
Practical Database
Programming with Visual
Basic.NET

ffirs01.indd iffirs01.indd i 4/25/2012 1:58:59 PM4/25/2012 1:58:59 PM

www.allitebooks.com

http://www.allitebooks.org

IEEE Press
 445 Hoes Lane

 Piscataway, NJ 08854

IEEE Press Editorial Board
 Lajos Hanzo, Editor in Chief

 R. Abari M. El - Hawary S. Nahavandi
 J. Anderson B. M. Hammerli W. Reeve
 F. Canavero M. Lanzerotti T. Samad
 T. G. Croda O. Malik G. Zobrist

 Kenneth Moore, Director of IEEE Book and Information Services (BIS)

ffirs02.indd iiffirs02.indd ii 4/25/2012 3:45:31 PM4/25/2012 3:45:31 PM

www.allitebooks.com

http://www.allitebooks.org

Practical Database
Programming with Visual
Basic.NET
Second Edition

Ying Bai
Department of Computer Science and Engineering
Johnson C. Smith University
Charlotte, North Carolina

IEEE PRESS

A John Wiley & Sons, Inc., Publication

ffirs03.indd iiiffirs03.indd iii 4/25/2012 2:07:28 PM4/25/2012 2:07:28 PM

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2012 by the Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-
4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to
the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifi cally disclaim any implied warranties of merchantability
or fi tness for a particular purpose. No warranty may be created or extended by sales representatives or
written sales materials. The advice and strategies contained herein may not be suitable for your situation. You
should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profi t or any other commercial damages, including but not limited to special, incidental, consequential,
or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic formats. For more information about Wiley products, visit our web site at www.
wiley.com.

Library of Congress Cataloging-in-Publication Data:
Bai, Ying, 1956–
 Practical database programming with Visual Basic.NET / Ying Bai. – 2nd ed.
 p. cm.
 ISBN 978-1-118-16205-7 (pbk.)
 1. Microsoft Visual BASIC. 2. BASIC (Computer program language) 3. Microsoft .NET.
4. Database design. I. Title.
 QA76.73.B3B335 2012
 005.2'768–dc23
 2011039947

Printed in United States of America.

10 9 8 7 6 5 4 3 2 1

ffirs04.indd ivffirs04.indd iv 4/25/2012 1:59:01 PM4/25/2012 1:59:01 PM

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to my wife, Yan Wang,
 and my daughter, Xue Bai.

ffirs05.indd vffirs05.indd v 4/25/2012 1:59:02 PM4/25/2012 1:59:02 PM

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

Preface xxv

Acknowledgments xxvii

Chapter 1 Introduction 1

Outstanding Features about This Book 2
Who This Book Is For 2
What This Book Covers 2
How This Book Is Organized and How to Use This Book 5
How to Use the Source Code and Sample Databases 6
Instructors and Customers Supports 8

Chapter 2 Introduction to Databases 10

2.1 What Are Databases and Database Programs? 11
2.1.1 File Processing System 11
2.1.2 Integrated Databases 12

2.2 Develop a Database 13
2.3 Sample Database 14

2.3.1 Relational Data Model 14
2.3.2 Entity-Relationship Model 17

2.4 Identifying Keys 17
2.4.1 Primary Key and Entity Integrity 17
2.4.2 Candidate Key 18
2.4.3 Foreign Keys and Referential Integrity 18

2.5 Defi ne Relationships 19
2.5.1 Connectivity 19

2.6 ER Notation 21
2.7 Data Normalization 22

2.7.1 First Normal Form (1NF) 22
2.7.2 Second Normal Form (2NF) 23
2.7.3 Third Normal Form (3NF) 24

ftoc.indd viiftoc.indd vii 4/25/2012 1:59:04 PM4/25/2012 1:59:04 PM

www.allitebooks.com

http://www.allitebooks.org

viii Contents

2.8 Database Components in Some Popular Databases 26
2.8.1 Microsoft Access Databases 26

2.8.1.1 Database File 27
2.8.1.2 Tables 27
2.8.1.3 Queries 27

2.8.2 SQL Server Databases 28
2.8.2.1 Data Files 28
2.8.2.2 Tables 29
2.8.2.3 Views 29
2.8.2.4 Stored Procedures 29
2.8.2.5 Keys and Relationships 30
2.8.2.6 Indexes 30
2.8.2.7 Transaction Log Files 30

2.8.3 Oracle Databases 31
2.8.3.1 Data Files 31
2.8.3.2 Tables 31
2.8.3.3 Views 32
2.8.3.4 Stored Procedures 32
2.8.3.5 Indexes 33
2.8.3.6 Initialization Parameter Files 33
2.8.3.7 Control Files 33
2.8.3.8 Redo Log Files 34
2.8.3.9 Password Files 34

2.9 Create Microsoft Access Sample Database 34
2.9.1 Create the LogIn Table 34
2.9.2 Create the Faculty Table 36
2.9.3 Create the Other Tables 38
2.9.4 Create Relationships among Tables 41

2.10 Create Microsoft SQL Server 2008 Sample Database 44
2.10.1 Create the LogIn Table 46
2.10.2 Create the Faculty Table 48
2.10.3 Create Other Tables 49
2.10.4 Create Relationships among Tables 54

2.10.4.1 Create Relationship between the LogIn and the Faculty Tables 54
2.10.4.2 Create Relationship between the LogIn and the Student Tables 57
2.10.4.3 Create Relationship between the Faculty and the Course Tables 58
2.10.4.4 Create Relationship between the Student and the

StudentCourse Tables 59
2.10.4.5 Create Relationship between the Course and the

StudentCourse Tables 60
2.11 Create Oracle 11g XE Sample Database 61

2.11.1 Create a New Oracle Customer User or User Account 63
2.11.2 Create New Customer Sample Database CSE_DEPT 65
2.11.3 Create the LogIn Data Table 69
2.11.4 Create the Faculty Data Table 71
2.11.5 Create Other Tables 74
2.11.6 Create the Constraints between Tables 78

ftoc.indd viiiftoc.indd viii 4/25/2012 1:59:04 PM4/25/2012 1:59:04 PM

www.allitebooks.com

http://www.allitebooks.org

Contents ix

2.11.6.1 Create the Constraints between the LogIn and Faculty Tables 78
2.11.6.2 Create the Constraints between the LogIn and Student Tables 81
2.11.6.3 Create the Constraints between the Course and

Faculty Tables 83
2.11.6.4 Create the Constraints between the StudentCourse

and Student Tables 83
2.11.6.5 Create the Constraints between the StudentCourse

and Course Tables 85
2.12 Chapter Summary 87
Homework 88

Chapter 3 Introduction to ADO.NET 91

3.1 The ADO and ADO.NET 91
3.2 Overview of ADO.NET 93
3.3 The Architecture of ADO.NET 94
3.4 The Components of ADO.NET 95

3.4.1 The Data Provider 95
3.4.1.1 The ODBC Data Provider 97
3.4.1.2 The OLEDB Data Provider 97
3.4.1.3 The SQL Server Data Provider 98
3.4.1.4 The Oracle Data Provider 98

3.4.2 The Connection Class 99
3.4.2.1 The Open() Method of the Connection Class 101
3.4.2.2 The Close() Method of the Connection Class 102
3.4.2.3 The Dispose() Method of the Connection Class 102

3.4.3 The Command and the Parameter Classes 103
3.4.3.1 The Properties of the Command Class 103
3.4.3.2 The Constructors and Properties of the Parameter Class 104
3.4.3.3 Parameter Mapping 105
3.4.3.4 The Methods of the ParameterCollection Class 107
3.4.3.5 The Constructor of the Command Class 108
3.4.3.6 The Methods of the Command Class 109

3.4.4 The DataAdapter Class 112
3.4.4.1 The Constructor of the DataAdapter Class 112
3.4.4.2 The Properties of the DataAdapter Class 112
3.4.4.3 The Methods of the DataAdapter Class 113
3.4.4.4 The Events of the DataAdapter Class 113

3.4.5 The DataReader Class 115
3.4.6 The DataSet Component 117

3.4.6.1 The DataSet Constructor 119
3.4.6.2 The DataSet Properties 120
3.4.6.3 The DataSet Methods 120
3.4.6.4 The DataSet Events 121

3.4.7 The DataTable Component 123
3.4.7.1 The DataTable Constructor 124
3.4.7.2 The DataTable Properties 125

ftoc.indd ixftoc.indd ix 4/25/2012 1:59:04 PM4/25/2012 1:59:04 PM

www.allitebooks.com

http://www.allitebooks.org

x Contents

3.4.7.3 The DataTable Methods 126
3.4.7.4 The DataTable Events 126

3.4.8 ADO.NET Entity Framework 4.1 128
3.4.8.1 Advantages of Using the Entity Framework 4.1 130
3.4.8.2 The ADO.NET 4.1 Entity Data Model 132
3.4.8.3 Using the ADO.NET 4.1 Entity Data Model Wizard 136

3.5 Chapter Summary 145
Homework 146

Chapter 4 Introduction to Language Integrated Query (LINQ) 149

4.1 Overview of Language Integrated Query 149
4.1.1 Some Special Interfaces Used in LINQ 150

4.1.1.1 The IEnumerable and IEnumerable(Of T) Interfaces 150
4.1.1.2 The IQueryable and IQueryable(Of T) Interfaces 151

4.1.2 Standard Query Operators 152
4.1.3 Deferred Standard Query Operators 154

4.1.3.1 AsEnumerable (Conversion Purpose) 154
4.1.3.2 Cast (Conversion Purpose) 154
4.1.3.3 Join (Join Purpose) 154
4.1.3.4 OfType (Conversion Purpose) 156
4.1.3.5 OrderBy (Ordering Purpose) 156
4.1.3.6 Select (Projection Purpose) 157
4.1.3.7 Where (Restriction Purpose) 158

