,T s);

Vector2<T> & operator*=(T s);

// Dot product.

T operator*(const Vector2<T> & v) const

// Division by constant

Vector2<T> & operator/=(T Divisor);

// Length.

T Length() const;

T LengthSquared() const;

Object-oriented game development160

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 160

// Make unit length.

Vector2<T> Normalised() const;

void Normalise();

T Normalise(Vector2<T> * const pvUnit) const;

// Comparison.

bool operator==(const Vector2<T> & v) const;

};

}

The Vector3<T> and Vector4<T> classes are similar – but not quite identical.
The vector or cross-product is defined only for 3D vectors, for example.

Not surprisingly, the Matrix22<T>, Matrix33<T> and Matrix44<T> classes
are written using similar principles. However, we need to be a little careful when
writing the matrix classes. In the back of our minds, we wish to be able to write
a snippet of code like this:

typedef Vector3<float> Vector3f;

typedef Matrix33<float> Matrix33f;

Vector3f MVMul3(Matrix33f const& m,Vector3f const&v)

{

return m*v;

}

In other words, multiply a vector by a matrix. Now, where would that multiply
operator reside? In the Vector3 class maybe? Well, there is a feeling that a
matrix is a slightly higher-level object than a vector, so simply in terms of basic
design that seems wrong. In the matrix class, then? Well, maybe, but remember
our principle about avoiding illogical dependencies and keeping classes simple.
If our matrix class deals only with matrices, then that’s a simple, clean object
design. So let’s apply the logic of said principle and put the multiplication into a
separate linear algebra component (see Figure 5.9).

The component model for game development 161

Matrix33

LINALG

Vector3

Maths
Figure 5.9
Avoiding the binding of
matrices and vectors by
creating a linear algebra
subcomponent.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 161

While we’re thinking about this, what else would go into the linear algebra
component? Anything that could turn a vector into a matrix or a matrix into a
vector. For example, getting a row or column of a matrix, or creating a skew
matrix from a vector (don’t worry if that means zip to you, since it will be
explained later). In code:

// File: MATHS_LinearAlgebra.hpp

#include "MATHS_Vector3.hpp"

#include "MATHS_Matrix33.hpp"

namespace MATHS

{

/*

* Note: operators need to be in the MATHS namespace.

*/

inline

Vector3f operator*(Matrix33f const &A,Vector3f const &x)

{

return Vector3f(A(0,0)*x[0] + …);

}

//---

namespace LINALG

{

//---

inline Vector3f MultiplyTranspose(Matrix33f const & A,

Vector3f const & x)

{

return Vector3f(A(0,0)*x[0] + …);

}

//---

inline Vector3f GetColumn(Matrix33f const & A, int iCol)

{

assert((iCol >= 0) && (iCol <= 2));

return Vector3f(A(0,iCol),A(1,iCol), A(2,iCol));

}

//---

Object-oriented game development162

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 162

inline Matrix33f CreateSkewMatrix(Vector3f const & x)

{

return Matrix33f(0.0f, -x[2], x[1],

x[2], 0.0f, -x[0],

-x[1], x[0], 0.0f);

}

} // end of namespace LINALG

} // end of namespace MATHS

This is an unusual way of structuring code, but it is quite liberating and
extremely powerful.

Quaternions are naturally four-dimensional vectors, but they have an arith-
metic unique to themselves. In addition, there are operations to convert
between quaternions and matrices, to transform vectors by the rotation that a
unit quaternion represents, and so on. As you should have guessed, these
belong in the linear algebra subcomponent of the maths component.

Next up: random numbers. Now there’s a lot of maths out there detailing
how to write random-number generators (RNGs) with specific properties, but
that’s beyond the scope of this book. The RNG I’ve used consistently in games is
based on the C standard library generator and it’s been just fine. Architecturally,
it’s important that you don’t simply use the rand() and srand() functions: not
that there’s anything wrong per se with these calls, but because they may be
implemented differently from library to library or platform to platform. In some
circumstances, that may make no difference. But when it does …

There are two classes of random numbers needed by games: a plausibly
random sequence that is the same every time through the game or level so that
events are repeatable (and remember, repeatable means easily testable); and a
sequence that is plausibly random and doesn’t (necessarily) repeat every time
through. This motivates us to have at least two random-number generators in
the game, and you can’t have that with the standard library calls. Time to build
some classes:

// File: MATHS_Random.hpp

namespace MATHS

{

class RandomGenerator

{

public:

RandomGenerator() : m_iSeed(0) { ; }

RandomGenerator(float fSeed) { SetSeed(fSeed); }

RandomGenerator(int iSeed) : m_iSeed(iSeed) {}

~RandomGenerator() {}

The component model for game development 163

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 163

void SetSeed(float fSeed);

void SetSeed(int iSeed);

float OneToZero();

float MinusOneToOne();

float Ranged(float fMin, float fMax);

int Ranged(int iMin, int iMax);

static RandomGenerator Default;

private:

int m_iSeed;

};

inline

void RandomGenerator::SetSeed(int iSeed)

{

m_iSeed = iSeed;

}

//---

inline

void RandomGenerator::SetSeed(float fSeed)

{
m_iSeed = *((int *)&fSeed);

}

//---

inline

float RandomGenerator::OneToZero()

{

m_iSeed = 1664525L * m_iSeed + 1013904223L;

int iSixteenSixteen =

(((m_iSeed >> 10)^(m_iSeed << 10))& 0x7fff) << 1;

float fResult =

(((float)(iSixteenSixteen & 0xffff))/65536.0f);

fResult += (float)(iSixteenSixteen >> 16);

return fResult;

}

//---

Object-oriented game development164

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 164

inline

float RandomGenerator::MinusOneToOne()

{

return (float) ((OneToZero() - 0.5f) * 2);

}

//---

inline

float RandomGenerator::Ranged(float fMin, float fMax)

{

return(fMin + ((fMax - fMin) * OneToZero()));

}

//---

inline

int RandomGenerator::Ranged(int iMin, int iMax)

{

return(int(Ranged(float(iMin),float(iMax))));

}

}

We can now replace rand() completely by the following function:

namespace MATHS

{

template<class T>

T Random(T tMin, T tMax)

{

float fMin = float(tMin);

float tMax = float(tMax);

return RandomGenerator::Default.Ranged(fMin,fMax);

}

}

All this brings us neatly on to transcendental functions. They’re called transcen-
dentals because they transcend ordinary algebraic functions. They’re more
familiar to you as sin(), cos(), tan(), their inverses, and the related exp(),
log(), log10() and hyperbolic functions. Now, your game will probably need
the trig functions more than the others, but they’re all useful in their place.

The component model for game development 165

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 165

Bearing in mind that all these functions take a single argument and return a
single value, there isn’t really a problem with having a procedural interface:

// File: MATHS_TranscendentalFunctions.hpp

#include <cmath>

namespace MATHS

{

template<class T>

inline T Sin(T x)

{

return((T)::sinf(float(x));

}

// and so on…

}

Implementing our own transcendentals lets us control how the functions are
evaluated. For example, the trig functions can be implemented by table look-up
(though the days when that was a requirement are fast receding).

Now it’s time to consider the intermediate-level maths components.
Interestingly, they are generalisations of low-level components, adding the abil-
ity to change size dynamically to those classes. This is accompanied by a growth
in the computational cost of using these classes.

The MATHS::Vector class is a general-purpose mathematical vector. It is
resizable like an array class, but it supports all the arithmetical and mathemati-
cal operations of the low-level vector classes (except the cross-product).

// File: MATHS_Vector.hpp

namespace MATHS

{

template<class T>

class Vector

{

public:

// Lifecycle.

Vector(int Size);

Vector(const Vector<T> & rVector);

~Vector();

Object-oriented game development166

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 166

// Access.

int GetSize() const { return m_iSize; }

void SetSize(int iNewSize);

// Operators.

Vector<T> & operator=(const Vector<T> & rVector);

T operator[](int n) const;

T & operator[](int n);

Vector<T> & operator+=(const Vector<T> & rVector);

Vector<T> & operator-=(const Vector<T> & rVector);

Vector<T> & operator*=(T s);

friend T operator*(const Vector<T>&v1,

const Vector<T> &v2);

friend Vector<T> operator+(const Vector<T> & v1,

const Vector<T> & v2);

friend Vector<T> operator-(const Vector<T> & v1,

const Vector<T> & v2);

friend Vector<T> operator*(T s,const Vector<T> & v);

friend Vector<T> operator*(const Vector<T>& v, T s);

friend bool operator==(const Vector<T> & v1,

const Vector<T> & v2);

const Vector<T> operator-();

// Other processing.

T Length() const { return Sqrt(LengthSquared()); }

T LengthSquared() const { return((*this)*(*this)); }

void Normalise();

Vector<T> Normalised() const;

void Fill(T tValue);

private:

int m_iSize;

int m_iAllocatedSize;

T * m_Data;

};

}

Structurally, there’s very little new here. However, its relation, the arbitrarily sized
matrix, is quite a bit more complicated than its low-level cousins. The complex-
ity comes about because simple matrix operations can cause quite a number of
dynamic memory operations. Consider, for example, the Transpose() method.
This turns an n × m matrix into an m × n matrix (see Figure 5.10).

The component model for game development 167

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 167

Unless the matrix is square – n × n – there’s going to be quite a bit of shuffling
around of data in memory to effect that transposition. In order to make this a bit
easier, we create an auxiliary class called a Buffer, which is private to the matrix.
Buffers (and hence matrices) can be constructed from either a new block of
dynamic memory or a preallocated static memory block. The latter allows us on
certain target platforms to point the matrix at areas of fast (uncached) memory,
and in general it can avoid the multiple calls to dynamic allocations and dele-
tions that can occur during seemingly innocent matrix operations.

// File: MATHS_Matrix.hpp

namespace MATHS

{

template<class T>

class Matrix

{

public:

// Error codes

enum Error

{

ERR_NONE,

ERR_OUT_OF_MEMORY,

ERR_SINGULAR

};

// Lifecycle.

Matrix();

Matrix(int iRows, int iCols);

Matrix(const Matrix<T> & m);

Matrix(int iRows, int iCols, void * pBuffer);

// Construct a matrix from a static buffer.

// Note that the buffer can be single or

// multi-dimensional, ie float aBuffer[n*m]

// or float aBuffer[n][m] will work equally

// well.

Object-oriented game development168

Transpose

Figure 5.10
Transposing a matrix

changes its shape.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 168

~Matrix();

// Management.

bool Resize(int iRows, int iCols,

bool bRetainData=true);

int GetSizeBytes() const;

// Operations.

void Transpose();

Matrix<T> Transposed() const;

int Rank() const;

int Rows() const;

int Columns() const;

int Capacity() const;

Matrix<T> GetSubMatrix(int iStartCol,

int iStartRow,

int iRows,

int iCols) const;

bool IsSquare() const;

// Unary/class operators.

Matrix<T> & operator-();

T operator()(int iRow, int iCol) const;

T & operator()(int iRow, int iCol);

Matrix<T> & operator=(const Matrix<T> & m);

Matrix<T> & operator+=(const Matrix<T> & m);

Matrix<T> & operator-=(const Matrix<T> & m);

Matrix<T> & operator*=(T s);

Matrix<T> operator+(const Matrix<T> & m) const;

Matrix<T> operator-(const Matrix<T> & m) const;

// Binary operators.

friend Matrix<T> operator*(const Matrix & m1,

const Matrix & m2);

friend Matrix<T> operator*(T s,const Matrix<T>&m1);

friend Matrix<T> operator*(const Matrix<T>&m1,T s);

// In-place operations.

static void InPlaceTranspose(Matrix<T> & rTrans,

const Matrix<T> & m);

static void InPlaceMultiply(Matrix<T> & rProduct,

const Matrix<T> & m1,

const Matrix<T> & m2);

The component model for game development 169

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 169

private:

class Buffer

{

private:

T * m_pData;

int m_iStride;

bool m_bStatic;

public:

Buffer(int iRows, int iColumns);

Buffer(int iRows, int iColumns, void *pBuffer);

~Buffer();

T GetAt(int iRow, int iCol) const;

T & GetReference(int iRow, int iCol);

void SetAt(int iRow, int iCol, T tValue);

inline T * GetDataPtr() const;

inline bool IsStatic() const;

};

int m_iRowCount;

int m_iColCount;

Buffer<T> * m_pBuffer;

};

}

As with their low-level cousins, the matrix and vector classes are kept logically
and physically separate by locating functions that would ordinarily bind them
in the linear algebra subcomponent. For example, here’s the function that gets
the nth column of a matrix:

// File: MATHS_LinearAlgebra.hpp

//…

#include "MATHS_Matrix.hpp"

#include "MATHS_Vector.hpp"

//…

namespace MATHS

{

template<class T>

Vector<T> GetColumn(Matrix<T> const & m);

// etc.

}

Object-oriented game development170

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 170

What’s that you say? A C-style (free) function? Isn’t that not at all object-ori-
ented? Worry not. Remember that a class member function is really a C
function that gets a hidden ‘this’ pointer. Besides, consider what one objective
of encapsulation is – to protect client code from internal changes to a class. A
possible way of measuring encapsulation loss, therefore, is to consider how
many files need to be recompiled as the result of the addition or removal of a
method. If we added GetColumn() as a member function, then all the client
files that included MATHS_Matrix.hpp would rebuild. By adding it as a free
function in another file, we have preserved encapsulation.

Finally, it’s time to look at the high-level services offered by the maths compo-
nent. The first – and most straightforward – class to consider is the complex
number class. Now, it’s going to be pretty unusual to find complex numbers in
game code. However, when we write tools that perform intricate offline graphi-
cal calculations, it is not beyond the bounds of possibility that complex
solutions to equations may arise, so a complex number class is useful to have
ready to hand.

In this circumstance, the STL version,

template<class T> std::complex<T>

will suffice, because although it’s pretty top-heavy it’s only really used in code
that is not time-critical.

The next – and altogether more important – class (actually set of classes) is
the interpolators. In non-technical terms, an interpolator is a mathematical
function (here, restricted to a single real parameter) that returns a real value
based on a simple relationship over an interval. For example, a constant inter-
polator returns the same value (said constant) whatever the argument (see
Figure 5.11a). A linear interpolator returns a value based on a linear scale (see
Figure 5.11b).

We start off with a base class that describes the generic behaviour:

// File: MATHS_Interpolator.hpp

namespace MATHS

{

The component model for game development 171

x

y

x

y

(a) (b)

Figure 5.11
Constant and linear
interpolants.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 171

template<class T>

class Interpolator

{

public:

virtual T Interpolate(T x) = 0;

};

}

And we extend the behaviour in the expected fashion:

// File: MATHS_InterpolatorConstant.hpp

#include "MATHS_Interpolator.h"

namespace MATHS

{

template<class T>

class InterpolatorConstant : public Interpolator<T>

{

private:

T m_C;

public:

InterpolatorConstant(T c)

: m_C(c)

{

}

T Interpolate(T x)

{

return m_C;

}

};

}

This defines a series of classes, each using a higher-degree polynomial to com-
pute the return value, none of which is particularly powerful on its own.
However, consider the graph shown in Figure 5.12. A relationship like this
might exist in a driving game’s vehicle model between engine rpm and the
available torque.

Of course, this is a greatly simplified model, but it has most of the character-
istics of the real thing. The range of the rpm parameter will be something
between zero and 10 000. Now, we could encode this graph as a look-up table. If
there’s one 32-bit float per entry, that’s nearly 40KB for the table, which is quite a

Object-oriented game development172

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 172

lot considering how simple the relationship looks. It’s what’s known as a ‘piece-
wise relationship’, the first piece being increasingly linear, the second constant,
and the third decreasingly linear. So let’s design a piecewise interpolator object.
After many hours in my laboratory, the results are as shown in Figure 5.13.

The piecewise interpolator contains a series of (non-overlapping) ranges,
each of which has its own interpolator (which can itself be piecewise). The code
looks like this:

// File: MATHS_InterpolatorPiecewise.hpp

#include "MATHS_Interpolator.hpp"

#include "MATHS_Array.hpp"

namespace MATHS

{

template<class T>

class InterpolatorPiecewise : public Interpolator<T>

{

private:

struct Range

{

T tMin;

T tMax;

Interpolator<T> * pInterp;

};

array<Range> m_Ranges;

The component model for game development 173

rpm

To
rq

ue

Figure 5.12
Piecewise relationship
between engine rpm and
available torque.

InterpolatorLinear

Interpolator

InterpolatorConstantInterpolatorPiecewise

Range

T

MaximumMinimum
*Ranges

Interpolator
Figure 5.13
Object diagram for the
interpolator component.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 173

public:

T Interpolate(T x)

{

// Find interval containing x.

for(int j = 0; j < m_Ranges.size(); ++j)

{

Range & r = m_Ranges[j];

if (x >= r.tMin && x < r.tMax)

{

return(r.pInterp->Interpolate(x));

}

}

// Return 0 for illustration – you should add an

// "otherwise return this" value.

return(T(0));

}

void AddInterval(T tMin,T tMax,Interpolator *pInt);

//…

};

}

Integrators: who needs ’em? Well, there are uses for these fairly high-power
classes as we’ll see later, but I should digress a little and explain what they actu-
ally are for those readers who don’t know.

Suppose there’s a projectile with position (vector) x and velocity vector v.
Then, after a time interval t the new position is given by

x(t) = x + t*v

However, this works only if v is constant during the time interval. If v varies,
then the calculated position will be wrong. To get better approximations to the
new position, we can split t into successively smaller slices of time, calculate the
position at the end of each of these subintervals, and accumulate the resulting
change. And that process is the job of an integrator. Since games are frequently
concerned with objects, velocities and positions, you might appreciate why they
have their uses.

Integration is not cheap. The more you subdivide the interval, the more
work gets done, though you get more accurate results. For basic projectile
motion, objects falling under gravity or other simple cases, an integrator would
be overkill. However, for some simulation purposes, they are essential. So let’s
focus our OO skills on designing integrator classes.

Object-oriented game development174

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 174

The first thing to realise is that there are many ways to perform the integra-
tion. Each method comes with an associated error term and stability. A stable
integrator has the property that the error term stays small no matter how big
the interval t is. As you can imagine, very stable integrators are gratuitously
expensive in CPU cycles. However, it’s possible to write a moderately stable inte-
grator (which will work nicely for small time intervals) that is reasonably
accurate. So we’re looking at a family of integrator classes based on an abstract
base class.

However, there’s a twist. Integration is something that is done to an object,
so consider the following method declaration:

void Integrate(/*???*/ & aClient);

Exactly what type do we pass in? The integrator needs to be able to get at client
data, so we should think about providing an abstract mix-in property class with
an abstract interface that allows just that. As a first step on this path, consider
the following class:

// File: MATHS_VectorFunction.hpp

#include "MATHS_Vector.hpp"

namespace MATHS

{

typedef Vector<float> VectorNf;

class VectorFunction

{

public:

virtual void GetArgument(VectorNf & v) = 0;

virtual void GetValue(VectorNf & v) = 0;

virtual void SetArgument(VectorNf const &v) = 0;

virtual int GetDimension() const = 0;

};

}

This class abstractly represents a vector equation

y = f(x)

where f is a function that takes a vector x as an argument and returns a vector y.

The component model for game development 175

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 175

With the aid of this class, we can create a subclass that confers the property
of being integrable:

// File: MATHS_Integrator.hpp

#include "MATHS_VectorFunction.hpp"

namespace MATHS

{

class IsIntegrable : public VectorFunction

{

public:

IsIntegrable () : VectorFunction() { ; }

void GetStateVector(VectorNf & vLhs);

void GetDerivativeVector(VectorNf & vLhs);

void SetStateVector(VectorNf & vResult);

};

inline

void IsIntegrable::GetStateVector(VectorNf & vLhs)

{

GetArgumentVector(vLhs);

}

//---

inline

void IsIntegrable::GetDerivativeVector(VectorNf & vRhs)

{

GetFunctionVector(vRhs);

}

//---

inline

void IsIntegrable::SetStateVector(VectorNf & rResult)

{

SetArgumentVector(rResultVector);

}

}

Object-oriented game development176

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 176

Now we can write our abstract integrator class:

class Integrator

{

public:

// Lifecycle.

Integrator();

virtual ~Integrator() { ; }

// Access methods.

int GetNumberOfUnknowns() const;

void SetStepGranularity(float Step);

float GetStepGranularity() const;

float GetIntegrationTime() const;

virtual void SetNumberOfUnknowns(int n);

// The integrator.

virtual bool Integrate(IsIntegrable*,float h);

virtual bool Step(IsIntegrable*, float h) = 0;

protected:

bool singleStep(IsIntegrable * pClient, float h);

VectorNf m_ResultVector;

VectorNf m_InputVector;

VectorNf m_RhsVector;

private:

// Maximum step size for one iteration. If h is

// greater than this value then several iterations

// will be performed as required.

float m_StepGranularity;

int m_iNumberOfUnknowns;

VectorNf m_InitialVector;

// Current time within the integrator (from 0 to

// step size) within Integrate().

// If there is an early bail-out (Step returns

// false), this will contain the time prior to the

// exit step.

float m_CurrentTime;

};

}

The component model for game development 177

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 177

All of the hard work is done in the subclass implementation of the virtual func-
tion Step(IsIntegrable * pClient, float h). All of the data that the
integrator needs are extracted via the IsIntegrable interface so there is no
need to violate encapsulation at any level. The only slight concern we might
have is the protected status of the Input, Result and Rhs vectors within the inte-
grator base class. In-line set and get accessors can quell your fears. The overall
structure is summed up in Figure 5.14.

The IntegratorEuler and IntegratorMidpoint subclasses express two
simple ways of performing the integration (the details of which are unimpor-
tant here). Other methods exist, but an object that has a reference to an
integrator need not care about exactly what mathematics are going on inside
the Step() method.

5.4.5 Text and language processing
Most games process text in some way. Although it is bulky and slow to turn into
a useful internal format, it is very handy early on in the product lifecycle to be
able to read text files with an eye to reading their binary equivalents later on in
development. With this in mind, we define an abstract stream class whose sub-
classes can be either ASCII streams or binary stream readers – a client who has a
pointer to a stream neither knows nor cares (see Figure 5.15).

The interface class will look something like this:

// File: STRM_ReadStream.hpp

namespace STRM

{

Object-oriented game development178

IsIntegrable

VectorFunction

IntegratorMidpoint

Integrator

IntegratorEuler

Figure 5.14
Object diagram for the
integrator component.

StreamBinary

Stream

StreamAscii

TokenTable

TokenTable

Figure 5.15
Object diagram showing
the stream component.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 178

class Position;

class ReadStream

{

public:

/*

* Constants/typedefs/enums.

*/

enum

{

INVALID_TOKEN = -1

};

/*

* Lifecycle.

*/

ReadStream();

virtual ~ReadStream();

/*

* Polymorphism.

*/

virtual bool Open(const char * pFilePath) = 0;

virtual void Close() = 0;

virtual int ReadToken() = 0;

virtual int ReadByte() = 0;

virtual int ReadShort() = 0;

virtual int ReadInt() = 0;

virtual float ReadFloat() = 0;

virtual int ReadString(char * pBuffer,

int iBufferSize) = 0;

virtual bool EndOfStream() const = 0;

virtual int GetLength() const = 0;

virtual void Reset() = 0;

virtual Position GetPosition() const = 0;

virtual void SetPosition(const Position &aPos)=0;

/*

* API.

*/

protected:

/*

* Helpers.

*/

The component model for game development 179

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 179

private:

/*

* Data.

*/

}; // end class

}

No big surprises there. The subclass that reads ASCII text requires a simple
token-matching table with some way to recognise delimiters. The assumption is
that we are not considering text data that consist of complex grammar – if we
were, we’d be throwing some more heavyweight classes around or using code
generated by yacc/lex or antlr. The TokenTable class encapsulates the transla-
tion functionality, mapping a string object to an integer token value – an ideal
job for a hash table:

typedef CONT::hash_table<int,CONT::string> tTokenMap;

One of the big shocks for new developers is the complexities and subtleties of
writing software that needs foreign language support. The problems are, in real-
ity, not difficult to solve, but they will cause difficulties if you attempt to
retro-fit them into an existing game structure. The good news is that by and
large, linguistic support is not difficult to add. A string table class is just about
all that’s required, mapping an integer to a text string (see Figure 5.16).

Object-oriented game development180

String Table

Hello, World\0Hey Mr Tallyman tally
me banana\0I’ve got a lovely bunch of
coconuts\0Born under a bad sign with
a blue moon in your eye\0...

Text strings

0, 10,...

Offset table

enum
{
HELLO_WORLD,
MR_TALLYMAN,
COCONUTS,
...
}

Strings IDs

Text data Offset table

Figure 5.16
The constituents of a

string table.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 180

Some magical external tool exports three files: a C++ header file that con-
tains string enumerations with helpful names, a binary data file containing the
text data itself, and a mapping table that maps the enums to the strings. Simple,
eh? Well yes, but those enumerations could cause a problem. After all, every
time you add or remove a string, the enums will change. Which means a new
header file. Which means that everything that includes that header file needs
recompiling. That could hurt, especially if – as in some of the products I’ve con-
sulted on – the string table is global.

Remember that principle about keeping it local? Well, let’s try to follow it.
In this case, suppose that our game supports an extensive menu system. All the
text entries in the menus will have string table entries. If we have a single string
table, we recompile every file associated with every page, even though most
pages don’t change. So it really makes sense to have a single string table per
page. Keep it local, people.

5.4.6 Graphics
To describe how to write a complete rendering system is beyond the scope of
this book – here, we’re interested primarily in architecture. A rendering package
is going to be quite a bit larger than the very low-level systems we’ve seen so far.
To keep it all manageable, we’ll break the rendering systems into the compo-
nents shown in Table 5.2.

This is not a flat hierarchy of components. We apply the same principles to
the subcomponents of the rendering system as we have discussed; this allows us
to easily replace subcomponents with new versions with little or no impact on
their parent components. The structure is shown in Figure 5.17.

The hierarchy breaks down into three levels – high, intermediate and low. The
dependencies between the levels operate only downwards and – most importantly –
there are no cyclic dependencies. Without these two properties, maintenance would
become much harder, and the replacement and upgrade of the individual subcom-
ponents would become messy. Notice that as we move from small towards large
components, the focus shifts from reusability to maintainability.

Another valuable property of this hierarchy is that the high and intermedi-
ate levels are completely generic systems that make no reference to the
hardware they are running on; in general, the high and intermediate levels (if
you like, the ‘interface’ components) know little or nothing about their low-

The component model for game development 181

Component Function

SCENE Top-level scene management
MODEL Connects visuals and hierarchies
REND Defines a renderer and renderable elements
PRIM Describes how to draw primitives

Table 5.2

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 181

level (‘implementation’) component. This minimises the amount of rewriting
required when porting to other systems and keeps low-level graphics code out
of your top-level game code. We’ll discuss cross-platform development in more
detail in Chapter 6.

Let’s now look more closely at these components to see how they function.

SCENE
The SCENE component is comprised of the classes shown in Figure 5.18.

The Matrix44 and Vector3 classes are borrowed from the MATHS compo-
nent; this is fine, because the SCENE component is a higher-level component
than these classes and the classes are self-contained (after all, our objective is to
reuse classes that we have written, not rewrite them for every component).

MODEL
We’ve already looked at the MODEL component, so refer back to the earlier sec-
tion in this chapter to refresh your memory if you need to. Deep in the bowels of
this component lies the Visual class hierarchy – we’ve seen the base class and
the VisualPlex class so far. By writing further subclasses of Visual (not to forget
the parallel VisualInstance hierarchy), we can implement the really powerful
graphical systems that create quality and performance in video games. As an
example, let’s implement a model with level of detail, as shown in Figure 5.19.

Note that each level has its own visual, which can itself be a level-of-detail
visual.

Object-oriented game development182

SCENE

MODEL

REND

PRIM

High-level

Intermediate-level

Low-level

Figure 5.17
Component architecture

for the rendering
package.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 182

REND
The REND component defines a simple renderable entity and is basically the
home of the Renderer class that we all know and love. Figure 5.20 shows the
major participating classes in the system.

The component model for game development 183

Vector3

Matrix44

MATHS

Frame

IsTransformable

SCENE

Plane

FrustrumCamera

*Planes

Local
transform

Position

Normal

View frustrum

Clip frustrum

Transform

Figure 5.18
The SCENE component.

VisualLODInstance

VisualInstance

MODEL

InstanceLevel

*Levels

VisualLOD

Visual

Level

*Levels

Range

Float

Range

Visual
Visual

instance

Figure 5.19
The MODEL component.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 183

Object-oriented game development184

R
en

d
er

er

R
E

N
D

S
ha

d
er

M
an

ag
er

S
ha

d
er

R
en

d
er

B
uf

fe
r

S
ha

d
er

 m
an

ag
er

*S
ha

d
er

s

V
ie

w
p

or
t

R
en

d
er

S
ta

te

Te
xt

ur
e

Te
xt

ur
eI

ns
ta

nc
e

Te
xt

ur
e

S
or

te
r

R
en

d
er

ab
le

S
or

te
r

S
ha

d
er

In
st

an
ce

R
en

d
er

ab
le

S
ha

d
er

S
ha

d
er

R
en

d
er

b
uf

fe
r

R
en

d
er

st
at

e

D
at

a
10

10
10

10
10

10
00

10
10

10
10

10
10

10
10

10
10

10
10

00
10

10
01

01

V
ie

w
p

or
t

Figure 5.20
The REND component.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 184

We see more evidence of our guiding principles in action, in particular the
use of instancing in the Texture and Shader classes. The key class in the com-
ponent is clearly Renderable. Think ‘mesh’ when you see this class and you’ll
get the general idea (of course, we have abstracted the concept of renderability
to allow any type of graphical representation). Instances of these objects point
at a Shader, an object that ‘knows’ how to create the primitives involved in
drawing these sorts of objects, and a RenderBuffer, which is effectively a
stream for lower-level primitive data. The top-level Renderer class manages all
the Shaders used in the scene and provides the interface for submitting
Renderable data into the component and down into the lower-level systems.
This then begs the question: how do we get data from the MODEL component
into the REND component? Surely we have to write this sort of thing:

namespace MODEL

{

class VisualInstance : public REND::Renderable

{

//…

};

}

which is a definite no-no because it would be reversing the flow of dependency,
as shown in Figure 5.21. Note the creation of a cycle in the graph, a sure sign
that our engineering is amiss.

To get around this, we invoke the trick we discussed when looking at avoid-
ing illogical dependencies: we introduce a third component, which we call
VISUAL, and move all the bindings into there (see Figure 5.22).

The component model for game development 185

SCENE

MODEL

REND

Figure 5.21
A cyclic dependency in
the rendering package.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 185

The VISUAL component is shown in Figure 5.23.

5.4.7 PRIM
The PRIM component is where the data pumped through SCENE, MODEL,
REND and VISUAL end up, ready to be sent from the render buffers to whatever
rendering hardware is available. This makes PRIM a data bottleneck, and we
really want code residing in this component to fly. This means that virtual func-

Object-oriented game development186

SCENE

MODEL

REND

VISUAL

Figure 5.22
Removal of a cyclic

dependency by creating a
third component.

VISUAL

VisualInstanceVisual

MODEL

MeshInstanceMesh

Mesh

REND

ShaderInstanceRenderable

Shader

RenderBuffer
Render
buffer

*Renderables

Figure 5.23
The VISUAL component

bridges MODEL and
REND.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 186

tions are banned unless there is a viable case that using them will increase, or at
the very least not decrease, performance. Just to knock another nail in the vir-
tual coffin, since virtual functions place an invisible vtable pointer inside our
classes, we cannot map classes directly to memory without yet another indirec-
tion, making things even slower:

class Primitive

{

public:

// No no no!

virtual void Upload(void * pRenderData);

private:

// Now why are my frame rates so poor?

struct PrimData * m_pData;

};

This problem becomes quite acute when we remember that PRIM needs to be
implemented over several platforms. We’d like to do the polymorphic thing, but
we shouldn’t, so what are the alternatives?

● Use template-based static polymorphism: this would work fine were it not for
the fact that hardware can be radically different from platform to platform –
each class would need to be specialised for its target, the template therefore
becoming irrelevant.

● Use a directory hierarchy that supports each target platform and include only
the relevant files in the project build system.

Figure 5.24 shows how this can be achieved.
The directory PRIM contains the generic files common to all platforms. The

other directories contain platform-specific files implementing primitives on
target hardware. Figure 5.25 shows this partitioned component.

The component model for game development 187

PRIM

PRIMD3D

PRIMPS2

PRIM???

Root:\prj\components
Figure 5.24
Directory layout for the
PRIM components.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 187

Notice that there are three different types of class here:

1 PRIM::Target is a true polymorphic class. It represents a destination for
primitive data to be drawn to (the display, or another texture perhaps). We
justify the virtual function overhead because there are typically few calls to
set up targets, and the set-up cost is usually much higher than the call over-
head. Subclasses exist in all the platform-dependent parts.

2 The PRIM::Texture classes exist only in the platform-dependent parts of
the component, but they must exist in each part.

3 The classes PRIM::VertexBuffer and PRIM::DynamicUploader are hard-
ware-specific classes and are therefore encapsulated by the particular
implementation.

Because of this, we should be a bit careful with our file-naming conventions. We
adopt the rule that files are given a component/package prefix dictated by the
directory they live in and a postfix only if required to distinguish subclasses. So,
the hpp files for the above classes should have the paths:

Object-oriented game development188

TargetPS2

PRIMPS2

Texture

Builder

DynamicUploader

Target

PRIM

Target???

PRIM???

Builder

Primitive

TargetD3D

PRIMD3D

Texture

Builder

VertexBuffer

Figure 5.25
How the PRIM

components might look
for various target

platforms.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 188

Root:\prj\components\PRIM\PRIM_Target.hpp

Root:\prj\components\PRIMD3D\PRIMD3D_TargetD3D.hpp

Root:\prj\components\PRIMPS2\PRIMPS2_TargetPS2.hpp

Root:\prj\components\PRIMD3D\PRIMD3D_Texture.hpp

Root:\prj\components\PRIMPS2\PRIMPS2_Texture.hpp

Root:\prj\components\PRIMD3D\PRIMD3D_VertexBuffer.hpp

Root:\prj\components\PRIMPS2\PRIMPS2_DynamicUploader.hpp

The Builder class is the class that submits the primitive data to the hardware in
the correct format. Since each of the builders is platform-dependent, they act as
factories creating and processing the hardware-specific data types. This architec-
ture allows near-optimal tuning of the components on a per-platform basis. And
they said C++ was slow.

5.4.8 Collision detection
What we’re talking about here is the low-level collision detection that answers
the question ‘Are two models intersecting?’ If you’ve written collision detection
libraries, then you’ll know that it is a very hierarchical affair, because to answer
the question accurately is really quite time-consuming and you want to avoid
doing the more cycle-hungry operations if a simpler one could say ‘no’.

There are many ways to perform the detection, and – as stated before – this
is not the place to examine the particulars of how they work. Here, we’ll imple-
ment the hierarchical test architecture for two models only. Writing a
component for the higher-level tests that operate on many objects is left as an
exercise for the reader.

Remember that in the MODEL component we defined a hierarchy of frames?
Wouldn’t it be nice, even powerful, if we could use that hierarchy in our collision
system (because after all most objects we wish to collide will be hierarchical)?

The answer is: ‘No, it would not be even slightly nice to do that’. Yet a fright-
ening number of projects do it; and if your game does as well, it’s time to stop it.
The collision component should be utterly independent of the graphical compo-
nent. Why? Because the data they share are superficially similar. Collision
calculations are very expensive when performed on a per-primitive basis, so a
model used for collision should contain considerably less detail than the visible
polygon data. You may be tempted to use the lowest level-of-detail model as a
collision model, but (in general) you shouldn’t: you need different auxiliary data
for collision models and you don’t want to bloat your models with data that
could belong elsewhere. Keep the visual model and the collision model separate
physically and logically, and make the selection and generation of collision
models a function of your asset-extraction process, and you’ll be just fine.

Which motivates us to declare the architecture of the collision component,
shown in Figure 5.26. The most important class in the collision component is
the Unit, a staggeringly dull name by all accounts. A Unit defines an abstract
geometrical entity that we can provide a collision test for; subclasses of Unit
implement particular collision primitives.

The component model for game development 189

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 189

This is not an easily maintained system. If there are n unit subclasses, then
adding a new type of unit means writing O(n) tests for colliding the old types
with the new. Unfortunately, there are no neat solutions to this problem, and
C++’s lack of polymorphism based on both the type of this and the dynamic
type of an argument means only more verbose drudgery:

bool TestSphereSphere(…);

bool TestBoxBox(…);

bool TestCylinderCylinder(…);

bool TestSphereBox(…);

bool TestSphereCylinder(…);

bool TestBoxCylinder(…);

In theory, we could use dynamic_cast to tell us – given a Unit – what flavour it
was and so select an appropriate test. However, we’ve banned the use of
dynamic_cast because of the requirement for everything to have vtables and be
RTTI-enabled, but we can achieve the same effect by adding our own simple
RTTI to the Unit classes:

Object-oriented game development190

Face

UnitVolume

Unit

UnitList

COLL

UnitFacesUnitSphere

*Faces

Collider

Unit

ModelInstance

Model

Model

*Colliders

*Units

int
*Edges

Normal

MATHS

Vector3

*Normals *Vertices

Figure 5.26
The COLL component.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 190

// File: COLL_Unit.hpp

namespace COLL

{

class Unit

{

public:

Unit(int iRtti);

int GetRtti() const { return m_iRtti; }

private:

int m_iRtti;

};

}

// File: COLL_UnitSphere.hpp

#include "COLL_Unit.hpp"

namespace COLL

{

class UnitSphere : public Unit

{

public:

UnitSphere();

static int ClassRtti() { return s_iRtti; }

private:

static int c_iRtti;

};

}

// File: COLL_UnitSphere.cpp

#include "COLL_UnitSphere.hpp"

using namespace COLL;

int UnitSphere::c_iRtti = int(&c_iRtti);

UnitSphere::UnitSphere()

: Unit(c_iRtti)

{

}

Crude, but effective.

The component model for game development 191

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 191

5.4.9 Resource management
As useful as fopen() and its family of buffered IO function calls are, most games
cannot survive on these alone. On consoles, the loading of single files via the
standard C library interface is far too slow, and there are particularly stringent
limitations in the ISO 9668 filing system: 8.3 file names and maximum of 32
files or directories per directory. Modern games involve many thousands of files,
so clearly this won’t work at all. Even on a PC-type platform, the calls to
fopen() et al. are blocking, and although they are fast when operating from
hard disk, the penalty of opening many files and filling buffers starts to degrade
performance – and whilst it’s doing that, the game is frozen.

Loading many files of widely varying sizes can often be a very quick and tasty
recipe for memory fragmentation, especially if RAM is at a premium (when is it
not?). Since the C standard library gives us no control over how much memory it
allocates and when, we really do need a way of bypassing this system entirely.

So, at the very core of the resource management component, we need a
system that can:

● load files with virtually no overhead;
● load files in bulk with reduced overhead;
● load files asynchronously while the game code runs obliviously;
● manage memory efficiently.

These tasks are accomplished by the BNDL (BuNDLe) and FSVR (File SerVeR)
components of our resource management package. See Figure 5.27 for an
overview of the resource management package.

Incidentally, if you have a weak stomach for contrived acronyms, you
might like to skip to the start of the next paragraph. My resource system is
called DEMIGOD: the Demand Initiated Game Object Database, which I con-
tract to DMGD.

Object-oriented game development192

BNDL

FSVR

DMGD

Figure 5.27
The resource

management system
components.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 192

A bundle is just another term for one of those data file formats that the
games industry revels in: WADs, PAKs, POD. The general structure of the BDL
file is shown in Figure 5.28.

There’s a header that contains information about the contents of the data
section, followed by the files themselves as contiguous binary. The file data may
be compressed using some suitable tool, and there can be optional padding
inserted between the files. More about that padding shortly.

The file server loads files from bundles. It needs to support the following
four ways that load requests could occur in a game:

● Foreground load: the file server reads data from the bundle and returns when
they’re all resident.

● Background load: the file server returns immediately after the read request is
issued and the data are loaded asynchronously. When the entire file has
been loaded, a call-back-like mechanism is invoked to allow the caller to use
the newly loaded data.

● Burst load: like a background load, only it acts on all the files in a bundle that
resides inside the outer bundle. The call-back-like mechanism is invoked as
soon as individual files within the bundle are loaded (see Figure 5.29).

● Virtual bundle: a file that is itself a bundle is background-loaded and becomes
memory-resident to allow extremely fast loading of the contained files.

(Note: a foreground load can be implemented easily as a background load
wrapped with a wait-until-completed test.)

The component model for game development 193

Header

File 1

Padding

File N

Padding

BDL
Figure 5.28
Internal structure of a
bundle.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 193

When loading is taking place, speed is a real issue. No user wants to sit
watching a loading bar for minutes on end, and console software requirements
often stipulate the sort of times that loading should take. PC and Apple program-
mers may be forgiven for forgetting that having a hard disk in their machine is a
luxury. However, consoles – the most numerous game platform on the planet –
are still reading data from CD-ROM or DVD-ROM. Transfer rates are not quick, so
it is of utmost importance that the data on the storage medium are arranged
optimally, or as near as possible. What this arrangement is depends on the game
you’re writing, but it stands to reason that logically close data should be physi-
cally close on the media. Since CDs and DVDs organise and read their data on a
track-wise basis, it stands to reason that contiguously required files should be in
contiguous sectors on the medium, hence (i) those padding bytes in the bundles,
which align the next file to sector boundaries, and (ii) the burst load mechanism,
which gets files from media into memory and usable as fast as is possible.

The file server component is shown in Figure 5.30.
The system maintains a queue of load requests that is serviced every game

loop. A load request in the file server has an API as follows:

void BackgroundLoad(const char * pszPath,

const char * pszFile,

Loader * pLoader,

Resource * pResource);

The Resource class is the base for a type of resource to be loaded. When the
load completes, this will hold the data that have been read. Each resource has a
unique identifier – denoted here as an ID. For performance reasons, this really
wants to be an integer, but it’s a real pain when in development you’re pre-
sented with ‘Hey Jules, I get a load error on resource ID 2172’. It’s better to
typedef this to something like

typedef CONT::string tID;

Object-oriented game development194

File 1

Load initiated

File 2

Call back (File 1)

File 3

Call back (File 2)

File n

Call back (File 3)

Call back (File n)

Ti
m

e

Figure 5.29
Sequence of call-backs

during a serial bundle
background load.

The black arrow depicts
the file read pointer
moving through the

bundle over time.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 194

which will magically transmute the sentence above into ‘Hey Jules, I get a load
error on walther_ppk.mod’. Later in development, when it’s all nice and stable,
changing the typedef to make tID an integer and adjusting the toolset accord-
ingly brings about a performance increase for relatively little effort.

The abstract Loader class has a public interface that looks like this:

class Loader

{

public:

virtual void OnLoadComplete(Resource * pRes) = 0;

void LoadForeground(FileServer * pServer,

const char * pszFileName,

Resource * pResource);

void LoadBackground(FileServer * pServer,

const char * pszFileName,

Resource * pResource);

char * GetRawData();

int GetRawDataSize();

void SetRawData(char * pRaw, int iSizeBytes);

};

When a load request completes, the Loader subclass that is stored in the request
has its OnLoadComplete() method invoked. This is the call-back-like mecha-

The component model for game development 195

RequestQueue

FileServer

FSVR

Request queue

Request

*Request

mode

Mode

Loader

1010101010100101
0101010101110101
0101010100101010
0010101001010101

Loader

Raw data
Resource

ID

ID

Resource

string

Path

File

Figure 5.30
The FSVR component.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 195

nism mentioned above, but by having a class rather than a function pointer we
can carry state information about on a per-object basis. The loader also has an
interface for loading the resource.

Once we have a file in memory, the data are raw – we have to turn them
into something useful, a process I call instantiation. Then we typically do some-
thing with them. Then we (optionally) get rid of them. We can think of the
lifecycle of a resource as the simple state machine shown in Figure 5.31.

A resource starts off in a bundle. When the load request comes in, it starts
loading and is in the Loading state. When loading completes, the resource is
either in its raw data form or compressed; if the latter, it gets decompressed and
is now in the Raw state. Then the resource is instantiated. This need not occur
immediately – some resource types can stay raw until they’re needed. (At this
point, the data can be optionally put into a Locked state; they cannot be dis-
posed of until they are unlocked.) The resource is then Active and considered
usable; after some time, the asset may be disposed of.

This state management is handled within the DMGD component (see
Figure 5.32).

