
www.allitebooks.com

http://www.allitebooks.org

Oracle APEX Best Practices

Accentuate Oracle APEX development with proven
best practices

Learco Brizzi

Iloon Ellen-Wolff

Alex Nuijten

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle APEX Best Practices

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2012

Production Reference: 1181012

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-400-2

www.packtpub.com

Cover Image by Sandeep Babu (sandyjb@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Learco Brizzi

Iloon Ellen-Wolff

Alex Nuijten

Reviewers
Dimitri Gielis

Surachart Opun

Michel van Zoest

Acquisition Editors
Dilip Venkatesh

Dhwani Devatar

Lead Technical Editor
Susmita Panda

Technical Editors
Prasad Dalvi

Lubna Shaikh

Project Coordinators
Yashodhan Dere

Jovita Pinto

Proofreader
Aaron Nash

Indexers
Tejal Soni

Hemangini Bari

Graphics
Valentina Dsilva

Aditi Gajjar

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Learco Brizzi received his MSc in Informatics in 1993 and then he started
working with the early versions of Oracle Forms (3.0), Reports (1.1), and Designer
(1.2.1). When WebDB was launched, he created his first steps towards building
Internet applications. When APEX (HTMLDB) hit the market, he saw the potential
of this tool and built a complete music download store with it in 2004, including
integration with e-mail, reports, and payment service providers. This was one of the
very first serious applications ever built with APEX. Nowadays, Learco is dedicated
to the APEX and PL/SQL development. He is a very enthusiastic technician,
trainer of advanced APEX courses, presenter at conferences, organizer of seminars,
committee member of the OGh (Oracle user group in Holland) and member of the
editorial-committee for the Oracle magazine OGh Visie. Together with a companion
Learco started his own company, Itium, in 1999, which specializes in Oracle
technology. In May 2010, Learco was awarded the Oracle ACE membership.
You can contact Learco at lbrizzi@itium.nl.

I would like to thank my wife Judith, and my children Emma
(my nine-year-old daughter) and Dante (my six-year-old son) for
their patience and support they gave me while writing this book.
Most of the work had to be done in the evenings and weekends
(our family time together).

For me this was the first time I wrote a book and didn't know what
to expect. I didn't expect that it would take so much time, but it was
fun to do and I learned a lot of new things about Oracle and APEX
as well.

I would also like to thank my fellow writers Alex and Iloon.
Together we were a great team and kept each other sharp.

Last but not least I would like to thank the editors of the book who
had good comments and suggestions on our material.

www.allitebooks.com

http://www.allitebooks.org

Iloon Ellen-Wolff started working with Oracle 21 years ago, employed by several
software houses in the Netherlands. Her experience goes back to Oracle Forms
version 2 and Report Writer.

Almost 14 years ago, she started working for Oracle Support Services for the
developer competency (Oracle Forms, Oracle Reports, SQL Developer, and
Application Express), assisting customers by solving their software-related problems.

During those years, she applied the knowledge she had gained in many ways such as
coaching new engineers, team leading, teaching the Application Express courses, and
seminars for Oracle University.

Aside from being a very senior team member with excellent troubleshooting and
customer skills, in Oracle Support, she acts as Advanced Resolution Engineer.

One of her responsibilities in Oracle Support is Global Technical Lead Application
Express. She works closely with Sustaining Engineering, Product Development, and
Product Management of the Application Express team.

Starting last year, she is now involved in the Oracle Cloud project. She is member
of the platform as a service readiness team. Involved in testing Application Express
in the Cloud and being a trainer in this area, she enjoys the challenge to prepare
her engineers for the Cloud and ultimately to support Oracle customers in the
very near future!

Besides that, she is a frequent speaker for different Oracle User Groups about
Application Express, SQL Developer, and Oracle Public Cloud.

I would like to take the opportunity to thank the Application Express
development team and particularly Joel Kallman as Development
Director for the continuing effort to make Application Express an
excellent product.

I'd also like to thank my husband, Albert Ellen, for assisting me in
getting the layout right and supporting me in writing this book. Of
course, it took a big amount of time to achieve this goal.

I would also like to thank co-authors on this book, Alex and Learco.

www.allitebooks.com

http://www.allitebooks.org

Alex Nuijten works as a database developer and Expertise Lead (database
development) for AMIS Services BV in Nieuwegein, The Netherlands. Besides his
consultancy work, he conducts training classes, mainly in SQL and PL/SQL. Alex
has been a speaker at numerous international conferences, such as ODTUG, Oracle
Open World, UKOUG, IOUG, OGh, and OBUG. He is also a frequent contributor
at the Oracle Technology Network forum for SQL and PL/SQL. He has written many
articles in Oracle-related magazines, and at regular intervals he writes about Oracle
database development on the AMIS Technology Blog (technology.amis.nl), as well
as on his own blog, Notes on Oracle (nuijten.blogspot.com). In August 2010, Alex
was awarded the Oracle ACE Director membership.

I think this may be the hardest section to write. There are so many
people that inspired me and from whom I have learned so much
along the way. And each one of them helped me in writing my
chapters. It would be impossible to try to name you all and therefore
do injustice to the ones I let slip. My colleagues, fellow members
of the OTN forums and in the ACE program, the bloggers, the
Oracle user groups all over the globe, basically everyone I ever dealt
with—a big thank you to you all.

There are still some people I have to name in this section explicitly.

Let me start by thanking my co-authors, Iloon and Learco. Writing
this book was quite a journey. Thank you for allowing me to join you
with this adventure, it was a great experience.

Without the technical reviewers, this book would have looked totally
different. Thank you, Dimitri Gielis, Surachart Opun, and Michel
van Zoest, for your feedback and suggestions on improving the
quality of the book. Any outstanding errors in my chapters are, of
course, my own.

Without the continuing support of my wife Rian, son Tim, and
daughter Lara, I could never have worked on this. Preparing
presentations, writing articles and chapters take an enormous
amount of time and my family understands this, and they are alright
with it. I could never do all that without you, I love you so much.

Finally I would like to thank the Packt editorial and production
teams who have worked on this book, especially Yashodhan Dere,
Susmita Panda, Dilip Venkatesh, Dhwani Devatar, and Jovita Pinto.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Dimitri Gielis was born in 1978. Together with his family he lives in
Leuven, Belgium.

At an early age, Dimitri started experimenting with computers (Apple II and IBM XT),
and he quickly got to know that he would like to work with computers and especially
with databases all his life.

In 2000, Dimitri began his career working as a consultant for Oracle Belgium where
he came across almost every Oracle product. His main expertise was in the database
area, but at that time he was also exposed to HTMLDB, which was renamed as
Oracle Application Express later on. From the very start he liked the Oracle database
and APEX so much that he never stopped working with it. Dimitri then switched
to another company to create an Oracle team and do pre-sales, to later create and
manage an Oracle Business Unit.

In 2007, Dimitri co-founded APEX Evangelists (http://www.apex-evangelists.
com), together with John Scott. APEX Evangelists is a company that specializes
in providing training, development, and consulting specifically for the Oracle
Application Express product.

On his blog (http://dgielis.blogspot.com), he shares his thoughts and
experience about Oracle, and especially, Oracle Application Express.

Dimitri is a frequent presenter at OBUG Connect, IOUG Collaborate, ODTUG
Kaleidoscope, UKOUG conference, and Oracle Open World. He likes to share
his experience and meet other people. He's also President of the OBUG (Oracle
Benelux User Group) APEX SIG.

In 2008, Dimitri became an Oracle ACE Director. Oracle ACE Directors are known
for their strong credentials as Oracle community enthusiasts and advocates.

In 2009, Dimitri received the APEX Developer of the year award by Oracle Magazine.

In 2012, Dimitri was part of the LA OTN Tour where he presented different APEX topics.

You can contact Dimitri at dimitri.gielis@apex-evangelists.com.

www.allitebooks.com

http://www.allitebooks.org

Surachart Opun has been working on Oracle products for over seven years. He
has worked with Internet Service Provider Business for over eight years. He is Oracle
ACE, OCE RAC 10g, and OCP 10g and 11g. He has experience in implementation,
migration, and management of Oracle Database in telecommunication business and
so on. He has spent time in helping people who are interested in the Oracle products
as contributor. He is working on APEX since version 3 and has worked on APEX
implementation and migration.

His blog is at http://surachartopun.com.

Michel van Zoest was born in 1976. He currently lives in Bergambacht, The
Netherlands with his wife, two daughters, and son.

In 2000, he started working as an Oracle Consultant. He now has more than 12 years
of experience in building (web) applications by using the Oracle technologies such as
Oracle (web) Forms, Oracle Designer, MOD_PLSQL, ADF, SOA Suite, and of course,
APEX.

Michel was one of the first Oracle Application Express Developer Certified Experts
in the world.

He currently works at Whitehorses in The Netherlands and runs his own blog at
http://www.aboutapex.com. As well as that, he blogs at the company website
at http://blog.whitehorses.nl and he regularly writes Whitebook articles
(in Dutch) for Whitehorses.

Michel is also one of the authors of the Oracle APEX 4.0 Cookbook published by Packt
in December 2010.

You can contact Michel via his website or by emailing him at michel.van.zoest@
whitehorses.nl.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Prepare and Build 7

History and background 7
Installing APEX 9

Runtime or full development environment 10
Build status 10

Tablespaces 10
Converting runtime environment into a full development
environment and vice versa 11

Choosing a web server 12
OHS 13
EPG 13
APEX Listener 14

Creating a second administrator 16
APEX web interface 17
Command line 18
Other accounts 19

Database 19
Data model 19
Creating the database objects 21
Other tools 22
PL/SQL usage 23

Creating a workspace 23
Creating administrators, developers, and users 24

User Interface Defaults 25
Attribute Dictionary 25
Table Dictionary 25
Creating User Interface Defaults 26

Page Zero 29

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Structure of multiple applications 30
Subscribe and publish 30
Creating a framework 32

Master and template application 33
Login application—optional 33
System application—optional 35

Deploying 36
Template workspace 36

Creating applications 36
List of values 36
Mapping the model to pages 37

Base tables 38
Master detail 40
Intersection 42
Simple report 46
Other pages 46

Summary 46
Chapter 2: Leveraging the Database 47

Instrumentation 48
Efficient lookup tables 52

Single-table hash clusters 53
Index-organized tables 59

Analytic functions 61
Syntax overview 61
Examples 64

Running totals 64
Visualizing the window 66
Accessing values from other records 67
Another way of accessing other rows in the result set 69
Ranking—top N 70
Stringing it all together 72
Caveats 73

Aggregate functions 77
Grouping sets 78

Rollup 81
Cube 83
Identifying the totals and subtotals with grouping 84

Offloading your frontend and scheduling a job 86
One-off job 86
Pipelined table functions 91
Pipelined table functions in APEX 93
Using images 95

Searching the contents of documents 97
Summary 100

Table of Contents

[iii]

Chapter 3: Printing 101
Printing architecture 102

What is planned for the future version of APEX Listener? 102
Installation and configuration of the Apache FOP report server 103

How to configure Apache FOP 105
Business Intelligence Publisher 109

Installation of Business Intelligence Publisher Version 11 109
Simple print test using BI Publisher 111

How to debug or troubleshoot printing issues 112
How to check if network services are enabled 113
Creating a report with BI Publisher 115

Creating the report query 115
Designing the report layout 116

Downloading XML data 117
Designing with the RTF template (MS Word) 117

Uploading the report layout 118
Linking the report to your application 119

How to create a report that can deliver output in different formats 120
How to add a chart to a report 122

Creating a chart in a report 123
How to add dynamic images to a report 125
Print API 130
How to bypass the 32K limit 133
Alternatives to use for PDF printing 133

Integration with Oracle Reports 133
Integration with Cocoon 134
Integration with JasperReports 135

Architecture 135
Plugins 135

Reports 2 PDF 135
Embedded PDF 136

Summary 136
Chapter 4: Security 137

Securing Oracle Application Express for administrators 138
Protecting the database environment 138

Virtual Private Database 139
VPD policy 139
VPD and Application Context 144
Implementing VPD in APEX 148
What to do when you get a runtime exception 149

Table of Contents

[iv]

Securing the web listener 151
HTTP server 151

Embedded PL/SQL gateway 153
Oracle Application Express Listener 154

Enabling SSL for the web server 155
Security considerations when installing Oracle Application Express 156

Runtime installation 156
Access Control Lists (ACLs) 157
Enabling builders in Oracle Application Express 158
Session timeout 159

Instance level 159
Application level 160

Password complexity rules 161
Patching strategy 162

Security considerations for the developer 162
Browser attacks 163

Cross-site scripting (XSS) 163
Protecting HTML regions and other static areas 165
Protecting dynamic output 165
Protecting reports regions 165
Protecting form items 165

SQL injection 166
Insecure use of variables 167
Correct use of Bind variables 169
SYS.DBMS_ASSERT 169

Security attributes 170
Authentication 170
Authorization 174
Database schema 179

URL tampering 179
Session state protection against URL tampering 179

Browser security attributes 183
Cache 183
Embed in Frames 183
Database session 184

Authorization and authentication plugin 184
Secure items in an application 185

Item encryption 186
Hidden items protection 186
Items of type password 187
File upload items 188
Managing instance security 188
Application data 189
Fake input 189
Saving state before branching 191

Table of Contents

[v]

Utilities 191
Application dashboard 191

How to check the security of your application 192
Oracle Application Express Advisor 192
Third-party tools to check on security 193

Summary 194
Chapter 5: Debugging and Troubleshooting 195

Debugging an APEX page 195
Instrumentation of the APEX code 201

APEX_APPLICATION.G_DEBUG 202
The debug Advanced Programming Interface (API) 202
The APEX debug message 202
APEX_DEBUG_MESSAGE.LOG_MESSAGE 204
WWV_FLOW_API.SET_ENABLE_APP_DEBUGGING 205

APEX and Oracle SQL Developer 205
Remote debugging 209

Steps to be performed in APEX 210
JavaScript console wrapper 211

Installation of the console wrapper 211
Web development tools 213

Firebug 214
APEX and Firebug 215

Debugging dynamic actions 215
Yslow 216
Error handling 217
Logging and tracing 217
Enabling/disabling logging 219
Reports in Application Express that facilitate troubleshooting 220
Application Express Advisor 221

Summary 223
Chapter 6: Deploy and Maintain 225

Package your application, or not? 226
Version control 231

Subversion 232
Deploying the database packages 235
Deploying the APEX application 239

Using the APEX environment 239
Using the command-line interface 245
Housekeeping the APEX repository 248

Table of Contents

[vi]

Being active and proactive 249
Feedback 249

Activate feedback 250
Processing entered feedback 252

Weighted page performance 255
Summary 258

Appendix A: Database Cloud Service and APEX 4.2 259
Oracle Public Cloud 259

Packaged applications 260
Plan for the future 260

RESTful web services 261
The RESTful Web Services wizard 262

Data load feature (SQL Workshop/utilities/data load) 267
Summary 267

Index 269

Preface
Have you ever wanted to create real-world database applications? In this book,
you will not only get APEX best practices, but will also take into account the total
environment of an APEX application and benefit from it. Many examples are given
based on a simple but appealing case.

This book will guide you through the development of real-world applications.
It will give you a broader view of APEX. The various aspects include setting up an
APEX environment, testing and debugging, security, and getting the best out of
SQL and PL/SQL.

In six distinct chapters, you will learn about different features of Oracle APEX as
well as SQL and PL/SQL.

Do you maximize the capabilities of Oracle APEX? Do you use all the power that
SQL and PL/SQL have to offer? Do you want to learn how to build a secure, fully
functional application? Then this is the book you'll need.

Oracle APEX Best Practices is where practical development begins!

What this book covers
Chapter 1, Prepare and Build, discusses different aspects of setting up an Application
Express (APEX) environment. Among others, we'll take a look at installing
APEX, performing preparational tasks before actually building applications,
and transforming the data model into initial screens. We will also discuss some
guidelines and best practices for these phases.

Chapter 2, Leveraging the Database, explains various subjects related to an APEX
environment. These subjects include instrumentation, efficient lookup tables,
analytic and aggregate functions, offloading long running programs, and so on.

Preface

[2]

Chapter 3, Printing, deals with different aspects of printing in Oracle Application
Express. In this chapter, we will discuss the two most used architectures in
Application Express printing, using Apache FOP and Business Intelligence Publisher.
Then, we will see how to install and configure both Apache FOP and Business
Intelligence Publisher.

Chapter 4, Security, describes how to provide security for Oracle Application Express.
In this chapter, we will discuss the responsibilities of an administrator. We will also
discuss security aspects for developers.

Chapter 5, Debugging and Troubleshooting, discusses various subjects such as
debugging in APEX, remote debugging using Oracle SQL Developer, reports
available in Application Express for troubleshooting, and so on.

Chapter 6, Deploy and Maintain, discusses the deployment and maintenance of
an APEX environment. In this chapter, we will discuss various topics such as
considerations regarding packaging the application, version control, and so on.

Appendix, Database Cloud Service and APEX 4.2, discusses Oracle Public Cloud and the
Application Express features in the Database Cloud Service and APEX 4.2.

What you need for this book
You will require following software:

• SQL Developer version 3.2 or higher
• Application Express 4.1.1 or higher
• APEX Listener with GlassFish, OC4J, or WebLogic
• BI Publisher (version 10 or version 11) and/or FOP

Who this book is for
This book is filled with best practices on how to make the most of Oracle APEX.
Developers beginning with application development as well as those who are
experienced will benefit from this book. You will need to have basic knowledge
of SQL and PL/SQL to follow the examples in this book.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "These settings can also be set manually
with the APEX_INSTANCE_ADMIN API."

A block of code is set as follows:

BEGIN
 wwv_flow_api.set_security_group_id
 (p_security_group_id=>10);
 wwv_flow_fnd_user_api.create_fnd_user(
 p_user_name => 'second_admin',
 p_email_address => 'email@company.com',
 p_web_password => 'second_admin_password') ;
END;
/
COMMIT
/

Any command-line input or output is written as follows:

@apexins tablespace_apex tablespace_files tablespace_temp images

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Select the appropriate settings for Disable Administrator Login and Disable
Workspace Login."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

Prepare and Build
In this chapter, we will discuss different aspects of setting up an Application
Express (APEX) environment. Among others, we'll take a look at installing
APEX, performing preparational tasks before actually building applications,
and transforming the data model into initial screens. We will also discuss some
guidelines and best practices for these phases. You'll get a lot of new ideas for
structuring and building your applications.

Before doing that we will take a brief look at the history and background of APEX.

History and background
APEX is a very powerful development tool, which is used to create web-based
database-centric applications. The tool itself consists of a schema in the database
with a lot of tables, views, and PL/SQL code. It's available for every edition of the
database. The techniques that are used with this tool are PL/SQL, HTML, CSS,
and JavaScript.

Before APEX there was WebDB, which was based on the same techniques. WebDB
became part of Oracle Portal and disappeared in silence. The difference between
APEX and WebDB is that WebDB generates packages that generate the HTML pages,
while APEX generates the HTML pages at runtime from the repository. Despite this
approach APEX is amazingly fast.

Because the database is doing all the hard work, the architecture is fairly simple. We
only have to add a web server. We can choose one of the following web servers:

• Oracle HTTP Server (OHS)
• Embedded PL/SQL Gateway (EPG)
• APEX Listener

Prepare and Build

[8]

APEX became available to the public in 2004 and then it was part of version 10g
of the database. At that time it was called HTMLDB and the first version was 1.5.
Before HTMLDB, it was called Oracle Flows, Oracle Platform, and Project Marvel.
Throughout the years many versions have come out and at the time of writing the
current version is 4.1.1. These many versions prove that Oracle has continuously
invested in the development and support of APEX. This is important for the
developers and companies who have to make a decision about which techniques to
use in the future. According to Oracle, as written in their statement of direction, new
versions of APEX will be released at least annually. The following screenshot shows
the home screen of the current version of APEX:

Home screen of APEX

For the last few years, there is an increasing interest in the use of APEX from
developers. The popularity came mainly from developers who found themselves
comfortable with PL/SQL and wanted to easily enter the world of web-based
applications. Oracle gave ADF a higher priority, because APEX was a no cost option
of the database and with ADF (and all the related techniques and frameworks from
Java), additional licenses could be sold.

Chapter 1

[9]

Especially now Oracle has pointed out APEX as one of the important tools for
building applications in their Oracle Database Cloud Service, this interest will only
grow. APEX shared a lot of the characteristics of cloud computing, even before
cloud computing became popular. These characteristics include:

• Elasticity
• Roles and authorization
• Browser-based development and runtime
• RESTful web services (REST stands for Representational State Transfer)
• Multi-tenant
• Simple and fast to join

APEX has outstanding community support, witnessed by the number of posts and
threads on the Oracle forum. This forum is the most popular after the database
and PL/SQL.

Oracle itself has some websites, based on APEX. Among others there are the following:

• http://asktom.oracle.com

• http://shop.oracle.com

• http://cloud.oracle.com

Oracle uses quite a few internal APEX applications.

Oracle also provides a hosted version of APEX at http://apex.oracle.com. Users
can sign up for free for a workspace to evaluate and experiment with the latest version
of APEX. This environment is for evaluations and demonstrations only, there are no
guarantees! Apex.oracle.com is a very popular service—more than 16,000 workspaces
are active. To give an idea of the performance of APEX, the server used for this service
used to be a Dell Poweredge 1950 with two Dual Core Xeon processors with 16 GB.

To get a jumpstart with developing real-life APEX applications, we have written this
book and provided you with some best practices. These practices don't have to be
appropriate in all situations, see them as guidelines. This book is not intended as a
point and click starters guide and assumes a basic understanding of APEX, PL/SQL,
HTML, and CSS.

Installing APEX
In this section, we will discuss some additional considerations to take care of
while installing APEX. The best source for the installation process is the Installation
Guide of APEX.

Prepare and Build

[10]

Runtime or full development environment
On a production database, the runtime environment of APEX should be installed.
This installation lacks the Application Builder and the SQL Workshop. Users can
run applications, but the applications cannot be modified. The runtime environment
of APEX can be administered using SQL*Plus and SQL Developer. The (web
interface) options for importing an application, which are only available in a full
development environment, can be used manually with the APEX_INSTANCE_ADMIN
API. See the reference guide for details. Using a runtime environment for production
is recommended for security purposes, so that we can be certain that installed
applications cannot be modified by anyone.

On a development environment the full development environment can be installed
with all the features available to the developers.

Build status
Besides the environment of APEX itself, the applications can also be installed in a
similar way. When importing or exporting an application the Run Application Only
or Run and Build Application options can be selected.

Changing an application to Run Application Only can be done in the Application
Builder by choosing Edit Application Properties. Changing the Build Status to
Run and Build Application can only be done as the admin user of the workspace
internal. In the APEX Administration Services, choose Manage Workspaces and
then select Manage Applications | Build Status. Also refer to Chapter 6,
Deploy and Maintain.

Another setting related to the Runtime Only option could be used in the APEX
Administration Services at instance level. Select Manage Instance and then select
Security. Setting the property Disable Workspace Login to yes, acts as setting a
Runtime Only environment, while still allowing instance administrators to log in
to the APEX Administration Services.

Tablespaces
Following the install guide for the full development environment, at a certain
moment, we have to run the following command, when logged in as SYS with
the SYSDBA role, on the command line:

@apexins tablespace_apex tablespace_files tablespace_temp images

Chapter 1

[11]

The command is explained as follows:

• tablespace_apex is the name of the tablespace that contains all the objects
for the APEX application user.

• tablespace_files is the name of the tablespace that contains all the objects
for the APEX files user.

• tablespace_temp is the name of the temporary tablespace of the database.
• images will be the virtual directory for APEX images. Oracle recommends

using /i/ to support the future APEX upgrades.

For the runtime environment, the command is as follows:

@apxrtins tablespace_apex tablespace_files tablespace_temp images

In the documentation, SYSAUX is given as an example for both tablespace_apex
and tablespace_files. There are several reasons for not using SYSAUX for these
tablespaces, but to use our own instead:

• SYSAUX is an important tablespace of the database itself
• We have more control over sizing and growth
• It is easier for a DBA to manage tablespace placement
• Contention in the SYSAUX tablespace is less occurring
• It's easier to clean-up older versions of APEX
• And last but not least, it's only an example

Converting runtime environment into a full
development environment and vice versa
It's always possible to switch from a runtime to a production environment and vice
versa. If you want to convert a runtime to a full development environment log in
as SYS with the SYSDBA role and on the command line type @apxdvins.sql. For
converting a full development to a runtime environment, type @apxdevrm—but
export websheet applications first. For more details see the installation guide.

Another way to restrict user access can be accomplished by logging in to the APEX
Administration Services, where we can (among others) manage the APEX instance
settings and all the workspaces. We can do that in two ways:

• http://server:port/apex/apex_admin: Log in with the
administrator credentials

• http://server:port/apex/: Log in to the workspace internal, with the
administrator credentials

Prepare and Build

[12]

After logging in, perform the following steps:

1. Go to Manage Instance.
2. Select Security.
3. Select the appropriate settings for Disable Administrator Login and

Disable Workspace Login. These settings can also be set manually
with the APEX_INSTANCE_ADMIN API. See the reference guide for details.

Choosing a web server
When using a web-based development and runtime environment, we have to use a
web server.

Architecture of APEX

The choice of a web server and the underlying architecture of the system has a direct
impact on performance and scalability. Oracle provides us with three choices:

• Oracle HTTP Server (OHS)
• Embedded PL/SQL Gateway (EPG)
• APEX Listener

Simply put, the web server maps the URL in a web browser to a procedure in the
database. Everything the procedure prints with sys.htp package, is sent to the
browser of the user. This is the concept used by tools such as WebDB and APEX.

Chapter 1

[13]

OHS
The OHS is the oldest of the three. It's based on the Apache HTTP Server and uses a
custom Apache Module named as mod_plsql:

Oracle HTTP Server

In release 10g of the database, OHS was installed with the database on the same
machine. Upward to the release 11g, this is not the case anymore. If you want to
install the OHS, you have to install the web tier part of WebLogic. If you install it
on the same machine as the database, it's free of extra licence costs. This installation
takes up a lot of space and is rather complex, compared with the other two. On the
other hand, it's very flexible and it has a proven track record. Configuration is done
with the text files.

EPG
The EPG is part of XML DB and lives inside the database. Because everything is
in the database, we have to use the dbms_xdb and dbms_epg PL/SQL packages to
configure the EPG. Another implication is that all images and other files are stored
inside the database, which can be accessed with PL/SQL or FTP, for example:

Embedded PL/SQL gateway

Prepare and Build

[14]

The architecture is very simple. It's not possible to install the EPG on a different
machine than the database. From a security point of view, this is not the
recommended architecture for real-life Internet applications and in most cases the
EPG is used in development, test, or other internal environments with few users.

APEX Listener
APEX Listener is the newest of the three, it's still in development and with every
new release more features are added to it. In the latest version, RESTful APIs can be
created by configuring resource templates. APEX Listener is a Java application with
a very small footprint. APEX Listener can be installed in a standalone mode, which
is ideal for development and testing purposes. For production environments, the
APEX Listener can be deployed by using a J2EE compliant Application Server such
as Glassfish, WebLogic, or Oracle Containers for J2EE:

APEX Listener

Configuration of the APEX Listener is done in a browser. With some extra
configuration, uploading of Excel into APEX collections can be achieved. In future
release, other functionalities, such as OAuth 2.0 and ICAP virus scanner integration,
have been announced.

Chapter 1

[15]

Configuration options of the APEX Listener

Like OHS, an architectural choice can be made if we want to install APEX Listener
on the same machine as the database. For large public applications, it's better to use
a separate web server.

Many documents and articles have been written about choosing the right web server.
If you read between the lines, you'll see that Oracle more or less recommends the use
of APEX Listener. Given the functionality, enhanced security, file caching, flexibility
of deployment possibilities, and feature announcements makes it the best choice.

www.allitebooks.com

http://www.allitebooks.org

Prepare and Build

[16]

Creating a second administrator
When installing APEX, by default the workspace Internal with the administrator
user Admin is created. Some users know more than the average end user. Also,
developers have more knowledge than the average user. Imagine that such users try
to log in to either the APEX Administration Services or the normal login page with
the workspace Internal and administrator Admin, and consequently use the wrong
password. As a consequence, the Admin account would be locked after a number of
login attempts. This is a very annoying situation, especially when it happens often.
Big companies and APEX Hosting companies with many workspaces and a lot of
anonymous users or developers may suffer from this. Fortunately there is an easy
solution, creating a second administrator account.

Login attempt in workspace Internal as Admin

If the account is already locked, we have to unlock it first. This can be easily done by
running the apxchpwd.sql script, which can be found in the main Apex directory of
the unzipped installation file of APEX:

1. Start SQL*Plus and connect as sys with the sysdba role.
2. Run the script by entering @apxchpwd.sql.
3. Follow the instructions and enter a new password.

Now we are ready to create a second administrator account. This can be done in two
ways, using the web interface or the command line.

Chapter 1

[17]

APEX web interface
Follow these steps to create a new administrator, using the browser.

First, we need to log in to the APEX Administrator Services at http://server:port/
apex/. Log in to the workspace Internal, with the administrator credentials.

After logging in, perform the following steps:

1. Go to Manage Workspaces.
2. Select Existing Workspaces.
3. You can also select the edit icon of the workspace Internal to inspect

the settings. You cannot change them. Select Cancel to return to the
previous screen.

4. Select the workspace Internal by clicking on the name.
5. Select Manage Users. Here you can see the user Admin.
6. You can also select the user Admin to change the password. Other settings

cannot be changed. Select Cancel or Apply Changes to return to the
previous screen.

7. Select Create User. Make sure that Internal is selected in the Workspace
field and APEX_xxxxxx is selected in Default Schema, and that the new user
is an administrator. xxxxxx has to match your APEX scheme version in the
database, for instance, APEX_040100.

8. Click on Create to finish.

Settings for the new administrator

Prepare and Build

[18]

Command line
When we still have access, we can use the web interface of APEX. If not we can use
the command line:

1. Start SQL*Plus and connect as SYS with the SYSDBA role.
2. Unlock the APEX_xxxxxx account by issuing the following command:

alter user APEX_xxxxxx account unlock;

3. Connect to the APEX_xxxxxx account. If you don't remember your password,
you can just reset it, without impacting the APEX instance.

4. Execute the following (use your own username, e-mail, and password):
BEGIN
 wwv_flow_api.set_security_group_id
 (p_security_group_id=>10);
 wwv_flow_fnd_user_api.create_fnd_user(
 p_user_name => 'second_admin',
 p_email_address => 'email@company.com',
 p_web_password => 'second_admin_password') ;
END;
/
COMMIT
/

5. The new administrator is created. Connect again as SYS with the SYSDBA role
and lock the account again with the following command:
alter user APEX_xxxxxx account lock;

6. Now you can log in to the Internal workspace with your newly created
account and you'll be asked to change your password.

Chapter 1

[19]

Other accounts
When an administrator of a developer workspace loses his/her password or has a
locked account, you can bring that account back to life by following these steps:

1. Log in to the APEX Administrator Services.
2. Go to Manage Workspace.
3. Select Existing Workspaces.
4. Select the workspace.
5. Select Manage Users.
6. Select the user, change the password, and unlock the user.

A developer or an APEX end user account can be managed by the administrator of
the workspace from the workspace itself. Follow these steps to do so:

1. Log in to the workspace.
2. Go to Administration.
3. Select the user, change the password, and unlock the user.

Database
We have set up the APEX environment, now let's focus on the database. For means of
consistency and maintainability, it's a good practice to use standards and guidelines.
In this section, we will describe some standards and guidelines for data modeling,
database objects, and PL/SQL usage.

Data model
When the requirements are clear, we can create a data model. A data model provides
the structure, definition, and format of the data.

Prepare and Build

[20]

We will translate the requirements into tables, columns, and relations. It will be the
single point of truth of our system. Because our whole system is built upon this model,
it's very important to spend sufficient time on it. A data model is also a great means
to communicate with your customers and among developers about the system and
design of the database. When a database is well designed, it can be easily maintained
for future development.There are a number of Computer Aided Software Engineering
(CASE) tools that you can use to create a data model. Besides data modeling, some
of these CASE tools can also be used to maintain all the PL/SQL packages, functions,
procedures, and trigger code that we use in our applications. Oracle itself provides
Oracle Designer and Data Modeler from SQL Developer. The following diagram shows
Data Modeler. One of the advantages of using such a tool is the ability to generate and
reverse engineer the database creation scripts in an intuitive graphical manner.

SQL Developer Data Modeler

Relations between the tables are always in a one-to-many relationship; for example,
a user can perform one or more searches. We can use colors to differentiate between
tables that have a lot of mutations and tables that don't have any. Those tables can be
candidates for creating lists of values (discussed later in this chapter).

Chapter 1

[21]

A great example of standards and guidelines is Oracle's well-documented CDM
RuleFrame. Database modeling standards and guidelines can be as follows:

• Table names are written in plural.
• Check constraints will be used for short domains on columns. If they are long

or not know yet, we use a lookup table.
• The primary key is always named as id. This is useful when we want to

write reusable generic code.
• For each table we define a short three- or four-letter alias.
• Foreign key column names are constructed as follows:

1. The alias of the join table name is postfixed with id.
2. For every foreign key we define an index.

• We use database triggers to populate the primary keys and use one sequence
that will be used to populate all the primary keys. For the triggers, a script
such as the following can be used for all tables:
CREATE OR REPLACE TRIGGER doc_bir
BEFORE INSERT ON documents
FOR EACH ROW
BEGIN
 :new_id := NVL(:new_id,all_seq.NEXTVAL);
END;
/

• An alternative to triggers and sequence is the use of sys_guid(). On the
Internet, a lot of information about the pros and cons for both approaches
is available. Define all the id columns as the RAW(16) columns and use
sys_guid() as a default value for the id column. For example:

CREATE TABLE t
 (id RAW(16) DEFAULT sys_guid() PRIMARY KEY
 , column_a VARCHAR2(10)
 , column_b VARCHAR2(10)
 …
)
 /

Creating the database objects
The first thing we have to do is create the database schema, which will hold the
database objects. We can use the SQL Workshop of APEX for creating the database
objects, but its use is very limited compared to the specialized CASE tools.

Prepare and Build

[22]

The following objects can be created in the application schema:

• Tables
• Primary keys
• Unique constraints
• Foreign keys
• Indexes on the foreign keys
• Other indexes
• Sequences
• Scripts for insert and update triggers on the tables to generate an ID
• Other objects (packages, materialized views, and so on)

Other tools
Beside the tools for creating a model, we need some tools during the further
development process, tools for accessing the database easily, and tools for web
development. Without going into detail, we will just name a few tools that you
can use.

Examples of database tools are:

• Toad
• SQL Developer
• PL/SQL Developer

Tools for web development, HTML, CSS, and JavaScript are as follows:

• Aptana
• Firebug
• Web Developer
• Internet Explorer Developer Tools
• Built-in tools in the browser

Miscellaneous tools:

• Versioning tools
• Performance measurement tools
• GUI design tools

Refer to Chapter 5, Debugging and Troubleshooting for the details on other tools.

Chapter 1

[23]

PL/SQL usage
We use the following guidelines regarding PL/SQL:

• Keep PL/SQL in APEX to an absolute minimum
• Try to store all your PL/SQL in packages in the database
• Replace PL/SQL blocks in APEX with simple calls to the functions and

procedures in those packages.

This approach has the following advantages:
• Easier to debug
• Higher maintainability, due to more structure
• Better reusability possible
• Don't deploy an application each time there is a change in PL/SQL
• Easier to tune

Creating a workspace
We have installed APEX and the database objects, now we have to create a
workspace that will hold our applications. A workspace is linked to one or more
schemas in the database. Workspaces can contain zero or more applications. An
application in a workspace can access all the objects of the workspace schemas. The
following diagram explains the relation between workspaces and applications:

Relationship between workspaces and applications

Prepare and Build

[24]

If security issues are expected, it is possible to create a dedicated empty schema for
the workspace and grant access to only the database objects that are needed for that
schema. Applications in that workspace can only access the objects that have been
granted to the schema.

When we want to create a workspace we have to log in to the APEX Administration
Services. In APEX there are two special workspaces. Internal as mentioned before
is, as the name implies, the internal workspace used by APEX itself. There is also
another workspace called com.oracle.apex.repository, which is used for themes.

Once logged in to the Internal workspace, we see the screen shown in the
following screenshot:

Creating a workspace

We have two possible ways to create a workspace: directly by using the button or
indirectly through the Manage Workspaces option, where we have to click on Create
Workspace. After filling in the details in the wizard, the workspace will be created.

Creating administrators, developers,
and users
When creating a workspace, we also need to create an administrator for the
workspace. If the workspace is in place, we could log in to the workspace as
the administrator and add other administrators, developers, and end users.

Chapter 1

[25]

User Interface Defaults
After creating the workspace and users, it's the moment to use the User Interface
Defaults possibilities in APEX—do not start building applications immediately.
This option isn't used very much in practice, but it's a very useful utility. With
User Interface Defaults, we populate initial values and control the appearance and
behavior of items when using them in reports and items (in forms). User Interface
Defaults can accelerate your development and result in less repetition of tasks
in APEX. You can compare its possibilities with table and column properties in
Oracle Designer.