4.1.4 Nondeferred Standard Query Operators 158
4.1.4.1 ElementAt (Element Purpose) 158
4.1.4.2 First (Element Purpose) 159
4.1.4.3 Last (Element Purpose) 159
4.1.4.4 Single (Element Purpose) 159
4.1.4.5 ToArray (Conversion Purpose) 160
4.1.4.6 ToList (Conversion Purpose) 160

4.2 Introduction to LINQ Query 161
4.3 The Architecture and Components of LINQ 164

4.3.1 Overview of LINQ to Objects 165
4.3.2 Overview of LINQ to DataSet 165
4.3.3 Overview of LINQ to SQL 166
4.3.4 Overview of LINQ to Entities 167
4.3.5 Overview of LINQ to XML 168

4.4 LINQ to Objects 168
4.4.1 LINQ and ArrayList 169
4.4.2 LINQ and Strings 170

4.4.2.1 Query a String to Determine the Number of Numeric Digits 171
4.4.2.2 Sort Lines of Structured Text by any Field in the Line 172

4.4.3 LINQ and File Directories 175
4.4.3.1 Query the Contents of Files in a Folder 175

4.4.4 LINQ and Refl ection 177

ftoc.indd xftoc.indd x 4/25/2012 1:59:04 PM4/25/2012 1:59:04 PM

www.allitebooks.com

http://www.allitebooks.org

Contents xi

4.5 LINQ to DataSet 179
4.5.1 Operations to DataSet Objects 179

4.5.1.1 Query Expression Syntax 180
4.5.1.2 Method-Based Query Syntax 182
4.5.1.3 Query the Single Table 184
4.5.1.4 Query the Cross Tables 186
4.5.1.5 Query Typed DataSet 189

4.5.2 Operations to DataRow Objects Using the
Extension Methods 192

4.5.3 Operations to DataTable Objects 196
4.6 LINQ to SQL 197

4.6.1 LINQ to SQL Entity Classes and DataContext Class 198
4.6.2 LINQ to SQL Database Operations 202

4.6.2.1 Data Selection Query 203
4.6.2.2 Data Insertion Query 205
4.6.2.3 Data Updating Query 206
4.6.2.4 Data Deletion Query 207

4.6.3 LINQ to SQL Implementations 210
4.7 LINQ to Entities 210

4.7.1 The Object Services Component 211
4.7.2 The ObjectContext Component 211
4.7.3 The ObjectQuery Component 211
4.7.4 LINQ to Entities Flow of Execution 211

4.7.4.1 Construct an ObjectQuery Instance 212
4.7.4.2 Compose a LINQ to Entities Query 212
4.7.4.3 Convert the Query to Command Trees 212
4.7.4.4 Execute the Query 213
4.7.4.5 Materialize the Query 214

4.7.5 Implementation of LINQ to Entities 214
4.8 LINQ to XML 215

4.8.1 LINQ to XML Class Hierarchy 215
4.8.2 Manipulate XML Elements 216

4.8.2.1 Creating XML from Scratch 216
4.8.2.2 Insert XML 218
4.8.2.3 Update XML 219
4.8.2.4 Delete XML 220

4.8.3 Manipulate XML Attributes 220
4.8.3.1 Add XML Attributes 220
4.8.3.2 Get XML Attributes 221
4.8.3.3 Delete XML Attributes 222

4.8.4 Query XML with LINQ to XML 222
4.8.4.1 Standard Query Operators and XML 223
4.8.4.2 XML Query Extensions 224
4.8.4.3 Using Query Expressions with XML 224
4.8.4.4 Using XPath and XSLT with LINQ to XML 225
4.8.4.5 Mixing XML and Other Data Models 225

ftoc.indd xiftoc.indd xi 4/25/2012 1:59:04 PM4/25/2012 1:59:04 PM

www.allitebooks.com

http://www.allitebooks.org

xii Contents

4.9 Visual Basic.NET Language Enhancement for LINQ 227
4.9.1 Lambda Expressions 227
4.9.2 Extension Methods 229
4.9.3 Implicitly Typed Local Variables 232
4.9.4 Query Expressions 234

4.10 Chapter Summary 236
Homework 237

Chapter 5 Data Selection Query with Visual Basic.NET 241

Part I Data Query with Visual Studio.NET Design Tools and Wizards 242

5.1 A Completed Sample Database Application Example 242
5.2 Visual Studio.NET Design Tools and Wizards 245

5.2.1 Data Components in the Toolbox Window 245
5.2.1.1 The DataSet 246
5.2.1.2 DataGridView 247
5.2.1.3 BindingSource 248
5.2.1.4 BindingNavigator 248
5.2.1.5 TableAdapter 249

5.2.2 Data Source Window 249
5.2.2.1 Add New Data Sources 250
5.2.2.2 Data Source Confi guration Wizard 251
5.2.2.3 DataSet Designer 255

5.3 Query Data from SQL Server Database Using Design Tools and Wizards 257
5.3.1 Application User Interface 257

5.3.1.1 The LogIn Form 258
5.3.1.2 The Selection Form 259
5.3.1.3 The Faculty Form 260
5.3.1.4 The Course Form 260
5.3.1.5 The Student Form 263

5.4 Add and Utilize Visual Studio Wizards and Design Tools 265
5.4.1 Add and Confi gure a New Data Source 265

5.5 Query and Display Data using the DataGridView Control 268
5.5.1 View the Entire Table 268
5.5.2 View Each Record or the Specifi ed Columns 270

5.6 Use DataSet Designer to Edit the Structure of the DataSet 272
5.7 Bind Data to the Associated Controls in LogIn Form 274
5.8 Develop Codes to Query Data Using the Fill() Method 278
5.9 Use Return a Single Value to Query Data for LogIn Form 281
5.10 Develop the Codes for the Selection Form 284
5.11 Query Data from the Faculty Table for the Faculty Form 286
5.12 Develop Codes to Query Data from the Faculty Table 289

5.12.1 Develop Codes to Query Data Using the TableAdapter Method 289
5.12.2 Develop Codes to Query Data Using the LINQ to DataSet Method 291

5.13 Display a Picture for the Selected Faculty 292
5.13.1 Modify the Codes for the Select Button Event Procedure 292
5.13.2 Create a Function to Select the Matched Faculty Image 293

ftoc.indd xiiftoc.indd xii 4/25/2012 1:59:04 PM4/25/2012 1:59:04 PM

Contents xiii

5.14 Query Data from the Course Table for the Course Form 295
5.14.1 Build the Course Queries Using the Query Builder 296
5.14.2 Bind Data Columns to the Associated Controls in the Course Form 298

5.15 Develop Codes to Query Data for the Course Form 300
5.15.1 Query Data from the Course Table Using the TableAdapter Method 300
5.15.2 Query Data from the Course Table Using the LINQ to

DataSet Method 302
5.16 Query Data from Oracle Database Using Design Tools and Wizards 304

5.16.1 Introduction to dotConnect for Oracle 6.30 Express 305
5.16.2 Create a New Visual Basic.NET Project: SelectWizardOracle 305
5.16.3 Select and Add Oracle Database 11g XE as the Data Source 307
5.16.4 Modify the Codes to Access the Oracle Database 310

Part II Data Query with Runtime Objects 311

5.17 Introduction to Runtime Objects 312
5.17.1 Procedure of Building a Data-Driven Application Using

Runtime Object 314
5.18 Query Data from Microsoft Access Database Using Runtime Object 315

5.18.1 Query Data Using Runtime Objects for the LogIn Form 315
5.18.1.1 Declare Global Variables and Runtime Objects 316
5.18.1.2 Connect to the Data Source with the Runtime Object 317
5.18.1.3 Coding for Method 1: Using DataSet-TableAdapter

to Query Data 318
5.18.1.4 Coding for Method 2: Using the DataReader to Query Data 320
5.18.1.5 Clean up the Objects and Terminate the Project 321

5.18.2 Coding for the Selection Form 322
5.18.3 Query Data Using Runtime Objects for the Faculty Form 323
5.18.4 Query Data Using Runtime Objects for the Course Form 331
5.18.5 Query Data Using Runtime Objects for the Student Form 339

5.18.5.1 Coding for the Student Form_Load Event Procedure 341
5.18.5.2 Coding for the Select Button Click Event Procedure 342

5.19 Query Data from SQL Server Database Using Runtime Object 349
5.19.1 Migrating from Access to SQL Server and Oracle Databases 350
5.19.2 Query Data Using Runtime Objects for the LogIn Form 353

5.19.2.1 Declare the Runtime Objects 354
5.19.2.2 Connect to the Data Source with the Runtime Object 354
5.19.2.3 Coding for Method 1: Using the TableAdapter

to Query Data 356
5.19.2.4 Coding for Method 2: Using the DataReader

to Query Data 357
5.19.3 The Coding for the Selection Form 359
5.19.4 Query Data Using Runtime Objects

For the Faculty Form 359
5.19.5 Query Data Using Runtime Objects for the Course Form 362
5.19.6 Retrieve Data from Multiple Tables Using Tables JOINS 363
5.19.7 Query Data Using Runtime Objects for the Student Form 367

ftoc.indd xiiiftoc.indd xiii 4/25/2012 1:59:04 PM4/25/2012 1:59:04 PM

xiv Contents

5.19.8 Query Student Data Using Stored Procedures 369
5.19.8.1 Create the Stored Procedure 370
5.19.8.2 Call the Stored Procedure 371
5.19.8.3 Query Data Using Stored Procedures for Student Form 372
5.19.8.4 Query Data Using More Complicated Stored Procedures 380

5.20 Query Data from Oracle Database Using Runtime Object 384
5.20.1 Install and Confi gure the Oracle Database 11g Express Edition 384
5.20.2 Confi gure the Oracle Database Connection String 385
5.20.3 Query Data Using Runtime Objects for the LogIn Form 386