Now, loading a resource can be a time-consuming process. If we get several
loads completing on the same frame, a whole series of call-backs will be initi-
ated and we could find a drop in performance. One strategy to avoid this is to
make the file server aware of how quickly the game is running and scale the
number of call-backs it initiates in a frame by that:

const int MAX_CALLBACKS_60FPS = 8;

void FileServer::Update(Time aDeltaT)

{

//…

int iNumCallbacks =

(MAX_CALLBACKS_60FPS * Time(1.0f/60.0f))/aDeltaT;

if (iNumCallbacks > MAX_CALLBACKS_60FPS)

{

iNumCallbacks = MAX_CALLBACKS_60FPS;

}

}

Object-oriented game development196

Loading

Compressed Locked

Raw Active Expired

Figure 5.31
State diagram showing

the lifecycle of a
resource.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 196

The ResourceManager class drives the show. It is a templated class: you create a
resource manager for each type of asset you want to load, and an associated
loader for that type derived from the file server’s Loader class. The manager sup-
ports the following basic operations:

● Load resource: clearly, you can’t do anything without loading the data!
● Get resource: acquires a pointer to a loaded resource, performing reference

counting. This operation forces instantiation of the resource if it has not
already been done.

● Free resource: decreases a resource’s reference count. Even if this hits zero,
the resource won’t be deleted – it is marked as expired.

● Purge resource: the resource is forcibly removed from the manager, freeing all
allocated resources irrespective of reference counting or any other status.

● Lock resource: prevents a resource from being freed.
● Unlock resource: guess.

Now we delve a little deeper into the resource management issue. There are a
number of problems to solve; some are pretty obvious, but the others are a bit
subtler. First, let’s deal with the obvious one. Most games have considerably
more assets than available RAM, and although they won’t all be in memory
simultaneously, we may have to deal with the situation that we run out of the
space we reserved for that type of asset.

The component model for game development 197

ResourceManager<T>

FileServer

FSVR

File server

*Resources

1010101010100101
0101010101110101
0101010100101010
0010101001010101

Resource

Data

Loader

ID

Resource<T>Loader<T> Loader

T

DMGD

IDRaw data

Figure 5.32
DEMIGOD and the file
server component
diagrams.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 197

So, if we do run out of room, what do we do? Well, we could throw up our
hands in horror and assert or halt or quit or something else antisocial, but we
can actually do a bit better than that. How about we look for an asset that is no
longer being used and purge that, thus making room for the new guy? Nice
plan! But how do we know what’s not being used? Well, we can look to see if
any resources have the state Expired. If they have, then we can purge them with-
out hesitation. But let’s suppose that there are no assets with this status. What
then? One possibility is to keep a least recently used (LRU) counter. Each active
resource’s counter is incremented every game loop and reset to zero when the
resource is accessed. The asset with the highest LRU count is a candidate for
removal. This technique will work nicely in some circumstances but not in
others. In fact, the particular strategy for finding a purge candidate will depend
on the mechanics of your game, so the best plan is to let the user create and
configure the strategy. This scheme is outlined in Figure 5.33.

The abstract purge strategy could look like this:

// File: DMGD_PurgeStrategy.hpp

namespace FSVR

{

class Resource;

}

namespace DMGD

{

class PurgeStrategy

{

public:

virtual int Evaluate(FSVR::Resource * aResources,

int iNumResources) = 0;

}

Object-oriented game development198

ResourceManager<T>

PurgeStrategy

PurgeLRU

DMGD

*Strategies

PurgeExpired

Figure 5.33
Purge strategies for the

DMGD cache.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 198

The Evaluate() virtual function returns the index of a resource that can be
purged, or –1 if none fulfils the criteria. Add to the resource manager the follow-
ing method:

void AddPurgeStrategy(PurgeStrategy * pStrategy);

and allow the resource manager to process the strategies in the order they
are added (you could add a priority parameter, but that would overcomplicate
the system):

FSVR::Resource * pRsrcs = &m_Resources[0];

int iRsrcCount = m_Resources.size();

for(int j = 0; j < m_PurgeStrategies.size(); ++j)

{

PurgeStrategy * pPS = m_PurgeStrategies[j];

int iPurge = pPS->Evaluate(pRsrcs,iRsrcCount);

if (iPurge >= 0)

{

PurgeResource(i);

break;

}

}

OK, so we’ve decided that we want to get rid of a resource. What do we do?
Something like

void Resource<T>::Purge()

{

delete m_pData;

}

looks fine, but this might cause you a couple of really nasty problems. Consider
the case that T is a model that has graphical data – textures or vertex buffers,
maybe – in video memory. Now, most rendering systems today use multiple
buffering to keep graphical updates tear-free and smooth (see Figure 5.34).

The component model for game development 199

Buffer 2 (visible)

Buffer 1 (current)

Figure 5.34
Graphics being shown in
the visible buffer cannot
be deleted until (at least)
the end of the display
frame.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 199

The act of deleting may well purge the video memory associated with a
resource that is currently in the visible buffer, possibly resulting in a business-
class ticket to Crashington when the buffers are switched. Moral: some data
cannot be deleted immediately; you need to schedule their deletion at a point
in time when it’s safe to do so.

To achieve this, we add a garbage-disposal system to the resource manager
(see Figure 5.35).

When an item is to be purged, its data are removed from the resource man-
ager and placed in an entry in the garbage list. An integer is used to count the
number of frames that elapse; when this hits a specified value, the asset can be
deleted and the entry is removed from the list.

This is when the second really nasty problem hits. The purge operation can
often be expensive, and if a number of resources are purged at the same time,
then the frame rate can take a spike in the wrong direction. To get around this,
we allow the user to specify the maximum number of purges that can take place
per game loop. Note that because this is a parameterised class (i.e. the type T)
we can set this maximum value on a per-class basis, so if one of your objects is
particularly time-consuming to dispose of, then you can process fewer of them
every cycle:

template<class T>

void GarbageDisposal<T>::Update(Time)

{

int iPurgeCount = 0;

Object-oriented game development200

ResourceManager<T>

Garbage disposal

int

DMGD

GarbageDisposal<T>

*Entries

Entry<T>

CounterInstances

T

Figure 5.35
Object diagram for

the DMGD garbage-
disposal system.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 200

iterator itKak = m_Garbage.begin();

iterator itEnd = m_Garbage.end();

while(itKak != itEnd)

{

iterator itNxt = itKak; ++itNxt;

Entry & anEntry = *itKak;

if (anEntry.m_iCounter > 0)

{

--anEntry.m_iCounter;

}

else

{

delete anEntry.m_pInstance;

m_Garbage.erase(itKak);

++iPurgeCount;

if (iPurgeCount == m_iMaxPurgesPerFrame)

{

break;

}

}

itKak = itNxt;

}

}

The last problem we’re going to look at in this section is one mentioned a few
times here and elsewhere, in somewhat hushed tones: fragmentation. Refer back
to the state diagram in Figure 5.31 and consider the dynamic memory opera-
tions that can take place when a compressed resource is loaded:

1 The load operation itself creates a buffer and fills it with data from storage
(one new, no deletes).

2 The decompressor reads the header from this buffer and allocates a new
buffer to send the uncompressed information to (two news, no deletes).

3 Having decompressed the data, the original compressed buffer can now be
deleted (two news, one delete).

4 The raw data are instantiated. Any number of dynamic memory operations
can occur, depending on how complex the parameter class T is. It’s safe to
say that at least one T is allocated (� three news, one delete).

5 Having instantiated the raw data, they can now be deleted. The object is
now loaded and ready to use (� three news, two deletes).

The component model for game development 201

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 201

I make that at least five dynamic memory operations per object. That is just beg-
ging to fragment main RAM, and maybe even video RAM or sound RAM too.
One feels that we can do better, and we can, but it’s a bit fiddly. The trick is to
do a single new once per object in a buffer sufficiently large. See Figure 5.36 to
get an idea of how this works.

The compressed data are loaded at an offset from the start of the buffer.
This offset is calculated by the compressor, which must calculate it so that no
overwrite of compressed data occurs before they are used. A trial-and-error
method is usually employed, as the operation is relatively quick and offline. The
algorithm is illustrated by the following pseudo-code:

offset = data_size – compressed_size

while Decompress(compressed_data, offset)==ERR_OVERLAP

offset += DELTA

end while

The value DELTA can be either a fixed constant or a heuristically determined
value. The end result is a buffer of size offset + compressed_size, large
enough to decompress the packed data without overwriting unused data. Note
that this works with any linear compression scheme, for example RLE or LZ.

At the cost of some extra RAM, we’ve eliminated two news and one delete.
Now, let’s get rid of some more. This bit is harder because it depends on design-
ing the classes within the resource manager in a particular way: their
instantiation must cause no extra dynamic memory operations. Consider the
following simplified class:

class Mesh

{

private:

Vector3 * m_avVertices;

int * m_aiTriangles;

int m_iNumVertices;

int m_iNumTriangles;

public:

Mesh(int iNumVertices, int iNumTriangles);

};

Object-oriented game development202

Buffer start

Expansion
space

Load address

Contiguous data buffer

10101101010101000000000001010101010101011110101010101010101111111111
1110

Compressed data

Figure 5.36
Decompressing data on

top of themselves.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 202

We could write the constructor as follows:

Mesh::Mesh(int iNumVertices, int iNumTriangles)

: m_avVertices(new Vector3 [iNumVertices])

, m_aiTriangles(new int [iNumTriangles])

, m_iNumVertices(iNumVertices)

, m_iNumTriangles(iNumTriangles)

{

}

This causes two dynamic memory operations – no use for our resource system.
Consider the memory layout shown in Figure 5.37, however.

By allocating the mesh and the vertex and triangle buffers in contiguous
memory, instantiation becomes a matter of lashing up the pointers; no dynamic
allocations are required:

Mesh::Mesh(int iNumVertices, int iNumTriangles)

: m_avVertices(0)

, m_aiTriangles(0)

, m_iNumVertices(iNumVertices)

, m_iNumTriangles(iNumTriangles)

{

m_avVertices = (Vector3 *)(this+1);

m_aiTriangles = (int *)(m_avVertices+iNumVertices);

}

Of course, the memory has already been allocated (it’s the loading/decompres-
sion buffer), so we need to use an in-place method to perform the construction:

void Mesh::NewInPlace(int iNumVertices,int iNumTriangles)

{

m_iNumVertices = iNumVertices;

m_iNumTriangles = iNumTriangles;

m_avVertices = (Vector3 *)(this+1);

m_aiTriangles = (int *)(m_avVertices+iNumVertices);

}

(Alternatively, we can use the C++ ‘placement new operator’.)

The component model for game development 203

Triangle dataMesh Vertex data

Figure 5.37
Keeping data contiguous
helps to alleviate
fragmentation.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 203

Congratulations! We’ve reduced the dynamic memory operations down to
just one new, at the cost of some extra RAM and some restrictions on the layout
of the participant class.

Now let’s tie up some of the loose ends I’ve dangled in this section. Figure
5.38 shows how a game might manage texture resources using components
we’ve been discussing.

In code, this is something like this:

// File: TextureLoader.hpp

#include <DMGD\DMGD_Loader.hpp>

namespace REND { class Texture; }

class TextureLoader : public DMGD::Loader<REND::Texture>

{

public:

TextureLoader();

REND::Texture *Instantiate(char *pData,int iSize);

void OnLoadComplete(DMGD::Resource *);

};

// File: ResourceManager.hpp

#include <DMGD\DMGD_ResourceManager.hpp>

#include <REND\REND_Texture.hpp>

Object-oriented game development204

REND

TextureLoader

DMGD

ResourceManager<T>

DMGD::Loader<REND::Texture>

DMGD::ResourceManager<REND::Texture>

ResourceManager

Texture manager

Loader

Texture

TextureLoader

Figure 5.38
The application’s

resource management
system implements

concrete versions of the
DMGD abstract classes.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 204

class ResourceManager

{

public:

/* Blah */

private:

DMGD::ResourceManager<REND::Texture> m_TextureMgr;

};

// File: TextureLoader.cpp

#include "TextureLoader.hpp"

#include <REND\REND_TextureLoader.hpp>

#include <REND\REND_Texture.hpp>

/*virtual*/

REND::Texture *

TextureLoader::Instantiate(char * pRaw, int iRawSize)

{

REND::TextureLoader aLoader;

REND::Texture * pTexture = 0;

// Note: all textures assumed to be in TGA format.

aLoader.ParseTGA(pRaw, pTexture);

return(pTexture);

}

/*virtual*/

void TextureLoader::OnLoadComplete(FSVR::Resource *pRes)

{

// Make the texture immediately available.

REND::Texture * pTexture =

Instantiate(GetRawData(), GetRawDataSize());

DMGD::Resource<Texture> * pTextureResource =

static_cast<DMGD::Resource<Texture> *>(pRes);

pTextureResource->SetData(pTexture);

}

5.4.10 Newtonian physics
Having a background in astrophysics, physics is a topic close to my heart, and I
am not alone: there is a small but dedicated community of game developers
who have an interest in raising the profile of physics in video games, heralding
it as a technology whose time has come.

True, there is a general movement towards realism in games. As consoles
evolve and graphics become higher-resolution, use more realistic lighting models

The component model for game development 205

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 205

and support higher-detail models, any elements that behave in unnatural ways
tend to stand out. For a truly immersive experience (the physics proponents
argue), objects in games need to behave more like objects in the real world: stack-
ing, sliding, rolling, colliding, even bending, cracking and smashing.

To get these sorts of behaviours into the game, you need physics. Let’s be
quite clear what we mean by ‘physics’, though. Almost all games have physics
of some description: objects move – they have positions and velocities if not
accelerations; objects collide and bounce off each other or explode. This sug-
gests that game physics is nothing more than the updating of positions and
velocities over time. But clearly this isn’t what the hardcore mean, so let’s try
the following definition:

Physics in the context of games is a set of rules that consistently and equivalently
control the motion of objects within the game.

By ‘consistently’, I mean that the rules are applied every game loop (or more fre-
quently). There are no special cases for controlling the motion – we don’t, for
example, stop at some point and switch to (say) animation.

By ‘equivalently’, I mean that the rules are applied to all the objects in the
set. If the objects are required to have differing behaviour, they do so by altering
their response to the rules via internal parameters.

Note that we’re not just thinking of the motion of vehicles in a driving
game or the balls in a pool game. We could also consider using cellular
automata to generate game data. But whatever we find ourselves using, we’re
going to realise one thing: we’re very much at the mercy of the rules we choose
because they generate behaviour; they are not behaviour in themselves. For
better or worse, the behaviours we get as a result of running our rules may be
the ones we want and/or never expected. There can be a lot of work in mitigat-
ing the unwanted emergent behaviour; that is the cost of the physics. The
benefit is that when we get the behaviour right for one object, we get it right for
all objects that follow the same rules.

Now to get to the point: Newtonian physics. This is a set of rules that con-
trols the motion of game objects by applying forces to them. It’s a simple
enough principle, but there’s a snag: physics is really quite hard. Even in a
simple world of inflexible boxes and planes, physics can be really tough. For
example, stacking a number of boxes on top of each other in real time could be
enough to grind some computers to a halt; and even then, it’s hard to make
stable to the extent that it behaves just like a real stack of boxes. And if rigid
cubes are hard to get working, what does that say about more complex systems
such as soft, jointed humans?

The long and the short of it is that if you want to use Newtonian physics in
a game, then you’ve got to have a darn good reason for doing so. For example,
if you’re writing an adventure or platform game, you may be tempted to make a
puzzle out of platforms, weights and ropes that are physically simulated. Once

Object-oriented game development206

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 206

it’s set up, it just works. Well, that’s the benefit; the cost is that it’s very much
harder to control and constrain than a puzzle based on a state machine and ani-
mations. The designer of the puzzle must have a good understanding of the
mechanics of the problem, and in more complex situations they must have a
deep understanding of how to change the physical properties of the objects in a
system to be able to achieve a desired result. This is specialist knowledge, and
it’s not a simple task. Think about making a big nasty Boss spider walk, applying
a sequence of forces and torques at the joints in the legs to get it perambulating
over an undulating terrain. It’s decidedly not easy.

Introducing physics into a game must start at the art and design level.
Masses and mass distributions must be set within the editing environment
where the game is constructed. The first problem that a designer may encounter
is ‘physics creep’. Suppose that one wishes to limit the number of objects that
are physically simulated. Those objects had better not be able to interact with
non-simulated objects, as the result may be decidedly unrealistic. But we were
using physics to add realism! So, inevitably, it’s hard to avoid more and more of
your simulation space using Newtonian physics as a means of updating itself.
Keeping control can be tough.

Something else to watch out for when planning a game with physics on
board is units. Most game art is created to an arbitrary scale – as long as all
objects are the right size relative to each other, everything will work out just
fine. And it’s true that Newtonian physics is oblivious to what the units are – it
still works.3 However, physics programmers may well feel more comfortable
with SI units (metres, kilograms, seconds) than other systems, so artwork should
be prepared with this in mind. It seems pointless to swallow CPU cycles and
create extra confusion during the game converting between unit systems when
some forethought would save you the trouble. Of course, a clever C++ program-
mer might like to write a units class that did all the conversions for you
transparently. It’s a fun exercise, but that doesn’t make it clever. Choose game
world units at the start of development and stick to them.

If physics is hard for the designer, then it’s pretty hellish for the program-
mer. Again, specialist knowledge may be required – not just physics, but maths
well beyond high-school level, maybe even beyond graduate level. Even with
that knowledge, the systems can be hard and time-consuming to stabilise to the
extent that they can be used in a commercial game. Attempts – such as
Dreamworks’ 1998 Jurassic Park: Trespasser – have not really succeeded either
technically or commercially.

However, if you’ve read all that and have decided that you really want to use
Newtonian physics in your game, then here is a component that will get you
started. If you really want to use high-power physics, you would do well to con-
sider a middle-ware solution – two currently popular systems are Mathengine and
Havok. They may allow you to sidestep many months of mental pain.

The component model for game development 207

3 A technical note. Only in the SI unit system does Newton’s law F=ma hold true. In other systems, it
is generally F=kma, where k is a constant.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 207

Right, let’s get down to designing a physics system. Since Newtonian
physics is about updating positions and directions (we want things to spin,
don’t we?), let’s start by embedding those into a class called a ReferenceFrame.
This is a term you meet a lot in physics – it’s precisely what is meant here, so
why not? Figure 5.39 shows the reference frame {(x,y,z),(X′,Y′,Z′)} – the first
numbers denote position with respect to some other reference frame
{(0,0,0),(X,Y,Z)}, and the second set are vectors representing orientation.

A mention needs to be made of coordinate systems here. We have deliber-
ately chosen to keep our rendering systems and our simulations systems
separate, and there is a danger that whoever writes the graphics code may not
have the same notions as the person writing the physics code about which way
the z-axis goes or how angles are measured. Many hours of hair-pulling debug-
ging can result, because physics code is full of vector cross-products that have
ambiguities in their results (there are two vectors 180 degrees apart that satisfy
orthogonality with the arguments). Although it is quite feasible to write a
generic coordinate transformation component, for performance reasons it is
better to avoid doing so. Programmers need to agree on the conventions of axial
directions and senses of rotation about very early on in development.

Remember way back when we were looking at the MATHS component, we
met this thing called an Integrator? No? Well, better rewind and review. An
integrator is used to update a dynamic system over time, taking into account
the variable rates of change of the internal variables over time. If we want to
update our physical object over time, then we want one of those, which means
inheriting the IsIntegrable property class. Such is the power of component
design, we’re now building a huge amount of abstract power into a class and
turning it into concrete functionality.

Newtonian physics is nothing without forces, and something generally has
to apply those forces. At this point in the design, we have only an abstract
object – we don’t know if it’s soft (in which case, forces will deform it) or rigid
(forces will only move it). So we defer explicit mention of forces until later in
the hierarchy, because the force interface will be determined by the type of body
(a virtual function isn’t really sufficiently flexible, since it has a fixed signature).
However, we can introduce forces implicitly via controllers, a physical object
having a number of these pushing them around:

Object-oriented game development208

Z'

Y'

X'

Z

Y

X

(x,y,z)

Figure 5.39
A reference frame is

described by a position
and three orthogonal

unit vectors.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 208

// File: PHYS_Controller.hpp

namespace PHYS

{

class Object;

class Controller

{

public:

virtual bool ComputeForcesAndTorques(Object *) = 0;

};

}

Your subclass of Controller either will know what type of Object is being sup-
plied or will be able to work it out via your own typing mechanism. The
ComputeForcesAndTorques() method should return true always, unless some-
thing catastrophic happens, in which case returning false allows the Object
update to be terminated.

Figure 5.40 summarises the design so far.
Notice the use of multiple inheritance in PHYS::Object. Worry not: it will

be nigh invisible by the time we get to classes that really do things. Also observe
that all Objects have mass, a fundamental property of Newtonian mechanics.

The component model for game development 209

Vector3IsIntegrable

MATHS

Object

PHYS

ReferenceFrame

Matrix33

PositionOrientation

Controller

float

*Controllers

Mass

Figure 5.40
Bindings between the
physics and maths
components.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 209

Here’s the Object interface:

class Object

: public ReferenceFrame

, public ::MATHS::IsIntegrable

{

public:

/*

* Typedefs, constants and enumerations.

*/

/*

* Lifecycle.

*/

Object();

Object(float fMass);

~Object();

/*

* Polymorphic methods.

*/

virtual void Update(MATHS::Integrator * pInt,

float fDeltaT) = 0;

// Update state of object wrt time.

virtual void SetMass(float fMass);

// Sets the mass of an object.

virtual void SetInfiniteMass();

// Makes an object immovable.

/*

* Unique methods

*/

float GetMass() const;

void AddController(Controller * pController);

void RemoveController(Controller * pController);

// Controller interface

};

In the Update() method, we pass in an arbitrary integrator to calculate the new
state. Some objects in the game may require very accurate and stable integrators
(for the technically minded, Runge–Kutta high-order, or even an implicit inte-
grator such as backwards Euler); some may require simple ones (such as

Object-oriented game development210

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 210

forwards Euler or Guassians). This choice of interface allows us to share a few
integrators between many objects, as opposed to having either an integrator per
object or one integrator for all objects (a yukky singleton integrator).

From the Object base class, we can now start building concrete classes.
There are two families of these – the body classes that are solids, and the rest. A
Body is just an Object with mass properties and some underlying geometrical
attributes. We’re going to make two concrete subclasses of Object: a rigid body (a
subclass of Body) and a rope.

First, let’s design the Body class. We need to get some geometrical data in.
Remember that we are dealing with the update side of game objects here; we
can make no mention of or use no instances or references to anything visual.
The data we require are in the form of a 3×3 matrix called the inertia tensor,
which describes how the mass is distributed in the body. For simple geometric
shapes, there are formulae for the elements in this matrix. So, if you’re writing a
pool game, life is easy. For less than simple shapes (and that means most game
objects), things are not so simple. There are three choices for computing the
matrix in this circumstance:

● Offline computation of the inertia tensor by direct surface integration over
the polygonal elements in the object’s model. This is extremely accurate,
but some careful thought must be given to how density varies over the
model.

● Approximate the object using a series of simple volumes whose inertia ten-
sors can be evaluated easily. This is illustrated in Figure 5.41, where we use
three boxes to model a car. To compute the inertia tensor for the entire
object, you can use the parallel axis theorem.

● Represent the model as a set of point masses and use the definition of the
inertia tensor to compute the elements directly (see Figure 5.42).

The component model for game development 211

Box 2 Box 1Box 3

Figure 5.41
A car modelled as a
series of boxes (whose
inertia tensors are
simple to represent).

r12 r23

m3m2m1

Figure 5.42
The car modelled as
point masses.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 211

As I said earlier, if you use physics in games it quickly gets pretty technical. Of
the three methods, the third is the most flexible and as a big bonus, the point
mass model can be updated easily in real time. So let’s create a point mass
model for the component (see Figure 5.43).

The point masses have positions and masses of course. When you add a
point to the set, the mass is accumulated, along with adjusting the centre of
mass. After you’ve added all your points, you can then obtain the inertia tensor.
The interface to this class is interesting:

typedef int PointMassHandle;

void BeginEdit();

// Call this before adding, removing or modifying points.

// Must be paired with EndEdit().

void EndEdit();

// Ends edit operations on the set and forces a refresh

// of the internal state. Must be paired with BeginEdit()

// and no Add/Remove/Modify operations are allowed

// afterwards.

PointMassHandle AddPointMass();

// Adds a point mass to the set and returns a handle to

// it.

Object-oriented game development212

Vector3

MATHS

PHYS

PointMassSet

Matrix33

float

PointMass

*Point masses

Mass

Total mass

Position
Inertia tensor

Centre of mass

Figure 5.43
The point mass in the

physics component.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 212

void RemovePointMass(PointMassHandle & hPoint);

// Removes an instance of a point mass from the set. The

// handle is invalid after this call.

void Clear();

// Remove all point masses from the set. Must be called

// within BeginEdit()/EndEdit(). All handles will be

// invalid after this call.

void SetPointMass(PointMassHandle &hPoint, float m);

// Sets the mass of a point. Only call within

// BeginEdit/EndEdit().

void SetPointPosition(PointMassHandle const & hPoint,

MATHS::Vector3 const & vPos);

// Sets the position of a point in local coordinates.

// Only call within BeginEdit/EndEdit().

MATHS::Vector3 const & GetCentreOfMass() const;

// Gets centre of mass for the set.

Tensor33 GetInertiaTensor() const;

// Gets inertia tensor for the set.

float GetTotalMass() const;

// Gets the total mass of the object.

Notice that we add point masses one at a time. Until all the point masses have
been added to the set, the internal state is incomplete, so asking for the inertia
tensor will not produce a valid result. Once we have added all our points,
adding more would also invalidate the internal state, so we need a way to be
able to control when it is legal to add points and when it is legal to query state.
That’s what the BeginEdit()/EndEdit() interface is for, and it’s a paradigm I
use quite frequently.

Notice also the use of a handle type for the point masses. As far as the user
is concerned, it’s an integer. Internally, it has a specific meaning that is totally
opaque to the outside world. Since there is no class hierarchy here, there is no
loss of type information so a handle is fine, and it frees the user from the
burden of having to manage point mass memory. Now if we’d returned a
pointer to a point mass, a user might feel that they were obliged to delete it.

So we can now supply the inertia tensor to our body. What else would we
like to be able to do with it? Well, one important thing is to somehow prevent it
from doing undesirable things, such as falling through surfaces (we may want a
ball to roll over an undulating terrain, for example). Or we may want it to

The component model for game development 213

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 213

follow some other object. We do this by means of constraints, and we allow a
body to have an arbitrary number of them. Constraints are similar to con-
trollers, but they evaluate external forces rather than the controller’s internal
forces. This is summarised in Figure 5.44.

Finally, we get to the RigidBody. There are three 3D vectors that describe
the linear properties of the body’s motion:

● Position x from the ReferenceFrame base class.
● Velocity v.
● Acceleration = F/m by Newton’s second law.

where F is the total force acting on the body. There is one 3D vector describing
the rotational velocity:

● Angular velocity �.

The orientation is stored in the ReferenceFrame base class, just like the position,
but in my implementation I use a unit quaternion q to represent this.
Quaternions are nearly as stable numerically as matrices (there’s less redundancy

Object-oriented game development214

Vector3IsIntegrable

MATHS

Object

PHYS

ReferenceFrame

Matrix33

PositionOrientation

Controller

float

*Controllers

Mass

Body

Constraint

*Constraints

Tensor33

Inertia tensor

Inverse
inertia tensor

Body

Figure 5.44
The physics component

with controllers
and constraints.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 214

because there are fewer elements, but it’s a small difference), and the smaller size
means fewer FLOPs. There’s also an auxiliary vector quantity – the angular
momentum – which is used to simplify the calculations, and a matrix that is the
inverse inertia tensor in world space (it is stored in local space elsewhere).

With all these variables defined, we can express the update of the rigid
body’s state over an infinitesimally small time ∆t as follows:

v v F/m
x x v[](t + ∆t) = [] (t) + ∆t. []L L T
q q q*

Here, T is the total torque acting on the body, and the quaternion q* is the
skewed value obtained via

q* = 1–
2

�q

The [v x L q]T vector is called the state vector. For larger time intervals, we need
to integrate the state over time to account for the fact that forces and torques
change in that interval. However, we have built integrability into our Object
class, so to make this all work is a case of implementing the required virtual
functions, computing the forces and torques (via controllers and constraints)
and gluing the pieces together.

The rigid body object diagram is shown in Figure 5.45, and the entire class
declaration is presented for clarity:

// File: PHYS_RigidBody.hpp

#include "PHYS_Body.hpp"

namespace PHYS

{

class RigidBody : public Body

{

public:

/*

* Typedefs, constants and enumerations.

*/

/*

* Lifecycle.

*/

RigidBody();

~RigidBody();

The component model for game development 215

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 215

/*

* Polymorphic methods.

*/

void Update(MATHS::Integrator * pIntegrator,

float h);

// From Object.

void GetArgumentVector(MATHS::Vector & rLhs);

void GetFunctionVector(MATHS::Vector & rRhs);

int GetDimension() const;

void SetArgumentVector(MATHS::Vector & rArgs);

// Instances of IsIntegrable methods.

void ApplyForce(const MATHS::Vector3& vForce,

const MATHS::Vector3& vPos,

const ReferenceFrame* pFrame);

void ApplyTorque(const MATHS::Vector3& vTorque);

Object-oriented game development216

Vector3IsIntegrable

MATHS

Object

PHYS

ReferenceFrame

Matrix33

PositionOrientation

Controller

float

*Controllers

Mass

Body

Constraint

*Constraints

Tensor33

Inertia tensor

Inverse
inertia tensor

Body

RigidBody

State

Quaternion

float

Restitution

State

Total
force Total

torque

Orientation

Velocity

Angular
momentum

Acceleration

World inverse
inertia tensor

Figure 5.45
Adding the rigid

body class to the
physics component.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 216

void ApplyCentralForce(const MATHS::Vector3& F);

// Force API from Body class.

/*

* Unique methods

*/

void SetVelocity(const MATHS::Vector3 & v);

const MATHS::Vector3 & GetVelocity() const;

MATHS::Vector3

PointVelocity(const MATHS::Vector3& r) const;

MATHS::Vector3

PointAccel(const MATHS::Vector3 & r) const;

const MATHS::Vector3 & GetAcceleration() const;

const MATHS::Vector3 & GetAngularVelocity() const;

void SetAngularVelocity(const MATHS::Vector3 & w);

void SetAngularMomentum(const MATHS::Vector3 & L);

const MATHS::Vector3 & GetAngularMomentum() const;

float GetRestitution() const;

void SetRestitution(float r);

void BeginSimulation();

void EndSimulation();

// Simulation control.

float GetKineticEnergy() const;

// Energy API.

Tensor33 const &

GetWorldInverseInertiaTensor() const;

// Mass properties.

private:

/*

* Helpers

*/

void resolveForces();

void vectorToState(MATHS::Vector & rVector);

void stateToVector(MATHS::Vector & rVector) const;

void preIntegrationUpdate();

void postIntegrationUpdate();

The component model for game development 217

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 217

/*

* Hinderers

*/

RigidBody(RigidBody const &);

RigidBody & operator=(RigidBody const &);

/*

* Data

*/

MATHS::Vector3 m_vVelocity;

MATHS::Vector3 m_vAcceleration;

MATHS::Vector3 m_vSumForces;

// Linear quantities.

MATHS::Quaternion m_qOrientation;

MATHS::Vector3 m_vAngularVelocity;

MATHS::Vector3 m_vAngularMomentum;

MATHS::Vector3 m_vSumTorques;

// Angular quantities.

Tensor33 m_mWorldInverseInertiaTensor;

// Inverse inertia tensor in the world system.

float m_fRestitution;

// Coefficient of restitution for collisions.

ForceAccumulator * m_pForceAccumulator;

// Stores force-related data.

};

}

Notice that although we chose to represent the state as a discrete object in
Figure 5.45, the position is actually stored in the ReferenceFrame base class, so
we can’t gather together all the quantities in one contiguous block. When we
come to integrate, we therefore need to pack the state into one contiguous
vector, and when we’re done integrating we unpack it back into the state vari-
ables again. This is not optimal behaviour, because instead of using memcpy() to
copy the state into and out of the integrator, we need to add and extract discrete
values. We can get around this by duplicating the position within the rigid body
– so long as we make sure to synchronise it every time the object moves or an
integration takes place:

Object-oriented game development218

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 218

// File: PHYS_RigidBody.hpp

namespace PHYS

{

class RigidBody

{

public:

// As before.

private:

struct State

{

MATHS::Vector3 vVelocity;

MATHS::Vector3 vPosition;

MATHS::Vector3 vAngularMomentum;

MATHS::Quaternion qOrientation;

};

State m_CurrentState;

};

}

Ropes are considerably simpler objects than rigid bodies. A rope is made out of a
number of stiff springs, linked together and fixed at one or both ends. They are
considered to be geometrically uninteresting, so there’s none of the nasty tensor
stuff going on, and although they have mass, it’s not as important a parameter
as for a body. Figure 5.46 shows us the ropes (groan).

There are vertices at the ends of each spring – they have a notional mass
equal to the mass of the rope divided by the number of vertices. It’s easy to
allow them to have variable mass though. Each spring has a spring constant, Ks,
and damping value, Kd, (usually quite high), and the springs pull the vertices
around with a force F given by

F = – Ks · x + Kd · v

where x is the length of the spring minus the rest length and v is the velocity of
the vertex along the spring axis.

This has been quite a difficult section. That’s because physics is pretty diffi-
cult. We’ve not covered the really hard stuff here – soft bodies, hierarchically
linked bodies, and such like. If you feel motivated to put physics in your game,
there are many excellent resources to show you how to do the maths required
to get up and flying. Now that you know how to architect the C++ code, noth-
ing can stop you except the laws of physics themselves (and in games at least,
you can actually change them, Mr Scott).

The component model for game development 219

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 219

5.4.11 Network gaming
There’s a lot of fun to be had playing games with friends or colleagues in the
office. Programming games to run over a network is not particularly difficult,
but there are some really fiddly issues that will almost certainly bite you at some
point when you are writing your distributed game code. However, this section
doesn’t deal with those! For an excellent treatment of networking, see Singhal
and Zyda (1999). Our mantra is this: the components allow you to reuse func-
tionality and structure over several projects – what is important is the
architecture, not the details. So our goal here is to come up with an architecture
for (small-scale) network games that mentions no particular transport mecha-
nism or protocol but provides a framework for building the games that lends
networkability as almost a transparent option.

There is a lot of jargon in networking, so we’d better start by defining some
terms. These may be defined differently to how you understand them – if so, I
apologise. But even if you don’t like them, you’ll know what I’m talking about,
which is the real issue:

● Host: an object that is responsible for coordinating one or more instances of
a specific game on a single machine.

● Session: an instance of a specific game controlled by a host.

Object-oriented game development220

Vector3IsIntegrable

MATHS

Object

PHYS

ReferenceFrame

Matrix33

PositionOrientation

Controller

float

*Controllers

Mass

Rope

Spring

RopeVertex

float

Length
Kd

Ks

*Vertices

*Springs

1/mass

Acceleration

Velocity

Position

Figure 5.46
Adding ropes to the
physics component.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 220

● Data model: a class that stores the entire state of a session. Remember how
we wanted to keep the simulation and visual sides of the game separate?
The data model is the simulation part.

● Player: a human (or maybe an AI entity) that generates control information.
● Server: a class that handles the update of a game session. Everyone who runs

a session on a machine has a server – it is not a reference to the machine
the game runs on.

● Client: a class that handles the input from a player.
● Master: a server whose data model is the definitive version of the game.
● Slave: a server whose data model needs periodic synchronisation with the

master server’s.

These are our basic terms. Now, what is networking really about? At its heart, it
is a messaging problem. Data on one machine need to be sent to another, so
package them up into a message and (somehow) transport them to the destina-
tion. Since the ability to transmit and receive messages is fundamental, we start
our analysis with an abstract class called a Conduit:

// File: NET_Conduit.hpp

namespace NET

{

/*

* Forward declarations.

*/

class Message;

/*

* Class declarations.

*/

class Conduit

{

public:

/*

* Constants/typedefs/enums.

*/

/*

* Lifecycle.

*/

Conduit(Conduit * pParent, int iRtti);

virtual ~Conduit();

The component model for game development 221

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 221

/*

* Polymorphism.

*/

virtual bool Transmit(Message *) = 0;

// Sends a message. Returns true if the

// send succeeds (though this is no

// guarantee that the message arrives).

virtual bool HandleMessage(Message *) = 0;

// Called when a message is received.

// Must return true if the message is

// recognised and acted upon.

/*

* API.

*/

Conduit * GetParent();

const Conduit * GetParent() const;

// Get the parent conduit.

// NULL (0) is a legal value.

int GetRtti() const;

// Obtain the type of the class instance.

protected:

/*

* Helpers.

*/

private:

/*

* Data.

*/

Conduit * m_pParent;

// Pointer to the parent conduit.

// If 0 (NULL), there is no parent.

int m_iRtti;

// Type information.

}; // end class

}

Note that we can create a simple hierarchy of Conduit instances. In reality, the
topology of the instance hierarchy will be mostly fixed and always simple, as we
shall see shortly.

We now create a concrete class that generically sends and receives messages.
This will be used as the base class for all game classes that require network mes-

Object-oriented game development222

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 222

saging support. We call this class a Transceiver. Each transceiver in a game has
a unique ID that is allocated at run time.

This allows us to determine uniquely where a message needs to go: not just
the machine, but also the session or even the transceiver within the session that
the message is targeted at. I’ll assume (without loss of generality) that the
machine identifier is an Internet protocol (IP) address (four bytes). The Address
class is written as follows:

// File: NET_Address.hpp

namespace NET

{

class Address

{

public:

typedef unsigned char IpAddress[4];

static const int NULL_ID;

Address();

// Empty address: message goes nowhere.

Address(const IpAddress & Ip);

// Addresses a machine only.

Address(const IpAddress & Ip, int iSession);

// Addresses a session on a machine.

Address(const IpAddress & Ip,

int iSession,

int iTransceiver);

// Addresses a transceiver on a session on

// a particular machine.

Address(int iSession);

// Addresses a session on the local machine.

Address(int iSession, int iTransceiver);

// Addresses a particular transceiver on a

// session on the local machine.

Address(const char * pIpString,

int iSession,

int iTransceiver);

// Convert a ABC.DEF.HGI.JKL TCP address

Address(const Address &);

~Address();

const IpAddress & GetIp() const;

int GetSessionId() const;

int GetTransceiverId() const;

// Access to the components of the address.

Address & operator=(const Address &);

The component model for game development 223

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 223

private:

IpAddress m_cIp;

// TCP/IP address a.b.c.d defines which host

// the address specifies.

int m_iSession;

// Identifies the session on the host.

int m_iTransceiver;

// Identifies the transceiver on the session.

};

}

That plethora of constructs enables an address to specify any conduit we like,
including those on the local machine. Since this is easy to recognise – the IP
address field is NULL_ID – we don’t need to bother sending anything over the
network, and the transmission becomes a simple function call.

Figures 5.47 and 5.48 show the story so far – the classes and the implicit
instance hierarchy.

Now let’s add in servers, clients and the rest. Client and Server are sub-
classes of Transceiver, not Conduit, which makes them optional parts of the
system. If you want to create a class Peer from Transceiver, thereby changing
your network topology, you are free to do so. Figure 5.49 takes us on a step further.

Rather than subclass Server into ServerSlave and ServerMaster, we’ve
elected to allow the server to change behaviour dynamically. This is useful
behaviour when the master server in a network game disappears because of a
hardware failure or the player quitting: the remaining servers can then negotiate
over who is to be the new master without lots of dynamic memory allocations
and the associated rebuilding of internal state.

Object-oriented game development224

int

NET

Session

*Sessions

Host Transceiver

Length

Message

Address

Destination

*Transceivers

Conduit

*Message
queue

Parent

Figure 5.47
Object diagram for the
basic NET component.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 224

class ServerMode

{

public:

virtual bool HandleMsg(Server * s, Message * m) = 0;

virtual void Update(Server * s, Time dt) = 0;

};

class Server

{

public:

void SetMode(ServerMode & aMode)

{

m_pMode = &aMode;

}

The component model for game development 225

Transceiver X+1 Transceiver Y

Session 2

Host

Transceiver Y+1 Transceiver Z

Session N

Transceiver 1 Transceiver X

Session 1

Figure 5.48
Hierarchy of hosts,
sessions and
transceivers.

Client

Net

Player

Player

string

Name

ServerMode

Address

Transceiver DataModel

ServerModeMaster ServerModeSlave

Server Mode

Data model

Host address

Figure 5.49
Adding clients and
servers to the NET
component.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 225

void Update(Time dt)

{

m_pMode->Update(this, dt);

}

bool HandleMsg(Message * pMsg)

{

m_pMode->HandleMsg(this,pMsg);

}

private:

ServerMode * m_pMode;

};

To couple this to an actual game, subclass again (see Figure 5.50).

5.4.12 Summary
This has been a long chapter. And yet we’ve touched only briefly on the techni-
calities of the topics we’ve discussed. That was the plan: the idea all along has
been to demonstrate that, with a few straightforward OO design principles, we
can create component architectures that minimise bloat, are reusable, flexible
and light, and perform decently. To that end, this chapter has been a start. The
rest is up to you.

Object-oriented game development226

GamePlayer

Player

ServerModeSlave

ServerMode

ServerModeMaster

NET

GameServerModePeer

GameServerModeSlaveGameServerModeMaster

GameDataModel

DataModel

Server
Data

model

Mode

Figure 5.50
Game implementations

of abstract or overridable
behaviours in the
NET component.

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 226

5.5 Summary

● Game engines allow teams to focus on game-play issues rather than technical
issues.

● By their nature, they are tightly coupled and monolithic – anathema to software
engineering principles.

● A component-based object model – a set of independent building blocks – allows
much more freedom and extensibility than a game engine. What’s more, the com-
ponents (by virtue of their independent nature) are easier to use and reuse than
traditional code.

● Localise simple auxiliary classes within a component to minimise external
dependencies.

● Keep data and their visual representation logically and physically separate.

● Keep static and dynamic data separate.

● Avoid making unrelated systems interdependent.

● Try to avoid using threads in a game. They make debugging a nightmare, and you
may lose the precise control over scheduling and timing that sequential methods
give you.

● All high-level game systems can be written as components.

The component model for game development 227

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 227

8985 OOGD_C05.QXD 1/12/03 2:38 pm Page 228

6.1 Introduction

If there is a single constraint that will either invalidate parts of or even entirely
break your painstakingly nurtured object-oriented design, it is that your game
will have to work on a variety of target hardware. And what a diversity of hard-
ware! PCs – with a combinatorially huge and broadly unregulated set of
constituent components, Macs, and, perhaps most importantly of all, the ever-
expanding console market, including handhelds.

Starting from scratch (with nothing but some middleware, perhaps), a
single platform’s implementation will – on average – take about one and a half
to two years to get on to the shop shelves. A lot can happen in that time!
Platforms can come and go, and bottom-line hardware will double in speed. It
would be inexcusable to spend another similar amount of time to produce a
similar version of the game for another machine, which would look seriously
out of date by the time the shrink-wrap cools. More to the point, it can be eco-
nomic suicide.1

In other words, if we are to release the game for n platforms, then we’ve got
to do it all pretty much in parallel. There are two ways we might go about this:
either support n teams to write bespoke and largely (maybe even entirely) inde-
pendent versions of the game, or support m teams (where m ≤ n), with some
amount of common code shared between platforms.

Clearly, having n development teams for n platforms is an expensive luxury
that the majority of games developers cannot afford. Since all developers are
inevitably slaves to the vagaries of the free market (albeit occasionally happy
slaves), there is clearly a strong motivation to develop the skus (as they are
called) in parallel.

6.1.1 Analyse this
First off, let’s consider two parameters in the analysis of platforms: capability and
methodology.

Cross-platform development 6

229

1 This doesn’t apply to all genres of game. Those that can escape are the lucky ones, but usually they
will generate a whole new set of challenges for developers.

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 229

Capability
This is a measure of what the hardware can do: number of instructions executed
per second, number of colours displayed, number of simultaneous sounds,
number of executables that can be run in parallel, etc.

Methodology
This is how the hardware goes about doing the things it’s capable of. Factors
contributing to this are things such as byte ordering (big or little Endian),
bitmapped screen memory versus display list generation, and presence or
absence of a hard disk.

In real life, these are not mutually exclusive concepts. How something is
done can inevitably determine what it can do. For the purpose of this analysis,
though, it remains useful to keep the distinction. We need to consider several
possible circumstances for cross-platform development:

● Platforms A and B are broadly similar in capability and broadly similar in
methodology.

● Platforms A and B are broadly similar in capability but radically different in
methodology.

● Platforms A and B are quite different in capability but similar in methodology.
● Platforms A and B are so different in capability and methodology that the

game cannot even potentially be the same on both systems.

6.1.2 Welcome to Fantasy Land
The case in which two target platforms are similar in both the what and the
how is pretty rare. It’s an appealing notion that we just need to select a different
compiler, hit ‘build’, go for a coffee and return to find a game that looks and
plays near as damn identically on platforms A and B. Let’s just assume for the
sake of discussion that this is the case. The challenges that we meet will form
the minimal experience of writing multiplatform.

So we’ve changed the flag in the make file (or selected the build type on our
favourite integrated development environment (IDE)) and initiated the compila-
tion. What might take us by surprise? Well, experience overwhelmingly dictates
that you are going to be very lucky to get through the build without a compila-
tion error. Welcome back to the real world! Compilers that really ought to comply
with the ANSI C++ standard don’t. And even those that do still have a bewilder-
ing scope for behavioural difference, sometimes subtle, sometimes less so.