User Interface Defaults don't work retroactively; they only apply to newly built
objects. User Interface Defaults can provide consistency across multiple pages for
all the applications in our workspace. It's also possible to export and import the
User Interface Defaults, to use them in another workspace.

APEX provides two types of dictionaries for this purpose:

• Attribute Dictionary
• Table Dictionary

Attribute Dictionary
The Attribute Dictionary consists of a simple set of attributes. The definitions are
matched only by column name, and a particular definition can be shared amongst
several columns by creating synonyms.

Table Dictionary
In the Table Dictionary, the defaults are defined by table and column combinations.
The Table Dictionary is more specific than the Attribute Dictionary, because more
properties can be defined in this one. When processed during the use of a creation
wizard for a region or item, an entry in the Table Dictionary takes priority over an
entry in the Attribute Dictionary. On table level, we can define some region defaults.
It's also possible to migrate the Table Dictionary to the more generic Attribute
Dictionary. When migrating, you lose some default properties that don't exist in the
Attribute Dictionary (for instance the list of values information).

Another functionality of the Table Dictionary is the use of Column Groups. Related
columns within a table can be grouped together. In forms, these groups appear as
separate regions and in the single row view of interactive reports.

www.allitebooks.com

http://www.allitebooks.org

Prepare and Build

[26]

Creating User Interface Defaults
User Interface Defaults can be defined at the workspace level. Follow these steps to
get there:

1. From the Home screen, select SQL Workshop.
2. Select Utilities.
3. Then, select User Interface Defaults.

User Interface Defaults Dashboard

On this screen, you'll see the Dashboard tab of the User Interface Defaults. You can
also see the tabs for Table Dictionary and Attribute Dictionary.

The simplest way to start using User Interface Defaults is to synchronize the database
tables with the Table Dictionary. New tables and columns from the database are
added to the Data Dictionary that doesn't exist yet, as well as table and columns that
don't exist in the database anymore as they are removed from the Table Dictionary.

After selecting a table entry, we see the following screen:

Column properties

Chapter 1

[27]

On this screen, you can select a column to define the default properties or select Edit
Table Defaults to define the region titles for this table. You will also see a list of tasks
that you can perform. After selecting a column, we see the following screen. This is
where the actual work will be done. You can see, for instance, the different sections
for Form Defaults and Report and Tabular Form Defaults.

Defaults for the Table Dictionary

Prepare and Build

[28]

It's good practice to use the plural name of the table for
the region name of reports. For the name of the region of
a form, we can use the singular name of the table.

A disadvantage of the defined list of values information is the fact that they are
defined at workspace level and not at application level, so they cannot be shared
like the defined list of values in the shared components.

After filling in all the defaults for all the tables and columns in the Table Dictionary,
we can define the Attribute Dictionary by migrating some Table Dictionary entries or
defining new ones. In the following screen, you can see the properties that you can
define in the Attribute Dictionary:

Defaults for the Attribute Dictionary

Besides the property screen for the Attribute Dictionary, we can also use a grid edit
to define the defaults easily.

Chapter 1

[29]

Page Zero
Page Zero acts as a template page for the application. All components of Page Zero will
be rendered on all the pages in the application. Compared to a normal page, it consists
of only the page rendering part. The following components can be used on Page Zero:

• Computations
• Branches
• Regions, for example, forms, reports, lists, and HTML
• Items
• Dynamic actions

In combination with the use of conditions for the components that determine on
which specific pages the components will be rendered, is a flexible place for reusable
components. Think, for example, of a menu made up of a list region, centralized help
functionality, personal information, task list, and so on.

Page Zero has no processing part. The pages themselves—where the components of
Page Zero will be rendered when running the application—will take care of this.

Page Zero

Prepare and Build

[30]

Structure of multiple applications
When creating applications, the less repeating work is done, the better. Within an
application you can use shared components for this purpose. If our application (or
better said, system) consists of more application modules than one big application,
we need another approach. Between multiple applications in the same workspace,
we can use the less known subscribe feature of APEX.

By using the subscribe and publish mechanism of APEX, we can create a structure
of multiple applications that can serve as a good starting point. Some benefits:

• Better maintainable look and feel across multiple applications
• The use of shared components across applications
• Modular structure
• Reusable centralized functionality, such as authorization, authentication,

auditing, and logging

Subscribe and publish
The subscribe and publish mechanism is very straightforward. In the following
screenshot, we can see the Subscription part of a template definition:

Subscription part of a template

Subscribing and publishing can be compared to pull and push. When defining a
template, for instance, it's possible to reference a master template from another
application. This is shown in the following screenshot:

Subscribed to a master template

Chapter 1

[31]

As we can see, there's a button for refreshing the template. After clicking on the
button, the definition of the master template is loaded and copied over the current
template. This is the pulling method. On the template overview screen, there's also
a column Subscribed that shows which templates subscribe to a master template.
Multiple template refreshing can be accomplished by clicking on the Subscription
tab on the Templates overview screen.

The pushing method is done via the master template and it is shown in the
following screenshot:

Subscribed from a master template

When we click on the Publish Template button, APEX published this master template
to all subscribed templates from other applications. Multiple template publishing can
be accomplished by clicking on the Publish tab on the Templates overview screen.

The shared components that can be subject for the subscribe and publish mechanism
of APEX are as follows:

• Templates (themes)
• List of values
• Navigation bar entries
• Shortcuts
• Plug-ins
• Authentication schemes
• Authorization schemes

Prepare and Build

[32]

Notes:

• Subscribed objects are updatable, but refreshing them will overwrite
these changes.

• Subscribing and publishing only works within a single workspace. It's
not possible to reference, for instance, a template from an application in
another workspace.

Creating a framework
A well thought out structure of applications can serve as a framework for all our
future development. To create such a framework, we need a number of applications,
depending on the complexity of the system and our specific needs. The applications to
build are a master application, template application, and optionally a login application
and/or a system application. The template application serves as a basis for the actual
applications to build (application 1 to n), as we can see in the following diagram:

Application framework

Chapter 1

[33]

Master and template application
Create a master application that contains publishable shared components such
as authentication schemes, authorization schemes, lists of values, and templates.
Changes can be pushed from the master application to all subscribing applications.
Other applications will reference the standard templates by subscribing to the
master application.

To make newly created applications subscribe to the master application, we need to
create a template application. Create the template application as a copy of the master
application and change the subscription of all the shared components to reference
the master application. To change the subscription of multiple templates, you can
replace templates in this application with templates from another application. This
can only be done for currently used templates. Another option is to delete templates
and recreate them as a copy (and subscribe) from the master application. The
remaining templates and shared components can be modified manually.

The template application is also the place where Page Zero is added.

In more complex situations, the master can have more than one theme or more
variants of shared components. We can then create more than one template—which
serve as a starting point for the applications.

To create a new application, we simply need to make a copy of the template
application. Because the new application is a copy, all the subscriptions to the
master application are also copied. For the shared components, it's always possible
to unsubscribe. To unsubscribe from multiple templates, the Unsubscribe Templates
option from the Task menu can be selected.

Login application—optional
When more than one application in the workspace share the same authentication,
we can extend the framework with an application dedicated to the authentication
process. This application will handle the login and can serve as a starting menu for
the other applications.

We can create this login application as a copy of the template application. The
authentication of this application is different than the other applications. Here we
create the actual authentication schema, which we want to use in all our applications.

When switching between applications without having to log in again, we need
to share the session state between the applications. To do so we have to give
the session cookie the same name. We do that in the authentication schema of
the master application.

Prepare and Build

[34]

We also need to get redirected to this application when a user tries to log in directly
to one of the applications. We can accomplish this by redirecting to this application
by setting the Session Not Valid property of the authentication schema in the master
application to redirect to the login application. In APEX 4.1.1, you are automatically
redirected to the calling application after successful login.

Optionally, we can also set the logout URL to point to a specific page in the
login application.

In the following screenshot, we can see the relevant authentication scheme settings
for the master application:

Authentication scheme settings

Chapter 1

[35]

Other examples of pages that can be included in this application are as follows:

• User registration page for self-service applications: It can also have the
functionality to send a confirmation e-mail with a link in it, which leads
to an activation page.

• Application start page.
• Personal account settings page.
• Password forgotten page to reset an old password: An email with the new

password is sent to the user. The e-mail can also contain a link to a landing
page to change it immediately.

• Change the password page to let passwords expire after a given period
of time.

• Help pages for the application(s).

System application—optional
Besides a login application, we can also create a system application for the more
technically oriented system administrator or DBA. This application will offer control
and maintenance functionality for all other applications and/or the whole system.

Possible functionality includes:

• Controlling e-mail queues.
• Performance reports of the pages and applications: This is also possible in

APEX itself, but it could be useful to be able to access it in a convenient way
within the application.

• Reading the APEX Feedback.
• Dealing with user approval of a self-service application.
• Inspecting (error) logs.
• Setting system parameters such as mail host address, mail host port, colors,

and so on.
• Inspecting jobs.
• A structure for maintaining user and access roles: On this structure we can

build some functionality that can be incorporated into the authorization
scheme of the master application.

• Maintaining system parameters.

Depending on the situation, a part of this functionality can be part of the normal
application administrator tasks of the system as well.

www.allitebooks.com

http://www.allitebooks.org

Prepare and Build

[36]

Deploying
To deploy these applications, we just need to export them and then do an import in
the target environment, just as a single application. If it applies to the situation, also
deploy the login and system application. It's not necessary to deploy the master or
template application.

Template workspace
If you develop many projects for different companies with different needs, we
need to create a framework for every new customer/system. What we need is in
fact a template workspace as the starting point for creating the actual workspace,
with a master template and login/system applications in it with the minimal used
common functionality.

When we start a new project, we need to create a new workspace and place all the
applications in it with export and import. If we want to use the same application IDs,
we have to set up such a template workspace in a separate database.

Creating applications
Now all the definitions are in place and preparation work is done, we can finally
start building our applications. Go to the Application Builder in your workspace
and create an application, either by making a copy of the template application or
by clicking on the Create button.

List of values
One of the first things that we need to tackle is the creation of list of values. There
are two kinds of list of values—static and dynamic. A static list of values consists
of a limited number of possible values. A dynamic list of values is defined by a
query that returns the possible values. For dynamic list of values, it's also possible
to make them even more dynamic, by just typing in a function that returns
(dynamically) a query.

Most of the list of values will be dynamic, but we can easily think of a few static list
of values that will be used in almost every system and thus are a good candidate
for the template application. Two examples of them are the Yes/No and the
Male/Female list of values.

Chapter 1

[37]

If for some reason we create a list of values definition for an item by typing in a
query, instead of referencing a pre-created shared component list of values, we
can easily create a real reusable list of values for it, by clicking on the Convert LOV
task. This wizard will create a reusable component list of values and replace the
hand-made query with a reference to the new list of values.

There are two sources to identify our first set of application-specific list of values.
The first one is for short domains, used in check constraints of a column in a table.
These values can be used in static list of values. The second source is to identify base
tables and create dynamic list of values of them. To identify them, see the Base Tables
section discussed later in this chapter.

When creating list of values, always use the aliases d and r or display_value and
return_value for the two columns in the query, just to be clear which values are
displayed and returned.

After creating our first set of list of values, we need to add more list of values as we
build our system. For more performance-related information on list of values, refer
to Chapter 2, Leveraging the Database.

Mapping the model to pages
The next step is to map our data model to APEX pages. With mapping we mean that
for every table in the data model we must define pages (with respect to the desired
functionality) to manipulate or query the data. There could be exceptions, such
as parameter or logging tables, although pages for those tables could also be very
useful, though not necessary for a properly functioning application.

We have some guidelines regarding pages:

• If we are just selecting and if we want the user to enhance and adjust the
resulting (report) page, we should use interactive reports, otherwise we
should use normal reports.

• Don't confuse the user with too many objects on a page. On the other hand,
we don't want to create too many pages for simple tasks.

• Basic tables should be maintained on a single page.
• Forms can always be put on a separate screen and if necessary, can be called

from a link in a report.
• Be sure to use User Interface Defaults for consistency.
• Use region columns where appropriate.
• Use nested region where appropriate.

Prepare and Build

[38]

Some other points to take into account are as follows:

• At the moment, it's not possible to put more than one tabular form or more
than one interactive report on a single page.

• Drawback of having everything on a single page is the number of buttons
with the same name, and so on. Rename some of them, but be consistent
with that renaming throughout the application. Also, some kind of current
record indicator is needed. This can be accomplished by manipulating the
report template.

Basically we use the following regions for building or composing a page:

• SQL report
• Interactive report
• Form on a table or view
• Tabular form
• Form on table with report
• Master detail form

When we build a page, we look at the data model and along with the requirements
we try to combine one or more of these regions. Also we link those regions to each
other where appropriate. While building the pages we also create the processes,
validations, computations, extra items, dynamic actions, and so on, which we need to
achieve the desired functionality.

Base tables
We begin with base tables that we have to maintain. These base tables are often used
in LOVs. A way to recognize a base table is to look at the number of foreign keys. If
there are no foreign keys in the table, it's a good candidate for a base table. Another
characteristic of base tables is that the data is more or less static. It's also good
practice to group these pages together on a separate tab with a name such as Basic
Data or System.

Base table with one list of values

Chapter 1

[39]

Depending on the number of columns in the base table we have two choices
regarding the layout:

• If there are a few columns in the base table, we can use a tabular form if the
total width of all the columns is not too wide when placed side by side. We
don't want the user to scroll horizontally.

• If we have too many columns, we can use a form on the table with a report to
layout the columns neatly in the form. We could also use this approach when
we have a few columns. If we do not want the user to switch between too
many pages, we can generate both the form and report on one single page. We
can accomplish that by filling in the same page number for the form and report
in the wizard. After that we may want to place the report above the form.

Form on a table with report

Prepare and Build

[40]

Master detail
By looking at the model, we can identify possible candidate tables for a master
detail table.

Master detail tables with one LOV

In the Master Detail wizard, we have a lot of decisions to make. Always use a master
report for navigation and don't use master row navigation, because it's a little bit
confusing when navigating. We can choose to edit the detail as a tabular form on the
same page.

Master detail page, detail as tabular form

Chapter 1

[41]

Another option is to generate a report as a detail region with a form on a separate
page or the same page. As with base table pages, it depends on the number of
columns in the detail table.

Master detail page, detail on separate page as a form

If we do not want the user to switch between too many pages, we fill in the same
page number for the components that we want to appear on the same page. After
that we need to place the report above the form. Beware of using breadcrumbs when
we put all the regions on one page. In that case, we will get the ORA-00001: unique
constraint (APEX_040000.WWV_FLOW_UNIQUE_MENU_OPT) violated error.

Depending on whether the master is already a base table with its own page we
can maintain that table here. If we don't want to maintain it here, we can hide that
generated region, so the form will never be shown. We don't have to delete it, so that
we can always use it later, if necessary. After the wizard, we have to rearrange some
regions to get the right page.

Another variant is master detail detail. In that case, we have to link the regions
together manually.

Prepare and Build

[42]

Intersection
An intersection table can be recognized by the fact that they also have—besides their
own ID—two IDs from the foreign keys. It's also possible that the intersection table
contains other foreign keys or columns.

Intersection table

We can implement an intersection table as a master detail page with an LOV, but
APEX also offers two alternatives to implement an intersection table—a shuttle
and a multiselect list. We can implement one of the driving tables as a base table and
use the other table as a lookup table. In the following screenshot we see an example
of a shuttle:

Shuttle

In the following screenshot, we can see the use of a multiselect list:

Multiselect list

Chapter 1

[43]

Unfortunately, APEX doesn't offer standard processes for populating and
maintaining shuttles or multiselect lists. The following function and procedure can
be used as a generic solution for these processes. You should put them in a package
and write exception handlers to log and deal with the errors that can occur (see next
chapters in this book). The function get_selectlist can be used to populate the
item. We call this function in the On Load - After Header process and after the
Fetch Row process, which is generated by the wizard (if present):

FUNCTION GET_SELECTLIST
 (P_INTERSECTION_TABLE IN VARCHAR2
 ,P_LOOKUP_FK_NAME IN VARCHAR2
 ,P_MASTER_FK_NAME IN VARCHAR2
 ,P_MASTER_FK_VALUE IN VARCHAR2
)
 RETURN VARCHAR2
 IS
-- Get the selectlist value as a list e.g. 1:2:4 .
-- Create the process to fire After Header and after
-- the wizard generated Fetch Row process.

 l_selected APEX_APPLICATION_GLOBAL.VC_ARR2;
 l_sql_statement VARCHAR2(1000);
 l_dummy_number NUMBER;

BEGIN

-- Check if master foreign key value is a number
 l_dummy_number := TO_NUMBER(p_master_fk_value);

 IF p_lookup_fk_name IS NOT NULL AND
 p_intersection_table IS NOT NULL AND
 p_master_fk_name IS NOT NULL AND
 p_master_fk_value IS NOT NULL THEN

 l_sql_statement :=
 'SELECT ' || p_lookup_fk_name || ' ' ||
 'FROM ' || p_intersection_table || ' ' ||
 'WHERE ' || p_master_fk_name ||
 '=' || p_master_fk_value ;

 EXECUTE IMMEDIATE l_sql_statement BULK COLLECT INTO
 l_selected;

 END IF;

 -- Assign the colon separated list to l_selected
 RETURN APEX_UTIL.TABLE_TO_STRING(l_selected);

Prepare and Build

[44]

 EXCEPTION WHEN OTHERS THEN
 NULL; -- logging can be done here!

END;

If the intersection item P250_shuttle is called and the driving table ID is stored in
P250_id, the call to this function could look as follows:

: P250_shuttle := get_selectlist
 (p_intersection_table => 'dep_pages'
 , p_lookup_fk_name => 'pag_id'
 , p_master_fk_name => 'dep_id'
 , P_master_fk_value => :P250_id);

Beware of SQL injection and keep P250_id hidden and protected.

The procedure set_selectlist can be used to store the changes made in the shuttle
or multiselect list. We call the function On Submit - After Validations and
Computations and after that we call the DML processes generated by the wizard. Be
aware of a reset process. If such a process is present, we have to call our procedure
before the reset process. Otherwise, we lose all our changes and nothing is saved.

PROCEDURE SET_SELECTLIST
 (P_LIST IN VARCHAR2
 ,P_INTERSECTION_TABLE IN VARCHAR2
 ,P_LOOKUP_FK_NAME IN VARCHAR2
 ,P_MASTER_FK_NAME IN VARCHAR2
 ,P_MASTER_FK_VALUE IN VARCHAR2
)
 IS
-- Insert the selectlist value (as a list e.g. 1:2:4) into
-- the intersection table. This process fires After Submit
-- and after the wizard generated process that handles
-- inserts, updates and deletes on the master table.
 l_selected APEX_APPLICATION_GLOBAL.VC_ARR2;
 l_sql_statement VARCHAR2(1000);
 l_id NUMBER;
 l_dummy_number NUMBER;

BEGIN

 -- Check if master foreign key value is a number
 l_dummy_number := TO_NUMBER(p_master_fk_value);

 IF p_lookup_fk_name IS NOT NULL AND
 p_intersection_table IS NOT NULL AND
 p_master_fk_name IS NOT NULL AND
 p_master_fk_value IS NOT NULL THEN

Chapter 1

[45]

 -- Convert the colon separated string of values
 -- into a PL/SQL array
 l_selected := HTMLDB_UTIL.STRING_TO_TABLE(p_list);

 -- Clean up the intersection table first
 -- Delete necessary records only
 l_sql_statement :=
 'DELETE FROM ' || p_intersection_table || ' ' ||
 'WHERE ' || p_master_fk_name || '=' ||
 p_master_fk_value || ' ' ||
 'AND instr('':'|| p_list ||':'','':''||TO_CHAR('||
 p_lookup_fk_name||')||'':'')=0'
 EXECUTE IMMEDIATE l_sql_statement;

 -- Loop over the array to insert lookup_ids and
 -- master_id into the intersection table
 FOR i IN 1..l_selected.count LOOP

 -- Check if the record already exists
 l_sql_statement :=
 'SELECT ' || l_selected(i) ||' ' ||
 'FROM ' || p_intersection_table || ' ' ||
 'WHERE ' || p_master_fk_name || '=' ||
 p_master_fk_value || ' ' ||
 'AND ' || p_lookup_fk_name ||'='|| l_selected(i);

 BEGIN
 -- when the record exists do nothing
 EXECUTE IMMEDIATE l_sql_statement INTO l_id;
 EXCEPTION WHEN OTHERS THEN
 -- In case there is no record, insert it
 l_sql_statement :=
 'INSERT INTO ' || p_intersection_table || ' ' ||
 '(' || p_master_fk_name || ',' ||
 p_lookup_fk_name || ') ' ||
 'VALUES (' || p_master_fk_value || ',' ||
 l_selected(i) || ')';
 -- no parent key exception
 BEGIN
 EXECUTE IMMEDIATE l_sql_statement;
 EXCEPTION WHEN OTHERS THEN
 NULL; -- logging can be done here!
 END;
 END;

 END LOOP;

 END IF;

www.allitebooks.com

http://www.allitebooks.org

Prepare and Build

[46]

 EXCEPTION WHEN OTHERS THEN
 NULL; -- logging can be done here!

END;

If the intersection item P250_shuttle is called and the driving table ID is stored in
P250_id, the call to this procedure could look as follows:

set_selectlist (p_list => :P250_shuttle
 , p_intersection_table => 'dep_pages'
 , p_lookup_fk_name => 'pag_id'
 , p_master_fk_name => 'dep_id'
 , p_master_fk_value => :P250_ID);

Simple report
If we have only one simple read-only table or query for a page, we can use a SQL
report or an interactive report. With the latter, the user has a lot of possibilities,
including the presentation and filtering of the data.

Other pages
There are always certain pages that don't fall in the aforementioned categories, with
special functionality—for example, parameter sections or charts with management
information. These pages must be built up with separate regions and after that those
must be attached together. Another example is a wizard for the end user that can be
used to accomplish rather complex input tasks with validations between the sub-
screens.

Summary
With every new version of APEX, new features and capabilities are being added
to the tool and it's constantly evolving. It's almost impossible to describe all the
possibilities of APEX in this chapter, but with the information in this chapter you
will be able to kick start and structure your development.

In this chapter, we got an overview of the installation and preparation tasks before
actually building the application. We discussed User Interface Defaults and the
application structure. We saw techniques to transform the data model into initial
screen designs. We also discussed a lot of best practices and guidelines during the
building phase.

In the next chapter, we will be using some advanced database features to enhance
our application.

Leveraging the Database
Even with basic SQL and PL/SQL skills, it is possible to create applications with
APEX that are both fast and secure. You probably know that the APEX engine is built
by using SQL and PL/SQL. This means that all the features available in SQL and
PL/SQL are available to you when you create an application with APEX. When you
leverage the functionality that the database has to offer, you will get functionality
developed and supported by Oracle. By utilizing the built-in functionality, you will
not only save time, but also money to be spent on development. The key thing is to
leverage what is available to you instead of trying to reinvent the wheel.

In this chapter we will cover the following subjects:

• Instrumentation
• Efficient lookup tables
• Analytic and aggregate functions
• Offloading long running programs
• Pipelined table functions
• Resizing images
• Oracle text

Leveraging the Database

[48]

Instrumentation
Have you ever found yourself in a situation where a user contacts you and reports a
problem, which you can't reproduce on your own environment? What would really
be helpful is knowing how your code was being used, with which values your stored
procedures were called, and which code path the user took to get to the situation
they found themselves in before they contacted you.

There is a way to know all this information, and the way to get it is by properly
instrumenting your code. Instrumenting your developed code means putting in
debug statements throughout. In these debug statements, there should be the
information you need to track the execution of the developed code. Also, it should
be complete with timestamps and other meaningful information.

Tyler Muth has written an excellent utility to help you with instrumenting your
code. This package is called Logger and can be used to instrument your code—not
only your APEX code, but also your database stored procedures. One of the
functions that you can use specifically for APEX is to capture all items and
values from session state.

The Logger package, which was written by Tyler Muth and
is presently available with release 1.4, can be downloaded
for free from http://sn.im/logger1.4.
Please note that this is a temporary location; at the time of
writing the package was moved to different locations.
When all other approaches fail, you can always search on the
Internet for "Muth and Logger"; undoubtedly you will find
the current site where this package can be downloaded from.

Inside each of the package bodies that contains the database code, we declare a
global constant as follows:

g_package constant varchar2(31) := $$plsql_unit||'.';

Chapter 2

[49]

Because we declare it inside the package body, it is available for all procedures and
functions inside the package body. $$plsql_unit is a predefined inquiry directive
that indicates the current program unit. Unfortunately, it only returns the top-level
program unit, in this case the name of the package—not the individual procedure
inside the package.

Because of this limitation, we use a local constant to identify the procedure name,
using the global constant that we have declared previously:

l_proc constant varchar2(61) := g_package||'test';

In this example, the name of the procedure is concatenated to the global g_package
and called as test. This declaration of the variable should be placed in each
procedure and function in the package. The reason we use the global constant
concatenated with the name of the procedure is to support the case when the
procedure needs to be transferred to a different package. When the procedure moves
to a different package, the procedure name remains the same and g_package should
be available in the other package as well. This way we can easily instrument our
code with a template such as the following:

begin
 logger.log (p_text => 'start'
 ,p_scope => l_proc
);
 logger.log_information
 (p_text => 'p_parameter: '||p_parameter
 ,p_scope => l_proc
);
 ...
 logger.log (p_text => 'end'
 ,p_scope => l_proc
);
end;

Leveraging the Database

[50]

The first statement in the code is to signal the beginning of the stored procedure—
note the use of the local constant as being passed in the p_scope parameter, followed
by recording the names, and values of the parameters with which this procedure
was being called. The actual code is to be filled in on the three dots. The last line of
code should be a line signaling the end of the procedure. If you are using a function
instead of a procedure, the returned value should be logged prior to the final return
statement. The last part of the template will look as follows, in the case of a function:

 logger.log_information
 (p_text => 'Return Value: '||l_retval
 ,p_scope => l_proc
);
 logger.log (p_text => 'End'
 ,p_scope => l_proc
);
 return l_retval;
end;

Using the Logger facility from your APEX application, the usage is slightly different.
It is not advisable to use elaborate PL/SQL code in the APEX application itself
use calls to stored database code instead. This centralizes the source code, which
facilitates re-use.

begin
 logger.log (' ** Call the Stored Procedure');
 package.procedure (p_parameter => 'Hello');
end;

If needed, you can also store the items and values in the Logger tables:

logger.log_apex_items('Debug the called Stored Procedure');

A very handy view to query the Logger tables, is logger_logs_5_min. This view
shows you all the logging statements that happened in the last five minutes. When
you run into something you can't explain yet, this view will help in identifying
which code path was taken and where it went wrong. There is also a similar view
that shows the last 60 minutes worth of logger data. To query the APEX items and
values, you need to query logger_logs_apex_items.

Chapter 2

[51]

There is a lot more functionality in the Logger package, and it is certainly worth
trying out by yourself. Adding timing information is just one example. Maybe it
feels like overkill when you begin with instrumenting your code, but when you
instrument your code for the first time you will need it to track down a bug. The
information you will get from instrumenting your code is invaluable.

Comprehensive example of using the logger package

Leveraging the Database

[52]

In the preceding screenshot, you can see a small example of how you can use the
Logger package to instrument your code.

The steps that are performed are as follows:

1. A procedure is created with the name test. This procedure takes two
arguments and the only thing that the procedure does is make calls to
the Logger package.

2. The procedure is being executed in an anonymous block where the
arguments are being passed by using the named notation.

3. Lastly the logger_logs_5_min view is queried to see what is being recorded.
There are many more columns available, including the complete callstack.

There are different opinions regarding logging in a production environment. Should
you have logging turned on all the time? I believe it should be turned on always.
The moment you need logging most is when something goes wrong. This moment is
impossible to predict, so keeping logging on is the only option. When you feel really
strongly about turning off logging in a production environment, the Logger package
also accommodates this. It is possible to install the logger_no_op (no operation)
version of the package. This is simply a shell that does not log anything in tables; it
does not even create the tables.

Efficient lookup tables
Properly designing the data model plays a crucial part in the success of your
application. An application can have a really good-looking interface, but when
the performance is very poor the users still won't be happy with the application.
To ensure your user has an overall positive experience, the application needs to
be visually attractive and responsive to the actions that the user carries out.

Designing the application begins with designing a logical
and physical data model. There are many types of database
objects, that can be used in an Oracle database, such as heap
tables, index organized tables, clusters, b-tree indexes, or
bitmap indexes. Each of these objects has its own usage. Before
implementing the physical data model, you should know each
of these object types and when to use them properly. You will
not be able to know which object type to choose, if you don't
know how the application is going to be used. Knowing how
the application is going to be used, in combination with the
available data objects, is key to the success of the application.
Your DBA should be able to help you in implementing the
proper database objects for your application.

Chapter 2

[53]

In this section, we will take a closer look at one of the most common types of
structure in almost every data model—the lookup table.

Lookup tables are tables where the data change is slow, meaning that the data
hardly (if ever after the initial load) changes. The data is inserted once, but is
queried very frequently. These tables are often used as List of Values (LOV) in your
application. Because these tables are queried so frequently, it is important to make
the actual query as efficient as possible. Tables like these are excellent candidates to
be implemented as single-table hash clusters, provided that the size of the table is
primarily static and the lookup is done with an equality query. Another option is to
use an index-organized table; think of it as a combination of an index and table in
one structure. This will be discussed later in this chapter.

Single-table hash clusters
Detailed explanation about single-table hash clusters can be found in the Oracle
documentation—Oracle database concepts, 11g Release 2 (11.2)—at http://docs.
oracle.com/cd/E11882_01/server.112/e25789/tablecls.htm#CNCPT88831.

"A single-table hash cluster is an optimized version of a hash cluster that supports
only one table at a time. A one-to-one mapping exists between hash keys and rows.
A single-table hash cluster can be beneficial when users require rapid access to a
table by primary key. For example, users often look up an employee record in the
employees table by employee_id."

A lookup table fits this description like a glove.

Normally a database block stores data for exactly one table. A cluster allows you to
store data from more than one table on a block. However this is not the case with a
single-table hash cluster. As you might have guessed from the name, only the data of
a single table is stored in the cluster. The first thing we need before we can create a
single-table hash cluster, is the cluster itself:

SQL> create cluster lookup_c
 2 (id number)
 3 single table
 4 hashkeys 50000
 5 size 50
 6 /

Cluster created.

Leveraging the Database

[54]

It is not a regular cluster, but a special type. Line 3 indicates that this cluster is going
to be used only for a single table.

When we create the table definition, we need to specify the cluster that we just
created and named as lookup_c. For this example, we are going to create a table,
based on a query, with 50,000 records in it:

SQL> create table lookup_hash
 2 (id
 3 ,description
 4)
 5 cluster lookup_c (id)
 6 as
 7 select rownum
 8 , object_name
 9 from (select * from dba_objects
 10 union all
 11 select * from dba_objects
 12)
 13 where rownum <= 50000
 14 /

Table created.

To generate enough records for this example, DBA_OBJECTS is used twice with UNION
ALL to accommodate the required number of records.

On line 5, we indicate the cluster to be used. The final step for this table is to create a
primary key.

SQL> alter table lookup_hash
 2 add constraint hspk primary key (id)
 3 /

Table altered.

To get a feel of the efficiency of a single-table hash cluster, we need another type of
table to compare it with. The content and structure of the comparison table will be
identical to the single-table hash cluster. For the comparison, we will create a default
table type called a heap table.

Chapter 2

[55]

The following statements will create the heap table with a primary key constraint for
the comparison:

SQL> create table lookup_heap_t
 2 as
 3 select rownum id
 4 , object_name description
 5 from (select * from dba_objects
 6 union all
 7 select * from dba_objects
 8)
 9 where rownum <= 50000
 10 /

Table created.

SQL> alter table lookup_heap_t
 2 add constraint hpk primary key (id)
 3 /

Table altered.

Now that both tables are in place, statistics are gathered on both tables. Consider the
following query:

SQL> begin
 2 dbms_stats.gather_table_stats (user
 3 ,'LOOKUP_HASH'
 4 ,cascade => true
 5);
 6 dbms_stats.gather_table_stats (user
 7 ,'LOOKUP_HEAP_T'
 8 ,cascade => true
 9);
 10 end;
 11 /

PL/SQL procedure successfully completed.

www.allitebooks.com

http://www.allitebooks.org

Leveraging the Database

[56]

The following is just a quick test to verify whether there is data in the table or not,
and to get the same amount of caching for a single row lookup:

SQL> select *
 2 from lookup_hash
 3 where id = 4325
 4 /

 ID DESCRIPTION
---------- ------------------------------
 4325 DBMS_STAT_FUNCS_AUX_LIB

SQL> select *
 2 from lookup_heap_t
 3 where id = 4325
 4 /

 ID DESCRIPTION
---------- ------------------------------
 4325 DBMS_STAT_FUNCS_AUX_LIB

Both queries return the same data from the table; let's have a look at the explain plan
for both statements.

Before you can examine the explain plan and use the autotrace
facility as described in the examples, you need to set up
PLAN_TABLE and create the PLUSTRACE role. This role
should be granted to the user that is running the examples.
PLAN_TABLE can be created by using the utlxplan.sql
file. The PLUSTRACE role can be created by using the
plustrce.sql file.
The location of these files depends on your operating system.
You might need to get your DBA involved, as the PLUSTRACE
role needs to be set up by SYS.

Chapter 2

[57]

Execution plan for a single table hash cluster

For the single-table hash cluster, you can see the effect of the cluster in Execution
Plan. It shows TABLE ACCESS HASH, which is a very efficient way to look up
the value that we are searching for. Also, in the Statistics part of the preceding
screenshot, note the number of db block gets and consistent gets. These numbers
give an indication of the amount of I/O that takes place to return the results to you.
The less I/O that needs to be done, the query tends to be more scalable. This means
that more requests can be handled without affecting response time and throughput.

Leveraging the Database

[58]

From the preceding screenshot, note that the value with consistent gets is only 1.

Let's do the same exercise with the heap table.

Execution plan for a heap table

The heap table query uses INDEX UNIQUE SCAN, the index of the primary key,
to look up the values that we are looking for. It is also a very efficient way to look
up the values. As you can see in the Statistics part, the number of consistent gets is
slightly higher (3) than the number of consistent gets of the single-table hash cluster
query. This is the first indication that the single-table hash cluster query is slightly
more efficient compared to using a regular heap table to do a lookup.

Chapter 2

[59]

Index-organized tables
The characteristic feature of an index-organized table is the way in which it stores the
data. Instead of storing the data where it fits, like with a heap table, the data is stored
in a structure similar to a b-tree index. This means that not only the key is stored in
the index structure, but also the other data resides there as well. Because you traverse
the index structure and immediately find the data that you are looking for, this type
of table is very efficient for lookup purposes.

Because the data needs to be stored alongside the key, it can only be stored at a
certain location. Hence, performing the INSERT or UPDATE operations on data in
index-organized tables is not as efficient as storing data in a heap table. In the case
of lookup tables, which are being discussed here, data changes slowly and is created
once but queried over and over again, making the DML operations less prone to
an issue. Unlike the single-table hash cluster, where you need to know the size of
the table in advance and allocate this space as well, this is not necessary with an
index-organized table.

To compare an index-organized table to a regular heap table, an index-organized
table that resembles the previously created heap table is created.

SQL> create table lookup_io_t
 2 (id primary key, description)
 3 organization index
 4 as
 5 select rownum id
 6 , object_name description
 7 from (select * from dba_objects
 8 union all
 9 select * from dba_objects
 10)
 11 where rownum <= 50000
 12 /

Table created.

An index-organized table needs to have a primary key. The primary key is defined
on line 2 of the preceding code sample. To indicate that an index-organized table is
needed, include organization index on line 3.

Just like the single-table hash cluster and the heap table were populated with 50,000
records, the index-organized table is also populated with 50,000 records with the
same structure.

Leveraging the Database

[60]

Statistics are gathered on the index-organized table:

SQL> begin
 2 dbms_stats.gather_table_stats (user
 3 ,'LOOKUP_IO_T'
 4 ,cascade => true
 5);
 6 end;
 7 /

PL/SQL procedure successfully completed.

Now everything is ready to look into the autotrace report.

Execution plan for an index-organized table

Chapter 2

[61]

When you look at the execution plan in the preceding screenshot, notice that INDEX
UNIQUE SCAN is done on SYS_IOT_TOP_81574. This is the system-generated
name for the index created for the index-organized table. The number of consistent
gets for this statement is only 2—slightly better than the heap table, but slightly
worse than the single-table hash cluster.

Depending on the nature of the lookup tables in your application, the frequency with
which the data changes, and the amount of storage that may be needed, you might
want to choose single-table hash clusters or index-organized tables.

Analytic functions
Analytic functions were introduced quite a long time ago—Oracle 8.1.6 Enterprise
Edition in around 1999—yet they are still quite unknown to a lot of developers.

With analytic functions you can retrieve data from more than one row at the same
time without the need for a self join. You can create a ranking based on a value
within a group of values. They are not easy to use, but once mastered, analytic
functions can make your life a lot easier. With analytic functions, you can create the
overviews that the customer may want within a few lines of code.