5.20.3.1 Declare the Runtime Objects and Modify the ConnModule 387
5.20.3.2 Connect to the Data Source with the Runtime Object 388
5.20.3.3 Coding for Method 1: Using the TableAdapter to Query Data 389
5.20.3.4 Coding for Method 2: Using the DataReader to Query Data 390

5.20.4 The Coding for the Selection Form 392
5.20.5 Query Data Using Runtime Objects for the Faculty Form 392
5.20.6 Query Data Using Runtime Objects and LINQ to DataSet for

the Course Form 396
5.20.7 The Stored Procedures in Oracle Database Environment 397

5.20.7.1 The Syntax of Creating a Stored Procedure in the Oracle 398
5.20.7.2 The Syntax of Creating a Package in the Oracle 398

5.20.8 Create the Faculty_Course Package for the Course Form 400
5.20.9 Query Data Using the Oracle Package For the Course Form 405

5.21 Chapter Summary 411
Homework 413

Chapter 6 Data Inserting with Visual Basic.NET 417

Part I Data Inserting with Visual Studio.NET Design Tools and Wizards 418

6.1 Insert Data into a Database 418
6.1.1 Insert New Records into a Database Using the TableAdapter.Insert

Method 419
6.1.2 Insert New Records into a Database Using the TableAdapter.Update

Method 420
6.2 Insert Data into the SQL Server Database Using a Sample

Project InsertWizard 420
6.2.1 Create New Project Based on the SelectWizard Project 421
6.2.2 Application User Interfaces 421
6.2.3 Validate Data Before the Data Insertion 421

6.2.3.1 Visual Basic Collection and .NET Framework
Collection Classes 422

6.2.3.2 Validate Data Using the Generic Collection 422
6.2.4 Initialization Coding for the Data Insertion 425
6.2.5 Build the Insert Query 426

6.2.5.1 Confi gure the TableAdapter and Build the Data
Inserting Query 426

6.2.6 Develop Codes to Insert Data Using the TableAdapter.Insert
Method 427

ftoc.indd xivftoc.indd xiv 4/25/2012 1:59:04 PM4/25/2012 1:59:04 PM

Contents xv

6.2.7 Develop Codes to Insert Data Using the TableAdapter.Update
Method 430

6.2.8 Insert Data into the Database Using the Stored Procedures 435
6.2.8.1 Create the Stored Procedure Using the TableAdapter Query

Confi guration Wizard 436
6.2.8.2 Modify the Codes to Perform the Data Insertion Using the Stored

Procedure 436
6.3 Insert Data into the Oracle Database Using a Sample

Project InsertWizardOracle 441

Part II Data Insertion with Runtime Objects 442

6.4 The General Runtime Objects Method 442
6.5 Insert Data into the SQL Server Database Using the Runtime

Object Method 444
6.5.1 Insert Data into the Faculty Table for the SQL Server Database 444

6.5.1.1 Develop the Codes to Insert Data into the Faculty Table 444
6.6 Insert Data into the Microsoft Access Database Using the

Runtime Objects 453
6.6.1 Modify the Imports Commands and the ConnModule 454
6.6.2 Modify the Database Connection String 454
6.6.3 Modify the LogIn Query Strings 455
6.6.4 Modify the Faculty Query String 456
6.6.5 Modify the Faculty Insert String 458
6.6.6 Modifi cations to Other Forms 459

6.7 Insert Data into the Oracle Database Using the Runtime Objects 461
6.7.1 Add the Oracle Driver Reference and Modify the

Imports Commands 462
6.7.2 Modify the Database Connection String 463
6.7.3 Modify the LogIn Query Strings 464
6.7.4 Modify the Faculty Query String and Query Related Codes 466
6.7.5 Modify the Faculty Insert String and Insertion Related Codes 466
6.7.6 Modifi cations to Other Forms 468

6.7.6.1 Modify the Codes in the Selection Form 469
6.7.6.2 Modify the Codes in the Course Form 469
6.7.6.3 Modify the Codes in the Student Form 470
6.7.6.4 Modify the Codes in the SP Form 470

6.8 Insert Data into the Database Using Stored Procedures 471
6.8.1 Insert Data into the SQL Server Database

Using Stored Procedures 471
6.8.1.1 Develop Stored Procedures of SQL Server Database 471
6.8.1.2 Develop Codes to Call Stored Procedures to Insert Data

into the Course Table 474
6.8.2 Insert Data into the Oracle Database Using Stored Procedures 478

6.8.2.1 Develop Stored Procedures in Oracle Database 479
6.8.2.2 Develop Codes to Call Stored Procedures to Insert Data

into the Course Table 483

ftoc.indd xvftoc.indd xv 4/25/2012 1:59:04 PM4/25/2012 1:59:04 PM

xvi Contents

6.9 Insert Data into the Database Using the LINQ to DataSet Method 486
6.9.1 Insert Data Into the SQL Server Database Using the LINQ

to SQL Queries 488
6.10 Chapter Summary 488
Homework 489

Chapter 7 Data Updating and Deleting with Visual Basic.NET 493

Part I Data Updating and Deleting with Visual Studio.NET Design
Tools and Wizards 494

7.1 Update or Delete Data Against Databases 495
7.1.1 Updating and Deleting Data from Related Tables in a DataSet 495
7.1.2 Update or Delete Data Against Database Using TableAdapter DBDirect

Methods: TableAdapter.Update and TableAdapter.Delete 496
7.1.3 Update or Delete Data Against Database Using

TableAdapter.Update Method 497
7.2 Update and Delete Data for Microsoft SQL Server Database 498

7.2.1 Create a New Project Based on the InsertWizard Project 498
7.2.2 Application User Interfaces 499
7.2.3 Validate Data before the Data Updating and Deleting 499
7.2.4 Build the Update and Delete Queries 499

7.2.4.1 Confi gure the TableAdapter and Build the Data
Updating Query 499

7.2.4.2 Build the Data Deleting Query 500
7.2.5 Develop Codes to Update Data Using the

TableAdapter DBDirect Method 502
7.2.5.1 Modifi cations of the Codes 502
7.2.5.2 Creations of the Codes 502

7.2.6 Develop Codes to Update Data Using the TableAdapter.Update
Method 503

7.2.7 Develop Codes to Delete Data Using the TableAdapter DBDirect
Method 505

7.2.8 Develop Codes to Delete Data Using the TableAdapter.Update
Method 507

7.2.9 Validate the Data after the Data Updating and Deleting 508
7.3 Update and Delete Data for Oracle Database 511
7.4 Update and Delete Data for Microsoft Access Database 512

Part II Data Updating and Deleting with Runtime Objects 512

7.5 The Runtime Objects Method 513
7.6 Update and Delete Data for SQL Server Database Using

the Runtime Objects 514
7.6.1 Update Data Against the Faculty Table for

the SQL Server Database 515
7.6.1.1 Develop Codes to Update the Faculty Data 515
7.6.1.2 Validate the Data Updating 516

ftoc.indd xviftoc.indd xvi 4/25/2012 1:59:04 PM4/25/2012 1:59:04 PM

Contents xvii

7.6.2 Delete Data from the Faculty Table for the SQL Server Database 517
7.6.2.1 Develop Codes to Delete Data 517
7.6.2.2 Validate the Data Deleting 518

7.7 Update and Delete Data for Oracle Database Using the Runtime Objects 520
7.7.1 Add the Oracle Namespace Reference and Modify

the Imports Command 521
7.7.2 Modify the Connection String and Query String

for the LogIn Form 522
7.7.2.1 Modify the Connection String in the Form Load

Event Procedure 522
7.7.2.2 Modify the SELECT Query String in the TabLogIn Button Event

Procedure 522
7.7.2.3 Modify the SELECT Query String in the ReadLogIn

Button Event Procedure 523
7.7.3 Modify the Query Strings for the Faculty Form 523

7.7.3.1 Modify the SELECT Query String for the Select Button Event
Procedure 523

7.7.3.2 Modify the INSERT Query String for the Insert Button Event
Procedure 523

7.7.3.3 Modify the UPDATE Query String for the Update
Button Event Procedure 524

7.7.3.4 Modify the DELETE Query String for the Delete
Button Event Procedure 524

7.7.4 Modify the Query Strings for the Course Form 524
7.7.4.1 Modify the SELECT Query String for the Select

Button Event Procedure 525
7.7.4.2 Modify the SELECT Query String for the CourseList

Event Procedure 525
7.7.5 Modify the Query Strings for the Student Form 525
7.7.6 Other Modifi cations 525

7.8 Update and Delete Data Against Database Using Stored Procedures 528
7.8.1 Update and Delete Data Against SQL Server Database Using Stored

Procedures 528
7.8.1.1 Modify the Existing Project to Create Our New Project 529
7.8.1.2 Modify the Codes to Update and Delete Data

from the Faculty Table 529
7.8.1.3 Develop Two Stored Procedures in the SQL Server Database 531
7.8.1.4 Call the Stored Procedures to Perform the Data Updating

and Deleting 537
7.8.2 Update and Delete Data Against Oracle Database Using

Stored Procedures 538
7.8.2.1 Modify the Existing Project to Create Our New Project 538
7.8.2.2 Modify the Codes to Update and Delete Data from

the Faculty Table 539
7.8.2.3 Develop Stored Procedures in the Oracle Database 542
7.8.2.4 Call the Stored Procedure to Perform the Data Updating

and Deleting 546

ftoc.indd xviiftoc.indd xvii 4/25/2012 1:59:04 PM4/25/2012 1:59:04 PM

xviii Contents

7.8.3 Update and Delete Data Against Databases Using the LINQ
to SQL Query 548

7.8.3.1 Create a New Object of the DataContext Class 549
7.8.3.2 Develop the Codes for the Select Button Click Event Procedure 550
7.8.3.3 Develop the Codes for the Update Button Click