Depending on how conservatively you have written your code, you will get
fewer compile-time errors the less you use templates (and STL in particular),
recently added keywords and multiple inheritance. Indeed, the number of errors
and warnings you can get is related directly to how far your C++ code is from a
purely procedural interface. Disturbingly, though, even a totally procedural
implementation will cause warnings and errors – perhaps lots of them. What
will these errors and warnings be about? Here are some perennial issues.

Object-oriented game development230

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 230

Give us a sign
Signed and unsigned arithmetic or comparison. Yet another reason to ditch
those unsigned variables wherever possible! Compiler writers just can’t agree
about how serious a problem mixing signed and unsigned is. You should be less
accommodating.

Out of character
Is a character signed or unsigned by default? Is an enum signed or unsigned
by default?

Fruity loops
I write my ‘for’ loops like this:

for(int j = 0; j < 10; ++j)

{

/* Do some stuff */

}

For some compilers, the scope of j is inside the parentheses. For others, it’s
everywhere after the declaration of j. So if you do this

int j = 7;

later on in that scope, on some machines it’s an error but on others it’s fine.

Static constants
Some compilers are happy with initialising static constant values at the point
of declaration:

class Error

{

static const int PROBLEM = 10;

};

Others aren’t, and they don’t like being argued with.

STL
Ah, if only the ‘standard’ in the expansion of STL was so. Surprisingly, there is a
remarkable variation in STL implementations over a multiplicity of platforms.
Although the ANSI standard describes quite categorically how the participant
classes should behave, some compilers – most notably Microsoft’s – don’t follow
that standard. And even among those that do, there is still a wide variation in
implementation (though there is nothing wrong with that per se), which means
that the performance you get on one platform may not happen on another.2

Cross-platform development 231

2 There is a version of STL called STLPort that is currently free and works on a number of different targets.

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 231

And so on. Point being that there are a lot of nitpicky issues to deal with.
Now, if this wasn’t enough, in order to deal with these pesky messages you will
have to deal with the various ways that development systems let you control
these warnings and errors. There is no standard for writing this: some compilers
use command-line switches, some use IDE settings, some use #pragma direc-
tives, and none will agree what a warning level means.

Now don’t go jumping to the conclusion that this means you should aban-
don all the powerful stuff we’ve discussed so far when faced with a parallel
development scenario. Quite the reverse – as we’ll see, object orientation,
advanced C++ features and component methodologies are all going to help you
to develop across multiple platforms. What it does suggest is that you need to
understand your tools quite a bit more deeply, and that more experienced teams
are going to fare better when going cross-platform. Teams with less experience
are therefore probably better suited to the expensive one-team-per-sku model.
Conversely, if your company hires less experienced developers (because they
were cheap, yes?), then you’re better off spending the money you saved (and
then some) on those n teams. Free lunch, anyone?

So the first technique for solving these niggling compiler issues is to not
write the offending code in the first place and to put into practice coding stan-
dards that make sure nobody else does. Usually, though, you’ll find out that
something isn’t liked after you’ve written it. And so up and down the land
you’ll meet code that looks like this:

if defined(TARGET_PLATFORM_1)

/* Do something nice */

else

/* Do the same thing slightly differently */

endif

This is by far the most common method of multiplatform development: isolate
the variable bits of code into platform-specific blocks. And it’s fine, so long as a
couple of common-sense conditions are met:

● you don’t target too many platforms;
● the blocks of code encompassed by the preprocessor statements are ‘small’.

It’s easy for this technique to produce code that is hard to understand and
maintain. Too many target platforms will result in lots of preprocessor state-
ments that aren’t conducive to tracing control flow. As for the size of isolated
blocks, an important maxim to bear in mind is the principle of smallest effect,
which says that if you have a block of code like this:

Object-oriented game development232

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 232

void MyClass::Method()

{

// Statement block 1

{

}

// Statement block 2 – the bad apple

{

}

//…

// Statement block N

{

}

}

then it’s better to isolate it like this:

void MyClass::Method()

{

// Statement block 1

{

}

if defined(TARGET_PLATFORM_1)

// Statement block 2 for target 1

{

}

else

// Statement block 2 for other targets

{

}

endif

//…

// Statement block N

{

}

}

Cross-platform development 233

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 233

than like this:

#if defined(TARGET_PLATFORM_1)

void MyClass::Method()

{

// Platform 1 code

}

#else

void MyClass::Method()

{

// Other platform code

}

#endif

Not only is the former easier to understand, but it also avoids the unnecessary
duplication of nearly identical code. In general, prefer isolating lines to isolating
a function, isolating a function to isolating several functions, and isolating sev-
eral functions to isolating classes.

If you find yourself isolating large blocks of code, then that suggests that the
one file you’re working with defines non-negligible amounts of platform-specific
code. If so, that code could be cut and pasted into a platform-specific file that
helps to isolate the behavioural variations in toolsets.

This can end up generating a whole bunch of problems. Multiplatform
build systems – especially ones that involve the use of manually edited make
files – need to be able to select the appropriate files for a particular build, and
they can do that either manually (someone – poor soul – is responsible for
maintaining the lists of files and tools and rules) or automatically (someone –
poor soul – writes tools that use batch-processing utilities such as sed or awk to
generate and update the make files and auxiliary systems).

Some IDEs make the process easier by allowing custom toolsets to compile
and link for a number of different target types. Usually, someone – poor soul –
will have to write the tools necessary to bind the compiler, linker and other pro-
grams to the IDE, so the route isn’t clear-cut this way either.

All of which amounts to the following: though you may get away with it
depending on what system you’re writing for, it’s best not to tempt fate as it has
a habit of having bigger weapons than you. Avoid writing the offending code in
the first place.

Now wouldn’t it be nice if there was a tool, a kind of über-compiler, that
didn’t actually generate any code but could be configured to understand the
idiosyncrasies of all your target platforms and would warn you of any problem
areas before they started giving you headaches? Well, such tools exist, with pro-
grams such as Gimpel Software’s PC-Lint (www.gimpel.com). Though requiring
a bit of effort to set up and maintain, these utilities can not only spot platform-
specific incompatibilities but also find language-related bugs that no other
compiler can spot, thus saving you a considerable amount of debugging time.

Object-oriented game development234

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 234

So, in short, language issues can generate a lot of minor, but annoying,
problems when developing for multiple platforms. If you know the toolset,
avoid writing potentially problematic code and isolate the minimal amount of
that source, then you will maximise maintainability and clarity. Coding stan-
dards can help to avoid the pitfalls, and there are tools out there that – with
some amount of effort – can help to catch the awkward variations in grammar
and behaviour before they bite.

6.1.3 Same capability, different methodology
It’s hard to be general in this case, as there are many different ways of doing a
particular task. But clearly the worst-case scenario is that we will have to write
code (and generate data) that works identically (or near as dammit) on radically
different hardware architectures. The word ‘identically’ should be suggesting
that getting n teams to write the skus isn’t going to be a viable option. Let’s
assume that team A writes its AI code using a combination of fuzzy logic and
the usual state-based heuristics. Team B writes it using a series of neural nets
with a different heuristic system. If AI is a big part of the game then how easy
will it be to ensure similar behaviour between skus? Not particularly.

So, we assume that a certain amount of code sharing will be going on. The
question is: ‘How much code can be shared?’ The flippant answer is: ‘As much
as possible but no more’. It’s better to be this vague, otherwise you will find
yourself trying to justify exactly what 25% of your code means – one-quarter of
your files? Classes? Packages? Lines of code? Lines of code that aren’t com-
ments? Trust me, don’t go there.

Consider the similarities and differences between two current platforms –
PC and Macintosh. At the time of writing, the average PC runs at about 2 GHz
and although Macs haven’t got quite such big numbers in front of their specifi-
cations, they’re at least of equivalent power. Both platforms’ 3D capabilities are
similar – they share similar hardware after all. Both platforms have lots of
memory – at least 128 MB comes as standard. They also have big hard disks.

What’s different? Byte ordering for one thing. Little Endian on PC, big on
Mac. This gives you a couple of choices when considering how to load data into
the game.

Same data, different code
Use the same data on your PC game and your Mac game. If you do that, there’s
no need to keep two versions of your data lying around and potentially unsyn-
chronised. However, one version of your software – which one depends on what
is your lead platform, the one you generate your data on – is going to have to
do some byte twiddling, and this has repercussions for your serialisation code.
Supposing you have a component like this:

Cross-platform development 235

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 235

struct MyClassData

{

int x;

short a;

char c;

};

class MyClass

{

public:

MyClass(MyClassData * pData);

private:

MyClassData m_Data;

};

class MyClassLoader

{

public:

MyClass * Load(FILE * pFile);

};

Then your loading implementation might look like this on a single-platform
project:

MyClass * MyClassLoader::Load(FILE * pFile)

{

MyClassData aData;

fread(&aData, sizeof(MyClassData), 1, pFile);

return(new MyClass(&aData));

}

while on a multiple-sku project you’re going to need to write something like this:

MyClass * MyClassLoader::Load(FILE * pFile)

{

MyClassData aData;

aData.x = readInt(pFile);

aData.a = readShort(pFile);

aData.c = readChar(pFile);

return(new MyClass(&aData));

}

Object-oriented game development236

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 236

The read functions will vary – on the native platform they’ll just read the size of
the entity, but on the non-native platform they’ll need to swap bytes for data
sizes over one byte. That means reading every data element individually. Is
there a problem there? Well maybe, maybe not. If your real-world structure is
big (and they usually get that way), then your loading could be slowed down
big time.

Same code, different data
Realising that the byte swapping during load is unnecessary, we can – as hinted
above – add an option to our toolset that generates either big- or little-Endian
data. Pushing data manipulation from run-time game code to offline tools code
is always a good thing (and is perhaps a good example of where optimising early
on can sometimes benefit the product).

A couple of caveats here:

● Don’t mix up the file formats. I’ve seen the wrong data type imported by
accident, much to the bafflement of developers. Keep the files penned in an
appropriate directory hierarchy, and make sure there’s a byte in the file
header that uniquely determines which platform that file is to be loaded on.

● If you need to support several platforms and the data generation is expensive
– I’ve seen systems that do a lot of static analysis and can take up to two or
three hours per level – then having a single save format might well be prefer-
able not only for programmers but also for designers and artists (who want to
see the results of their changes as quickly as possible after making them).

Intermediate file formats
If we are prepared to sacrifice some disk space and some simplicity, then we can
make our lives a whole lot easier by creating a series of intermediate file formats.
These are files that are exported directly by a piece of asset-generation software
in a format acceptable to the host machine. They can be processed further by
additional tools to generate data files targeted at any platform. In Figure 6.1, we
can see this in action.

The tool APP2IFF – a notional one, since it is probably written as a plug-in
to an existing asset-creation package or as a function of a bespoke application –
extracts the asset data from the host application and writes out the intermediate
file format. In Figure 6.1, the IFF is a text file, and this is no accident. The only
real cost of storing like this will be disk space, but we gain human readability.
This is very important. The tool APP2IFF may have bugs in it, and if we
exported directly to a binary format they would be hard to find. With a text file,
they can be spotted with considerably greater ease.

A further set of tools reads the IFF and converts them into the platform-
specific binary files. These are labelled as IFF2P1 and IFF2P2 in Figure 6.1. Again,
if we spot errors (crashes or data not corresponding to the source graphics), we
can inspect the IFF visually to see if there’s anything odd in there.

Cross-platform development 237

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 237

Another benefit of the IFF is that humans can write them as well as read
them. Programmers needn’t get their hands dirty with asset-generation pack-
ages. For example, if a cube or other simple graphic is needed in the game, then
the programmer can just knock up a quick text file in the intermediate model
format. Indeed, this concept can be extended because the IFFs clearly don’t care
what generates them – any application can be coerced to spit them out, and we
don’t have to change the rest of our toolsets to accommodate this.

What else does the IFF do for us? Well, the whole asset-generation process is
much easier to automate and runs quickly and smoothly. Most asset-generation
packages are big programs with a significant start-up time, and they are often
awkward or even impossible to automate from the host machine. Using IFF, the
platform-specific data generation is performed via command-line-driven tools
that are quick to load and execute. We’ll revisit this later when we discuss tools
and assets in more detail.

Another benefit of IFF is that data can be stored in an optimally accurate
format. For example, coordinates can be represented by double-precision num-
bers in both the IFF and the associated toolset, even if the representation on the
target platforms is single-precision floats or even fixed-point integers. There is no
need for the toolset to have a small footprint or to be fast to execute, because the
host machines will have buckets of RAM and the files will be processed offline.
In this way, the IFF can actually contain more information than was exported
from the asset-generation software. For example, MIP-maps using complex filter-
ing can be generated when textures are exported.

So, what might we create IFFs for? Here are some suggestions:

● models
● palettes

Object-oriented game development238

type = image
width = 64
height = 64
depth = 8
palette = { 0x00

Intermediate file format

APP2IFF

IFF2P
1

IFF2P
2

Platform 1 Data Platform 2 Data

Platform-dependent data files

Host PC running
asset-creation software

Figure 6.1
Flow of data from

asset-creation software
to the game.

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 238

● textures (in a generic bitmap format)
● materials
● animations
● collision hulls.

In short, just about any external resource that will be loaded in binary by the
game. (Of course, text files such as behaviour scripts don’t need to be IFF’d, as
they are already text.)

Finally, here’s a sample of an IFF file for a 3D model to illustrate the points
made in this section:

Hierarchy "WOMAN"

{

Frames

[

Frame "Scene_Root_0"

{

Transformation Matrix44 (0.01 0 …)

Children [1 41 44 47 50 51 52]

}

Frame "Root_1"

{

Transformation Matrix44 (-1.04 …)

Children [2 39]

}

...

]

RootNodes [0]

}

MaterialList "WOMAN"

[

Material "WOMAN_MESH_MESH0_MATERIAL0"

{

Texture "WOMAN_KITE 01"

DiffuseColour (1 1 1 1)

AmbientColour (1 1 1 1)

SpecularColour (1 1 1 1)

SpecularPower 0

EmmissiveColour (0 0 0 1)

}

Material "WOMAN_MESH_MESH1_MATERIAL0"

{

Texture "WOMAN_BUGGY WOMAN"

DiffuseColour (1 1 1 1)

Cross-platform development 239

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 239

AmbientColour (1 1 1 1)

SpecularColour (1 1 1 1)

SpecularPower 0

EmmissiveColour (0 0 0 1)

}

...

]

VisualList "WOMAN"

[

VLMesh "MESH0" "FRAME37"

{

Vertices

[

(

[(3.16834 -0.447012 -0.187323)]

[(-0.475341 0.0444252 -0.878679)]

[(1 1 1 1)]

[(0.701362 0.00476497)]

)

(

[(3.10494 0.0622288 -0.127278)]

[(-0.157954 0.134406 -0.978256)]

[(1 1 1 1)]

[(0.366187 0.0437355)]

)

...

]

Primitives

[

TriList ("WOMAN_MESH0_MATERIAL0" [0 1 2])

TriList ("WOMAN_MESH0_MATERIAL0" [0 3 1])

TriList ("WOMAN_MESH0_MATERIAL0" [4 1 5])

...

]

}

VLEnvelope "MESH1" "FRAME40"

{

BlendFrames

[

("Abdomen_2" (-0.775194 7…)

("Right_hip_28" (-0.775194…)

("Right_elbow_16" (-0.775194…)

...

Object-oriented game development240

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 240

]

Vertices

[

...

]

Primitives

[

TriStrip ("WOMAN_MESH1_MATERIAL0" [0 1…])

TriStrip ("WOMAN_MESH1_MATERIAL0" [3 3…])

TriStrip ("WOMAN_MESH1_MATERIAL0" [4 6…])

...

]

}

VLMesh "MESH2" "FRAME43"

{

Vertices

[

...

]

Primitives

[

TriList ("WOMAN_MESH3_MATERIAL0" [0 1 2])

TriList ("WOMAN_MESH3_MATERIAL0" [0 3 1])

TriList ("WOMAN_MESH3_MATERIAL0" [4 5 6])

]

}

...

]

What else might be different between platforms? Data types can vary in sign
and bit-size for one.

Those platform-specific integral types
Almost every cross-platform development system has a file that looks a bit like this:

// File: TARGET_Types.hpp

#if !defined(TARGET_TYPES_INCLUDED)

#define TARGET_TYPES_INCLUDED

#if TARGET == TARGET1

typedef char int8;

typedef unsigned char uint8;

typedef short int16;

typedef unsigned short uint16;

Cross-platform development 241

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 241

typedef int int32;

typedef unsigned int uint32;

typedef long long int64;

typedef unsigned long long uint64;

typedef float float32;

typedef double float64;

#elif TARGET == TARGET2

//etc

#endif

#endif

As a definition of atomic data types this is fine, but it prompts a short discussion
on exactly how useful these types are.3

There’s no question that at the lowest level, all hardware is controlled by
writing bits into registers. So at that level you really do need these data types
with guaranteed bit lengths. Nevertheless (and a product I have consulted on
was a fine example of this), one sees a lot of stuff like this function prototype:

uint32 MODULE_SomeFunction(uint32 XPos, int8 aChar);

Notice that for this function to be declared, we’ve had to pull in the types
header file. And for what? Clearly, the function body cannot write its arguments
directly to hardware (unless the stack has been memory-mapped to the regis-
ters). And why 32 bits for the first argument? And why force an unsigned data
type?4 In most circumstances

int MODULE_SomeFunction(int iXCoord, int iCharacter);

is just fine.

For the sake of discussion – but mainly because it will be relevant later on in
this chapter – we’ll assume that the code to perform some specific task cannot
be the same on the platforms we need to support. How do we write the minimal
amount of platform-dependent code to fulfil that task?

First – and fairly obviously – since C++ uses a header file for declaration and a
source file for definition, we have the following permutations of files that can vary.

Object-oriented game development242

3 The author understands that the ANSI committee is considering adding sized types to the next revi-
sion of the C++ standard.

4 A colleague and I recently had the ‘unsigned’ argument. I couldn’t persuade him that most uses of
unsigned were unnecessary. At least, not until he changed a loop like this – for(unsigned j = 0;
j < 100; ++j) – into for(unsigned j = 99; j >= 0; --j). When I found the bug (an infi-
nite loop), the teasing commenced. It hasn’t stopped yet.

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 242

Same header file, same source file
Let us make the bold assertion that writing platform-dependent code where
there is only a single header and source file is, in general, not such a good idea.
In the cases where there are only a few isolated differences, then it’s possible to
get away with this sort of stuff:

// File: COMPONENT_MyClass.cpp

#include "COMPONENT_MyClass.hpp"

using namespace COMPONENT;

MyClass::MyClass()

{

#if TARGET == TARGET_1

{

// Platform 1 initialisation.

}

#elif TARGET == TARGET_2

{

// Platform 2 initialisation.

}

#elif TARGET == TARGET_3

{

// Platform 3 initialisation.

}

#else

error "Invalid TARGET"

#endif

}

This class does nothing but still looks sort of complicated. Put some code in there
and it’s safe to say that it doesn’t get any prettier. In the long term, this sort of multi-
platform technique isn’t very sustainable. Consider, for example, the use of version
control with this file where different programmers write the various implementa-
tions for each platform. For those databases that don’t allow multiple checkouts,
development can be blocked while one programmer edits the file. If multiple check-
outs are allowed, then there will be a lot of merging going on, with a lot of scope for
conflicts and errors. These merge errors can take hours of painstaking reconstruction
to resolve, and you wouldn’t want to do that, would you?

Even worse, look at the shenanigans going on in the header file:

// File: COMPONENT_MyClass.hpp

#if !defined(COMPONENT_MYCLASS_INCLUDED)

#define COMPONENT_MYCLASS_INCLUDED

Cross-platform development 243

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 243

#if TARGET == TARGET1

if !defined(TARGET1_TYPES_INCLUDED)

include <TARGET1_Types.hpp>

endif

#elif TARGET == TARGET_2

if !defined(TARGET2_TYPES_INCLUDED)

include <TARGET2_Types.hpp>

endif

#elif TARGET == TARGET_3

if !defined(TARGET3_TYPES_INCLUDED)

include <TARGET3_Types.hpp>

endif

#else

error "Invalid TARGET"

#endif

namespace COMPONENT

{

class MyClass

{

public:

MyClass();

int GetData1() const;

if TARGET == TARGET1

int GetData2() const;

endif

if TARGET == TARGET_2 || TARGET == TARGET_3

char const * GetName();

endif

private:

// Common data.

int m_iData1;

// Platform-specific data.

if TARGET == TARGET_1

int m_iData2;

elif TARGET == TARGET_2

char * m_szName;

// Uh-oh: I might need delete[] ing on destruction.

// Wanna bet that you forget with all these defines?

elif TARGET == TARGET_3

int m_iData2;

Object-oriented game development244

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 244

char m_szName[32];

// Uh-oh. You might accidentally try to delete me if

// you get confused about which platform you’re on.

else

error "Invalid TARGET"

endif

};

} // end of namespace COMPONENT

#endif // included

It’s easy to see that this could become a real maintenance nightmare and a fer-
tile source of bugs. Though the class might be simple enough when first written,
we can only expect it to grow over the course of a product (or products). In
other words, beware of relying on the preprocessor to do your platform-specific
code selection.

Same header, different source file
So, let’s assume that (i) we’ve got rid of most or all of the preprocessor selection
of platform-specific code and (ii) we have a build system that can select a differ-
ent source file for building the component:

// Target1/COMPONENT_MyClass.cpp

// for TARGET_1

#include "COMPONENT_MyClass.hpp"

#include <TARGET1_Types.hpp>

using namespace COMPONENT;

MyClass::MyClass()

{

// Target 1 specific init

}

// Target2/COMPONENT_MyClass.cpp

// for TARGET_2

#include "COMPONENT_MyClass.hpp"

#include <TARGET2_Types.hpp>

using namespace COMPONENT;

MyClass::MyClass()

{

// Target 2 specific init

}

Cross-platform development 245

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 245

These files live – by necessity, since they are called the same – in a separate
directory in the project (one subdirectory for each platform). If we structure our
code like this, the header file is almost entirely ‘clean’ – in other words, generic.
When we create an object instance, we are oblivious to the actual type of the
object created:

#include "COMPONENT_MyClass.hpp"

COMPONENT::MyClass * pObject = new COMPONENT::MyClass;

This is fine, and a considerable improvement over the preprocessor method.
However, it is of limited use because it assumes identical data members in the
class on all versions of the code. It’s rare to see a multiplatform class that uses
identical data in its various implementations.

Different header, different source file
More often than not, you will be faced with writing a class whose implementa-
tion, data members and helpers are different on each target platform. Even
though this sounds like they are all different classes, one thing remains the
same (or, more accurately, should stay the same): the class should fulfil exactly
the same objective on all respective platforms. Now this should ring some bells.
What do we call a class that describes a behaviour without specifying how we
achieve it? An interface.

Technically speaking, an interface is a class with no data members and
entirely pure virtual member functions (see the discussion in Chapter 4 to
refresh your memory). So, now we have a source structure like that shown in
Figure 6.2.

This has now physically separated what are logically separate objects. We’re
well on our way to writing cross-platform object-oriented code. But before we
get carried away with this elegance and power, we should remember that we

Object-oriented game development246

MyClass

MyClassTarget1

MyClassTarget1.hpp MyClassTarget1.cpp

MyClassTarget2

MyClassTarget2.hpp MyClassTarget2.cpp

MyClass.hpp
Figure 6.2

Cross-platform
class hierarchy.

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 246

would like to write as little of this sort of code as is necessary. There are two rea-
sons for this: first, writing lots of small classes like this is going to be fiddly – lots
of files and directories kicking around; second, there is a small performance
penalty inherent because of the virtual functions in those platform-dependent
concrete subclasses. If the granularity of the class functionality is too small (as
discussed in previous chapters), then this structure will start to become as much
of a maintenance bottleneck as we were hoping to avoid and the game could
start to run slowly to boot.

So let’s keep the objects that we write using this paradigm larger than small, if
that’s not too meaningless an expression. What sort of objects are we talking about?

Renderers
Renderers are not easy to write minimal amounts of platform-specific code for
relative to the amount of generic code. In fact, graphics systems are about as
specialised as they come, because they tend to rely on idiosyncratic hardware to
perform optimally, and hardware varies hugely from platform to platform. This
tends to limit the amount of generic code that can exist in a rendering system,
and it is usually limited to support classes (such as maths types for the higher-
level systems).

For this reason, the sort of cross-platform structure we see in a rendering
system looks like that shown in Figure 6.3 (grossly simplified for brevity).

Notice in particular that the primitive types have not been subclassed from
a generic primitive type. This is because they are generally small objects and the

Cross-platform development 247

Mesh

Object

Generic

Renderer

Maths Types

Display

Render Target

Primitives

MeshPlatform1

Platform 1

Low-level maths types

RendererPlatform1 DisplayPlatform1

Transform

*Meshes

*Primitives

*Data

Figure 6.3
Bare-bones framework
minimalist renderer.

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 247

penalty of a virtual method call would be prohibitive for objects with a lot of
primitives (we can safely assume that is almost all of the graphical data we shall
be required to handle nowadays), and also because it may not even work,
because the low-level objects may need to map to hardware requirements (ah,
so that’s where these platform-specific data types are used). Ditto for the low-
level maths classes.

Sound system
There was a distinct absence of structure evident in the graphics system because
of wide variability in platform methodology. Audio systems are easier to generi-
cise than renderers. At the topmost level, the sorts of things you do with
sounds are:

● load and unload a sound or set of sounds;
● play a sound;
● set sound parameters (position, volume, frequency, filtering, etc.);
● stop playing a sound.

This doesn’t just suggest an interface to a sound system; it actually hints at a
generic management layer that performs all the logical operations on sounds
(see Figure 6.4).

Object-oriented game development248

Platform 1

AudioDataPlatform1

AudioData

Sound3D

Sound

SoundStreamed

Generic

SoundPlatform1

Sound

Data

SoundManager
SoundInstance

LowPassFilter

Operator

*Operators
Sound

*Instances

*Sound

Figure 6.4
Audio system overview.

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 248

As it stands, this looks really great: we need implement only two classes for
each new platform, the sound and audio data (which is really just a data holder
and has no deep functionality). However, there is a complication, which mani-
fests itself in the relationship between the sound and the audio data. If the
sound manager class is generic, then it can’t know specifically about any sub-
class of sound or audio data. What this means in practice is that manager classes
need to implement a factory interface for creating the subclasses, and that we
probably need to make some of the sound manager functionality polymorphic
(see Figure 6.5).

Notice that we could have made the CreateSound() method pure virtual
(and hence made SoundManager an abstract class). Instead, we’ve chosen to
allow the base class to return an object instance. The object has the required
interface but might do nothing other than print messages.

Cross-platform development 249

Platform1

SoundManagerPlatform1

SoundManager

Generic

class SoundManager
{
public:
 virtual Sound * CreateSound()
 {
 return new Sound;
 }
};

class SoundManagerPlatform1
: public SoundManager
{
public:
 /*virtual*/Sound * CreateSound()
 {
 return new SoundPlatform1;
 }
};

Figure 6.5
The sound manager as a
factory.

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 249

namespace SOUND

{

class Sound

{

public:

Sound();

virtual ~Sound();

virtual void Play()

{

printf("Playing sound 0x%.8X\n",this);

}

virtual void Stop()

{

printf("Stopping sound 0x%.8X\n",this);

}

};

}

This ‘null object’ class allows us to test the base class without getting bogged
down in details of the platform specifics and is a useful technique in many
contexts.

Renderers and audio systems represent near-extremes in the balance of plat-
form-specific to generic code in a system. Certainly, it is hard to imagine a
system (as opposed to a single piece of software) that is 100% platform-depen-
dent, and renderers are about as near to that as they come. On the other hand,
it is common for some systems to work perfectly well as completely generic
components (though they may well depend on systems that are – transparently
– not generic). For example, consider a package for performing basic Newtonian
physics. It might look a bit like Figure 6.6.

This illustrates the power of the paradigm: generic systems can be written
without a care in the world about the nature of the systems they depend on. The
linear algebra services a physics system might exploit (for example, hardware-
assisted matrix and vector operations) can be implemented efficiently on the
target platform. However, we would be disingenuous to suggest that this struc-
ture is optimally efficient. In most cases, some performance or memory sacrifice
will be overwriting bespoke, handcrafted, platform-specific software. In the vast
majority of cases, careful design of the systems will yield at least acceptable, and
more often better results, and in some cases, because we have control and flexi-
bility over the structure and the way data are processed, we can actually design

Object-oriented game development250

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 250

superoptimal components. Furthermore, by writing the generic services first, we
have a working system early on that can be used to get the first phases of a prod-
uct under way, maybe even complete should they prove to be good enough.

6.1.4 Platforms of different capability
In some respects, if the platforms differ in capability by a significant margin
then the fact that their methodologies may be different is neither here nor
there. A PC with 512 MB of RAM, a 2-GHz CPU, a 60-GB hard disk and an
nVidia GeForce4 video adapter is going to seriously outperform a Sony
PlayStation. If your brief is to produce a title for both platforms, then there are
going to be some tough decisions to make.

First and foremost, can the game be the same on both platforms? This isn’t
just a technical question: it’s as much – if not more – a matter of design. While
it is beyond the scope of this book to discuss the complexities of designing
game mechanics, we are extremely interested in what the consequences will be
for how we design our systems.

So, first off: one of the platforms will have features that the other doesn’t,
and by this merit will become the dominant target. We’ll call this the Major
Platform and the other the Minor Platform. If the difference in capabilities
between the Major Platform and the Minor Platform is – for some appropriate

Cross-platform development 251

RigidBody

ReferenceFrame

Calculus

Generic

Linear Algebra

Linear Algebra
Platform 1

Platform1

MathPlatform1

Maths Physics

Figure 6.6
Class hierarchies on
the major and
minor platforms.

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 251

metric – suitably big, then something must change. Generally speaking, we
can vary:

● the types of things: the Minor Platform may not be able to support the diver-
sity of objects and behaviours that the Major Platform does;

● the amount of things: the Minor Platform may not support the number of
object instances that the Major Platform can.

I also make the following distinction between the two platforms: the platform
on which development will take place first is called the Leading Platform. The
other I’ll call the Trailing Platform. This reflects the fact that although we wish
to develop in parallel, rarely is it the case that the skus evolve independently.
Sometimes this is for technical reasons: perhaps the team has more experience
on the Leading Platform; maybe there is an existing code base to work from.
Other times, there may be pragmatic justifications: maybe there just aren’t the
staff, maybe there aren’t any development systems available. One way or
another, more likely than not, there’ll be a Leading Platform and one (or more)
Trailing Platforms.

These distinctions are important: they will shape the architecture of the
game, and for that reason, if there are choices of who is Major and Minor and
who Leads and Trails, then they should be made carefully.

So why are these definitions so crucial? Well, two of the foundations of
good object-oriented design are thus:

● If the behaviour of a class needs to vary, then the class should be polymor-
phic; otherwise, the change in class properties should come about through
varying the instance data.

● Subclassing an object should always change or add behaviour, never remove it.

So, consider an abstract class that should be implemented on the targets and
that the Major Target is also the Leading Target. Then the two class hierarchies
could look like this:

Object-oriented game development252

MyClassMinor

MyClassMajor

MyClass

(b)

MyClassMajor

MyClassMinor

MyClass

(a)

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 252

In case (a), we are taking the class as written on the Minor Platform, which will
have restricted features – less complex behaviours and/or fewer instances – and
expanding on it on the Major Platform. Now, if we are following the principles
above (and we should be), then in this circumstance we can say that the only
justification for MyClassMajor existing is if it has different or additional behav-
iour. If it is simply in terms of the particular values that the class instances use,
then it should be a data issue and no subclassing is necessary.

The situation is quite different in case (b). Here, the Major Platform compo-
nent is being subclassed on the Minor Platform. Oops! That doesn’t sound quite
right. According to our design principles, we should never be thinking of remov-
ing behaviour when subclassing, which leaves us only the option of altering data.

In other words, if the Major Platform is also the Leading Platform, then the
only variability in component behaviour should come about through differing data.

Ouch! This can affect the entire balance of programming/design/art
resource allocation, because different data could mean one or more of:

● tweaked constants in source files;
● different art resources (fewer or more polygons, textures of different bit-

depth);
● changes to the scripting or behaviours of entities within the game.

Clearly, we are not looking at arbitrary choices here, and, ideally, we would like
to choose the Minor Platform to be the Leading Platform.

Alternatively, we might choose to arrange the classes differently:

If we are to implement this efficiently, then we want to have as much common
code in the base class as possible (after all, that is the whole point of the exer-
cise). This will be feasible and practical only if there is only a small difference
between the Major and Minor implementations, which in turn will be dictated
by the difference in capability of the two sets of hardware.

At some point, such will be the difference in platform capability that some
behaviours will not be feasible on the Minor Platform. At this point, it is clear
that code sharing via inheritance is probably not going to happen: the Minor
Platform may in fact require an entirely different design.

It would be madness to try to share an architecture for products that shared
nothing in common. This doesn’t lock the door on reusability altogether but –
at this point – it looks very much like the products share only superficial simi-
larity, and in terms of the data they manipulate and the way they manipulate
they are entirely different.

Cross-platform development 253

MyClassMajor

MyClass

MyClassMinor

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 253

The reader may ask why I am stating the obvious! If the games are radically
different, why try to share an architecture? Well, I’m just being even-handed.
There’s no point in using the wrong tool for the job, but it happens all too fre-
quently and can cost dearly. This is a common Antipattern called the ‘Golden
Hammer’ (see Brown et al., 1998). Basically, it can be paraphrased thus:

I have a hammer and everything else is a nail.

In other words, people who take a lot of time and trouble to acquire a skill (be it
juggling or cross-platform development techniques) become attached to that
skill and can favour it over and above the bigger picture (or the obvious referred
to above).

Less flippantly, it is occasionally the case that the games simply have to be
similar on both platforms, in which case the lowest common denominator
comes into effect for better (but often for worse): the Minor Platform becomes
the Leading Platform, so the title risks suffering painfully against the competi-
tion on the Major Platform. The choice to make this call is often outside the
influence of the development team, but if the software architecture won’t fit the
business model, then that’s useful information for someone to dwell on.

OK, enough patronisation (for now, anyway). We’ll assume from now on
that the architectures are not so radically different as to require independent
development.

6.1.5 Cross-platform component architecture
Let’s look in detail at the high-level architecture we can use to guide our multi-
machine development. Since we’ve already discussed some of the concepts at
length, we’ve essentially invoked our brainstorming process, so we start from
the most obvious of places: the platform.

The platform component
What – in software terms – is a platform? It represents an abstraction of a variety
of hardware-specific services that our games will use to do their bidding with.
Ergo, all platforms will share some services (if they don’t, then there’s little hope
for code sharing at this level). Some platforms will offer services that others
don’t (though it may be a legitimate choice to provide software emulation of
that service on the other platforms, making it effectively a shared resource).
Each platform will be unique, so the subclasses will typically be final – not sub-
classed themselves. So we expect to see a flat class hierarchy, like this:

Object-oriented game development254

Platform1

Platform

Platform2

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 254

The other thing about the platform class is that you need only one of them;
indeed, it could be an error to create more than one. It is therefore a logical sin-
gleton. (Recall the discussion of the singleton pattern in Chapter 4.)

The implementation of the platform base class is straightforward enough: it
is an interface class for a factory (see Chapter 4) that returns pointers or refer-
ences to platform-specific objects:

// File: PLATFORM_Platform.hpp

#ifndef PLATFORM_PLATFORM_INCLUDED

#define PLATFORM_PLATFORM_INCLUDED

namespace REND

{

class Renderer;

}

namespace SOUND

{

class SoundManager;

}

// More service types here.

namespace PLATFORM

{

class Platform

{

public:

Platform();

virtual ~Platform() { /*…*/ }

virtual REND::Renderer *CreateRenderer() = 0;

virtual SOUND::SoundManager *CreateSoundManager()=0;

// One for each service type.

private:

};

}

#endif

Some readers may worry about the binding implied above: the platform package is
now dependent on every service that the applications will require. Isn’t this totally
against the component methodology? Well, yes it is, so what might we do about it?

Cross-platform development 255

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 255

What we want to do is move the abstract concept of renderers and sound managers
into the PLATFORM namespace without bogging down said namespace with any
specifics about hardware or implementation. In other words, we’d like the sort of
structure illustrated in component terms here and in classes in Figure 6.7:

which decouples the packages. The Renderer and SoundManager types within
the PLATFORM package are Strawman classes (again, see Chapter 4) that define
no behaviour, only pass type information, e.g.

// File: PLATFORM_Renderer.hpp

#ifndef PLATFORM_RENDERER_INCLUDED

#define PLATFORM_RENDERER_INCLUDED

namespace PLATFORM

{

class Renderer

{

public:

Renderer();

virtual ~Renderer();

};

Object-oriented game development256

SoundManager

SOUND

Renderer

REND

SoundManagerPlatformRenderer

PLATFORM
Figure 6.7

Object diagram for
platform-independent

renderer and
sound manager.

PLATFORM

REND SOUND

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 256

} // end of PLATFORM namespace

#endif

The Renderer within the REND package defines the generic renderer behaviour.
Though in principle we could have placed that generic behaviour within the
PLATFORM component, that would probably result in contamination of the
PLATFORM name space with generic renderer specifics, which it really has no
business in knowing. This way keeps it sparkling clean.

Cast your mind back to Figure 6.3, the outline of a cross-platform renderer.
Notice that there is no provision for rendering to off-screen buffers (for exam-
ple, to draw shadows or a rear-view mirror in a vehicle-based game). This is
because we may not be able to assume that all targets have sufficient video RAM
(VRAM) to allow this. It’s often better – and easier – in the long run to not
define a piece of non-generic functionality in a generic system than to provide
it and disable it in a platform-specific system. It is always possible to create a
new component associated with the renderer that provides the functionality in
the middle-level functionality band.

Now, we have to make the abstract into the concrete. For each platform
type we need to support, we define a namespace that implements the Platform
class and defines the specific services (see Figure 6.8).

In the PLATFORM1 package, we define and implement our Platform class
something like this:

Cross-platform development 257

SoundManagerPlatform1Platform1RendererPlatform1

SoundManager

SOUND

Renderer

REND

SoundManagerPlatformRenderer

PLATFORM

PLATFORM1

Figure 6.8
Cross-platform
infrastructure.

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 257

// File: PLATFORM1_Platform1.hpp

#ifndef PLATFORM1_PLATFORM_INCLUDED

#define PLATFORM1_PLATFORM_INCLUDED

#ifndef PLATFORM_PLATFORM_INCLUDED

#include <PLATFORM\PLATFORM_Platform.h>

#endif

namespace PLATFORM1

{

class Platform1 : public PLATFORM::Platform

{

public:

Platform1();

~Platform1();

Renderer * CreateRenderer();

// etc.

};

}

#endif

//---

// File: PLATFORM1_Platform.cpp

#include "PLATFORM1_Platform.hpp"

#include "PLATFORM1_Renderer.hpp"

using namespace PLATFORM1;

Platform1::Platform1()

{

}

Platform1::~Platform1()

{

}

/*virtual*/

PLATFORM::Renderer * Platform1::CreateRenderer()

{

return(new PLATFORM1::Renderer);

}

Object-oriented game development258

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 258

Notice that the PLATFORM1 namespace looks a bit ‘flat’. We’ve lost the compo-
nent structure we’d introduced to keep independent functionality neatly
partitioned. To remedy this, we can subclass the service namespaces just as we
did for PLATFORM (see Figure 6.9).

The application component
So, by using the PLATFORM package we can define a factory for creating plat-
form-specific classes and components. The intention is to use these in an
application, so the next element in our model is to define an abstract applica-
tion class. Platform-specific subclasses of the application class will create an
appropriate Platform subclass and use that to create the required service compo-
nents for the game, thus:

Cross-platform development 259

SoundManagerPlatform1Platform1RendererPlatform1

SoundManager

SOUND

Renderer

REND

SoundManagerPlatformRenderer

PLATFORM

PLATFORM1RENDPLATFORM1 SOUNDPLATFORM1

Figure 6.9
Cross-platform
infrastructure with
partitioned name
spaces.

Platform1ApplicationPlatform1

PlatformApplication

PLATFORM

PLATFORM1

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 259

Which translates to C++ like this:

// File: PLATFORM_Application.hpp

#ifndef PLATFORM_APPLICATION_INCLUDED

#define PLATFORM_APPLICATION_INCLUDED

namespace PLATFORM

{

class Platform;

class Application

{

public:

Application(Platform * pPlatform)

: m_pPlatform(pPlatform)

{

}

virtual ~Application()

{

delete m_pPlatform;

}

// Main loop code for the application.

virtual void Run() = 0;

Platform * GetPlatform()

{

return(m_pPlatform);

}

private:

Platform * m_pPlatform;

};

} // end of namespace PLATFORM

#endif

//---

// File: PLATFORM1_ApplicationPlatform1.hpp

#ifndef PLATFORM1_APPLICATION_INCLUDED

#define PLATFORM1_APPLICATION_INCLUDED

Object-oriented game development260

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 260

#ifndef PLATFORM_APPLICATION_INCLUDED

#include <PLATFORM\PLATFORM_Application.hpp>

#endif

namespace PLATFORM1

{

class ApplicationPlatform1 : public PLATFORM::Application

{

public:

ApplicationPlatform1();

~ApplicationPlatform1();

// Still abstract because of Run().

private:

};

} // end of namespace PLATFORM1

#endif

//---

// File: PLATFORM1_ApplicationPlatform1.cpp

#include "PLATFORM1_ApplicationPlatform1.hpp"

#include "PLATFORM1_Platform1.hpp"

using namespace PLATFORM1;

ApplicationPlatform1::ApplicationPlatform1()

: PLATFORM::Application(new Platform1)

{
}

can now be used as a base from which to derive a game class:

// File: GamePlatform1.hpp

#ifndef GAME_PLATFORM1_INCLUDED

#define GAME_PLATFORM1_INCLUDED

#ifndef PLATFORM1_APPLICATIONPLATFORM1_INCLUDED

#include <PLATFORM1\PLATFORM1_ApplicationPlatform1.hpp>

#endif

Cross-platform development 261

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 261

namespace RENDPLATFORM1

{

class Renderer;

}

class GamePlatform1

: public PLATFORM1::ApplicationPlatform1

{

public:

GamePlatform1();

~GamePlatform1();

// Accessors for the services required by the game.

RENDPLATFORM1::Renderer * GetRenderer();

private:

RENDPLATFORM1::Renderer * m_pRenderer;

};

#endif

//---

// File: GamePlatform1.cpp

#include "GamePlatform1.hpp"

#include <RENDPLATFORM1\RENDPLATFORM1_Renderer.hpp>

GamePlatform1::GamePlatform1()

: PLATFORM1::ApplicationPlatform1()

, m_pRenderer(0)

{

// Note: DON’T try to set up the services here –

// virtual functions don’t work in a constructor.

}

GamePlatform1::~GamePlatform1()

{

delete m_pRenderer;

}

REND::Renderer * GamePlatform1::GetRenderer()

{

if (m_pRenderer == 0)

{

Object-oriented game development262

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 262

// These casts are safe because we know what

// platform we’ve created the object for.

PLATFORM1::Platform1 * pPlatform =

(PLATFORM1::Platform1 *)GetPlatform();

m_pRenderer = (RENDPLATFORM1::Renderer*)

pPlatform->CreateRenderer();

}

return(m_pRenderer);

}

/*virtual*/

void GamePlatform1::Run()

{

/* Initialisation… */

bool bGameOver = false;

/* Main loop for the game… */

while(!bGameOver)

{

/* … */

}

/* Termination… */

}

Hmmm, now that we can see it in the flesh, that Run method seems to be a bit
of a code-sharing obstacle. Suppose that we had identical main loops on our n
target platforms – which we can achieve using (say) the State Manager system
described in Chapter 4 – then we’d write the same loop code n times. Let’s avoid
that by writing a game loop class with which we can initialise our application:

// File: PLATFORM_GameLoop.hpp

#ifndef PLATFORM_GAMELOOP_INCLUDED

#define PLATFORM_GAMELOOP_INCLUDED

namespace PLATFORM

{

class GameLoop

{

public:

GameLoop();

virtual ~GameLoop();

Cross-platform development 263

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 263

virtual void Initialise() = 0;

virtual void Run() = 0;

virtual void Terminate() = 0;

private:

};

} // end of namespace PLATFORM

#endif

The amended application looks like this:

namespace PLATFORM

{

class GameLoop;

class Application

{

public:

Application(Platform *pPlatform,

GameLoop *pGameLoop);

// etc.

private:

GameLoop * m_pGameLoop;

};

}

//…

Application::

Application(Platform * pPlatform, GameLoop * pGameLoop)

: m_pPlatform(pPlatform)

, m_pGameLoop(pGameLoop)

{

}

void Application::Run()

{

m_pGameLoop->Initialise();

m_pGameLoop->Run();

m_pGameLoop->Terminate();

}

Object-oriented game development264

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 264

The only thing left to do now is to choose what sort of application we want to
create. Though we could do this using a preprocessor macro, let’s try to avoid
using one of those altogether, as the use of it as either a command-line option
or a global include file will invite physical dependencies where none is needed.
Instead, let’s use a separate file defining main() for each build platform:

// File: mainPlatform1.cpp

#include <GamePlatform1.hpp>

#include <MyGameLoop.hpp>

void main()

{

MyGameLoop aLoop;

GamePlatform1 * pGame;

pGame = new GamePlatform1(&aLoop);

pGame->Run();

}

//---

// File: mainPlatform2.cpp

#include <GamePlatform2.hpp>

#include <MyGameLoop.hpp>

int main(int argc, char * argv[])

{
MyGameLoop aLoop;

GamePlatform2 * pGame =

new GamePlatform2(argc, argv, &aLoop);

pGame->Run();

return(pGame->GetExitCode());

}

6.2 Summary

● Cross-platform development is not easy. There are many ways to screw up, and if
you do it can be costly. Object orientation provides natural ways to organise the
development of code on multiple target platforms in parallel. By separating and

Cross-platform development 265

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 265

subclassing the variant behaviours, we can – with care – create a generic set of
components to be used in all the skus without compromising performance or
structure, in some cases irrespective of the differences between the various
hardware architectures. In the cases where we cannot do this, object-oriented
analysis still gives us metrics that we can use to organise our code and data in
ways that are beneficial to the development process.