Syntax overview
The processing order of a query with analytic functions happens in three stages.
First of all the Joins, WHERE conditions, GROUP BY, and HAVING clauses are applied.
Next, the analytic functions are applied to the resulting result set. Finally, the ORDER
BY clause is processed. This order of processing is important to know, because after
getting comfortable with analytic functions, it is quite easy to get carried away. Use
traditional aggregates before you decide on analytic functions.

Processing order of a query

The first part of the analytic function that you need to identify is the "what". There
are a lot of regular aggregate functions, which also have an analytic counterpart.
Some examples of these are SUM, AVG, and COUNT. The easiest way to know that you
are dealing with the analytic counterpart is by checking that the reserved word OVER
is present after the function name:

avg(sal) over ()

Leveraging the Database

[62]

The preceding sample shows the analytic counterpart of the AVG function. The
parentheses after OVER are mandatory. Even though it looks like an aggregate, an
analytic function is not an aggregate. Aggregate functions will reduce the number
of rows while analytic functions will not. The preceding example will return as many
records as there are in the table that you are querying and each record will have the
average of the column in the final result set.

There are also a number of functions that you will use rarely if at all; just to name
a few—COVAR_SAMP, VAR_POP, or STDDEV_SAMP. These functions serve a statistical
purpose. It may be advisable to have a statistical analyst sitting beside you while
using these esoteric functions to interpret the results that they produce. Functions
such as ROW_NUMBER, RANK, LEAD, and LAG are quite useful on
a day-to-day basis.

After you decide which analytic function you need, the next step is to determine
those parts of the result set to which the function should be applied. In this case,
we will talk about partitions. Partitions break up the result set into smaller groups.

Partitions in the context of analytic functions are not related to table
partitioning. Analytic partitions are a logical grouping of data.

A partition can be as small as a single row, or as large as the whole result set.
avg(sal) over (partition by deptno, job)

The partition clause breaks up the result set into groups. Each group has the analytic
function applied to it. The criteria in the partition clause determines how many
different groups you'll have—never more than one per record, and never less than
one per result set. If you don't specify any partition clause, the whole result set
is considered as a single partition or group. The results for the function are only
applied to a single partition; it cannot cross partitions. If you have, say a running
total for salaries per department, the counter is set at zero for each department.

Within each partition, it's possible to specify a window. The window determines the
range of rows in the current partition for which you want to perform calculations for
the current row.

Analytic functions are always performed from the perspective of the current row. You
can consider the current row as the reference point for the window. Windows come in
two flavors. The first one is an anchored window, and the second is a sliding window.

The default windows clause is RANGE UNBOUNDED PRECEDING. This means that the
window is expanding from the first row in the partition to the current row. Because
the first row in the result set is the starting point for the window, and therefore has a
fixed point, this is called an anchored window.

Chapter 2

[63]

In a sliding window this is different. A sliding window moves along with the
current row. The sliding window comes in two varieties. There is a range window,
determined by a numeric offset. This window includes all rows where the specified
column has a value that falls within the range starting from the current row. For
example, all rows where the sal is between 200 less than the current sal and 350
more than the current sal:

over (order by sal range between 200 preceding
 and 350 following
)

This type of window can only be used as a numeric offset on number types and
dates. With dates, the offset is the number of days.

The second type of sliding window is the row window. Here, you can specify how
many rows you want to look back or look forward into the result set. For example,
calculate the analytic function for the current record over (no more than) two records
prior to the current record and (no more than) two records following the current
record—with all records sorted by salary:

over (order by sal rows between 2 preceding and 2 following)

These preceding examples don't have a partition by clause—which is
optional—meaning that the partition is as large as the result set over
which the analytic function is performed.

Movement of the window with the current row

Leveraging the Database

[64]

Examples
Let's look at some of the most common usages of analytic functions. Of course, there
are many more possibilities. These merely serve as examples to get you going. It is
possible to reproduce these result sets with plain old SQL, but the analytic way is
so much more attractive and elegant, and often better in terms of performance. A
lot of questions on the SQL and PL/SQL forum on Oracle Technology Network can
be answered by using analytic functions. The most common questions are used as
examples in this section.

Running totals
Running totals are easy to create, using analytic functions. To accomplish something
similar the traditional way can be quite challenging. Let's see an example of a
running totals query:

SQL> select empno
 2 , ename
 3 , sal
 4 , sum (sal) over (order by empno) overall_total
 5 from emp
 6 order by empno
 7 /

 EMPNO ENAME SAL OVERALL_TOTAL
---------- ---------- ---------- ----------------
 7369 SMITH 800 800
 7499 ALLEN 1600 2400
 7521 WARD 1250 3650
 7566 JONES 2975 6625
 7654 MARTIN 1250 7875
 7698 BLAKE 2850 10725
 7782 CLARK 2450 13175
 7788 SCOTT 3000 16175
 7839 KING 5000 21175
 7844 TURNER 1500 22675
 7876 ADAMS 1100 23775
 7900 JAMES 950 24725
 7902 FORD 3000 27725
 7934 MILLER 1300 29025

Chapter 2

[65]

In this example, you can see that the partition keyword is omitted; therefore there's
only one single group. There is, however, a window that is expanding with each row.
The window is determined by the order by clause in line 4. The (implicit) window
clause in this example is RANGE UNBOUNDED PRECEDING, which is the default for the
Window clause. This means that all preceding salaries are added to the current row's
salary, thereby creating a running total.

If we look at EMPNO 7521 (WARD), we can see that the OVERALL_TOTAL column
shows 3650. This is a summary of all preceding salaries, including Ward's
(800 + 1600 + 1250). To make this a running total per department, simply add a
partition clause as done in the following example:

SQL> select empno
 2 , ename
 3 , sal
 4 , deptno
 5 , sum (sal) over (partition by deptno
 6 order by empno
 7) department_total
 8 from emp
 9 order by deptno, empno
 10 /

 EMPNO ENAME SAL DEPTNO DEPARTMENT_TOTAL
---------- ---------- ---------- ---------- ----------------
 7782 CLARK 2450 10 2450
 7839 KING 5000 10 7450
 7934 MILLER 1300 10 8750
 7369 SMITH 800 20 800
 7566 JONES 2975 20 3775
 7788 SCOTT 3000 20 6775
 7876 ADAMS 1100 20 7875
 7902 FORD 3000 20 10875
 7499 ALLEN 1600 30 1600
 7521 WARD 1250 30 2850
 7654 MARTIN 1250 30 4100
 7698 BLAKE 2850 30 6950
 7844 TURNER 1500 30 8450
 7900 JAMES 950 30 9400

Leveraging the Database

[66]

When we look at EMPNO 7521 (WARD) again, we see that the DEPARTMENT_TOTAL
column shows 2850. This is a summary of all preceding salaries within his
department (1600 + 1250). Just to show the effect of a running total more clearly,
I adjusted the final order by predicate to match the window's sort condition. It
should be noted that there's no need to do this. When the final order by is different
from the sort order in the partition, the final result can be rather confusing. The final
order by has no impact on the values determined by the analytic functions.

Visualizing the window
To help you visualize where a window starts and where it ends, you can use the
analytic functions FIRST_VALUE and LAST_VALUE, which return the specified
column value for the first or last record in the window:

SQL> select ename
 2 , sum (sal) over (partition by deptno
 3 order by empno
 4) dept_total
 5 , first_value (ename) over (partition by deptno
 6 order by empno
 7) fv
 8 , last_value (ename) over (partition by deptno
 9 order by empno
 10) lv
 11 from emp
 12 where deptno = 20
 13 order by deptno
 14 , empno
 15 /

ENAME DEPT_TOTAL FV LV
---------- ---------- ---------- ----------
SMITH 800 SMITH SMITH
JONES 3775 SMITH JONES
SCOTT 6775 SMITH SCOTT
ADAMS 7875 SMITH ADAMS
FORD 10875 SMITH FORD

Here you can see that the window is expanding per row. When we look at
SCOTT, the window starts with the employee named SMITH and ends with the
current row (SCOTT).

Chapter 2

[67]

But how do the FIRST_VALUE and LAST_VALUE functions handle NULL? It's nothing
special really; when the first or last value is a NULL then a NULL is shown. If you
want to get the last NOT NULL value then you can use the IGNORE NULLS clause.
This clause was added in Oracle 10g for FIRST_VALUE and LAST_VALUE. In Oracle
11g Release 2 a lot of other analytic functions can use the IGNORE NULLS clause, such
as LEAD and LAG.

SQL> select ename
 2 , comm
 3 , last_value (comm) over (partition by deptno
 4 order by comm
 5) lv
 6 , last_value (comm ignore nulls) over
 7 (partition by deptno
 8 order by comm
 9) lv_ignore
 10 from emp
 11 where deptno = 30
 12 ;

ENAME COMM LV LV_IGNORE
---------- ---------- ---------- ----------
TURNER 0 0 0
ALLEN 300 300 300
WARD 500 500 500
MARTIN 1400 1400 1400
JAMES 1400
BLAKE 1400

In the preceding example, the effect of ignore nulls (line 6) is shown. Because
MARTIN is the last employee with a commission, his amount is shown in the last
column for JAMES and BLAKE.

Accessing values from other records
There are three different functions that allow you to access values from elsewhere
in the result set, namely FIRST_VALUE, LAST_VALUE, and NTH_VALUE. The
FIRST_VALUE function retrieves a value from the first row in the window, and
LAST_VALUE retrieves a value from the last row in the window. NTH_VALUE allows
you to access a value from any row in the window.

Leveraging the Database

[68]

With these functions, you can do a comparison between different rows in your result
set. For example, determining the difference between the highest earning employee
and the second highest earning employee:

SQL> select deptno
 2 , ename
 3 , first_value(sal) over (partition by deptno
 4 order by sal desc
 5)
 6 - nth_value(sal,2) from first
 7 over (partition by deptno
 8 order by sal desc
 9)
 10 top2_difference
 11 from emp
 12 /

 DEPTNO ENAME TOP2_DIFFERENCE
---------- ---------- ---------------
 10 KING
 10 CLARK 2550
 10 MILLER 2550
 20 SCOTT 0
 20 FORD 0
 20 JONES 0
 20 ADAMS 0
 20 SMITH 0
 30 BLAKE
 30 ALLEN 1250
 30 TURNER 1250
 30 MARTIN 1250
 30 WARD 1250
 30 JAMES 1250

The second argument with NTH_VALUE (line 6) identifies the nth value in the window.
As you may notice on line 6 in the preceding code, there is a from first clause. This
clause determines where to start counting from in the result set. There is also a from
last clause. FIRST_VALUE can also be retrieved with the following statement:

 nth_value (sal, 1) from first over ()

LAST_VALUE can be retrieved as follows:

 nth_value (sal, 1) from last over ()

Chapter 2

[69]

Another way of accessing other rows in the
result set
Occasionally, it's necessary to access values from different rows in the result set.
The LAG and LEAD functions do just that. LAG looks at values from previous rows,
and LEAD looks to the following records in the result set. The current row is always
the starting point for the number of rows you want to look forward or back into the
result set. The need for a self-join has vanished in many cases.

Let's take a look at another example. For each employee, we want to show the next
employee to be hired in the same job:

SQL> select ename, job
 2 , hiredate
 3 , lead (ename) over (partition by job
 4 order by hiredate
 5) next_hiree_in_job
 6 from emp
 7 order by job
 8 , hiredate;

ENAME JOB HIREDATE NEXT_HIREE
---------- --------- --------- ----------
FORD ANALYST 03-DEC-81 SCOTT
SCOTT ANALYST 19-APR-87
SMITH CLERK 17-DEC-80 JAMES
JAMES CLERK 03-DEC-81 MILLER
MILLER CLERK 23-JAN-82 ADAMS
ADAMS CLERK 23-MAY-87
JONES MANAGER 02-APR-81 BLAKE
BLAKE MANAGER 01-MAY-81 CLARK
CLARK MANAGER 09-JUN-81
KING PRESIDENT 17-NOV-81
ALLEN SALESMAN 20-FEB-81 WARD
WARD SALESMAN 22-FEB-81 TURNER
TURNER SALESMAN 08-SEP-81 MARTIN
MARTIN SALESMAN 28-SEP-81

In this example, we used the LEAD function to look to the next records. We divided
the results in partitions based on the job and sorted them by hiredate. When we look
at the managers, you can see that the next hiree from Blake's perspective is Clark.
From Clark's perspective there were no new managers hired; that's why this row's
value for the NEXT_HIREE column is null.

Leveraging the Database

[70]

It's also possible to look further ahead or back in the result set. LAG and LEAD have
two additional optional parameters. One parameter is for the offset of number of
records. The third parameter provides a default value in case LAG or LEAD points
outside the window.

As stated before, the LAG and LEAD function can also include the IGNORE NULLS clause,
allowing you to skip over the NULL values and return the last NOT NULL value.

Ranking—top N
Showing the top 3 of each department is a breeze with analytic functions. What
we need to do is create partitions and assign a rank to each row within the
partition. There are three variants to the ranking function—RANK, DENSE_RANK,
and ROW_NUMBER. These functions assign numbers based on the ORDER BY clause
within each partition. They all do it a little bit differently.

The difference lies in the way equality is resolved. RANK allows ranking numbers to
be skipped. DENSE_RANK uses a different kind of ranking, which doesn't skip any
number. ROW_NUMBER assigns an arbitrary number to each row when it is not possible
to resolve ORDER BY of the windows clause, comparable to the way ROWNUM assigns a
value to a row.

Take a look at the following example. You can see the differences between types of
ranking. When we look at department 20 more closely, you can see that there is a
tie for first place: both have 3000 under the SAL column. The second highest salary
(2975) has the RANK value of 3, while for DENSE_RANK, the value is 2. RANK skipped
second place altogether—we do not award a silver medal if we already have two
gold medalists. In the last column, where ROW_NUMBER is used, a value is assigned
arbitrarily to the highest paid employees.

SQL> select ename
 2 , deptno
 3 , sal
 4 , rank() over (partition by deptno
 5 order by sal desc
 6) rk
 7 , dense_rank() over (partition by deptno
 8 order by sal desc
 9) dr
 10 , row_number() over (partition by deptno
 11 order by sal desc
 12) rn
 13 from emp
 14 where deptno = 20
 15 order by deptno

Chapter 2

[71]

 16 , sal desc;
ENAME DEPTNO SAL RK DR RN
---------- ------- ---------- ---------- ---------- ----------
SCOTT 20 3000 1 1 1
FORD 20 3000 1 1 2
JONES 20 2975 3 2 3
ADAMS 20 1100 4 3 4
SMITH 20 800 5 4 5

Because analytic functions cannot be used in the WHERE clause (the final predicate) of
a query, it's necessary to push the analytic function into an inline view to restrict the
final result set to a regular top N, in this case a top 3 of the highest salaries.

Leveraging the Database

[72]

One very neat trick with the ranking functions is to pivot the result set. Instead of
showing the rows of the result set down the page, have the results go across the
page. In the following example, the ranking function ROW_NUMBER is combined with
the PIVOT function:

SQL> select *
 2 from (select ename
 3 , deptno
 4 , rn
 5 from (select ename
 6 , deptno
 7 , row_number() over (partition by deptno
 8 order by sal desc
 9) rn
 10 from emp
 11)
 12 where rn <= 3
 13)
 14 pivot (max (ename)
 15 for rn in (1,2,3))
 16 /

 DEPTNO 1 2 3
---------- ---------- ---------- ----------
 10 KING CLARK MILLER
 20 SCOTT FORD JONES
 30 BLAKE ALLEN TURNER

At first, the ranking numbers are assigned in lines 7 to 9 in an inline view. Next the
result set is filtered in line 12. The final step is to use the PIVOT function in line 14. In
case you are wondering if you need to hardcode which rankings you want to pivot,
the answer is yes; currently there is no way to do this declaratively.

Stringing it all together
A frequent requirement is for a way to aggregate strings. In older versions of the
Oracle database this could be implemented, but it was less than trivial to do so.
Nowadays the LISTAGG function has relieved this burden. Although not strictly an
analytic function, it can be used like one. The following example shows all the names
of employees within the same department as a comma-separated string:

Chapter 2

[73]

Caveats
As with all features, it's not always gold. Once you master the syntax of these analytic
functions, then the sky is the limit, but there are some things to be wary of.

Analytic functions cannot be used in the WHERE clause or the final ORDER BY clause.
To circumvent this limitation, you can push the analytic function into an inline view.
Another way of circumventing the limitation with ORDER BY is to use a column alias
in the ORDER BY clause.

You also need to look out for the ordering of the NULL values and how this will
affect the ORDER BY clause of the analytic window. Yet another thing to look out for
is the performance impact. Analytic functions may look like the best thing that ever
happened, especially regarding performance. Using different windows and sort
orders may use a considerable amount of sorting and shifting. This might influence
the overall performance of the query. As with all features that you use, you should
test with a representative set of data before you move to production.

Leveraging the Database

[74]

Finally , a warning—once you get more comfortable with using analytic functions,
you will want to use them all the time. It's easy to get carried away and you might
produce some code that is hard, if not impossible to maintain.

Just to illustrate, here is a quick demonstration of how you might get carried away.
Using an analytic function with the DISTINCT keyword in the same statement is a
telltale sign that you are getting carried away. Say we have a table that contains the
contents of the EMP table multiple times and we want to identify the duplicate names.

The table used for this example contains around 900,000 records:

SQL> select count(*)
 2 from big_emp
 3 /

 COUNT(*)

 917504

One method might be to create partitions based on the name in the table—assign a
ranking number to each of them and filter out the names which rank higher than one.

Chapter 2

[75]

The reason that the distinct keyword is needed in the code snippet shown in the
preceding screenshot, is that the inline view (lines 3 through 7) will yield the names
multiple times—around 65,535 times per name in the big_emp table.

A more traditional way to fulfill the same requirement is shown in the
following query:

SQL> select ename
 2 from big_emp
 3 group by ename
 4 having count(*) > 1;

ENAME

ADAMS
ALLEN
BLAKE

(Complete data is not shown here for brevity)

Besides having to write less code, the performance of the second option is also better.

Execution plan for the analytic function query

Leveraging the Database

[76]

The execution plan in the preceding screenshot, with the analytic function and the
DISTINCT keyword, clearly shows the steps that are performed to answer the query.
The late filtering, reducing the number of rows from 917K to 14, is done after the
table has been accessed and the window sort is done.

Let's compare the execution plan for the more traditional way to answer
the question.

Execution plan for the traditional query

In the execution plan shown in the preceding screenshot, you can see that the
number of rows has decreased rapidly. After executing the HASH GROUP BY step,
the number of rows has reduced to 1. Also note the last column of the execution
plan—the Time column. For the last statement the value in the Time column
is significantly lower than the timing for the execution plan for the analytic
function query.

Chapter 2

[77]

Aggregate functions
Creating multilevel totals with aggregate functions might not be the first thing
you think about. This has been a capability of the aggregate functionality for quite
some time.

The purpose of the GROUP BY clause is to group rows together, based on the columns
specified. But with aggregates, you don't always need to specify columns. When you
want a grand total, you can omit the GROUP BY clause altogether:

SQL> select sum (sal)
 2 from emp
 3 /

 SUM(SAL)

 29025

Omitting the GROUP BY clause leads to a grand total, but you can also use an empty
set in the GROUP BY clause:

SQL> select sum (sal)
 2 from emp
 3 group by ()
 4 /

 SUM(SAL)

 29025

On line 3 the empty set is used, denoted by the opening and closing braces ().

There is a lot more about aggregates, such as GROUPING SETS, ROLLUP, and CUBE.

Leveraging the Database

[78]

Grouping sets
In the preceding example, we created a grand total by using an empty set in the
GROUP BY clause. The GROUPING SETS clause lets you create multiple sets, to use
them in the GROUP BY clause. Let's take a look at an example:

The query shown in the preceding screenshot is a combination of two separate
queries to create empno with the value in the SALARY column for each employee
as well as a grand total of values in the SALARY column. The emp table has only 14
employees, but because of the grand total the total number of records in the SALARY
column is 15.

Chapter 2

[79]

In this query, the first part—lines 1 through 4—the GROUP BY set consists of empno.
The second part of the query—lines 6 through 8—consists of groups on an empty set.

To get the same results, you can combine these two separate statements by using a
single GROUP BY clause with the GROUPING SETS keyword.

Leveraging the Database

[80]

In the preceding screenshot, on line 5 in the GROUP BY clause, the keyword GROUPING
SETS indicates a list of expressions indicating the sets. The two grouping sets used
in this query are on line 5—one is empno and other is an empty set indicated by
empty braces.

As you can see in the result set shown in the preceding screenshot, GROUPING SETS
allow you to create multiple sets to group results. There are output records for each
empno (the first set—line 6), per deptno (the second set—line 7), and a grand total
(the empty third set—line 8).

Chapter 2

[81]

Which grouping sets you need to include in the query depends on the requirements
that you are trying to fulfill. If you don't want a grand total, just leave out the empty
set. This is shown in the query in the following screenshot:

Now the result set will not show the grand total. The GROUPING SETS functionality
is very powerful.

Rollup
Rollups is a specialized type of grouping functions. Even though we have discussed
rollups before discussing grouping sets, when you understand the grouping sets the
Rollup clause becomes very easy to grasp.

Leveraging the Database

[82]

Rollups generates a subtotal line for every set in the Rollup clause. The sets in this
case might not be as straightforward as with the grouping sets (they were between
parenthesis). With the Rollup clause, the grouping sets are a combination of the
arguments, but not in a random order. Let's take a look at an example to identify
the sets.

SQL> select deptno
 2 , sum (sal)
 3 from emp
 4 group by rollup
 5 (deptno)
 6 /

 DEPTNO SUM(SAL)
---------- ----------
 10 8750
 20 10875
 30 9400
 29025

There are two grouping sets in the above example, one for deptno and another for
the empty set. The Rollup expression in the preceding example can be written
as follows:

group by grouping sets
 ((),deptno)

The method to determine the grouping sets with the Rollup clause is as follows:

• First all the arguments in the Rollup clause are one grouping set
• Then all the arguments minus the last one comprise the next grouping set
• All the arguments minus the last two comprise the following grouping set,

and so on.

Until there are no more arguments left, the empty set is added as the final grouping
set—the empty set being the grand total. Rollup is really a shorthand notation for
combining multiple grouping sets to create multiple subtotals as well as the grand
total. Rollups come in very handy for management reports where this information is
often required.

Chapter 2

[83]

Cube
The Cube clause is typically used in online analytic processing. When you want to
provide aggregated results along with every possible dimension, the Cube clause fits
the bill. The Cube clause consists of all possible combinations of the arguments. To
illustrate this, let's take a look at the following example:

The query in the preceding screenshot shows a summation of the salary:

• Per department and job
• Per department
• Per job
• Grand total

Leveraging the Database

[84]

This query can be written with the GROUPING SETS clause as follows:

As you can see in lines 6 through 11, with the GROUPING SETS clause you have more
granular control, but it can be quite verbose. The Cube clause is compacter and
processes equivalent results.

Identifying the totals and subtotals with grouping
In the result sets you might notice that it can be confusing to detect which rows in
the result set are the aggregated records and which are not. Oracle did recognize the
need to identify the aggregated records and created some support functions to do so.
These functions are Grouping, Grouping_id, and Group_id.

Chapter 2

[85]

Each of these functions returns an integer indicating whether or not the record is an
aggregate. In this section we will see how to use Grouping. In this case, 1 signals
an aggregate, and 0 indicates a regular output record. To illustrate this, let's take a
look at an example:

SQL> select deptno
 2 , sum (sal) as sum_salary
 3 , grouping (deptno)as grp
 4 from emp
 5 group by rollup
 6 (deptno)
 7 /

 DEPTNO SUM_SALARY GRP
---------- ---------- ----------
 10 8750 0
 20 10875 0
 30 9400 0
 29025 1

The preceding query uses the Rollup clause to generate a grand total record in the
result set. This record can be identified by using the Grouping function (line 3)—the
last column in the result set. In the preceding result set, this record is in the last row
and has a value 1 in the last column.

You can use this information to further enhance the output, such as in the following
example, where we use a simple CASE expression in combination with the
GROUPING function:

SQL> select case grouping (deptno)
 2 when 1
 3 then 'Total: '
 4 else
 5 to_char (deptno)
 6 end department
 7 , sum (emp.sal) as sum_salary
 8 from emp
 9 group by rollup
 10 (deptno)
 11 /

DEPARTMENT SUM_SALARY
--------------- ----------
10 8750
20 10875
30 9400
Total: 29025

Leveraging the Database

[86]

On lines 1 through 6, the simple CASE expression determines whether to show the
text Total or deptno. You may notice that TO_CHAR has to be executed on deptno in
order to have the datatypes match up.

Offloading your frontend and scheduling a job
The built-in package DBMS_JOB has been around for a very long time. With this
package you could schedule jobs in the database but the possibilities of scheduling
the job were pretty limited. Oracle 10g introduced DBMS_SCHEDULER, the new and
improved way of scheduling jobs in the database. This built-in package adds more
functionality to scheduling the jobs—like a more sophisticated way to determine the
set times when a job is supposed to run.

But there are more things—such as offloading a process from your application to a
background process—that you can do with jobs. Instead of having your end user
wait for the process to complete, let the process take place in the background. This
way your user can carry on with the tasks at hand, while the process is being done
elsewhere. The user experience will be enhanced drastically. The application will
react more responsively to user actions.

One-off job
A one-off job is a job that only runs once, at most. In order to offload the process to
the background, the job only needs to run once. After the job is completed it is no
longer needed and can therefore be removed. Because the requirements are simple,
we can use DBMS_JOB for this task.

A job is run as a background process; this means that the actions are initiated by
your user but are carried out in the background. Your user's session will continue
with whatever he/she pleases.

Say you have a long running program that you want to be initiated by the user
of your application when he/she presses a button. To simulate a long running
program, we will use the following procedure:

SQL> create or replace
 2 procedure long_running
 3 is
 4 begin
 5 sys.dbms_lock.sleep (seconds => 3);
 6 end long_running;
 7 /

Procedure created.

Chapter 2

[87]

This procedure waits for three seconds before giving control back to the caller of the
procedure. When you call this procedure from SQL*Plus, you will have to wait for
three seconds.

When the following program is called from your application, your user would
have to wait for three seconds, which may seem like forever to a user. This is
simply not acceptable.

SQL> set timing on
SQL> begin
 2 long_running;
 3 end;
 4 /

PL/SQL procedure successfully completed.

Elapsed: 00:00:03.00

The trick is to schedule a job, which would call the long running program for you.
Then you won't have to wait for three seconds for the program to complete. What
you need to do is create a process that will submit the job, instead of calling the
long_running program. Now, we will see how it is done in SQL*Plus:

SQL> declare
 2 j pls_integer;
 3 begin
 4 dbms_job.submit (job => j
 5 ,what => 'long_running;'
 6);
 7 dbms_output.put_line ('The job has number: '
 8 || to_char (j)
 9);
 10 end;
 11 /
The job has number: 68

PL/SQL procedure successfully completed.

Elapsed: 00:00:00.00

As you can see in the preceding code, it takes hardly any time to submit the job
(none in my environment). Results may vary, but it will never be as long as your
long running process.

Leveraging the Database

[88]

In order for the job to start, you will need to issue a COMMIT clause:

SQL> commit
 2 /

Commit complete.

Elapsed: 00:00:00.00

As you can see, this also takes hardly any time. To make sure that the job is
scheduled to run in the background, you can query DBA_JOBS (or USER_JOBS
in case you do not have access to DBA_JOBS) to see the job in action.

In the following results, you may notice that the WHAT column shows what the job
is doing. It also shows whether next time this job will be run again or not. This is
shown in the INTERVAL column, which is NULL, meaning that it will not reschedule
itself anymore. The last column is the Broken indicator. If this column has a value Y,
the job will not attempt to run again. This only happens when a job fails 16 times.

SQL> select j.job
 2 , j.what
 3 , j.interval
 4 , j.broken
 5 from dba_jobs j
 6 where j.job = 68
 7 /

 JOB WHAT INTERVAL B
---------- -------------- --------------------------------- -
 68 long_running; null N

SQL> /

no rows selected

If you wait a little bit—three seconds or more—and rerun our query against
DBA_JOBS once more, you will notice that the job has been completed successfully
and has been removed.

Chapter 2

[89]

If, for whatever reason, the job cannot be completed in one go, the job reschedules
itself to run after some time. If the job still can't be completed successfully, the job
reschedules itself again but with an increasing interval. This mechanism will try to
run the job up to 16 times. If the job still can't complete, the job is marked as Broken.
This means that the job will not be tried again.

In the following example, there is a long running program, which can only be called
by pressing the button in the APEX application:

Calling the long_running process directly

In the preceding screenshot, a page process is created. This process calls the long
running program directly in an anonymous PL/SQL block. Because we want to
call this program when a button is pressed, the condition When Button Pressed for
the page process is set to the button (called LONG_RUNNING), as shown in the
following screenshot:

Leveraging the Database

[90]

Instead of making the user to wait for the process to finish, we can change the code
to schedule the job:

Offloading the workload to the background

Because of the way in which APEX works, it is not necessary to issue COMMIT
explicitly; this is done automatically.

After pressing the button, the job can be seen in DBA_JOBS, but only for about three
seconds—that's the time we used to simulate a long running process. After this
period, the job will be carried out and will automatically disappear into oblivion.

SQL> select j.job
 2 , j.what
 3 , j.interval
 4 , j.broken
 5 from dba_jobs j
 6 /

 JOB WHAT INTERVAL B
---------- --------------- --------------------------------- -
 22 long_running; null N

Chapter 2

[91]

The process is not going any faster; it is still taking three seconds to complete, but
the user experience is better. The page will respond immediately after clicking on
the button. The only action that needs to be completed on the APEX page, before
giving control back to the user, is submitting the job. When the page process is done
with submitting the job, the user gets control back and can continue working with
the application.

Pipelined table functions
One of the key features of functions is that they return a value. This value can be
either a scalar value of a composite value such as a record or an object, or even a set
of values such as an associative array, a nested table, or a varray. A regular function
returns its value after the function is completely finished and the RETURN statement is
encountered. The program that calls a function will have to wait until the function is
finished with its task, before the caller can continue with processing.

A pipelined table function is slightly different. This type of function can return
values before the final RETURN statement is encountered. This means that it can
return values for multiple times. This feature allows you to use a pipelined table
function in the FROM clause of a query.

First we will take a look at a small example, then we will look at how you can apply
this function in your APEX application.

A pipelined table function needs to return a collection type, such as a nested table
of varrays. This can be a collection of objects—if this is what you need. For this
example, we will keep things simple and create a collection of Varchar2:

SQL> create or replace type time_list is
 2 table of varchar2(10)
 3 /

Type created.

Now, we need to create the function that returns the previously created collection
pipelined:

SQL> create or replace
 2 function show_time
 3 return time_list pipelined
 4 is
 5 begin
 6 for i in 1..5
 7 loop

Leveraging the Database

[92]

 8 dbms_lock.sleep (1);
 9 pipe row (to_char (sysdate, 'hh24:mi:ss'));
 10 end loop;
 11 return;
 12 end show_time;
 13 /

Function created.

This function is returning a list of five time information outputs, each with a second
inbetween. Line 8 takes care of the one-second pause, using DBMS_LOCK.SLEEP. In the
Return clause of the function signature, is the PIPELINED keyword (line 3). On line 9,
the values are returned from the function. PIPE ROW is the key to return the values,
in our case the time component of SYSDATE.

Finally, RETURN on line 11 signals the end of the function and returns control to the
calling function.

Now we can see the power of the pipelined table function in action, used in the
from clause of the following query:

SQL> select to_char (sysdate, 'hh24:mi:ss')
 2 , column_value
 3 from table (show_time)
 4 /

TO_CHAR(COLUMN_VAL
-------- ----------
21:49:13 21:49:14
21:49:13 21:49:15
21:49:13 21:49:16
21:49:13 21:49:17
21:49:13 21:49:18

In this query, we have shown the current time, as well as the results from the
pipelined table function that we created earlier. On line 3, the pipelined table
function is called, inside the table operator, in the from clause. As you can see
from the output, the value for the current time is determined at the start of the
query (read consistency in action) and is fixed at 21:49:13. The pipelined table
function returns its values with one second pause in between. So, the rows are
returned—not all at the same time, but one after the other—until the function is
completely finished.

Chapter 2

[93]

When you run this example on your own database—such as SQL*Plus, you need to
change your arraysize setting to observe this. The default setting for the arraysize
in SQL*Plus is 15. As there are fewer than 15 records returned from the query, the
one record at a time clause is not observed. One little oddity—even if you set the
arraysize to 1, first you will see one record, then the following records are returned
in pairs (two at a time).

SQL> set arraysize 1

Pipelined table functions in APEX
After this brief introduction to pipelined table functions, we will take a look at how
to use pipelined table functions in APEX.

The goal that we want to achieve is to create a comma-delimited list of employee
names for a given department number. This is a very contrived example as Oracle
11g R2 already has a built-in function that can do this for you—LISTAGG.

What we first need is a collection type. For this example, we will use a nested table of
the varchar2 objects:

SQL> create type string_tt is table of varchar2(250)
 2 /

Type created.

And of course we will need a pipelined table function as well—one that takes in a
department number and returns the list of employee names in comma-delimited form:

SQL> create function enames (p_deptno in number)
 2 return string_tt pipelined
 3 is
 4 l_str varchar2(32767);
 5 begin
 6 for rec in (select ename
 7 from emp
 8 where deptno = p_deptno
 9)
 10 loop
 11 l_str := l_str ||rec.ename||',';
 12 end loop;
 13 pipe row (
 14 case
 15 when length (l_str) > 250
 16 then substr (l_str, 1, 247)||'...'
 17 else rtrim (l_str, ',')

Leveraging the Database

[94]

 18 end
 19);
 20 return;
 21 end enames;
 22 /

Function created.

This function takes up the department number and looks for the employees who
work for that department (lines 6 to 8). The results are concatenated together,
separated by a comma (line 11). The resulting string is returned by the function, after
dealing with strings which are too long (lines 13 to 19).

When all these things are in place, we can turn our focus to creating a report in
APEX. For this report, we will use the query shown in the following screenshot:

Query where pipelined table function is used

Chapter 2

[95]

When you run the report, the results will show the employees per department as a
comma-delimited string:

Using a pipelined table function to base a report upon

This example just showed you what is possible with pipelined table functions, to
spark your imagination.

Using images
A picture is worth a thousand words, the old adage goes. Including an image in your
application can really make your application more appealing for your users. Maybe
because of the rise of the smartphone, people are taking more and more photos
nowadays—the fact is, photos have become an important part of many applications.
Users want to be able to upload photos and view them from within the application.
In this section, we will take a closer look at how to store photos in the database.

The Oracle database has a special datatype for dealing with photos—OrdImage. This
datatype can be found in the OrdSys schema. OrdSys is part of Oracle Multimedia
(formerly known as InterMedia). Oracle APEX doesn't know how to deal with the
OrdImage datatype directly, but it knows how to deal with images stored in a
BLOB column.

When you create your table to store the photo in a BLOB column, you should also
include columns to store the following information:

• File name
• Mime type
• Last updated date

APEX uses this information to handle the photo properly. This information is needed
for forms as well as reports.

Leveraging the Database

[96]

In one of the sample applications that come with APEX, images are used to display
products. The current version of this sample application only uses very small images
throughout. If you only store small images, and you want to show a larger size on
some pages, you would need to resize the image in order to get the enlarged version.
By doing this, the quality will deteriorate dramatically. When you store the large
version of the image, the quality will be much better. The downside is that if you
use these large images as thumbnails by resizing them to a small image, they are
still actually large—just sized to appear smaller. The loading time of your pages will
increase because of the size of the image (say multiple MB instead of a few KB).

The solution to this problem is quite easy. Store a large and a small version of the
image. Resizing an image can easily be done by using the OrdImage functionality,
and this also works on BLOBs. It should be noted that the reduction in size only
happens when the user has already uploaded the photo to the database.

SQL> create or replace
 2 procedure thumbnail (p_id in number)
 3 is
 4 l_photo blob;
 5 l_thumb blob;
 6 begin
 7 select p.photo
 8 , p.photo
 9 into l_photo
 10 , l_thumb
 11 from products p
 12 where p.id = p_id
 13 for update
 14 ;
 15 -- Scale the images down
 16 ordsys.OrdImage.process (l_thumb, 'maxScale=75 75');
 17 ordsys.OrdImage.process (l_photo, 'maxScale=2000 2000');
 18 -- Store the resized images back into the table
 19 update products p
 20 set p.thumbnail = l_thumb
 21 , p.photo = l_photo
 22 where p.id = p_id
 23 ;
 24 end thumbnail;
 25 /

Chapter 2

[97]

This procedure takes the primary key and resizes the original photo to a more
manageable size and also creates a real thumbnail. The first thing we need to do is
declare two BLOB variables (lines 4 and 5). These BLOB variables will be filled with
the original photo from the table. Note that you need to use FOR UPDATE to lock
the record (line 13). Now you can resize both images, using the ordsys.OrdImage.
process procedure (lines 16 and 17). The second argument determines the size of the
final image. Lastly, write the resized images back to the table (lines 19 through 22).