Event Procedure 551
7.8.3.4 Develop the Codes for the Delete Button Click Event Procedure 552

7.9 Chapter Summary 554
Homework 555

Chapter 8 Accessing Data in ASP.NET 559

8.1 What Is the .NET Framework? 560
8.2 What Is ASP.NET? 561

8.2.1 ASP.NET Web Application File Structure 563
8.2.2 ASP.NET Execution Model 563
8.2.3 What Really Happens When a Web Application Is Executed? 564
8.2.4 The Requirements to Test and Run the Web Project 565

8.3 Develop ASP.NET Web Application to Select Data from SQL
Server Databases 566

8.3.1 Create the User Interface: LogIn Form 567
8.3.2 Develop the Codes to Access and Select Data from the Database 569
8.3.3 Validate the Data in the Client Side 573
8.3.4 Create the Second User Interface: Selection Page 574
8.3.5 Develop the Codes to Open the Other Page 576
8.3.6 Modify the Codes in the LogIn Page to Transfer to the Selection Page 577
8.3.7 Create the Third User Interface: Faculty Page 578
8.3.8 Develop the Codes to Select the Desired Faculty Information 580

8.3.8.1 Develop the Codes for the Page_Load Event Procedure 581
8.3.8.2 Develop the Codes for the Select Button Event Procedure 582
8.3.8.3 Develop the Codes for Other Procedures 583

8.3.9 Create the Fourth User Interface: Course Page 587
8.3.9.1 The AutoPostBack Property of the List Box Control 589

8.3.10 Develop the Codes to Select the Desired Course Information 590
8.3.10.1 Coding for the Course Page Loading and Ending

Event Procedures 591
8.3.10.2 Coding for the Select Button’s Click Event Procedure 592
8.3.10.3 Coding for the SelectedIndexChanged Event Procedure of the

CourseList Box 594
8.3.10.4 Coding for Other User-Defi ned Subroutine Procedures 595

8.4 Develop ASP.NET Web Application to Insert Data into SQL
Server Databases 598

8.4.1 Develop the Codes to Perform the Data Insertion Function 598
8.4.2 Develop the Codes for the Insert Button Click Event Procedure 599
8.4.3 Modify the Codes in the Subroutine ShowFaculty() for

the Data Validation 601
8.4.4 Validate the Data Insertion 602

ftoc.indd xviiiftoc.indd xviii 4/25/2012 1:59:04 PM4/25/2012 1:59:04 PM

Contents xix

8.5 Develop Web Applications to Update and Delete Data in
SQL Server Databases 604

8.5.1 Modify the Codes for the Faculty Page 605
8.5.2 Develop the Codes for the Update Button Click Event Procedure 606
8.5.3 Develop the Codes for the Delete Button Click Event Procedure 609

8.5.3.1 Relationships between Five Tables in Our Sample Database 609
8.5.3.2 Data Deleting Sequence 610
8.5.3.3 Use the Cascade Deleting Option to Simplify the Data Deleting 611
8.5.3.4 Create the Stored Procedure to Perform the Data Deleting 612
8.5.3.5 Develop the Codes to Call the Stored Procedure to Perform

the Data Deleting 616
8.6 Develop ASP.NET Web Applications with LINQ to SQL Query 618

8.6.1 Add an Existing Web Page FacultyLINQ.aspx 620
8.6.2 Create a New Object of the DataContext Class 621
8.6.3 Develop the Codes for the Data Selection Query 622
8.6.4 Develop the Codes for the Data Insertion Query 623
8.6.5 Develop the Codes for the Data Updating and Deleting Queries 625

8.7 Develop ASP.NET Web Application to Select Data from
Oracle Databases 628

8.7.1 Add the Oracle Database Reference
and Modify Imports Commands 629

8.7.2 Modify the Connection String in the LogIn Page 629
8.7.3 Modify the Query String in the LogIn Page 630
8.7.4 Modify the Query String in the Faculty Page 631
8.7.5 Modify the Query Strings in the Course Page 633
8.7.6 Modify the Global Connection Object

in the Selection Page 636
8.8 Develop ASP.NET Web Application to Insert Data into Oracle Databases 636

8.8.1 Create the Codes for the Insert Button Click Event Procedure 637
8.8.2 Create the Codes for the TextChanged Event Procedure of the Faculty ID

Textbox 639
8.8.3 Modify the Codes in the Subroutine ShowFaculty()

for the Data Validation 639
8.9 Develop ASP.NET Web Application to Update and Delete Data in

Oracle Databases 642
8.9.1 Build the Codes for the Project to Perform

the Data Updating 642
8.9.1.1 Modifi cations to the Select Button’s Click Event Procedure 642
8.9.1.2 Add the Codes to the Update Button Event and UpdateParameters

Procedures 643
8.9.2 Develop Stored Procedures to Perform the Data Deleting 646

8.9.2.1 Delete an Existing Record from the Faculty Table 646
8.9.2.2 Develop the Codes for the Delete Button’s Event Procedure 647
8.9.2.3 Validate the Data Deleting Actions 649
8.9.2.4 The Constraint Property: On Delete Cascade in the Data Table 650

8.10 Chapter Summary 653
Homework 654

ftoc.indd xixftoc.indd xix 4/25/2012 1:59:05 PM4/25/2012 1:59:05 PM

xx Contents

Chapter 9 ASP.NET Web Services 657

9.1 What Are Web Services and Their Components? 658
9.2 Procedures to Build a Web Service 659

9.2.1 The Structure of a Typical Web Service Project 660
9.2.2 The Real Considerations When Building a Web Service Project 660
9.2.3 Introduction to Windows Communication Foundation (WCF) 661

9.2.3.1 What Is WCF? 662
9.2.3.2 WCF Data Services 662
9.2.3.3 WCF Services 663
9.2.3.4 WCF Clients 663
9.2.3.5 WCF Hosting 664
9.2.3.6 WCF Visual Studio Templates 664

9.2.4 Procedures to Build an ASP.NET Web Service 665
9.3 Build ASP.NET Web Service Project to Access SQL Server Database 666

9.3.1 Files and Items Created in the New Web Service Project 667
9.3.2 A Feeling of the Hello World Web Service Project As it Runs 671
9.3.3 Modify the Default Namespace 674
9.3.4 Create a Base Class to Handle Error Checking for Our Web Service 675
9.3.5 Create the Real Web Service Class 676
9.3.6 Add Web Methods into Our Web Service Class 677
9.3.7 Develop the Codes for Web Methods to Perform

the Web Services 678
9.3.7.1 Web Service Connection Strings 678
9.3.7.2 Modify the Existing HelloWorld Web Method 680
9.3.7.3 Develop the Codes to Perform the Database Queries 682
9.3.7.4 Develop the Codes for Subroutines Used in the

Web Method 684
9.3.8 Develop the Stored Procedure to Perform the Data Query 687

9.3.8.1 Develop the Stored Procedure WebSelectFacultySP 687
9.3.8.2 Add Another Web Method to Call the Stored Procedure 688

9.3.9 Use DataSet as the Returning Object for the Web Method 689
9.3.10 Build Windows-Based Web Service Clients to Consume

the Web Services 692
9.3.10.1 Create a Web Service Proxy Class 693
9.3.10.2 Develop the Graphic User Interface for the Windows-Based

Client Project 695
9.3.10.3 Develop the Code to Consume the Web Service 696

9.3.11 Build Web-Based Web Service Clients to Consume the Web Service 703
9.3.11.1 Create a New Web Site Project and Add an Existing Web Page 704
9.3.11.2 Add a Web Service Reference and Modify the

Web Form Window 704
9.3.11.3 Modify the Codes for the Related Event Procedures 706

9.3.12 Deploy the Completed Web Service to Production Servers 710
9.3.12.1 Copy Web Service Files to the Virtual Directory 712
9.3.12.2 Publish Precompiled Web Service 713

ftoc.indd xxftoc.indd xx 4/25/2012 1:59:05 PM4/25/2012 1:59:05 PM

Contents xxi

9.4 Build ASP.NET Web Service Project to Insert Data into
SQL Server Database 714

9.4.1 Modify an Existing Web Service Project 714
9.4.2 Develop the Web Service Methods 715
9.4.3 Develop and Modify the Codes for the Code-Behind Page 716

9.4.3.1 Develop and Modify the First Web Method SetSQLInsertSP 716
9.4.3.2 Develop the Second Web Method GetSQLInsert 721
9.4.3.3 Develop the Third Web Method SQLInsertDataSet 725
9.4.3.4 Develop the Fourth Web Method GetSQLInsertCourse 729

9.4.4 Build Windows-Based Web Service Clients to Consume
the Web Services 734

9.4.4.1 Create a Windows-Based Consume Project and a Web Service Proxy
Class 734

9.4.4.2 Develop the Graphic User Interface for the Client Project 736
9.4.4.3 Develop the Code to Consume the Web Service 738

9.4.5 Build Web-Based Web Service Clients to Consume the Web Services 749
9.4.5.1 Create a New Web Site Project and Add an Existing Web Page 750
9.4.5.2 Add a Web Service Reference and Modify the Web Form Window 750
9.4.5.3 Modify the Codes for the Related Event Procedures 752

9.5 Build ASP.NET Web Service to Update and Delete Data for
SQL Server Database 762

9.5.1 Modify an Existing Web Service Project 763
9.5.2 Guideline in Modifying Related Web Methods 764

9.5.2.1 Modify the Web Method from SetSQLInsertSP to
SQLUpdataSP 764

9.5.2.2 Modify the Web Method GetSQLInsert to GetSQLCourse 766
9.5.2.3 Modify the Web Method GetSQLInsertCourse to

GetSQLCourseDetail 768
9.5.2.4 Add a New Web Method SQLDeleteSP 769

9.5.3 Develop Two Stored Procedures WebUpdateCourseSP and
WebDeleteCourseSP 771

9.5.3.1 Develop the Stored Procedure WebUpdateCourseSP 771
9.5.3.2 Develop the Stored Procedure WebDeleteCourseSP 774

9.6 Build Windows-Based Web Service Clients to Consume the Web Services 783
9.6.1 Modifi cations to the File Folder and Project Files 784
9.6.2 Add a New Web Reference to Our Client Project 784
9.6.3 Modify the Codes for the Different Event Procedures and Subroutines 786