● The differences in toolsets between platforms can make life pretty awkward for
the developer. Use tools such as PC-Lint to analyse code more thoroughly than
compilers to find the trouble spots.

● Use intermediate file formats to simplify, segregate and clarify the import and
export of data.

● As well as the capability and methodology of hardware, the distinction between
major and minor platforms can have an impact on the game architectures.
Identify these and plan the architecture accordingly.

● Components work well in multiplatform systems. By introducing platform compo-
nents, we can abstract away the differences in underlying hardware and still use
generic components in the majority of the game.

Object-oriented game development266

8985 OOGD_C06.QXD 1/12/03 2:42 pm Page 266

In this chapter, we’ll examine the design and implementation of the central
participants in a game’s architecture, the game object or GOB. Getting the
correct logical and physical structure here is particularly critical, since the

game’s functioning will depend intimately on the operation and cooperation of
these class instances, and we will find that the project’s compile and link times
also depend critically on how your object classes are written.

We’ll look at three strategies for implementing game objects and analyse
the pros and cons of writing them that way. We’ll then go on to discuss man-
agement of the objects, in particular memory-allocation strategies and some
other common implementation issues that you’ll meet along the way.

7.1 Open your GOB

The term ‘game object’ is both accurate and misleading. After all, every class in
your game will have an instance that is an object. And while we’re at it, doesn’t
every application – never mind game – contain objects? Flippancy aside, there’s
an important issue here: every non-trivial application has an object hierarchy.
What sort of hierarchies might we see?

7.1.1 Collapsed hierarchy
The collapsed hierarchy is shown below. There is no inheritance in this whatso-
ever. It’s a throwback to those bad old C programming days, and you’re pretty
unlikely to see it in a medium to large modern C++ project.

Game objects 7

267

Class 2

Class 4

Class 3 Class 5

Class 1 *4s

3

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 267

Notice that there are only ‘has a’ relationships between classes. This makes reuse
at least awkward and more likely than not near impossible. Nevertheless, there
are benefits to be gained from this structural organisation. First, remember that
inheritance is a strong binding between classes: physically, you have to include
the header file of the base class in the derived class’s header file. With no inheri-
tance, there are fewer compile-time dependencies: things are going to compile
and link just about as quickly as they can.

Second, one of the classes in the hierarchy will be the ‘ApplicationObject’,
the class around which almost all behaviour pivots. Since these are all identical
in size and basic functionality, the creation and deletion of these objects can be
made arbitrarily efficient by pool allocation. At run time, allocate a block of
these, slap them into a free list and allocate as required. When the pool dries up,
allocate another bunch, add those to the free list, and so on. This kind of alloca-
tion strategy is extremely fast compared with the usual new/malloc
combination and also helps to reduce fragmentation within the memory man-
ager (which can lead to increasingly long allocation times when the application
has been running for some time).

So that’s the good news. Now, why might we choose not to adopt a col-
lapsed hierarchy? Well, for one thing, we may have made allocation efficient
and reduced fragmentation, but this is at the cost of storage overhead. Each of
our objects needs to support the functionality of any entity in the system. That
means its data fields and member functions are comprised of the union of all
the subclasses it needs to support functionality for.

That means a lot of wasted space: many of the subclass objects will require
only a small subset of the data and functionality in the object. If there are lots
of objects in the system, then that’s potentially a lot of RAM that you know you
will be grovelling for as you near master. Do you really want to do that? Even
more importantly, you have created a software engineering bottleneck here: the
object grows in complexity, functionality depends on state, and state is some-
times far from obvious. One piece of legacy code I inherited on a project
(admittedly written – badly – in C) a while back had this sort of thing going on:

struct OBJECT

{

//…

int var1;

int var2;

//…

};

Because the object has to be different things at different points in time, having
named fields means that your object grows in size exponentially fast. So, the
author put these var1 … varn fields in and used them differently depending on
context. With hilarious consequences.

Object-oriented game development268

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 268

In a team environment where there is only one object class, there will be a
big demand from your colleagues to edit and modify that class. Over the course
of time, they’ll add more and more var fields, or find novel and bug-ridden ways
to use the existing ones. Welcome to development hell.

Having a monolithic, do-everything class is exactly what object orientation
tries to avoid. Yes, a well-written C++ project will have quite a few more files
kicking around than a C project of equivalent scope might have had, but the
ease of maintenance gained by the divide-and-conquer methodology is not to
be sniffed at.

So, in summary, the collapsed hierarchy has little to recommend it to the
twenty-first-century developer.

7.1.2 Shallow hierarchy
The temptation for inexperienced developers (or, for that matter, some so-called
experienced ones) is to use this wonderful thing called inheritance to scatter
some basic properties (such as the ability to have a name, or to be serialised).

The defining pattern for the shallow hierarchy is, for most, if not all, of the
objects in your system to inherit from one single base class, as here:

If your object hierarchy looks a bit like this, then you’re in good company:
Microsoft’s MFC is one system that looks quite similar. But don’t let that put
you off.

The act of factoring common functionality into a base class is commend-
able and certainly correct in principle. Which is really damning with faint
praise, because although the shallow hierarchy has certain traits that look like
object orientation, it exhibits the hallmarks of a flawed design or a serious lack
of design.

Why, for example, do a file and a container share a common base class? The
fact that they can be serialised does not, in itself, justify the cost of inheriting
from the purportedly common class. And what does it mean to serialise a
window? In other words, are there classes in the system that have functionality
that it doesn’t even make sense for them to have?

Let’s assume the base object confers useful functionality or passes type
information meaningful to some higher-level system. There is no pressing need
to slap all those bits of functionality into the space of one class if they can hap-
pily sit in separate classes and be inherited where needed.

The shallow hierarchy is definitely an improvement on the collapsed hierar-
chy; at least we have a bunch of smaller classes that are more easily maintained

Game objects 269

Window

Object

ContainerModel File

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 269

and reasonably defined. Its flaw is that base class, which has become the place
to dump functionality that looks even slightly useful to its client classes.

Those of you who have worked on projects with this sort of structure will
also be familiar with the terrifying announcement towards the end of develop-
ment that someone has changed (‘fixed’) a problem with the base class, and
you just know that invoking a build is going to take the best part of the morn-
ing away.

7.1.3 Vertical hierarchy
This structure is usually the result of realising that the collapsed hierarchy is
unusable and that the shallow hierarchy gives little gain and a moderate deal of
pain. The general idea is to start from an abstract description of the object and
incrementally add properties in a series of subclasses. Figure 7.1 shows an
abstract vertical hierarchy. We start with a near-dataless base class and add prop-
erties 1, 2, 3 and 4 in a series of subclasses.

As a concrete example, I’ll use a design I was playing with for a space game
a while ago. First, here’s the base class, which as you can see is not atomic in
itself; it depends on a reference-counting property class:

// Object.hpp

#include "IsReferenceCounted.hpp"

class Object : public IsReferenceCounted

{

public:

Object();

virtual ~Object();

Object-oriented game development270

Object1234

Object123

Object12

Object1

Object

4

3

2

11

2

3

4

Figure 7.1
Abstract vertical

hierarchy.

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 270

virtual void Draw(Renderer * pRenderer) = 0;

virtual void Update(float fDeltaT) = 0;

private:

};

Reference counting is an integral part of almost all non-trivial game systems. It
is tempting to make this a common base class for all application classes, but
that really ought to be resisted without further thought. Here’s a first take on a
reference counting class:

class IsReferenceCounted

{

public:

IsReferenceCounted()

: m_iCount(0)

{

}

virtual ~IsReferenceCounted()

{

}

void AddRef()

{

++m_iCount;

}

void Release()

{

--m_iCount;

if (m_iCount == 0)

{

delete this;

}

}

private:

int m_iCount;

};

This is fine, so long as:

● the object was allocated via new;
● you want to delete only unreferenced objects.

Game objects 271

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 271

In other words, it’s not so fine. Suppose we allocated the object from a pool?
Suppose we want a garbage collector to dispose of unreferenced objects to avoid
other objects referencing a deleted object? We can fix the problem quite easily
by abstracting the behaviour when the object becomes unreferenced:

class IsReferenceCounted

{

public:

// As before.

virtual void OnUnreferenced()

{

delete this;

}

void Release()

{

--m_iCount;

if (m_iCount == 0)

{

OnUnreferenced();

}

}

private:

// As before.

};

There are no data in the object base class, only a few pure virtual functions. The
first instantiable class was called a proxy object: it served as an invisible super-
visor object that watched what other (concrete) objects were doing or
coordinated system activity:

class ObjectProxy : public Object

{

public:

void Update(float fDeltaT);

void Draw(Renderer *) {}

};

The next level was called a null object. This was a proxy object that had a
location in space and an orientation. For example, it could be used as a prox-
imity test, running some game function when another object came within its
target radius:

Object-oriented game development272

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 272

class ObjectNull : public ObjectProxy

{

public:

ObjectNull();

void SetPosition(const Vector3 &);

void SetRotation(const Matrix33 &);

private:

Vector3 m_vPosition;

Matrix33 m_mRotation;

};

At the next level, there was the actor object. This added the properties of render-
ability and collidability:

class ObjectActor : public ObjectNull

{

public:

ObjectActor();

void SetModel(Model *);

void SetCollisionModel(CollisionModel *);

void Draw(Renderer * pRenderer)

{

pRenderer->DrawModel(m_pModel);

}

virtual void OnCollision(ObjectActor * pThat)

{

}

private:

Model * m_pModel;

CollisionModel * m_pCollisionModel;

};

From then on, we had the concrete object subclasses such as asteroids and the
various types of player and NPC vehicles, as shown in Figure 7.2.

I was quite fond of this hierarchy, and it certainly has some merit. Of the
schemes we’ve looked at so far, it certainly packages functionality into small dis-
crete classes that are well defined and easier to maintain than either a huge
monolithic system or a shallow one. However, it is by no means perfect. We

Game objects 273

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 273

have failed to counteract the ‘touch the base class and you rebuild everything’
characteristic. Indeed, you could argue that it has got worse, since you can now
touch one of several classes and most of the game rebuilds. However, the idea
was to provide an incremental family of classes, with the change between any
two neighbouring classes in the tree being small and simple enough to avoid
having to continually maintain the lower parts of the graph.

Clearly, the vertical hierarchy goes some way towards providing a logical
and maintainable game object inheritance pattern. Ideally, we would like to
compromise between the shallow and mostly pointless tree and the vertical and
highly dependent tree.

7.1.4 Mix-in inheritance
In an earlier chapter, we discussed the touchy topic of multiple inheritance
(MI). The conclusion was that though there are undoubtedly complex issues
that arise through the arbitrary application of MI, it is a useful and powerful
programming paradigm if used carefully.

Now we wish to use MI to help us to design our object hierarchies. We’ll be
using a technique called mix-in. This makes objects easier to engineer, and
allows us to place functionality only where needed. The idea is to decompose
the functionality of an object into several behaviours that can be mixed
together to yield the intended result (hence the name). This technique is illus-
trated in Figure 7.3.

Object-oriented game development274

Spaceship

Vehicle

ObjectActor

ObjectNull

ObjectProxy

Object

GroundVehicle

Asteroid

Figure 7.2
A near-vertical

object hierarchy.

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 274

In this scheme, all the derived object types inherit from Component A.
Other object types include only the functionality that they require. This means
that objects are less likely to include functionality that they do not need – a
characteristic of vertical inheritance. And simply through the power of combin-
atorics, a huge number of class variations are possible through even a small set
of base components.

All this power comes with some responsibility. Not only do individual com-
ponents have to be designed carefully, but they must also be designed with some
regard to the capabilities of all the other base components. The ideal situation is
where the bases are orthogonal to each other – no classes should contain the
same data or methods. The situations we want to avoid at all costs look like this:

Class B will logically and physically contain two copies of Component A – one
directly, the other through the contained data of Class A. C++ will get confused
(as will you) as to which one you really want to access. Now, there is a solution:
make the base class virtual:

class B : public class A, public virtual ComponentA

{

};

Game objects 275

Component A

Component B

Object Type 1

Component C

Object Type 2

Component D

Object Type 3

Component E

Component F

Object Type 4

Figure 7.3
Using multiple
inheritance to define
game object properties.

ComponentBComponentA

Class B

B

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 275

but although this works, it is the thin end of a wedge that will end up with your
code underperforming and hard to understand and maintain. Avoid, avoid,
avoid!

However, one need not resort to multiple inheritance to get the same sort of
effect. We could use replace ‘is a’s with ‘has a’s, as shown here:

In C++ code, it looks like this:

class A : public ComponentA

{

public:

private:

ComponentB m_B;

};

Since ownership is a less strong relationship than inheritance, this can be con-
sidered to be a more flexible design, but there are hidden pitfalls that can
seriously dilute that flexibility. Consider a function – class member or free func-
tion – that takes a ComponentB as an argument:

void Foo(const ComponentB & aB);

Given an instance of a ClassA, using the multiple inheritance mix-in method
(the MIMIM?), then we are quite happy about the following:

ClassA anA;

Foo(anA);

However, if we replace the ‘is a’ with a ‘has a’, then we cannot call Foo without
having an accessor:

const ComponentB & ClassA::GetB() const;

This is a mild weakening of encapsulation, and certainly

Object-oriented game development276

ClassA

B2

B

a b

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 276

ClassA anA;

Foo(anA.GetB());

isn’t as elegant or expressive (though, arguably, it is clearer). But that isn’t the
end of the story. The problem arises when ComponentB has virtual functions
that subclasses must implement. Clearly, the implementation is straightforward
in the multiple-inheritance model:

class ComponentA

{

public:

virtual void Bar() = 0;

};

class ClassA : public ComponentA, public ComponentB

{

public:

void Bar() { /*…*/ }

};

Notice that Bar() has access to all of the ClassA interface and data: it can imple-
ment a synergistic behaviour, which is just the sort of thing we would like to do.
Hold that thought.

Now, consider replacing the ‘is a’ with a ‘has a’. To get the same functional-
ity, we need to write a ClassB2 that overrides Bar(), say:

class B2 : public B

{

public:

void Bar() { /*…*/ }

};

and then put that into the owner class:

class ClassA : public ComponentA

{

public:

const B & GetB() const;

private:

B2 m_b;

};

Phew! That’s a bit harder to get going, but was it worth it? Perhaps not, as
B2::Bar() cannot see anything in ClassA, so that ‘top-level’ or ‘whole greater
than sum of parts’ behaviour is lacking. No problem, you say; define:

Game objects 277

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 277

class B2 : public B

{

public:

B2(ClassA * pA) : m_pA(pA) {}

void Bar()

{

m_pA->DoSomething();

}

private:

ClassA * m_pA;

};

In pictures, it looks like this:

This relationship is not a great one: first of all, it is cyclic – ClassA depends on
B2, and B2 depends on ClassA (since it can call methods of ClassA). In other
words, in order to get rid of a coupling, we have introduced an even stronger
one. Class B2 is not reusable in any other context because of its binding
to ClassA.

Further, what happens if we want to inherit from ClassA and modify the
behaviour acquired from B? We’re in a bit of trouble. What we really need is:

class ClassA : public ComponentA

{

public:

ClassA(B * pB);

private:

B * m_pB;

};

OK, let’s call it a day here. While it’s safe to say that you can eventually accom-
plish everything done using MI with single inheritance and ownership, the
keyword is ‘eventually’, and the couplings and design compromises that result
along the way certainly don’t help.

In short, multiple inheritance can help us to achieve clean implementations
that reflect a logical design. Ownership and inheritance are not quite the same
animals, and we should think carefully before opting for either one.

Object-oriented game development278

B2

B

ClassA

B

A

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 278

So, back to our game objects, and since we’ve been talking theoretically for
a bit, let’s illustrate our discussion with a real object hierarchy from a game. The
design brief required that all objects in the game have the following attributes:

● They should be dynamic entities: reference counting is required.
● They should be spatially sortable.
● They should be controllable by a script.
● They should be able to collide with each other.

These are broadly orthogonal; the only question mark we may have is whether
spatial sortability is tantamount to a subset of collidability, so we need to be
careful to maintain independence of symbol names, stored data and interface.

Assuming we’re happy with those definitions, we can define classes within
four packages to implement these properties:

Common package

class comm_IsReferenceCounted;

This implements reference counting as described earlier.

Partition package

class part_Object;

This class is an entry in the spatial partitioning system. Internally to the package,
these are objects that can be stored in a dynamic octree, as shown here:

Scripting package

class script_IsScriptable;

Confers scriptability to an object. Acts as a target for messages from the script-
ing system.

Collision package

class coll_Collider;

Confers collidability on an object. Internally to the package, a collision manager
maintains a collection of colliders, which themselves have a tree of oriented

Game objects 279

part_BoundingBox

part_Octree

part_Object

*Objects

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 279

bounding boxes terminating in primitive lists. Colliders have a polymorphic
interface to handle collision events:

class coll_Collider

{

public:

virtual void OnCollision(coll_Collider & that) = 0;

};

as shown here:

Putting these classes together gives us our base game object, shown here:

The GameObject is still an abstract class. Concrete objects – real in-game types –
are still to be derived from it. However, by not putting all the required behav-
iour into a single object, we can reuse the property classes in other places where
appropriate. For example, the game’s NPC types also need scripting control and
reference counting. However, NPCs cannot collide and be sorted spatially
(though their in-game representations, called Avatars, can), so making an NPC a
GameObject would not be correct. Refer to the figure below:

Object-oriented game development280

coll__BoxTree

coll_Manager

coll_Collider

*Colliders

GameObject

comm_IsReferenceCounted script_IsScriptable coll_Collider part_Object

NPC

comm_IsReferenceCounted script_IsScriptable GameObject

AvatarAvatar

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 280

An analysis of dependencies for the mix-in system for creating game objects is
both good and bad news. In certain respects, the inheritance tree resembles that
for the shallow hierarchy, which is good. However, because the classes that you
inherit from cannot be forward-declared – they must be included – there is still
potential to deliver parent dependencies to all classes that include the game
object’s header file.

It is also still possible to build vertical inheritance graphs from a mix-in
game object. Indeed, because a game often has a number of similar graphical
objects with a variety of behaviours, the tendency for this to happen is strong,
even with the best will in the world. To counteract it, it is worth remembering
that just because superficially two classes seem to be so similar that it is natural
to inherit one from the other, that doesn’t necessarily justify doing so, from
either a philosophical or a software engineering standpoint.

For example, consider a game where you require a bullet class to represent
gunfire. Is a Bullet a GameObject? It certainly has a position, and the
GameObject has a position. It certainly is collidable, otherwise it wouldn’t be
much of a bullet. It can be drawn, and we can certainly draw GameObjects.
There seems to be a good case for a bullet being a GameObject. Yet – looking at
the GameObject outlined above – scriptability is not really required for bullets:
they just travel in straight lines until they hit something. Also, they are small
enough not to need extent; they can be approximated with a line segment for
collisional purposes. In other words, a bullet would be carrying around a fair
amount of pointless baggage. If we have a lot of them – add a few machine guns
to the design doc – then that could amount to a significant waste of precious
storage on a console with limited RAM. So the correct decision may be not to
inherit Bullet from GameObject (which is exactly the choice we eventually
made during the development of this game).

7.2 Game object management

However you choose to structure your object hierarchies, you will still need a
way of allocating them. Of course, the assumption is that we need to do a bit
more than just:

GameObject * pObject = new GameObject;

First of all, we’ll probably need quite a few of these game objects. The common-
or-garden new probably calls malloc, which is not the quickest standard library
function off the blocks. You don’t want to be calling new too many times in
every game loop (or delete for that matter).

Game objects 281

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 281

7.2.1 Creation and destruction
Previously, we discussed the ObjectFactory pattern. Sounds like just the thing
we need? Could be, but we should make some adjustments first of all. First,
recall that rather than using an enumerated type that binds the physical types
generated by the factory, we chose to use a class registration method that maps
a string type1 to a private free function that allocates an object of the required
class. Previously, we had just written this function as:

// Thing.cpp

namespace

{

Thing * createThing()

{

return new Thing;

}

}

Because this is private to the object component, we are free to allocate the
object as we choose, though we need to be a little careful here, because we need
to be sure that no one is going to assume that we have called new when we’ve
actually allocated the object statically.

We can avoid this problem by overriding operators new and delete. Now,
remember that there are two ways you can do this: globally and on a per-class
basis. In this circumstance, we mean the latter. In fact, we shall almost always
mean the latter, and it is worthwhile digressing to investigate why.

Overloading global operator new and delete means plumbing in a com-
pletely new memory manager that all classes and functions will use. The reality
of doing this is not just writing a couple of functions and pointing them at
some memory. It really can be a bit of an ordeal. You have to be sure that your
memory manager is initialised before the C++ run-time system makes any allo-
cations or starts constructing objects at global scope but after the application
heap is created (and you have to point your manager at the heap). And when
your game exits, you need to make sure that you release that memory as the
very last thing that happens before returning to the calling context. Now, this
all usually means modifying start-up and shutdown code, and in short it is not a
trivial process.

OK, so it’s tricky, but is it worth doing? I’ve worked on projects that use
incredibly sophisticated memory managers. Developers are concerned about the
speed of allocation and freeing, the potential waste of memory blocks and
the fragmentation of RAM, resulting in degraded performance over time. All of
the memory managers have improved one of these parameters at the cost

Object-oriented game development282

1 We don’t need to use a string as the ‘key’ type: we could use any type of unique identifier, for exam-
ple the integer run-time type identifier also discussed in Chapter 4.

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 282

of another. There isn’t such a thing as a fast, non-space-wasting, non-fragment-
ing global memory manager.

Indeed, the whole fragmentation issue is quite a bit more opaque than
many assume. Fragmentation can occur when many small allocations are inter-
spersed with medium and large allocations followed by freeing of blocks in a
non-optimal order (the optimal sequence being the exact reverse of the alloca-
tion order). The consequence is that the global allocator contains a large
number of small blocks that, when a medium or large allocation occurs, have to
be skipped or merged, leading to increasing delays when free store is requested.

So, the longer an application runs, the more fragmented memory gets, yes?
Well, not necessarily. The important parameter is the pattern of allocations and
frees. And with many types of games with a completely deterministic set of
resource requirements, it is entirely possible to avoid news and deletes alto-
gether; by allocating all the required memory at game initialisation, no requests
for dynamic memory need be serviced, so fragmentation is not an issue.

Well that’s the good news. The bad news is that you’re pretty lucky if you’re
working on this sort of game, and with architectural complexity on the increase
it’s getting less and less likely that you will be. So, we’re really going to have to
assume that, in general, you are going to have to call new and delete an arbi-
trary number of times at indiscriminate points in the application’s life.

So, we’re going to be bitten by fragmentation, right? Again, not necessarily, but
it may depend on who you ask, or rather on how they estimate how fragmented
memory actually is. These estimates are based on modelling ‘typical’ application
behaviour and use a variety of statistical methods involving random numbers to
ensure that they emulate ‘real’ programs in their memory usage pattern.

Remarkably, for any given allocation strategy, the various metrics can indi-
cate vastly different levels of fragmentation. This has led to an unnecessarily
widespread level of alarm regarding the potential amount of fragmentation to
be expected using the memory managers shipped as default with the commonly
used development environments such as GNU C Compiler (GCC).

In fact, a study by Johnstone and Wilson (1998) showed that using a differ-
ent and more realistic way of measuring the fragmentation of free store revealed
that ‘standard’ implementations of malloc and free could perform exceptionally
well, showing less than 1% fragmentation on large, memory-hungry applica-
tions. Nevertheless, there were other applications that, with the same allocation
and freeing strategies, fragmented up to 50%!

From this, we must conclude that it is very difficult to write a good, all-
purpose global storage allocator. We may actually get away with not writing one at
all, and it will depend critically on the pattern of resource requests, our application’s
unique heap memory fingerprint as to how fragmented memory may become. In
other words, writing a global memory manager really ought to be one of the last
things you do for a game, because only then do you know how it will actually be
allocating and releasing store. That said, there are a few things you can do to help it
along its way that will reduce the possibility of fragmenting memory.

Game objects 283

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 283

Pool allocation
Using pool allocators is one way of reducing fragmentation and speeding up allo-
cation. This scheme allocates a fixed number of identical small to medium-sized
objects and then hands them out, one by one, as required. If more allocations
come in than there are objects in the pool, then the allocator returns NULL. This
is an example of a local allocation strategy because the pool deals with only one
sort of object.2

Now, this strategy would really not do very well for – say – a word processor.
If I said, ‘No more than 1000 pages in the page pool’, then War and Peace would
never have been written (assuming Tolstoy used a word processor). But for a
game – or, at least, certain types of game – this limit is not only feasible, it may
actually be desirable.

Why? Because most games are, by nature, limited systems. They don’t
expect (say) scenery blocks to appear from nowhere. If the designers and artists
placed 223 in the level, then 223 is what you’d get.

Furthermore, all console games have absolutely fixed memory limits. There
is no virtual memory to dip into when system RAM becomes short.
Development systems have to enforce this limit somehow. As part of the design
and plan phase, we’d expect to have some physical map of the use of memory.
If we allocate 100 KB for scenery blocks in the map, and each block is, for the
sake of argument, 1 KB in size, then that means we have a limit of 100 scenery
objects. Rather than just silently take the creation of the 101st scenery block on
the chin (and bearing in mind that development kits give you the false sense of
security of increased RAM allowance), we really ought to yell that we’ve
exceeded our limit. We then get the opportunity either to increase the limit or
to tell the designers and artists to reduce the scenery block count.

In other words, this local memory allocation strategy can be perfect: zero
fragmentation, near-zero overhead for new and delete.

Implementation
The pool allocator uses a fixed-size array-based stack as a very fast free list. We
deliberately avoid using the std::stack class because of performance issues,
though we make ours broadly interface-compliant with the STL class (note we
use a convention of placing _ff after our container names to designate a faster,
fixed-size data structure):

template<class T>

class stack_ff

{

public:

stack_ff(int iMaxSize);

~stack_ff();

Object-oriented game development284

2 It is possible, though not great OO design, to create a pool of objects that can be cast to different,
hopefully related, types after allocation. The objects must be identical in size, or at least bounded
above by the size of the object in the pool.

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 284

void push(T anItem);

void pop();

T & top();

const T & top() const;

void clear();

private:

T * m_Data;

int m_iTop;

int m_iMaxSize;

};

With all the methods in-lined, this stack structure is extremely quick to push
and pop, which forms the basis of our allocation and freeing operation. Our
pool is then implemented thus:

template<class T>

class mem_Pool

{

public:

mem_Pool(int iNumItems);

~mem_Pool();

T * Allocate();

void Free(T * pItem);

void FreeAll();

private:

stack_ff<T *> m_FreeItems;

T * m_Items;

int m_iNumItems;

};

template<class T>

mem_Pool<T>::mem_Pool(int iNumItems)

: m_FreeItems(iNumItems)

, m_Items(new T [iNumItems])

, m_iNumItems(iNumItems)

{

FreeAll();

}

template<class T>

mem_Pool<T>::~ mem_Pool ()

{

delete [] m_Items;

}

Game objects 285

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 285

template<class T>

T * mem_Pool<T>::Allocate()

{

T * pItem = m_FreeItems.top();

m_FreeItems.pop();

return(pItem);

}

template<class T>

void mem_Pool<T>::Free(T * pItem)

{

// Some security checks required here, to

// prevent multiple frees, frees of invalid data

// and so on.

m_FreeItems.push(pItem);

}
template<class T>

void mem_Pool<T>::FreeAll()

{

m_FreeItems.clear();

for(int i = 0; i < m_iNumItems; ++i)

{

m_FreeItems.push(&m_Items[i]);

}

}

Notice that the pool class allocates an array of objects dynamically. This means
that any class that requires pooling must provide a default constructor. Notice
also that simply allocating from the pool returns an object that may have been
used previously and so contains ‘garbage’: no constructor will have been called.
This motivates the use of the placement form of operator new: this calls a con-
structor on an existing memory block:

class Duck

{

public:

enum Gender { DUCK, DRAKE };

enum Breed { MALLARD, POCHARD, RUDDY, TUFTED };

Duck(Breed eBreed, Gender eGender);

// etc.

};

Object-oriented game development286

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 286

namespace

{

mem_Pool<Duck> s_DuckPool(100);

}

Duck * pDuck = s_DuckPool.Allocate();

// Call placement new on our raw data.

new (pDuck) Duck(MALLARD, DRAKE);

Some ad hoc tests on my PIII 500 laptop indicate the pool class to be about ten
times faster than malloc(). The class is extremely simple and robust, and does
not demand the sort of person-power resources that a global allocator does.
Furthermore, plumbing it in to your code is as simple as adding operator new
and delete for each class to be pool allocated:3

// Thing.hpp

class Thing

{

public:

void * operator new(size_t n);

void operator delete(void * p);

};

// Thing.cpp

namespace

{

const int MAX_THINGS = 100;

mem_Pool<Thing> s_Pool(MAX_THINGS);

}

void * Thing::operator new (size_t)

{

return(s_Pool.Allocate());

}

void Thing::operator delete(void * p)

{

s_Pool.Free(reinterpret_cast<Thing *>(p));

}

Game objects 287

3 You may also wish to add a static Initialise() function to the class to call pool<T>::FreeAll()
at certain points within the code.

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 287

A really dull application for pools
In the course of development, you’ll write some really fun code and you’ll write
some really bland stuff. Annoyingly, a lot of how your game performs may well
be dictated by how well the dull stuff runs.

There isn’t much duller stuff than linked lists. Yet, if you need a data struc-
ture where you can add and remove items in constant time, you’d be
hard-pushed to find a better container class. The temptation to use STL’s
std::list class is overwhelming, but a cursory investigation of any of the
common implementations will yield the slightly disturbing realisation that a
fair number of calls to operators new and delete take place during add and
remove operations. Now, for some purposes that may not matter – if you do
only one or two per game loop, big deal. But if you’re adding and removing lots
of things from lists on a regular basis, then new and delete are going to hurt.

So why are new and delete being called? If you require objects to be in sev-
eral lists at once, then the link fields need to be independent of the object in a
node class. And it’s the allocation and freeing of these nodes that can cause the
invocation of dynamic memory routines.

The thought occurs: why not write an allocator for nodes that uses our
pools, and plug it into the STL list class? After all, they provide that nice little
second template argument:

template<class T,class A = allocator<T> >

class list { /*…*/ };

Brilliant! Except for the fact that it really doesn’t work very well. It depends too
critically on which particular version of STL you are using, so although your
solution may possibly be made to work for one version of one vendor’s library,
it is quite unportable across versions and platforms.

For this reason, it’s usually best to write your own high-performance con-
tainer classes for those situations (and there will be many in a typical game)
where STL will just not cut the mustard. But we digress.

Asymmetric heap allocation
Imagine an infinite amount of RAM to play with. You could allocate and allo-
cate and allocate, and not once would you need to free. Which is great, because
it’s really the freeing that catalyses the fragmentation process.

Now, it’ll be quite a while before PCs and consoles have an infinite quantity
of free store. However, the only constraint you need be concerned with is not
an infinite amount but just all that your game requires. In fact, we can be a bit
more specific than that, because if the game is level-based, and we know ahead
of time exactly how much we need for a level, then we can pre-allocate it at the
start of the level, allocate when required, and the only free we will ever need is
the release of everything at the end of the level.

Object-oriented game development288

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 288

This technique generalises to any object or family of objects whose exact
maximum storage requirements are known ahead of time. The allocator – called
an asymmetric heap because it supports only allocation of blocks, not freeing bar
the ability to free everything – is an even simpler class to implement than the
pool allocator:

// mem_AsymmetricHeap.hpp

class mem_AsymmetricHeap

{

// This constructor creates a heap of the

// requested size using new.

mem_AsymmetricHeap(int iHeapBytes);

// Constructs a heap using a pre-allocated block

// of memory.

mem_AsymmetricHeap(char * pMem, int iHeapBytes);

~mem_AsymmetricHeap();

// The required allocate and free methods.

void * Allocate(int iSizeBytes);

void FreeAll();

// Various stats.

int GetBytesAllocated() const;

int GetBytesFree() const;

private:

// Pointer to the managed block.

char * m_pData;

// Precomputed end of the heap.

char * m_pEndOfData;

// Where we get the next allocation from.

char * m_pNextAllocation;

// Size of the heap.

int m_iHeapBytes;

// Should the memory be freed on destruction?

bool m_bDeleteOnDestruct

};

Game objects 289

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 289

// mem_AsymmetricHeap.cpp

#include "mem_AsymmetricHeap.hpp"

mem_AsymmetricHeap::mem_AsymmetricHeap(int iHeapBytes)

: m_pData(new char [iHeapBytes])

, m_pEndOfData(m_pData + iHeapBytes)

, m_pNextAllocation(m_pData)

, m_iHeapBytes(iHeapBytes)

, m_bDeleteOnDestruct(true)

{

}

mem_AsymmetricHeap::

mem_AsymmetricHeap(char * pMem, int iBytes)

: m_pData(pMem)

, m_pEndOfData(pMem + iBytes)

, m_pNextAllocation(pMem)

, m_iHeapBytes(iBytes)

, m_bDeleteOnDestruct(false)

{

}

mem_AsymmetricHeap::~mem_AsymmetricHeap()

{

if (m_bDeleteOnDestruct)

{

delete [] m_pData;

}

}

void * mem_AsymmetricHeap::Allocate(int iSize)

{

void * pMem = 0;

// Ensure we have enough space left.

if (m_pNextAllocation + iSize < m_pEndOfData)

{

pMem = m_pNextAllocation;

m_pNextAllocation += iSize;

}

return(pMem);

}

void mem_AsymmetricHeap::FreeAll()

{

// You can’t get much faster than this!

m_pNextAllocation = m_pData;

}

Object-oriented game development290

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 290

The remaining methods, along with the required bullet-proofing, and other
bells and whistles such as alignment, are left as exercises for the reader.

Control your assets
Having said all I have about fragmentation, you may be forgiven for thinking
that I’m a bit blasé about it. You’d be wrong. In some applications, there comes a
time when fragmentation doesn’t just slow things down, it actually brings down
the whole house of cards. Witness this error message from a recent project:

Memory allocation failure

Requested size: 62480

Free memory: 223106

Fragmentation has left memory in such a state that there is more than enough
RAM free; it’s just formed of itty bitty blocks of memory that are no use on
their own.

Time to panic? Not quite yet. The first step is to get rid of anything in
memory that is no longer needed until there is enough RAM. The scary bit
comes when you realise that the error message appeared after we’d done that.

Time to panic now? No, we’ll take a deep breath and hold on a moment
longer. The next step to take here is for some sort of block merging to be per-
formed. To be able to perform this efficiently, internally your memory allocator
ideally needs to support relocatable blocks. Now, to be able to do this, the access
to the things that can be relocated needs to be controlled carefully, because
simply caching a pointer could lead you to accessing hyperspace if the object is
moved. Using some kind of handle will solve this problem – we will discuss han-
dles shortly.

This motivates us to control our game resources carefully in databases.
Within these databases, we can shuffle and shunt around the memory-hogging
resources at will without adversely affecting the remainder of the game.

We’ll look at the asset management issue in some detail in a later chapter.

Strings
If there is one class above all that is going to fragment your memory, then it is
probably going to be the string. In fact, you don’t even need to have a class to
do it; just use a combination of char *’s, functions such as strdup() and
free(), and you are almost just as likely to suffer.

What is it about strings that hammers allocators? Well, for starters, they are
usually small and they are all different sizes. If you’re malloc()’ing and free()’
ing lots of one- and two-byte strings, then you are going to tax the heap man-
ager beyond breaking point eventually.

But there is a further – related – problem. Consider the programmer who
writes a string class because they hate having to use ugly functions such as
strcmp(), strdup() and strcpy(), and having to chase down all those string

Game objects 291

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 291

pointer leaks. So they write a string class, and this allows such semantic neat-
ness as:

String a = "hello";

String b = a;

Now there are (at least) two schools of thought as to what that innocent-
looking = should do. One says that the request is to copy a string, so let’s do just
that. Schematically:

strcpy(b.m_pCharPtr, a.m_pCharPtr);

However, the second school says that this is wasteful. If b never changes, why
not just sneakily cache the pointer?

b.m_pCharPtr = a.m_pCharPtr;

But what happens if b changes? Well, we then need to copy a into b and update
b. This scheme – called copy-on-write (COW) – is implemented by many string
classes up and down the land. It opens up the can of worms (which is what
COW really stands for) inside Pandora’s box, because the string class suddenly
becomes a complex, reference-counting and rather top-heavy affair, rather than
the high-performance little beast we hoped for.

So if we’re to avoid COW, we are then forced into using strings that forcibly
allocate on creation/copy/assignment, and free on destruction, including pass-
ing out of scope. In other words, strings can generate a substantial number of
hits to the memory management system(s), slowing performance and leading to
fragmentation. Given that C++ has a licence to create temporary objects when-
ever it feels like it, the tendency of programmers who know how strings behave
is to forgo using a string class and stick with the combination of static arrays
and the C standard library interface. Unfortunately, this does reject some of the
power that can be derived from a string class. For example, consider a hash table
that maps names to objects:

template<class Key,class Type>

class hash_table

{

// Your implementation here.

};

namespace

{

hash_table<char *,GameObject *> s_ObjectMap;

}

Object-oriented game development292

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 292

The problem with this is that if the hash table uses operator== to compare
keys, then you will compare pointers to strings, not the strings themselves. One
possibility is to create a string proxy class that turns a pointer into a comparable
object – a ‘lite’ or ‘diet’ string, if you will:

class string_proxy

{

public:

string_proxy()

: m_pString(0)

{

}

string_proxy(const char * pString)

: m_pString(pString)

{

}

bool operator==(const string_proxy & that) const

{

return(!strcmp(m_pString, that.m_pString));

}

private:

const char * m_pString;

};

namespace

{

hash_table<string_proxy,GameObject *> s_ObjectMap;

}

This works reasonably well, but beware of those string pointers! Consider the
following code:

namespace

{

string_proxy s_strText;

}

void foo(const char * pText)

{

char cBuffer[256];

Game objects 293

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 293

strcpy(cBuffer, pText);

s_strText = string_proxy(cBuffer);

}

void bar()

{

int x;

// Some stuff involving x.

}

void main()

{

foo("hello");

bar();

if (s_strText == string_proxy("hello"))

{

printf("yes!\n");

}

else

{

printf("no!\n");

}

}

This will – at least some of the time – print ‘no!’ and other times may print ‘yes!’
or perhaps just crash. Why? Because cBuffer is allocated on the stack, and the
call to bar() can overwrite the region where the text was, and the string proxy
is pointing to. Boy, did I have fun with those bugs!

We are left with the distinct impression that a string class is still the least bad
of several evils. How might we go about creating one that doesn’t fragment, isn’t
slower than a snail on tranquillisers and doesn’t leave us with dangling pointers?

One way – a poor way – is to create strings with fixed-size buffers of the
maximum expected string length:

class string

{

public:

// A string interface here.

private:

enum { MAX_CAPACITY = 256; }

char m_cBuffer[MAX_CAPACITY];

};

Object-oriented game development294

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 294

The trouble with this is that it is very wasteful: if most strings are shortish – say
16–32 characters long – then we are carrying around a lot of dead storage space.
It might not sound much, but you could well be scrabbling around for that
space at the end of the project.

Our preferred solution is to use a series of pool allocators for strings. Starting
with a minimum string buffer length (say 16), we allocate a pool for 16-character-
length strings, another for 32-character strings, and so on up to a maximum string
length. By allowing the user to control how many strings of each length can be
allocated, we can bound the amount of memory we allocate to strings, and we
can customise the sizes according to the game’s string usage pattern.

Strings then allocate their buffers from the pools. As they grow, they allo-
cate from the pool of the smallest suitable size that can contain the new length.
Since the strings use pool allocators, no fragmentation of string memory occurs,
and the allocation and free processes are very fast. And there are no pointer
issues to fret over. Job done.

The moral of the tale is this: prefer local object allocation strategies to global ones.
In the end, our game should be a collection of loosely coupled components. This
degree of independence means that if we solve the memory allocation issues
within the components, then we get the global level pretty much for free. Hurrah!

But – and there’s always a but – some people insist that this isn’t the whole
story. And they have a point. They say that there are reasons why you may take
the step of writing a global allocator early on. It’s just that those reasons have
nothing to do with performance or fragmentation. In fact, given that your allo-
cation strategies will depend critically on your pattern of usage, you will need
some sort of mechanism to instrument the existing allocator so that you can
find out what those patterns are. Calls to new and delete should be logged,
allowing you to trace leaks and multiple deletions and also to build up a picture
of how your game uses heap memory.

These are fine motivations. However, they should be evaluated in the con-
text of the priorities of the project, and they may do more harm than good.
Consider the following code skeleton:

// Memory.hpp

#if defined(DEBUG)

#define MEM_LogNew(Class)\

new(__FILE__,__LINE__) Class

// Provide a new ‘new’ that logs the line and file the

// memory was allocated in.

void *

operator new(size_t size, const char * pFile, int iLine);

#else

#define MEM_LogNew(Class)\

new Class

#endif

Game objects 295

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 295

Every time you need to create a new object and keep a record of its creation
(and presumably deletion), you need to include memory.hpp. That creates one
of those dependency things that is going to hamper reusability. If a colleague
feels like using one of your components but has already written a different
memory management system, then they’re going to have to modify the code.
Chances are, they won’t take the code, or they’ll sulk if they do.

In general, anything that causes universal (or near-universal) inclusion of
header files can seriously weaken the reuse potential of your systems, and
changes to those universal files will cause rebuilds left, right and centre. Of
course, we have heard this argument before.

There’s no reason why we can’t apply this same global technique at the
package local level, though. If each package keeps track of its own memory,
then we get the global tracking without the binding. Interestingly, though, at
the local level memory management can often be so simple that the problem
can simply dissolve away.

7.2.2 Referencing
So we’re writing (say) an air combat game, though the genre is largely unimpor-
tant for this discussion. We create a type of object called a missile, of which
there are two varieties: one that just flies in a path dictated by an axial thrust
and gravity, and another that homes in on a specific target that the player or
NPC has selected. It’s the latter object we’re interested in. Here’s a sketch of the
code sections we’re interested in:

class Missile : public GameObject

{

public:

// yada yada.

};

class HomingMissile : public Missile

{

public:

HomingMissile(/*stuff*/, GameObject * pTarget);

/*virtual*/ void Update(float dt);

// bada bing.

private:

GameObject * m_pTarget;

};

Object-oriented game development296

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 296

When the homing missile is created, we provide a target object that it should
head towards. When we update the missile, it does some sums to work out tra-
jectories and then adjusts itself accordingly:

void HomingMissile::Update(float dt)

{

MATHS::lin_Vector3 vTargetPos =

m_pTarget->GetPosition();

// Some maths, depending on how clever you are.

}

But we’re not concerned about the maths and physics at this moment. The
problem we need to address is this: suppose another missile blows up our target,
which is deleted (and potentially new objects such as explosions and debris put
in their place)? But hold on, our homing missile still has a pointer to a now
non-existent object, so next time it is updated we can be sure that something
undesirable will happen.

How do we solve this? It’s part of the general problem of how we reference
objects safely. One common method is to prevent the application from holding
pointers to allocated game objects at all. Instead, all object transactions use
object handles, which cannot be deleted. We then have some kind of object
management interface that accepts handles and returns the relevant data:

class ObjectManager

{

public:

ObjectHandle CreateObject(const char * pType);

void FreeObject(ObjectHandle hObject);

MATHS::lin_Vector3 GetPosition(ObjectHandle hObj);

private:

ObjectFactory * m_pFactory;

};

So what is an ObjectHandle exactly? In short, it’s anything you want it to be. It’s
called an opaque type because as far as the outside world – the client code – is con-
cerned, it cannot see what the type does. Only the ObjectManager knows what to
do with handles – how to create them, validate them and dereference them.