This procedure can be called right after you upload a photo in the APEX application,
but the ordsys.OrdImage.process procedure takes quite a long time to complete.
The time it takes increases when the size of the uploaded photo increases. A
procedure such as this one is an excellent candidate to be called asynchronously,
using the technique described earlier in the section called Offload your frontend,
schedule a job. This way the application becomes more responsive to the end user.

Because the job will run in the background, it takes some time for the thumbnail to
show up in the application. As long as you can explain this to your end user, this
shouldn't be a problem.

Depending on what we need in the page, we either use the larger photo or the
smaller thumbnail.

Searching the contents of documents
Because we are creating a document management system, there are going to
be documents stored inside the database, obviously. Searching through these
documents is a must-have feature. Oracle supports this kind of functionality in
the form of Oracle Text functionality.

In order to work with the Oracle Text feature, we need a special type of index—a
context index—on our documents tables, more specifically on the column that
stores the document:

SQL> create index doc_index on documents (document)
 2 indextype is ctxsys.context
 3 parameters ('SYNC (ON COMMIT) TRANSACTIONAL')
 4 /

Index created.

Leveraging the Database

[98]

The index type that is needed for Oracle Text is CTXSYS.CONTEXT (line 2). On line 3,
we specify that we want this index to be refreshed when a commit is issued.

There are many more options that can be used with Oracle Text,
such as searching for alternative spelling, searching for words in a
certain context, or searching independent diacritic characters. More
suggestions on using Oracle Text are listed in Chapter 1, Prepare and
Build. All these features are outside the scope of this chapter.

When you create the index, you will notice that a number of tables are created to
support the index. These tables have the prefix DR$DOC, which Oracle uses to support
Oracle Text searches. This index will allow you to search through large amounts of
text such as Word, PDF, XML, HTML, or plain text documents.

For the following example, I have uploaded the document containing this chapter
into our Documents table, so we might find some text that the reviewer told me to
remove. Because the Oracle Text index is in place, we can use the functions available
to us to search for certain keywords.

SQL> col mimetype format a22
SQL> col snippet format a38 word wrapped
SQL> select doc.mimetype
 2 , ctx_doc.snippet ('doc_index'
 3 ,id
 4 ,'express'
 5) snippet
 6 from documents doc
 7 where contains(doc.document, 'express') > 0
 8 /

MIMETYPE SNIPPET
---------------------- --------------------------------------
application/msword Application Express. And that i
 s true up to a certain point. You prob
 ably know that the Oracle Application
 Express engine is

1 row selected.

In the preceding query, we have used the contains query operator to search for
express (line 7). The contains operator returns a relevant score for every selected
row. Because when we want all rows where the word "express" is in the text of
the documents column, we use the greater than zero comparison. You may notice
that we have put express in lowercase and we still get results back even though
we didn't use "express" in lowercase in this chapter (until this part of it at least).
contains can search through texts in a case-insensitive manner.

Chapter 2

[99]

When we want to see a part of the text where our search keyword is located, we can
use a function from the ctx_doc package to do this. On lines 2 through 5, we have
used this function. The first argument for this function is the name of the Oracle Text
Index that we created earlier. The second argument is the primary key column of
the documents table. The third argument is the search criteria used to extract a part
of the text. As you can see in the output (in the column SNIPPET), the word we were
looking for is in html tags (Express). If you don't like these tags, you can
overrule them in the snippet function.

SQL> select doc.mimetype
 2 , ctx_doc.snippet ('doc_index'
 3 ,id
 4 ,'express'
 5 ,''
 6 ,''
 7) snippet
 8 from documents doc
 9 where contains(doc.document, 'express') > 0
 10 /

MIMETYPE SNIPPET
---------------------- --------------------------------------
application/msword Application E
 xpress. And that is true up to
 a certain point. You probably know tha
 t the Oracle Application <span style="
 color:blue">Express engine is

When you use the preceding query in a report, make sure to change the Column
attribute of the snippet column to Standard Report Column, so that you can see
the HTML markup in the way it is supposed to be.

For this example, we hard coded the search keyword, which you wouldn't do in a
real world application, of course. There you would use bind variables to support this
functionality. If you happen to get ORA-0600 errors when using ctx_doc.snippet
along with bind variables, you may encounter a bug—number 5476507. When this
bug is solved, you may have to patch your database or upgrade to a newer version.

This was just a quick introduction to the wonderful functionality of Oracle Text, and
there is a lot more to explore. The Oracle documentation on Oracle Text is the best
place to start your investigation.

Leveraging the Database

[100]

Summary
In this chapter, we looked at some of the lesser-known features of SQL and
PL/SQL, but there are many, many more. Thorough knowledge of SQL and
PL/SQL is essential to an APEX developer.

We started by examining a method to instrument your database code. This enables
you to keep track of the code path and the arguments that are passed down.

Next different options were investigated to have efficient lookup tables for your
application. Creating a proper physical data model by using the right types of
database object where appropriate will also contribute to a successful application
and a better user experience.

Analytic and aggregate functions leverage the functionality that SQL has to offer out
of the box. Using these functions, you can create statements that are both elegant and
perform well.

When you have programs that take a long time, and you don't want to have the user
wait for the response, you can offload these programs to the background. We saw an
example on using DBMS_JOB to do just that.

With pipelined table functions, you are not depended on standard SQL functionality
alone—you can leverage all your PL/SQL skills to accommodate your needs. Using a
user-defined PL/SQL function as the source to query from is an extremely powerful
process—pipelined table functions enable you to do just that.

Using images in your application can make the application more attractive. When
you have to deal with images that are being uploaded to the database, make sure
that you keep a close eye on the size of the images.

Lastly we saw a small example that showed how you can use Oracle Text to search
through documents with more features than just the standard LIKE syntax.

The more you know, the more you can release the power of the Oracle database, and
the better your application will be.

The next chapter will explore different methods of creating printed reports.

Printing
This chapter deals with different aspects of printing in Oracle Application Express.
We will start with the two most used architectures in Application Express printing,
Apache FOP and Business Intelligence Publisher. Then, we will see how to install
and configure both Apache FOP and Business Intelligence Publisher. After
the installation we will discuss how to investigate printing problems.

The main part of this chapter deals with layout of your report and describes how to
include things such as charts and images.

Finally, we will look at some alternatives that can be used for PDF printing, plug-ins.

In this chapter, we will cover the following topics:

• Different printing architectures such as Apache FOP and Business
Intelligence Publisher

• Installation and configuration of the Apache FOP report server and Business
Intelligence Publisher

• Debugging printing problems
• Creating a simple report against the Business Intelligence Publisher
• Creating a report that can output in different formats
• Adding charts to reports
• Adding dynamic images to reports
• Description of the Print API
• Alternatives for printing reports

Printing

[102]

Printing architecture
PDF printing in Oracle Application Express requires an externally defined print or
report server. An external report server can be the Apache FOP reports server from
Apache, the reports server from Business Intelligence Publisher, or server from a
third-party such as Jasper reports. Different flavors of an external report server are
possible. When the user clicks on a print link in Application Express, the Application
Express engine generates the corresponding report data in XML format and a report
template in XSL-FO or RTF format.

All of this architectural complexity is transparent to the end users and developers.
Here, transparent means that the end user only sees the print link and the end
result, and not the architecture behind. So end users just click on the print links,
and developers just declaratively set regions to support PDF printing.

Your report server can be Oracle BI Publisher, Oracle Application Server Containers
for J2EE (OC4J) with Apache FOP, or another processing engine.

If you choose BI Publisher as your report server, you will enjoy a higher
level of functionality. Oracle Application Express provides two levels of
functionality—External (Apache FOP) and BI Publisher (Advanced). With
Apache FOP, you are limited to XSL-FO report templates only.

What is planned for the future version of
APEX Listener?
The idea is that instead of having to configure a separate print rendering engine, this
engine would be enabled automatically when using the APEX Listener. And rather
than sending XML and XSL out from the database and retrieving the PDF back into
the database, we would just send the XML and XSL to the APEX Listener, which
would process the PDF and send that straightaway to the client.

Of course, this might be considered forward looking and there is a need to point here
as well to the Safe Harbor Statement of Oracle Corporation. Hopefully this feature
will make it, but who knows.

Chapter 3

[103]

The following diagram shows the printing architecture using Business
Intelligence Publisher:

Installation and configuration of the
Apache FOP report server
Apache FOP enables you to print report regions and report queries by using either
the built-in templates (provided with a standard XSL-FO processing engine) or other
formats created by you. The output formats include PDF and XML. This setting does
not support Rich Text Format (RTF).

Application Express calls apex_fop.jsp through the UTL_HTTP RDBMS package.

Printing

[104]

The following diagram shows the printing architecture against the Apache FOP
report server:

Remark
The Apache FOP is only supported against the OC4J web server,
due to the XML parser being used. Currently, it is not supported
with the GlassFish and/or WebLogic Servers. Support for
WebLogic Server and GlassFish with the Apache FOP solution
is planned, especially when running the APEX Listener on one
of those servers. However, it is not yet decided when this will be
implemented (official statement from Oracle Support Services).

The Apache FOP installation is included in the Application Express distribution
under apex_install_directory/utilities/fop/fop.war. You need to
realize that fop.war delivered by Application Express is not the latest
version of fop.war available. The latest version can be downloaded from
http://xmlgraphics.apache.org/fop/download.html.

Chapter 3

[105]

How to configure Apache FOP
Oracle Containers for J2EE (10.1.3.2 or above) needs to be configured for using
Application Express. Oracle Containers for Java will be abbreviated to OC4J in
the rest of this chapter. OC4J is delivered in a ZIP file and can be downloaded at
Oracle Technology Network:

http://www.oracle.com/technetwork/middleware/ias/downloads/
utilsoft-090603.html

Creating a batch file or shell script is the most handy way to start OC4J. For example:

set ORACLE_HOME=d:\oc4j (Location from OC4j Installation)

set JAVA_HOME=D:\Program Files\Java\jdk1.6.0_version_of_JDK
(Location of JDK)

oc4j -start

OC4J is dependent on the Java Runtime Environment (JRE)—this is officially
supported against JRE version 1.5 and higher, but it is strongly recommended to
run against JRE version 1.6.0_33 or higher, or version 1.7. To verify which version
of JRE is installed run the following command:

java –version

The output of this command will look as follows:

java version "1.6.0_33"
Java(TM) SE Runtime Environment (build 1.6.0_33-rev-b07)
Java HotSpot(TM) Client VM (build 16.3-b05, mixed mode, sharing)

When starting OC4J for the first time, you will be prompted for the
password—oc4jadmin. The entered password is used as password for the
oc4jadmin website. The next step is the deployment of the fop.war (web archive)
file. Deployment can be performed in the Enterprise Manager from OC4J.

Steps for the deployment from the fop.war file are as follows:

1. Click on the Applications tab in the Enterprise Manager.
2. Click on the Deploy button.
3. Choose Archive is present on local host. Upload the archive to the server

where application server control is running.. Browse to the fop.war file
(in the utilities/fop directory) and click on Next.

4. Make application name equal to FOP, clear the content in Context Root, and
click on the Next button.

5. Click on the Deploy button.

Printing

[106]

After a successful deployment, you will see an application named FOP in the
OC4J Enterprise Manager website (http://hostname:port/em/applications/
deploy/fop).

The following screenshot shows the deployment of fop.war in the
Enterprise Manager:

To use the Apache FOP as your report server, you need to configure the Report
Printing parameters. A login to the administration site of application express is
required (http://hostname:port/apex(DAD)/apex_admin).

Navigate to instance settings and enter the required data.

The following screenshot shows the administration website of Application Express
and the Instance Settings option:

Chapter 3

[107]

The following data is required to be entered:

• Print Server: Select External (Apache FOP) from the dropdown list
• Print Server Protocol: Choose either HTTP or HTTPS (depends on

your configuration)
• Print Server Host Address: The hostname for the machine where you

installed fop.war
• Print Server Port: The port given at the end of the Apache FOP
• Print Server Script: /fop/apex_fop.jsp

The following screenshot shows the data that needs to be entered for the Apache
FOP configuration:

In RDBMS version 11, the next step is enabling network services. By default, the
ability to interact with network services is disabled in Oracle Database 11g releases
1 and 2. Therefore, if you are running Oracle Application Express with Oracle
Database 11g release 1 or 2, you must use the new DBMS_NETWORK_ACL_ADMIN
package to grant connect privileges to any host for APEX_version (depending on
the Application Express version).

DBMS_NETWORK_ACL_ADMIN –

BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL(
 acl => 'print_service.xml',
 description => 'PRINTER ACL',
 principal => 'APEX_040100',
 is_grant => true,
 privilege => 'connect');

Printing

[108]

DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE(
 acl => 'print_service.xml',
 principal => 'APEX_040100',
 is_grant => true,
 privilege => 'resolve');

 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL(
 acl => 'print_service.xml',
 host => 'localhost',
 lower_port => 8888,
 upper_port => 8888);

COMMIT;
END;
/

(The preceding script is using APEX version 4.1.1.)

You can read more at http://docs.oracle.com/cd/B28359_01/appdev.111/
b28419/d_networkacl_adm.htm.

Failing to grant these privileges will result in issues with PDF/report printing.
Specifically, you will get the following error message:

ORA-20001: The printing engine could not be reached because either the
URL specified is incorrect or a proxy URL needs to be specified

To test a simple report against the Apache FOP report server, perform the
following steps:

1. Create a simple report and enable report printing.
2. For the Report region under the Print tab, select Yes for Print enabled and

create a link label name.
3. Run the report and test the printing.

Chapter 3

[109]

Business Intelligence Publisher
To use Oracle Business Intelligence Publisher as your report server, you need to install
Oracle Business Intelligence Publisher version 10.1.3.2.1 or above. Business Intelligence
Publisher can be downloaded from the Oracle Technology network (http://www.
oracle.com/technetwork/middleware/bi-publisher/downloads/index.html).

Business Intelligence Publisher version 11 runs against WebLogic Server.

Installation of Business Intelligence
Publisher Version 11
BI Publisher 11.x is installed by using the Oracle Business Intelligence 11g
Installer. For the integration with Application Express, you only need to install
and configure Business Intelligence Publisher. In the Configure Components page
of the installation, you only need to check the Business Intelligence Publisher
component. The following screenshot shows the Components Configuration screen:

Printing

[110]

Only BI Publisher needs to be checked in the Configure Components screen.

Before installing Business Intelligence Publisher, you must run the Repository
Creation Utility (RCU). RCU creates the BIPLATFORM schema to support Oracle
Business Intelligence Enterprise Edition Plus (OBIEE Plus). In RCU, specify the
prefix for this schema; the default value is DEV for development, but you can change
it. This is a pre-requisite from Business Intelligence Publisher version 11. At the end
of a successful installation, the BI Publisher Server should be up and running.

The following screenshot shows the main screen from BI Publisher; this screen is
used to create your report layout:

To use BI Publisher as your report server, you need to configure the Report
Printing parameters.

Logging in to the administration site of Application Express is required
(http://hostname:port/apex(DAD)/apex_admin). Navigate to instance
settings and enter the required data.

Select Manage Instance or Instance Settings and click on the Report Printing tab.

Chapter 3

[111]

The following attributes need to be specified:

• Print Server: Select Oracle BI Publisher from the dropdown list
• Print Server Protocol: Choose either HTTP or HTTPS (depends on

your configuration)
• Print Server Host Address: The hostname for the machine where you

installed Business Intelligence Publisher
• Print Server Port: The port given at the end of the BI Publisher installation

(port from the managed server)
• Print Server Script: /xmlpserver/convert

The following screenshot shows the configuration from BI Publisher in the
administration website from Application Express:

Simple print test using BI Publisher
Printing can be tested by using the sample application from Application Express. The
name of the sample application is product portal, database application. Enable Report
Printing needs to be configured in the Printing attributes page. In the same page, give
the link a name. The following screenshot shows the Print tab for the Report region:

Printing

[112]

When running the print page, you will see Print link somewhere near the report
and clicking on that link will give you a report in the format selected in the
Printing attributes page.

How to debug or troubleshoot
printing issues
My statement is, "Keep it as simple as possible." So when you face issues with testing
the report server, start by taking Application Express out of scope.

One way to make sure that your print server is up, running, and configured properly
is to set up a static HTML form that simulates what Application Express is doing
internally, that is, posting some XML data along with an XSL-FO stylesheet to a print
server via HTTP and receiving back a PDF document as the response. If this works
properly, you can at least be sure that your print server is working.

Example
The example file, How To Debug APEX and PDF Printing Integration
Issues: BI Publisher / Apache FOP (Doc ID 454701.1), can be
downloaded from My Oracle Support:

• Download the attached ZIP file (testpdf.html).
• Open the testpdf.html file in a browser and enter one of

the following URLs for your print server installation:
http://servername.domain.com:9704/xmlpserver/
convert (BI Publisher)

http://servername.domain.com:8888/fop/
apex_fop.jsp

• Click on the Submit button.

If this is successful and the report server can be contacted, you
should see a PDF file document. If not, there is something wrong in
contacting the report server. Check the URL entered for the test to
make sure you have not entered the instance details incorrectly.

Another way to check if the report server can be reached without taking Application
Express in the picture, is to check the outcome of the following PL/SQL block. Of
course, you need to replace the hostname with your own hostname and the port with
your printer server port.

DECLARE
 req utl_http.req;
 resp utl_http.resp;
 value VARCHAR2(1024);

Chapter 3

[113]

 BEGIN
 req := utl_http.begin_request('http://hostname:printer server
 port/xmlpserver');
 utl_http.set_header(req, 'User-Agent', 'Mozilla/4.0');
 resp := utl_http.get_response(req);
 LOOP
 utl_http.read_line(resp, value, TRUE);
 dbms_output.put_line(value);
 END LOOP;
 utl_http.end_response(resp);
 EXCEPTION
 WHEN utl_http.end_of_body THEN
 utl_http.end_response(resp);
 END;

How to check if network services
are enabled
Network services need to be enabled for Oracle RDBMS version 11 and higher.
When an error occurs in the printing, the network services need to be checked.

select acl, principal, privilege, is_grant
from dba_network_acl_privileges;

The outcome is as follows:

ACL Principal Privilege
Is_Grant

/sys/acls/power_users.xml APEX_040100 Connect True

The preceding query will check the necessary privileges that are needed for the
printing feature in Application Express. These rows need to be present for enabling
printing. If the necessary privileges are not granted when you are printing, the
following error will be generated:

ORA-20001: The printing engine could not be reached because either the
URL specified is incorrect or a proxy URL needs to be specified

When there are no rows, ACL needs to be added. The code needed to fix this
problem is available in the Installation Guide from Application Express, under the
header 3.3.7 Enable Network Services in Oracle Database 11g (http://docs.oracle.
com/cd/E23903_01/doc/doc.41/e21673/pre_require.htm#i1009513).

Printing

[114]

A second check is done to ensure the remote hosts are assigned to the ACLs:

connect / as sysdba

column host format a30
column acl format a30
column principal format a20

column start_date format a20
column end_date format a20
column lport format 9999
column uport format 99999
column R format a1

set pagesize 999
set echo on

spool support_acl.txt

select *
from v$version;

show parameter smtp

select host
 , acl
 , lower_port lport
 , upper_port uport
From dba_network_acls;

select acl
 , principal
 , decode(u.type#,0,'*',1,' ') "R"
 , privilege
 , is_grant
 , to_char(start_date,'YYYY-MON-DD') start_date
 , to_char(end_date,'YYYY-MON-DD') end_date
from dba_network_acl_privileges p
 , user$ u
where u.name=p.principal;

spool off
-- end list ACL setup

Chapter 3

[115]

Creating a report with BI Publisher
There are four steps for creating your APEX application report with BI Publisher:

1. Create the report query.
2. Design the report layout.
3. Upload the layout.
4. Link the report to your application.

You can print a report region by defining a report query as a shared component.
Unlike SQL statements contained in regions, report queries are not validated to
ensure they are formatted correctly and the objects they reference exist. With report
queries, the query is used to generate the file that we create to build a template.

Creating the report query
The first step is to create the report query. Click on Shared Components and then
click on Report Queries under the Reports section to create a query:

Enter a name for the query in Report Query Name (anything is fine), then select
Output Format from the list, and click on Next as shown in the following screenshot:

Printing

[116]

Enter the query and click on the Next button. See the following screenshot:

To end the report query, click on the Finish button. See the following screenshot:

Designing the report layout
The second step is to design the report layout. Now that you have created a report
query, you can design the report output with MS Word, but before doing so you
need to download the XML data onto your local machine. BI Publisher provides you
an MS Word add-in called Template Builder, which helps you to design the reports
and preview the result easily and quickly (http://www.oracle.com/technetwork/
middleware/bi-publisher/downloads/index.html).

You can associate a report query with a report layout and download it as a formatted
document. If no report layout is selected, a generic layout is used. The generic layout
is intended to be used to test and verify a report query. When using the generic
layout option and multiple source queries are defined, only the first result set is
included in the document.

Chapter 3

[117]

Downloading XML data
Open the report query that has just been created and click on the Download button
under the Source Queries section:

You can save the generated XML data on your local machine.

Designing with the RTF template (MS Word)
This would be a regular step for BI Publisher users. The RTF template is one of the
report layout options that BI Publisher provides in addition to other options such as
the BI Publisher template, Excel template, Flex template (for Flash), PDF template,
and so on. You can use MS Word to design report layouts from simple reports to
very complex, pixel-perfect, and high fidelity reports. You can take a look at the
BI Publisher Report Designer's guide for details (http://docs.oracle.com/cd/
E14571_01/bi.1111/e13881/toc.htm).

Printing

[118]

Uploading the report layout
The third step is to upload the layout. Once you finish designing the report layout
with the RTF template, you can upload it to Oracle APEX and associate it to the
report query. Log in to Oracle APEX and go to your application. Go to Shared
Component and click on Report Layout. See the following screenshot:

Then click on the Create button. Select Named Column (RTF) and click on Next:

Type the layout name in the Layout Name field and select the RTF template. Then
click on Create Layout to finish:

Chapter 3

[119]

Linking the report to your application
The final step is to link the report to your application. Now, open the report query
that was created earlier and select the report layout that has just been created. See
the following screenshot:

Now the report layout is associated with the report query.

To make these reports available to end users, integrate them with an application. For
example, you can associate a report query with a button, list item, branch, or other
navigational components that allow you to use URLs as targets.

The next step is to add a button in the APEX application page so that the users can
click on that button to open the BI Publisher report.

1. Select Create Button from the menu.
2. Fill in the fields on the Create Button page to create a button. In this example,

I have created the P1_PRINT button and set both the label name and the
request name to be printed:

Printing

[120]

3. And that's it! Now, you are ready to generate a BI Publisher report from
your APEX application. When you run the application you should see the
Print button.

How to create a report that can deliver
output in different formats
Apache FOP is only capable of PDF printing. The other printing format options
(Word, Excel, and HTML) are available if the BI Publisher configuration is been used
or if you are using Oracle Reports in combination with Application Express. Oracle
Reports is capable of creating reports in multiple formats.

This example describes how to create a report with different output formats.

The first step is to create a simple report and to enable report printing as described
earlier in this chapter under the header Simple print test.

The second step is to create the select list item based on a static list of values. Let
your users select the kind of report output type to be used. You can do so by creating
an item with the select list type.

Display value Return value
PDF PDF
Word RTF
Excel XLS
HTML HTM
XML XML

The select list item has a list of values attached as follows:

Static2:PDF;PDF,Word;RTF,Excel;XLS,HTML;HTM,XML;XML

Choose, for example, PDF as the default format.

Chapter 3

[121]

Under the Print Attributes tab in the Printing section, the output format needs to
have the value-derived output:

The last step is to add a button with a redirect to the print. In the report printing
attributes screen, cut and paste the report printing URL. A report printing URL has
the following format:

f?p=&APP_ID.:<appid>:&SESSION.:FLOW_XMLP_OUTPUT_R<random number>

This is shown in the following screenshot:

Printing

[122]

Cut and paste the FLOW_XMLP_OUTPUT_R### section from the Print URL field.
Since you are going to invoke the print from the button, you can remove the
Printing from the Link Label field and a branch needs to be created, as shown
in the following screenshot:

How to add a chart to a report
It's actually quite easy to use the BI Publisher Template Builder plugin for Microsoft
Word and BI Publisher as the PDF rendering engine for Application Express.

The Template Builder plugin can be downloaded from http://www.oracle.com/
technetwork/middleware/bi-publisher/downloads/index.html.

Report layouts can be developed by using the BI Publisher Word Template Builder.
Using the Template Builder, you can create a chart and report definition, and save
this as an RTF file, which can be uploaded back into Application Express.

It's important to understand however, that this is not a
printer-friendly version of your web page. So if you have,
for example, a Flash chart region and a report region on
your page, you can't simply print this as a PDF.

The PDF printing feature in Application Express generates XML data of your report's
result set, using an XSL-FO report layout (or RTF template). This XML data is then
transformed into PDF (or other supported output format). The transformation is sent
back to the browser for download.

Chapter 3

[123]

Creating a chart in a report
In order to create a PDF document that contains a chart and report, you need
to create a report query and associate that report query with an RTF-based
report layout:

1. The first step is to export the report data in XML format. You can save
the generated XML data on your local machine and the BI Publisher
Template Builder software will be used to create the RTF layout. See the
following screenshot:

2. The next step is to load the XML file in BI Publisher Template Builder.
Navigate to Oracle BI Publisher | Data | Load Sample XML Data.
The following screenshot shows the successful loading of the XML data into
the Template Builder:

Printing

[124]

3. Note that nothing appears on the page yet. You need to add the columns to
your report. Insert report objects as fields, tables, or charts using the wizard.
Navigate to Oracle BIPublisher | Insert and select Field, Table, or Chart:

4. Save the layout in the RTF file format.
5. The following screenshot shows the RTF file created by using the Template

Builder from BI Publisher:

6. Deploy the RTF template to Application Express and associate it with a
report query or region. The steps to perform this are described in this chapter
in the Uploading layout section.

Chapter 3

[125]

7. The last step of the process is to create a button to print the report. The next
screenshot shows you how to do this:

8. Test the report by running the page. In this example, when I press the
PRINT_REPORT button, I'm getting a PDF document with the chart
included in it.

How to add dynamic images to a report
For static images it's pretty straightforward. Just place the static images into your
RTF layout, using MS Word and BI Publisher Desktop. For dynamic images, well
that's a little more complicated.

When talking about dynamic images, what I mean is the images that are stored in
BLOB columns in database tables. To include the image in the PDF, you need to take
care of the following:

• The image needs to be included in the generated XML representation of the
report data and the RTF report layout needs to include instructions on what
to do with the image information stored in the XML data.

• Before BLOB columns can be included in the XML export, they need to
be converted to CLOB by using base64 encoding and the report template
needs to reference the image data column by using an XSL-FO expression.
So the reports template needs to reference the image data column, using
XSL-FO expression.

Keep in mind the 32K limit on report columns.

Printing

[126]

The next few steps show how to accomplish this:

1. Create a function to convert your BLOB data to a CLOB base64–encoded
format that can be displayed in a PDF report. If you already have a
CLOB column, you need to make sure that you store the images in the
base64-encoded format.

2. Create a report query and layout that show the CLOB column.
3. Modify the report to include the image in your report. This step is not

necessary to create the PDF report, but it may be useful.
4. Add a button to the report to execute the PDF report from the page.

The following steps are necessary to include images in a report.

Create a function to convert BLOB data to CLOB base64-encoded format.

An example of a function to convert BLOB to CLOB is as follows:

CREATE OR REPLACE FUNCTION blob2clobase64 (p_blob IN BLOB)
RETURN CLOB
IS
 pos PLS_INTEGER := 1;
 buffer VARCHAR2 (32767);
 res CLOB;
 lob_len INTEGER := DBMS_LOB.getlength (p_blob);
BEGIN
 -- Create a temporary CLOB
 DBMS_LOB.createtemporary (res, TRUE);
 -- Open it for Read/Write.
 DBMS_LOB.OPEN (res, DBMS_LOB.lob_readwrite);
 LOOP
 -- Get the next 32000 bytes from the input BLOB
 -- encode them into base64
 -- and cast it to a VARCHAR2
 buffer := UTL_RAW.cast_to_varchar2
 (UTL_ENCODE.base64_encode (DBMS_LOB.SUBSTR (p_blob,
 32000, pos)));
 -- If there is still data left add it to the result
 IF LENGTH (buffer) > 0
 THEN
 DBMS_LOB.writeappend (res, LENGTH (buffer), buffer);
 END IF;
 -- Move the pointer
 pos := pos + 32000;
 -- Exit when done
 EXIT WHEN pos > lob_len;
 END LOOP;
 RETURN res;
END blob2clobase64;

Chapter 3

[127]

The UTL_RAW.CAST_TO_VARCHAR2 function converts a raw value into a value of
datatype VARCHAR2 with the same number of data bytes. The result is treated as if
it was composed of single "8-bit" bytes, not characters. Multibyte character
boundaries are ignored. The data is not modified in any way—it is only changed
to datatype VARCHAR2.

The UTL_ENCODE.BASE64_ENCODE function encodes the binary representation of the
RAW value into base 64 elements and returns it in the form of a RAW string.

The DBMS_LOB.SUBSTR function selects the requested number of characters of a
BLOB column from a given starting position.

Create a report query and layout to show the CLOB column:

select employee_id,
 first_name,
 last_name,
 blob2clobase64(photo)
from employees
where photo is not null

In the report query, invoke the blob2clobase64 function for the photo image.

In addition, because you have many rows in the table that may or may not
have photos, you need to add the WHERE clause to select only those records that
have a photo.

The Image element is the name of image_item.

For example, the image item is photo. In the template, you now need to reference the
image data. We can use an XSL-FO expression to reference the image:

<fo:instream-foreign-object content-type="image/gif">
 <xsl:value-of select="PHOTO"/>
</fo:instream-foreign-object>

Printing

[128]

Notice that the template needs to know the mime type of the image—in this case it
is image/gif. IMAGE_ELEMENT (PHOTO) contains the base64-encoded image data. The
following screenshot shows that the image (picture) has been converted:

You may also want to include the photo on the report on a page in your application.
You can add the PHOTO column to the Report region, which then needs to be
configured in Report Attributes.

Chapter 3

[129]

The key to manipulate the download link of a BLOB column is the column's format
mask. You specify a format mask for a date or number, in the same way you can
format a download link. However, the DOWNLOAD format mask requires you to
specify at least three parameters, as shown in the following line:

DOWNLOAD:EMPLOYEES:PHOTO:EMPLOYEE_ID

This is the default format that gets created by the wizard. Additional format options
can be added to make the download capability more user friendly (also see the
document at http://docs.oracle.com/cd/E23903_01/doc/doc.41/e21674/
advnc_blob.htm#BCGBCHBD).

Modify the format of the BLOB_CONTENT column as follows:

DOWNLOAD:TABLE_NAME:BLOB_CONTENT:ID::MIME_TYPE:FILENAME:
LAST_UPDATED:CHARACTER_SET

Clicking on the link BLOB Download Format Mask, displays a pop up to assist you
in entering all the parameters that are necessary for the DOWNLOAD format, as you can
see in the following screenshot:

Printing

[130]

You can invoke the PDF report from within your page by using a button. When you
create the button, select Download Printable Report Query from the Action drop-
down list. See the following screenshot:

Print API
Application Express also has APIs available for printing documents. These APIs are
apex_util.download_print_document and apex_util.get_print_document. Both
Print APIs have four different signatures, which they allow for programmatically
downloading report queries while dynamically associating stored report layouts
at runtime, downloading report queries with custom templates stored in your own
tables, and generating PDF based on your own custom XML by using your own
custom templates.

APEX_UTIL_DOWNLOAD_PRINT_DOCUMENT initiates download of a print document in
four ways. Each has slightly different parameters (you can read more about these
parameters at http://download.oracle.com/docs/cd/E23903_01/doc/doc.41/
e21676/apex_util.htm).

The first option is to use XML-based report data and an RTF- or XSL-FO-based
report layout:

APEX_UTIL.DOWNLOAD_PRINT_DOCUMENT (
p_file_name IN VARCHAR,
p_content_disposition IN VARCHAR,
p_report_data IN BLOB,
p_report_layout IN CLOB,
p_report_layout_type IN VARCHAR2 default 'xsl-fo',
p_document_format IN VARCHAR2 default 'pdf',
p_print_server IN VARCHAR2 default null);

Chapter 3

[131]

The second option is to use a predefined report query and an RTF- or XSL-FO–based
report layout:

APEX_UTIL.DOWNLOAD_PRINT_DOCUMENT (
p_file_name IN VARCHAR,
p_content_disposition IN VARCHAR,
p_application_id IN NUMBER,
p_report_query_name IN VARCHAR2,
p_report_layout IN CLOB,
p_report_layout_type IN VARCHAR2 default 'xsl-fo',
p_document_format IN VARCHAR2 default 'pdf',
p_print_server IN VARCHAR2 default null);

The third option is to use a predefined report query and a predefined report layout:

APEX_UTIL.DOWNLOAD_PRINT_DOCUMENT (
p_file_name IN VARCHAR,
p_content_disposition IN VARCHAR,
p_application_id IN NUMBER,
p_report_query_name IN VARCHAR2,
p_report_layout_name IN VARCHAR2,
p_report_layout_type IN VARCHAR2 default 'xsl-fo',
p_document_format IN VARCHAR2 default 'pdf',
p_print_server IN VARCHAR2 default null);

The fourth and last option is to use an XML-based report data (as a CLOB) and an
RTF- or XSL-FO–based report layout:

APEX_UTIL.DOWNLOAD_PRINT_DOCUMENT (
p_file_name IN VARCHAR,
p_content_disposition IN VARCHAR,
p_report_data IN CLOB,
p_report_layout IN CLOB,
p_report_query_name IN VARCHAR2,
p_report_layout_type IN VARCHAR2 default 'xsl-fo',
p_document_format IN VARCHAR2 default 'pdf',
p_print_server IN VARCHAR2 default null);

Reports can be captured and stored in database tables, using the Application Express
Print API. apex_util.get_print_document retrieves the report in BLOB format. So
the apex_util.get_print_document function always returns a document as BLOB.

Printing

[132]

The first option is to use XML-based report data and a RTF- or XSL-FO-based
report layout:

APEX_UTIL.GET_PRINT_DOCUMENT (
p_report_data IN BLOB,
p_report_layout IN CLOB,
p_report_layout_type IN VARCHAR2 default 'xsl-fo',
p_document_format IN VARCHAR2 default 'pdf',
p_print_server IN VARCHAR2 default NULL
) RETURN BLOB;

The second option is to use a predefined report query and a predefined
report layout:

APEX_UTIL.GET_PRINT_DOCUMENT (
p_application_id IN NUMBER,
p_report_layout_name IN VARCHAR2,
p_report_query_name IN VARCHAR2,
p_report_layout_name IN VARCHAR2 default null,
p_report_layout_type IN VARCHAR2 default 'xsl-fo',
p_document_format IN VARCHAR2 default 'pdf',
p_print_server IN VARCHAR2 default null
) RETURN BLOB;

The third option is to use a predefined report query and an RTF- or XSL-FO–based
report layout:

APEX_UTIL.GET_PRINT_DOCUMENT (
p_application_id IN NUMBER,
p_report_query_name IN VARCHAR2,
p_report_layout IN CLOB,
p_report_layout_type IN VARCHAR2 default 'xsl-fo',
p_document_format IN VARCHAR2 default 'pdf',
p_print_server IN VARCHAR2 default null
) RETURN BLOB;

The fourth and last option is to use an XML-based report data and an RTF- or
XSL-FO–based report layout:

APEX_UTIL.GET_PRINT_DOCUMENT (
p_report_data IN CLOB,
p_report_layout IN CLOB,
p_report_layout_type IN VARCHAR2 default 'xsl-fo',
p_document_format IN VARCHAR2 default 'pdf',
p_print_server IN VARCHAR2 default NULL
) RETURN BLOB;

Chapter 3

[133]

How to bypass the 32K limit
One issue, which will be addressed in the next version of Application Express, is the
32K limit on report columns. This means that only fairly small images are currently
supported when using the technique with report queries or report regions. If the
XML data is generated some other way, and the PDF rendering is done using the
Print API, the use of larger images would be possible as well.

The 32K limit on report columns can be bypassed by using the Print APIs—apex_
util.download_print_document and apex_util.get_print_document.
With these APIs, you can generate PDF and other documents through a simple
PL/SQL API call. These APIs take care of all the communication with BI Publisher
or Apache FOP.

The apex_util.get_print_document API can be called to generate and retrieve the
print document as a BLOB in the database for further processing, such as storing the
document in tables, and so on.

The apex_util.download_print_document API can be called in an Oracle
Application Express page process to generate and download the print document
straight to your client.

An example of this mechanism can be downloaded from http://marcsewtz.
blogspot.com/2012/02/dynamic-images-in-pdf-what-32k-limit.html.

Alternatives to use for PDF printing
Beside the use of Apache FOP or BI Publisher, PDF documents can be created in
Oracle Application Express by making use of alternative methods such as calling
Oracle Reports, using plugins, and so on.

Integration with Oracle Reports
Oracle Reports, a component of Oracle Fusion Middleware, is a high-fidelity
enterprise reporting tool. It enables businesses to provide instant access to
information to all levels within and outside of the organization in a scalable and
secure environment.