9.6.3.1 Modify the Codes of the Form_Load Event Procedure and
Form-Level Variables 786

9.6.3.2 Modify the Codes for the Select Button Click Event Procedure and
Related User-defi ned Subroutine Procedures 787

9.6.3.3 Remove the Insert Button Click Event Procedure 788
9.6.3.4 Modify the Codes for the SelectedIndexChanged

Event Procedure 788
9.6.3.5 Develop the Codes for the Update Button Event Procedure 789
9.6.3.6 Develop the Codes for the Delete Button Event Procedure 790

ftoc.indd xxiftoc.indd xxi 4/25/2012 1:59:05 PM4/25/2012 1:59:05 PM

www.allitebooks.com

http://www.allitebooks.org

xxii Contents

9.7 Build Web-Based Web Service Clients to Consume the Web Services 793
9.7.1 Create a New Web Site Project and Add an Existing Web Page 794
9.7.2 Add a Web Service Reference and Modify the Web Form Window 794
9.7.3 Modify the Codes for the Related Event Procedures and Subroutines 796

9.7.3.1 Modify the Codes in the Page_Load Event Procedure 796
9.7.3.2 Modify Codes in the Select Button Event Procedure and Related

Subroutines 796
9.7.3.3 Modify the Codes in the SelectedIndexChanged Event Procedure of the

Course List Box Control and Related Subroutines 798
9.7.3.4 Remove the Insert Button Click Event Procedure and the TextChanged

Event Procedure of the Course ID Textbox 799
9.7.3.5 Develop Codes for the Update Button Click Event Procedure 799
9.7.3.6 Develop Codes for the Delete Button Click Event Procedure 800

9.8 Build ASP.NET Web Service Project to Access Oracle Database 804
9.8.1 Build a Web Service Project WebServiceOracleSelect 805
9.8.2 Modify the Connection String 806
9.8.3 Add Oracle Database References and Modify the

Namespace Directories 806
9.8.4 Modify the Web Method GetSQLSelect and Related

Subroutines 807
9.8.5 Modify the Web Method GetSQLSelectSP and Related Subroutines 809

9.8.5.1 Modifi cations to the Stored Procedure WebSelectFacultySP 810
9.8.5.2 Modifi cations to the Codes in the Web Method

GetSQLSelectSP 814
9.8.5.3 Modify the Web Method GetSQLSelectDataSet 816

9.9 Build Web Service Client Projects to Consume the Web Service 819
9.10 Build ASP.NET Web Service Project to Insert Data into

Oracle Database 820
9.10.1 Build a Web Service Project WebServiceOracleInsert 820
9.10.2 Modify the Connection String 821
9.10.3 Add Oracle Database Reference and Modify the

Namespace Directories 822
9.10.4 Modify the Web Method SetSQLInsertSP and Related Subroutines 822
9.10.5 Modify the Web Method GetSQLInsert and Related Subroutines 825
9.10.6 Modify the Web Method SQLInsertDataSet 826
9.10.7 Modify the Web Method GetSQLInsertCourse and

Related Subroutines 828
9.10.8 Build the Oracle Package WebSelectCourseSP 830

9.11 Build Web Service Client Projects to Consume the Web Service 836
9.12 Build ASP.NET Web Service to Update and Delete Data for

the Oracle Database 838
9.12.1 Build a Web Service Project WebServiceOracleUpdateDelete 838
9.12.2 Modify the Connection String 839
9.12.3 Add Oracle Database Reference and Modify the Namespace

Directories 839
9.12.4 Modify the Web Method SQLUpdateSP and Related Subroutines 840

9.12.4.1 Develop the Stored Procedure UpdateCourse_SP 842

ftoc.indd xxiiftoc.indd xxii 4/25/2012 1:59:05 PM4/25/2012 1:59:05 PM

Contents xxiii

9.12.5 Modify the Web Method GetSQLCourse and Related Subroutines 845
9.12.6 Modify the Web Method GetSQLCourseDetail and

Related Subroutines 847
9.12.7 Modify the Web Method SQLDeleteSP 849

9.12.7.1 Develop the Stored Procedure WebDeleteCourseSP 850
9.13 Build Web Service Client Projects to Consume the Web Service 855
9.14 Chapter Summary 856
Homework 857

Index 860

About the Author 868

ftoc.indd xxiiiftoc.indd xxiii 4/25/2012 1:59:05 PM4/25/2012 1:59:05 PM

Preface

D atabases have become an integral part of our modern day life. We are an information -
 driven society. Database technology has a direct impact on our daily lives. Decisions are
routinely made by organizations based on the information collected and stored in data-
bases. A record company may decide to market certain albums in selected regions based
on the music preference of teenagers. Grocery stores display more popular items at the
eye level, and reorders are based on the inventories taken at regular intervals. Other
examples include patients ’ records in hospitals, customers ’ account information in banks,
book orders by the libraries, club memberships, auto part orders, winter cloth stock by
department stores, and many others.

 In addition to database management systems, in order to effectively apply and imple-
ment databases in real industrial or commercial systems, a good graphic user interface
(GUI) is needed to allow users to access and manipulate their records or data in data-
bases. Visual Basic.NET is an ideal candidate to be selected to provide this GUI func-
tionality. Unlike other programming languages, Visual Basic.NET is a kind of language
that has advantages, such as easy - to - learn and easy - to - be - understood with little learning
curves. Beginning of Visual Studio.NET 2005, Microsoft integrated a few programming
languages such as Visual C ++ , Visual Basic, C#, and Visual J# into a dynamic model called
.NET Framework that makes Internet and Web programming easy and simple, and any
language integrated in this model can be used to develop professional and effi cient Web
applications that can be used to communicate with others via the Internet. ADO.NET
and ASP.NET are two important submodels of .NET Framework. The former provides
all components, including the Data Providers, DataSet, and DataTable, to access and
manipulate data against different databases. The latter provides support to develop Web
applications and Web services in the ASP.NET environment to allow users to exchange
information between clients and servers easily and conveniently.

 This book is mainly designed for college students and software programmers who
want to develop practical and commercial database programming with Visual Basic.NET
and relational databases, such as Microsoft Access, SQL Server 2008, and Oracle Database
11 g XE. The book provides a detailed description about the practical considerations and
applications in database programming with Visual Basic.NET 2010 with authentic exam-
ples and detailed explanations. More important, a new writing style is developed and
implemented in this book, combined with real examples, to provide readers with a clear
picture as how to handle the database programming issues in Visual Basic.NET 2010
environment.

xxv

fpref.indd xxvfpref.indd xxv 4/25/2012 1:59:04 PM4/25/2012 1:59:04 PM

xxvi Preface

 The outstanding features of this book include, but not limited to:

1. A novel writing style is adopted to try to attract students ’ or beginning programmers ’ inter-
esting in learning and developing practical database programs, and to avoid the headache
caused by using huge blocks of codes in the traditional database programming books.

2. Updated database programming tools and components are covered in the book, such as
.NET Framework 4.0, LINQ, ADO.NET 4.0, and ASP.NET 4.0, to enable readers to easily
and quickly learn and master advanced techniques in database programming and develop
professional and practical database applications.

3. A real completed sample database CSE_DEPT with three versions, Microsoft Access 2007,
SQL Server 2008, and Oracle Database 11 g XE, is provided and used for entire book. Step
by step, a detailed illustration and description about how to design and build a practical
relational database is provided.

4. Covered both fundamental and advanced database programming techniques to conve-
nience both beginning students and experienced programmers.

5. Various actual data providers are discussed and implemented in the sample projects, such
as the SQL Server and Oracle data providers. Instead of using the OleDb to access the SQL
Server or Oracle databases, the real SQL Server and Oracle data providers are utilized to
connect to the Visual Basic.NET 2010 directly to perform data operations.

6. Good textbook for college students, and good reference book for programmers, software
engineers, and academic researchers.

 I sincerely hope that this book can provide useful and practical helps and guides to
all readers or users who adopted this book, and I will be more than happy to know that
you can develop and build professional and practical database applications with the help
of this book.

 Y ing B ai

fpref.indd xxvifpref.indd xxvi 4/25/2012 1:59:04 PM4/25/2012 1:59:04 PM

Acknowledgments

T he fi rst and most special thanks to my wife, Yan Wang. I could not fi nish this book
without her sincere encouragement and support.

 Special thanks to Dr. Satish Bhalla, who is the chapter contributor for this book. Dr.
Bhalla is a specialist in database programming and management, especially in SQL
Server, Oracle, and DB2. Dr. Bhalla spent a lot of time to prepare materials for Chapter
 2 , and he is deserving of thanks.

 Many thanks to Senior Editor Taisuke Soda and Associate Editor Mary Hatcher who
made this book available to the public. You would not fi nd this book in the market without
their deep perspective and hard work. The same thanks are extended to the editorial team
of this book. Without their contributions, it is impossible for this book to be published.

 These thanks should also be extended to the following book reviewers for their pre-
cious opinions to this book:

 • Dr. Xintao Wu, Associate Professor, Department of Information and Systems, University of
North Carolina at Charlotte

 • Dr. Xiaohong Yuan, Associate Professor, Department of Computer Science, North Carolina
A & T State University

 • Dr. Daoxi Xiu, Application Analyst Programmer, North Carolina Administrative Offi ce of
the Courts

 • Dr. Dali Wang, Associate Professor, Department of Physics and Computer Science,
Christopher Newport University

 Last but not least, thanks should be forwarded to all people who supported me to
fi nish this book.