As an oversimplified example, consider using a 32-bit integer as the handle
type:

typedef int ObjectHandle;

Game objects 297

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 297

Within the object manager, we have a table of pointers to objects that the inte-
ger indexes into:

// ObjectManager.cpp

namespace

{

const int MAX_OBJECTS = 200;

GameObject * s_Objects[MAX_OBJECTS];

int s_iNextFreeObject = 0;

}

Now whilst that’s not the whole story, suffice to say that many games use a
system such as this, so there is a lot to recommend it. Unfortunately, it’s not a
system that I favour. The main objection is that handles collapse type informa-
tion. We went to such pains to design an elegant object hierarchy, and now
we’ve reduced everything to either a lowest-common-denominator interface or
a hugely bloated monolithic one, because you need to be able to do anything
with a handle that you could do with a GameObject or any of its subclasses.

Handles do have their uses, however, and we’ll discuss those later. To solve our
immediate problem, though, we can invoke the flexible reference-counting mecha-
nism we discussed in the previous section. Recall that we used a base class to
implement reference counting, which had a virtual function OnUnreferenced()
and that was called when the reference count hits zero. This mechanism can be pig-
gybacked to do exactly what we require:

// GameObject.hpp

#include "comm_IsReferenceCounted.hpp"

class GameObject : public comm_IsReferenceCounted

{

};

// Scenery.hpp

#include "GameObject.hpp"

class Scenery : public GameObject

{

/*virtual*/

void OnUnreferenced();

};

// Scenery.cpp

#include "Scenery.hpp"

#include "mem_Pool.hpp"

Object-oriented game development298

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 298

namespace

{

int MAX_SCENERY = 111;

mem_Pool<Scenery> s_SceneryPool(MAX_SCENERY);

// Creator called by ObjectFactory.

GameObject * createScenery()

{

return(s_SceneryPool.Allocate());

}

}

/*virtual*/

void Scenery::OnUnreferenced()

{

~Scenery();

s_SceneryPool.Free(this);

}

The only thing we have to watch out for is always to call Release() on pointers
to GameObjects rather than delete. Protecting the destructor could enforce this
somewhat, but protected status is too easy to remove via inheritance to be
watertight, and making the destructor private would cause compiler errors since
we could never destroy the GameObject class from a subclass.

There’s another little gotcha waiting to bite us when we allocate game
objects from a pool. Previously, we encountered problems because we held on to
a pointer to an object that was deleted. The pointer becomes invalid; consider-
ably more likely than not, it will address data inside a new object or point at
fragile memory manager data. Dereferencing it would be a disaster. However,
when we allocate objects from a pool, it is now extremely likely – indeed, given
long enough, 100% certain – that our cached pointer will point to the start of a
new object that is actually in use. Ouch! This is a subtle and annoying bug.

To get around this one, we need to create a smart pointer class. Also, when-
ever we create an object, we need to give it a unique identifier. The simplest way
is to use a 32-bit integer:

// GameObject.hpp

class GameObject

{

public:

GameObject();

int GetId() const { return m_iUniqueId; }

Game objects 299

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 299

// blah.

private:

int m_iUniqueId;

};

// GameObject.cpp

#include "GameObject.hpp"

namespace

{

int s_iIdGenerator = 0;

}

GameObject::GameObject()

: // …

, m_iUniqueId(s_iIdGenerator++)

{

}

Our smart pointer class obtains the unique identifier when it is created. It can
then tell if the referred object is valid by comparing its cached identifier with
the actual ID of the object (which is safe because being in a pool, the data are
never deleted as such during game execution):

// ObjectPointer.hpp

class ObjectPointer

{

public:

ObjectPointer();

ObjectPointer(GameObject * pObject);

GameObject * operator*();

// Const versions of this, too.

private:

GameObject * m_pObject;

int m_iObjectId;

};

// ObjectPointer.cpp

#include "ObjectPointer.hpp"

#include "GameObject.hpp"

Object-oriented game development300

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 300

ObjectPointer::ObjectPointer()

: m_pObject(0)

, m_iObjectId(-1)

{

}

ObjectPointer::ObjectPointer(GameObject * pObject)

: m_pObject(pObject)

, m_iObjectId(pObject->GetId())

{

}

GameObject * ObjectPointer::operator*()

{

GameObject * pObject = 0;

if (m_iObjectId == m_pObject->GetId())

{

// The object is valid.

pObject = m_pObject;

}

return(pObject);

}

It should be stressed that this technique works only for pool objects, because of
the call to GameObject::GetId() within operator*(). If the object has been
heap-allocated and subsequently deleted, and we make that call, then it’s Game
Over before the game’s over. So how can we make it work for an arbitrarily allo-
cated object? Well, the Achilles’ heel is that pointer, so perhaps if we ditch that,
we can use the ID value itself to refer to an object. Since the ID is a continuously
increasing integer, it won’t work as an index, and in fact even if it were, using
an index just gives us the same problem all over again. So how about a scheme
that looks up a table of existing objects, compares IDs and returns a pointer to
the referred object if it was found?

That works, but it is painfully slow if you do a modest amount of referenc-
ing and have a large (say, more than 100) set of objects. Even putting the
objects into a map or hash table keyed on the ID field would still make this a
costly operation.

Clearly, we need to be a bit cleverer if we want to have an efficient referenc-
ing system for heap-allocated objects. We’ll appeal to our good friend, the
reference count, to help us. Only this time, we are not reference counting the
object itself so much as the reference object that looks at it:

Game objects 301

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 301

template<class T>

class sys_Reference

{

public:

sys_Reference();

sys_Reference(T * pInstance);

~sys_Reference();

T * GetInstance();

const T * GetInstance() const;

// Returns the ref’d object or 0 if deleted.

void AddRef();

void DecRef();

int GetRefCount() const;

// The usual reference counting interface.

void Invalidate();

// Call this when the instance is deleted.

private:

T * m_pInstance;

int m_iRefCount;

};

template<class T>

sys_Reference<T>::sys_Reference()

: m_pInstance(0)

, m_iRefCount(0)

{

}

template<class T>

sys_Reference<T>::sys_Reference(T * pInstance)

: m_pInstance(pInstance)

, m_iRefCount(0)

{

}

template<class T>

sys_Reference<T>::~sys_Reference()

{

m_pInstance = 0;

}

Object-oriented game development302

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 302

template<class T>

const T * sys_Reference<T>::GetInstance() const

{

return(m_pInstance);

}

template<class T>

T * sys_Reference<T>::GetInstance()

{

return(m_pInstance);

}

template<class T>

void sys_Reference<T>::AddRef()

{

++m_iRefCount;

}

template<class T>

void sys_Reference<T>::DecRef()

{

--m_iRefCount;

}

template<class T>

int sys_Reference<T>::GetRefCount() const

{

return(m_iRefCount);

}

template<class T>

void sys_Reference<T>::Invalidate()

{

m_pInstance = 0;

}

In itself, the reference class solves the problem only partially. Creating more
than one reference to an instance will really mess up the reference counter and
we’re back in Crashville. So now we reintroduce our handles, only this time
they point at a reference, not at an object:

template<class T>

class sys_Handle

{

Game objects 303

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 303

public:

sys_Handle();

sys_Handle(sys_Reference<T> * pStub);

~sys_Handle();

void Release();

// Relinquish use of the controlled object. All

// dereference operations will return NULL after

// this call. This is called automatically on

// destruction.

T * operator*();

T * operator->();

sys_Handle<T>& operator=(const sys_Handle<T> &that);

bool operator==(const sys_Handle<T> & that) const;

private:

sys_Reference<T> * m_pReferenceStub;

};

Now anyone can hold a handle to an object and there can be any number of
object handles. The handle points at the reference stub, which is the actual
thing that points at the object. Dereferencing is therefore a double indirection.
Starting to sound expensive? Well, possibly, but bearing in mind that only a
handful of dereferences will happen every game loop, and there isn’t too much
pain involved, certainly not compared with the table-lookup-per-indirection
method we saw previously.

The reference stub is created by the object itself – we’ll see that in a minute
– and will hang around even after the object itself is deleted. It will free itself
only when its reference count becomes zero: no other entities reference the
object. If the object is deleted, the object will invalidate the reference in its
destructor. When an object (e.g. our missile) has finished referencing its target,
it calls Release() on the handle. The reference stub will return NULL on indirec-
tion, and the handle will continue to return NULL on operator*() even after
the stub is deleted.

The down side of all this is that we must now be vigilant and remember to
Release() when we’re done with object handles. A thorough dose of assertions
and in-game integrity checks can help to sort this out. A picture paints a thou-
sand words, so have a look at Figure 7.4.

Here’s the implementation:

template<class T>

inline sys_Handle<T>::sys_Handle()

: m_pReferenceStub(0)

{

}

Object-oriented game development304

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 304

template<class T>

inline

sys_Handle<T>::sys_Handle(sys_Reference<T> * pStub)

: m_pReferenceStub(pStub)

{

pStub->AddRef();

}

template<class T>

inline void sys_Handle<T>::Release()

{

if (m_pReferenceStub != 0)

{

m_pReferenceStub->DecRef();

if ((m_pReferenceStub->GetInstance() == 0) &&

(m_pReferenceStub->GetRefCount() == 0))

{

// All references to the object (via the

// stub) have Release()d. We can now kill

// the stub.

T::FreeReference(m_pReferenceStub);

}

m_pReferenceStub = 0;

}

}

template<class T>

inline sys_Handle<T>::~sys_Handle()

{

Release();

}

Game objects 305

System

sys_Handle<T>

sys_Reference<T>GameObject

ReferencePool

Object

int

T
Reference stub

Reference stub

Reference count

*Free references

Figure 7.4
Referencing system for
heap-allocated objects.

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 305

template<class T>

inline T * sys_Handle<T>::operator*()

{

T * pObject = 0;

if (m_pReferenceStub != 0)

{

pObject = m_pReferenceStub->GetInstance();

}

return(pObject);

}

template<class T>

inline T * sys_Handle<T>::operator->()

{

T * pObject = 0;

if (m_pReferenceStub != 0)

{

pObject = m_pReferenceStub->GetInstance();

}

return(pObject);

}

template<class T>

inline sys_Handle<T> &

sys_Handle<T>::operator= (const sys_Handle<T> & that)

{

if (this != &that)

{

m_pReferenceStub = that.m_pReferenceStub;

if (m_pReferenceStub != 0)

{

if (m_pReferenceStub->GetInstance() != 0)

{

m_pReferenceStub->AddRef();

}

}

}

return(*this);

}

Object-oriented game development306

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 306

Notice that individual objects (the T class in the template) create the handles
(potentially by allocating a reference stub from a pool and initialising it using
its ‘this’ pointer), and a static member function T::FreeReference() is used to
free the object reference.

You may also see that we have a slightly worrying relationship between
objects and references – they are mutually dependent. However, the T link
between the reference and the referenced type (in our case, a GameObject) is
very nearly a name-only one, in that all that the reference cares about is a
pointer to a GameObject, not what that class can do. I say ‘very nearly’ because
in order to release a reference, the GameObject class is forced to implement the
FreeReference() function. However, since the reference class does not need
the referenced class’s header file, this binding is light enough to allow us the
luxury of the co-dependency.

As we’ve said, creating a reference becomes the task of the object you wish to
refer to. There must be only one reference stub per object instance, so we bury
the whole reference and handle creation within the GameObject component:

// GameObject.hpp

#include <system\sys_Handle.hpp>

typedef sys_Handle<class GameObject> ObjectHandle;

typedef sys_Reference<class GameObject> ObjectReference;

class GameObject

{

public:

GameObject();

~GameObject();

// stuff…

ObjectHandle CreateReference();

static void FreeReference(ObjectReference * pRef);

static void Initialise();

// Call this to set up or clear object referencing.

private:

ObjectReference * m_pReferenceStub;

};

// GameObject.cpp

#include "GameObject.hpp"

Game objects 307

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 307

namespace

{

const int MAX_OBJECTS = 1000;

mem_Pool<ObjectReference> s_ReferencePool(MAX_OBJECTS);

}

GameObject::GameObject()

: /*initialisers*/

, m_pReferenceStub(0)

{

m_pReferenceStub = s_ReferencePool.Allocate();

new (m_pReferenceStub) ObjectReference(this);

}

GameObject::~GameObject()

{

// Do NOT delete the object reference stub!

m_pReferenceStub->Invalidate();

m_pReferenceStub = 0;

}

ObjectHandle GameObject::CreateReference()

{

// A bit of C++ jiggery-pokery here. The line that

// returns a handle will silently generate a

// temporary handle. When the temp is deleted at the

// end of this function call, Release() will be

// called and our reference count will drop! Hence

// we need an extra AddRef().

m_pReferenceStub->AddRef();

return(ObjectHandle(m_pReferenceStub));

}

/*static*/

void GameObject::FreeReference(ObjectReference * pRef)

{

s_ReferencePool.Free(pRef);

}

/*static*/

void GameObject::Initialise()

{

s_ReferencePool.FreeAll();

}

Object-oriented game development308

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 308

There is a lesser – though no less pernicious – version of the referencing prob-
lem that occurs when we prematurely delete an object that is not actually
referenced but may be needed later on within the same game loop. For example,
consider a collision between a plane and a (non-homing) missile:

// Somewhere deep in the collision system.

GameObject * pObject1 = //…;

GameObject2 *pObject2 = //…;

coll_Info aCollInfo;

if (Collided(pObject1, pObject2, &aCollInfo))

{

pObject1->OnCollision(pObject2, &aCollInfo);

pObject2->OnCollision(pObject1, &aCollInfo);

}

// Plane.cpp

void Plane::

OnCollision(Missile *pMissile, coll_Info * pInfo)

{

doDamage(pMissile->GetDamageLevel());

Explosion * pExplosion =

new Explosion(pMissile->GetPosition());

delete pMissile;

// Oops! This might cause some problems.

}

The deletion of the missile before calling its collision handler was a fifty/fifty
chance (it just so happened that object number one was the plane). Thankfully,
the solution to this referencing problem is a little simpler than the more general
case. The simplest way to implement this is to flag the object to be removed as
garbage so that some other system (a ‘garbage collector’) can get rid of it when it
is safe to do so. In fact, the reference/handle system described above is also a
garbage-collection system. In that case, the flag is that no active handles to the
object are left. In this case, we can physically embed a Boolean into the object
to signal that it is or is not a valid instance:4

Game objects 309

4 This is preferable to some systems that use ‘kill lists’: the object is removed from the active list and
put on a ‘death row’ list. We prefer the flag version because it acts at the object level, whereas the
list method operates at the object management level and therefore comes with a higher – and
potentially circular – dependency.

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 309

class GameObject

{

public:

bool IsValid() const { return m_bValid; }

void Invalidate() { m_bValid = false; }

private:

bool m_bValid;

};

Ordinarily, when we would have deleted the object, we now invalidate it:

void Plane::OnCollision(Missile * pMissile,

coll_Info * pInfo)

{

doDamage(pMissile->GetDamageLevel());

Explosion * pExplosion =

new Explosion(pMissile->GetPosition());

pMissile->Invalidate(); // Sorted, guv’n’r.

}

We should be careful not to involve invalid objects in any further processing:

void Game::Update(float dt)

{

for(GameObject * pObject = FirstObject();

pObject != 0;

pObject = NextObject());

{

if (pObject->IsValid())

{

pObject->Update(dt);

}

}

}

So, when is a safe time to physically remove the invalid objects? At the end of a
game loop is as good a choice as you will get:

void Game::Update(float dt)

{

GameObject * pObject;

for(pObject = FirstObject();

pObject != 0;

pObject = NextObject());

Object-oriented game development310

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 310

{

if (pObject->IsValid())

{

pObject->Update(dt);

}

}

// More stuff to update.

// Remove invalid objects.

for(pObject = FirstObject();

pObject != 0;

pObject = NextObject());

{

if (!pObject->IsValid())

{

RemoveObject(pObject);

delete pObject;

}

}

}

Referencing failures account for some of the most common, insidious and
brain-hurting bugs that you’ll meet during game development. It is therefore
simple fear of pain that should motivate you to put robust object-referencing
systems in place. Ninety per cent of the code above is reusable since it depends
on two templated classes with no bindings to object definitions other than the
soft requirement that a static FreeReference() function is provided within the
controlled class. Write it once, use it for ever. Hell, you’d be mad not to use it,
wouldn’t you?

7.2.3 Persistent damage
The more memory we have to store data, the more detailed information about
object state we can pack in. In the olden days (five or ten years ago, that is),
most objects were either alive or dead: if you were writing a shooting game,
then a single bit would suffice for determining the status of a game object.

Nowadays, we need to do much better: walls can have myriad bullet holes,
bottles can be shot to pieces, vehicle bodies can be dented to varying degrees.
Strangely, because we have more storage, we pack in more detail, so we can store
fewer objects. For example, if we were to set a game in even a small town, we
could not reasonably keep all the buildings, people and objects in RAM at the
same time – they’d typically be created on demand. A particular instance of an
object might disappear at one point in the game, only to reappear later. If we’d
damaged it – say it was a wall we’d shot our name into with bullets – we might
expect to see that as we’d left it. Hence, the need for damage to be persistent.

Game objects 311

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 311

This sort of functionality can be added to our game objects easily with no
loss of generality but still with the sort of control we need to keep resource
requirements finite. We certainly don’t want to allow any object to be damaged
arbitrarily, as that will demand an increasingly large amount of storage. What
we want is a system that allows objects to say how they can be damaged and to
keep records of actual damage.

So, let’s start by describing an abstract atom of damage – let’s call it a
DamageTag:

class DamageTag

{

public:

enum { MAX_TAG_NAME = 32 };

DamageTag(char const * pszUniqueName);

virtual ~DamageTag();

virtual void Apply(GameObject * const pObject) = 0;

char const * GetName() const;

private:

char m_szName[MAX_TAG_NAME];

};

Giving a damage tag class a unique name is important, as we’ll see soon. For
example, fire damage tags could be given the name ‘scorch’.

To actually show the damage, we use the Apply() method, passing a
pointer to the object to be modified in. We could construct the tag passing the
pointer in and caching it internally:

class DamageTag

{

public:

// As before, except -

DamageTag(char const * pszUniqueName,

GameObject * pObject);

// When I call this I trust that I’m acting on the

// correct object. Hmmm…

virtual void Apply() = 0;

private:

char m_szName[MAX_TAG_NAME];

GameObject * m_pObject;

};

Object-oriented game development312

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 312

However, this means that a damage tag can never be reused with another object:
we’d have to delete it and new another one, unless we also add a SetObject()
method. That’s adding complexity where none is required, so for that minor
reason we prefer the ever so slightly less strongly coupled version.

To confer the ability to be damaged on an object, we’ll create a property
class, which we’ll call IsDamageable. This can be (multiply) inherited by the
objects in the game that can sustain damage (alternatively, you could just add
virtual functions to the object base class, but if you keep that habit up, you
could end up with a monolithic base class – just what we’d like to avoid!).

Let’s make another assumption – there is a function that gets called when
an object collides with another object. Since collision detection and response is
a whole other discussion, we’ll go light on the details of that, except to say that
the base object supports a polymorphic interface:

virtual void GameObject::OnHit(GameObject * pThat);

We’ll also assume that we have three object flavours:

● scenery objects (walls, floors, ceilings)
● furniture objects (tables, vases)
● bullets (projectile weapons).

We’re interested primarily in collisions between scenery objects and bullets and
between furniture and bullets (since bullets tend to do quite a lot more damage
in collisions than the other two).

To handle the specific collisions, we’ll use a double-dispatching system to
allow us to write virtual functions:

virtual void Scenery::OnHit(Bullet * pBullet);

virtual void Furniture::OnHit(Bullet * pBullet);

This gets called when an object of dynamic type (furniture or scenery) gets
hit by an object of static type (bullet) (remember that the argument type is
resolved at compile time, whilst the type of this is determined at run time).

Now, here are the game design rules for when bullets collide with things:

● When a bullet hits scenery, it leaves a bullet hole.
● When a bullet hits furniture, it shatters it.
● When a bullet hits a bullet, nothing happens (though we may be impressed).

OK, so much for the wordy stuff. How about the cody stuff? First off, let’s look
at that damage-conferring property class:

class IsDamageable

{

public:

IsDamageable();

Game objects 313

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 313

virtual ~IsDamageable();

virtual DamageTag * CreateDamageTag() = 0;

void SetDamageTag(DamageTag * pTag);

DamageTag * GetDamageTag();

private:

DamageTag * m_pTag;

};

The method CreateDamageTag() simply allocates a damage tag and returns a
pointer to it. Notice that we can override this behaviour on a per-class level, so
let’s use this to apply the damage rules as required. We create new subclasses of
DamageTag to create bullet hole damage and shattering damage. The former can
be achieved by blending a texture or textures on the object’s visual, as illus-
trated in Figure 7.5.

The latter can be implemented by selecting either a different mesh or a set
of submeshes in the object’s visual (see Figure 7.6).

Object-oriented game development314

(u, v)
Figure 7.5

Adding bullet holes:
the hole is stored as a

texture with transparency
and is blended into
the background in

an additional
rendering pass.

Handle_Damaged

Saucer

Body_Damaged

Body

Mug

Handle

Figure 7.6
Visual hierarchy used to
create damaged
furniture. The model is
exported with a number
of meshes. The
_Damaged tag is
appended to the names
of the meshes that
represent the damaged
object. Note that this can
be extended to show
various degrees of
damage by a simple
change to the naming
convention.

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 314

Note that an object can support several types of damage (it has a list of tags
rather than a single tag). That’s a powerful system, but coder beware! Its power
is also its weakness. Applying a bullet hole to a shattered object will need careful
attention to avoid visual incongruities. For now, we’ll consider only objects that
sustain a single type of damage. The point here isn’t so much to show you how
to implement object damage, since that will depend largely on details I cannot
know here. Rather, the message is that the damage is implemented in entirely
different ways, and the damage system should – at the game object level – nei-
ther know nor care about these mechanics. Note also that we can easily
generalise from damage to any persistent property of the game object. That is an
exercise left to the reader. For now, let’s stick with destruction.

So, let’s create two different types of damage tag: one for bullet holes and
one for shattering. First, let’s look at the bullet hole class. This is quite an inter-
esting problem, because in most games with shooting, bullets can be sprayed
around with abandon, and we don’t want to write a system that gobbles
resources or CPU/GPU bandwidth.

#ifndef OBJECT_DAMAGETAG_INCLUDED

#include "DamageTag.hpp"

#endif

#ifndef STD_VECTOR_INCLUDED

#include <vector>

#define STD_VECTOR_INCLUDED

#endif

class Texture;

class DamageTagBulletHole : public DamageTag

{

public:

DamageTagBulletHole();

// Adds a mark at the given texture coords with

// the specified size.

void AddMark(float u, float v, float fSize);

// Removes all marks stored in the tag.

void Clear();

// Magic accessor that returns us a texture pointer.

Texture * GetBulletHoleTexture();

void Apply(GameObject * const pObject);

Game objects 315

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 315

Texture * GetBulletHoleTexture();

void Apply(GameObject * const pObject);

static char const CLASS_NAME[];

private:

struct Mark

{

float u;

float v;

float fSize;

};

std::vector<Mark> m_Marks;

};

We choose to use one tag to hold all the bullet marks for an object as opposed
to creating a new tag for each mark. This is – probably – a bit more memory-effi-
cient, considering how std::vector is usually implemented.

char const DamageTagBulletHole::CLASS_NAME[] =

"bullet_hole";

DamageTagBulletHole::DamageTagBulletHole()

: DamageTag(CLASS_NAME)

{

}

void DamageTagBulletHole::AddMark(float u, float v,

float fSize)

{

Mark aMark;

aMark.u = u;

aMark.v = v;

aMark.fSize = fSize;

m_Marks.push_back(aMark);

}

/*virtual*/

void DamageTagBulletHole::Apply(GameObject * pObject)

{

for(int j = 0; j < m_Marks.size(); ++j)

Object-oriented game development316

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 316

{

Mark const & aMark = m_Marks[j];

float u = aMark.u;

float v = aMark.v;

float s = aMark.fSize;

pObject->AddDecal(u, v, s, s,

GetBulletHoleTexture());

}

}

When a piece of scenery gets hit by a bullet, we add a bullet hole:

/*virtual*/

DamageTag * Scenery::CreateDamageTag()

{

return(new DamageTagBulletHole);

}

/*virtual*/

void Scenery::OnHit(Bullet * pBullet)

{

// Kill the bullet, add particles, make noise

GenericBulletStuff(pBullet);

// Does a bullet hole tag exist?

DamageTagBulletHole * pTag;

pTag = (DamageTagBulletHole*)GetDamageTag();

if (pTag == 0)

{

// If not, create one.

pTag = (DamageTagBulletHole *)CreateDamageTag();

SetDamageTag(pTag);

}

// Work out hole texture coords and size from bullet

// position and add the mark.

float u,v, fSize;

Texture * pTexture = pTag->GetBulletHoleTexture();

GetBulletHoleTextureData(pBullet, &u, &v, &fSize);

// Note that we don’t want to add all the existing

Game objects 317

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 317

// bullet holes multiple times by calling Apply, or

// incur the overhead of removing them all then re-

// adding them, so we just add the new

// bullet hole to the object and adjust the book-

// keeping.

pTag->AddMark(u, v, fSize);

AddDecal(u, v, fSize, fSize, pTexture);

// In real life, we’d probably cap the number of

// bullet holes that an object can have, removing the

// oldest hole when adding a new one if we’re full

// up. We might also allow bullet holes to

// "evaporate" over time.

}

OK, so much for bullet holes. What about the shattering cup? Well, we need
some way to track the state of the object, so we’ll add a simple hit counter. If it’s
zero, no damage; if it’s one, the object is damaged; two or more and the object is
destroyed. The counter gets incremented every time the object is hit:

class DamageTagShatter

{

public:

DamageTagShatter();

void Clear();

int GetHitCount() const;

void IncrementHitCount();

void Apply(GameObject * const pObject);

private:

int m_iHitCount;

};

//---

namespace

{

void useDamagedMesh(Model * pModel, Mesh * pMesh)

{

// A string object might be better here.

char szDamagedName[256];

Object-oriented game development318

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 318

// Copy the base name of the mesh and tack on

// "_damaged".

char * pszMeshName = pMesh->GetName();

char * pszBase = szDamagedName;

while(*pszMeshName != ‘_’)

{

*pszBase++ = *pszMeshName++;

}

*pszBase = ‘\0’;

strcat(pszBase, "_damaged");

Mesh * pMesh = pModel->FindMesh(szDamagedName);

pModel->HideMesh(pMesh);

pModel->ShowMesh(pDamagedMesh);

}

}

DamageTagShatter::DamageTagShatter()

: DamageTag(CLASS_NAME)

, m_iHitCount(0)

{

}

/*virtual*/

void DamageTagShatter::Apply(GameObject * pObject)

{

if (m_iHitCount == 1)

{

// Object has been hit once: show damaged visual.

Model * pModel = pObject->GetModel();

for(int j = 0; j < pModel->GetNumMeshes(); ++j)

{

Mesh * pMesh = pModel->GetMesh(j);

if

(

pMesh->InUse()

&&

pMesh->GetName().Contains("_undamaged")

)

{

useDamagedMesh(pModel, pMesh);

}

Game objects 319

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 319

}

}

else if (m_iHitcount > 1)

{

// Object has been destroyed and can be removed.

pModel->HideAllMeshes();

}

}

Within our shattering furniture object, we can implement the required func-
tions like this:

/*virtual*/

void Furniture::CreateDamageTag()

{

return(new DamageTagShatter);

}

/*virtual*/

void Furniture::OnHit(Bullet * pBullet)

{

// Kill the bullet, add particles, make some noise

GenericBulletStuff(pBullet);

DamageTagShatter * pTag;

pTag = (DamageTagShatter*)GetDamageTag();

if (pTag == 0)

{

pTag = (DamageTagShatter*)CreateDamageTag();

SetDamageTag(pTag);

}

pTag->IncrementHitCount();

pTag->Apply(this);

if (pTag->GetHitCount() > 1)

{

// Destroy me…

}

}

So, now we can record damage to objects in the form of tags. There’s one more part
of this system that we need to implement, and that’s the part that keeps track of the
damage applied to objects. The best place to put this functionality is in an object
factory – the centralised place for the creation and destruction of all game objects.

Object-oriented game development320

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 320

Let us distinguish between two operations that the factory can perform:

class ObjectFactory

{

public:

//… stuff

void DeleteObject(GameObject * pObject);

void DestroyObject(GameObject * pObject);

};

In this context, ‘delete’ means that an object instance simply gets removed from
storage – it still exists out there, but at the moment it can have no influence
upon the game, visually, aurally or functionally. It may well do later.

On the other hand, ‘destroy’ means to erase an object instance permanently
from the world, for example blowing up a particular car. The object can have no
further impact on the course of events (other than through its non-presence,
that is).

Now that we’ve clarified that, it is clear that when we call DeleteObject(),
we shall need to keep track of any damage tags pertaining to that object because
it could conceivably appear later on. On the other hand, DestroyObject() can
happily get rid of the damage tag because the object is no longer needed.
Implementing this would be straightforward, were it not for the fact that not all
game object subclasses support damage.

Still, no problem: let’s allow the persistent damage system to grow a little
bit (it’s starting to form its own little package now, and it will benefit from being
put in a name space DMG). We’ll create a registry of all the damage tags that are
created, which is updated when we call IsDamageable::SetDamageTag(). This
will associate damage tags with objects through a unique object ID, which can
be parameterised (i.e. a template class). This allows us to decouple the registry
from any particular implementation of a game object ID. As long as the ID class
supports operator== (e.g. a string – but not a raw char* – or an integer), then
this class will function dandily:

#ifndef CONTAINER_HASHTABLE_INCLUDED

#include <CONTAINER\CONTAINER_HashTable.hpp>

#endif

namespace DMG

{

class DamageTag;

template<class IdType>

Game objects 321

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 321

class Registry

{

public:

Registry();

~Registry();

void AddEntry(const IdType &anId, DamageTag * pTag)

{

// If I weren’t so damn lazy, I’d check for

// uniqueness before adding.

m_Entries.insert(anId, pTag);

}

void RemoveEntry(const IdType & anId)

{

m_Entries.remove(anId);

}

DamageTag * FindEntry(const IdType & anId) const

{

DamageTag * pTag = 0;

CONT::hash_table<IdType,

DamageTag*>::iterator itTag;

itTag = m_Entries.find(anID);

if (itTag != m_Entries.end())

{

pTag = itTag->Data();

}

return(pTag);

}

void Clear()

{

m_Entries.clear();

}

private:

// An associative map of damage tags keyed by

// the ID type for fast lookup.

CONT::hash_table<IdType,DamageTag *> m_Entries;

};

}

Object-oriented game development322

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 322

We can then add this to the object factory:

#ifndef DMG_REGISTRY_INCLUDED

#include <DMG\DMG_Registry.hpp>

#endif

#ifndef OBJECTID_INCLUDED

#include <ObjectId.hpp>

#endif

class ObjectFactory

{

public:

// As required.

void RegisterDamageTag(const ObjectID& anID,

DamageTag* pTag);

private:

DMG::Registry<ObjectID> m_DamageRegistry;

};

Now, we put the last parts in place: when we create an object, we check to see
whether an object with the unique ID has a damage tag. If it has, then we apply
the tag:

GameObject *

ObjectFactory::CreateObject(char const * pszType,

ObjectID anID)

{

GameObject * pObject = 0;

if (!strcmpi(pszType, "scenery"))

{

pObject = new Scenery(anID);

}

else if (!strcmpi(pszType, "furniture"))

{

pObject = new Furniture(anID);

}

if (pObject != 0)

{

// Note that because we use ID’s here, not object

// pointers, it doesn’t matter if the game object

Game objects 323

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 323

// supports damage or not. We still get a valid

// return from the search because if it doesn’t

// support damage it will never get in there.

DamageTag * pTag =

m_DamageRegistry.FindEntry(anID);

if (pTag != 0)

{

pTag->Apply(pObject);

}

}

}

Here are the corresponding DeleteObject() and DestroyObject() functions:

void ObjectFactory::DeleteObject(GameObject * pObject)

{

delete pObject;

}

void ObjectFactory::DestroyObject(GameObject * pObject)

{

DamageTag * pTag =

m_DamageRegistry.FindEntry(pObject->GetId());

if (pTag != 0)

{

m_DamageRegistry.RemoveEntry(pObject->GetId());

delete pTag;

}

delete pObject;

}

And finally, here’s the glue that makes it all work:

void ObjectFactory::

RegisterDamageTag(ObjectID const& anID,

DMG::DamageTag * pTag)

{

// Assert(entry does not already exist);

m_DamageRegistry.AddEntry(anID, pTag);

}

Object-oriented game development324

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 324

The modified version of the object subclass ‘hit’ functions looks like this:

/*virtual*/

void Furniture::OnHit(Bullet * pBullet)

{

// Kill the bullet, add particles, make noise

GenericBulletStuff(pBullet);

DamageTagShatter * pTag;

pTag = (DamageTagShatter*)GetDamageTag();

if (pTag == 0)

{

pTag = (DamageTagShatter*)CreateDamageTag();

SetDamageTag(pTag);

ObjectFactory & anOF = ObjectFactory::Instance();

anOF.RegisterDamageTag(GetId(), pTag);

}

pTag->IncrementHitCount();

pTag->Apply(this);

if (pTag->GetHitCount() > 1)

{

// Destroy me…

}

}

Epilogue
The above fulfils the design criteria to implement persistent damage, but there
are some engineering question marks we can raise about it. Consider the level of
an object. If object A either has an object B or is an object B, then B is consid-
ered to be at a lower level than A. In other words, objects of type B shouldn’t be
aware of the existence of A’s either via ownership or inheritance (see Figure 7.7).

Looking now at our object system, we see this structure: the object factory
is at a higher level than the objects it creates – the object really doesn’t need to
know how it was brought into the world and who owns it. Yet – for a variety of
reasons – game objects need to call factory methods (to register damage, to
destroy other objects, etc.).

So should we be concerned? And if we are concerned, should we do some-
thing about it? ‘Yes’ and ‘Probably not’ are the respective answers.

We should always try to preserve the precedence of objects if we can.
Failing to do so can result in spaghetti systems that limit reuse and are harder to
understand, use, debug and maintain. However, if the result of preserving prece-
dence is a loss of efficiency and an increase in system complexity, it may not
always be a smart move to change things.

Game objects 325

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 325

Consider how we might fix the requirement for objects to register damage
with the factory. Let’s put a flag into the game object that says ‘I’ve been dam-
aged’. The object management system can then scan through all the objects on
every update looking for objects that have been damaged. If it has, then it regis-
ters the tag (the flag needs to be cleared once it has been read otherwise it will
have its tag registered multiple times).

Notice how – by embedding a flag at the base level – we’ve immediately cou-
pled the property of damageability to objects that cannot be damaged. OK, so
let’s put the flag into the IsDamageable class and have the object management
system keep separate lists of damageable and non-damageable objects. Well, you
can sort of see where this is going. In this sort of situation, TINSTAAFL (there is
no such thing as a free lunch).

The bottom-line question is this: is the level coupling between objects and
their factory acceptable? Considering that it takes place at the application
(game) level, which will, in general, yield less reusability than at the library
(component) level, the answer is a resounding ‘Probably’.

Moral: don’t seek perfect engineering solutions everywhere. Try to keep any
coupling and unpleasantness at as high a level as possible. In fact, make every
effort to move dependency out of base classes into derived classes. But remember
that complex functionality is the result of interaction between systems. If at
some level there was no coupling between systems/packages/components/classes,
then there would be no behaviour, ergo no game, so what are we doing here?

7.3 Summary

● Game objects: you’ll have lots of them, so they need to be carefully designed,
implemented and managed.

Object-oriented game development326

ObjectFactory

Game

Object factory

ObjectFactory

*Objects

Medium

High

Low

Figure 7.7
Model hierarchy including
damageable elements.

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 326

● Memory management will be an issue with your game objects. Allocate from
fixed object pools where possible. Otherwise avoid the use of generic memory
management strategies because fragmentation depends on the unique pattern
of allocations and frees that your application executes.

● That said, some objects perennially cause more problems than others – strings,
for example.

● Objects referencing other objects can be tricky – especially in games with many
entities that support network play (and all the issues that latency brings). Failure
to do it properly can create all sorts of nasty bugs. So do it properly!

● It’s nigh impossible to write real-life systems that are architecturally perfect. This
should in no way prevent you from trying to do so.

Game objects 327

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 327

8985 OOGD_C07.QXD 2/12/03 1:07 pm Page 328

Many games companies choose to employ a team of professional game
designers to specify the content of their multimillion-pound develop-
ment ventures, even those that don’t nominate parts of the team –

artists or programmers – to have the controlling influence on how the game
behaves when it is running. We’ll assume, therefore, that there are a bunch of
guys and gals referred to as ‘designers’ who have some degree of control regard-
ing game content.

Game designers often have the responsibility of implementing high-level
behaviour through a data-driven scripting interface. To be used effectively,
scripting requires the implementer to have both design skills and the analytic
mindset of a programmer, and this can be a problem if the designer has not
come from that sort of a background. Much of modern game content develop-
ment involves the use of a scripting system, be it explicit through text entry or
implicit through some high-level GUI that writes the scripts for you. The trou-
ble with the latter system is that development of GUIs is time-consuming and it
can work only when the lower-level (text) scripting system is in place (other-
wise, what would it be writing?). In other words, designers are usually coerced
into using the text interface with the carrot of the GUI to come later.

The introduction of a scripting language can be a bit traumatic. I don’t
intend to be patronising here: designers are often uncomfortable with abstract
programmer concepts, and if the syntax and semantics of the language are not
easily accessible, then the result can be frustration and inevitably a substandard
product. (Come to that, many programmers will struggle with a poorly thought-
out scripting language.)

Worse, the introductions of a new bespoke scripting system every time a
game is in development will almost certainly be unpopular. The learning of new
paradigms (along with their idiosyncrasies) will again cause some annoyance
and adversely affect productivity and quality.

There is, therefore, a powerful argument for designing and implementing a
single, flexible scripting system that will work with a number of products. This
gives the design/programming team time to learn how to use the system.
Meanwhile, the team writing the scripting system can be involved in documen-
tation and training, if these are not too dirty words.

Design-driven control 8

329

OOGD_C08.QXD 10/14/03 11:47 AM Page 329

How to write a powerful, fast and flexible scripting system for game develop-
ment would require a book in itself. However, it is worth outlining the broad
architecture and some relevant technologies that you might meet along the way.

First – and perhaps most important of all – is understanding the motivation
for having a scripting language. They can often be written for well intentioned
but ultimately bogus reasons, and we would hope to be using the right tool for
the right job.

8.1 Decoupling behaviour from game code

Often, the ability to implement game functionality independent of the code
base is a motivating factor. Rebuilding a project may take a significant time –
perhaps five to ten minutes for a small to medium-sized project near comple-
tion. It would be frustrating to have to endure that every time changes were
made in a high-level system. Since a script is simply data loaded into the game,
no rebuilds are required on change, and at most a restart would be in order (for
well-written systems, even that would not be required).

Ah, if only it were that simple! Consider a multimodule scripting system
that allows the designer to access in-game C++ classes in a controlled way, create
and test variables and write functions to encapsulate the functionality. If script
A requires to access a function defined in script B, then clearly a sophisticated
compile-and-link system is in order, because if the function in script B does not
exist and there is no attempt to validate the call (or indeed the number and type
of parameters or the return value if any), then errant behaviour, and/or a crash,
and/or data corruption will be the inevitable consequence.

In other words, a robust and sensible script system will necessarily have a
build process analogous to that of C++: an optional compilation stage, provided
that you have a very fast ASCII interpreter in the game, and a linking stage
where references to external functions and data are resolved. Clearly, we would
like to automate the process of regenerating program data whenever a script
changes: if script B is altered, then it may affect other scripts that access it, and
it will certainly need to be recompiled and linked.

Now, we may consider using an interpreted language rather than a com-
piled one, if we are prepared to sacrifice both space and time (CPU) penalties.
Matching tokens in an ASCII stream can get quite expensive for a modest to
large lexicon, and if there are many script-controlled elements in the system,
these costs can accumulate. More worryingly, an interpreted system cannot spot
an error until it encounters it. If there is no resolution of identifiers when the
game is built, then an error in an infrequently executed script branch could go
undetected, resulting in an embarrassing and/or expensive bug.

We may also need to rebuild scripts if the in-game script interfaces change
(though this depends intimately on how the internal engine functions). With
this view of scripting, the distinction between a script and a C++ component
starts to become quite blurred. With this motivation alone, the need for a mod-

Object-oriented game development330

OOGD_C08.QXD 10/14/03 11:47 AM Page 330

ular scripting system is difficult to justify; you might as well give designers a
C++ development system, a library of object and function calls they can make
and let them get on with it. Clearly, this is not a very designer-friendly way to
go about development.

8.2 Simplifying the creation and management of high-level
behaviour

What we want is to make our jobs easier by spreading the load – getting as far
away as is sensible from the sort of model where a designer sits with a program-
mer and tells them what they want, and they tweak code and numbers until
they get it. If designers are to work relatively independently from programmers,
then the language itself must be accessible to non-programmer types. All of the
powerful and difficult constructs that programmers deal with on a day-to-day
basis need to be totally encapsulated within the language. For example, point-
ers: nowhere should there be even the merest whiff that if you ask for
something in a script, then you need to delete it later. The language should be
simple and intuitive.

The most familiar language to most people who have had exposure to com-
puters is probably some flavour of BASIC. These days, Microsoft’s Visual Basic
can be used to automate all the common Office packages; it even has access to
the most powerful graphics capabilities through the DirectX COM mechanism.
Basing a scripting system on the syntax of such a BASIC is a good start, particu-
larly because so many resources for learning how to use these languages exist
already: instant documentation!

However, having a dialect of BASIC talk to the game code is not enough in
itself, because the language is usually limited in its ability to talk to and extend
high-level game systems. For example, most BASICs have no concept of event
management.

8.2.1 A functional paradigm
In other words, the language defines a way of doing things over and above the
ability to set variables and call functions. For example, the ability for the script-
controlled C++ object to respond to in-game events, or the definition of state
and transition management for the controlled game objects.

This goes hand in hand with an execution model. C++ runs in a linear fash-
ion. A script, however, is associated with a C++ object or objects, must coexist
with other scripted objects and scripts and so execution must be ‘time-sliced’.
So, with scripting running on a per-scriptable-game-object, per-n-frames basis,
the method of instruction execution is anything but linear. Exactly how and
when the scripting system runs defines the extra power that the language gives
us over writing functionality in C++.

Now, we’re starting to get to the hub of the scripting issue, but we have to
be a little careful. If we seek a common scripting language for several games that

Design-driven control 331

OOGD_C08.QXD 10/14/03 11:47 AM Page 331

have radically different architectures, we could easily shoot ourselves in the foot
by having to rewrite a lot of C++ in the script execution systems to talk to the
game code and vice versa. And we certainly shouldn’t consider compromising
the game architecture just because of the way our scripting language works.

How do we resolve this? By writing a scripting language that is powerful
and fast enough to write intermediate-level systems as well as the high-level sys-
tems. The C++ side of the scripting system is relegated to being a fast, compact
execution kernel that defines the framework that the higher levels are built on
(see Figure 8.1).

This layered approach has some appealing benefits. The system should be
highly portable across target platforms, since only the kernel – and only parts of
it at that – are likely to be hardware-specific. It also allows both programmers
and technically oriented designers control over game functionality, and it goes
some way towards creating a system that can be rewritten without having to
rebuild any C++ at all.

An interesting question to ask is what functional paradigm should we use?
Here are three possibilities, outlined for brevity. (There are obviously many
other paradigms, but we’ll restrict our discussion to these because they highlight
most of the key issues.)

Linear control
In this scheme, scripts are executed in a linear fashion, with the usual condi-
tional tests, loops and the like to control the flow of control. There is a
distinction between commands that are executable immediately (atomic) and
those that require some amount of time to complete (re-entrant). For example:

wait 10 // Re-entrant

this.set_position 0, 0, 0 // Atomic

this.set_velocity 0, 0, 1 // Atomic

wait_until(this.z >= 10) // Re-entrant

Object-oriented game development332

C++
kernal

Script core

Script shell

Figure 8.1
Architecture for a
scripting system.

OOGD_C08.QXD 10/14/03 11:47 AM Page 332

Allowing re-entrancy means that the scripts can be time-sliced to any granularity
providing that some concept of elapsed time can be accounted for in the scripts.