More information about Oracle Reports can be found on the Oracle Technology
Network website (http://www.oracle.com/technetwork/middleware/reports/
overview/index.html).

Printing

[134]

Oracle Reports Developer includes Oracle Reports Builder and Oracle Reports
Services. Oracle Reports Builder is used to develop the report and Oracle
Reports Services executes, distributes, and publishes your reports for
enterprise-wide reporting.

This paragraph has been added just to show you the possibility of integrating Oracle
Reports with Oracle Application Express.

The Oracle report is called as follows:

http://hostname:port/reports/rwservlet?module=example.rdf&userid=hr/
hr@tnsalias&destype=cache&desformat=pdf&p_empid=10

In Application Express, the only thing needed is to define a substitution variable to
integrate Oracle Reports with Application Express.

Substitution strings use the &variable notation. They can be used anywhere in your
APEX application such as in an HTML region or even in a template.

The navigation path for creating a substitution string is Application Builder
Tab/Edit Application properties/Substitution section.

Enter REPORTS_URL under the Substitution String field.

Enter http://hostname:port/reports/rwservlet?userid=hr/
hr@tnsalias&P_EMPID under the Substitution Value field.

The Oracle report can be called by pressing a button. A button is created with the
URL target as follows:

&REPORTS_URL.&module=example.rdf&destype=cache&desformat=
&P1_DESFORMAT.&p_empid=&P1_EMPID

Integration with Cocoon
You may prefer another XSL-FO processing engines, which are Apache Cocoon and
Apache Tomcat. Cocoon is a web framework other than APEX, of course. For full
explanation and a step-by-step approach, follow this link:

http://carlback.blogspot.com/2007/03/apex-cocoon-pdf-and-more.html

Chapter 3

[135]

Integration with JasperReports
JasperReports is a powerful alternative to Oracle Reports. The important design
patterns can be translated, using JasperReports.

Architecture
The architecture for JasperReports is as follows:

1. User clicks on link in APEX application.
2. PL/SQL API calls a Jasper report and passes parameter (by using utl_http).
3. Jasper Reports creates a JDBC connection to Oracle, executes the report, and

returns the report output (for example, PDF) directly.

More on step-by-step integration into the sample application can be found at the
following links:

• http://www.opal-consulting.de/downloads/free_
tools/JasperReportsIntegration/Opal-Consulting-
JasperReportsIntegration.pdf

• http://www.opal-consulting.de/downloads/presentations/2012-06-
28-ODTUG-KScope12/2012-06-28-ODTUG-KScope12-jasper-reports.pdf

Plugins
Plugins allow the Application Express framework to be extended with custom item
types, region types, processes, and dynamic actions. Once defined, plugin-based
components are created and maintained very much like standard Application
Express components. Plugins enable developers to create highly customized
components to enhance the functionality, appearance, and user friendliness of their
application. Third-party plugins can be found at http://www.apex-plugin.com/.

There are two alternatives available for printing PDF files.

Reports 2 PDF
This plugin is a process type plugin. It uses the source queries of all report regions
on a page—either a classic or interactive—and puts the results of these queries in a
PDF file, ready for download. No print engine, such as Apache FOP or BI Publisher,
is needed.

Printing

[136]

Embedded PDF
This is a plugin that can be used to get the output of a query as a PDF, which
is embedded in your application. Also no print-server, such as Apache FOP, BI
Publisher, or Cocoon is required.

These plugins are third-party plugins, which means that
they are officially not supported by the Oracle Company.

Summary
This chapter gave you an overview of the possibilities for printing in
Application Express.

There are different choices for implementing reports printing/PDF printing:

• Apache FOP by using OC4J
• BI Publisher
• Or alternatives such as Oracle Reports, Jasper Reports, and Plugins

We started with the two most commonly used architectures in Application Express
printing—Apache FOP and BI Publisher. Then we saw how to install and configure
both Apache FOP and BI Publisher. After the installation, we discussed how to
investigate printing problems.

We also dealt with layout of your report and discussed how to include charts
and images.

Finally, we discussed some alternatives that can be used for PDF printing, and
also plugins.

Security
The main question is: How secure is "Secure Enough"?

The answer to this question depends on what you're protecting, who you are
protecting it from, and the likelihood of someone wanting to steal what you are
protecting. You also need to understand the repercussions you would face if
someone was able to successfully steal the things you are protecting. To summarize,
you need to think about the questions: Who/what/how can data be accessed?

The definition of security is subjective. My idea of security may be different from
yours as a reader of this book. In my view, the secured data can only be seen and
edited by people who are qualified and authorized, and that data is protected from
people who are not.

Security must be designed into applications from the outset, starting with database
design, continuing through application design, development, and testing, and finally
with implementation and training. So, plan security and the architecture, and make
sure people know the security basics. Have people in your organization who are
responsible for security, patching, and so on.

This chapter describes how to provide security for Oracle Application Express.
Oracle Application Express is secure, but developers can make it insecure. There is
a difference between administrators and developers. Administrators are responsible
for the installation from Application Express, and developers are responsible for
developing a secure application. Both views and responsibilities are discussed.

Security

[138]

The first part of the chapter will discuss the responsibilities of an administrator:

• Installation from Application Express
• Installation from patches
• Security in the database
• Security in the web server
• Session time out
• Password rule(s)

The second part of the chapter will discuss the security aspects for the Oracle
Application Express developer. For application developers, security can be a
very difficult subject. The application must be tested from the perspective of a
hacker or someone who deliberately wants to do harm. Security aspects for
developers are as follows:

• Cross-site scripting
• SQL injection
• Authentication
• Authorization
• Session state protection
• Browser security

Securing Oracle Application Express
for administrators
Oracle Application Express is secure, but developers can make it insecure.

Protecting the database environment
Oracle Application Express runs in the database, so the database environment needs
to be protected.

Follow the principle of least privilege, so a user only has access to the resources
required. Lock or remove unused users. Use sensible passwords, and do not use
the same password for SYS and SYSTEM.

Chapter 4

[139]

This document provides a checklist for security in
the Oracle database
Document # 131752.1: Security Checklist at the My
Oracle Support website.

The best way to secure data in your APEX application, or any application, is
to secure your data in the database. You can do this by using Oracle's Virtual
Private Database.

Virtual Private Database
A very powerful feature of the Oracle database is Virtual Private Database (VPD).
This feature is only available with the Enterprise edition. Virtual Private Database,
also known as Row Level Security or Fine Grained Access Control, is a very
popular choice of security when the standard object privileges and database roles
are not sufficient. With VPD, you can specify which part (rows and/or columns)
are accessible to the user. The policies that you specify can be as simple or complex
as required.

VPD policies are defined against the database tables and are enforced whenever the
table is accessed, regardless of the user interface that is being used. When the data is
accessed through APEX or SQL*Plus, the same VPD policies are enforced and only
the data is accessible, which is allowed by the policy.

When you define a VPD policy on a database table, a predicate is added whenever
the table is accessed. With the VPD policy, you can define when the predicate is
applied to the database table; for example, with SELECT or UPDATE. The user will not
see the predicate being added to the issued statement.

VPD policy
The VPD policy is the key to using VPD. In the VPD policy function, you enforce the
security rules that need to be implemented. Depending on your requirements, the
VPD policy can be very simple or immensely complex.

Using VPD is a two-step process. The first step is to define a VPD policy and the
second step is to apply the policy to the relevant table.

The VPD policy function is a regular database function, which can be in a package. It
is highly recommended to place the VPD policy function in a package, as you would
place all functions in packages.

Security

[140]

The main purpose of the VPD policy is to return a predicate. The VPD policy
function needs to adhere to a certain signature. The signature is as follows:

function get_predicate (p_schema_name in varchar2
 ,p_table_name in varchar2
)
 return varchar2

The name of the VPD policy function as well as the names of the parameters can be
whatever you want. There must be two input arguments of data type VARCHAR2. The
first argument will contain the schema name, and the second argument will contain
the object name. The purpose of the arguments is not quite clear. The documentation
on VPD states the following:

Define input parameters to hold this information, but do not specify the schema and
object name themselves within the function.

The function will return the predicate as a VARCHAR2. This predicate will be
used when you apply the policy to the database table.

Be that as it may, the VPD policy function still needs the two arguments defined. In
order to show a complete example of what VPD is capable of, two database users are
created and some sample data is set up.

The ADMIN user will own a table named EMP, similar to the EMP table in the
SCOTT schema.

Chapter 4

[141]

The NOADMIN user will be given the SELECT privileges on the newly-created table:

To implement VPD, the ADMIN user will need to have execute privileges on the
DBMS_RLS package:

Now, we are ready to create the VPD policy function, which will return the predicate:

Security

[142]

In the preceding example, a predicate is returned depending on USER. When the
user is ADMIN, predicate 1=1 is returned (line 13 and line 20), which doesn't restrict
anything. When the user is not ADMIN, predicate 1=2 is returned (line 17 and line
20). Because one is never equal to two, this predicate applied to any table will
return nothing.

Note that only the predicate is returned; do not include a WHERE clause with the
returned predicate. This would lead to invalidations at runtime.

One of the other names of Virtual Private Database is Row Level
Security, hence the name of the built-in package DBMS_RLS.
The term Row Level Security does not cover the complete
functionality of Virtual Private Database. Since Oracle Database
10g, you can also provide a Column Level Security.

The second step in using VPD is to "connect" the VPD policy function to the table.
You handle this by using the DBMS_RLS built-in package . The appropriate privileges
are already granted, so the VPD policy can be added.

On lines 3 and 4, you should specify the object to which the VPD policy needs to
be applied to; in this case, on the EMP object of ADMIN. Line 5 specifies the name of
the policy; make sure it is a useful name, so you can identify the policy for future
reference. On lines 6 and 7, you should specify the location of the VPD policy
function, the schema in which it is being called, and what function is called.

Chapter 4

[143]

With statement_types on line 8, you should specify the statement for which the
policy needs to be applied. In the preceding example, the policy is applied only for
the SELECT statements. You can specify INSERT, UPDATE, DELETE, and INDEX besides
the SELECT statement, or a combination of all. By default, all statements except the
INDEX statement are applied.

The last argument in the VPD policy function is enable (line 9). This means that the
VPD policy is enabled and effective immediately.

Executing a Select statement in the table involved will show different results,
depending on the user that is logged in. In the following screenshot, the ADMIN user
is logged in. As you can see, all the data in the sample table is shown:

When the other user, noadmin, is logged in, none of the data is shown:

In both situations, the SELECT statement is identical. The VPD policy function
generated the predicate, and is applied transparently to the executed statement.

Security

[144]

VPD and Application Context
VPD can be used in combination with Application Context, a very common
combination of techniques. In this section, Application Context is explained and an
example is shown that explains how Application Context can play a role in VPD.

An Application Context is a namespace, which you can define yourself and where
you can store name-value pairs. It may sound complicated, but it is not. It will all
be explained in the following example.

To work with an Application Context, the first thing that is needed is the Application
Context itself. The Application Context is created by issuing the following command:

In order to be able to create a context, the CREATE
ANY CONTEXT privilege must be granted to the user.

In the preceding code, an Application Context is created with the namespace called
docman_ctx. Since it is not allowed to manipulate the name-value pairs directly, a
package or procedure is needed to do so. Note that the package mentioned in the
code (dm_context_pkg) has not been created yet. Of course, you can first create the
package with all of the required procedures, but this is not strictly necessary.

Now that the Application Context is created, the package needs to be created in
order to place the name-value pairs in the Application Context. Name-value pairs are
placed inside the Application Context using the DBMS_SESSION built-in package. In
this built-in package, there is a procedure appropriately called SET_CONTEXT, which
takes three mandatory parameters, NAMESPACE, ATTRIBUTE, and VALUE. There are
two more arguments that the procedure can take, but these are beyond the scope of
this chapter to cover.

Manipulating the Application Context directly using the DBMS_SESSION built-in
package is not allowed. This needs to be done by the package (or procedure) that
is mentioned when the Application Context is created. This package will act as a
wrapper around the DBMS_SESSION package.

Chapter 4

[145]

In the preceding package, there are two procedures, one called SET_DEPARTMENT
and the other called CLEAR_DEPARTMENT. In the package body, the procedures are
implemented to act as a wrapper around the DBMS_SESSION package.

SET_DEPARTMENT places its argument value in the context that was created earlier.
It does this by passing three parameters to the DBMS_SESSION package.

The first argument (namespace), on line 8 of the package body, is the name of the
Application Context. The second argument (attribute), on line 9, is the name of
the attribute, which you will use to retrieve the value. This brings us to the third
argument (value), on line 10, the actual value. Since you can only store VARCHAR2
in the Application Context, the TO_CHAR function is used on line 10.

The second procedure in the package effectively erases the value for the department.
This will be useful when VPD is implemented in the APEX application.

Security

[146]

Setting the value in the Application Context is as easy as calling the
packaged procedure:

In the preceding code, the department number is passed into the packaged
procedure, which is subsequently stored in the Application Context.

To access the stored values in the Application Context, use the
SYS_CONTEXT function:

The first argument that is passed to the SYS_CONTEXT function is the name of the
Application Context. The second argument is the name of the attribute value that
we need to retrieve. The SYS_CONTEXT function can also be used in PL/SQL.

Why would you use an Application Context in combination with VPD? You can use
the SYS_CONTEXT anywhere in the SQL statement, and it will act as a bind variable.
The following statement shows the use of the SYS_CONTEXT function in the predicate:

Chapter 4

[147]

Instead of altering all the statements used in the application, define a VPD policy
function to return the predicate. Alter the VPD policy function that was created
earlier, and look at the effect:

The function returns the predicate that uses the SYS_CONTEXT function.

Alternative quoting
It can be quite a challenge to use the correct number of single
quotes (') to construct the predicate, which needs to be
returned in the VPD policy function. When a string needs to
be enclosed in single quotes, these need to be double up. In the
preceding function, the get_predicate alternative quoting
is utilized to ease this burden. The predicate is enclosed
between alternative quoting characters. The alternative
quoting expression is as follows:
q'<quote_delimiter> the actual string
<quote_delimiter>'

Alternative quoting starts with the letter q, followed by a
single quote and a character (the sample code used a bracket,
but it can be any character that you want). After this sequence
of characters, the actual string is included, followed by the
following combination: the quote delimiter and a single quote.

Security

[148]

Implementing VPD in APEX
Now that all the hard work is done, implementing VPD in the APEX application
is easy.

From the Application home page, press the Edit Application Properties button:

Choose the Security tab:

At the bottom of this page, in the section named Database Session, there are two
sections. In the Initialization of PL/SQL code section, the value is set in the context.
In the Cleanup PL/SQL Code section, the packaged procedure is called to clear the
department from the context.

Chapter 4

[149]

This is all the change that you have to make to the application. Because the predicates
are applied at table level, and not at the statement level, all the queries being
executed against the base tables will get the VPD predicate applied automatically.

What to do when you get a runtime exception
The predicate is dynamically added to the statement, so an error will show up when
you execute the following statement:

SQL> select *

 2 from emp

 3 /

 from emp

 *

ERROR at line 2:

ORA-28113: policy predicate has error

The error encountered informs you that there is something wrong with the policy
predicate. The easiest way to determine where the mistake is made is by looking in
the trace file.

Security

[150]

To determine where the trace files are generated, you must issue the following
statement, for which you might need help from your DBA, if you do not have
access to the V$PARAMETER view:

SQL> select value

 2 from v$parameter

 3 where name = 'user_dump_dest'

 4 /

VALUE

--

/home/oracle/app/oracle/diag/rdbms/orcl/orcl/trace

In the preceding location, you will find all the trace files that are generated from
the database; tracking down the correct file can be quite a challenge. When you
search the folder for the exception number, ORA-28113, the number of files can
be greatly reduced.

When you open up the correct trace file, you can see the culprit. The statement that
you issued as well as the added predicate done by the VPD Policy function results in
two WHERE clauses for the SQL statement:

Error information for ORA-28113:

Logon user : ADMIN

Table/View : ADMIN.EMP

Policy name : ALL_OR_NOTHING

Policy function: ADMIN.GET_PREDICATE

RLS view :

SELECT "EMPNO","ENAME","JOB","MGR","HIREDATE","SAL","COMM","DEPTNO" FROM
"ADMIN"."EMP" "EMP" WHERE (where 1=1)

ORA-00936: missing expression

The trace file indicates the error that was encountered, the user, the table, the name
of the VPD policy, and the VPD policy function that was used. Under the section
labeled RLS view, you can see the issued statement.

Examining this statement will point you directly to the—now obvious—mistake.
As you can see, there are two WHERE keywords in the statement

Chapter 4

[151]

Securing the web listener
Oracle Application Express utilizes a web browser on the user's computer,
communicating through a web server to the Oracle database.

There are three distinct architectures that can be deployed for Oracle
Application Express:

1. Using Oracle HTTP application server with MOD/PLSQL.
2. Using XDB HTTP protocol server with the embedded PL/SQL

gateway (EPG).
3. Using the Oracle Application Express Listener against:

 ° Oracle WebLogic
 ° GlassFish
 ° OC4J

There is one golden rule: Give away as little as possible about your environment.
Don't publicize names/versions of your running software.

HTTP server
The following screenshot shows the HTTP server request processing:

When the HTTP server is installed on a different machine, it will be more secure
because the database and HTTP server are separated from each other.

The HTTP server gives full flexibility with rewrite rules, access rules, and so on.

Security

[152]

Rewrite
Rewrite relies on the mod_rewrite module from APACHE to rewrite an incoming
URL and modify the URL dynamically. You enable mod_rewrite by adding
RewriteEngine in the httpd.conf configuration file.

For example:

#LoadModule rewrite_module modules/mod_rewrite.so
RewriteEngine on
RewriteRule ^/application$ http://hostname:port/pls/apex/f?p=102:

This rewrite rule causes the application in the URL to be rewritten to
hostname:port/pls/apex/f?p=102.

So, application number 102 will show that http://hostname:port/application is
rewritten to hostname:port/pls/apex/f?p=102.

You need to restart the Web Server before the rewrite rule is taken into account.
The syntax is as follows:

RewriteRule url-pattern new_url [flag optional]

Additional information about rewrite rules can be found in the Apache
documentation at http://httpd.apache.org/docs/2.0/misc/rewriteguide.
html.

Security considerations in the HTTP server
You would like to give as little information as possible about yourself. So, you
also need to think about the security aspects when configuring the web server,
HTTP server.

Some important security considerations related to the HTTP server are as follows:

ServerSignatureOff (Removes server info from error pages)
ServerTokensProd (Removes server version from HTTP header)

Obfuscate the password in the dads.conf configuration file. The parameter
PlsqlDatabasePassword specifies the password for logging in to the database.
You can use the dadTool.pl utility to obfuscate passwords in the dads.conf file.
You can find the dadTool.pl utility in the following directory:

ORACLE_HTTPSERVER_HOME/ohs/modplsql/conf

Chapter 4

[153]

For example:

PATH=$ORACLE_HOME/Apache/modplsql/conf:$PATH

export PATH

PATH=$ORACLE_HOME/perl/bin:$PATH

export PATH

LD_LIBRARY_PATH=$ORACLE_HOME/lib:$ORACLE_HOME/lib32: -$LD_LIBRARY_PATH

export LD_LIBRARY_PATH

PERL5LIB = $ORACLE_HOME/perl/lib/5.6.1

cd $ORACLE_HOME/Apache/modplsql/conf

perl dadTool.pl -o

Embedded PL/SQL gateway
The following screenshot shows the Embedded PL/SQL Gateway request processing:

The embedded PL/SQL gateway is a method that exists in RDBMS version 10.2 and
higher, but is officially supported in APEX against version 11 of RDBMS. Embedded
means that the web server is running inside the Oracle database. From a security
point of view, this is not a recommended configuration when running Internet
applications. In the HTTP server setup, there are several log files automatically
created, such as the error_log and access_log files. In the case of an Embedded
PL/SQL gateway, you need to activate the log option with the following:

SQL> execute dbms_epg.set_global_attribute('log-level', 3)

Security

[154]

So, you need to make use of an API to turn on logging, and it's therefore much
harder to get the necessary log information. wwv_flow_epg_include_local.sql,
included with Oracle Application Express, contains a request-validation function
named wwv_flow_epg_include_modules.authorize. This function specifies access
restrictions appropriate for the standard DAD configured for Oracle Application
Express. During installation, scripts also name this function in the request-validation
function directive in the XDB configuration file.

At the installation time, the installer also creates a PL/SQL function in the Oracle
Application Express product schema (FLOWS_XXXXXX or / APEX_XXXXXX). You
can change and recompile this function in order to restrict URL access procedures
within the DAD. The source code for this function is not wrapped and can be
found in the database administrator's product core directory in the file named
wwv_flow_epg_include_local.sql.

Additional information can be found at the following URLs:

• http://docs.oracle.com/cd/B25329_01/doc/appdev.102/b25309/
adm_wrkspc.htm#BEJDIJAH

• http://docs.oracle.com/cd/E14373_01/appdev.32/e11838/sec.htm

Oracle Application Express Listener
The following screenshot shows the Oracle Application Express Listener
request processing:

The Oracle Application Express Listener is configurable from a web page, and
includes a rich set of configuration options including security options, database
connectivity options, and caching options. The Oracle Application Express listener is
the recommended architecture from Oracle because of integrated security in front of
the database. Apart from this, the Oracle Application Express listener has a graphical
user interface, which makes configuration easy.

Chapter 4

[155]

The listener provides greatest security for Oracle Application Express
implementations:

• Allowed procedures: Checks if the procedure name is in the inclusion list
• Blocked procedures: Checks if the procedure is NOT in the exclusion list
• Database validation function: Checks if the procedure name is valid
• Caching: Specifies procedure names to allow the caching of files

The following screenshot shows the security implementation in the Oracle
Application Express listener:

Enabling SSL for the web server
The Secure Socket Layer (SSL) encrypts all the traffic between the web browser and
the web server. It prevents data from being sent over an unprotected communication
channel. The HTTP server responds by sending a certificate back to the browser.
The browser checks if this certificate has been signed by a trusted authority listed
in the browser.

To configure Oracle Application Express for SSL, the web server used must be
configured in the SSL mode. This will be one of the following:

• The HTTP Server
• The Embedded PLSQL Gateway (EPG), if using an 11g DB
• The frontend web server (OC4J, Web Logic or Glassfish) for the 11 Oracle

database (Oracle Application Express version 3.2.1 and above)

Enabling SSL for the web server enables only the SSL to the web server and not to the
RDBMS; this needs to be configured separately. Enabling SSL for the RDBMS can be
performed within the advanced security option of the database. Advanced security is
an option available in the Enterprise edition of the database.

Security

[156]

The following screenshot shows SSL at instance level (navigation path: APEX_ADMIN/
Manage Instance/Security):

When you enable SSL at the administration website of APEX, you need to ensure
that the HTTPS protocol is enabled on your web server. Additional information
about security considerations in web servers can be found at http://docs.oracle.
com/cd/E14571_01/security.htm.

Security considerations when installing
Oracle Application Express
Even before installing Application Express, you need to think about security
measures to be taken during each step of the installation process.

Runtime installation
An Oracle Application Express runtime environment enables you to run production
applications, but it does not provide a Web interface for administration or direct
development of these applications. So, this makes it more an indurate environment.
The runtime environment is a more secure environment, because only the necessary
objects and privileges are installed and configured.

You administer the Oracle Application Express runtime environment using
SQL*Plus or SQL Developer and the APEX_INSTANCE_ADMIN API. The ADMIN account
is not used in a runtime environment, but is created anyway. It will be used if the
runtime environment is converted to a full development environment.

To determine if only the runtime environment is installed, connect as SYS and run
the following query (Oracle Application Express version 4.x):

Select count(*) from APPLICATION_EXPRESS_040200.WWV_FLOWS where id =
4000;

The query checks if the runtime is installed. The ID is always equal to 4000, so do not
enter your application ID. If the count is 0, it is a runtime; if the count is 1, it is a full
development environment.

Chapter 4

[157]

There are scripts provided to completely remove/re-install the application builder.
The scripts to install or remove the application builder are apxdevrm.sql and
apxdvins.sql. The scripts are installed in the APEX main directory.

Access Control Lists (ACLs)
Network services needs to be enabled when attempting actions related to
the following:

• Sending outbound mail in Oracle Application Express.
• Using Web services in Oracle Application Express.
• PDF/report printing.
• Searching for content in online Help (that is, using the find link). The

following screenshot shows the find link:

In Oracle RDBMS 11gR1, a new feature called fine grained access control to external
networks was introduced. This feature gives the administrator a control over which
database users are permitted to access external network services, and on which ports
access is permitted. If an application relied upon the PL/SQL packages UTL_TCP,
UTL_SMTP, UTL_MAIL, UTL_HTTP, or UTL_INADDR, they would now need to be given
permission to access the external network service via a Network ACL.

If you are running Oracle Application Express against Oracle RDBMS 11g and
later releases, you need to use the new DBMS_NETWORK_ACL_ADMIN package to
grant connect privileges to any host for the FLOWS_XXXXXX/APEX_XXXXXX (version)
database user and any other user who may need to interact with network services,
such as UTL_HTTP, UTL_SMTP, UTL_TCP.

The instructions for accomplishing this are included in the Oracle Application
Express Installation Guide, which is available at the Oracle Technology network
under the documentation library (Oracle Database Oracle Application Express
Installation Guide). Information about ACL can be found in the section entitled Enable
Network Services in Oracle Database 11g. This document can be found at http://www.
oracle.com/technetwork/developer-tools/apex/documentation/index.html

Security

[158]

If you are running a different version of Oracle Application Express, then you will
need to change the reference to the appropriate Oracle Application Express schema.
This script should normally be run as SYSTEM.

If you are encountering the error, ORA-29273: HTTP request
failed ORA-06512: at "SYS.UTL_HTTP", line 1577
ORA-24247: network access denied by access
control list (ACL), when running a custom application,
then the script must be run for the Database account associated
with the workspace containing the application. In other words, it
needs to be run for the application's parsing schema.

There have been two changes in this feature in Database 11gR2, which may have an
impact on Oracle Application Express users:

• In Database 11gR2 11.2.0.1, the precedence order in the evaluation of the
network ACL entries has been changed to most specific to least specific.
More information on this topic is discussed in the sections to follow.

• In Database 11gR2 11.2.0.2, the network ACL now applies to any use
of DBMS_LDAP.

For additional information, refer to the following URL:

http://joelkallman.blogspot.co.uk/2010/10/application-express-
network-acls-and.html

Enabling builders in Oracle Application
Express
Instance administrators can control which components are available within an Oracle
Application Express instance. Configurable components include Web sheets, SQL
workshop, application builder, and team development.

Navigation path: Home/Administration/Manage
Service/Workspace preferences

Chapter 4

[159]

The following screenshot shows the configurable components:

Session timeout
An essential way to indurate your application is to configure a session timeout.

Session timeout is the number of minutes after which a running session times out.
It allows developers/administrators to kill a user's session, if the user has been idle
for a certain amount of time, and avoids unauthorized people from accessing the
application. It can be defined at instance level and application level by setting the
maximum session length and idle time for APEX developer logins.

Maximum session length specifies the number of seconds a session exists and is
used by the application. Maximum session idle time specifies the maximum time
between one page request and the next one. An example of session timeout can be
found at the following URL:

http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/11g/r2/
prod/appdev/apex/apexsec/apexsec09.htm#t5

Instance level
In Oracle Application Express Builder, you can find the session timeout settings
under the Security tab page at instance level:

1. Connect with the INTERNAL workspace or browse to http://<host
name>:8080/apex/apex_admin.

2. Navigate to Home | Manage Instance | Instance Settings | Security section
| Session Timeout for Oracle Application Express.

3. Change the Maximum Session Length in Seconds and Maximum Session
Idle Time in Seconds properties according to your needs.

Security

[160]

The following screenshot shows the security settings at instance level:

The following screenshot shows the session timeout at instance level:

Application level
Session timeout settings are not just available for the Oracle Application Express
Development environment; you can also use them in your applications to make
your application even more secure!

1. Navigate to Shared Components | Security | Security attributes section |
Session Timeout.

2. The new section has several properties to define the session timeout behavior
of your application

The following screenshot shows the breadcrumb to reach the security attributes
section in Oracle Application Express:

Chapter 4

[161]

The following screenshot shows the Security Attributes section:

Time out\settings can also be set programmatically during runtime. This can be
performed with the APEX_Util.set_session_lifetime_seconds and APEX_Util.
set_session_max_idle_seconds API procedures.

Password complexity rules
The Oracle Application Express administrator can create password complexity rules
or a policy, for the passwords from the available accounts in an instance. These rules
apply to all the accounts in the installation, across all the workspaces. You can set
multiple complexity rules and re-use rules across an instance.

The following are examples of password complexity policies of passwords:

• It should contain at least one uppercase character
• It should contain at least one numeric digit
• It must be at least six characters long

You can set all the available parameter values within the APEX_INSTANCE_ADMIN
package. You should be able to set the password preferences, such as PASSWORD_
NOT_LIKE_USERNAME, PASSWORD_NEW_DIFFERS_BY, and PASSWORD_ONE_ALPHA, using
the APEX_INSTANCE_ADMIN API.

Additional documentation about the APEX_INSTANCE_ADMIN package can be found
at: http://docs.oracle.com/cd/E23903_01/doc/doc.41/e21676/Oracle
Application Express_instance.htm#CHDFGJEI.

Security

[162]

Do not allow debug for a production site
For a production application, it is a good idea to disable
debugging. Give away as little information about yourself
as possible. The navigation path for turning off debugging
the application is Application | Application definition |
properties.
The following screenshot shows how to turn debugging
on and off:

Patching strategy
Patching your software is very important from a security point of view. Patching
does not only mean software patching, but it also means that operating system
patches are important.

Oracle Corporation delivers a security patch (CPU patch) every quarter for all its
software components. It is important to install the quarterly delivered patches. Via
My Oracle Support or the Oracle technology network, you can subscribe for the CPU
patches. In this way, you indurate different components in your system.

It is also important to install the normal patch sets when they are released. You can
download patches and patch sets at the My Oracle Support website.

Security considerations for the developer
From the first day of a project, you should be thinking about security. Each piece
of code has consequences for security. So, each piece of code should be reviewed
carefully for security vulnerabilities. In practice, we very often consider security an
"after thought". Only after making security mistakes do we start to think about it.

Chapter 4

[163]

Browser attacks
The different browser attack methods are discussed in this section.

Cross-site scripting (XSS)
Cross-site scripting (also referred to as XSS) is a security breach that takes
advantage of dynamically generated Web pages.

Cross-site scripting is "injection" of Java script. This may be in the database, URL, or
an upload from files. XSS is often not that dangerous on its own, but when combined
with bugs in a browser, a virus, or a worm, it can be serious. In most cases, the
application express developer of the application is unaware of the issue, and it goes
undetected for a long time.

An attacker injects JavaScript in an application in order to attack other users.
When an XSS attack occurs, it means that an unwanted script is performed by the
browser. Examples of attacks are data being stolen, hijacking of session tokens,
and performance of unauthorized actions. The script can be rendered in different
parts of the application, such as HTML regions, during the page rendering process
of Application Express. To prevent the introduction of malicious code into the
session state, the Oracle Application Express engine escapes characters in certain
cases. When components in an Oracle Application Express page use the sys.htp
package to emit the values of page items or application items to the browser, special
precautions are necessary to protect against cross-site scripting attacks.

For example: http://hostname:port/pls/Apex/f?p=25186:1:146100189758770
1::::P1_HIDDEN:<script>alert(document.cookie);</script>.

There is a computation (before header) at the item named P1_HIDDEN. The
computation has the following content: P1_HIDDEN:<script>alert
(document.cookie);</script>.

The output from this URL is cookie information sent to the browser. The following
screenshot shows the cookie information:

An alert displaying the cookie information may not be a security problem. This
technique illustrates that a malicious user can get the application to send information
to the browser, contrary to the developer's intention. As a result, the user can
potentially mount harmful security attacks using similar methods.

Security

[164]

To prevent XSS vulnerability, change the code used in your Oracle Application
Express region to escape the text sent to the browser.

An example of this code is: sys.htp.p(sys.htf.escape_sc(:P1_SOMETHING));.

The following screenshot shows the PL/SQL code to prevent XSS. The code is
prefixed with sys.

Why prefix the code with sys? If the PL/SQL code is not prefixed with sys, hackers
get the opportunity to make a local package to define the same name. When making
use of the htp or htf package, you need to prefix with sys. When the text is escaped,
the information in the URL is displayed in the browser window. However, there
can be a case that the value in the session state is not escaped. As a result, malicious
information can still be manipulated in the session state (WWV_FLOW_DATA).

When the session state is referenced, the value posted to the page will not have
special characters (<, >, &, and ") escaped. If the referenced item is one of the
following safe item display types, the value will be escaped.

The following item display types can be used safely:

• Display as Text (does not save state)
• Display as Text (escape special characters, does not save state)
• Display as Text (based on LOV, does not save state)
• Display as Text (based on PL/SQL, does not save state)
• Text Field (Disabled, does not save state): This field is a read-only item;

the end user cannot type into the field and the value is not saved into a
session state.

An example of a "safe" item type is an item type with the following property:
Display as text. In this way, the text is escaped in the browser and in the
session state.

Chapter 4

[165]

The following screenshot shows a safe item type. The text is escaped in the browser
and in the session state.

Protecting HTML regions and other static areas
Session states can be referenced by the &ITEM notation.

Protecting dynamic output
Items fetched and rendered should explicitly escape special characters.

Protecting reports regions
In Application Express 4.1 and higher, report attributes have the default value
of Display as Text (escape special characters, does not save state). Any extra
embedded HTML code will be ignored during page rendering.

The following screenshot shows an item of the type Display as Text
(escape special characters):

Protecting form items
When form items, including hidden items, obtain their values during the
generation of the form page to be sent to the browser, the resulting text is
escaped before rendering.

The rules for cross-site scripting that must be taken into account are as follows:

• Escape Special Characters (<> &) and / or escape output.
• Use of sys.htf.escape_sc.

Security

[166]

• Use this "fully qualified". Fully qualified means that you need to prefix this
package with sys. This avoids the opportunity for hackers to make a local
package with the same name.

SQL injection
The following screenshot is taken from http://xkcd.com/327:

SQL injection is a technique for maliciously exploiting applications that use client-
supplied data in SQL statements. SQL injection can be used to "inject" SQL code. This
SQL code can be used to create and delete objects or to access data at unauthorized
locations. Attackers trick the SQL engine into executing unintended commands.
When using dynamic SQL (DBMS_SQL), you need to be aware of SQL injection. Web
applications are at a higher risk, because an attack can occur without database
connection or application authentication.

Some standard rules must be observed to prevent SQL Injection:

• Use of the bind variable syntax . The use of bind variables is important in
the use of static and dynamic SQL. Its usage decreases the change for SQL
injection and improves performance.

• Make use of the SYS.DBMS_ASSERT Oracle package: This package includes
functions to check and validate user input.

• Check of parentheses and commentary (- / **): When literals are used,
enclose them in double quotes. (A document providing an example can be
found at the My Oracle Support website: Doc ID # 101458.1: How to change
user password.)

• Dismiss database privileges that are not necessary: Give away as little as
possible from yourself. This does not eliminate SQL injection, but helps to
restrict the impact of a possible attack.

Chapter 4

[167]

The following screenshot shows the flow chart that shows how to start
assessing vulnerability:

Insecure use of variables
To start, I would like to mention that this example can be found at the
following location:

http://www.oracle.com/technetwork/issue-archive/2009/09-jul/
o49browser-091379.html

In Application Builder, click on Create Page, select Blank Page as the page type,
and click twice on Next.

1. Enter SQL Injection for Name , click twice on Next, and click on Finish.
2. Click on Edit Page.
3. In the Regions area, click on the Create icon, select HTML, click on Next,

select HTML again, and click on Next.

Security

[168]

4. For Title enter Locate Employee Number, click on the Next button, and
create a new Region.

5. Create a new item, select Text as the value for Item Type, enter Employee
Number for Item Name, select Locate Employee Number for Region, and
create the item.

6. Create a new button, select Locate Employee Number, and click on the Next
button. Select Create a button in a region position, and click on the Next
button. Enter Locate for Button Name, and create the button.

7. Create a region and select PL/SQL Dynamic Content, click on Next, enter
Employee Data for Title, and click on Next.

8. Enter the following for PL/SQL source :
FOR c1 IN (SELECT ename FROM emp
WHERE empno = &P<1>_EMPNO.) LOOP
 htp.p('
Employee Name:'||c1.ename);
END LOOP;

9. Click on Next, select Value of Item in Expression 1 Is NOT NULL for
Condition Type, enter P<1>_EMPNO for Expression 1, and click on
Create Region.

10. Run the application. Enter 7521 for Employee number, and click on Locate.
The employee name, Ward, is displayed.

11. Now, enter 0 or 1=1 for Employee number, and click on Locate. Because of
the SQL injection, all the employee names are listed.