 Y. B.

xxvii

flast.indd xxviiflast.indd xxvii 4/25/2012 1:59:03 PM4/25/2012 1:59:03 PM

 Chapter 1

Introduction

 For years, during my teaching database programming and Visual Basic.NET programming
in my college, I found that it was too diffi cult to fi nd a good textbook for this topic, so I
had to combine a few different professional books together as references to teach this
course. Most of those books are specially designed for programmers or software engi-
neers, which cover a lot of programming strategies and huge blocks of codes, which is a
terrible headache to college students or beginning programmers who are new to the
Visual Basic.NET and database programming. I have to prepare my class presentations
and fi gure out all homework and exercises for my students. I dream that one day I could
fi nd a good textbook that is suitable for college students or beginning programmers and
help them to learn and master database programming with Visual Basic.NET easily and
conveniently. Finally, I decided that I needed to do something for this dream myself after
waiting for a long time.

 Another reason for me to have this idea is the job market. As you know, most indus-
trial and commercial companies in United States belong to database applications busi-
nesses, such as manufactures, banks, hospitals, and retails. Majority of them need
professional people to develop and build database - related applications, but not database
management and design systems. To enable our students to become good candidates for
those companies, we need to create a book like this one.

 Unlike most database programming books in the current market, which discuss and
present database programming techniques with huge blocks of programming codes from
the fi rst page to the last page, this book tries to use a new writing style to show readers,
especially to college students, how to develop professional and practical database pro-
grams in Visual Basic.NET 2010 by using Visual Studio.NET Design Tools and Wizards
related to ADO.NET 4.0, and to apply codes that are autogenerated by using Wizards.
By using this new style, the headache caused by using those huge blocks of programming
codes can be removed; instead, a simple and easy way to create database programs using
the Design Tools can be developed to attract students ’ learning interest, and furthermore
to enable students to build professional and practical database programming in more
effi cient and interesting ways.

 There are so many different database programming books available on the market,
but rarely can you fi nd a book like this one, which implemented a novel writing style to

Practical Database Programming with Visual Basic.NET, Second Edition. Ying Bai.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.

1

c01.indd 1c01.indd 1 4/25/2012 1:56:41 PM4/25/2012 1:56:41 PM

2 Chapter 1 Introduction

attract the students ’ learning interests in this topic. To meet the needs of some experi-
enced or advanced students or software engineers, the book contains two programming
methods: the interesting and easy - to - learn fundamental database programming method —
 Visual Studio.NET Design Tools and Wizards, and advanced database programming
method — runtime object method. In the second method, all database - related objects are
created and applied during or when your project is running by utilizing quite a few blocks
of codes.

OUTSTANDING FEATURES ABOUT THIS BOOK

1. A novel writing style is adopted to try to attract students ’ or beginning programmers ’ inter-
ests in learning and developing practical database programs, and to avoid the headache
caused by using huge blocks of codes in the traditional database programming books.

2. Updated database programming tools and components are covered in the book, such as
.NET Framework 4.0, LINQ, ADO.NET 4.0, and ASP.NET 4.0, to enable readers to easily
and quickly learn and master advanced techniques in database programming and develop
professional and practical database applications.

3. A real completed sample database CSE_DEPT with three versions, Microsoft Access 2007,
SQL Server 2008, and Oracle Database 11g XE, is provided and used for the entire book.
Step by step, a detailed illustration and description about how to design and build a practical
relational database are provided.

4. Covered both fundamental and advanced database programming techniques to conve-
nience both beginning students and experienced programmers.

5. Various actual data providers are discussed and implemented in the sample projects, such
as the SQL Server and Oracle data providers. Instead of using the OleDb to access the SQL
Server or Oracle databases, the real SQL Server and Oracle data providers are utilized to
connect to the Visual Basic.NET 2010 directly to perform data operations.

6. Provides homework and teaching materials, and these allow instructors to organize and
prepare their courses easily and rapidly, and enable students to understand what they
learned better by doing something themselves.

7. Good textbook for college students and good reference book for programmers, software
engineers, and academic researchers.

WHO THIS BOOK IS FOR

 This book is designed for college students and software programmers who want to
develop practical and commercial database programming with Visual Basic.NET and
relational databases, such as Microsoft Access, SQL Server 2008, and Oracle Database
11g XE. Fundamental knowledge and understanding on Visual Basic.NET and Visual
Studio.NET IDE is assumed.

WHAT THIS BOOK COVERS

 Nine chapters are included in this book. The contents of each chapter can be summarized
as below.

c01.indd 2c01.indd 2 4/25/2012 1:56:41 PM4/25/2012 1:56:41 PM

What This Book Covers 3

 • Chapter 1 provides an introduction and summarization to the whole book.

 • Chapter 2 provides a detailed discussion and analysis of the structure and components about
relational databases. Some key technologies in developing and designing database are also
given and discussed in this part. The procedure and components used to develop a practical
relational database with three database versions, such as Microsoft Access 2007, SQL Server
2008, and Oracle Database 11g XE, are analyzed in detail with some real data tables in our
sample database CSE_DEPT.

 • Chapter 3 provides an introduction to the ADO.NET, which includes the architectures,
organizations, and components of the ADO.NET. Detailed discussions and descriptions are
provided in this chapter to give readers both fundamental and practical ideas and pictures
in how to use components in ADO.NET to develop professional data - driven applications.
Two ADO.NET architectures are discussed to enable users to follow the directions to design
and build their preferred projects based on the different organizations of the ADO.NET.
Four popular Data Provides, such as OleDb, ODBC, SQL Server, and Oracle, are discussed
in detail. The basic ideas and implementation examples of DataTable and DataSet are also
analyzed and described with some real coding examples.

 • Chapter 4 provides a detailed discussion and analysis about the Language Integrated Query
(LINQ), which includes LINQ to Objects, LINQ to DataSet, LINQ to SQL, LINQ to
Entities, and LINQ to XML. An introduction to the LINQ general programming guide is
provided at the fi rst part in this chapter. Some popular interfaces widely used in LINQ, such
as IEnumerable, IEnumerable(Of T), IQueryable and IQueryable(Of T), and Standard
Query Operators (SQO), including the deferred and nondeferred SQO, are discussed in that
part. An introduction to LINQ Query is given in the second section in this chapter. Following
this introduction, a detailed discussion and analysis about the LINQ queries that were
implemented for different data sources is provided in detail.

 • Starting from Chapter 5 , the real database programming techniques with Visual Basic.NET,
such as data selection queries, are provided and discussed. Two parts are covered in this
chapter: Part I contains the detailed descriptions in how to develop professional data - driven
applications with the help of the Visual Studio.NET design tools and wizards with some real
projects, and this part contains a lot of hiding codes that are created by Visual Basic.NET
automatically when using those design tools and wizards. Therefore, the coding for this part
is very simple and easy. Part II covers an advanced technique, the runtime object method,
in developing and building professional data - driven applications. Detailed discussions and
descriptions about how to build professional and practical database applications using this
runtime method are provided combined with four real projects.

 • Chapter 6 provides detailed discussions and analyses about three popular data insertion
methods with three different databases — Microsoft Access 2007, SQL Server 2008, and
Oracle:

1. Using TableAdapter ’ s DBDirect methods TableAdapter.Insert() method.
2. Using the TableAdapter ’ s Update() method to insert new records that have already been

added into the DataTable in the DataSet.
3. Using the Command object ’ s ExecuteNonQuery() method.

 This chapter is also divided into two parts: Methods 1 and 2 are related to Visual Studio.
NET design tools and wizards, and therefore are covered in Part I. The third method is
related to runtime object and therefore it is covered in Part II. Nine real projects are used
to illustrate how to perform the data insertion into three different databases: Microsoft
Access 2007, SQL Server 2008, and Oracle Database 11g XE. Some professional and
practical data validation methods are also discussed in this chapter to confi rm the data
insertion.

c01.indd 3c01.indd 3 4/25/2012 1:56:41 PM4/25/2012 1:56:41 PM

4 Chapter 1 Introduction

 • Chapter 7 provides discussions and analyses on three popular data updating and deleting
methods with seven real project examples:

1. Using TableAdapter DBDirect methods, such as TableAdapter.Update() and
TableAdapter.Delete(), to update and delete data directly again the databases.

2. Using TableAdapter.Update() method to update and execute the associated Table-
Adapter ’ s properties, such as UpdateCommand or DeleteCommand, to save changes
made for the table in the DataSet to the table in the database.

3. Using the run time object method to develop and execute the Command ’ s method
ExecuteNonQuery() to update or delete data again the database directly.
 This chapter is also divided into two parts: Methods 1 and 2 are related to Visual Studio.
NET design tools and wizards and therefore are covered in Part I. The third method is
related to runtime object and it is covered in Part II. Seven real projects are used to
illustrate how to perform the data updating and deleting against three different databases:
Microsoft Access, SQL Server 2008, and Oracle Database 11g XE. Some professional
and practical data validation methods are also discussed in this chapter to confi rm the
data updating and deleting actions. The key points in performing the data updating
and deleting actions against a relational database, such as the order to execute data
updating and deleting between the parent and child tables, are also discussed and
analyzed.

 • Chapter 8 provides introductions and discussions about the developments and implementa-
tions of ASP.NET Web applications in Visual Basic.NET 2010 environment. At the beginning
of Chapter 8 , a detailed and complete description about the ASP.NET and the .NET
Framework is provided, and this part is especially useful and important to students or pro-
grammers who do not have any knowledge or background in the Web application develop-
ments and implementations. Following the introduction section, a detailed discussion on how
to install and confi gure the environment to develop the ASP.NET Web applications is pro-
vided. Some essential tools, such as the Web server, IIS, and FrontPage Server Extension
2000, as well as the installation process of these tools, are introduced and discussed in detail.
Starting from Section 8.3 , the detailed development and building process of ASP.NET Web
applications to access databases are discussed with six real Web application projects. Two
popular databases, SQL Server and Oracle, are utilized as the target databases for those
development and building processes.