Event-driven
We start with a precise object-oriented definition of an event: an event is an
object that has an associated condition and an action. The condition is an
object that evaluates to either true or false. If the result is the former, then the
action is performed:

The scripting system supplies a number of built-in conditions, such as ‘is cre-
ated’ and ‘is destroyed’, which can be applied to those in-game objects that
require event-driven behaviour, and also allows the author the ability to write
their own conditions via a custom event class (e.g. ‘if door is unlocked’, or ‘if
energy < 10’, or ‘if variable1 equals variable2’) whose associated actions drive
the game logic.

event create

this.energy = 1000

end_event

event destroy

message "bang!"

end_event

event time > 30

message "It’s getting late…"

end_event

event custom MyCondition(this.x)

message "Orangutan!"

this.energy = 1000

end_event

function boolean MyCondition(real x)

return x > 10

end_function

Design-driven control 333

Action

Event

Condition

Condition Action

OOGD_C08.QXD 10/14/03 11:47 AM Page 333

Prioritised task execution
A task is defined as a command that executes until completion. All tasks are, by
their nature, re-entrant, though in practice some need be executed only once. For
example, consider an aircraft flying at some arbitrary point in space. The task

fly_to_waypoint 27

will continue to execute until the waypoint (number 27) is reached. Since this is a
re-entrant call, the actual code will not block. Consider now a list of tasks:

task1

task2

…

taskN

Within the task execution system, there is the concept of a current task, and
this is executed once per frame (re-entrantly). We apply the following algorithm
typically once every second or so but with controllable granularity:

algorithm evaluate_tasks

current_task = task1

while(current_task != end_of_tasks)

if (current_task is viable)

execute current_task

else

current_task = next_task(current_task)

endif

endwhile

endalgorithm

A task is considered viable if it is not complete (e.g. the aircraft is not already at
waypoint 27) and it refers to a valid object or state (e.g. if the task is ‘attack red
baron’ and the Red Baron is dead, then the task is invalid). The fact that we start
with task1 at the top upon every re-evaluation is significant. Given two tasks in
a list:

Task M

Task M+1

Task M will always be executed before M+1, assuming both tasks are viable.
Hence, the order of the tasks defines a set of decreasing priority. Implementing
conditional tasks makes this system quite powerful:

Object-oriented game development334

OOGD_C08.QXD 10/14/03 11:47 AM Page 334

Task List 1

Task 1.1

…

Task 1.M

If (<conditional expression>)

Task List 2

Task 2.1

…

Task 2.N

EndTaskList

(EndIf)

…

Task 1.N

EndTaskList

So which of these three schemes is preferable? From a purely functional stand-
point, there is actually not very much to choose between them. Almost any
high-level behaviour can be implemented using these paradigms, though with
varying levels of complexity. Some constructs will be easier using one system
than with another. In particular, when using a purely linear execution model,
the number of IF/THEN/ELSE statements required to implement an event or
task-like mechanism would result in hard-to-read (ergo hard-to-debug) scripts.
Events can also get a bit complex, particularly if an event spawns other events,
and in this case the complexity is implicit since the designers can’t see how
spaghettified things are just by inspecting the script.

Which leaves us with the task evaluation system. Let’s look at that in a little
more detail.

8.2.2 Task-based control
We’ll start with a mix-in property class that confers taskability to anything that
inherits it. The object needs to keep an execution context (what it’s currently
doing), and a reference to a prioritised list of tasks (see Figure 8.2).

Subclasses of the abstract task_Task implement the various task types.
They support the interface:

class task_Task

{

public:

enum Status

{

INVALID = 0, // Task cannot be performed

COMPLETE, // Task has run to completion

RUNNING, // Work in progress

VIABLE, // Ready to run if required

};

Design-driven control 335

OOGD_C08.QXD 10/14/03 11:47 AM Page 335

task_Task();

task_Task(float fGranularity);

virtual ~task_Task();

// Can the task be done?

virtual Status Evaluate() const = 0;

// Performs the task’s duty.

virtual Status Execute() = 0;

// Get how long the task should run before re-

// evaluation.

float GetGranularity() const;

private:

float m_fGranularity;

};

The task_Task::Status type records the status of the tasks in the list. The con-
text keeps track of the status of all the tasks in the associated task list. This
allows us to share task lists between several objects (a task may be complete for
one object but running for another).

The task_IsTaskDriven property class implements the fundamental task
algorithm in its update method:

// task_IsTaskDriven.hpp

class task_TaskList;

class task_Context;

Object-oriented game development336

task_Task

task_TaskList

*Task

*

task_Status

task_Context

*Status

Current

task_IsTaskDriven

Task listContext

Figure 8.2
Object diagram for the

task execution
component TASK.

OOGD_C08.QXD 10/14/03 11:47 AM Page 336

class task_IsTaskDriven

{

public:

task_IsTaskDriven();

void Update(float dt);

void SetTaskList(task_TaskList * pTaskList);

private:

float m_fTaskTimer;

task_Context * m_pContext;

task_TaskList * m_pTaskList;

};

// task_IsTaskDriven.cpp

#include "task_IsTaskDriven.hpp"

#include "task_Context.hpp"

#include "task_TaskList.hpp"

#include "task_Task.hpp"

namespace

{

// Finds the index of a task in a tasklist.

int taskIndex(task_TaskList *pList, task_Task *pTask);

}

//…

void task_IsTaskDriven::Update(float dt)

{

bool bEvaluateTasks = false;

task_Task * pTask = m_pContext->GetCurrentTask();

if (pTask == 0)

{

// Nothing to do?

bEvaluateTasks = true;

}

else

{

// Have we run longer than granularity? If so,

// look to see if higher-priority tasks are pending.

m_fTaskTimer -= dt;

if (m_fTaskTimer <= 0.0f)

{

Design-driven control 337

OOGD_C08.QXD 10/14/03 11:47 AM Page 337

bEvaluateTasks = true;

}

else

{

// Run an iteration of this task.

task_Task::Status eStatus =

pTask->Execute();

switch(eStatus)

{

case task_Task::COMPLETE:

{

int iTask =

taskIndex(m_pContext,pTask);

m_pContext->SetTaskComplete(iTask);

bEvaluateTasks = true;

break;

}

case task_Task::INVALID:

bEvaluateTasks = true;

break;

case task_Task::RUNNING:

case task_Task::VIABLE:

break;

default:

// ???

break;

}

}

}

if (bEvaluateTasks)

{

m_pContext->SetCurrentTask(0);

for(int iTask = 0;

iTask < m_pTaskList->GetNumberOfTasks();

++iTask)

{

if (!m_pContext->TaskAvailable(iTask))

{

// Task has previously completed.

continue;

}

Object-oriented game development338

OOGD_C08.QXD 10/14/03 11:47 AM Page 338

task_Task * pTask = m_pTask->GetTask(iTask);

task_Task::Status eStatus =

pTask->Evaluate();

if (pStatus == task_Task::VIABLE)

{

m_pContext->SetCurrentTask(pTask);

m_fTaskTimer = pTask->GetGranularity();

break;

}

}

}

}

Cunningly, we can implement tasks such as IFs as compound tasks – tasks that
contains subtasks. We use a context within this task to record the status of the
subtasks. If and when all the subtasks are complete, we can return the status of
the compound task as complete:

// task_CompoundTask.hpp

#include "task_Task.hpp"

class task_CompoundTask : public task_Task

{

public:

task_CompoundTask(); // and other constructors.

Status Evaluate();

Status Execute();

void AddSubtasks(task_TaskList * pSubTask);

private:

task_TaskList * m_pSubTasks;

task_Context * m_pContext;

};

// task_IfTask.hpp

#include "task_CompoundTask.hpp"

class task_IfTask : public task_CompoundTask

{

public:

Status Execute();

Status Evaluate();

};

Design-driven control 339

OOGD_C08.QXD 10/14/03 11:47 AM Page 339

The tasking system is powerful, but it has a monolithic feel to it: the only things
in task lists are tasks (of course), and it does not readily support linear execution
without some modification. Consequently, it doesn’t quite match up with the
component layering we are looking for (refer back to Figure 8.1). It is also a tad
counterintuitive in that it looks like a sequence of linear commands but isn’t
really. So first up against the wall is task execution. (That’s not to say that this
paradigm is of no use in games – at least three commercially successful titles
that I know of have employed such a system. However, we are looking for some-
thing more specific here.)

That leaves us with linear execution and event management.1 Interestingly,
the two paradigms are not mutually exclusive; in fact, a closer analysis reveals
that the event-driven system requires some amount of linear execution to evalu-
ate conditions and execute actions (though actions are considered atomic). We
can therefore infer that the event system is a higher-level entity than the linear
system, and we seem to be heading towards adapting Figure 8.1 to be more like
that shown in Figure 8.3. Note that the choice of event management as the top
layer is to some extent arbitrary; other systems might do just as well or perhaps
even better. We’re supporting events both at the script level to allow flexibility
and directly at the C++ kernel level for efficiency.

Let’s now look at the design and C++ implementation for an event manage-
ment system in some detail.

Object-oriented game development340

1 We’re ignoring hybrid methods here. There’s nothing to stop us mixing events and tasks, other
than the desire to keep things simple, but not so simple that we can’t fulfil our design goals: a prin-
ciple I refer to as ‘Occam’s Styptic Pencil’.

C++ Kernal

Linear Execution Script Core

Event Management

Figure 8.3
Layers within the

scripting system. Note
that the C++ kernel can

interact with both the
intermediate (linear) and
high (event) level layers.

OOGD_C08.QXD 10/14/03 11:47 AM Page 340

8.3 Event management details

First, we need to elaborate a bit on the actions and conditions shown in Figure
8.4. Recall that we want to have hard-coded event types and also custom event
types so that we can have the following permutations:

● hard-coded (C++) condition, C++ action
● C++ condition, script-defined action
● script-defined condition, C++ action
● script-defined condition, script-defined action.

In other words, conditions and actions both refer to abstract entities: com-
mands that are articulated using C++, and commands that are articulated using
scripts. We’ll call these articulations.

Now, since multiple objects could share the same event definitions, it is
probably worth our while reference counting the articulations and allowing the
conditions and actions to be subclasses of things that have articulations, which
we call clauses. Since several events may share the same clause, we also reference
count the clause class. Figure 8.4 shows the relevant participating classes.

So, every event has zero or one condition clause and one action clause,
both of which can be articulated in either code or script. Just what we want.
Now, let’s look a little bit more at the event class itself.

One feature that will definitely add power is to distinguish between one-
shot events and repeatable events. The former executes its action once at most,
while the latter runs the action at most n times, re-evaluating its condition peri-
odically. Invoking the maxim that we subclass only when the behaviour

Design-driven control 341

evt_Action

evt_Clause

evt_Condition evt_CodeArticulation

evt_Articulation

evt_ScriptArticulation

Articulation

evt_Event

[Condition]

sys_IsRefCounted

System

Action

Figure 8.4
Event system part 1.

OOGD_C08.QXD 10/14/03 11:47 AM Page 341

changes, not when some parameter changes, we can generalise this to a single
event class, as shown here:

So far, so good. Now, how do we add event management to an in-game object?
We’ll assume there’s a GameObject class already, and we’re again going to use
the multiple-inheritance component mix-in technique analogous to the task-
based system we discussed above. Once per game loop, each object must look to
see if there are events ready to evaluate. If there are, then their conditions are
executed, and if they return true the actions are executed. The repeat count is
then decremented, and if it hits zero then the event is not needed any more and
can be freed. We’ll create a property class IsEventDriven to encapsulate this
behaviour (Figure 8.5).

Object-oriented game development342

float

evt_Event

int

Repeats (1) Period

Event

evt_IsEventDriven

GameObject

Game

evt_EventSchedule

evt_Event

*Event

Scheduler

Figure 8.5
Object diagram for the

event management
component EVT.

OOGD_C08.QXD 10/14/03 11:47 AM Page 342

The property class should look like this:

// evt_IsEventDriven.hpp

class evt_Event;

class evt_EventScheduler;

class evt_IsEventDriven

{

public:

evt_IsEventDriven();

virtual ~evt_IsEventDriven();

void Initialise();

// MUST be called before using events for reasons

// that will become apparent later.

void Update(float dt);

// Brings the object up-to-date.

void AddEvent(evt_Event * pEvent);

void RemoveEvent(evt_Event * pEvent);

void RemoveAllEvents();

// Event control.

private:

evt_EventScheduler * m_pScheduler;

};

// evt_IsEventDriven.cpp

#include "evt_IsEventDriven.hpp"

#include <cassert>

// The scheduler is an internal class, whose details need

// not concern the user.

class evt_EventScheduler

{

public:

void Update(float dt);

void AddEvent(evt_Event * pEvent);

void RemoveEvent(evt_Event * pEvent);

void RemoveAllEvents();

// …

};

Design-driven control 343

OOGD_C08.QXD 10/14/03 11:47 AM Page 343

evt_IsEventDriven::evt_IsEventDriven()

: m_pScheduler(0)

{

// Some of the classes which inherit from this

// might not require event-driven behaviour.

// Having a pointer to the scheduler in the

// event class body keeps the size small if we

// never use events and insulates the user from

// the implementation details.

}

evt_IsEventDriven::~evt_IsEventDriven()

{

delete m_pScheduler;

}

void evt_IsEventDriven::Initialise()

{

assert(!m_pScheduler && "Called twice?");

m_pScheduler = new evt_EventScheduler;

}

void evt_IsEventDriven::Update(float dt)

{

if (m_pScheduler)

{

m_pScheduler->Update(dt);

}

}

void evt_IsEventDriven::AddEvent(evt_Event * pEvent)

{

assert(m_pScheduler && "Initialise() not called");

m_pScheduler->AddEvent(pEvent);

}

// other methods similar.

Before we leave events, it’s worth looking at one big optimisation that we can
make. The typical execution cycle for the scheduler will be to traverse its collec-
tion of events, looking to see if any are pending. If we create many events that
are based on time (say at t = 10 seconds, go ‘bang!’), then if the time is t there’s

Object-oriented game development344

OOGD_C08.QXD 10/14/03 11:47 AM Page 344

no point looking at time events with times greater than t. This motivates the
scheduler to maintain a sorted list (or more likely a heap, a collection class that
uses a binary tree to maintain a sort order) of events separate from the other
events (we’ll call them state events) and bail out of updating timed events with-
out having to traverse the entire list. Luckily, we hid the definition of the
scheduler in the cpp file, so we need only modify the evt_IsEventDriven inter-
face to add events of timed and state flavours, and subclass evt_Event
appropriately, as shown here:

The interface to the event management system may then contain prototypes
like this:

void evt_IsEventDriven::AddTimedEvent(evt_TimedEvent *);

void evt_IsEventDriven::AddStateEvent(evt_StateEvent *);

A purist might actually argue that there is a loss of encapsulation here. The fact
that timed events are handled differently from state events is an implementa-
tion detail of the scheduler class, which is an internal class. Why should the
interface of the property class distinguish them? The purist would probably get
around this as follows: to the event management package, add a factory compo-
nent that creates events:

struct evt_Factory

{

evt_Event * CreateTimedEvent(float fTime,

evt_Action * pAction,

int iRepeats,

float fPeriod);

evt_Event * CreateStateEvent(evt_Condition * pCond,

evt_Action * pAction,

int iRepeats,

float fPeriod);

};

Aside from holding pointers to the base event, the users never need tinker with
the events after they are created. This means that the definition of timed and
state event classes become private to the property component, and we can add
methods:

Design-driven control 345

evt_StateEvent

evt_Event

evt_TimedEvent

OOGD_C08.QXD 10/14/03 11:47 AM Page 345

class evt_Event

{

public:

virtual void Schedule(evt_Scheduler *pScheduler)=0;

};

// evt_IsEventDriven.cpp

#include "evt_IsEventDriven.hpp"

#include "evt_Event.hpp"

class evt_TimedEvent : public evt_Event

{

public:

void Schedule(evt_Scheduler * pScheduler)

{

pScheduler->AddTimedEvent(this);

}

};

class evt_StateEvent : public evt_Event

{

public:

void Schedule(evt_Scheduler * pScheduler)

{

pScheduler->AddStateEvent(this);

}

};

class evt_Scheduler

{

public:

void AddTimedEvent(evt_TimedEvent * pEvent);

void AddStateEvent(evt_StateEvent * pEvent);

};

and so we get to keep our encapsulation-preserving interface:

// evt_IsEventDriven.hpp

class evt_EventScheduler;

class evt_IsEventDriven

{

public:

void AddEvent(evt_Event * pEvent);

Object-oriented game development346

OOGD_C08.QXD 10/14/03 11:47 AM Page 346

private:

evt_EventScheduler * m_pScheduler;

};

// evt_IsEventDriven.cpp

void evt_IsEventDriven::AddEvent(evt_Event * pEvent)

{

pEvent->Schedule(m_pScheduler);

}

8.4 Language issues

If I had a penny for every time I’d seen a scripting system with a core loop look-
ing like:

const char cToken[MAX_TOKEN_NAME];

while(aStream.ReadToken(cToken))

{

if (!strcmp(cToken, "set_position"))

{

float x, y, z;

aStream.ReadFloat(&x);

aStream.ReadFloat(&y);

aStream.ReadFloat(&z);

SetPosition(x, y, z);

}

else if (!strcmp(cToken, "message"))

{

// …

}

// …

else

{

Warning("Unknown command ‘%s’, cToken);

}

}

then I’d have enough for a cappuccino and a skinny breakfast muffin at my
favourite multinational coffee bar. Leaving aside the horrors of case-sensitive
comparisons and the hideous inefficiency of a large number of per-object-
per-game-loop string comparisons, the main problem with this sort of scripting
is the lack of grammar.

Design-driven control 347

OOGD_C08.QXD 10/14/03 11:47 AM Page 347

For example, the above set_position command can fall flat on its face if
presented with

set_position 10 15 + 2*sin(t * 6.28) 1.0E-2

for a multitude of reasons. There are two alternatives for handling grammar:

● An escalating series of special-case bodges in the scripting system.
● Use of a grammar definition language to generate the script toolset.

The latter is, in theory, more appealing than the former. In practice, program-
mers have to wrestle with tools such as lex and yacc or flex and bison, or – more
recently – antlr (all these are available, free of charge, over the Internet). Often,
it looks as if the cure is worse than the disease, as specifying, modifying and
debugging a complete grammar can be a sizeable task.

The tools mentioned above can generate code for any platform, within
limits defined mainly by the core systems that they insert into the project code
base. For example, antlr uses STL, therefore your target platform would need to
support that to use it at run time. They may make assumptions about things
such as IO, as well, for example reading from streams (cin) rather than stdio
(stdin). So you will inevitably have to ask yourself: ‘Is it really worth it?’

Suggested answer: ‘Yes’. Remember that the goal is to write a script language
that can support high- and intermediate-level behaviour. Programmers are going
to get quite frustrated with a grammar-lite language if they need to implement
moderately sophisticated behaviour with it. Even designers will get annoyed
with lack of reasonable semantic and grammatical power. One project I knew of
had a bespoke scripting language that allowed ‘IF’ statements but not an ‘ELSE’
clause, much to the chagrin of the scriptwriters.

If the game would be served better by writing a GUI to implement drag-
and-drop scripting, then much ugliness and syntactic limitations can be hidden,
providing that no one will be required to debug the script that the GUI gener-
ates. Chance would be a fine thing! If the designers don’t understand the
scripting language (they do everything with point-and-click, so why should
they?), then it will fall to programmers to do the debugging. Recall that another
goal of writing a scripting system was to spread the load between disciplines,
and it is clear that a GUI can have the opposite effect to that intended. There is
also a question mark over how flexible a WIMP-based scripting environment
really can be, and it is going to be difficult to write a generic GUI to wrap a
scripting system. Writing a bespoke – per-project – GUI makes more sense in
theory, but in practice it can be time-consuming. It depends on the complexity
of the toolset to determine feasibility, as well as on having an existing library of
tool building components that can speed up the process of developing game
editing systems.

Object-oriented game development348

OOGD_C08.QXD 10/14/03 11:47 AM Page 348

8.5 Summary

● Games that are data-driven need no or minimal recompilation between data
changes, speeding up the development cycle …

● … but if overused they can obfuscate the way the application works, slowing
down development.

● Game designers need to be able to control the game in a legible, high-level fash-
ion without having to worry about nasty technical issues. Data-driven systems
are ideal for this.

● Scripting systems are, to a large extent, functionally equivalent. Though many exe-
cution paradigms exist, you can usually achieve the same results independent of
the implemented methodology. Therefore, simplicity and clarity are paramount.

● Make the effort to create a familiar grammar for your scripting system, and don’t
waste time writing fancy graphical drag-and-drop interfaces.

Design-driven control 349

OOGD_C08.QXD 10/14/03 11:47 AM Page 349

OOGD_C08.QXD 10/14/03 11:47 AM Page 350

9.1 Introduction

In this chapter, we discuss two important questions in development and pro-
vide a single answer for both. They turn out to be fundamental not only to the
logical structure of the code-development process but also to the production
methodology. Here are the questions:

● What order should tasks be performed in?
● When is the game finished?

9.1.1 Prioritising tasks
The worst thing in the world as far as development is concerned is to be writing
system-critical code towards the end of a project. Yet this is such a common
occurrence you would think someone would have spotted it and put a stop to it.
Not only will (and does) it induce huge amounts of stress in the team, but it is
absolutely guaranteed to introduce all sorts of problems in other systems that
were previously considered stable.

Ideally, we would like to pick an order in which to perform tasks that does
not lead to this horror. Ideally, we would like to be able to know in advance
which tasks and systems we need to work on first and which can wait a while. If
we cannot attain this ideal state – and I would be foolhardy to suggest we can –
we can certainly do better than writing critical-path code during alpha or beta
phases in a project.

9.1.2 How long is a piece of virtual string?
Although a game is a finite piece of software, it is rather tricky to describe crite-
ria for completion. It is almost universally true that the functionality and
features of games that we see on store shelves are only some percentage of the
development team’s ambitions. More will have been designed than imple-
mented, and not all that was implemented will have been used. Given, then,
that games rarely reach the all-done mark, how are we to decide whether a game

Iterative development
techniques

9

351

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 351

is releasable? What metrics are available to inform us how much is actually
done and dusted?

Consider also a problem of scheduling subtasks. Say a programmer (let’s call
her Jo) has said it’ll take ten days to write the ‘exploding trap’ object, and that
she’s four days into this time. Is her task 40% complete? It’s very hard to tell,
especially since we cannot see the trap exploding till maybe day nine or ten. But
let’s be optimistic and suggest that Jo works hard and gets the job done in eight
days. Usually there is a profit of plus two days marked up, the task is marked as
complete, and everything looks hunky dory for the project.

Later on, it turns out that the trap needs to be modified since (say) it needs
to be able to trap larger objects. It’s another four days of work for our Jo, and
now we have a deficit of minus two days, and suddenly the project starts to look
like it’s slipping.

The point is this: most objects in a game rarely get written just once. We’ll
revisit them over the course of a project to fix bugs, add and remove features,
optimise and maybe even rewrite them entirely. This isn’t a pathological behav-
iour: almost all significant software systems grow and evolve over the course of
time. How naive then does the ‘four days in, 40% complete’ metric look? Pretty
damn naive, to put it politely. What we really need is a system that allows time
and space for evolution without driving projects into schedule loss and the
resulting state of semi-panic that characterises most development processes.

9.2 Incremental delivery

9.2.1 Milestones around my neck
Almost all software development (outside of research, which by its nature it open-
ended) is driven by some kind of milestone system. Let me state unequivocally
now that this is a good thing, and that the days of anarchic commercial software
development should be buried and remain so. Nevertheless, just by virtue of it
being a good thing does not mean that it doesn’t come with its own particular set
of pros and cons. In particular, if we accept (for all the pro reasons) that mile-
stone-driven development is the way to go, then we must also pay attention to
the con side, which will inevitably frustrate our attempts to make the process
work with the efficiency we require for delivery on time and within budget.

One of the most difficult cons that games developers have to deal with is
the different way that milestones and the associated schedules are interpreted
by production teams and management. As most of those who have worked with
non-trivial software products (or, in fact, any large project that requires multiple
bespoke interacting component parts spanning a variety of disciplines) have
come to realise, schedules represent a team’s best guess at how the product will
evolve over time.

On the other hand, management – perhaps unused to the way that sched-
ules are produced, perhaps because it requires correlation of studio funding with

Object-oriented game development352

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 352

progress – often read the document completely differently. They see the docu-
ment almost as a contract between themselves and developers, promising
certain things at certain times.

This disparity between seeing a schedule as a framework for project evolu-
tion to facilitate tracking, and as a binding agreement to deliver particular
features at particular times, causes much angst for both developers and man-
agers. The former often have to work ridiculous hours under pressure to get
promised features out. The latter have responsibility for financial balances that
depend on the features being in place.

9.2.2 Internal and external milestones
We can see that there are some basic premises about milestones that need to
be addressed:

● Teams that do not work to milestones that mark important features becom-
ing available in the game will not be able to deliver on time.

● Teams that are held to unrealistic milestones will not be able to deliver on
time, irrespective of how financially important or lucrative that may be.

● Managers need to know how long the team thinks development will be and
what the important markers are along the way. Without this, there can be
no business plan and therefore no project.

Clearly, the sort of milestones that managers need to be aware of are cruder or at
a lower granularity than the milestones that developers need to pace the evolu-
tion of the product. We can therefore distinguish between external milestones,
which are broad-brush descriptions of high-level features with granularity of
weeks (maybe even months), and internal milestones, which are medium- and
fine-level features scheduled in weeks and days.

Managers therefore never need to know the internal mechanisms that gen-
erate the software. To adopt a programming metaphor, the team can be viewed
as a black-box type of object with the producer as its interface. There are two
types of question (public methods, to extend the analogy) that a manager can
ask of a producer:

● Give me the latest version of the game.
● Give me the latest (high-level) schedule.

This is an unrealistically simple example of interaction between production and
management. The latter will want to know issues of team dynamics, why things are
running late (as they inevitably seem to) and a whole host of other project-related
information. However, it draws a fuzzy – but distinguishable – line in the sand
between the scheduling of features and accountability for their development.

Iterative development techniques 353

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 353

9.2.3 The breaking-wheel of progress
There is one other important sense in which management and development
perceive milestones differently. It is based on the concept of visibility and is,
without doubt, the biggest millstone (half-pun intended) around developers’
necks this side of Alpha Centauri.

Almost ubiquitously in the industry, management refuse to regard features
that they cannot see (or perhaps hear) within a short time of picking up the
game as importantly as those obviously visible (or audible) ones. For those of us
that work on AI, physics, memory managers, scripting systems, maths, optimisa-
tion, bug fixing and all those other vital areas of a game’s innards that are not
open to visual inspection, this is particularly galling. To spend weeks and months
working on hidden functionality only to have the team’s work dismissed as inad-
equate because there was no new eye candy is an all too common occurrence.

The education of managers in the realities of development is a slow on-
going and painful process. Meanwhile, we developers have to work with what
we are given, therefore it remains important to – somehow – build ongoing
visible/audible progress into the development of the project.

There is an intimate relationship between the concept of visibility and that
of completeness. Many tasks may not become tangibly present until they are
complete. Saying that something is 40% complete, even if that was a rigorously
obtained metric, might still amount to 0% visible. So, we’ll only be able to
address the issue of progress fully when we deal later with determining com-
pleteness for a task.

9.2.4 Always stay a step ahead
Despite our best – though sometimes a little less – efforts, we will slip. We will
deliver a feature late or perhaps not even at all, and if the management is in a
particularly fussy mood, then there may be much pounding of fists and red
faces. Worse than showing no visible progress would be to show retrograde
progress – fewer features apparent than a previous milestone. Nevertheless, it is
a common and required ability for projects to arbitrarily disable and re-enable
particular functionality within the code base. With the advent of version con-
trol systems, we are now able to store a complete history of source code and
data, so in theory it is always possible to roll back to a previous version of the
game that had the feature enabled.

Just because it’s possible, does that make it desirable? In this case, yes.
Indeed, I would argue that working versions of the game should be built fre-
quently – if not daily, then at least weekly – and archived in some sensible
fashion. When management asks production for the latest version of the game
(one of their two allowed questions from the previous section), then the pro-
ducer will return not the current (working) build but the one previous to that.

Why not the current working build? Because it is important to show
progress, and development must ensure that to the best of their ability the game
has improved visibly from one iteration to the next. If it becomes necessary –

Object-oriented game development354

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 354

and it usually does – to spend time maintaining, upgrading, optimising or
rewriting parts of the code base, then releasing the next-but-one working ver-
sion gives another release with visible improvements before we hit the calm
spot with no apparent progress.

From one point of view, this is a sneaky manoeuvre. It’s no more sneaky
than (say) insuring your house against flood.1 Publishers and managers always
want to see the latest version, and a development team itching to impress may
well be tempted to show them it. Resist this urge! Remember: development
should be opaque to management inspection other than through the supplied
interface. Anything else is just development suicide.

9.3 Iterated delivery

So we’ve decided that rather than work specifically to release code at external
milestones, we’ll supply work-in-progress builds at these times. Internally, we’ll
be working to our own schedule. How should we organise this schedule?

I’ll start by assuming that there is a reasonably comprehensive design docu-
ment for the game (but believe me, you’d be surprised at the number of times
there isn’t). This document should describe, in brief, what the game is about –
characters (if any), storyline (if any), situations and rules. Step one to producing
an internal schedule is to produce the object-oriented design diagram for the
game. We are not interested here in the diagram specifying interrelationships
between the objects; the end goal is simply to produce a big list of all classes
that map directly to concepts in the game. Auxiliary classes such as containers
and mathematical objects need not apply – we are looking only for classes that
map to game-level concepts.

Once we have produced this list, it needs to be given back to the design
team, as step two is really its call. It needs to classify all the objects in the list
(I’ll use the terms ‘objects’ and ‘features’ interchangeably in this section) into
the following three groups:

● core
● required
● desired.

Core features form the basis for the game. Without them, there is only a basic
executable shell consisting of (some of) start-up code, rendering, memory man-
agement, sound, controller support, scripting support, resource management,
etc. Should any of these non-game systems require engineering, then they
should be added to the core group, which will otherwise contain the most fun-

Iterative development techniques 355

1 As I write this section, areas of Britain have been submerged as rain falls near continually and rivers
burst their banks. Property owners will bless their house insurance.

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 355

damental objects. For definiteness, consider a soccer game; the most fundamen-
tal objects are:

● player (and subclasses)
● stats (determining player abilities)
● ball
● pitch (and zones on the pitch)
● goal.

An executable that consists of working versions of these objects (coupled to the
non-game classes) is generally not of playable, let alone releasable, quality.

Required features expand the core functionality into what makes this game
playable and unique. Often, these features are more abstract than core features.
They will embody concepts such as NPC behaviour, scoring systems and rules.
Also, they will pay some homage to the particular genre the game will fit into,
because rival products will dictate that we implement features in order to com-
pete effectively. To continue the soccer example, we might place the following
features in this group:

● AI for player subclasses
● referee (either a visible or invisible one that enforces rules)
● crowd (with context-dependent sounds and graphics)
● knockout, league and cup competitions.

A game consisting of core and required features will be playable and releasable.
Nevertheless, it should be considered the minimal amount of content that will be
releasable, and it still requires work if the game is to be near the top of the genre.

Desired features provide the polish for the game. This will include such
things as visual and audio effects, hidden features and levels, and cheats.
Features in this group will not alter game play in significant ways, though they
will enhance the breadth and depth of the playing experience and (as with
required features) the competition may dictate their inclusion.

Depending on the type of game, they may be game-related objects. For
example, in the soccer game, having assistant referees would be a desired fea-
ture, as the game will function just fine without them.

The end result is a list of features that is effectively sorted in terms of impor-
tance to the product. It is tempting to say that the optimal order of tasks is then
to start at the top – the most important core tasks – and work our way down.
We carry on completing tasks until we run out of time.

Well it’s close, but there’s no cigar for that method. There are fundamental
problems in organising work this way. There is little evidence of anything that
resembles continual progress. In the pathological case, the game is in bits for
the entire development cycle until just before the end, when the bits are pulled
together and – hopefully – fit. This is guaranteed to have producers and man-

Object-oriented game development356

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 356

agement biting their knuckles with stress. Furthermore, the most likely outcome
is that components do not work together or have unforeseen side effects that
may involve radical redesign very late on in the project.

Clearly, it is correct to do the most important tasks first and the superficial
tasks last (time allowing). But if we wish to show continual improvement of the
product, then we shall need to be a little smarter. So we will progress to the
third phase of the iterated delivery method (the actual ‘iterated’ part). We’ll start
again with the list of features, which, because an object-oriented design process
has generated them, map directly to classes.

Consider just one of these classes. How does it start off its life? Usually
something like this:

// File Player.hpp

class Player

{

public:

Player();

~Player();

private:

};

// File Player.cpp

#include "Player.hpp"

Player::Player()

{

}

Player::~Player()

{

}

Over the course of the product development, much will be added and much will
also be removed, but generally the object evolves. This evolution can occur in
one of two ways. First, it can start with zero functionality and end up fully
implemented. This is possible, but not very common. More realistically, the
object is rewritten either fully or partially to have more complex, or more
robust, or more efficient behaviour over the duration.

So far, so obvious. But consider the formalisation of the principle that
objects evolve: instead of evolving the feature from zero functionality at the
start to full functionality at the end, consider writing versions of the full object
functionality. We define the following four versions of the feature:

Iterative development techniques 357

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 357

1 The null version: this is the initial version of the object interface with no imple-
mentation (empty functions). Note that this is a complete project that can be
compiled and linked and that will run, albeit not doing anything useful.

2 The base version: this has a working interface and shows placeholder func-
tionality. Some of the required properties may be empty or have minimal
implementation. For example, a shadow may be represented by a single
grey sprite, and a human character may be represented by a stick person or
a set of flat-shaded boxes. The intent is that the object shows the most basic
behaviour required by the design without proceeding to full implementa-
tion, and therefore integration problems at the object level will show up
sooner rather than later.

3 The nominal version: this iteration of the feature represents a commercially
viable object that has fully implemented and tested behaviour and is visu-
ally acceptable. For example, the shadow may now be implemented as a
series of textured alpha-blended polygons.

4 The optimal version: this is the ultimate singing and dancing version, visu-
ally state of the art, and then some. To continue the shadow example, we
may be computing shadow volumes or using projective texture methods.

We’ll refer to the particular phase that an object is in at any point in the project
as the level of the class: a level 1 object has a null implementation, whereas a
level 4 object is optimal.

Some points to note: first of all, some objects will not fit naturally into this
scheme. Some may be so simple that they go straight from null to optimal.
Conversely, some may be so complex that they require more than four itera-
tions. Neither of these scenarios presents a problem for us, since we aren’t really
counting iterations per se. We’re effectively tracking implementation quality. In
the case of an apparently simple object, we can test it effectively only in the
context of any associated object at whatever level it’s at. In other words, systems
and subsystems have a level, which we can define slightly informally as:

L(subsystem) = minj L(objectj)

L(system) = mini L(subsystemi)

with L() denoting the level of an object, system or subsystem. Applying this idea
to the application as a whole,

L(application) = mink L(systemk)

or, in simple terms, the application’s level is the smallest of its constituent
object levels.

Now we need to put together the ideas of level and priority to get some
useful definitions, which form the basis of iterated delivery.

Object-oriented game development358

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 358

An application is defined as of release quality if, and only if, its required fea-
tures are at the nominal level.

An application is referred to as complete if, and only if, its desired features
are at the optimal level.

From these definitions, we see that there is a sliding scale that starts from a
barely releasable product all the way up to implementing and polishing every
feature that the design specifies. The product just gets better and better, and –
provided that the tasks have been undertaken in a sensible order – can be
released at any time after it becomes of release quality.

The second point to note is that object-oriented development is perfectly
suited to a level-based scheme (and, conversely, procedural development does
not adapt as easily). For example, consider our shadow code. An object that has
a shadow may declare:

class Shadow;

class AnObject

{

public:

// Interface…

private:

Shadow * m_pShadow;

};

Each level of the shadow object can be implemented in a separate subclass:

// File Shadow.hpp

class Shadow

{

public:

// Interface only: null implementation

virtual void Compute(SCENE::Frame * pScene) = 0;

virtual void Render(REND::Target * pTarget) = 0;

};

// File ShadowBasic.hpp

class ShadowBasic : public Shadow

{

public:

// Base implementation.

virtual void Compute(SCENE::Frame * pScene);

virtual void Render(REND::Target * pTarget);

Iterative development techniques 359

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 359

private:

Sprite * m_pSprite;

};

// File ShadowPolygonal.hpp

class ShadowPolygonal : public Shadow

{

public:

// Nominal implementation.

virtual void Compute(SCENE::Frame * pScene);

virtual void Render(REND::Target * pTarget);

private:

Polygon * m_pPolygons;

};

// File ShadowProjected.hpp

class ShadowProjected : public Shadow

{

public:

// Optimal version.

virtual void Compute(SCENE::Frame * pScene) = 0;

virtual void Render(REND::Target * pTarget) = 0;

private:

Texture * m_pProjectedTexture;

};

Within our AnObject class, polymorphism allows us to control which available
implementation of shadows we use:

m_pShadow = new ShadowProjected();

We can even use a so-called factory pattern to create our shadow objects:

// AnObject.cpp

#define SHADOW_LEVEL level_NOMINAL

// …

m_pShadow = Shadow::CreateShadow(SHADOW_LEVEL);

// Shadow.cpp

/*static*/

Shadow * Shadow::CreateShadow(int iLevel)

{

Object-oriented game development360

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 360

Shadow * pShadow = 0;

switch(iLevel)

{

case level_BASE:

pShadow = new ShadowBasic();

break;

case level_NOMINAL:

pShadow = new ShadowPolygonal();

break;

case level_OPTIMAL:

pShadow = new ShadowOptimal();

break;

}

return(pShadow);

}

9.3.1 Waste not, want not
Does this mean that we have to write similar code three times? Yes it does, but
all the process has done is highlight the fact that (by and large) this is what we
do anyway. It just so happens that when we do things piecemeal in an ad hoc
order, we’re less aware of the partial and complete rewrites during development.
By developing in the above fashion, we are, to some extent, duplicating work,
but that duplication does not go to waste. First, we will acquire a degree of expe-
rience when writing our basic implementations that will be useful when we
write the more complex ones. If we’re clever (and we are), then we will write a
number of support functions, systems and objects that will make implementa-
tion of the nominal and optimal versions considerably simpler.

Furthermore, by writing an object in a suitably object-oriented fashion, we
may end up with a reusable component. Once we’ve written a basic shadow,
then it can be used as a base implementation in any game that requires shad-
ows. That means we can get instant functionality at the logical and visual level.
It is the author’s experience that it is harder to transpose nominal implementa-
tions and more difficult still to move optimal code in this fashion; the idea is to
get placeholder functionality in as quickly as possible.

9.3.2 Ordering using priorities and levels
Returning to the two classification schemes, we can see that there is at least one
sensible order in which to perform tasks that fulfils our goals: we would like to
perform the important – core – tasks first, primarily because we shall be writing
some of the major systems and subsystems that later layers will depend on.

Iterative development techniques 361

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 361

Then, we would perform the required tasks, then the desired ones.2 While this is
a laudable attempt at doing the things that matter first, we can do much better
by integrating the object’s level.

So, our next attempt at task ordering will be this:

● Starting with the core tasks, then proceeding to the required tasks, then the
desired tasks, create the null implementation of each object. Once this has
been done (most projects can get to this state in a week or two), the project
should build and run without doing very much.

● Now go back to the core tasks and start writing the nominal implementa-
tions, carrying on through the required tasks. At this point, the code is – by
our definition – releasable. We can then carry on getting the desired fea-
tures to their nominal status.

● Finally, we repeat the sweep from core to desired until we either run out of
tasks or are stopped in our tracks by external factors.

This – breadth-first – approach is much better than a single sweep from core to
required to desired with no reference to level. It is a universe better than the
‘let’s do the cool bits first’ approach. It shows near-continuous growth through-
out the development cycle, and it makes sure that we focus our attention early
on in the places where it is most required. We have a handle on how complete
our product is, and it is now considerably simpler to create meaningful internal
and external milestones. However, it has a problemette that arises in its day-to-
day implementation:

● In a nutshell, it is not clear that it is more advantageous to undertake base-
level desired features than nominal-level core features, or to write
nominal-level desired features in preference to optimal-level core features.
There are a number of factors that will determine whether it is or not.

● Although progress is continuous, it isn’t smooth.

Consider a project with 12 features to implement (labelled F1 to F12). Assuming
for the moment just a single programmer, we may order tasks as shown in Table
9.1 (the numbers representing the ordinal number of the task).

Tasks are undertaken in priority order. When we’ve finished the pass at the
current level, we start at the top again at the next level. This is fine. Indeed, it’s
better than most hit-and-miss attempts, but it does suffer from the disadvantage
that after the base level, no new functionality appears – the existing stuff just
improves. While this is OK from a purely theoretical standpoint, it does make it

Object-oriented game development362

2 Typically, it would be nice if game development followed this scheme because at least it makes
some commercial sense. The usual approach, however, is to attempt all the optimal-level desired
tasks first in order to make an impression and then somehow backstitch a game into the demo.

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 362

difficult to impress. Since we always want to be able to keep one step ahead of
the demands put on development, it remains prudent to tweak the order a little.
Consider the ordering in Table 9.2. Here, we’ve deferred implementing the
lower-priority tasks F10, F11 and F12 at the base level until around the second
half of the project. This places a greater emphasis on getting the most impor-
tant games systems to a releasable state. It also means we can spoil ourselves a
little and get to work on one or two of the flash bits early on, and from week
to week we can see our game both grow and improve.

So much for one-programmer teams: they are the exception, not the rule.
The concept extends readily to multiprogrammer teams, and Table 9.3 shows an

Iterative development techniques 363

F1 1 13 25 37
F2 2 14 26 38
F3 3 15 27 39
F4 4 16 28 40
F5 5 17 29 41
F6 6 18 30 42
F7 7 19 31 43
F8 8 20 32 44
F9 9 21 33 45
F10 10 22 34 46
F11 11 23 35 47
F12 12 24 36 48

Features Level Null Base Nominal Optimal

Core

Required

Desired

Table 9.1 Naive
programmer scheduling.

F1 1 13 22 37
F2 2 14 23 38
F3 3 15 24 39
F4 4 16 25 40
F5 5 17 26 41
F6 6 18 27 42
F7 7 19 28 43
F8 8 20 29 44
F9 9 21 32 45
F10 10 30 33 46
F11 11 31 34 47
F12 12 35 36 48

Features Level Null Base Nominal Optimal

Core

Required

Desired

Table 9.2 A better
ordering of tasks.

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 363

ordering of tasks based on two programmers based on the previous ordering.
Notice, however, that there is a slight problem with the allocations. Looking at
task F1, programmer A implements the null- and base-level functionality of the
feature; however, it just so happens that programmer B ends up doing the nomi-
nal level and A is finally scheduled to implement the optimal level.

Now it really depends on your point of view as to whether this is a prob-
lem. One school of thought suggests that it is bad policy to put all your eggs in
one basket. If there is only one programmer who can do a set of tasks, then
what happens when they get ill or they leave? Without someone else who
knows the system, there is a significant loss of momentum while programmer C
is brought in to fill A’s shoes and learn their ways.

The other school of thought is that a Jack of all trades is a master of none.
Programmers who work on many systems spend a lot of time getting into a par-
adigm, only to spend a short while doing it and then starting another one. It’s
scarily easy to forget even the stuff that seems obvious when you don’t actively
use it for a while, and if the code has been implemented sloppily or the para-
digm is complex and/or undocumented, there is again a loss of momentum
whenever the programmer changes task. Although the changes are probably
smaller, it can happen several times over the course of the project, and the
damage is cumulative.

On the other hand, it is reasonable – indeed, vital – to recognise and effec-
tively utilise the basic skill sets of your team. If you have a renderer specialist on
board, then it seems a bit of a waste having them write AI if there are graphics
tasks to be done.

There is no simple answer to this dilemma, The author suggests that com-
munication is vital: all programmers should know about what other
programmers are doing via code reviews; code should be clear and documented
informatively (either via meaningful commenting or actual paper or electronic

Object-oriented game development364

F1 1A 7A 11B 19A
F2 1B 7B 12A 19B
F3 2A 8A 12B 20A
F4 2B 8B 13A 20B
F5 3A 9A 13B 21A
F6 3B 9B 14A 21B
F7 4A 10A 14B 22A
F8 4B 10B 15A 22B
F9 5A 11A 16B 23A
F10 5B 15B 17A 23B
F11 6A 16A 17B 24A
F12 6B 18A 18B 24B

Features Level Null Base Nominal Optimal

Core

Required

Desired

Table 9.3 Naive ordering
for two programmers

A and B.

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 364

documentation); and systems should be engineered to be as self-contained and
maintainable as is humanly possible.

Assuming that we wish to keep the same programmer with (basically) the
same task types, Table 9.4 shows the improved two-programmer itinerary.

9.3.3 Scheduling with an iterated delivery system
The iterated delivery system shifts the focus of production from ‘When will it be
finished?’ to ‘When will it be good enough?’ Since there is no meaningful defin-
ition of ‘finished’, but we have provided a definition of ‘good enough’, we have
established a metric by which to measure the progress of our project.
Consequently, iterated delivery solves a number of difficulties that arise in the
scheduling of work.

The major mistake of developers when estimating schedule times is that
they perform a top-down analysis of the problem, breaking the large, complex
tasks into smaller, more manageable ones, and then estimating the times for
those. The task time is then the sum of the subtask times, with some amount of
contingency added. Usually, no account is taken of learning curve, code revi-
sion or assembly of components. Is it any wonder, then, that tasks almost
ubiquitously overrun?