The following screenshot shows all the employee records after the bind variable
syntax is omitted:

Chapter 4

[169]

Correct use of Bind variables
This example shows the appropriate way of using bind variable syntax and to avoid
possible SQL Injection:

1. Navigate to Application Builder for page <1>, and in the Regions area, click
on Employee Details.

2. For Region Source, change WHERE empno = &<1>_EMPNO to WHERE
empno = :P<1>_EMPNO.

3. Make sure the Do not validate PL/SQL code (parse PL/SQL code at runtime
only) box is checked. Click on Apply Changes.

4. Run the SQL Injection page.
5. Enter 7521 for Empno, and click on Search. The employee name, Ward,

is displayed.
6. Enter 0 or 1=1 for Empno, and click on Search. This time you should see an

error message, because the PL/SQL uses a bind variable.

SYS.DBMS_ASSERT
Sometimes, you cannot prevent SQL injection by using bind variables (select *
from P1_TABLE is not valid in SQL). You have to rely on filtering and/or validation.
The SYS.DBMS_ASSERT package contains a number of functions that can be used to
filter and sanitize input strings, particularly the ones that are meant to be used as
Oracle identifiers. In Oracle Application Express, a validation is created from the
type: function returning a Boolean value.

This example of the SYS.DBMS_ASSERT function checks the name of the table, an item
level validation from the function returning a Boolean type:

begin
if dbms_assert.simple_sql_name(:P<N>_TABLE) = :P<N>_TABLE then
 Return true;
end if;
exception when others then
 Return false;
end;

SYS.DBMS_ASSERT contains many functions against SQL injection. Additional
information about SYS.DBMS_ASSERT can be found at the following URL:

http://www.oracle-base.com/articles/10g/dbms_assert_10gR2.php

Security

[170]

Additional information about SQL injection can be found at the Oracle Technology
Network (OTN):

http://www.oracle.com/technetwork/database/features/plsql/overview/
how-to-write-injection-proof-plsql-1-129572.pdf

Additional examples of SQL Injection can be found at the following URL:

http://st-curriculum.oracle.com/tutorial/SQLInjection/index.htm

Security attributes
The Edit Security Attributes page is divided into the following sections:

• Authentication
• Authorization
• Database Schema
• Session State Protection
• Browser Security
• Database Session

The following screenshot shows the security attributes:

Authentication
After creating an application, you want to ensure that only authorized users can
access the application. Authentication is confirming user credentials before allowing
access to the application. This is done through a login page. Only if the login succeeds
can the user view any component of the application. When your application uses an
authentication scheme, Oracle Application Express prompts each user for a username
and password when they try to log in. The credentials are evaluated, and the user
is accordingly allowed or denied access to the application. After user is identified,
the Oracle Application Express engine keeps track of the user by setting the value of
APP_USER. The APP_USER is a built-in variable representing the current user running
the application. The Oracle Application Express engine uses APP_USER to track each
user's session state. An authentication schema is executed only once per session.

Chapter 4

[171]

If you choose not to authenticate your application, Oracle Application Express does
not check user credentials. All the pages of your application are accessible to all users.

The following screenshot shows the flow of the authentication mechanism:

Oracle Application Express provides out-of-the-box, pre-configured schemes
and customized authentication. The "best" choice for a production system is an
Lightweight Directory Access Protocol (LDAP) solution. Examples are Microsoft
Active Directory, Single Sign On (Oracle Internet Directory), Open LDAP, and
Oracle Access Manager. The authentication delegation is outside of Oracle
Application Express. In addition, there is also a choice that can be made for custom
authentication. This method is the most flexible solution. This methodology allows
users to be authenticated against tables, web services, and so on.

To create security mechanisms for an application, navigate to the shared components
page and select the appropriate link in the Security list.

The following screenshot shows the Shared Components section with the Security
list components:

Security

[172]

Available 'out of the box' authentication schemes
The following screenshot shows the available pre-configured schemas in Oracle
Application Express:

Oracle Application Express accounts
This type of authentication validates against Oracle Application Express user
credentials stored in an internal repository. These user accounts are created and
managed by an Oracle Application Express Workspace administrator.

Custom
It is sometimes necessary to write custom authentication schemes to meet specific
requirements. Credentials verification is performed through custom PL/SQL
code. By creating your own custom authentication schema, you are in full control
over how and where your user repository is stored. An example of when custom
authentication is needed, is when you make use of table driven authentication. So
authentication occurs against your own set of tables or repository..

Database accounts
Authentication against database accounts will authenticate an Oracle Application
Express application user with database username/password (for example scott/
tiger) credentials. Granted database privileges are ignored; it only validates the
correct combination of username and password of the database user.

HTTP header variable
HTTP header variable authentication is authentication against the Oracle Access
Manager authentication schema. Oracle Access Manager 11g is supported with
APEX 4.1 and above. HTTP header variable will become available in Oracle
Application Express version 4.2 and higher.

Chapter 4

[173]

Additional details about Oracle Application Express and Oracle Access Manager can
be found at the following URL:

http://www.oracle.com/technetwork/developer-tools/apex/learnmore/
apex-oam-integration-1375333.pdf

LDAP directory
The username and password are entered in a login page by using an LDAP. LDAP is
an Internet protocol used to look up directory information. To use this scheme, you
must have access to an LDAP directory. Additional information can be found here:

http://www.oracle.com/technetwork/developer-tools/apex/how-to-ldap-
authenticate-099256.html

Note
The apex_ldap.authenticate function in 4.1.1 and older
versions calls the following piece of code:

dbms_ldap.simple_bind_s (g_session, 'cn='
||p_username||case when p_search_base is not
null then ','||p_search_base end,p_password)

Tests with ldapsearch on the command line against the LDAP server shows that
searches should be against the uid attribute:

DECLARE
 vSession DBMS_LDAP.session;
 vResult PLS_INTEGER;
BEGIN
 DBMS_LDAP.use_exception := TRUE;
 vSession := DBMS_LDAP.init
 (hostname => 'ldap_server', portnum => 389);
 vResult := DBMS_LDAP.simple_bind_s
 (ld => vSession
 , dn => 'uid=xx,cn=Users,dc=xx,dc=org'
 , passwd => 'password1');
 DBMS_Output.put_line('User authenticated!');
 vResult := DBMS_LDAP.unbind_s(vSession);
END;

LDAP auth in 4.2 has a new attribute, Username Escaping, that escapes special
characters in the username, to prevent LDAP injection.

Security

[174]

No authentication
There can be a requirement that NO authentication is necessary for the Oracle
Application Express application. This is named a public application; no login
page is shown, and all the pages of an application are accessible to all users.

Open door credentials
A built-in login page is displayed and you are prompted for a username. You can
enter any string, which then serves as the user identifier for the session.

Single sign on
In the Single Sign On (SSO) scheme, you must register the Oracle Application
Express site as a partner application with the Oracle Application Server - SSO server.
This method will be replaced in future releases with Oracle Access manager, because
SSO will be phased out in near future.

Oracle Cloud identity management
In Oracle Cloud identity management authentication you need to authenticate
against the Oracle Cloud identity management. This option will become available
in Oracle Application Express version 4.2 and higher.

Authorization
An authorization scheme specifies which data can be seen or not seen by users or
groups of users. Authorization may take place several times during the use of the
application. It determines the power of seeing or not seeing a particular data set, and
restricts access to specific pages, components (for example forms, reports, or items),
or to a particular column in a report. Authorization is a process of determining
whether an authenticated or identified person is permitted to access a resource or
do an operation. Authorizations are implemented by using authorization schemes.
If the component-level authorization succeeds, the user can view the component. If
the application-level or page-level authorization fails, Oracle Application Express
displays a predefined message. There are various types, such as Exists, SQL Query,
and PL/SQL functions.

An authorization scheme can be applied to any of the following:

• Application
• Page
• Component on a page (form or chart)
• Item, such as a button or a text field
• Column in a report

Chapter 4

[175]

There are three ways to create and implement an authorization scheme:

• In the shared components from the application:
1. Create an authorization scheme from scratch.
2. Copy an authorization scheme from an existing scheme.

• To create an access control administration page. This automates the step of
creating the authorization schemes:

1. Create an access control page.
2. Set the application mode.
3. Add users to the access control list.

• Apply the authorization scheme to application components.

Creating an authentication schema from scratch
The following screenshot shows the shared components from the application—the
creation of an authorization schema:

The following screenshot shows the creation of the authorization schema
from scratch:

Security

[176]

The following screenshot shows the last step of the creation of the
authorization schema:

Creating an access control administration page
The following screenshot shows the creation of the access control
administration page:

Chapter 4

[177]

The following screenshot shows the wizard for the access control administration page:

The following screenshot shows the second page in the wizard—the creation of
tab pages:

The following screenshot show the last step of the wizard—a summary is given:

Security

[178]

The following screenshot shows the configuration of the access control
administration page:

Applying authorization schemas
The following screenshot shows the option to edit application properties for
applying the authorization schema:

The following screenshot shows the edit application property/security part:

Chapter 4

[179]

The following screenshot shows the last step of applying the authorization schema to
the application:

Database schema
All SQL and PL/SQL commands issued by this application will be performed with
the rights and privileges of the database schema defined. The domain of the available
schemas is defined per workspace.

URL tampering
For URL tampering, no extra programming code is necessary, there are no special
circumstances, and anyone can learn how to do it. URL tampering can adversely
affect the program logic, session state contents, and information privacy. A lot of
developers are unaware of URL tampering, and the results can be disastrous.

Session state protection against URL tampering
You need to always be protected from people who deliberately want to harm. A
classic example in an Oracle Application Express application is a form that is linked
to a report. A record is selected from the report, and is presented in a corresponding
form. So, you need to protect passing values from one page to another through a
URL. If session state protection is not on, one is able to automate the ID in the URL
change (URL tampering), and data from another record will be displayed. This will
give the information from another record, without passing through the application.

Security

[180]

Therefore, session state protection should always be on.
Session protection enabled is performed in two steps. In
the later sections of this chapter, you will learn how to
turn on session state protection.

The following screenshot shows a URL without session state protection turned on:

A URL consists of the following components:

F?P= APP PAGE: SESSION: REQUEST: DEBUG: CLEAR CACHE: AMES ITEM:
ITEM VALUES

The EmpID attribute at the URL can be changed, and when a correct value for EmpID
is entered, the information about the other employee is shown.

The following screenshot shows a URL with session state protection turned on:

The EmpID value at the URL cannot be changed. Any attempt to do so will end in an
error message.

Session State Protection is accomplished in two steps. In the first step, the feature is
turned on, as follows:

The navigation path is: Edit application properties | Security | Session
State Protection.

Chapter 4

[181]

In the second follow-up step, the page and item security attributes are defined:

Then starts the configuration of session state protection by making use of the wizard:

The following screenshot shows the summary page of the configuration of the
session state protection:

Security

[182]

To summarize, you can configure security attributes in the following two ways:

• Use a wizard and select a value for specific attribute categories. Those
selections are then applied to all pages and items within the application.

• Configure values for individual pages, items, and/or application items.

You can configure session state protection by making use of the wizard. The
selections applied in the wizard will be active for all pages within the application.

The navigation path to start the wizard is as follows: Navigate to Session
State Protection page, select Set Protection, and select a value for the Select
Configure option.

When session state is enabled, the page uses the page protection attributes and a
checksum added in the URL. Session state protection protects against unauthorized
access and URL tampering. In Application Express the MD5 checksum is used.

In the following screenshot, you can see the checksum at the end of the URL:

Heads up for Oracle Application Express version 4.x
Certain types of page items on submit produce an error after
upgrading to Oracle Application Express 4.1 and higher.
The error is as follows:
Session state protection violation: This may be
caused by manual alteration of protected page item
PX_XX. If you are unsure what caused this error,
please contact the application administrator for
assistance.

The change of behavior for Display Only page items, where
Save Session State = Yes, is an intentional change in Oracle
Application Express 4.1.1.
This more restrictive check has been implemented for Display
only page items where Save Session State = Yes, Text Field page
items where Disabled = Yes and Save Session State = Yes, and
Page Items, where the read only condition evaluated to TRUE.
It is no longer possible to change the session state for Display
Only page items through JavaScript/dynamic actions if the Save
Session State flag is set to Yes.

Chapter 4

[183]

Even though session state protection helps to prevent URL tampering, there really
should be other security measures on the pages, or even better in the database to
prevent unauthorized access. On the page, you can prevent access to the whole page
or objects on the page using authorization schemes. The best approach is making
use of database triggers, instead of triggers, check constraints or Virtual Private
Database. (VPD)This to prevent unwanted access.

Browser security attributes
Oracle Application Express 4.1 added two new Browser Security attributes: Cache
and Embed in Frames. These attributes can be found by navigating to Shared
Components | Security Attributes | Browser Security (region).

The following screenshot shows the Browser Security attributes region in the
shared components:

Cache
Oracle Application Express 4.1 and higher contain two browser security attributes.
The attributes are named Cache and Embed in Frames.

This feature requires browsers that support the HTTP
header response variable cache-control.

Embed in Frames
Embed in Frames means that the browser is allowed to display application pages
within a frame.

Valid values are as follows:

• Deny: The page cannot be displayed in a frame
• Allow from same origin: The page can only be displayed in a frame as the

same origin or the page itself
• Allow: The page can be displayed in any frame

Security

[184]

This feature requires browsers that support the HTTP header
response variable X-Frame-Options.

Additional information can be found here: http://docs.oracle.com/cd/
E23903_01/doc/doc.41/e21674/bldr_attr.htm#CHDDDHHF.

Database session
Use the database session attribute to enter a PL/SQL block that sets a context for the
database session associated with the current "show page" or "accept page" request.
The block you enter here is executed at a very early point during the page request,
immediately after the APP_USER value is established. Use this attribute to enter a
PL/SQL block that runs at the end of page processing. It can be used to free or clean
up resources that were used, such as VPD contexts or database links.

Authorization and authentication plugin
The plugin architecture allows developers to build authorizations in a declarative
way, instead of copying and pasting SQL and PL/SQL code. Authentication
and authorization plugins are included in Oracle Application Express version
4.1 and higher.

Plugins provided by Oracle can be found here:

http://www.oracle.com/technetwork/developer-tools/apex/
application-express/apex-plug-ins-182042.html

Plugins found on this website are fully supported by Oracle and checked on
security vulnerability issues. The danger of third-party plugins is that you are never
guaranteed against security, such as SQL injection and XSS attacks. So, be careful
using third-party plugins. The use of third-party plugins is at the owner's "risk".

An authorization scheme is created mostly using an existing SQL query. Many
times, the query is copied to different authorization schemes within the application.
Copying the code over and over is very hard to maintain. A plugin can help to
encapsulate the authorization code in one place and prevent mistakes.

This is an example of coding an authorization plugin.

Chapter 4

[185]

The code checks if the user is authorized to see a certain part of the application.
An example of the PL/SQL code that can be used in an authentication plugin is
as follows:

function is_authorized (
 p_authorization in apex_plugin.t_authorization,
 p_plugin in apex_plugin.t_plugin)
 return apex_plugin.t_authorization_exec_result

is
 v_group varchar2(4000) := p_authorization.attribute_01;
 v_count number;
 v_result apex_plugin.t_authorization_exec_result;
begin
 select count(*)
 into v_count
 from apex_workspace_group_users
 where user_name = p_authorization.username
 and group_name = v_group;
 v_result.is_authorized := l_count > 0;
 return v_result;
end is_authorized;

Applying the authentication schema can be performed with the following steps:

1. Go to Shared Components | Authorization Schemes.
2. Click on Create.
3. Click on Next.
4. Enter Is SalesManager for Name.
5. Enter APEX Group Authorization [Plug-in] for Scheme Type.
6. Enter SalesManager for Group Name.
7. Enter This part of the application is ONLY for sales managers for

Error Message.
8. Click on Create.

Secure items in an application
The various security aspects in items will now be discussed.

Security

[186]

Item encryption
In version 3.2.1 from Oracle Application Express and higher, it is possible to store
data encrypted in session state. Item security is a property of an item.

The following screenshot shows the item security property named Store value
encrypted in session state:

Hidden items protection
Oracle Application Express has two types of hidden items:

• Hidden: A form element that is not visible within the HTML page
• Hidden and protected: A form element, but the value is checked by the

server to ensure the value has not been modified

The following screenshot shows a hidden and protected item:

It is safer to use a value that is Hidden and Protected, by default, for maximum
security. The reason is that a hidden item will very probably not change and this
will protect against unwanted change of the value by a client-side script.

The Oracle Application Express User's Guide states:
"For maximum security, use Hidden and Protected instead
of Hidden unless your page has client-side behavior; for
example, JavaScript that alters the item value after the page
is rendered by Oracle Application Express."

Chapter 4

[187]

Let's look at an example.

An application may contain a page to display user information, and allow the user
to update their details. If this page has a hidden username field that is used by the
application to know which user to update, then a user could update another user's
details by modifying the hidden field.

If the item was hidden and protected, the application would raise an error when the
modified value was submitted.

Recommendation
Change all Hidden items to be Hidden and Protected,
unless they are modified by client-side code.

For Oracle Application Express version 4.0 onward, set the Value Protected item
in Settings on the item. Additional documentation covering hidden and protected
items can be found at the following URL:

http://download.oracle.com/docs/cd/E10513_01/doc/appdev.310/e10499/
bldapp.htm#BCEGHEAJ

Items of type password
Password items enable users to enter passwords without saving them to the session
state. This prevents the password from being saved in the database in the session
state tables.

There are reports provided to identify at-risk password items:

1. Navigate to the Workspace home page.
2. Click on the Application Builder icon.
3. The Application Builder home page appears.
4. On the Tasks list, click on Cross Application Reports.
5. Under Security, click on Password Items.

Security

[188]

The following screenshot shows a report of Password Items:

File upload items
The APEX_APPLICATION_FILES database view will only show those files associated
with "your" database account (or workspace). You need to prevent the files from
being accessed by unauthorized people. Use the Allow Public File Upload attribute
to control whether unauthenticated users can upload files in the application or not.

Managing instance security
An Application Express instance can be secured in different ways.

Navigation path: APEX_admin/manage instance/security.

The following screenshot shows the security section from the instance at the
administration site:

Chapter 4

[189]

Application data
In Oracle Application Express, it is possible to download a report to different
formats. In a classic report, it is possible to define a column restriction such as:
"Not allowed to include in Export". Unfortunately, column restriction is not available
in Interactive reports and therefore you need to write your own customized code
to create this kind of column restriction. An alternative can be to write your own
customized PL/SQL code to download reports to XML. This technique is very well
explained at the following blog:

http://spendolini.blogspot.co.uk/2006/04/custom-export-to-csv.html

An own export routine prevents downloading all data by any authenticated user.
In this way, you can restrict downloading of data to certain groups of users.

The following screenshot shows the column restriction attribute in a classic report:

Fake input
When you use HTML controls, such as select lists, checkboxes, or radio buttons, you
might think that you don't need to validate the input from these since the values are
constrained. However, you cannot count on this. A select list can easily be converted
to a normal text input field. In Firebug or a web developer, there is an option
available in the menu to convert all select lists on the current page to text fields. So
take care and validate all input. Use a database trigger, a foreign key constraint, or a
check constraint to restrict the values entered by the user.

A classic example from fake input via the Firebug add-on is changing a value that is
selected in a list of values to another value. Fake input via Firebug can be avoided by
creating extra validations within the database.

Security

[190]

The following is an example of fake input via the Firebug add-on:

Additional information and a nice solution against fake input with the firebug
add-on can be found at the following URL:

http://www.talkapex.com/2009/05/enhancing-apex-security-explanation.
html

Authorization schemas can be attached to different components in the application
(button, region, and so on).

A malicious user can perform the process (through JavaScript) without requiring the
actual button to be accessible. This means that securing the button is not sufficient by
having only an authorization schema.

General advices
Using Zero as Session ID: This is critical for PUBLIC
applications to ensure no cross-user contamination will occur.
Zero session ID means not being included in application URL.
For example, where you might normally code the link to page
1 as f?p=&APP_ID.:1:&APP_SESSION, you would code
f?p=&APP_ID.:2:0.
When users access Oracle Application Express application
pages, numerous links containing session IDs become visible
in the Web browser's location window.

Chapter 4

[191]

Saving state before branching
The "Save state before branch" feature for branches was deprecated, because the
existing implementation had some serious restrictions that confused numerous
developers in many different situations.

• If clear page was specified, it was performed when the page was rendered.
So the value which was set during "accept" processing was cleared out when
the page was actually rendered.

• If a page item was set, which was based on a database column and it wasn't
the primary key column, the value didn't show up when the page was
rendered. When someone used Save state before branch = No, it would
work as expected.

Workaround:

• Use a computation or a process to set the session state before branches
are fired

• In the branch, simply specify the page and do not include page items

The preceding workaround is doing the same as Save state before branch = Yes,
and will work fine for primary key page items or page items that are not based on
a database column.

Utilities
There are different utilities in Application Express that can be handy to
ensure security.

Application dashboard
To access the Utilities page, click on the Utilities icon on the application home
page. From the Utilities page, you can access application utilities as well as
page-specific utilities.

Security lists the current authentication scheme, the number of public and non-public
pages, and the number of authorization schemes.

Security

[192]

The following screenshot shows the security part of the application dashboard:

Navigation path: Application home page/Utilities.

How to check the security of your application
Oracle Application Express has different in-built tools available to ensure security
within an application.

Oracle Application Express Advisor
The built-in Oracle Application Express Advisor is a tool that can be used to
check for performance issues, as well as performing checks for errors, security
issues, usability, and quality assurance. This utility is available in 4.0 and above.
The Advisor functions like a compiler or LINT flagging suspicious behavior or
errors. LINT is a utility that examines and analyses programs for style, usage, and
portability issues. By running the Advisor, you can check the integrity of your
application based on the underlying metadata.

Chapter 4

[193]

Note
When running the Advisor with all the checks checked, the
following error is thrown:
ORA-01460: Unimplemented or unreasonable
conversion requested.

Work-around is easy, hit the apply button.

The following screenshot shows the Advisor utility in Oracle Application Express:

Third-party tools to check on security
There are third-party tools available to check the security from your application.
The ApexSec Security Console is designed to import and analyze your Oracle
Application Express application for issues with security implications. Demonstration
of the tool can be found at the following website:

https://secure.recx.co.uk/apexsec/help.jsp

Sumneva also provides a security scan tool for Oracle Application Express
applications, at the following URL:

http://www.sumneva.com/apex/f?p=15000:1070:0

Security

[194]

Summary
Security is not an easy subject, and should be considered all the time and with
each piece of code that you write. All layers involved with Oracle Application
Express should involve insecurity; this means the web server, database, and the
application itself. There is a fine balance between security and productivity. Too
much security means a hard time doing your job, and too little means exposing the
system to a security breach. Basic security hardening is just a matter of knowing
where the weaknesses are. Organizations need to have their patches and CPU
patches strategy in place. Patching is very important when hardening security.
Think about security before it is too late, as it could have negative consequences
for you and your organization!

A general advice is making use of Application Express built-in security capabilities
and the Application Express Advisor.

Besides this, perform an Application Express analysis by making use of third-party
analysis tools.

Debugging and
Troubleshooting

Debugging Oracle Application Express can be a conundrum. Oracle APEX is a
blend of technologies – PL/SQL and SQL that generates HTML pages using CSS,
templates, and JavaScript. Tracking and resolving problems in this multi-layer
environment necessitates a blend of tactics to examine what is happening in each
component of the application.

This chapter will cover the following topics:

• Debugging in APEX
• Remote debugging using Oracle SQL Developer
• Web development tools
• Reports available in Application Express for troubleshooting
• Advisor

Debugging an APEX page
Before you can start by debugging a page, there are some prerequisites. First of all,
the debugging property needs to be set to Yes, and second the developer toolbar
needs to be visible. Although this last requirement is not strictly necessary, it is very
convenient when the development toolbar is visible.

Debugging and Troubleshooting

[196]

By default, the debugging property is set to No. To switch the debugging property to
Yes, follow the steps listed here:

1. Navigate to the application home page.
2. Click on Edit Application Properties.
3. In the Properties section, set the value for Debugging to Yes.

In the preceding screenshot, the Debugging property is set to Yes. This property
enables debugging for the entire application.

By default, the developer toolbar is visible when the application is run starting from
the development environment in the same browser. The developer toolbar offers a
quick way to edit the current page, create a new page, region, or page control, view
the session state, or toggle in and out of the debug mode. The development toolbar is
shown at the bottom of each page.

It is possible to control whether the developer toolbar is shown by changing the
Status attribute on the Edit Application Definition page. When you start the
application from the development environment and the developer toolbar does not
show, then take the following steps:

1. Navigate to the application home page.
2. Click on Edit Application Properties.

Chapter 5

[197]

3. In the Availability section, set the value for Status to Available with
Edit Links:

In the preceding screenshot, Status is set to Available with Edit Links, which is the
default value for this property. Only developers running the application will see the
development toolbar with the setting at default.

After meeting these prerequisites, the actual debugging can begin. In the application
development bar, shown in the following screenshot, click on the Debug option:

The page gets refreshed and the debugging information gets captured. The label on
this button will be changed to No Debug.

Besides using the button in the development toolbar, it is also possible to manipulate
the URL to toggle the debugging. A complete URL might look as follows:

http://host:port/DAD/f?p=100:1:2345678912345::YES

Debugging and Troubleshooting

[198]

The fifth parameter in the URL is the debug toggle; the parameters are as follows:

• Application ID
• Page number or page alias
• Session ID
• Request
• Debug toggle
• Clear cache
• Item names
• Item values
• Printer friendly
• Tracing toggle

The parameters are listed after f?p= in the preceding URL; 100 is the Application
ID, 1 is the page number, 2345678912345 is the session ID, and so on. The fifth
parameter is set to YES, which means that debugging is enabled.

Using the URL to toggle debugging can be convenient when the development bar is
not visible.

In Application Express 4.2
Where the f?p URL syntax arguments are described, the
argument Debug should be extended as follows:

• Valid values for the DEBUG flag are YES, LEVEL1 to
LEVEL9 or NO

• Setting this flag to YES will display details about
application processing

• Setting this flag to LEVELn (where n is between 1 and
9) controls the level of debug detail, from least details
(LEVEL1) to most details (LEVEL9)

• The value YES is equal to LEVEL4

Now that debugging is enabled, it is possible to see exactly what APEX is doing and
how long it takes, including page rendering and page processing.

Chapter 5

[199]

Page rendering is the process of generating a page from the
database. The HTML page is assembled and displayed. During
the page rendering process, the following actions occur:
computations, processing, and region- and item rendering.
Page processing computations and processes are performed
when the page is submitted to the APEX engine. For page
processing, the following actions take place: computations,
validations, processes, and branching.

Reviewing this information and comparing the listed actions with the intended actions
helps to discover where events are or are not firing, with correct or incorrect values.

To review the debug messages, use the button in the development toolbar labeled
View Debug (see the previous screenshot). This will open up a new window similar
to the following screenshot:

Debugging and Troubleshooting

[200]

At the top of the Debug Message Data window (see the previous screenshot), there
is a graphical representation of the execution times. This makes it easy to narrow
down where most of the time is spent on the page. Clicking on the graph on the top
will navigate to the appropriate line in the report. A similar graph is shown per line
in the report; the wider the bar, the more time this line takes.

The previous screenshot shows the information that can be found in the debug
information: authentication information, validation checks, assignments and session
state information, values assigned in queries, and much more.

Debug information can also be queried through the
APEX_DEBUG_MESSAGES view. The actual debug information
is stored in two data dictionary tables: WWV_FLOW_DEBUG_
MESSAGES and WWV_FLOW_DEBUG_MESSAGES2.

In Application Express 4.2
The APEX_DEBUG_MESSAGE has been renamed to
APEX_DEBUG. In the top-level description, it should be
specified that the module can still be accessed by its
previous name, APEX_DEBUG_MESSAGE, for compatibility
reasons, but the new name is preferred.

The following table lists the columns in the APEX_DEBUG_MESSAGES view:

Column name Data type Remark
ID NUMBER

PAGE_VIEW_ID NUMBER Page view identifier, which is a unique
sequence generated for each page view
recorded with debugging

MESSAGE_TIMESTAMP TIMESTAMP(6)
with time zone

Timestamp: In GMT that message was
saved

ELAPSED_TIME NUMBER Elapsed time in seconds from the
beginning of page submission or page
view

EXECUTION_TIME NUMBER Time elapsed between the current and
the next debug message

MESSAGE VARCHAR2(4000) Message
APPLICATION_ID NUMBER Application identifier
PAGE_ID NUMBER Page identifier within the application
SESSION_ID NUMBER APEX session identifier

Chapter 5

[201]

Column name Data type Remark
APEX_USER VARCHAR2(255) Username of the user authenticated to

the application
MESSAGE_LEVEL NUMBER Can be level 1:7 (importance)
WORKSPACE_ID NUMBER Application Express workspace

identifier

Instrumentation of the APEX code
Code instrumentation makes it much easier to track down bugs and isolate
unexpected behavior more quickly. Code instrumentation is used to diagnose errors
and to write trace information. Besides instrumenting the database code (see Chapter
2, Leveraging the Database), instrumenting APEX code can also be very beneficial.

You can reference the DEBUG flag using the following syntax:

Substitution string &DEBUG.

PL/SQL V('DEBUG')

Bind variable :DEBUG

When a page is run in the DEBUG mode, the debug item is automatically set to YES;
otherwise, it is set to NO. This can be useful to show region content depending on the
debug mode variable.

The following example shows a region depending on the value of the DEBUG variable:

Create a condition of the type PL/SQL expression.

The value expression 1 has the following value:

v('DEBUG') = 'YES'

That means when the DEBUG variable is equal to 'YES', the region is shown; when
the DEBUG variable is 'NO', the region is not shown. This way you can limit your
debug code to only execute when running in the debug mode. So you only call the
code when you need the code. When running the application in production, the
debug mode is turned off and the debug code is ignored by the APEX engine.

Debugging and Troubleshooting

[202]

APEX_APPLICATION.G_DEBUG
The APEX_APPLICATION package enables users to take advantage of global variables.
The apex_application.g_debug variable refers to whether debugging is currently
switched on or off. Valid values for this variable are TRUE or FALSE.

Turning debug ON shows details about application processing.

For example:

IF apex_application.g_debug THEN
 apex_debug_message.log_message('Custom Validation');
END IF;

Including the preceding code in the APEX page, anywhere where PL/SQL is
allowed, will add information visible in APEX_DEBUG_MESSAGES, and therefore
in the View Debug page. This information will only be added when apex_
application.g_debug evaluates to TRUE.

The debug Advanced Programming
Interface (API)
The APEX_DEBUG_MESSAGE package provides utility functions for managing the
debug message log. Specifically, this package provides the necessary APIs to
instrument and debug PL/SQL code contained within the APEX application as well
as the PL/SQL code in database stored procedures and functions. Sometimes, you
need to know where the problem resides. A problem can exist in the rendering part
or in the processing part of the page. Using the API, debug messages can be included
at page rendering and page processing level. Page rendering: before header, page
processing: after submit.

The APEX debug message
There are several procedures in the APEX_DEBUG_MESSAGE package. These procedures
are listed in the following table:

Procedure Usage
DISABLE_DEBUG_MESSAGES Programmatically disable debugging
ENABLE_DEBUG_MESSAGES Programmatically enable debugging
LOG_MESSAGE Log a message of up to 4000 bytes at a given level
LOG_LONG_MESSAGE Log a LONG message (split into 4000 byte chunks) at a

given level

Chapter 5

[203]

Procedure Usage
LOG_PAGE_SESSION_STATE Emit session state information into the DEBUG table
REMOVE_DEBUG_BY_AGE Remove debug messages for a given application older

than N days
REMOVE_DEBUG_BY_APP Remove debug messages for a given application
REMOVE_DEBUG_BY_VIEW Remove debug messages for a given application and

page view ID
REMOVE_SESSION_MESSAGES Remove debug messages for a given session

The following is an example of enabling debug messages for a specific user in the
page rendering process—Onload/Before header header.

IF :APP_USER = 'XX' THEN
 apex_debug_message.enable_debug_messages;
END IF;

The REMOVE_DEBUG_BY_AGE procedure takes two arguments:

(p_application_id in number default null,
 P_older_than_days in number default null);

This example shows how the REMOVE_DEBUG_BY_AGE procedure is used.

Before we can use the procedure to remove the debug information, we first need to
create some debug information. Debug information is created when the View Debug
button in the developer toolbar is pressed.

The following steps will guide you through this process:

1. Edit the page, and in the Processes section, click on the Create icon, to add a
new process to this page. This will launch the Create Page Process wizard.

2. Select category PL/SQL, and click on the Next button.
3. Type Clear Debug Info, ensure that Point is set to On Load -Before

Header, and click on Next.
4. Under the Source heading, enter the following code:

apex_debug_message.remove_debug_by_age
 (p_application_id => :APP_ID
 ,p_older_than_days => 1
);

Debugging and Troubleshooting

[204]

The following screenshot shows the APEX_DEBUG_MESSAGE.REMOVE_DEBUG_
BY_AGE process:

5. In the Success Message text areas, type the message Debug Messages
Cleared, and click on Next.

6. Click on Create Process.
7. Run the page, and click on View Debug in Developer Toolbar.

The result is that the debug information for the page older than 1 day will be cleared.

APEX_DEBUG_MESSAGE.LOG_MESSAGE
With the Application Express APEX_DEBUG_MESSAGE.LOG_MESSAGE process, you have
the possibility to emit messages in the debug output.

For example:

apex_debug_message.log_message('Render: Hello');

Or:

apex_debug_message.log_message('Item Validation');
apex_debug_message.log_message('...Item: '||p_item);

In this way, you add debug information to your code and therefore make it easier to
troubleshoot your code.

Chapter 5

[205]

This image shows the extra debug information 'Hello', which is emitted by the
apex_debug_message.log_message API.

WWV_FLOW_API.SET_ENABLE_APP_
DEBUGGING
This API is not documented in the APEX documentations, and is therefore officially
not supported. It allows you to turn debugging ON or OFF at the application level.

For example:

On:
wwv_flow_api.set_enable_app_debugging (:APP_ID, 1);

Off:
wwv_flow_api.set_enable_app_debugging (:APP_ID, 0);

APEX and Oracle SQL Developer
APEX and Oracle SQL Developer can work perfectly together. For troubleshooting
PL/SQL code within APEX, remote debugging can be very handy.

Oracle SQL Developer is a graphical user interface that allows you to browse
database objects, run SQL statements and scripts, and debug PL/SQL statements.
Before concentrating on the integration of Oracle SQL Developer and APEX, we
are going to look at how debugging is done in Oracle SQL Developer. Oracle
provides two packages for debugging PL/SQL code. The first, DBMS_DEBUG, was
introduced in Oracle version 8i and not used anymore in Oracle SQL Developer.
The second, DBMS_DEBUG_JDWP, was introduced in Oracle version 9i and is used by
Oracle SQL Developer.

More information and downloads of Oracle SQL Developer can be found at:
http://www.oracle.com/technetwork/developer-tools/sql-developer/
overview/index.html

To demonstrate debugging with Oracle SQL Developer, create the
following procedure:

The procedure is for demonstrations purposes only; it does
not reflect best practices or efficient coding techniques.

Debugging and Troubleshooting

[206]

By default, the line numbers are not visible in the worksheet of
Oracle SQL Developer. Show the line number by right-clicking in
the gutter (the location where the lines are supposed to show up)
and choose Toggle Line Numbers from the context menu.

Chapter 5

[207]

To run the procedure, locate the procedure in the connections navigator. Right-click on
the procedure and choose run. The results are displayed in the Running Log window.

To debug a procedure, it needs to be compiled for debug first. This step adds in the
compiler directives required for debugging. Once you have completed the debug,
you should compile the procedure again and remove the extra directives.

When the directives are not removed, performance will be
decreased because of the directives available in the code.

Set a breakpoint in the EMP_LIST procedure by clicking on the margin at the line
where you would like the execution to stop. The line number is replaced with a red
dot. This is a breakpoint symbol.

A breakpoint is a location in the code that you identify as
a stopping point. When the code is run in debug mode,
execution will stop at the breakpoint.

This image shows the compile for debug option in Oracle SQL Developer

Debugging and Troubleshooting

[208]

After defining the breakpoints, the debug icon () in Oracle SQL Developer can be
clicked to start the debug session. Oracle SQL Developer sets the sessions to a debug
session and issues the following command:

DBMS_DEBUG_JDWP.CONNECT_TCP (Hostname, port)

Be aware that you are not restricted by the firewall.

Chapter 5

[209]

This image shows defining the breakpoint in the EMP_LIST procedure:

Item Remark
The Data tab Collect all values of the variables as you step through the code
The smart data Keeps track of the same detail as the Data tab, but only the

values immediately related to the area worked in
Run to cursor Start debugging and quickly move to another part of the code
Watch Allows you to watch an expression or code
Inspect Allows you to watch values

Remote debugging
The easiest way to illustrate remote debugging is to use Oracle SQL Developer
with an application in APEX. The subprogram resides in APEX, and Oracle
SQL Developer is used to debug it. This capability is especially useful when
an application isn't failing but also isn't producing the results you expect. The
following grants are necessary before performing remote debugging:

grant DEBUG CONNECT SESSION to <schema>;
grant DEBUG on <object> to PUBLIC;
grant DEBUG ANY PROCEDURE to APEX_PUBLIC_USER;

Or ANONYMOUS when using the embedded gateway.

1. Connect Oracle SQL Developer and import the APEX application.
2. Set a breakpoint in the code that needs to be debugged.
3. Compile the procedure for debug.