 • Chapter 9 provides introductions and discussions about the developments and implementa-
tions of ASP.NET Web services in Visual Basic.NET 2010 environment. A detailed discussion
and analysis about the structure and components of the Web services is provided at the
beginning of this chapter. Two popular databases, SQL Server and Oracle, are discussed and
used for three pairs of example Web service projects, which include:

1. WebServiceSQLSelect and WebServiceOracleSelect
2. WebServiceSQLInsert and WebServiceOracleInsert
3. WebServiceSQLUpdateDelete and WebServiceOracleUpdateDelete

 Each Web service contains different Web methods that can be used to access different
databases and perform the desired data actions, such as Select, Insert, Update, and Delete,
via the Internet. To consume those Web services, different Web service client projects are
also developed in this chapter. Both Windows - based and Web - based Web service client
projects are discussed and built for each kind of Web service listed above. A total of 18
projects, including the Web service projects and the associated Web service client projects,
are developed in this chapter. All projects have been debugged and tested and can be
run in any Windows operating system, such as Windows 2000, XP, Vista, and Windows 7.

c01.indd 4c01.indd 4 4/25/2012 1:56:41 PM4/25/2012 1:56:41 PM

How This Book Is Organized and How to Use This Book 5

HOW THIS BOOK IS ORGANIZED AND HOW TO USE THIS BOOK

 This book is designed for both college students who are new to database programming
with Visual Basic.NET and professional database programmers who has professional
experience on this topic.

 Chapters 2 , 3 , and 4 provide the fundamentals on database structures and compo-
nents, ADO.NET and LINQ components. Starting from Chapter 5 , and then to Chapters
 6 and 7 , each chapter is divided into two parts: fundamental part and advanced part. The
data driven applications developed with design tools and wizards provided by Visual
Studio.NET, which can be considered as the fundamental part, have less coding loads,
and, therefore, they are more suitable to students or programmers who are new to the
database programming with Visual Basic.NET. Part II contains the runtime object method,
and it covers a lot of coding developments to perform the different data actions against
the database, and this method is more fl exible and convenient to experienced program-
mers event a lot of coding jobs is concerned.

 Chapters 8 and 9 give a full discussion and analysis about the developments and
implementations of ASP.NET Web applications and Web services. These technologies are
necessary to students and programmers who want to develop and build Web applications
and Web services to access and manipulate data via Internet.

 Based on the organization of this book we described above, this book can be used as
two categories, such as Level I and Level II, which is shown in Figure 1.1 .

 For undergraduate college students or beginning software programmers, it is highly
recommended to learn and understand the contents of Chapters 2 , 3 , and 4 and Part I of
Chapters 5 , 6 , and 7 since those are fundamental knowledge and techniques in database
programming with Visual Basic.NET 2010. For Chapters 8 and 9 , it is optional to instruc-
tors, and it depends on the time and schedule.

Chapter 2

Chapters 3 & 4

Part I
Chapter 5

Part I
Chapter 6

Part I
Chapter 7

Chapter 8

Chapter 9

Part II
Chapter 5

Part II
Chapter 6

Part II
Chapter 7

Chapter 8

Chapter 9

Optional

Level I

Level II

Chapters 3 & 4

Figure 1.1. Two study levels in the book.

c01.indd 5c01.indd 5 4/25/2012 1:56:41 PM4/25/2012 1:56:41 PM

www.allitebooks.com

http://www.allitebooks.org

6 Chapter 1 Introduction

 For experienced college students or software programmers who have already some
knowledge and techniques in database programming, it is recommended to learn and
understand the contents of Part II of Chapters 5 – 7 , as well as Chapters 8 and 9 , since the
runtime data objects method and some sophisticated database programming techniques,
such as joined - table query, nested stored procedures, and Oracle Package, are discussed
and illustrated in those chapters with real examples. Also, the ASP.NET Web applications
and ASP.NET Web services are discussed and analyzed with 24 real database program
examples for SQL Server 2008 and Oracle Database 11g XE.

HOW TO USE THE SOURCE CODE AND SAMPLE DATABASES

 All source codes in each real project developed in this book are available. All projects
are categorized into the associated chapters that are located at the folder DBProjects
that is located at the site ftp://ftp.wiley.com/public/sci_tech_med/practical_database_vb .
You can copy or download those codes into your computer and run each project as you
like. To successfully run those projects on your computer, the following conditions must
be met:

 • Visual Studio.NET 2010 or higher must be installed in your computer.

 • Three databases ’ management systems, Microsoft Access 2007 (Microsoft Offi ce 2007),
Microsoft SQL Server 2008 Management Studio Express, and Oracle Database 11g Express
Edition (XE) must be installed in your computer.

 • Three versions of sample database, CSE_DEPT.accdb, CSE_DEPT.mdf, and Oracle version
of CSE_DEPT, must be installed in your computer in the appropriate folders.

 • To run projects developed in Chapters 8 and 9 , in addition to conditions listed above, an
 Internet Information Services (IIS), such as FrontPage Server Extension 2000 or 2002, must
be installed in your computer, and it works as a pseudoserver for those projects.

 All book related teaching and learning materials, including the sample databases,
example projects, appendices, faculty and student images, as well as sample Win-
dows forms and Web pages, can be found from the associated folders located at the
Wiley ftp site ftp://ftp.wiley.com/public/sci_tech_med/practical_database_vb-net-2e , as
shown in Figure 1.2 .

 These materials are categorized and stored at different folders in two different sites
based on the teaching purpose (for instructors) and learning purpose (for students):

1. Appendix Folder : Contains all appendices that provide useful references and practical
knowledge to download and install database, database server and management systems and
develop actual database application projects.

 • Appendix A : Provides detailed descriptions about the download and installation of
Microsoft SQL Server 2008 R2 Express.
 • Appendix B : Provides detailed descriptions about download and installation of Oracle

Database 11g Express Edition (XE).
 • Appendix C : Provides detailed discussions in how to use three sample databases:

CSE_DEPT.accdb , CSE_DEPT.mdf , and Oracle version of CSE_DEPT.

c01.indd 6c01.indd 6 4/25/2012 1:56:41 PM4/25/2012 1:56:41 PM

How to Use the Source Code and Sample Databases 7

Figure 1.2. Book - related materials on website.

c01.indd 7c01.indd 7 4/25/2012 1:56:41 PM4/25/2012 1:56:41 PM

8 Chapter 1 Introduction

 • Appendix D : Provides detailed discussions in how to create a user database in Oracle
Database 11g XE using Unload and Load methods.

 • Appendix E : Provides detailed discussions in how to add Existing Oracle Stored
Procedures into the VB Project Using the DataSet Confi guration Wizard.

 • Appendix F : Provides detailed discussions in how to download and install a third - party
Oracle Database driver dotConnect 6.30 .

2. Database Folder : Contains three types of sample databases, CSE_DEPT, such as CSE_
DEPT.accdb (Microsoft Access 2007), CSE_DEPT.mdf (SQL Server 2008), and Oracle
version of CSE_DEPT . These sample databases are located at three subfolders, Access ,
SQLServer , and Oracle . Refer to Appendix F to get details in how to use these databases
for your applications or sample projects.

3. DBProjects Folder : Contains all sample projects developed in the book. Projects are cat-
egorized and stored at different chapter subfolder based on the book chapter sequence.
Readers can directly use the codes and GUIs of those projects by downloading them from
the DBProjects folder at the Wiley ftp site.

4. Images Folder : Contains all sample faculty and student image fi les used in all sample
projects in the book. Readers can copy and paste those image fi les to their projects to
use them.

5. VB Forms Folder : Contains all sample Windows - based forms and Web - based pages devel-
oped and implemented in all sample projects in the book. All Windows - based Forms are
located at the Window subfolder, and all Web - based Pages are located at the Web subfolder.
Readers can use those Forms or Pages by copying and pasting them into their real
projects.

6. TeachingPPT Folder : Contains all MS - PPT teaching slides for each chapter.

7. HWSolutions Folder : Contains selected solutions for the homeworks developed and used
in the book. The solutions are categorized and stored at the different chapter subfolder
based on the book chapter sequence.

 Folders 1 ∼ 5 belong to learning materials for students; therefore they are located at
the student site: ftp://ftp.wiley.com/public/sci_tech_med/practical_database_vb . Folders
1∼ 7 belong to teaching materials for instructors; they are located at the Wiley teaching
site and available upon requests by instructors.

INSTRUCTORS AND CUSTOMERS SUPPORTS

 The teaching materials for all chapters have been extracted and represented by a sequence
of Microsoft Power Point fi les, each fi le for one chapter. The interested instructors can
fi nd those teaching materials from the folder TeachingPPT that is located at the site
 http://www.wiley.com , and those instructor materials are available upon request from the
book ’ s listing on http://www.wiley.com .

 A selected homework solution is also available upon request from the book ’ s listing
on http://www.wiley.com .

 E - mail support is available to readers of this book. When you send an e - mail to us,
please provide the following information:

 • The detailed description about your problems, including the error message and debug
message, as well as the error or debug number if it is provided.

c01.indd 8c01.indd 8 4/25/2012 1:56:41 PM4/25/2012 1:56:41 PM

Instructors and Customers Supports 9

 • Your name, job title, and company name.

 • How long you expect to get the answer to your questions.