I am not suggesting that top-down analyses are wrong – it is nigh impossible
to schedule without them – but they miss out important information that is an
integral part of the software development process. Iterated delivery puts that
information back in. The developers still do a top-town analysis, they still esti-
mate subtask times and add them up to get task times, and risk-analysis/buffering3

contingency times still need to be accounted for. The important difference is this:

Iterative development techniques 365

F1 1A 7A 12A 19A
F2 1B 7B 11B 19B
F3 2A 8A 13A 20A
F4 2B 8B 12B 20B
F5 3A 9A 14A 21A
F6 3B 9B 13B 21B
F7 4A 10A 15A 22A
F8 4B 10B 14B 22B
F9 5A 11A 16A 23A
F10 5B 15B 16B 23B
F11 6A 17A 18A 24A
F12 6B 17B 18B 24B

Features Level Null Base Nominal Optimal

Core

Required

Desired

Table 9.4 Schedule for
two programmers
accounting for skills.

3 Buffering adds on a fixed proportion of schedule time to allow for illness, holidays, meetings and
other unforeseeable but likely eventualities.

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 365

The time scheduled for a task is the sum of the times for the null, base,
nominal and optimal levels.

I’m hoping that you didn’t recoil too much from that assertion. What it sounds
like on a naive level is that you are taking a task time, multiplying it by four –
once for each level – and then delivering within the allotted time, which has
been grossly exaggerated, thus earning some kudos for finishing early. If you
think that I’m suggesting that, then let me reassure you that I am not. The state-
ment is to be read as follows: account in the schedule for the fact that you
rewrite significant portions of code when you understand more about the prob-
lem. Schedule the less important tasks so that rewriting them, if at all, occurs
after the important ones.

Thus, iterated delivery becomes its own risk-management and contingency
system. The harder, more time-consuming (and therefore riskier) tasks are
deferred to times when they cannot hurt the project if they do not come in on
time (assuming that they are, at least, at nominal level towards the alpha date).
We simply go with the nominal version if the optimal version is slipping and
we must ship tomorrow. Or else we are granted more time to complete the task
because it would make a visible improvement (though one ought to ask why it
had such a low priority if this was so).

9.4 Summary

● Iteration is an intrinsic property of software development. Most non-trivial tasks
get written, scrapped, rewritten, improved, refactored, reorganized and optimized
in the course of their lifecycles.

● Given this, we should make it work for us – or at least acknowledge and account
for its existence.

● Iterated delivery – formalising the notions of task ordering and completion –
allows us to schedule and allocate tasks in priority order.

● Iterated delivery fits well with a component-based object-oriented programming
paradigm.

Object-oriented game development366

8986 OOGD_C09.QXD 1/12/03 3:00 pm Page 366

Modern game development isn’t a single discipline: it is a synergy of dis-
ciplines. The final product is at least the sum of its constituent design,
art, programming, audio and video components. This can result in

large teams – more than, say, ten members – and, consequently, production and
communication become as important as any technical problem.

With time tight and budgets all too finite, it is important for a team to
maximise the use of its personnel to get as much as possible achieved before
the shrink-wrap cools. Though production issues vary from product to product
and from team to team, the major problems that teams will encounter are (for
the best and worst reasons) pretty much the same from game to game and (sur-
prisingly) even across companies, irrespective of their size. In this chapter, we
will examine the structure of teams, the roles of individual members and how
to squeeze the most from your colleagues without wringing them dry.

10.1 The cultural divides

First, let’s talk about the culture of development. This is how the teams within the
team interrelate on a day-to-day basis. In almost all the teams I have worked in,
there is an unspoken divide between artists and programmers. The artists are often
perceived by the programmers as technically naive and unrealistic, while the pro-
grammers are seen as controlling and uncreative. Usually, this subliminal culture
difference is taken with good humour. Even so, when the pressure is on, people
are less inclined to be so forgiving and tension can increase within the team.

And what of the unspoken relationship (or even the spoken one) betwixt
programmers and designers? Game designers are often less technically fluent
than artists: they work in the realm of ideas, where anything is possible. Being
brought down to earth by programmer’s realism (often mistaken for, or some-
times identified correctly as, pessimism) often disappoints. Again, petty
tensions can result.

You don’t need to be Sigmund Freud to realise that tension within a team
can cripple development at a time when it most needs to be cruising. And it’s
probably a cliché that communication is what is required to bridge these gaps.

Game development roles 10

367

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 367

However, it’s true that communication is a big part of avoiding disputes and
misunderstandings in the first place. Wise people say:

Communication is not the problem: we are communicating all the time,
consciously or otherwise. What is important is to communicate what
really matters.

In other words, if the team sits in silence all day and never talks, its members
are communicating via the mechanism of non-communication. Psychologists
call this ‘indirect aggression’, and it represents the worst excess of inter- or intra-
disciplinary failure.

Almost as bad, a team that spends more time talking about details than
doing anything about them is still working almost as ineffectively as the sulkers.
It is getting the relevant information across to those who need it that is the
essence of good communication.

OK, so we agree that effective communication is important. To be able to
communicate, we need to understand the languages that our colleagues use
(and they ours), since it is unlikely we will all be able to share a common inter-
disciplinary language.

10.2 The programming team

I’m going to step out on a limb here. Some designers and artists are not going to
like what I am going to suggest. Many programmers will also not like it! I would
only ask that they all bear with me while I try to justify myself. Anyway, here’s
the contentiousness in all its glory:

● Programming is the pivotal discipline in the development cycle.
● Programming is a production process.

Let’s deal with these points separately.
Everything that happens in a video game takes place because a programmer

wrote a series of instructions that caused it to occur. If a model explodes, then it
is because code is executing to make it so. If a piece of music plays, then it’s
because the music-playing code tells it to. If a script written by a designer moves
an object, then it is the programmer’s script-execution code running that moves
the object.

Nothing can happen in a game without a programmer making it do so.

This is not a boast; it is a simple statement of fact. While designers may well
construct game scenarios whose whole is greater than the sum of its parts, it is
because the programming team’s code allows them to do so.

Object-oriented game development368

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 368

For this reason, I shall dwell in somewhat more detail on programming
team issues than the other disciplines.

Before we programmers get carried away with being the pivotal discipline, as
we’ve discussed in previous chapters, programming is not per se a form of creative
expression or a lifestyle choice. The function of a programming team is to take a
design specification document and, to the best of their abilities, make it happen.
Maybe more, but certainly little less. It is categorically not the programmer’s job to
dictate content unless the reasons are shortage of time or technical infeasibility.

These are the maxims of game programming. They define the boundaries of
how the programming team should influence content (and should dictate how
other team members, production and management should interact with the
programming team). As far as programmers are concerned, their role is this: to
convert the game-play design into a technical design and implement this
accordingly.

We should note that although I trot out glib phrases such as ‘a program-
mer’s role’, there is, in fact, quite a bit of variation within the various strands of
software development: they do their jobs in slightly different ways and produce
different types of code. I’m not just meaning style here. There is real qualitative
and structural difference between the specialisations within the team, and it’s
interesting to take a look at these.

10.2.1 Programming roles
Within the team, there will be variations in personality, experience, skill sets
and temperament. What is often (to my continuing amazement) overlooked by
managers is that not all programmers are alike, and even those that are alike in
some respects are completely different in others. When building a programming
team, you may be in the lucky position of being able to pick and choose suit-
able personnel for the project in question. In other cases, you may have to make
do with the resources at your disposal. In either case, it stands to reason that,
when recruiting new staff or team members, identifying the skills you need – or
the ability to translate certain skills into other, similar ones – is critical. Looked
at in another way, recruiting individuals just because of their availability could
lead to an unbalanced team, and it becomes a matter of great skill and judge-
ment to decide whether it is better – in terms of productivity and team
dynamics – to employ that person than not to and be a team member down.

The roles outlined in the next sections are not necessarily mutually exclu-
sive: some programmers can wear multiple hats. However, it is generally the
case that individuals excel in one role and then go from competent to adequate
to risky in others. There is a pernicious trend within the business for program-
mers to be funnelled into specialising themselves – once they have proved
competence at a task, they are more likely to be offered that task (or similar) in
the future, to the point that they will have spent years doing little else. In the
long term, this is bad for the individual, ergo detrimental to the company’s

Game development roles 369

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 369

interest, so it is very important that role specialisation is monitored from project
to project.

The technology programmer
Writing libraries – components, packages, systems, layers and beyond – is not a
simple business. There are many factors to weigh up, as too general a system
could result in degraded performance, too complex a system will discourage
reuse, too simple a system and others might not bother reusing it, and too spe-
cific a system will only be usable by a select few.

Mix into this equation the requirements that a well-designed class library
should be robust with respect to user requirements, should be implemented effi-
ciently in both logical and physical aspects, and may need to work on a number of
target platforms whose core architecture varies widely, and it should be obvious that
it takes a great deal of experience and skill in order to be a technology programmer.

The tools programmer
Most of the development houses I have visited have had a tools programmer.
They’ve probably spent a lot of time using Microsoft’s MFC and writing plug-ins
for a variety of third-party products such as Adobe Photoshop and Softimage.
They typically write very little game code, though they are often recruited into
the team towards the end of projects to mop up small to moderate tasks that are
outstanding. Because of their PC-centric development exposure, they are of lim-
ited use in hardware-specific projects or systems. This is not to demean the role
of the tools programmer. Indeed, I am tempted to argue that they are central to
the entire development process.

The architect
Modern game application code can be as complex as the most sophisticated of
multipass rendering pipelines. If we choose to use specialised technology pro-
grammers to write the graphics systems (etc.), then by the same principle it makes
sense to have architecture specialists to design, write and maintain the high-level
game code. Most of the principles discussed elsewhere in this book pertain as
much to engineering a game system as to engineering a rendering library.

The architect is the individual who can answer the ‘Where does this class fit
in?’ sort of question that arises during development. Often, the crowbarring of
classes into arbitrary locations in a game can cause sustained – if not irreconcil-
able – problems with maintenance, dependencies and even the inability to fulfil
design requirements. Having an architect on the team can get projects rolling
very quickly and promote good practice within the rest of the team.

Architects are, as a rule, stronger with C++ classes than with CPU instruction
pipelines. Though inevitably all software systems have to pay some homage to
the underlying hardware design, the architect will deal with the high- and inter-
mediate-level abstractions that form the big picture of how the game functions.

Object-oriented game development370

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 370

Expect to see sweeping class hierarchies, much use of templates to foster generic-
ity and copious amounts of abstraction. On the flip side, beware of systems that
are overengineered: sprawling and hard to maintain because complex functional-
ity is distributed over many systems and low performance due to no awareness of
CPU instruction caching or underlying hardware architecture.

The low-level programmer
At the other end of the spectrum, the low-level programmer deals with assembly
language modules, and low-level and intermediate-level classes. Do not expect
elegant patterns and abstractions – their code is built to be light and optimally
quick. Expect to see classes thinly, even barely, wrapping hardware-bashing code.

However, what it lacks in academic structure, it more than compensates for
in utility. The code is quick, minimal and – the other side of the blade – quite
hard to understand. Low-level programmers can be hard to come by, so it
becomes important to make sure that at least one other team member under-
stands what the metal-head is doing.

The game-play programmer
Somewhere between the big-picture architect and the ‘dot the i’s and cross the
t’s’ atomic scale of the low-level programmer lies the game-play programmer.
Their responsibility is to sequence the high- and intermediate-level constructs
together to turn a set of disparate and – if well engineered – independent soft-
ware systems into a playable game.

More than other types of programmer, the game-play programmer may well
find themselves on the critical path of the project. This is because as well as
writing their own code, they are writing a lot of glue code between the high-
level abstract systems, their own game classes and the intermediate/lower-level
library systems. The code they write is subject to the vagaries of both, and it can
be tricky to write and make robust.

Expect to see pragmatic coding: the use, and occasionally abuse, of the
top-level abstractions with only a slight regard for either physical and logical
design criteria or low-level hardware niceties. Game-play code will probably not
be elegant. Neither should it be – it should be enough to get the job done.

The physics programmer
For certain types of game, there is the requirement to have a realistic physical
simulation of an object’s behaviour. The most common example of this require-
ment is for driving games, which require quite sophisticated physical models.
For this sort of task, a physics programmer is – pardon the pun – wheeled in.

There are two levels to physics programming. The first is the development
of a solid Newtonian physics library1 to perform a general simulation. This can
range in complexity from a single rigid body with applied forces to soft and/or

Game development roles 371

1 I have yet to encounter a game that makes use of relativistic or quantum effects in its physics.

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 371

jointed bodies with contact solvers. The latter is a task that is so specialised and
time-consuming that, should a game require it, a significant amount of
resources will need to be directed at it. In particular, getting these systems
robust and numerically stable takes a great deal of mathematical skill, so the
physics programmer really becomes a technology programmer too.

The second level of physics programming is to use the physics library to
simulate a system. Though the skill sets are related, a high-level physics pro-
grammer can probably function with the basic F=ma, though invariably more
specific knowledge is required: equations describing such forces as aerodynamic
drag, static and dynamic friction, or a damped spring.

The AI programmer
AI is the big lie of the games business. Though some games really do use systems
that learn, adapt to volatile environments and react to player input (etc.), in
terms of the end results they are usually indistinguishable from, or perhaps even
inferior to, traditional game AI. Bearing in mind that they may well have cost a
considerable amount of development time (equals money!), they’d have to be
pretty special to justify themselves.

Learning to fake AI is as much of an art as real AI and lends itself to speciali-
sation. An AI programmer will be very busy from the moment the systems that
support pseudo-intelligent entities are at the basic level until the very last char-
acter is typed in.

The mop-up programmer
Games programming may have a superficially glamorous veneer, but the reality
is that it’s a 9-to-6 job (6 am, occasionally!), and there are some tasks that can be
as tedious as they are necessary to a finished product. For example, implement-
ing foreign-language support, user-interface definitions and adjustments, and
the finding and fixing of those truly evil and evasive bugs. If the team consists
of programmers committed to large chunks of specialised work, then a lot of
these tasks may well fall between the cracks.

That’s where the mop-up programmer comes in. To make a soccer analogy,
they are the sweeper of the team, ensuring that the small things that need doing
are done. Small they may be, but a few small tasks soon add up to one big one,
so the mopper-upper does the team a big favour in time. They also help to create
a more cohesive, polished game, which has a positive effect on morale (doubly so
because those unpleasant tasks have been removed from the schedule).

Mop-up programmer code is restricted to quite small sections of code. Like
game-play code, it’s utilitarian rather than elegant. On occasion, to fix a nasty
bug, unpleasant hacks may be required because the mop-up programmer does-
n’t have the time to learn the fine print of how the offending systems work
independently and together. This is fine towards the back end of a project. On
no account, though, should it be happening in the first phase of development!

Object-oriented game development372

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 372

The special-effects programmer
The special-effects programmer is another late-phase team member. They have
much in common with the low-level programmers, though they add a fair
degree of artistic skill to the mix. They’re usually highly skilled at combining
multipass rendering techniques with additive and subtractive transparency and
some physical modelling to make realistic-looking water, rocket trails, glares and
flares, steam, fire, explosions, etc. In terms of their knowledge base, they’ll be
comfortable with the maths of 3D transformations, as well as having an inti-
mate understanding of the underlying hardware. Oh, and a smattering of
physics comes in handy too.

An effects programmer needs to come in late for two reasons. First, cosmetic
enhancements do not belong in the early stages of development. Second, the
systems from which they will hang their effects need to be in place before they
come on board, and since the effects themselves may need some horsepower
behind them, it is better to wait until most of the game is written to best bal-
ance the CPU requirements.

10.2.2 Recruitment
Recruitment of new talent is not an easy business. For a start, there may be
many more seats to fill than bottoms to fill them, and not all of those bottoms
will be what you are looking for. Often, the choice is between a programmer or
no programmer, not (say) a physics programmer or an AI programmer. Many
studios may simply grab what they can when they have the opportunity: ‘If you
know what a byte is, you’re in’.

Such desperate measures may hurt in the medium to long term: a team
filled with inappropriate specialist skills, or simply missing key skills, will strug-
gle to deliver on time. On the other hand, there are all too many ‘experienced’
developers who have spent a great deal of time acquiring poor habits that may
turn out to have a similarly detrimental impact on development.

It is, therefore, vital that teams are built with some thought for the techni-
cal and social roles that are required, given the current team make-up and the
particular demands of the project in question.

10.2.3 Programming production phases
Now that we’ve identified the programming team roles, let’s look in a little
more detail at the phases of the project and how the specialisations affect them.
Figure 10.1 shows a Gantt-esque chart that breaks the project timeline into
phases, from design, planning and prototyping (DPP) to release.

Game development roles 373

Programming DPP Production Ramp-down

Game [optimal]

Tools [optimal]

Core v2 [nominal]

time

Tools [nominal]Tools [basic]

Game [nominal]Game [basic]

Core v2 [basic]Core v1 [nominal]Core v1 [basic]

Start of production First usable engine
and art tools

Figure 10.1
Timeline for programming
development phases.

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 373

We’ve restricted the role breakdown to three basic teams: tools, game and
core. This is the most natural (and probably the most common) subdivision.

Core technology
Notice first of all that there is a core technology team, which is composed (not
too surprisingly) of those technology programmers we discussed earlier. Writing
core technology is a never-ending task that starts on new iterations as soon as
the previous one finishes. The code is almost certainly going to be shared
(reused), either vertically or horizontally (see Chapter 3), and possibly across
target platforms, so there really is a need for top-notch software engineering
skills in this team.

As we are all aware, game and graphic technology tend to advance on
timescales shorter than the duration of the average project (say a generous
18 months). Consequently, there will always be a need to have a core technol-
ogy team – or, at the very least, a core core technology team – to keep up the
technological quality from product to product.

Notice that the core technology team has had a bit of a head start on the
other teams. How else would it be able to write tools and prototypes? This early
(pre-project) phase is a critical time in the lifecycle of a project or projects.
Many patterns will be set in place by the time that the basic revision of the core
technology comes online. These patterns will be absorbed quickly into the
fledgling project(s) and may be quite hard to shift should they prove inefficient
in the future. Ergo, it’s important to get it broadly right quite quickly.

To précis: writing core technology is tricky and time-consuming, and a lot
rides on it. Specialist skills are required that are above and beyond many compe-
tent game programmers’ repertoires.

The tools team
The next team to start writing code will be the tools team. Quite categorically, it
should be stated that until the tool requirements are well understood and
mostly implemented, no game code should be written. Note that by ‘game
code’, I mean software devoted to game play or glue systems. The tool designs
will motivate the creation of components, packages and systems that will func-
tion equally well (indeed, identically) be they linked into the game or the
editing, conversion and extraction utilities necessary to make the beast walk
and talk.

The most important part of the tool team’s task is highlighted by the word
‘understood’ in the last paragraph. The tool facilities required may be exceed-
ingly complex (on our current project, the tools form the bulk of the
programming schedule and require a significantly greater amount of technology
than will exist in the game). It would be unrealistic, nay commercially suicidal,
to write no game code until after the tools were finished, and it is still risking it
to wait until they’re even at the basic level before starting to write the actual
game. However, given that the toolset can potentially be large and complex, it is

Object-oriented game development374

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 374

not only worthwhile but also positively necessary to throw some significant
proportion of the programming resources at it in the early parts of the project.

Tools are important. I don’t want to understate this point, so I’ll say it
again, only bolder:

The quality of your toolset will greatly determine your ability to deliver
high-quality entertainment software on budget and on time.

Tools are important, and the usability of tools is even more important. Remember,
it’s likely that non-technical types such as designers and artists – your customers,
if you will – will be using your tools. If they’ve been cobbled together in a hurry,
then your clients will be frustrated, they’ll end up pestering you, and conse-
quently you won’t be able to get your work done because of this firefighting.

The game team
These guys and gals are the last of the programmers to enter the fray, and by the
time that they do, they should be utterly clear as to what they are doing. The
time for R&D is long gone. Any tools they may require to be able to create and
build game code and data will be written, working and maybe in the second
revision. There should be preliminary art and design material ready to construct
and develop the game to the nominal level, and progress to that stage should be
straightforward.

10.3 The art team

At the broadest level of description, the role of the art team in games develop-
ment is to provide appropriate, high-quality visual and animated material for
the product.

10.3.1 Art roles

Pre-production
The initial phase of development will involve a deal of fast and loose exploration
of the game you’re trying to create. Some key members of the programming
team may be investigating technologies or putting together prototyping demon-
strations. The artwork demands of these mini-projects should be light: they exist
to demonstrate the validity of concepts. Whilst all this is going on, what should
the art team be doing? Well, ideally, nothing. In fact, there really shouldn’t be an
art team as such. A well-organised studio will schedule its art teams to be, at
most, ramping down on existing projects while the new projects are in their pre-
pubescent state. As with the programmers, a couple of key personnel are all that
should be required. These artists’ duties are to provide a little artwork for the pro-
grammers and, more to the point, to provide a look and feel for the game. In

Game development roles 375

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 375

fact, they should provide several looks and feels, and the more varied the better.
Later, one will be selected to be the look and feel. It will be easier to pick that one
if the pros and cons of several can be weighed up.

So what sort of artists will we find in this early stage of a product’s
development?

Concept artist – 2D
Though there is still a big market for 2D games, mainly on the smaller consoles
(witness Nintendo’s Gameboy Advance), console development is dominated by
3D titles. Nevertheless, this by no means diminishes the work of the pencil-and-
paper 2D artist. Early sketches will start to create those looks and feels and will
serve as guides for others in the pre-production phase as well as when produc-
tion is properly under way.

Concept artist – 3D
Using material that the 2D concepters are producing, it is helpful to produce 3D
models to give a more in-game feel. As with the programmers writing temporary
prototyping code, these models may well be throw-away material. No matter,
much may well be learned along the way.

Production
Assuming that day zero is when production proper gets under way, what art
resources are required at this time? We can say pretty safely that the program-
mers will not have produced any tools or any working game code. Much of the
structural work is yet to occur, and products will be severely hampered, perhaps
even fatally so, by having a full art team brought on line on day zero.2

There are two reasons for this. First, the team members will either be bored
by having nothing to do or they will start to build models and create textures
without reference to any parameters or restrictions that will be imposed by
whatever game systems the programming team eventually create. This almost
certainly leads to wasted work by somebody. Second, a large team is expensive.
If a large art team spends (say) three months spinning in neutral, then that can
cost a project dearly, and that is only compounded if there is work that needs
redoing after that time.

Art production must not start simultaneously with programming
production. It should commence significantly into development,
perhaps one-third to halfway through.

Object-oriented game development376

2 We are talking here about in-game art; non-game art, such as FMV sequences, is less prone to the
code/graphics dependency and can be scheduled more liberally.

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 376

We illustrate this point in Figure 10.2 for a single project. The DPP phase lasts
quite a bit longer for the art team than for the programming team. Remember,
though, that the team size is small for this particular part of development. The
programming team will spend two to three months in DPP. At the end of this
time, there will be a full set of programmers. Art will still be minimal, with the
studio artists still busy in production and ramp-down on other projects.
Programmer art is perfectly acceptable at this juncture.

When the team gets to the ‘First usable engine and art tool’ part of the
timeline, then the art requirements for the project should be understood thor-
oughly. This set of prerequisites will include:

● a list of all the models that have to be built for the game;
● a list of all the animations that need to be done;
● rules for material creation;
● rules for model building:

– restrictions on size and colour depth of textures;
– restrictions on polygon counts for model types;
– special naming conventions for components.

From thereon in, the production phase of art should be a case of dividing up the
lists of things to do among the team, and the individuals going down those
tasks, ticking them off as they are done. Art production is a scalable process,
unlike programming production. If time is running short, then it is a sensible
approach to enlist more artists – recruited, freelance or borrowed from other
teams (providing, of course, that those teams are not inconvenienced).

Here’s an interesting question: can the iterative techniques that we’ve dis-
cussed for programming work for art too? Superficially, at least, the answer is
yes. Versioning is possible with any creative process. Pragmatically, the answer is
yes too. We expect to be using nasty programmer graphics early on in the evolu-
tion of our game. Gradually, we’ll replace these with incrementally improved
models, textures and animations.

There is another interesting possibility of exploiting incremental techniques
with artwork that has no direct analogue for programming. Almost all game sys-
tems employ level-of-detail (LOD) systems for their visuals. Often, this is
implemented as a series of increasingly complex models with associated range

Game development roles 377

Programming DPP Production Ramp-down

Game [optimal]

Tools [optimal]

Core v2 [optimal]

time

Tools [nominal]Tools [basic]

Game [nominal]Game [basic]

Core v2 [basic]Core v1 [nominal]Core v1 [basic]

Start of production First usable engine
and art tools

Art DPP Production Ramp-down

Figure 10.2
Timeline showing art and
programming
development phases.

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 377

values. As the camera gets closer to the object that uses the visual, the more
detailed versions are swapped in (and swapped out as the camera moves away).

It’s fairly likely that the lower-detail levels will require less work than the
high-detail levels. This is the key to a degree of iteration in artwork: the basic
version corresponds to the low-detail level(s). The nominal version will be the
intermediate-detail levels, and the optimal versions can correspond to the high-
detail levels. Obviously, this scheme doesn’t work for those projects that use
progressive meshes with continuous levels of detail.

In order to analyse the art timeline further, we need to understand the roles that
members of the visual content team will adopt. So, let’s have a look at some of
the skill specialisations we’ll see in production artists.

2D artist
It’s vital to have a skilled 2D artist in your art team. They really ought to be a
whizz with Adobe Photoshop, a multi-industry standard tool. They may even be
totally useless at making 3D models, but no matter. The quality and richness of
textures in the game will inevitably determine the degree of visual impact that
the title has. If the 2D artist does nothing except generate gorgeous textures,
then they will have served their team well.

However, not all textures are destined to appear mapped on to 3D geome-
try. Much work will be required for user-interface design, look and feel. Since
this is a complex area – there are often requirements imposed by publishers
about user-interface layout and design – it is obviously important to have an
artist on board who has an awareness of GUI design issues.

3D modeller
Simply having a bunch of textures is not going to get you very far. Those tex-
tures have to be sliced and diced then wrapped around geometry. Our 3D
modeller is there to create that geometry.

Animator
It is a fundamental characteristic of our vision and cognitive systems that we
quickly tire of things that just sit there and that we demand things that change
over time to capture our interest. The skill of making a model – or models –
move is therefore as vital to development as creating the objects in the first
place. Skill sets for these tasks are obviously not the same, though they are often
overlapped into the role of modeller/animator. Nevertheless, it makes sense to
separate the tasks, as it will allow us later to consider a production-line process
for generating art content.

Human modeller/animator
Human beings have specialised cerebral hardware, the sole purpose of which is
to recognise and interpret the appearance and actions of other human beings

Object-oriented game development378

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 378

(in particular, faces). This means that we are extraordinarily sensitive to errors or
inconsistencies in something that is meant to look like or move like another
person but falls a bit short. For this reason, modellers and animators who create
human figures have a much tougher time than those who create (say) cars or
guns. There is a huge level of specialisation required, with an understanding of
human anatomy and the mechanics of motion.

Technical artist
Occasionally, there are programmers who are dab hands at some aspect of game
art. Most programmers can do some basic stuff, but programmer art stands out a
mile (in all the wrong ways) and really ought not to end up in a final product.

Once in a while, though, there’s a programmer who can produce adequate
3D models, textures and animations. Or there’s an artist who has a good grasp
of programming, programming issues and algorithms. This individual is a good
candidate for the esteemed position of technical artist. If programmers and
artists are to communicate effectively, then someone who can understand both
sides of the argument is clearly quite an asset.

FMV/cut-scene artist
Most artists have to work within the constraints of a polygon, vertex, keyframe
and texture budget. It takes great skill and experience to make the best use of
the resources available – and that is the nub of great game art. However, a select
few may be given carte blanche to create jaw-dropping artwork that exercises the
capabilities of the art package (as opposed to the game’s target platform) for
FMV sequences in intros, outros and story-telling sequences. Again, this is a spe-
cialised skill: they’ll be using modelling and animation facilities that are simply
not practical to use in a game context and, consequently, are never used.

10.4 The design team

The game design team also has dependencies on programming. And, clearly, the
programmers have a dependency on design, lest they have nothing to imple-
ment. Chickens and eggs! An iterative process – one of the major themes of this
book – can solve this mutual interdependency. That process is the iterated deliv-
ery system, discussed earlier.

The programmers need to be implementing the core features of the game
while the designers work on intermediate detail, and while the programming
team is working on those, the designers are refining existing systems and work-
ing on the small details.

10.4.1 Design risk management
So far, so good. However, a moderate amount of game development experience
will teach you that even with the best game designers in the universe, you get to

Game development roles 379

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 379

points on projects where a really cracking concept on paper turns out to be
technically infeasible or physically unplayable. This hiccup could well endanger
development, because now programming and design are coupled and we’re
back to the bad old days. The scale of the damage caused by the failure will
depend on several factors:

● Is the feature that malfunctioned critical to the project? If so, why wasn’t it proto-
typed before development started? Proof of concept for core game mechanics
is extremely important, and projects could be in deep trouble if they wade in
to development regardless of success being dependent on risky concepts.

● Can the feature be replaced with another one? Redundancy of ideas – having
more than you actually need – could just save your bacon. Contingencies
should be an automatic part of project planning. Experienced contract
bridge players know this, since planning is a vital component of the card
play. Having constructed an order of play, the declarer (as they are called)
asks the question, ‘What could possibly go wrong?’ The answer to this
could change the game plan entirely, with the declarer using other informa-
tion – e.g. statistical knowledge – to mitigate risks that would otherwise lose
them the game. As with cards, so with projects. When all looks rosy and the
project is about to roll, take a step back and ask yourself: ‘What could possi-
bly go wrong?’ A word or two of common-sense caution: if you can possibly
avoid it, don’t replace a small feature with a big feature, or use an unproto-
typed feature in place of a prototyped one.

● Can the feature be ditched? Presumably this would be a low-priority feature,
as ditching high-priority ones will almost certainly compromise the game.
Nevertheless, it is a common experience for developers to feel, midway
through a project, that it isn’t the game they thought it would be. Taking a
broader view, a designer may decide that less is more and remove the errant
element. It may turn out to improve the product, which is now a little less
cluttered and more fluid.

● Can the feature be salvaged? In some cases, the feature may not work exactly
as the designer intended, but it can either be downgraded to a lower-priority
element or form the basis for a new feature (either in terms of code or
game play).

Clearly, risk is an important element in software development. One way of miti-
gating risk is to do all the risky stuff at the start. If an important feature is to
appear late on in the product, then the risk associated with that feature is expo-
nentiated with time. But with a finite (and usually small) development team,
and the amount of risky feature inclusion generally increasing as target plat-
forms become faster and more capacious, one comes to the realisation that not
everything can be done at once. In other words, it is just plain impossible to
avoid growing risk.

Object-oriented game development380

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 380

The battle is not about eliminating risk but minimising it. That’s what led us
to iterative development. Now, we can take the model a little further, because if
we break development into phases, then by treating each phase as an individual
project, we can stack the risk for each phase towards the beginning.

To understand this, consider the (simplistic) flow of development shown in
Figure 10.3.

Elliptical bubbles indicate which personnel are responsible for which part.
Boxes denote stages of development. The interpretation of this diagram is
broadly as follows: first we design the game, then we implement it, then we test
it. If the test fails, it’s passed back to the implementation phase, changes are
made, then it’s resubmitted.

Each of the stages is complete in its own right. For example, the output of
the design team will be a manual (or, more probably, manuals) detailing all the
mechanics and features that a player will encounter in the game. This then
passes to the implementers, who type and click away for a year or two, produc-
ing executable and data, which are submitted to a test department for bug and
guideline testing.

If we view Figure 10.3 as linear in time, then by the end of ‘Test’, we sink or
swim depending on how good the design ideas were and how well they were
implemented and represented. There is no concept of risk management in this
scheme, and it is therefore extremely risky by definition.

Clearly, this is a naive way to develop a product, but it is surprisingly wide-
spread. Can we do better? Yes! Using our old friend iteration. Let’s alter the
scope and make a small change to the flow to see how we can improve on it –
check out Figure 10.4.

The first change is to apply the process over development phases instead of
the entire project. The second is to allow redesign of systems that do not work.
In the previous scenario, because no risk was associated with design, by the time
we got to ‘Test’ it was too late to do anything. Here, we make sure that we catch

Game development roles 381

Test

QA

Implement

Programmers

Design

Designers Artists

Project endProject start

Figure 10.3
The ideal involvement of
design, programming, art
and QA in the
development cycle.

TestImplementDesign

Figure 10.4
Iteration within a single
development cycle.

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 381

problems as early on as we can and fix them before they strand us at the point
of no return.

The timeline has been removed because the idea is to iterate over each pro-
ject phase until it has been completed to the satisfaction of the team and perhaps
an internal QA group, whose (highly technical) job it is to thrash and stretch the
submitted software. Having your own technical test team might seem a bit of a
luxury, but there are a number of issues with the traditional QA departments that
are worth mentioning. First, QA teams in the games business are non-technical.
It is a specific requirement that they know little or nothing of what goes into the
game technology-wise. They are testing game play. Because of this, testing is a
game of pin the tail on the donkey. Testers are trying to guess what to do to
break code, or they may be randomly doing things. This is great for what it’s
worth, but you are as likely to miss problems as you are to spot them. If you are
serious about risk management in production, then this is clearly a weak point
within the development cycle. Second, though a related issue, products submit-
ted to QA are usually required to have test and debugging information stripped
out of them – they are testing final product. This is fair enough, but it means that
when critical failures occur, it can be time-consuming and painstaking for pro-
grammers to recreate the game’s internal state and hopefully the failure to
determine the cause. Both of these issues can be remedied by having an internal
test team that knows exactly which buttons to push to make life difficult for the
game and that can accept code with internal diagnostics still present.

So now each of our project phases becomes a mini-project in its own right,
as Figure 10.5 attempts to communicate.

Notice, now, how design has become embedded into development as a key
element of the iterative and evolutionary creation of the game. By involving
design in design issues in all the development phases, we can respond to prob-
lems sooner than if they produced their bible of the game and then twiddled their
thumbs until the test had determined that it didn’t work very well. The result:

● Better product quality because duff elements are knocked out as early as
is feasible.

● Better risk management because problems are detected and can be solved
early. In the unfortunate circumstance that things don’t work out, the project
can be cancelled significantly earlier than the linear development model.

Object-oriented game development382

TID

Phase 1: core

TID

Phase 2: core + required

TID

Phase 3: core + required + desired

Project start Project end

Figure 10.5
Iteration over the three

development phases.

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 382

● Less up-front workload for designers. We can dispense with the game bible
documentation approach and start with broad overviews that grow with the
game during the course of development.

One point worth noting is that a publisher’s QA department cannot now realis-
tically perform the ‘Test’ sections of each phase. This team usually deals only
with games that are close to submission for mastering, and we want to have a
lot of early testing. The most logical choice for performing these internal test
procedures is the design team. After all, this team knows more than most how
things ought to behave. And it’s been freed from producing huge amounts of
documentation. There are many reasons why this is a good thing. Perhaps the
best is that it enables designers to design rather than to write. And it frees the
rest of the team from the burden of reading and absorbing tens to hundreds of
pages of often gratuitous fluff. Note that usually it is unrealistic to expect the
team to have done so, and in general people prefer the combination of:

● a snappy, short (five to ten pages at most) overview document that gives the
general idea about the game;

● a number of short documents that describe special areas in more detail.

Remember, I guarantee that whatever you plan initially, it will change. If you do
a lot of work and find that it’s a turkey, then you have risked much unnecessar-
ily. Now why would you want to do that?

10.4.2 Design personnel
As we did for the programmers, now we do for the designers, examining briefly
the spectrum of roles that the design team undertakes.

Game-play designer
This is what most people think of as a game designer. They have the big ideas:
the core essence of the game – the context in which it takes place, the characters
or systems that are involved and the rules that govern them.

Level builder
The level builder is the production unit of the design team. Games do not come
cheap these days, and customers rightly expect their money’s worth. There
needs to be many hours of content in a title, so no matter how clever or addic-
tive the game concept, there needs to be volume, and not just empty or
repetitive volume at that. Someone needs to take the contexts, rules and scenar-
ios created by the game-play designers and make them happen, expanding and
stretching them in new, interesting and progressive ways. Cue the level builders.

Creative designer
The modern computer game is more than just a set of objects and rules: there
are stories to tell, complete with characters who are (usually) at least as well

Game development roles 383

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 383

defined as a film star. These stories need writing and the characters need person-
alities, and this is a full-time job in itself.

Hence the role of creative designer. These are typically wordy people, more
likely to spend the duration of the project writing text in a popular office pack-
age than positioning objects in a level editor. Their role will be especially
important if there are external teams involved – for example, the use of voice
talent or companies specialising in FMV.

Technical designer
Designers who have had exposure to programming are fundamental to the
modern video game. Most development studios write their game engines to be
data-driven by either a bespoke or a standard scripting language. Much of the
game’s content and high-level behaviour will be controlled by this language.
Clearly, without designers who understand programming – flow control, vari-
ables, functions, etc. (features common to most scripting languages) – not very
much is going to happen in your game world.

Again, there is the need for points of contact between the programming
team and the design team. And analogously to the technical artist discussed ear-
lier, the technical designer is able to talk the language of both disciplines.

Internal test
As discussed earlier, if an iterative development philosophy is to be successful,
then testing needs to happen early on in the product lifecycle and continue
periodically. Since having a QA department to do that would be serious (and
expensive) overkill, it is logical for designers to take on this role. Their aim is to
find out as quickly as possible what is and isn’t working: what needs redesign-
ing, reprogramming or remodelling. This isn’t explicitly a bug hunt. We’re more
concerned with systems that fundamentally don’t work, not ones that crash or
perform slowly.

10.5 Putting it all together

The team is not just a collection of individuals. The whole is intended to be
greater than the sum of its constituent parts. If this is to be the result, then it is
of prime consideration to make the most of the interactions between the groups
and subgroups. With all these people trying to communicate effectively, some
kind of common language would obviously be of benefit. We’re not talking
about (say) the low-level programmer being able to describe the technicalities of
branch delay slots and pipeline optimisation; rather, we are thinking of a way of
getting the broad picture of what the software is about, how the bits fit together,
what is and is not possible.

Object-oriented game development384

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 384

Object orientation is that language. OO is not just a programmer’s tool; it is
a way of being able to capture concepts pictorially that might otherwise remain
abstract and intangible. Visual representations make things that are otherwise
difficult to describe orally accessible almost immediately to anyone with knowl-
edge of what the symbols mean. Indeed, it is hard to imagine how teams
managed in the days of procedural breakdown, because all that they could do
was enumerate features and behaviours.

Object orientation is the future of game development. It is a medium of
communication. It is a visualisation system. It is a production tool. It allows us
to create powerful and reusable systems that shorten development times and
focus effort on innovation, not reinvention. Is there anything it can’t do?

10.6 Summary

● The management headache with game development is the requirement to indi-
vidually supervise the disciplines of programming, art, sound and music and to
simultaneously effect the communications between them.

● Programming dictates the viability of the end product. A title should never be
driven by art or design.

● Programming is a production process, not a creative one. Its input is a game-play
design and its output is code.

● Within a programming team, there are specialisations that have their own idio-
syncrasies.

● Tools are a vital and often neglected component of development. Poor or non-exis-
tent tools can bring the development cycle to its knees over the course of a project.

● Art is a production process. Its input is a requirement list – so many models, so
many polygons, so many textures of such and such a size, etc.

● Design is the real creative discipline in game development. As such, it needs
careful risk assessment. Iterative development fits well with a system that
acknowledges the need for contingency.

● Technical designers and technical artists are very important personnel who effect
the interfaces between the big three disciplines (programming, design and art).

Game development roles 385

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 385

8986 OOGD_C10.QXD 1/12/03 3:00 pm Page 386

So far, we’ve looked at the building blocks called components or packages
(somewhat interchangeably). The components define methodologies and
abstract behaviours that we use and subvert via polymorphism when

writing games. Now it’s time to look at a case study of a real game, or as near as
dammit, to see how this all hangs together.

The purpose of this chapter is not to bore you with all the details of how to
design a game. It will illustrate that writing components is not just like writing
an external library: the game is the union of internal and external components,
as well as glue code (and, perhaps, middleware). These internal components can
be promoted to external components as and when they prove to be of use in
other games or component hierarchies.

11.1 Technical analysis

This game will be called Cordite. It is based on a real commercial game design
(with name changes where appropriate to protect the innocent). I’ve simplified
it, where required, for brevity’s sake. The game is of the same genre as Sega’s
Virtua Cop or Namco’s Time Crisis, and it uses a light gun as its principal con-
troller (although the design specifies that the game should be playable with a
standard console controller). The unit of Cordite’s game play is a ‘scene’, where
the player is presented with a number of enemies who shoot back at the player,
dodge, dive, roll and generally attempt to avoid bullets. Other non-hostile tar-
gets give variation and bonuses. The backdrop to all the scenes is a nearly
photo-realistic 3D environment. When a player completes a scene by shooting
all – or most – of the targets, they are propelled through the world on a fixed
path to the next scene. And so on, until either the player takes too many hits or
the level ends.

To make things a bit more interesting, there are scenes where, depending
on how well the player does or some other condition, the game branches to
take the player through an alternative set of scenes, with the restriction that at
some later scene, the various branches must merge.

Case study: Cordite 11

387

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 387

The analysis that follows is for the implementation of the major game sys-
tems. The toolset required to produce the data for the game is a case study in
itself. As usual, we shall focus on the big picture – the architecture – rather than
the minutiae of implementation.

The first stage of analysis should be identification of the technically chal-
lenging areas, because these will be areas of maximum risk. What worries us
most about the game design? The more alert lead programmer will have picked
up on that term ‘photo-realistic 3D’, because what it implies is a lot of polygon
data with high-resolution textures. We must assume that we are not going to fit
the entire level into RAM and VRAM, and we really need to think about how
we’re going to cope with that.

11.1.1 Low-level file management
From the game description, we realise that in theory we don’t need everything
in RAM anyway. Only the current scene really matters, so as long as the data for
that are in RAM, we’re fine, depending on exactly how much of the world we
can see at one time. This is the great and awful thing about game development:
in areas such as this, the technology and the art and design become interlinked
inextricably. A good game design here will result in a fast, fun-to-play yet chal-
lenging scene that does not differ significantly in viewpoint from the previous scene
yet is varied enough not to be repetitive. In other words, as programmers, we should
flag this as a constraint and let artists and designers worry about the implemen-
tation.

Time for more detail: this will flesh out the technological and design para-
meters that we are working with. Although the unit of game play is a scene, we
stand back a little and say: ‘But that’s a sort of visual concept. We want to solve
an abstract problem here’. So, we generalise the route through a complete level
as a topological map or graph, with nodes representing scenes and edges repre-
senting the transitions between them. Figure 11.1 shows the sort of route we
can expect, and we call this a logical map of the level.

At the node labelled ‘Start’, the first scene takes place. All the assets required
to display that scene and to play it (models, textures, animations, sounds, light
maps, scripts) must be loaded and instantiated immediately (there will also be
assets required for the entire level that will be permanently resident). When that
has happened, the bullet-fest can commence.

Much shooting later, consider what happens when the player finishes the
first scene and progresses to the second. Some new scenery may come into view,
and some existing scenery may disappear from view. Let’s think about the latter
category first.

Object-oriented game development388

Start End

Figure 11.1
A simple logical map

in Cordite.

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 388

Since we cannot hold every model and texture in RAM (I’ll refer occasion-
ally to memory generically rather than the verbose ‘system RAM, or video RAM,
or sound RAM, or CD buffer RAM, etc.’), we may be tempted to dispose of
objects that disappear from view immediately so we have the maximum space
left for new data. However, that would be rash. What about an object that gets
obscured in one scene but remains visible in all other scenes in the level? If (a
big ‘if’) we had enough RAM to hold on to that object, shouldn’t we try? And,
correspondingly, shouldn’t we get rid of an object that we know we’re never
going to use again? Clearly, some look-ahead is required, to scan the objects
later on in the level to see if they’re reused. Luckily, our camera tracks fixed
paths through a level. We can work out all the details of the objects that come
and go offline in our extraction process, looking ahead until the actual end of
the level, leaving all the easy work to the game.

So, with each node in the graph, we associate two sets of resources: one
contains the new resources that will be needed for the scene; and the other con-
tains those that are no longer required. Figure 11.2 shows this architecture (it
assumes we have a simple GRAPH component to represent graphs).

Notice that although we are very much involved in the development of the
game code, the MAP component contains nothing specific to Cordite. It
becomes yet another component in our library of parts to use when developing
titles. As long as we keep component-wise development as an objective, we will

Case study: Cordite 389

MAP

Position

Edge

GRAPH

LogicalMap

Graph

Node

Node

ResourceDescriptor

*Out*In

Start
node

Persistencetype

PersistenceType ID

Node

Identifier

*Nodes *Edges

Figure 11.2
The logical MAP and
GRAPH components.

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 389

find that each game becomes a fertile source of recyclable material for future
development, and because components are small and easily testable, they are
not going to hurt schedules.