Note that running a package in debug mode severely hampers performance.
Once testing is complete, compile the package without debug information.

4. At this point, prepare Oracle SQL Developer for remote debugging. Do this
by selecting the connection that will be used for debugging the code, and
select Remote Debug in the menu.

5. Next, a pop-up window is shown where the port and IP address need to be
entered. The port number will be shared by Oracle SQL Developer and the
APEX application.

Debugging and Troubleshooting

[210]

The following image shows the remote debug connection:

This prepares Oracle SQL Developer for the connection to the debugger and opens
the process. Application Express also needs to be prepared for remote debugging.
This is done by performing the program in debug mode, and changing YES in the
URL to REMOTE (the fifth position in the URL).

Steps to be performed in APEX
The necessary steps in APEX to perform remote debugging are as follows:

1. Execute the program in Application Express.
2. Click on Debug in the developer toolbar when you want to debug.
3. Change the YES in the URL to REMOTE.

The following is an example of the URL for performing remote debugging out of an
APEX application:

http://host:port/apex/f?p=103:11:6993768986060180::REMOTE

Now, debugging can be performed in Oracle SQL Developer. The APEX application
will wait for the debugging process to complete. At this point, it is not possible
to continue working with the application. On the other hand, this is not the
purpose – keep the application online at this time. When debug is ready, control
is given back to the APEX application.

Chapter 5

[211]

JavaScript console wrapper
Martin Giffy D'Souza has written the Console Wrapper utility. For additional
information, see http://www.talkapex.com/2011/01/console-wrapper-
previously-js-logger.html.

Console wrapper allows to view the debug information in a nice console window
within browsers. Most of the browsers are console-enabled (exception is the
Internet Explorer browser). The utility is designed to easily debug JavaScript
within applications. It allows developers to use the JavaScript console without
breaking anything.

The most common use of the console is the console.log command:

console.log('hello world');

Removing instrumentation code before going into production can be annoying,
especially if you need to debug it later on. To resolve this issue, Martin D'Souza
has created a console wrapper. This allows you to leave your debugging calls in
production code. Here are some features:

When running APEX in debug mode, the log level is automatically set.

Installation of the console wrapper
Installation steps of the JavaScript Console Wrapper are as follows:

1. To download $console_wrapper.js, navigate to
http://code.google.com/p/js-console-wrapper/.

2. Add the console_wrapper.js in the page template.

The different levels can be defined as follows:

• Info
• Exception
• Error
• Log/debug
• Off
• Warn

Using the console wrapper, it is possible to set the debugging level, by issuing the
following command:

$.console.setLevel('log');

Debugging and Troubleshooting

[212]

Retrieve the information about the current level, by using the following command:

$.console.getLevel();

Or write a message for a specific level, as follows:

$.console.warn('A message at warning level');

Another feature available is the function called logParams. logParams will
automatically log all the parameters in your function. This can save a lot of time,
since you don't need to manually list all the parameters, and it will detect any
extra parameters.

To see the console wrapper in action, navigate to:

http://apex.oracle.com/pls/apex/f?p=16406:1200:0:::::&tz=2:00

This screenshot shows the console wrapper in action.

Keep an eye on the Google site, to find out if there is a new
release available of the js-console-wrapper.:
http://code.google.com/p/js-console-wrapper

Chapter 5

[213]

Web development tools
When you make use of the Advanced Programming Interface, custom user interface,
templates, or specialized JavaScript, a web development tool can be essential. The
Web Developer plugin authored by Chris Pederick is a must have addition to Firefox
and Chrome for CSS, JavaScript, and HTML development. The Web Developer add-
on can be downloaded from here:

http://chrispederick.com/work/web-developer/

Installation is as simple as clicking on the Install Now button on the Download page
from a browser window. The Web Developer extension adds a menu and a toolbar to
the browser with various web developer tools. The extension is available for Firefox
and Chrome.

This screenshot shows the Web Developer toolbar as it appears in Firefox.

The Web Developer toolbar is a set of tools meant to assist with web development. It
provides a large number of useful tools when developing with APEX. Most options
in Web Developer interact directly with the page. Changes made in Web Developer
are not saved. So, changes are lost when leaving or reloading the page.

Debugging and Troubleshooting

[214]

This screenshot shows the Web Developer form, which contains form information.

The Web Developer form can be handy when debugging tabular forms in APEX.
Web Developer is especially handy for CSS, JavaScript, and HTML development
debugging. APEX developers who add AJAX features will be most interested in
the ability to examine the <div> element details and JavaScript. Developers who
build custom page templates and themes will appreciate the Form Information
and Outline menus, and the myriad of options for displaying HTML element
information. In web developer, CSS can be viewed and edited.

This screenshot shows the CSS sub-menu in the Web Developer tools.

Firebug
Firebug can be downloaded from this location: https://addons.mozilla.org/
nl/firefox/addon/firebug/. Firebug offers many of the same features as Web
Developer, in a slightly different format and package. Firebug is also a Firefox add-
in, and is installed by clicking on the Install Now button on the Firebug home page.
Firebug can be started as a pane in the same window or in a separate window. The
main Firebug headings are Console, HTML, CSS, Script (JavaScript), DOM, and NET.

The essential features to view and edit HTML, CSS, and JavaScript are all there. The
Firebug JavaScript Console is very helpful for informational messages and testing
JavaScript. The HTML tab displays all HTML in hierarchical format, expandable
by the main HTML tag. The CSS tab displays all CSS for the page. The Script tab
displays all JavaScript and the JavaScript debug interface. The DOM tab displays
all DOM element descriptions. The NET tab displays network header/response
information and timing. The JavaScript debugger is a great feature. The use of the
Firebug JavaScript debugger is as simple as opening Firebug, selecting the Script tab,
setting a break, and refreshing the page.

Chapter 5

[215]

APEX and Firebug
Firebug can be useful for checking images and their location, to check the version
of CSS, and JavaScript's currently loaded or used by an APEX application. Firebug
allows us to investigate our page, run and debug JavaScript, changing page styles
on the fly, and see which files are missing.

The preceding screenshot shows images and stylesheets used in APEX in the
Firebug console.

The preceding screenshot shows the CSS sub-menu in the Firebug add-on.

Debugging dynamic actions
Debugging dynamic actions in Application Express is slightly different than
other debugging, because much of the processing done with the dynamic action
framework is done on the client, not on the server. In order to debug dynamic
actions, output the debug information to the browser's JavaScript console.

The Firebug add-on integrates with Firefox. You can edit, debug, and monitor
CSS, HTML, and JavaScript live in any web page. Firebug will show the debug
information in its Console pane.

The debug information will tell you when a dynamic action fires, the name of the
dynamic action, and also specifically which action has fired.

Debugging and Troubleshooting

[216]

To debug dynamic action, debug needs to be enabled at application level and the
page will need to run in the debug mode. Both requirements are described earlier
in the chapter. In the Firebug console you will see the JavaScript logging that the
dynamic action produces. So, Firebug can be very useful here.

The preceding screenshot shows the output from the Firebug console.

This outputs the name from Dynamic Action and the action is fired. The
extension DOM tab shows all dynamic actions active on current page. Look
for da.gEventList. The da is a short notation for Dynamic Action.

This is the output from the DOM tab from Firebug.

If you have defined a dynamic action that fires when a certain item's value changes,
change that item's value, and the console will show the debug output if the dynamic
action fires.

Yslow
Yslow is a tool to analyze webpages and can be used as a performance indicator.
Yslow shows you the size of each resource as well as the time it takes to load each.
This information can be very useful when the page takes a long time to load. It helps
you pinpoint the problem area. With Yslow, you don't have to guess which resource
takes up the most time. Yslow can be downloaded from this location:

https://addons.mozilla.org/en-US/firefox/addon/yslow/

Chapter 5

[217]

Error handling
In Application Express, error handling is dramatically improved. You can define
how exceptions are handled in your application instead of being constrained by the
APEX engine itself.

This feature can be used if a developer wants to have full control of the error
handling when an error occurs in an APEX application. It can not only be used to
just log the error, but also for modifying the error message text. You can also define
where the message should be displayed.

(Inline with Field and in Notification: Error messages display in notification
area; Inline with Field: Error messages displayed within the field label; Inline in
Notification: Error message display in the #notifcation_message substitution string
or at a specific Error Page.) It is also possible to specify which page item/tabular
form column should be highlighted.

1. Install the sample database application.
2. Review the DEMO_ERROR_HANDLING function.
3. Rename and tweak to meet your requirements.
4. Modify your application properties to use the Error Handling function:

Logging and tracing
It can be quite difficult to debug slow regions or reports. A trace file can help to
analyze the slow performance. Append &p_trace=YES to the URL, as follows:
http://hostname:port/apex/f?p=appid:pageid&P_TRACE=YES

grant alter session to APEX_PUBLIC_USER
Otherwise trace file will not be created.

Debugging and Troubleshooting

[218]

APEX will automatically generate a SQL trace file, and putting it in USER_DUMP_DEST.
USER_DUMP_DEST specifies the pathname for a directory where the server will write
debugging trace files on behalf of a user process. The trace files will be located on the
database server.

To retrieve the value of the user_dump_dest parameter, start a SQL*plus session
and perform the following statement:

show parameter user_dump_dest

You can use Oracle SQL Developer and/or TKPROF to analyze the trace file. When
you have the raw SQL trace (with extension .trc) output files, you can display it
nicely formatted in Oracle SQL Developer as an alternative to using the TKPROF
program to format the contents of the trace file. To open a *.trc file in Oracle SQL
Developer and see an attractive, effective display of the information, navigate to
File | Open, and specify the file or drag the file's name or icon into the Oracle SQL
Developer window:

The preceding screenshot shows the nicely formatted trace file in Oracle
SQL Developer.

Logging (editing the application definition) determines whether or not the
user activity is recorded in the Oracle Application Express activity log.
When set to Yes, every page view is logged. Records are written to the
APEX_WORKSPACE_ACTIVITY_LOG Application Express dictionary view.

Chapter 5

[219]

Disabling logging may be advisable for high
volume applications.

Enabling/disabling logging
There are actually two log tables; each one gets purged roughly every two weeks.
Of course, you can make the decision to store the log information in your own
log tables.

The APEX_ACTIVITY_LOG view records all activities in a workspace, including
developer activity and application run-time activity.

Additional Information can be found at: http://docs.oracle.com/cd/E23903_01/
doc/doc.41/e21676/apex_debug.htm

Also, the error_message column can be used to find error messages:

The preceding screenshot shows the output from apex_workspace_activity_log.
The error message shows the reason for the application not to function correctly.

Debugging and Troubleshooting

[220]

The activity log identifies both region- and page-level errors. APEX_WORKSPACE_
ACTIVITY_LOG.ERROR_ON_COMPONENT_NAME identifies the region or process that
the error occurred in.

Watch out
When multiple region level errors occur, only the
first error is logged in the activity log.

Reports in Application Express that facilitate
troubleshooting
APEX comes with a set of utility reports that can aid you in troubleshooting. These
utilities are accessible by navigating to Application Utilities. The different items on
this page will be discussed in this section, some in more detail than others.

Utilities Page Remarks
Application Dashboard Breaks down the metrics of a specific application by overview,

security, templates, page by type, application components,
and page components.

Change History Displays who changed what in the application builder. Does
NOT provide a before and after image of changes, but only
that something is changed. Be careful in using this as it may
not correctly identify.

Recently Updated Pages A list from the most recently updated pages.
Debug Messages All debug trace information collected from the application

can be accessed here for a specific application. Can drill
down to specific debug information and debug information
can be purged.

Chapter 5

[221]

Application Express Advisor
The Oracle APEX Advisor (or simply Advisor) enables you to check the integrity
and quality of your APEX application. Advisor functions like a compiler or lint,
and flags suspicious behavior or errors. Running Advisor checks the integrity of
your application based on the underlying metadata. The Advisor performs several
checks on your application, including programming errors, security issues, quality
assurance, and other best practices.

Advisor can be run for one page, a set of pages, or for all pages. Under Checks to
Perform, review the selected checks. Enable and disable checkboxes as appropriate.
Once executed, your previous settings will be recalled for the next use. You can
also save the settings without executing using the Save as My Preferences task in
the task bar.

The preceding screenshot shows the different checks in the Advisor.

APEX has different tools and reports available to have a different view of
the application.

Debugging and Troubleshooting

[222]

Application Builder utilities Remarks
Upgrade application Not all the features are automatically upgraded when an

application is upgraded. Features such as number field
(updates a text field when there exists an IS NUMERIC
validation), new date picker instead of CLASSIC date
picker, ck editor (WYSIWYG editor in web pages), and
flash charts (Upgrade SVG or flash chart to flash chart 5).
Developers can choose the features to upgrade. So you have
a choice what to upgrade; there is no obligation.

Database object
dependencies

Database objects dependencies is a report of all database
objects referenced in the application. Note: some objects
can be missing, such as objects used in dynamic SQL.
Public and APEX_040100 schema are included.

Attribute dictionary You can use page item and report column definitions
to update the attribute dictionary. You can also use the
attribute dictionary to update page items and report
columns.

Application Express views APEX_WORKSPACE_ACTIVITY log. Highlight errors that
occurred in applications. You can set up an application to
monitor this Application Express view on a regular basis
for example. This view can be queried to have a complete
view of the error.

The preceding screenshot shows the available APEX views.

Chapter 5

[223]

Summary
Debugging and troubleshooting in Application Express can be challenging because
of different technologies used in Application Express. Each technology has its own
set of tools for effective troubleshooting and debugging.

Fortunately, there is a variety of readily available options for debugging APEX
applications. The key is to know how APEX generates pages, to know the tenets
of the application, and to employ a variety of tactics to meet the challenge at hand.

Running the pages of the application in debug mode shows exactly which steps are
taken. Use Oracle SQL Developer to not only debug your PL/SQL database code,
but also to remotely debug the PL/SQL called from the APEX application.

There are numerous utility reports available that can assist you in the
troubleshooting process. The Advisor can advise you before the trouble begins.

Specific web development tools, such as Web Developer, Firebug, and console
wrapper, can assist with checking the HTML, CSS, and JavaScript code.

Deploy and Maintain
When you are done with the building phase of your application, you need to
deploy it. Deployment can be done in several ways. One way is to create a
packaged application. The deployment of a packaged application is very
straightforward—simply follow the import wizard and you're done. However,
the preparation to create a packaged application can be quite cumbersome.

Another way to deploy your application would be to separate all different
components, such as database objects and JavaScript files, into a "deployment
per type". This makes the deployment more complicated, but it is easier to patch
or upgrade a small part of the application. In this way, the maintenance phase of
your application will be easier. Both of these different approaches have their pros
and cons.

Deploying your application to the users is only part of the job. After this step is
done, your job is not over. At this moment, your users really start working with the
application, and encounter issues they never thought of during the testing phase.

In this chapter, the following topics are covered:

• Considerations regarding packaging the application
• Version control
• Deployment
• Maintain the application: Active and proactive

Deploy and Maintain

[226]

Package your application, or not?
Oracle APEX allows you to create a self-contained application. This means that all
necessary components are all bundled together in a single deployment script. All the
database tables, stored procedures, images, JavaScript files, CSS files, and of course
the APEX application itself, are bundled together. If all the components you need to
install the application are in a single file, then deployment is very easy.

One of the new features that will be included in Oracle APEX 4.2 is an exchange of
packaged applications. Packaged applications are not only created by Oracle itself, but
also by independent developers. The Oracle packaged applications were previously
known as packaged applications, and mainly served as example applications.
Nowadays, they are fully functional and can be used as productivity boosters. Instead
of having to develop your own bug tracking application, use the packaged application
provided by Oracle. Oracle will support their own packaged applications and will be
available when you use the Oracle Database Cloud service. The packaged application
provided by Oracle will be locked when you install it into your own environment. It
is not possible to edit and modify the locked application. When this is required, the
application will need to be unlocked. Doing so will make the application ineligible for
future upgrades and will no longer be supported by Oracle.

To create your own packaged application, you would need to navigate to the
Supporting Objects page from within the context of your application.

Figure 1: Main application builder menu

On the Supporting Objects page, you can create a packaged application. You can get
to this page by clicking on the Supporting Objects icon on the application builder
page (see Figure 1).

Chapter 6

[227]

All of the different components required to create a packaged application are right
here on this page.

Figure 2: Summary of Supporting Objects

In the summary section, displayed in the preceding screenshot, there is an overview
of the different settings and number of scripts you or your fellow developer have so
far for the packaged application.

Figure 3: Installation Section

In the following region, labeled Installation, you can define all necessary scripts to
make deploying your applications easy and straightforward.

Figure 4: Deinstallation section

Deploy and Maintain

[228]

There is also a region to do the exact opposite, labeled Deinstallation. In this section,
you collect all the script that will uninstall the application.

Figure 5: Upgrade section

The last section, labeled Upgrade, allows you to collect all necessary scripts required
to upgrade your application. In this section, we will learn the most practical ways to
use these options.

Gathering all the components to create a packaged application can be quite tedious.
All your database objects need to be in scripts, and need to be uploaded through
APEX in the Installation section, under Installation Scripts.

There is a utility available to make it easier to collect all database objects. Navigate
from the application home page to the utility page—the icon is also visible in
Figure 1.

Figure 6: Utility Menu

Chapter 6

[229]

There are a number of very useful utilities available on this page, but the the one that
I want to point out is labeled as Database Object Dependencies. With this utility,
you can let Oracle APEX do the hard work of determining which database object you
absolutely need, to be able to deploy your application.

After you click on the Compute Dependencies button on the following screen,
there will be a list of database objects shown. Both the button and the list of
database objects are shown in the following screenshot. The list that is shown in the
screenshot is based on one of the sample applications.

Figure 7: Compute Dependencies

As you can see in Figure 7, not only are all database objects shown, but you can also
drill down and see where the database object is used. You can drill down to see more
details by clicking on the Reference Count column, where the number acts as a link.

Deploy and Maintain

[230]

There are two problems with this utility. The first is that only the directly referenced
objects will appear in the overview, and the second one is that it doesn't help you
with extracting the database objects into scripts. At least now you know which
objects you need to include in the packaged application.

There is a utility which can be used to extract all the DDL from an
Oracle schema and spool the results to the file system. This utility is
written and maintained by Dietmar Aust and can be retrieved from
his website. You can download the utility from the following URL:
https://www.opal-consulting.de/apex/
f?p=20090928:12:0::NO:::

You can also export database objects with Oracle SQL Developer.
When you do, make sure to check the Dependents option on the
export; this will make sure that all database objects referenced in
the source code are also included in the export file.

As you can see from the previous description, it takes a lot of work to create a
packaged application. Most applications will have more than just database objects;
there will also be JavaScript, images, and CSS files, and they will need to be included
in the supporting objects to create the packaged application.

There is also another way of deploying your application. Instead of creating a single
script, which will contain the application, the database objects, the required images,
JavaScript, and CSS, deploy each component separately.

This means that there will be multiple scripts to deploy. As you can imagine, this
takes more work when you are deploying your application. The big advantage that
you have with this method is that you can get all the static files, such as the images,
JavaScript, and CSS, on the application server. The biggest downside is that it is very
easy to forget a certain file. Therefore, it is advisable to create a shell script to assist
you with this.

Chapter 6

[231]

Why is it beneficial to place static files on the application server? These static files are
needed very frequently in the browser. Instead of having these files in the database,
and having to read them out of the database with each page load, the application
server can serve these static files more efficiently than the database. The application
server can also cache these files more efficiently.

So, should you create a package application or not? As with many things, it depends.
I believe that it mainly depends on what you are going to do with the application.

If you are going to distribute the application, it might be a good idea to create a
packaged application. If the application is going to be inhouse type (the application
is for internal use), then it would be preferable that you deploy in separate files. This
will give you a fine-grained control over which part of the application needs to be
upgraded. For instance, if you have found a bug in your database code, then you can
only redeploy the fixed database code, and only that database code and nothing else.

Each of the described methods of deploying the application has its pros and cons.
The first described way makes it easy to deploy the application, and the second
makes it easier after the application has been deployed. The choice is yours; the user
just wants a bug-free application that works.

Version control
APEX doesn't have any built-in version control, at least not in versions up to 4.1. This
means you will have to come up with your own plan of doing version control. The
way we organize our application is outlined in the following section of this chapter.

We like to keep our database code, all the PL/SQL code such as packages,
procedures, and functions, in files. Working in files has the advantage that they
can be easily kept in under version control, like Subversion. The same is true for
all other files necessary for the application, such as JavaScript, CSS, and images.

Deploy and Maintain

[232]

Subversion
Working with Subversion is very easy and straightforward. We will not discuss the
complete installation of Subversion, but merely show you how to work with it from
a developer's standpoint.

In order to be able to work with Subversion, you would need some kind of client tool
to access the Subversion repository. There are many Subversion client tools available
for various operating systems. One of the most popular client tools on Windows is
Tortoise Subversion.

Subversion client
On this Wikipedia page, you can find a comparison between
the different Subversion clients that are available:
http://en.wikipedia.org/wiki/Comparison_of
_Subversion_clients

If you need a Subversion client on Windows, you can
download the Tortoise Subversion client from the following
website: http://tortoisesvn.tigris.org/.

After installing the Subversion client, you will need to make a connection to the
Subversion repository. How to do this depends on the client that you are using. As I
am using a Windows laptop, I use Tortoise Subversion as my Subversion client—the
most widely used Subversion client on the Windows platform. The screenshots will
therefore show how I use Subversion using this client tool; other client tools will
more or less behave similarly. The Tortoise Subversion client tool uses overlays on
the icons that represent the files and folders in the Windows Explorer, as can been
seen in Figure 5.

Oracle SQL Developer and Subversion
The Oracle SQL Developer IDE has the possibility to
directly connect to Subversion, without using a separate
client installation. This makes it very convenient to work
with Subversion directly from the IDE.

Chapter 6

[233]

Figure 8. Directory Structure for Database Objects

In the preceding screenshot, you can see the directory structure that we use to keep
our files under version control. Besides the structure you may also notice the overlay
icons that Tortoise imposes. There are white checkmarks in green discs, and there are
white exclamation marks in red discs.

The green icons in the preceding screenshot (Figure 8) indicate that the files within
the folder are up to date, and not changed by you. When you start to change files, the
icon overlay will change to the red icon. This will indicate that files are changed, and
that you need to commit these files to the Subversion repository.

Subversion does not lock the files when you are working on them, although you can
if you want to. When you change the file and want to write the changed file back
to the Subversion repository (commit, see Figure 9), it will verify if someone else
changed the file in the meantime. When this is not the case, your version will be the
current version and all is well. When this is the case, and someone changed the file
you were working on, Subversion will try to merge the files.

Deploy and Maintain

[234]

Of course, Subversion can only merge the files, the file from the repository and your
changed file, when different sections are modified. When Subversion is not able to
automatically merge the files, you will need to do this yourself. Tortoise provides
tools to assist you with this. Right-clicking on the file or folder will show you all tools
that Tortoise makes available to you. It is beyond the scope of this book to go into
detail of all of Subversion's functionality.

Figure 9. Tortoise Subversion Context Menu

Chapter 6

[235]

To get your local folders up to date with the version that is available in the
Subversion repository, you will need to perform an update. Right-click on the
folder you want to synchronize, and choose the SVN Update option (see Figure 9).

Removing a file from your local folders will not remove the file from the Subversion
repository. The next time you update your folder, the file will be "missing" in the
eyes of Subversion, and will be placed back into your local folder. When you want
to remove a file (or folder) from your local system as well as from the Subversion
repository, you will need to do a "Subversion delete". Right-click on the file (or
folder) and select TortoiseSVN | Delete from the context menu. This will mark the
file as "deleted", and the next time you commit your changes to the repository, the
file will be deleted from the Subversion repository. This option is visible in Figure 9.

A Sourceforge project is started to combine the power of APEX
with XMLDB, which allows you to use the Oracle database as
your version control system. You can find more information
about this project at http://xace.sourceforge.net/.

Deploying the database packages
When you keep all your files in folders, it is very convenient to generate a script with
all the filenames in a single SQL file to be installed. That way, you will always know
which files to call to install the database objects.

To generate the file to install the package specifications, we use a BAT file, which
looks similar to the following. We have similar files for the other database objects.

@ECHO OFF
REM ===================================
REM == Prepare the Command Processor ==
REM ===================================
SETLOCAL ENABLEEXTENSIONS
SETLOCAL ENABLEDELAYEDEXPANSION
SETLOCAL

SET outputfile=%0
SET outputfile=%outputfile:~0,-4%.sql
set workdir=%~dp0
set currdir=%cd%

cd %workdir%

Deploy and Maintain

[236]

ECHO --- > %outputfile%
ECHO -- Automatically created on: %date% -- >> %outputfile%
ECHO --- >> %outputfile%
ECHO set define off >> %outputfile%
ECHO. >> %outputfile%

ECHO prompt ================================ >> %outputfile%
ECHO prompt ==== Package Specificaties ===== >> %outputfile%
ECHO prompt ================================ >> %outputfile%
ECHO. >> %outputfile%

REM ================================
REM == list the .pks packages ==
REM ================================
FOR /F %%a IN ('dir /b *.pks') DO (
 ECHO prompt Running %%a >> %outputfile%
 ECHO @@%%a >> %outputfile%
)
ECHO. >> %outputfile%

ECHO prompt ========================= >> %outputfile%
ECHO prompt ==== Package Bodies ===== >> %outputfile%
ECHO prompt ========================= >> %outputfile%
ECHO. >> %outputfile%

REM ==================================
REM == list the .pkb packages ==
REM ==================================
FOR /F %%a IN ('dir /b *.pkb') DO (
 ECHO prompt Running %%a >> %outputfile%
 ECHO @@%%a >> %outputfile%
)
ECHO. >> %outputfile%

ECHO set define '^&' >> %outputfile%
ECHO. >> %outputfile%

cd %currdir%

ECHO file "%outputfile%" created.
ENDLOCAL

This BAT file will gather all files within the folder with the .pks and .pkb
extensions. This works as we keep our package specifications and package
bodies in separate files, with the pks extensions for package specifications
and pkb for package bodies.

Chapter 6

[237]

The BAT file should be in the same folder as the package specifications and bodies.
Open up a command window and navigate to the folder where you keep your
package files. In the following screenshots, you will see examples of how to do this:

Figure 10. Change Directory in Command Window

Now, call the BAT file, and that is all. The BAT file will give you feedback that the
packages_all.sql file is created in the same folder where all the package files are.

Figure 11. Run the BAT file to generate an Install script

Deploy and Maintain

[238]

The following listing shows what that the generated file will look like. The list of
package specifications and bodies are shortened for display purposes.

--
-- Automatically created on: Sat 12-05-2012 --
--
set define off

prompt ================================
prompt ==== Package Specificaties =====
prompt ================================

prompt Running docman_autorisatie_apex.pks
@@ docman_autorisatie_apex.pks
prompt Running docman_autorisatie_pkg.pks
@@ docman_autorisatie_pkg.pks
prompt Running docman_context_pkg.pks
@@ docman_context_pkg.pks

prompt =========================
prompt ==== Package Bodies =====
prompt =========================

prompt Running docman_autorisatie_apex.pkb
@@ docman_autorisatie_apex.pkb
prompt Running docman_autorisatie_pkg.pkb
@@ docman_autorisatie_pkg.pkb
prompt Running docman_context_pkg.pkb
@@ docman_context_pkg.pkb

set define '&'

We deliberately included SET DEFINE OFF at the beginning of the generated script,
to avoid being prompted for substitution variables when we run the script. Of
course, we also included SET DEFINE '&' at the end of the script to reset SQL*Plus.

Sometimes you will encounter SET SCAN OFF in SQL*Plus
scripts. This will have the same effect as SET DEFINE OFF.
The former is the older version to achieve the same, hence we
prefer to use SET DEFINE.

Between each of the calls to run either the package specification, or the package
body, we include a prompt command. This will help us when we run the
packages_all.sql file to install the package specifications and bodies. When a
package specification or body does not compile properly, we get the information
that specifies the file that was executed.

Chapter 6

[239]

Deploying the APEX application
Even though the database deployment is essential for the application, most users
don't like to use an interface, such as SQL*Plus, to interact with the data. That is
why they ask for the APEX application in the first place.

When the database side of the application is done, the APEX application itself also
needs to be deployed. This can be done in different ways, through the APEX builder
interface or through the command line. Both will be shown in this section.

My personal preference of deploying the APEX application is to do this through the
command-line interface. This way I can deploy the database side, tables, packages,
and so on, from the command line as well as the APEX application. There is no need
to start up the browser and log in to the APEX environment. This whole process can
also be scripted, so that installation becomes very easy.

Using the APEX environment
In order to deploy the APEX application using the APEX environment, you need to
log in to the APEX Builder.

At the top of the page in the APEX Builder, there are options to create a new
application, export an application, and import an application, as can be seen
in Figure 12.

Figure 12. Import or Export through the APEX Builder

The Reset option in this menu relates to Interactive Report, which shows all the
applications within the workspace. When you have filtered the results, the Reset
button will remove all the customization you made to Interactive Report.

Deploy and Maintain

[240]

To deploy the application, click on the Import button. Then you will be prompted to
specify the file which you want to import.

Figure 13. Specify the Import File

Because we click on the Import button from the Application Builder page, the file
type is automatically set to Database Application, Page or Component Export.
There is no need to change the file type.

After selecting the appropriate application file, click on the Next button.

The selected file will be uploaded to the APEX repository, and you will be shown
that this has happened successfully.

Figure 14. Successfully Imported File

Chapter 6

[241]

Even though it might appear that you're ready, this is not the case. The application
is not deployed yet. The application file is merely uploaded to the APEX repository.
When we want to install the application, and that's what we want, we will need to
press the Next button to start the deployment.

Figure 15. Install Options

First, we will be prompted with the information regarding the application, such as
the current workspace, and the parsing schema from the export file.

Choose Parsing Schema for which the application needs to be deployed; in the
screenshot (Figure 15), a different schema was chosen to deploy the DocMan application.

Also choose Build Status for the application. This can be any of the following:

• No Build Status
• Run Application Only
• Run and Build Application

The first option is a strange one. When you select Build Status as No Build
Status and press the Install button, you will get an error, as shown in the
following screenshot:

Figure 16. Error Message when Build Status is not Specified

Apparently No Build Status is implemented as null, but the item is
mandatory, which can also be seen by the asterisk in the label of the item.

Deploy and Maintain

[242]

Run Application Only should be the option to choose when you deploy the
application. This option deploys a run-only version of your application, just as the
name indicates. Because the application is run-only, you are not allowed to make
changes to the application after deployment. After all, you want to make changes to
the development version of the application, and not to the deployed application.

Even though the application is run-only, you can still switch
it to the Run and Build Application mode at a later time. This
needs to be done by the workspace administrator.
Log in to the workspace as the administrator. Navigate to the
Administration section, and select the Manage Service option.
On the right-hand side of this page is a section labeled Manage
Meta Data. In this list is an entry named Application Build
Status. Clicking on this link will bring you to the Application
Build page. On the Application Build Status page, you have
the option to change the Build Status value of the application
to Run and Build Application or to Run Application Only.

Run and Build Application will deploy the application in a similar manner as it
was in the development environment. It allows you, as the name indicates, to run
the application as well as to make changes to it. When deploying the application to
production, this option should not be used. You don't want to have changes made to
the production environment directly. Changes should always be made starting from
the development environment to the test environment and eventually to production.

On the same page in the import wizard, the last option you have to choose is the
application ID. There are three options:

• Auto Assign New Application ID
• Reuse Application ID from Export File
• Change Application ID

When you choose the first option, Auto Assign New Application ID, the first
available application ID will be chosen for the application that you are importing.

Chapter 6

[243]

The second option, Reuse Application ID from Export File, will use the application
ID that is specified in the export file. This will be the same ID as the original
application. When you use this option, the previously deployed application, if there
is one, will be overridden. You will be prompted if you want to replace the existing
application (Figure 17):

Figure 17: Confirmation Question to Replace an Existing Application

This should be the option you want to use. This way, you will only have one version
of the production application in the production environment. There will never be
any confusion as to which application is the "real" one.

If you auto assign a new application ID, the import process will also alter your
application alias. Using an application alias is very convenient, because it allows
you provide the users with a single URL, such as http://xp-vm:8080/apex/
f?p=DOCMAN.

This URL doesn't need to change after you deploy the new version of the application.

The last option with regard to the application ID is to change it. When you choose
this option, you will see a new text item where you can input your new application
ID. There is a restriction, however. Not all application IDs are allowed. Oracle
reserves the range between 3000 and 9000.

After you complete this form, the actual installation of the application will start:

Figure 18. Processing Animation when Installing

Deploy and Maintain

[244]

When the application is finally installed, a success message is shown as well as three
options, with a choice of what to do next:

Figure 19: Options after Installation

These three options, shown in Figure 19, are only available when you have imported
the application in Run and Build Application. When you have installed the
application as Run Only, you will be presented with the following screenshot:

Figure 20. Run-Only Confirmation page after Installation

The only option that is presented now is Cancel. This will take you back to the
application builder page. Run Only applications are easy to identify; they have
a different icon from regular applications:

Figure 21. Run-Only icon

Needless to say that clicking on the icon will not show you the pages that make up
the application. Instead, a message similar to the following is shown:

This application is installed but not editable.

Chapter 6

[245]

The first and the second options are self-explanatory. The third option, Upgrade
Application, was introduced with APEX 4. Since APEX 4 was a fairly extended
overhaul, the APEX team provided you with the option to upgrade your application.
Some of the functionality, which you had to implement yourself in earlier versions
of APEX, have been standard pieces of functionality since APEX 4. For example,
the datepicker; in earlier versions of APEX, the datepicker would open a separate
browser window. Nowadays, it is a jQuery datepicker, which displays as if it
were integrated in your application. The Upgrade Application option identifies
the old-style datepicker and can convert these for you automatically, if you want
of course—the choice is yours. There are many other features that can be enabled
by a click of a button.

Using the command-line interface
When you know all the options that you want or need, it can be quite tedious to go
through the APEX environment to deploy the application.

There is also the option to use the SQL command-line interface to deploy the
application. The big advantage of this method is that the SQL commands can
be combined into a complete deployment script, including the database objects
(tables, packages, and so on) as well as the APEX application itself.

When you export an application, you are actually exporting the metadata that
comprises the application. When you open the exported application, which is
just a .sql file, you will see that the script consists of a number of PL/SQL
anonymous blocks.

Some might be tempted to open up a SQL window and simply run the application
export script. If you have ever done so, you will recognize the follow statement:

APPLICATION 100 - DocMan

Set Credentials...

Check Compatibility...

API Last Extended:20100513

Your Current Version:20100513

This import is compatible with version: 20100513

COMPATIBLE (You should be able to run this import without issues.)

Set Application ID...

begin

*

ERROR at line 1:

Deploy and Maintain

[246]

ORA-20001: Package variable g_security_group_id must be set.

ORA-06512: at "APEX_040000.WWV_FLOW_API", line 51

ORA-06512: at "APEX_040000.WWV_FLOW_API", line 304

ORA-06512: at line 4

Disconnected from Oracle Database 11g Express Edition Release 11.2.0.2.0
– Production

Even though it is a regular .sql file, you can not run it without undertaking
some actions first. The following script generates the offset that is needed to
install the application.

This script has to be run as SYS.

declare
 l_workspace_id number;
begin
 select workspace_id
 into l_workspace_id
 from apex_workspaces
 where workspace = upper('&ws_name');

 APEX_APPLICATION_INSTALL.SET_WORKSPACE_ID(l_workspace_id);
 APEX_APPLICATION_INSTALL.GENERATE_OFFSET;
 APEX_APPLICATION_INSTALL.SET_SCHEMA(upper('&schema'));
 APEX_APPLICATION_INSTALL.SET_APPLICATION_ALIAS('&app_alias');
end;
/

There are a number of substitution variables in the script, which can be set when you
run the script from SQL*Plus. The substitution variables are easy to recognize, as
they have an ampersand (&) at the beginning of the name. You need to provide the
actual names for the workspace name, the parsing schema, and the application alias.
After running this script, you can run the exported application script from SQL*Plus.

Depending on your needs, it is also possible to create a workspace using the
command-line interface, as follows:

begin
 begin
 APEX_INSTANCE_ADMIN.REMOVE_WORKSPACE(
 p_workspace => upper('&ws_name')
 ,p_drop_users => 'N'

Chapter 6

[247]

 ,p_drop_tablespaces => 'N'
);
 exception
 when others
 then
 -- removing the workspace doesn't succeed
 -- most likely it is not there (yet)
 -- ignore the exception
 null;
 end;
 APEX_INSTANCE_ADMIN.ADD_WORKSPACE(
 p_workspace => upper('&ws_name')
 ,p_primary_schema => upper('&schema')
 ,p_additional_schemas => null
);
end;
/

The preceding script will attempt to remove the workspace if it exists, and then
create a workspace with the given name. This script will also need to be run logged
in as SYS.

When you create the workspace using the preceding method, you might get a
message informing you that the workspace is inactive when you try to log in to the
workspace. This bug only happens with APEX version 4.1.1, and should be resolved
in later releases.

The exact message will be:

Error Workspace <workspace name> is inactive. Contact your administrator

To make the workspace available again, you need to run the following script:

-- Workspace can be disabled when the workspace
-- is created using the command line.
-- This can only happen with APEX 4.1.1
begin
 for l_workspace in (select short_name
 from wwv_flow_companies
 where account_status='AVAILABLE')
 loop
 apex_instance_admin.enable_workspace
 (l_workspace.short_name);
 end loop;
 commit;
end;

Deploy and Maintain

[248]

The preceding script should be run when connected as SYS, SYSTEM, APEX_040100,
or any user who has APEX_ADMINISTRATOR_ROLE. In future releases of APEX, this
inactivation of the workspace should not occur. This behavior was filed as a bug,
number 13769526.

Housekeeping the APEX repository
Importing applications into your workspace basically means that the files are
uploaded to the APEX repository. When a lot of applications are uploaded, or
at least a lot of files are uploaded, this will result in quite a large repository.

It is good practice to remove the older imported files from the repository, as
they might be inadvertently installed. Since APEX version 4, the repository is
automatically purged, but the time between each purge might still create an
opportunity to mistakenly install the wrong application.

From the main menu, click on the little arrow next to Application Builder.
A context menu will be shown. Select the second-last option on the list,
labeled Repository:

Figure 22. Navigate to Repository

Chapter 6

[249]

This will take you to Export Repository, as shown in the following screenshot:

Figure 23. Export Repository

A list of imported files is shown. Not only imported applications, but all imported
file types, such as plugins, Websheet applications, and themes will display.

Now, select the files you want to remove by selecting the checkbox on the left-hand
side of the report, and click on the Delete Checked button. After the confirmation
question, the selected files are removed from the repository.

Being active and proactive
The users expect the application to work flawlessly and the way they imagined that
it would work. You do your best to create a flawless application, and implement
all the wishes that the user wanted. You have taken care to test, test, and test some
more. Your database code has gone through the harshest of scrutiny and has been
deemed application quality code. Yet when the application is deployed, within the
first millisecond, the user encounters a problem or just does not like the way the
application works.

It seems like it does not matter how much effort you put into creating the ultimate
application; there is always something that goes wrong, takes too long, or should
have been implemented a different way.

Feedback
APEX 4 makes it really easy to enable feedback for your application. Before the
APEX team releases their next version, they often ask the community to try it out,
kick the tires so to speak. When they do, they always enable the feedback option,
because the feedback the APEX team gets about bugs, requests for improvement,
or general comment will improve the product before it is actually released.

You can do something similar in your own application, and it just takes a few
minutes to be up and running.

Deploy and Maintain

[250]

Feedback is part of the Team Development, which is incorporated in APEX. In this
section, we offer you a glimpse of what you can do with it. We strongly encourage
you to discover all the ins and outs of Team Development.

Activate feedback
Activating the feedback for your application is as simple as following a wizard.
Start the wizard to create a new page. Choose the page type as Feedback Page
(see Figure 24):

Figure 24. Create Page Wizard

Chapter 6

[251]

Just like with any other page, you will see the regular properties, such as Page
Number, Page Name, and two other sections.

The first section concerns the navigation bar. When you select Yes, there will be a
feedback link added to the navigation bar (most of the times, in the top-right corner
of your application where you also find the Logout link). You can define your own
label for this navigation bar entry.

The second section gives you the option to enable feedback for the application. Most
likely, you will select Yes here as well. You can also disable the feedback mechanism
later on.

Figure 25. Feedback Page options

This is where the wizard ends. Select Create, and you will have activated the
feedback option for the application.

When you run the application, you will notice the Feedback link in the
navigation bar:

Figure 26. Navigation Bar with Feedback Link

Deploy and Maintain

[252]

When you click on the Feedback link, you will be shown the Feedback page
(see Figure 27). Of course, you can customize this page, just like any other page.
There are three different types of feedback: General comment, Enhancement
Request, and Bug:

Figure 27. Standard Feedback Popup Page

When the user submits the feedback, it will be entered in the Team Development
section. This section is available in the development environment.

Processing entered feedback
To see the feedback given by the users, log in to the APEX development
environment. From the main menu, select Team Development:

Figure 28. Team Development Menu

Chapter 6

[253]

As you can see, the Team Development section has a lot of options to keep a track of
the project. Click on the large Feedback icon to navigate to the feedback section.

This will open up the Feedback Dashboard, where you get an overview of all the
feedback that is provided to you:

Figure 29. Feedback section in Team Development

All incoming feedback can be viewed when you click on the Feedback tab page
(see Figure 29). Here, you can see the feedback that we just entered through the
application. Now, it is up to you to decide what to do with this feedback. Would you
classify it as a bug, something that needs to be done, or would it be a new feature?
Buttons at the bottom of the provided feedback allow you to classify them directly.
Classifying the feedback will enter it into the Team Development environment, so
that it can be incorporated into the project.

Deploy and Maintain

[254]

The type of feedback we got, in this example, would classify as a suggestion that will
be put on the To Do list. Clicking on the button labeled Log as To do, will bring up
the following page (Figure 30):

Figure 30. Log Feedback as To Do

On this page, we assign the task and provide the status. We can adjust all other
settings later on, if we want to. Now that the feedback is registered in Team
Development, we can keep a track of its progress.

The Team Development section offers a lot more functionality, which is worth
exploring to aid with the development process, and we encourage you to do so.

Disabling the feedback for your application is even easier than enabling it. You can
do this from the builder page of your application.

Figure 31. Application Builder Main menu

Chapter 6

[255]

On the application builder page, next to the button to create a page, there is a button
labeled Edit Application Properties (see Figure 31).

Clicking on this button will take you to the application's Properties page. On this
page, there is a section Properties (see Figure 32). In this section, you can enable or
disable the feedback for your application; simply set the value to No for the Allow
Feedback property:

Figure 32. Application Properties

Apply the changes, and the feedback option is disabled for your application.
Disabling feedback will automatically remove the Feedback link in the
navigation bar.

Weighted page performance
One of the things that I really do not like is when the users of the application tell me
that something "doesn't work" or that a certain page takes too long to load. While the
first statement is less than helpful and needs more clarification, the latter is certainly
easy to investigate. What is even better is that APEX can help you get proactive with
identifying pages that take too much time to load. The fact that a certain page takes
a long time to load is not necessarily a problem. Pages that are frequently visited,
should be as fast as possible. Pages that are not visited very often, such as once a
month, do not need to be blazingly fast. Users do accept that some pages take longer
to load, as long as the pages that are needed most load very, very fast.

In the Administration section of the workspace, there is a report that can help you
target the pages that are frequented often and take time to load.

Deploy and Maintain

[256]

Navigate from within your workspace to the Administration section, and click on
the Monitor Activity icon:

Figure 33. Monitor Activity

There is also another way of getting to the Monitor Activity page. Next to the
Administration menu item is a small triangle. When you click on that, you will
see a drop-down menu, which also shows the Monitor Activity entry:

Figure 34. Monitor Activity Menu Option

Either way leads you to the page where you can find the report we were
talking about.

Chapter 6

[257]

There is a section on that page titled Page View Analysis, which has five different
report links within that section. The one report we're interested in is called By
Weighted Page Performance, highlighted in Figure 35:

Figure 35. Weighted Page Performance Report

Clicking on that link will show you an interactive report like the one in Figure 33,
which shows you the pages that are visited most frequently and their time to
render. The pages with the highest value for the Weighted Average should get
the most attention.

Figure 36. Weighted Page Performance Report

Elapsed time columns are reported in seconds. Weighted average is
calculated by multiplying page events by average page rendering
time in seconds. Median average is calculated by multiplying page
events by median page rendering time in seconds. Page events
include page rendering and page processing events.

Deploy and Maintain

[258]

Summary
In this chapter, we looked at some different methods for deploying our application,
including packaging your application as well as separately deploying the database
objects and the APEX application, using the command line.

Enabling feedback for your application can engage the users more with the
application, as they can provide direct feedback to improve the application and
report unwanted functionality directly to the developers.

Monitoring the application, regarding performance, needs to be done proactively.
Performance problems can be detected in an early stage by monitoring the
application performance. Knowing where to direct your attention to when
optimizing the performance of your application is vital. APEX provides you this
mechanism out of the box, and you can take advantage of this directly.

Database Cloud Service
and APEX 4.2

Cloud is the new pride of Oracle, announced during Oracle Open World in 2011.
This addendum will give a short overview of the Database Cloud Service and the
role of Application Express.

This addendum will discuss the following subjects:

• What is Oracle Public Cloud?
• Application Express features in the Database Cloud Service and APEX 4.2.

Oracle Public Cloud
The Oracle Public Cloud is a suite of Oracle applications, middleware, and database
offerings delivered in a self-service, subscription-based, elastically scalable, reliable,
highly available, and secure manner.

The Oracle Public Cloud includes the following services:

• Application Services
• Oracle Fusion CRM Cloud Service
• Oracle Fusion HCM Cloud Service
• Oracle Social Network Cloud Service

Platform Services:

• Oracle Database Cloud Service
• Oracle Java Cloud Service

Database Cloud Service and APEX 4.2

[260]

For additional information, see https://cloud.oracle.com.

The Database Cloud Service, although based on the Oracle database, is a platform as
a service product rather than a database as a service product. The Database Cloud
Service combines the following products:

• Application Express
• RESTFul web services access
• SQL Developer
• Packages applications

Cloud computing is a little bit misleading. For Database Cloud Service, you interact
with the Oracle database.

Packaged applications
The Oracle Database Cloud Service and Application Express 4.2 include a set of
business productivity applications and sample code. All of these applications are
easy to use, support mobile devices, and are installable in a few clicks. Productivity
applications can be unlocked for customization and learning purposes. Of course,
Oracle can only provide support for locked applications. Productivity applications
are not the same as sample applications, because sample applications are unlocked
by default.

Examples of productivity applications are the project tracker and checklist manager.
Examples of sample applications are error handling, interactive reports, and the
mobile sample application.

Plan for the future
In addition to these packaged business applications and sample code, the Oracle
Database Cloud Service supports third-party applications. All third-party
applications will go through a validation process to ensure the safety of the
application and the protection of user data in the Oracle Database Cloud Service
environment (Oracle Certification).

Appendix

[261]

The following screenshot shows an example of the available packaged applications:

RESTful web services
The Oracle Database Cloud Service and Application Express 4.2 include the RESTful
Web Services wizard that allows you to easily create a web service to access any SQL
statement or PL/SQL program. This wizard makes it easy to create RESTful web
services to be used by applications outside the Database Cloud Service.

RESTful web services have three main characteristics:

• The services use HTTP methods explicitly
• The services are accessible through URIs
• The services are stateless

Database Cloud Service and APEX 4.2

[262]

Terminology used in the RESTful Web Services wizard are listed in the
following table:

Terminology Description
Module The RESTful service module is used to group services.
Template A template is identified by a unique URI, which also includes a portion

based on the Database Cloud Service and the module.
Handler A handler is based on a specific HTTP method, such as GET (select),

POST (update), PUT (insert), or DELETE. You can only have one handler
for each HTTP method for each template.

Source type When you create a RESTful web service, the key attribute of the service
is the source type. There are two basic categories of source types—SQL
and PL/SQL.

Query A query source type is defined as any standard SQL statement.
Query one row The query one row source type only returns a single row from the

SELECT operation.
Feed The URL returned by the feed web service is formed by using the

URI for the web service with the value for the first column in the SQL
statement passed as the argument in the URI.

PL/SQL The PL/SQL source type allows you to use any PL/SQL code to create
and return data from a RESTful web service call.

The RESTful Web Services wizard
On the home page of the RESTful Web Services wizard, a report on web services
modules exists. The module named oracle.example.hr is shown in the following
screenshot. The home page can be reached through SQL Workshop/RESTful
Web Services.

Appendix

[263]

Click on the module and you will see two logical parts of the page. On the left-hand
side, you will see a list of various templates within the module. On the right-hand
side, you will see the attributes of this module.

The next example steps through the RESTful Web Services creation wizard are
as follows:

1. Start the wizard by clicking on Create Template, as shown in the
following screenshot:

Database Cloud Service and APEX 4.2

[264]

2. Give the template a name, for example empall/.

Remember that the forward slash at the end of the
URI is required.

3. The next step is to create the handler.
You can do that by clicking on Create Handler just below the RESTful
service (empall/):

Appendix

[265]

4. Now select the HTTP method for your RESTful service.
The HTTP methods available here are GET (equal to select), DELETE
(equal to delete), PUT (equal to insert), and POST (equal to update):

5. From the available source types, select Query. As the output format you can
choose between JSON and CSV. Select JSON.

Database Cloud Service and APEX 4.2

[266]

6. The Source field contains the source code, which will be executed when the
web service is called. Enter the following query in this field:
Select *
From EMP
Order by deptno, ename

7. Click on the Create button to save the template.

We can test the web service by clicking on the Test button and check the
outcome of the web service. An example of a possible outcome, depending
on your data, is shown in the following screenshot:

Appendix

[267]

Remark
To have this nice layout, I installed the Firefox browser
JSON viewer plug-in from https://addons.mozilla.
org/en-us/firefox/addon/jsonview/.
A report region can be created to show the output from the
RESTful web services as shown in the preceding example.

Data load feature (SQL Workshop/utilities/
data load)
The data load feature enables us to load or unload data from our Oracle Database
Cloud Service. The utility enables you to upload data from a text file, an XML
document, or a spreadsheet. This utility is accessed from the Application Express
SQL Workshop.

Summary
Oracle Application Express is going to be an important tool in the Database Cloud
Service. RESTful Web Services allows you to easily create a web service to access any
SQL statement, PL/SQL program. The data load feature helps to upload or unload
data from the Oracle Public Cloud.

Index
Symbols
32K limit

bypassing, on reports 133

A
access control administration page

creating 176-178
Access Control Lists (ACLs) 157, 158
accounts, APEX 19
ADF 8
administrator

APEX, securing for 138
creating 16, 17
creating, in workspace 24

aggregate functions
about 77
frontend process, offloading 86
GROUPING SETS 78

alternative quoting 147
analytic functions

about 61
examples 64
syntax overview 61-63

Apache FOP
about 102, 103, 120
configuring 105, 106
installing 104
printing architecture 104
using 106, 107

APEX
about 7, 195, 205, 226
accounts 19
administrator, creating 16, 17
administrator, creating for workspace 24

and Firebug 215
application, deploying 239
background 7
builders, enabling in 158
characteristics 9
command line 18
database 19
database environment, protecting 138
database packages, deploying 235-238
database tools 22
developers, creating in workspace 24
dynamic actions, debugging 215, 216
error handling 217
hidden items, protecting 186, 187
history 8
installing 9
miscellaneous tools 22
multiple applications, structure 30
packaged application, creating 226-231
Page Zero template 29
password complexity rules 161
remote debugging, performing 210
repository, housekeeping 248, 249
secure items 185
securing, for administrator 138
subscribe and publish mechanism 30, 31
Subversion 232-235
tools, for web development 22
URL, for hosted version 9
user interface defaults 25
users, creating in workspace 24
utility reports, used for troubleshooting 220
version control 231
versus WebDB 7
VPD, implementing in 148, 149
web interface 17

[270]

web server, selecting 12
workspace, creating 23, 24

APEX 4
feedback, activating for application 250-252
feedback option, enabling 249

APEX 4.2
features 226

APEX_ACTIVITY_LOG view 219
APEX advisor 192, 193, 221
APEX application

deploying 239
deploying, command-line interface

used 245-248
weighted page performance 255-257

apex_application.g_debug variable 202
APEX_APPLICATION package 202
APEX application report

creating, with Business Intelligence
Publisher 115

APEX Builder 239
APEX_DEBUG_MESSAGE.LOG_

MESSAGE process 204
APEX_DEBUG_MESSAGE

package 202, 203
APEX_DEBUG_MESSAGE procedure 202
APEX_DEBUG_MESSAGES view 200
APEX, dictionaries

about 25
attribute 25
table 25

APEX environment
entered feedback, processing 252-255
using 239-244

apex_fop.jsp 103
APEX, installing

full development environment, converting
to runtime environment 11, 12

on development environment 10
on runtime environment 10
runtime environment, converting to full

development environment 11, 12
APEX Listener

about 14, 15
plans, for future versions 102

APEX pages
data model, mapping to 37, 38
debugging 195-200

APEX repository
housekeeping 248, 249

ApexSec Security Console 193
apex_util.download_print_document 133
APEX_UTIL_DOWNLOAD_PRINT_

DOCUMENT function 130
apex_util.get_print_document 133
APEX web interface 17
Application Builder utilities

Application Express views 222
attribute dictionary 222
database object dependencies 222
upgrade application 222

Application Context
about 144
manipulating 144
working with 144-146

application dashboard 191
application data 189
Application Express. See APEX
applications

creating 36
deploying 36, 225
feedback, activating for 250-252
report, linking to 119, 120

application services 259
Application Utilities 220
architectures

used, for deploying APEX 151
attacker 163
Attribute Dictionary 25
authentication 170, 171
authentication mechanisms

custom 172
database accounts 172
HTTP header variable 172
LDAP directory 173
no authentication 174
open door credentials 174
Oracle Application Express accounts 172
Oracle Cloud identity management 174
out of the box 172
Single Sign On (SSO) 174

authentication plugin 184, 185
authentication schema

creating, from scratch 175

[271]

authorization
about 174
access control administration page,

creating 176-178
authorization plugin 184, 185
authorization schema

applying 178, 179
authorization scheme

about 174
creating 175
implementing 175

B
base tables

about 38
characteristics 38, 39

BAT file 235, 236
bind variable

using 169
breakpoint

about 207
defining, in procedure 209

browser attack methods
about 163
cross-site scripting (XSS) 163, 164

browser security attributes
about 183
Cache 183
database session attribute 184
Embed in Frames 183

builders
enabling, in APEX 158

Build Status option 10
Business Intelligence Publisher

about 109
APEX application report, creating with 115
main screen 110
print test, performing 111, 112
using 110, 111

Business Intelligence Publisher version 11
installing 109

C
characteristics, RESTful web services 261
chart

adding, to report 122-125

Cloud 259
cloud computing 9, 260
Cocoon 134
code instrumentation 201
Column Level Security 142
command line, APEX 18
command-line interface

used, for deploying APEX
application 245-248

Computer Aided Software Engineering
(CASE) 20

configuring
Apache FOP 105, 106

content
searching, in documents 97-99

credentials verification 172
cross-site scripting (XSS)

about 163, 164
rules 165

CSS 7
Cube clause 83
custom authentication schemes 172

D
database 138
Database 11gR2 11.2.0.1 158
Database 11gR2 11.2.0.2 158
database accounts 172
database, APEX

database objects, creating 21, 22
data model 19-21
tools 22

Database Cloud Service 260
database environment

protecting, for APEX 138
database modeling

guidelines 21
Database Object Dependencies utility

about 229
problems 230

database objects
creating 21, 22

database packages
deploying 235-238

database schema 179

[272]

database session attribute
using 184

database tools 22
data load feature 267
data model

about 19-21
mapping, to APEX pages 37, 38

Data Modeler 20
data model, mapping to APEX pages

base model 38, 39
intersection table 42-44
master detail 40, 41
other pages 46
simple report 46

datepicker 245
DBMS_DEBUG_JDWP 205
DBMS_DEBUG package 205
DBMS_LOB.SUBSTR function 127
DBMS_SESSION package 144
debug Advanced Programming

Interface (API) 202
debug option, Oracle SQL Developer 207
deployment 225
developers

creating, in workspace 24
development environment

APEX, installing on 10
docman_ctx namespace 144
documents

printing, Print API used 130-132
dynamic actions

debugging, in APEX 215, 216
dynamic images

adding, to report 125-130
dynamic output

protecting 165

E
Embedded PDF plugin 13, 136
embedded PL/SQL gateway

about 153
URL, for info 154

ENABLE_DEBUG_MESSAGES
procedure 202

entered feedback
processing, in APEX environment 252-255

error handling, APEX 217
examples, analytic functions

caveats 73-76
rank, assigning 70-72
rows, accessing in result set 69
running totals 64, 65
stringing 72
values, accessing from other records 67, 68
window, visualizing 66, 67

F
fake input 189
feed 262
feedback

activating, for application 250-252
feedback option

enabling, in APEX 4 249
Fetch Row process 43
file upload items 188
Fine Grained Access Control 139
Firebug

about 214
and APEX 215
URL, for downloading 214

fop.war file
deployment steps 105

form items
protecting 165

framework
creating 32

full development environment
runtime environment, converting

into 11, 12
functionalities, login application 35

G
get_selectlist function 43
Glassfish 14
g_package 49
GROUPING SETS

about 78-81
Cube clause 83, 84
Rollups 81, 82
totals and subtotals, identifying 84-86

[273]

H
handler 262
heap table 54
hidden items

protecting 186, 187
hidden items, APEX

hidden 186
hidden and protected 186

HTML 7
HTMLDB 8
HTML regions

protecting 165
HTTP header variable authentication 172
HTTP methods, RESTful service 265
HTTP server

about 151
rewrite rule 152
security considerations 152

I
import wizard 225
index-organized tables 59-61
installation process, APEX

security measures 156
installing

APEX 9
Business Intelligence Publisher

version 11 109
JavaScript console wrapper 211, 212
Subversion client 232

instance security
managing 188

instrumentation, APEX code 201
intersection table 42-44
item encryption 186

J
JasperReports

about 102, 135
architecture 135

Java Runtime Environment (JRE) 105
JavaScript 7

JavaScript Console Wrapper
about 211
installing, steps 211, 212

jQuery datepicker 245

L
LDAP directory 173
Lightweight Directory Access

Protocol (LDAP) 171, 173
LINT 192
List of Values (LOV)

about 53
creating 36, 37

logger_logs_5_min 50
logger_logs_apex_items 50
Logger package 48
logging

about 218
disabling 220
enabling 219

login application
about 33
creating 33, 34
examples, of pages 35
functionalities 35

LOG_LONG_MESSAGE procedure 202
LOG_MESSAGE procedure 202
LOG_PAGE_SESSION_STATE

procedure 203
lookup tables

about 52, 53
index-organized tables 59-61
single-table hash clusters 53-58

M
master application

about 33
creating 33

master detail 40, 41
maximum session idle time 159
maximum session length 159
mod_rewrite module 152
module 262

[274]

multiple applications
framework, creating 32
structure 30

N
network services

testing 113
NO authentication 174

O
OC4J 102, 105
offloading process

about 86
images, using 95-97
one-off job 86-90
pipelined table functions 91, 92
pipelined table functions, in APEX 93-95

OHS 13
one-off job 86-90
On Load - After Header process 43
open door credentials 174
Open LDAP 171
Oracle

websites, based on APEX 9
Oracle Access Manager 171
Oracle Application Express

plugins 135
printing architecture 102

Oracle Application Express accounts 172
Oracle Application Express Listener

about 154
security implementation 155
SSL, enabling for web server 155, 156

Oracle Application Express, plugins
about 135
Embedded PDF 136
Reports 2 PDF 135

Oracle Application Server Containers
for J2EE. See OC4J

Oracle Business Intelligence Enterprise
Edition Plus (OBIEE Plus) 110

Oracle Cloud identity management 174
Oracle Database Cloud Service 9, 226
Oracle Designer 20
Oracle Flows 8

Oracle Fusion CRM Cloud Service 259
Oracle Fusion HCM Cloud Service 259
Oracle Fusion Middleware 133
Oracle HTTP Server. See OHS
Oracle Java Cloud Service 259
Oracle Platform 8
Oracle Public Cloud

about 259
packaged applications 260
patform services 259
services 259

Oracle Reports
about 133
integration 134
URL, for info 133
used, for creating reports in multiple

formats 120-122
Oracle SQL Developer

about 205
debug option 207
URL, for downloading 205

Oracle SQL Developer IDE 232
Oracle Technology network

URL 109
out of the box authentication schemes 172

P
packaged applications

about 225, 226
creating 226-231

packaged applications, Oracle
Public Cloud 260

page processing 199, 202
page rendering 199, 202
Page Zero 29
password complexity rules 161
password items 187
patching strategy 162
PDF printing

about 102, 120
alternatives used 133

pipelined table function
about 91, 92
in APEX 93, 94

pks extensions 236

[275]

platform services, Oracle Public Cloud
Oracle Database Cloud Service 259
Oracle Java Cloud Service 259

PL/SQL
about 7, 195, 262
guidelines 23

Print API
used, for printing documents 130-132

printing architecture 102
printing architecture, Apache FOP 104
printing issues

debugging 112
print test

performing, in Business Intelligence
Publisher 111, 112

procedure
breakpoint, defining in 209
debugging 207
running 207

procedures, APEX_DEBUG_MESSAGE
package

DISABLE_DEBUG_MESSAGES 202
ENABLE_DEBUG_MESSAGES 202
LOG_LONG_MESSAGE 202
LOG_MESSAGE 202
LOG_PAGE_SESSION_STATE 203
REMOVE_DEBUG_BY_AGE 203
REMOVE_DEBUG_BY_APP 203
REMOVE_DEBUG_BY_VIEW 203
REMOVE_SESSION_MESSAGES 203

Project Marvel 8
prompt command 238
p_scope parameter 50
pulling method 31
pushing method 31

Q
query 262
query one row 262

R
relations 20
remote debugging

about 209, 210
performing, in APEX 210

REMOVE_DEBUG_BY_AGE procedure 203
REMOVE_DEBUG_BY_APP procedure 203
REMOVE_DEBUG_BY_VIEW

procedure 203
REMOVE_SESSION_MESSAGES

procedure 203
report

32K limit, bypassing on 133
chart, adding to 122-125
creating, in multiple formats 120-122
creating, with Business Intelligence

Publisher 115
dynamic images, adding to 125-130
linking, to application 119, 120
testing, against Apache FOP 108

report, creating with Business
Intelligence Publisher

about 115
report layout, designing 116
report layout, uploading 118
report query, creating 115, 116

report layout
designing 116
uploading 118

report layout, designing
about 116
with RTF template (MS Word) 117
XML data, downloading 117

report query
creating 115, 116

Reports 2 PDF plugin 135
reports regions

protecting 165
Repository Creation Utility (RCU) 110
Representational State Transfer (REST) 9
RESTful web services

about 261, 262
characteristics 261

RESTful Web Services creation wizard
steps 263-266

Rich Text Format (RTF) 103
Rollups 81, 82
Row Level Security 139, 142
RTF template (MS Word)

report layout, designing 117

[276]

runtime environment
APEX, installing on 10
converting, into full development

environment 11, 12
runtime exception

determining 149, 150
runtime installation, APEX 156, 157

S
save state before branch feature 191
schema 7
secure items, APEX

about 185
application data 189
fake input 189
file upload items 188
hidden items protection 186, 187
instance security, managing 188
item encryption 186
items, of type password 187
save state before branch feature 191

Secure Socket Layer. See SSL
security 137
security attributes 170
security considerations, for developer

about 162
authorization and authentication

plugin 184, 185
browser attacks 163
browser security attributes 183
security attributes 170
SQL injection 166
URL tampering 179
utilities 191

security considerations, HTTP server 152
security implementation

in Oracle Application Express Listener 155
security measures, for APEX

installation process
about 156
Access Control Lists (ACLs) 157, 158
builders, enabling 158
password complexity rules 161
patching strategy 162
runtime installation, determining 156, 157
session timeout 159

security patch 162
SELECT operation 262
services, Oracle Public Cloud

application services 259
Oracle Fusion CRM Cloud Service 259
Oracle Fusion HCM Cloud Service 259
Oracle Social Network Cloud Service 259

session state protection
used, for protecting against URL

tampering 179-183
session timeout 159
session timeout settings

at application level 160
at instance level 159, 160

Single Sign On (SSO) 174
single-table hash clusters

about 53-58
URL 53

Sourceforge project 235
source type 262
SQL 195
SQL injection

about 166
avoiding 169
insecure use, of variables 167, 168
rules, for prevention 166

SQL*Plus 139, 239
SSL

enabling, for web server 155, 156
static areas

protecting 165
subscribe and publish mechanism, APEX

about 30, 31
benefits 30

Subversion
about 232
working with 233-235

Subversion client
about 232
installing 232

Sumneva 193
SVN Update option 235
syntax overview, analytic functions 61-63
SYS_CONTEXT function

about 146, 147
used, for accessing stored values in

Application Context 146

[277]

SYS.DBMS_ASSERT package 169
system application 35

T
Table Dictionary 25
tablespaces

about 10
images directory 11
tablespace_apex 11
tablespace_files 11
tablespace_temp 11

team development 250
template 262
template application

about 33
creating 33

Template Builder
about 116
URL, for downloading 122

template workspace 36
terminologies, RESTful web services

handler 262
module 262
PL/SQL 262
query 262
query one row 262
source type 262
template 262

TKPROF 218
Tortoise Subversion 232
trace file 217
tracing 217

U
URL tampering 179
User Interface Defaults

about 25, 26
creating 26
using 26-28

users
creating, in workspace 24

utilities, APEX
about 191
application dashboard 191

utility reports
used, for troubleshooting in APEX 220

UTL_ENCODE.BASE64_ENCODE
function 127

UTL_HTTP RDBMS package 103
UTL_RAW.CAST_TO_VARCHAR2

function 127

V
version control, APEX 231
Virtual Private Database. See VPD
VPD

about 139, 144
implementing, in APEX 148, 149
runtime exception, determining 149, 150
using 139

VPD policy
about 139
purpose 140

VPD policy function 139-143
vulnerabilities assessment

flowchart 167

W
WebDB

about 7
versus APEX 7

Web Developer form 214
Web Developer plugin 213
Web Developer toolbar 213
web listener

securing 151
WebLogic 14
web server

APEX Listener 7, 14, 15
EPG 7, 13
OHS 7, 13
selecting 12
SSL, enabling for 155, 156

weighted page performance 255-257
WHERE clause 142
workspace

administrators, creating 24
creating 23, 24
developers, creating 24
users, creating 24

WWV_FLOW_API.SET_ENABLE_
APP_DEBUGGING 205

[278]

X
XML data

downloading 117

Y
Yslow

about 216
URL, for downloading 216

Thank you for buying
Oracle APEX Best Practices

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle Application Express 4.0
with Ext JS
ISBN: 978-1-849681-06-3 Paperback: 392 pages

Deliver rich, desktop-styled Oracle APEX
applications using the powerful Ext JS
JavaScript library

1. Build robust, feature-rich web applications
using Oracle APEX and Ext JS

2. Add more sophisticated components and
functionality to an Oracle APEX application
using Ext JS

3. Build your own themes based on Ext JS into
APEX - developing templates for regions,
labels, and lists

4. Create plug-ins in your application workspace
to enhance the existing built-in functionality of
your APEX applications

Oracle APEX 4.0 Cookbook
ISBN: 978-1-849681-34-6 Paperback: 328 pages

Over 80 great recipes to develop and deploy fast,
secure, and modern web applications with Oracle
Application Express 4.0

1. Create feature-rich web applications in
APEX 4.0

2. Integrate third-party applications like Google
Maps into APEX by using web services

3. Enhance APEX applications by using
stylesheets, Plug-ins, Dynamic Actions, AJAX,
JavaScript, BI Publisher, and jQuery

4. Hands-on examples to make the most out of the
possibilities that APEX has to offer

Please check www.PacktPub.com for information on our titles

Oracle Application Express
3.2 - The Essentials and More
ISBN: 978-1-847194-52-7 Paperback: 644 pages

Develop Native Oracle database-centric web
applications quickly and easily with Oracle APEX

1. Grasp the principles behind APEX to develop
efficient and optimized data-centric native web
applications, for the Oracle environment

2. Gain a better understanding of the major
principles and building blocks of APEX, like the
IDE and its modules

3. Review APEX-related technologies like HTML
and the DOM, CSS, and JavaScript, which will
help you to develop better, richer, and more
efficient APEX applications

Oracle Application Express
Forms Converter
ISBN: 978-1-847197-76-4 Paperback: 172 pages

Convert your Oracle Forms applications to Oracle
APEX successfully

1. Convert your Oracle Forms Applications to
Oracle APEX

2. Master the different stages of a successful
Oracle Forms to APEX conversion project

3. Packed with screenshots and clear explanations
to facilitate learning

4. A step-by-step tutorial providing a proper
understanding of Oracle conversion concepts

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Prepare and Build
	History and background
	Installing APEX
	Runtime or full development environment
	Build status

	Tablespaces
	Converting runtime environment into a full development environment and vice versa

	Choosing a web server
	OHS
	EPG
	APEX Listener

	Creating a second administrator
	APEX web interface
	Command line
	Other accounts

	Database
	Data model
	Creating the database objects
	Other tools
	PL/SQL usage

	Creating a workspace
	Creating administrators, developers,
and users

	User Interface Defaults
	Attribute Dictionary
	Table Dictionary
	Creating User Interface Defaults

	Page Zero
	Structure of multiple applications
	Subscribe and publish
	Creating a framework
	Master and template application
	Login application—optional
	System application—optional

	Deploying
	Template workspace

	Creating applications
	List of values
	Mapping the model to pages
	Base tables
	Master detail
	Intersection
	Simple report
	Other pages

	Summary

	Chapter 2: Leveraging the Database
	Instrumentation
	Efficient lookup tables
	Single-table hash clusters
	Index-organized tables

	Analytic functions
	Syntax overview
	Examples
	Running totals
	Visualizing the window
	Accessing values from other records
	Another way of accessing other rows in the
result set
	Ranking—top N
	Stringing it all together
	Caveats

	Aggregate functions
	GROUPING SETS
	Rollup
	Cube
	Identifying the totals and subtotals with grouping

	Offloading your frontend and scheduling a job
	One-off job
	Pipelined table functions
	Pipelined table functions in APEX
	Using images

	Searching the contents of documents
	Summary

	Chapter 3: Printing
	Printing architecture
	What is planned for the future version of APEX Listener?

	Installation and configuration of the Apache FOP report server
	How to configure Apache FOP
	Business Intelligence Publisher
	Installation of Business Intelligence
Publisher version 11
	Simple print test using BI Publisher

	How to debug or troubleshoot
printing issues
	How to check if network services
are enabled
	Creating a report with BI Publisher
	Creating the report query
	Designing the report layout
	Downloading XML data
	Designing with the RTF template (MS Word)

	Uploading the report layout
	Linking the report to your application

	How to create a report that can deliver output in different formats
	How to add a chart to a report
	Creating a chart in a report

	How to add dynamic images to a report
	Print API
	How to bypass the 32K limit
	Alternatives to use for PDF printing
	Integration with Oracle Reports
	Integration with Cocoon
	Integration with JasperReports
	Architecture

	Plugins
	Reports 2 PDF
	Embedded PDF

	Summary

	Chapter 4: Security
	Securing Oracle Application Express
for administrators
	Protecting the database environment

	Virtual Private Database
	VPD policy
	VPD and Application Context
	Implementing VPD in APEX
	What to do when you get a runtime exception
	Securing the web listener
	HTTP server

	Embedded PL/SQL gateway
	Oracle Application Express Listener
	Enabling SSL for the web server

	Security considerations when installing Oracle Application Express
	Runtime installation
	Access Control Lists (ACLs)
	Enabling builders in Oracle Application Express
	Session timeout
	Instance level
	Application level

	Password complexity rules
	Patching strategy

	Security considerations for the developer
	Browser attacks
	Cross-site scripting (XSS)
	Protecting HTML regions and other static areas
	Protecting dynamic output
	Protecting reports regions
	Protecting form items

	SQL injection
	Insecure use of variables
	Correct use of Bind variables
	SYS.DBMS_ASSERT

	Security attributes
	Authentication
	Authorization
	Database schema

	URL tampering
	Session state protection against URL tampering

	Browser security attributes
	Cache
	Embed in Frames
	Database session

	Authorization and authentication plugin
	Secure items in an application
	Item encryption
	Hidden items protection
	Items of type password
	File upload items
	Managing instance security
	Application data
	Fake input
	Saving state before branching

	Utilities
	Application dashboard

	How to check the security of your application
	Oracle Application Express Advisor
	Third-party tools to check on security

	Summary

	Chapter 5: Debugging and Troubleshooting
	Debugging an APEX page
	Instrumentation of the APEX code

	APEX_APPLICATION.G_DEBUG
	The debug Advanced Programming
Interface (API)
	The APEX debug message
	APEX_DEBUG_MESSAGE.LOG_MESSAGE
	WWV_FLOW_API.SET_ENABLE_APP_DEBUGGING

	APEX and Oracle SQL Developer
	Remote debugging
	Steps to be performed in APEX

	JavaScript console wrapper
	Installation of the console wrapper

	Web development tools
	Firebug
	APEX and Firebug

	Debugging dynamic actions
	Yslow
	Error handling
	Logging and tracing
	Enabling/disabling logging
	Reports in Application Express that facilitate troubleshooting
	Application Express Advisor

	Summary

	Chapter 6: Deploy and Maintain
	Package your application, or not?
	Version control
	Subversion

	Deploying the database packages
	Deploying the APEX application
	Using the APEX environment
	Using the command-line interface
	Housekeeping the APEX repository

	Being active and proactive
	Feedback
	Activate feedback
	Processing entered feedback

	Weighted page performance

	Summary

	Appendix A: Database Cloud Service
and APEX 4.2
	Oracle Public Cloud
	Packaged applications
	Plan for the future

	RESTful web services
	The RESTful Web Services wizard

	Data load feature (SQL Workshop/utilities/data load)

	Summary

	Index