The ResourceDescriptor has some interesting fields. The type field is an
enumeration that represents the flavour of asset we’re describing:

enum Type

{

RT_UNDEFINED,

RT_MODEL,

RT_COLLISION,

RT_ANIMATION,

RT_SOUND,

RT_FONT,

RT_TEXTURE,

RT_SCRIPT,

RT_NUM_TYPES

};

In applications where we need to support extra types, we can’t easily extend the
enum, but we can write (somewhat verbosely):

enum MyType

{

MT_UNDEFINED = RT_UNDEFINED,

MT_MODEL = RT_MODEL,

//…

MT_SOMETHING = RT_NUM_TYPES,

//…

MT_NUM_TYPES

};

Enumerations lack power, and the code isn’t elegant, but still they are often
simpler than the alternative ‘register your types in a database’ kind of interface.

The other field – Persistence – is also an enumeration. It controls how the
resource is handled by the Demigod purging system (see Chapter 5). It can have
the values shown in Table 11.1.

These four values can be used by subclasses of Demigod’s purge strategies to
decide which resources to remove. The first test is to determine whether there
are any resources ready for purging with the persistence RP_FLUSH. If there are,
then remove the one with the highest LRU count. If not, then scan the
resources with RP_HOLD persistence (again, looking at the LRU field).

Now consider the map shown in Figure 11.3. This represents a linear sec-
tion of game play with no splits or joins.

Object-oriented game development390

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 390

The current scene is described by node N1. Consider the state the game will
be in when the scene is completed and the transition towards N2 begins. New
objects will start appearing, and they must already have been loaded (and
decompressed and instantiated). We are clearly in a difficult position if we start
loading the N2 resources only when the T12 transition starts, as there’s no guar-
antee that everything will be in RAM when we get to N2. So, it’s not enough
just to load the current map node’s resources; we must also load the next one,
too, long before the transition to the next node can occur (this places another
small constraint on the design and art: a stage must last long enough to back-
ground-load everything necessary).

We’re not finished yet; consider the map segment in Figure 11.4. When exe-
cuting transition T12, we will have N1’s and N2’s resources in RAM, but as yet
we don’t know whether we will branch later on to either N3 or N4. As a result,
we must background-load both N3’s and N4’s resources. Therefore, the final
map-imposed limitation on art and design is that if we have splits in the map,
then we need to hold the start of both branches at once. More complexities
follow from this: when the branch has split, then at the node after the split,
when we’ve selected the branch we’re travelling along, we can eject anything
we’ve loaded previously related to the other branch. And when branches merge,
if we list the entire set of resources required at the joining node, then we can
perform a purge of all unnecessary data.

11.1.2 Object streams
When executing a transition, objects appear and disappear. In order to keep the
set of objects rendered per frame as small as possible, we can generate a stream

Case study: Cordite 391

Value Interpretation

RP_UNDEFINED Something went wrong somewhere

RP_FLUSH The resource can be purged when it is no longer needed

RP_HOLD The resource is needed later on but can be purged if there is
no space left elsewhere

RP_LOCK The resource can never be purged

Table 11.1

N1

T23T12

N2 N3
Figure 11.3
Node and transition
labelling in a logical map.

N1

T24
T12

N2

N3

N4

T23

Figure 11.4
A logical map with a
branch.

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 391

of object creates and destroys that add and remove objects from the rendered
set. This is called a scenery object stream (SOS), because it is used primarily for
scenic (non-interactive) objects. Cue another component, shown in Figure 11.5.

A scenery stream consists of a series of time-stamped events. These events
either create object instances in the game or delete them. The pure abstract class
EventHandler defines an interface for the object creation and deletion:

// File: SOS_EventHandler.hpp

namespace SOS

{

class EventCreate;

class EventDelete;

class EventHandler

{

public:

virtual void OnCreate(EventCreate *) = 0;

virtual void OnDelete(EventDelete *) = 0;

};

}

Object-oriented game development392

Iterator

EventStream

EventDeleteInstance

Event

EventCreateInstance

SOS

EventStream

EventPlayer EventHandlerEvent
Handler

Event
stream

Stream
position

ClassRegistry Class*Classes stringModel name

Name

Collision model
name

Time

Time

*Events

Class

Figure 11.5
The scenery object

streaming (SOS)
component.

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 392

The concrete version of the EventHandler is created in the game itself –
the mechanisms of object instantiation and destruction will be game-specific
after all. Consequently, the SOS component is kept independent of any specific
game system.

You may raise an eyebrow at the number of virtual functions in the SOS
component, in particular those in the Event subclasses and the EventHandler.
Worry not! Events are relatively uncommon occurrences (we’re talking a few
object creates and destroys per frame), and the call overhead will ultimately be
dwarfed by that of creating or destroying an object instance (along with any col-
lision or auxiliary data that the object needs).

The SOS component also defines a class registration service. A ‘class’ in this
context describes all the data that are required to create an object instance – the
name of the visual model, the name of any collision model, etc. When it comes
to creating an object instance, the event will contain a class name: we look up
the class in the class registry and can then start to create the parts required for
the object.

11.1.3 Collision
Collision detection is much simpler than in many 3D games, because as it is
described currently, the only collisions of consequence are of bullets with
models. Since bullets can be represented by line segments, we only really need
to test meshes against lines. On the other hand, there could be quite a number
of meshes and a great number of bullets, so we can’t afford to be slapdash about
performing the required tests.

The really great news is that we already have a component – COLL – that
can test lines against models. So, the only part we have to worry about is the
high-level collision system and spatial partitioning.

First, let’s look at the spatial partitioning. Now, there are many ways to go about
dividing up the world, but since the game play is essentially two-dimensional,
the initial thought might be generating a quadtree, as shown in Figure 11.6, cells
being split whenever objects occupy them down to some fixed granularity. The par-

Case study: Cordite 393

Figure 11.6
A quadtree used to
partition the world.

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 393

tition test is now simply the process of finding intersections of a ray with an
axis-aligned cell, with the quadtree ensuring that only occupied cells are tested.

Floors and ceilings really muck up this scheme, though. They force subdivi-
sion of the world to the maximum level everywhere, so we end up with a
uniformly divided grid. We can either treat floors and ceilings as special cases or
simply use a uniform cell grid. We choose the latter method, and consequently
choose the component name GRID. Figure 11.7 shows the participating classes.

The grid contains instances of GRID::Objects. This class confers the prop-
erty of having a rectangular extent, which is all that is really required here. The
objects are added to the grid one at a time, which keeps track of the minimum
and maximum coordinates of all objects, thus dynamically sizing itself. The grid
is then divided into a fixed number of cells. Each cell keeps track of the objects
that are wholly or partially inside its bounds (via a bitset class, which stores a 1
in the nth position if it contains the object with index n, and 0 if not). This is a
fast and compact representation that can rapidly combine results from several
cells by bitwise OR operations.

To increase speed further, the grid state can be cached at any point and
quickly restored to the cached state. If we add all the static objects in the world
to the grid and then cache that, we need only add the dynamic objects every
frame, as it’s faster to restore and re-add than it would be to adjust the cell con-
tents when objects move.

When we’ve added objects to the grid, we can then perform various tests to
see whether line segments, rectangles and circles intersect objects in the world.

Object-oriented game development394

Rectangle

Object

Grid

GRID

Bounding
rectangle

LineSegment

Cache

Cell

BitSet

*Cells

Object mask

World
rectangle

Cache

*Objects

Figure 11.7
The GRID component.

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 394

This functionality is used for object collision checks and also for graphical sys-
tems such as dynamic lighting. Let’s look briefly at the collision system, which
we name CNUT (CollisioN UTility, named after a king of England for no partic-
ular reason) (see Figure 11.8). I say ‘briefly’, because as you can see, there’s not a
lot to it.

Its function is primarily to act as a central place for resolving collisions. This
can be performed by free functions:

int CNUT::ResolveCollisions(CNUT::Ray const &aRay,

CNUT::Collider &aTest,

CNUT::Result *pResults);

to test a ray against a model, for example.

11.1.4 Scripted behaviour
As ever, the ability to control the actions of game objects by external scripts is a
vital requirement for ease of development. In a game such as this with simple
mechanics, we elect to use a relatively simple event-driven system; we have
already met this in Chapter 8 in the evt_IsEventDriven property class, so it’s
quite a simple job to adapt that component to our ends. We create an EVTSCR
(EVenT SCRipt) component for this, shown in Figure 11.9.

As you can see, there’s a fair degree of complexity in writing the scripting
system, and we don’t want to get too bogged down in the details here because
the specifics of the execution model may vary somewhat from game to game.
The script system borrows some functionality from the ‘evt’ package (in Cordite
this was achieved through protected inheritance). Most of the complexity is
encapsulated in the Executor class, whose responsibility is to decode lines of

Case study: Cordite 395

CNUT

Collider

Model

COLL

Sphere

Model

Result

Collider

Ray

Figure 11.8
The CNUT component.

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 395

scripts composed of tokens and parameters and then to execute them. The
result is the calling of one or more virtual functions to perform a script action in
the Interface class, which is just that – a completely abstract interface. This
means that the EVTSCR component can be coupled to either a game executable
or an editor executable simply by rewriting the interface class for the host appli-
cation, thus allowing ourselves to see actual in-game behaviour in an external
editing environment.

The ability to be script-controlled is conferred by the IsScriptable prop-
erty class. This is quite a simple object:

// File: EVTSCR_IsScriptable.hpp

#include <EVT\EVT_IsEventDriven.hpp>

namespace EVTSCR

{

class Message;

class IsScriptable : protected evt_IsEventDriven

{

Object-oriented game development396

Script

IsScriptable

EVTSCR

*Script

Symbol

Message

Entry

SymbolTable

Executor

Stack*Entries

Context

Stack

Interface

Locals Globals

*Symbols

Current
script

Interface

Context

EVT STRM

Stream StreamPosition

Script
stream

Current
object

Stream
position

Figure 11.9
The scripted event

(EVTSCR) component.

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 396

public:

/*

* Constants/typedefs/enums.

*/

/*

* Lifecycle.

*/

IsScriptable();

virtual ~IsScriptable();

/*

* Polymorphism.

*/

/*

* API.

*/

// Set script to be called on given event

void SetEventScript(int nEvent, Script* pScript);

// Call event script for given event

void RunEventScript(int nEvent);

// Script control.

void EnableScript(bool bEnable);

// handle message from scripting system

virtual bool HandleMessage(Message* pMessage) = 0;

protected:

/*

* Helpers.

*/

private:

/*

* Data.

*/

Case study: Cordite 397

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 397

// The event scripts

CONT::array<Script*> m_EventScripts;

// can an event script be run?

bool m_bCanRunEvent;

}; // end class

}

As you can see, the main job of a scriptable object is to respond to a Message,
sent by the Executor. This is handled on a per-class basis by the pure virtual
HandleMessage() method (surprise).

11.1.5 Objects
Cordite is quite light on its use of game objects – there aren’t really that many
classes required. The base class is a composition of the property classes we’ve
talked about so far in this chapter (see Figure 11.10) plus a reference-counting
helper class from a common component (which is, in truth, a bit ugly – refer-
ence counting is basically very simple, provided that you can override the
‘delete on unreferenced’ behaviour for certain subclasses. Sometimes it’s OK to
have a dumping ground name space for common code or code that doesn’t fit
anywhere else, as long as you’re methodical about keeping it clean).

Notice that we use a prefix rather than a namespace for the base class. This
is partly deliberate – since game code is not component code and we are using
namespaces for components, it enhances clarity. It is also partly pragmatic,
because if there are several classes called Object and there are a few indiscrimi-
nate using namespace BLAH statements, then code can become confusing for
compilers, never mind humans.

Now we have a basic object, we can subclass it as we please. We discuss
three subclasses of CorditeObject in this chapter: Actor, Scenery and Avatar,
as depicted in Figure 11.11.

Object-oriented game development398

IsReferenceCounted

COMM

CorditeObject

Collider

CNUT

IsScriptable

EVTSCR

Object

GRID
Figure 11.10

Cordite objects are
created with the

multiple inheritance
mix-in method.

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 398

An Actor is a visible, animatable object. There is a class database for actors
(just like we described in the SOS component) that defines the properties of a
number of actor types. The Actor class itself is abstract owing to a virtual member

virtual void Instantiate(const char * pszName,

ActorClass * pClass) = 0;

which gives some flexibility in how – and, indeed, when – the actual object
comes into existence.

An Avatar is the visual representation of a human character in the game.
Both players and NPCs can be seen in-game, so we perform the usual trick of sep-
arating the data model from the visual representation, as shown in Figure 11.12.

Here, we have abstracted the property of ‘having an avatar’ into a class
called an Agent, from which both human and NPC participants descend. The
human player is not just an Agent; it’s also something that uses a controller, so
we multiply inherit from the User class in a controller component (which we
discuss in the next section).

Finally, there is the Scenery class, which is the concrete type that will be
created by the SOS component discussed earlier. This is just pretty graphics that
have a minimum of interactivity (however, as we have seen in Chapter 7, we

Case study: Cordite 399

Scenery

CorditeObject

Actor

Avatar

Figure 11.11
Some subclasses of a
Cordite object.

NPC

Agent

Player

User

CTRL

Avatar

BossNPC

Avatar

Figure 11.12
The Cordite player and
non-player character
classes.

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 399

can add persistent damage to scenery to make it more interesting and enhance
game play by providing feedback about where the player is shooting).

The game object hierarchy for Cordite is therefore a small, shallow hier-
archy, which, as we’ve discussed, is about as good as it gets. We have partially
achieved this by using a soft subclassing mechanism: ActorClass allows us to
create an object with any visual representation and animate it, as opposed to
creating a huge number of subclasses, each with similar or even identical behav-
iours. A good question might be: ‘When do I subclass and when do I create a
new ActorClass database entry?’ Since we have logically separated objects and
their behaviours, we can make any object do anything. Clearly, if there is a
family of objects whose role is to perform some particular behaviour, then sub-
classing is called for. However, if objects require flexible behaviour, then using
an ActorClass database entry is the way to go.

‘But what about bullets?’ I hear you cry. Well, bullets are very light objects –
they require no animation and none of the more complex services that a
CorditeObject offers. So rather than derive from that, we create a new class,
Projectile, which defines just the interface that the bullet requires.

Perhaps surprisingly, we differentiate between player bullets and NPC bul-
lets. Not only do we render them differently (different colours), but player
bullets are assumed to travel infinitely quickly, while NPC fire moves at a rate
that allows the player to dodge incoming shots. As a result, we choose to sub-
class the projectiles. Figure 11.13 shows the bullet hierarchy together with its
accompanying weapon class.

Object-oriented game development400

AmmoClip

Weapon

BulletPlayer

Projectile

BulletNPC

BulletManager

*NPCBulletPool *PlayerBulletPool

*Active
bullets

Agent

Owner

CorditeObject

*Clips

Prototype

Figure 11.13
Bullets and weapons

in Cordite.

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 400

Since bullets are going to be allocated and freed frequently, we’ve added a
manager class that creates and destroys bullets from fixed-size pools, which is fast
and won’t contribute to fragmentation of system RAM. Notice, though, that the
AmmoClip class has a prototype pointer in it (ergo, it uses the GoF Prototype pat-
tern). The Projectile contains an abstract Clone() method, which BulletNPC
and BulletPlayer implement. This means that the bullet subclasses need to
allocate from the manager, which is a sort of cart-before-horse relationship:

/*virtual*/

Projectile * BulletNPC::Clone()

{

Projectile * pNew = BulletManager_AllocNPC();

if (pNew != 0)

{

new (pNew) BulletNPC(*this);

}

return(pNew);

}

We use the placement version of operator new to construct an object in previ-
ously allocated memory. Although Figure 11.13 shows the BulletManager as an
object, it is a natural singleton, and because we are hard-wiring it to generate a
fixed number of types of bullet, its reuse potential is low. Consequently, little
damage is incurred by writing it as a procedural interface.

11.1.6 Human control
As we mentioned right at the start, the game’s primary controller is a light gun,
but we need to be able to fit other controller types in too. So, we want to write a
controller component, don’t we? A generic and extendable control system would
be particularly nice, because this is something we should be able to comfortably
reuse in many games. We discussed some aspects of the design of this component
in Chapter 4; here, we will flesh out more of the implementation architecture.

So, we start off with the basic concepts: a player (we call it a user) and a
peripheral (hereafter known as a controller) in their hand(s). Obviously, a user
‘has a’ controller, and since there can be more than one controller (and player)
in a game at once, we appoint a manager class to service all the controllers.
Figure 11.14 shows the basic controller component.

We have abstracted more than just the controller type – we have separated
that abstraction out to recognise ports – slots that controllers can be plugged
into. This is useful, nay essential, because our game will have to recognise the
situation when one controller is removed and another is added. Instead of sub-
classing the controller type, we create a fixed controller class whose port has a
Mode object subclass that describes the physical peripheral in the slot. If that

Case study: Cordite 401

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 401

peripheral is swapped for another, then the user still has the same controller; it’s
just the lower-level encapsulated instances that change, making the operation
totally transparent to the player.

All the hardware-specific operations happen within the Mode subclasses, so
you might wonder how we get the controller data from within that encapsulated
system back into the game. That’s where the InputHandler, User and Target
classes come in. The Mode has a pure virtual function that looks like this:

virtual void DispatchState(User * pUser,

Target * pTarget,

InputHandler * pHandler) =0;

The InputHandler has the following interface:

// File: CTRL_InputHandler.hpp

namespace CTRL

{

class GunData;

class PadData;

class InputHandler

{

Object-oriented game development402

PortStandard

ModeGun

Mode

ModePad

CTRL

PortUSB

PortTarget Controller

Factory

UserControllerManager

Mode

Port

InputHandler

Input handler

*Ports *Controllers

Factory

Controller

Figure 11.14
The CTRL controller

component.

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 402

public:

virtual void HandleGun(const GunData & aGunData,

Target * pTarget,

User * pUser);

virtual void HandlePad(const PadData & aPadData,

Target * pTarget,

User * pUser);

};

}

In short, there’s a Handle method for every supported controller type. In the
base class, the implementations of these methods do nothing, so for an applica-
tion that does not support a particular controller, the compiler and linker are
happy and the executable is oblivious.

Subclasses of InputHandler in the application code receive notification of
the controller state via these methods. For example, with the gun controller:

void ModeGun::DispatchState(User * pUser,

Target * pTarget,

InputHandler * pHandler)

{

pHandler->HandleGun(m_MyState, pTarget, pUser);

}

where the member variable m_MyState holds the current and previous gun
states. The Handle methods with the application’s InputHandler subclass can
then decide on what action to take based on the controller data (or changes
therein), the User (i.e. who sent the input, essential for handling situations
such as split-screen views) and the Target. The latter class describes the object
that the results of the changed peripheral data – if any – should be sent to. In
Cordite, this is usually a cursor, which tracks the gun position on screen. The
cursor object just needs to inherit from the (Strawman) Target class:

class Cursor : public CTRL::Target

{

//…

};

Within the game code, the InputHandler classes know that their target is a
cursor, and the pointer to the Target can be safely upcast to a Cursor:

void MyHandler::HandleGun(const GunData & aGunData,

Target * pTarget,

User * pUser)

Case study: Cordite 403

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 403

{

Cursor * pCursor = static_cast<Cursor *>(pTarget);

//…

}

11.1.7 Particles
Particle systems form the basis of most in-game effects. I’ve seen many attempts
to write a generic particle system; they’ve all performed poorly. I’ve also seen
many bespoke particle systems written; they’ve performed well but they’re so
nearly identical, both logically and physically, to other bespoke particle effects
that one can’t help but feel that you could write them generically.

There are many ways of approaching a generic particle system. One can
write a physical simulator that determines particle behaviour in terms of entities
being acted on by force fields. This makes it difficult to get the particle behav-
iours just right. So, instead, we simply make specific particle behaviour a
property of the object.

The naive interpretation of this would be:

class Particle

{

public:

virtual void Update(Time aDeltaT) = 0;

virtual void Render(Renderer *) = 0;

};

but this would result in a very poorly performing system (for medium to large
numbers of particles, anyway) because of the per-particle virtual function call
overheads relative to the amount of work being done in the update and render
methods (clearly, particles must be fast to process). Also, notice that it is hard-
wired to one specific renderer. This is not very reusable.

Clearly, we need the benefits of polymorphism while minimising the over-
head. We would like to be able to parameterise our system so that behaviours
can be built out of simple elements and it is independent of any specific render-
ing system. We achieve this through the use of templates. Figure 11.15 shows
the particle system component.

Let’s focus on the emitter side first of all. We have created a number of very
small (but perfectly formed) property classes that confer a well-defined simple
behaviour on a particle. Here, we’ve shown four properties: lifespan, speed,
direction and spin. We create a specific emitter by mixing the base Emitter
class with the appropriate property classes:

namespace PRTCL

{

Object-oriented game development404

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 404

class HasLifespan

{

public:

HasLifespan();

HasLifespan(float fMin, float fMax);

float GetLifespan() const;

void SetLifeRange(float fMin, float fMax);

private:

float m_fMinLife;

float m_fMaxLife;

};

//---

class HasSpeed

{

public:

HasSpeed();

HasSpeed(float fMin, float fMax);

float GetSpeed() const;

void SetSpeedRange(float fMin, float fMax);

Case study: Cordite 405

EmitterFountain

HasSpin

PRTCL

HasLifespan HasSpeed HasDirection Emitter

EmitterDirectional EmitterSpherical

Particle *Active

ParticleSystem
<
 Particle,
 Emitter,
 Renderer
>

*Pool

Emitter

Figure 11.15
The PRTCL particle
system component.

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 405

private:

float m_fMinSpeed;

float m_fMaxSpeed;

};

//---

class HasSpin

{

public:

HasSpin();

HasSpin(float fMin, float fMax);

float GetSpin() const;

void SetSpinRange(float fMin, float fMax);

private:

float m_fMinSpin;

float m_fMaxSpin;

};

//---

class HasDirection

{

public:

HasDirection();

HasDirection(const MATHS::Vector3 & vDir,

float fPerturbation=0.0f);

void SetDirection(const MATHS::Vector3 & vDir);

// Set the direction vector.

void SetPerturbation(float fPerturbation);

// Sets the amount of randomness in the direction.

MATHS::Vector3 GetVelocityVector(float fSpeed) const;

private:

MATHS::Vector3 m_vDirection;

float m_fPerturbation;

};

/***/

Object-oriented game development406

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 406

class Emitter

{
public:

/*

* Constants/typedefs/enums.

*/

/*

* Lifecycle.

*/

Emitter(const MATHS::Vector3 & vPosition);

/*

* Polymorphism.

*/

/*

* API.

*/

const MATHS::Vector3 & GetPosition() const;

void SetPosition(const MATHS::Vector3 & vPos);

// Set/get the point of emission.

protected:

/*

* Helpers.

*/

private:

/*

* Data.

*/

MATHS::Vector3 m_vPosition;

}; // end class

//---

class EmitterDirectional

: public Emitter

, public HasSpeed

, public HasDirection

{

Case study: Cordite 407

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 407

public:

/*

* Constants/typedefs/enums.

*/

/*

* Lifecycle.

*/

EmitterDirectional(const MATHS::Vector3 & vPos,

const MATHS::Vector3 & vDir,

float fMinSpeed,

float fMaxSpeed,

float fPerturbation = 0.0f);

/*

* Polymorphism.

*/

/*

* API.

*/

MATHS::Vector3 GetParticleVelocity() const;

// Gets a velocity based on the direction,

// speed and perturbation settings.

protected:

/*

* Helpers.

*/

private:

/*

* Data.

*/

float m_fPerturbation;

}; // end class

}

There are no virtual function calls required here, so it’s all nice and quick.
Notice that there is no ‘create particle’ call in the Emitter. The function of this
object is to calculate initial values, and it does this by having ranges between

Object-oriented game development408

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 408

which random values can be picked (if we want a single value, then we make a
range of size zero). Within game code, a subclass of Emitter needs to support a
non-virtual member function InitialiseParticle, where the particle type is
also defined in the game code. This then uses the base emitter to calculate
values to set up the particle:

void MyEmitter::InitialiseParticle(MyParticle * p)

{

p->SetLife(GetLifeSpan());

p->SetVelocity(GetParticleVelocity());

}

The class that creates and manages particles is the ParticleSystem, which is a
templated object based on three parameters:

● The Particle, which you provide and which should support the non-
virtual methods

void Update(Time aDeltaT);

bool IsActive() const;

void Render(Renderer * pRenderer) const;

IsActive() should return false if the particle has expired.

● The Emitter subclass, supporting InitialiseParticle() as described above.
● The renderer you’re using as an argument to the particle Render() method.

Putting these all together looks like a bit like this:

namespace PRTCL

{

template<class Particle,class Emitter,class Renderer>

class ParticleSystem

{

public:

/*

* Constants/typedefs/enums.

*/

/*

* Lifecycle.

*/

ParticleSystem(Emitter * pEmitter,

int iMaxParticles);

Case study: Cordite 409

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 409

virtual ~ParticleSystem();

/*

* Polymorphism.

*/

// Update active particles by the elapsed time.

virtual void Update(float fDeltaT);

// Removes all active particles, sets the age to 0.

virtual void Initialise();

// Renders all the (active) particles.

virtual void Render(Renderer * pRenderer) const;

/*

* API.

*/

// Generates a number of particles. The maximum set

// in the constructor cannot be exceeded (it will

// silently fail if so). The return value is the

// actual number generated.

int Spawn(int iRequestedParticles);

int GetActiveParticleCount() const;

float GetAge() const;

Emitter * GetEmitter();

const Emitter * GetEmitter() const;

protected:

/*

* Helpers.

*/

inline void elapseTime(float fDeltaT)

{

m_fAge += fDeltaT;

}

void freeActiveParticle(iterator itParticle);

private:

/*

* Data.

*/

tParticleList m_ActiveParticles;

Object-oriented game development410

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 410

tParticlePool m_ParticlePool;

Emitter * m_pEmitter;

int m_iMaxParticles;

float m_fAge;

};

}

Yes, the particle system is free to have virtual functions. Any instance of a
system is only updated once per game loop (or perhaps less), so a single poly-
morphic call will be dwarfed by the actual update of the contents. We can then
use the API and the protected helpers to fine-tune our subclassed particle
system. For instance, a particle system that continuously chucks out particles
(e.g. smoke) may look like this:

template<class Particle, class Emitter, class Renderer>

class ParticleSystemContinuous

: public PRTCL::ParticleSystem<Particle,Emitter,Renderer>

{

public:

/*

* Constants/typedefs/enums.

*/

/*

* Lifecycle.

*/

ParticleSystemContinuous(Emitter * pEmitter,

int iMaxParticles,

float fGenRate);

/*

* Polymorphism.

*/

void Update(float fDeltaT);

/*

* API.

*/

// Sets and gets the maximum number of particles

// that can be produced. You can’t set more than

// the maximum passed in the constructor.

void SetCapacity(int iCapacity);

int GetCapacity() const;

Case study: Cordite 411

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 411

// Sets the rate at which particles are replenished.

void SetGenerationRate(float fRate);

protected:

/*

* Helpers.

*/

void maintainParticleDensity(float fDeltaT);

private:

/*

* Data.

*/

float m_fGenerationRate;

int m_iCapacity;

};

11.1.8 And so on
Within Cordite, there are many more components that make up the complete
game. For example, a path controller that intelligently rescales Avatar walk
cycle animations depending on the route direction and speed, a camera con-
troller, or a console that allows inspection and modification of internal game
state. The large majority are reusable without change; of the remainder, only
one or two are so specific to this game that they are not worth recycling. With
good design and careful implementation, video games can – contrary to the
received mythology – be created from small, reusable building blocks, which
can be extended through the familiar mechanism of polymorphism. Figure
11.16 summarises the components we have discussed.

We’ve split the components into three – somewhat arbitrary – levels: core,
which are components that are generic and/or exist in their own right or are
used in another game; intermediate, which are components written especially
for Cordite but that are otherwise generic; and game, which are (somewhat
loosely) classes that specialise classes in the other levels and generally glue the
required behaviours together but are generally not reusable. In this example
game, given the (fairly arbitrary but not unrepresentative) components we have
selected for discussion, 13 of 17 components are reusable. That’s nearly 77% of
the components. Although it would be a big (and mistaken) assumption to
make that all the components are the same size in terms of lines of code or
number of bytes of object code, it is hard not to reach the conclusion that by
writing games using component technologies, the overwhelming majority of
component code is reusable and about half of that may exist already. Tell that to
your producer!

Object-oriented game development412

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 412

Case study: Cordite 413

S
O

S
In

te
rm

ed
ia

te
M

A
P

E
V

TS
C

R
G

R
ID

P
R

TC
L

C
N

U
T

R
E

N
D

D
M

G
D

E
V

T
S

TR
M

C
TR

L
S

C
E

N
E

C
O

LL

C
or

d
ite

S
O

S
FX

C
or

d
ite

C
TR

L
C

or
d

ite
O

b
je

ct

C
or

e

G
am

e

Figure 11.16
Overview of the Cordite
components that we’ve
discussed.

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 413

11.2 Summary

● Much of a game’s architecture can be put together with a set of existing,
reusable components.

● The components provide a framework from which specific behaviours are imple-
mented and utilised via the mechanism of inheritance.

● The bits that cannot be put together in this way can still be written as compo-
nents with the possibility of reuse in other games or applications.

● The notion that you can’t do reuse in games is therefore utterly refuted. It is the
author’s fond wish that this is the straw that breaks the Hacker’s Charter’s back.
However, this does not mean that game development will become easy, or a cyni-
cal, churn-’em-out process that recycles dated technology. Far from it. The
intention is to stop bogging our development down with rewriting, re-debugging
and retesting the ‘simple’ stuff, and to focus instead on utilising the increasing
amounts of CPU power and RAM to push the boundaries of what we believe is
possible. After all, isn’t that why we’re in the games business in the first place?

Object-oriented game development414

8986 OOGD_C11.QXD 1/12/03 3:01 pm Page 414

The conventions used follow the policy discussed briefly in Chapter 3. More
standards are adopted than are required by the policy, which is intended to
be a useful minimum rather than a definitive maximum:

Variable scope is indicated by a single-letter prefix followed by an underscore:

g_ means a variable is global.
s_ means a variable is static – visible only in the declaring module.
c_ means a variable is a static class member.
m_ means a variable belongs to a class instance.

A modified Hungarian notation indicates the type of variable:

p means a pointer.
i means an integer (compiler native size).
u means an unsigned integer (compiler native size).
c means a character (eight-bit signed).
str means a nul-terminated string (or string class type).
v means a vector.
m means a matrix.
a means an instance or reference.
f means a single-precision floating-point value.
b means a Boolean value.

Publicly accessible functions and methods start with an upper-case letter. Private
functions and methods begin with a lower-case letter. In both cases, names are
composed of word fragments with no separators, each fragment starting with a
capital letter.

So if we see the variable m_pResourceManager, we know we’re dealing with
a class member that points at a resource manager type. If we see iNumSprites,
we are looking at a local integer counter for our sprites.

Preprocessor macros are in upper case with word fragments separated by under-
scores for clarity, e.g. MAX_SPRITE_NAME.

Namespaces are given names with a single short (no more than five characters)
word fragment in upper case, e.g. namespace REND { /*…*/ }.

Appendix: coding
conventions used

in this book

415

8986 OOGD_Z01.QXD 1/12/03 3:03 pm Page 415

8986 OOGD_Z01.QXD 1/12/03 3:03 pm Page 416

Abrash, M. (1994) The Zen of Code Optimisation, Scottdale, AZ: Coriolis.
Alexandrescu, A. (2001) Modern C++ Design, Upper Saddle River, NJ: Addison-

Wesley.
Ammeral, L. (1997) STL for C++ Programmers, Chichester, UK: Wiley.
Bourg, D. (2001) Physics for Game Developers, Sebastapol, CA: O’Reilly.
Brown, W., Malveau, R., McCormick, H., Mowbray, T. (1998) Antipatterns, New

York: Wiley.
Eberly, D. (2000) 3D Game Engine Design, San Francisco: Morgan Kaufman.
Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994) Design Patterns – Elements

of Reusable Object-Oriented Structure, Reading, MA: Addison-Wesley.
Johnstone, M. Wilson, P. (1998) The memory fragmentation problem: solved?

www.cs.utexas.edu/users/wilson/papers/fragsolved.pdf/.
Lakos, J. (1995) Large-Scale C++ Software Design, Reading, MA: Addison-Wesley.
Maguire, S. (1993) Writing Solid Code, Redmond, WA: Microsoft Press.
Maguire, S. (1994) Debugging the Development Process, Redmond, WA: Microsoft

Press.
McConnell, S. (1993) Code Complete, Redmond, WA: Microsoft Press.
Myers, S. (1995) More Effective C++, Reading, MA: Addison-Wesley.
Myers, S. (1997) Effective C++, 2nd edition, Reading, MA: Addison-Wesley.
Rollings, A., Morris, D. (1999) Game Architecture and Design, Scottdale, AZ:

Coriolis.
Singhal, S., Zyda, M. (1999) Networked Virtual Environments, New York: Addison-

Wesley.
Stroustrup, (2000) The C++ Programming Language, 3rd edition, Reading, MA:

Addison-Wesley.
Watt, A., Policarpo, F. (2000) 3D Games: Real-Time Rendering and Software

Technology, Harlow, UK: Addison-Wesley.

Bibliography

417

8986 OOGD_Z02.QXD 1/12/03 3:03 pm Page 417

8986 OOGD_Z02.QXD 1/12/03 3:03 pm Page 418

No collection of Web resources for game developers would be complete without
Gamasutra: lots and lots of really useful source code, tutorials, reviews, post
mortems. See www.gamasutra.com

For advanced, occasionally esoteric, cutting-edge C++ with deep insights by
ANSI committee members, see www.gotw.ca/

Sweng-gamedev is a group talking C++, software engineering and project man-
agement for games, among other things. Subscribe at www.midnightryder.com/

If you’re writing compilers, a scripting system or other language-related systems,
and you’re fine with using STL in a game, then ANTLR surpasses yacc and lex.
See www.antlr.org/

For lots of info about how to write physics for games, Chris Hecker’s page is a
very good place to start: www.d6.com/users/checker/dynamics.htm

Web resources

419

8986 OOGD_Z03.QXD 1/12/03 3:03 pm Page 419

8986 OOGD_Z03.QXD 1/12/03 3:03 pm Page 420

Abrash, M. 17
abstraction 52, 371
accountability 353
actor objects 273
Adobe Photoshop 370, 378
allocation of storage 283–301
animators 378–9
antir 348
application components 150–2,

259–65
architecture specialists 370–1
articulation 341
artificial intelligence (AI) 135–6, 372
artistic content of games 20, 375–9
ASCII text 178–80, 330
assembly language 7, 52
asset-generation packages 238
asset management 291
asymmetric heap allocation 288–91,

301
AT&T 6
Atari 5, 7
atomic actions 332, 340
audio systems 248–9
avatars 280
axis systems 208

base version of software 358
BASIC 6–7, 331
BBC Micro 7
big-Endian data 235, 237
binary instructions 4
block merging 291

BNDL component 192
Braben, David 7
brainstorming 72–6, 254
‘breadth first’ approach 362
buffers 168, 199–203, 294–5
Bushnell, Nolan 5
byte ordering 235

C language 6, 8, 51–2
C++ language 52–6

classes in 370
coding policy for 63–7
overload in 62
problems with 56–9
scripting in 330–2
standard libraries for 59–60
and system implementation 340–1

capability of a platform 230, 251,
253

checkers algorithm 4
classes 69–70
clauses 341
clients 221, 224–5
code layout 65–6
coding policy 63–7
collision detection 189–91, 313,

393–5
Commodore 64 computer 7
communication, effectiveness of

367–8
compilers, differences between 230–2
completeness of an application 359
complex numbers 171

Index

421

8986 OOGD_Z04.QXD 1/12/03 3:02 pm Page 421

complexity reduction 20
component architecture 137–50
component reuse 35
Computer Space 5
concept artists 376
conduits 221–4
console games 284
const-correct code 66
constraints 214
container components 152–8, 288
control methodology 16–17, 20,

401–4
conversion between computer

systems 7
copy-and-paste 35–6
copy-on-write (COW) 292
Cordite (case study) 387–413
core features of games 19, 355–6
core technology 374
cost of developing games 14
creative designers 383–4
cross-platform development see

multiplatform development
culture of development 367

damage tags 312–23
databases 291
decompression of data 202
dependencies in code 38–41, 132,

136–41, 181, 326
cyclical 185–6
elimination of 41–3
illogicality in 148
localisation of 44–5
reduction of 148

dereferencing 304
design of software 72–6

commercially-available tools for
69

embedded in development 382
design teams 379–84
designers of games 329, 367–8, 383
directory hierarchies 187
DirectX COM 331

Dispatch function 130
DMGD component 192, 196–200,

204
double dispatching 130
dynamic data separated from static

143–7

efficiency of games software 16, 23
Elite 7
encapsulation 53

loss of 171, 276, 345
engines 34–5, 136–8
error messages 230–2
event management 333–5, 340–7
evolution of software systems 352
exception handling 55–6
exotic keywords 56
‘explicit’ keyword 63

features of computer games
core, required and desired 19, 355–6,

362
differences between versions for

different platforms 251–2
successive levels of 357–8

file management 388–91
FMV sequences 379, 384
‘for’ loops 231
foreign language support 180
fragmentation 201–3, 268, 282–4,

291–2
frameworks 35
FSVR component 192, 195
function call overhead 54–5
fundamental singletons 81

game objects (GOBs) see objects
GameCubeTM 2
games software development,

distinctiveness of 15–21
Gamma, E. 76
Gang of Four book 76–7
garbage-disposal systems 200, 309
generic systems 250–1, 257

Index422

8986 OOGD_Z04.QXD 1/12/03 3:02 pm Page 422

global variables 66
GNU C Compiler 283
good practice in programming 30–3
grammar 347–8
graphical user interfaces (GUIs)

120–33, 329, 348, 378
graphics 181–6, 247–8

handles 291, 297–8, 303–4, 307
‘has a’ relationship 71, 268, 276–7
hashing systems 157–8, 292–3
Havok 207
header files 41–3, 50, 242–3, 246,

268, 296
heuristic content of games 19
hidden functionality 354
hierarchies of objects

collapsed 267–9
shallow 269–70, 281
vertical 270–4

Higinbotham, William 4
history of games 4–8
horizontal reuse of software 34, 37

ID values 300–1, 321–3
incremental delivery 352–5
inertia tensors 211–15
inheritance 41, 53, 70–1, 137, 268–9,

274, 278, 281; see also mix-in
inheritance; multiple inheritance

input systems 127–31
instances 65, 143–5, 196, 203
integrators 174–8, 208–11
Intel 6
interfaces 77–81, 246
intermediate file formats (IFFs)

237–41
interpolators 171–4
invalid objects 310
‘is a’ relationship 70, 276–7
isolation of blocks of code 232–5
iterative development techniques

10–11, 351–66, 377–8, 381–2
iterators 97, 102–5

Jackson, Samuel 4
Johnstone, M. 283
Jurassic Park Trespasser 207

language, choice of 51–63
last-but-one version of software

354–5
layered views 123
leading platform 252, 254
level builders 383
level-of-detail (LOD) systems 377
library code 45–8, 59–60, 64, 66
lifecycle of a resource 96
linear algebra subcomponent 161–3,

170
linear control of tasks 332–5, 340
linked lists 288
list classes 48–9, 61–2
Lithtech 135
little-Endian data 235, 237
load requests 194–6
locality principle 138–40, 181
logical maps 390–1
loosely-coupled architecture 137, 295

Macintosh computers compared with
PCs 235

Maguire, S. 30
major platform 252–4
manager patterns 95–6
Mathengine 207
maths components

high-level 171–8
intermediate 166–71
low-level 158–66

matrix classes 161, 170
matrix transpositions 167–8
memory managers 282–3, 296
methodology used by hardware 230,

251
metrics 365
MFC system 269, 370
milestones 24, 31, 352–4, 362

internal and external 353

Index 423

8986 OOGD_Z04.QXD 1/12/03 3:02 pm Page 423

minor platform 252–4
mix-in inheritance 274–81, 342
MODEL component 182–9
monostates 88
multiplatform development 229–66

high-level architecture for 254–65
multiple inheritance (MI) 57–9, 209,

230, 274–8, 342

namespaces 65–6, 257–9, 256
naming conventions 64, 150, 188
NET component 224–6
NetHack 15
network gaming 220–6
nominal version

of artwork 378
of software 358, 362

non-player character (NPC) control
135–7, 280

notation in software engineering
69–72

null objects 272
null version of software 358, 362

object factory 89–95, 320–1, 325–6
object instances 143–5
object orientation, characteristics of

52–6, 69, 226, 252, 269, 385
object streams 391–3
objects

in case study 398–401
classes of 269
definition of properties 275
management of 281

open-ended design 18–19
optimal version

of artwork 378
of software 358

ordering of tasks 362–5
osmosis as a means of learning 31
overengineered systems 371
overload 62, 282
owner tags on data 127
ownership 42–3, 70–1, 276, 278

paired tasks 31–3
parallel axis theorem 211
particle systems 404–12
partition package class 279
patching of software 16
patterns in software 35, 76–7

case study of 113–20
PC-Lint 41, 234
PCs compared with Macintosh

computers 235
PEEK command 7
peer review 31–2
persistent damage 311–26
physics, use of 205–20, 250, 371–2
piecewise relationships 173
pimpl pattern 79–80
placeholders 35, 361
PLATFORM package 257, 259
platforms, nature of 254
PlayStationTM2 2
point mass models 211–13
pointers 42–3, 65, 102–3

smart 299–300
POKE command 7
polymorphism 53, 129, 137, 187,

252, 313
Pong 6
pool allocation 268, 284–7, 299

for strings 295
‘post mortems’ 32
precedence of objects 325
preprocessor macros 65
preproject phase 374
PRIM component 186–9
prioritisation of tasks 15–18, 334–5,

351, 356–7, 361–5
private code 29
processing power of computers 20
production phases 373–5
programmers

allocation of tasks to 364–5
recruitment of 373
role of 368–70
skills of 25–6

Index424

8986 OOGD_Z04.QXD 1/12/03 3:02 pm Page 424

prototyping 19, 51, 108–11, 380
proxy objects 272
public interfaces 65
purging of assets 198–200

Quake 15, 135
quality assurance (QA) 381–4
quantum electrodynamics 9
quaternions 163, 214–15

random-number generators (RNGs)
163–5

realism in games 205–6
recruitment of development staff

373
redundancy of ideas 380
re-entrancy 332–4
refactoring 43–4
reference counting 271, 279–80, 298,

301–4
reference frames 208
reference stubs 304, 307
referencing 42, 296–311

failure of 311
relationships between classes 70–2
release quality 359
REND component 183–6, 257
rendering systems 44, 181–2, 247,

250
repeatable events 341
resource management 192–204
reusable code 33–8, 132, 181, 253,

268, 296, 361, 412
disadvantages of 50–1
granularity of 45–50

reverse-engineering 69
reviews of development work 31–3
rewriting of software 357, 361, 366
risk management 366, 379–82
robustness of games 16
run-time-type information 57
Russell, Steve 4
Russian doll pattern 111–15

SCENE component 182–3
scheduling 351–5, 365–6
scripting 279, 329–32, 395–8

language issues 347–8
layered systems 340

servers 221, 224–5
simuloid games 18
Sinclair Research 6–7
Singhal, S. 220
singletons 81–9, 111, 118, 255
skinning 144–5
slippage 354
Softimage 370
software engineering 23
sort order 345
sound systems 248–9
source files 66, 242–6
Spacewar 4
special-effect programmers 373
specialisation by programmers 370
speed at which games run 15–17
Standard Template Library (STL)

59–62, 103–4, 152, 171, 230–1,
284, 288, 348

standards for software 27–30, 232,
235

state events 345
‘State Manager’ system 113–20, 263
state vectors 215
static constants 231
static data separated from dynamic

143–7
Strawman pattern 105–7, 125, 256
strength of relationships, reduction in

41–3
strings 291–6
subclasses 137–8, 252–4, 270, 335,

341
subsystems 45
sunken cost fallacy 51
synergistic behaviour 277, 367

task-based control 334–40
teamwork 367

Index 425

8986 OOGD_Z04.QXD 1/12/03 3:02 pm Page 425

technical artists 379
technical designers 384
technology programmers 370
templates 59–63, 89, 230
temporary objects 292
testing 382–4
text processing 178–81
threads 149
timed events 344–5
timelines 373, 377–8
toolkit components 44
tools programmers 370, 374–5
top-down analysis 37, 365
trailing platform 252
training of programmers 26, 31, 33
transceivers 223
transcendental functions 165–6
trig functions 165–6
type conversions 62–3

Unix 6, 8
Unreal 135
unsigned variables 231
user interfaces 120, 378;

see also graphical user interfaces
‘using’ keyword 66
utility components 44

vector classes 159–61, 170
version control systems 50, 243, 354,

377
vertical reuse of software 34, 37, 51
view classes 121–3
virtual functions 54–5, 103, 186–8,

313
Visio® 69
visitor classes 98–104
VISUAL component 185–6
visual representation

separation from object data 141–2
value of 385

VLSI technology 6

warning messages 230–2
Wilson, P. 283
work-in-progress, reviews of 31–3,

355
working practices for programmers

26–30

X-BoxTM 2

ZX80 6
Zyda, M. 220

Index426

8986 OOGD_Z04.QXD 1/12/03 3:02 pm Page 426