 Please send all questions to the e - mail address: baidbbook@gmail.com .
 Detailed structure and distribution of all book - related materials in the Wiley site,

including the teaching materials for instructors and learning materials for students, are
shown in Figure 1.2 .

c01.indd 9c01.indd 9 4/25/2012 1:56:41 PM4/25/2012 1:56:41 PM

 Chapter 2

Introduction to Databases
 SATISH BHALLA AND YING BAI

 Databases have become an integral part of our modern - day life. We are an information -
 driven society. We generate large amounts of data that is analyzed and converted into
information. A recent example of biological data generation is the Human Genome
Project that was jointly sponsored by the Department of Energy and the National Institute
of Health. Many countries in the world participated in this venture for 10 years. The
project was a tremendous success. It was completed in 2003 and resulted in generation
of huge amount of genome data, currently stored in databases around the world. The
scientists will be analyzing this data in years to come.

 Database technology has a direct impact on our daily lives. Decisions are routinely
made by organizations based on the information collected and stored in the databases.
A record company may decide to market certain albums in selected regions based on the
music preference of teenagers. Grocery stores display more popular items at the eye level,
and reorders are based on the inventories taken at regular intervals. Other examples
include book orders by libraries, club memberships, auto part orders, winter cloth stock
by department stores, and many others.

 Database management programs have been in existence since the 1960s. However, it
was not until the 1970s when E. F. Codd proposed the then revolutionary relational data
model that database technology really took off. In the early 1980s, it received a further
boost with the arrival of personal computers and microcomputer - based data management
programs, like dBase II (later followed by dBase III and IV). Today, we have a plethora
of vastly improved programs for PCs and mainframe computers, including Microsoft
Access, IBM DB2, Oracle, Sequel Server, My SQL, and others.

 This chapter covers the basic concepts of database design followed by implementa-
tion of a specifi c relational database to illustrate the concepts discussed here. The sample
database, CSE_DEPT, is used as a running example. The database creation is shown in
detail using Microsoft Access, SQL Server, and Oracle. The topics discussed in this chapter
include:

Practical Database Programming with Visual Basic.NET, Second Edition. Ying Bai.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.

10

c02.indd 10c02.indd 10 4/25/2012 1:56:51 PM4/25/2012 1:56:51 PM

2.1 What Are Databases and Database Programs? 11

 • What are databases and database programs?

 • File processing system
 • Integrated databases

 • Various approaches to developing a database

 • Relational data model and entity - relationship model (ER)

 • Identifying keys

 • Primary keys, foreign keys, and referential integrity

 • Defi ning relationships

 • Normalizing the data

 • Implementing the relational database

 • Create Microsoft Access sample database
 • Create Microsoft SQL Server 2008 sample database
 • Create Oracle sample database

2.1 WHAT ARE DATABASES AND DATABASE PROGRAMS?

 A modern - day database is a structured collection of data stored in a computer. The term
structured implies that each record in the database is stored in a certain format. For
example, all entries in a phone book are arranged in a similar fashion. Each entry contains
a name, an address, and a telephone number of a subscriber. This information can be
queried and manipulated by database programs. The data retrieved in answer to queries
become information that can be used to make decisions. The databases may consist of a
single table or related multiple tables. The computer programs used to create, manage,
and query databases are known as a database management systems (DBMS). Just like
the databases, the DBMS ’ vary in complexity. Depending on the need of a user one can
use either a simple application or a robust program. Some examples of these programs
were given earlier.

2.1.1 File Processing System

 The fi le processing system is a precursor of the integrated database approach. The records
for a particular application are stored in a fi le. An application program is needed to
retrieve or manipulate data in this fi le. Thus, various departments in an organization will
have their own fi le processing systems with their individual programs to store and retrieve
data. The data in various fi les may be duplicated and not available to other applications.
This causes redundancy and may lead to inconsistency, meaning that various fi les that
supposedly contain the same information may actually contain different data values. Thus
duplication of data creates problems with data integrity. Moreover, it is diffi cult to provide
access to multiple users with the fi le processing systems without granting them access to
the respective application programs, which manipulate the data in those fi les.

 The fi le processing system may be advantageous under certain circumstances. For
example, if data are static and a simple application will solve the problem, a more expen-
sive DBMS is not needed. For example, in a small business environment, you want to

c02.indd 11c02.indd 11 4/25/2012 1:56:51 PM4/25/2012 1:56:51 PM

12 Chapter 2 Introduction to Databases

keep track of the inventory of the offi ce equipment purchased only once or twice a year.
The data can be kept in an Excel spreadsheet and manipulated with ease from time to
time. This avoids the need to purchase an expensive database program, and hiring a
knowledgeable database administrator. Before the DBMS ’ s became popular, the data
were kept in fi les, and application programs were developed to delete, insert, or modify
records in the fi les. Since specifi c application programs were developed for specifi c data,
these programs lasted for months or years before modifi cations were necessitated by
business needs.

2.1.2 Integrated Databases

 A better alternative to a fi le processing system is an integrated database approach. In this
environment, all data belonging to an organization is stored in a single database. The
database is not a mere collection of fi les; there is a relation between the fi les. Integration
implies a logical relationship, usually provided through a common column in the tables.
The relationships are also stored within the database. A set of sophisticated programs
known as DBMS is used to store, access, and manipulate the data in the database. Details
of data storage and maintenance are hidden from the user. The user interacts with the
database through the DBMS. A user may interact either directly with the DBMS or via
a program written in a programming language, such as C ++ , Java, or Visual Basic. Only
the DBMS can access the database. Large organizations employ database administrator s
(DBA s) to design and maintain large databases.

 There are many advantages to using an integrated database approach over that of a
fi le processing approach:

1. Data Sharing : The data in the database are available to a large numbers of users who can
access the data simultaneously and create reports and manipulate the data given proper
authorization and rights.

2. Minimizing Data Redundancy : Since all the related data exist in a single database, there is
a minimal need of data duplication. The duplication is needed to maintain relationship
between various data items.

3. Data Consistency and Data Integrity : Reducing data redundancy will lead to data consis-
tency. Since data are stored in a single database, enforcing data integrity becomes much
easier. Furthermore, the inherent functions of the DBMS can be used to enforce the integ-
rity with minimum programming.

4. Enforcing Standards : DBAs are charged with enforcing standards in an organization. DBA
takes into account the needs of various departments and balances it against the overall need
of the organization. DBA defi nes various rules, such as documentation standards, naming
conventions, update and recovery procedures, and so on. It is relatively easy to enforce these
rules in a Database System, since it is a single set of programs that is always interacting with
the data fi les.

5. Improving Security : Security is achieved through various means, such as controlling access
to the database through passwords, providing various levels of authorizations, data encryp-
tion, providing access to restricted views of the database, and so on.

6. Data Independence : Providing data independence is a major objective for any database
system. Data independence implies that even if the physical structure of a database changes,

c02.indd 12c02.indd 12 4/25/2012 1:56:51 PM4/25/2012 1:56:51 PM

2.2 Develop a Database 13

the applications are allowed to access the database as before the changes were implemented.
In other words, the applications are immune to the changes in the physical representation
and access techniques.

 The downside of using an integrated database approach has mainly to do with exor-
bitant costs associated with it. The hardware, the software, and maintenance are expensive.
Providing security, concurrency, integrity, and recovery may add further to this cost.
Further more, since DBMS consists of a complex set of programs, trained personnel are
needed to maintain it.

2.2 DEVELOP A DATABASE

 Database development process may follow a classical Systems Development Life Cycle.

1. Problem Identifi cation : Interview the user, identify user requirements. Perform preliminary
analysis of user needs.

2. Project Planning : Identify alternative approaches to solving the problem. Does the project
need a database? If so, defi ne the problem. Establish scope of the project.

3. Problem Analysis : Identify specifi cations for the problem. Confi rm the feasibility of the
project. Specify detailed requirements

4. Logical Design : Delineate detailed functional specifi cations. Determine screen designs,
report layout designs, data models, and so on.

5. Physical Design : Develop physical data structures.

6. Implementation: Select DBMS. Convert data to conform to DBMS requirements. Code
programs; perform testing.

7. Maintenance: Continue program modifi cation until desired results are achieved.

 An alternative approach to developing a database is through a phased process which
will include designing a conceptual model of the system that will imitate the real world
operation. It should be fl exible and change when the information in the database changes.
Furthermore, it should not be dependent upon the physical implementation. This process
follows following phases:

1. Planning and Analysis : This phase is roughly equivalent to the fi rst three steps mentioned
above in the Systems Development Life Cycle. This includes requirement specifi cations,
evaluating alternatives, determining input, output, and reports to be generated.

2. Conceptual Design : Choose a data model and develop a conceptual schema based on the
requirement specifi cation that was laid out in the planning and analysis phase. This concep-
tual design focuses on how the data will be organized without having to worry about the
specifi cs of the tables, keys, and attributes. Identify the entities that will represent tables in
the database; identify attributes that will represent fi elds in a table; and identify each entity
attribute relationship. Entity - relationship diagram s (ERD s) provide a good representation
of the conceptual design.

3. Logical Design : Conceptual design is transformed into a logical design by creating a
roadmap of how the database will look before actually creating the database. Data model
is identifi ed; usually it is the relational model. Defi ne the tables (entities) and fi elds (attri-
butes). Identify primary and foreign key for each table. Defi ne relationships between the
tables.

c02.indd 13c02.indd 13 4/25/2012 1:56:51 PM4/25/2012 1:56:51 PM

14 Chapter 2 Introduction to Databases

4. Physical Design : Develop physical data structures; specify fi le organization, and data
storage, and so on. Take into consideration the availability of various resources, including
hardware and software. This phase overlaps with the implementation phase. It involves the
programming of the database taking into account the limitations of the DBMS used.

5. Implementation: Choose the DBMS that will fulfi ll the user needs. Implement the physical
design. Perform testing. Modify if necessary or until the database functions satisfactorily.

2.3 SAMPLE DATABASE

 We will use the CSE_DEPT database to illustrate some essential database concepts.
Tables 2.1 – 2.5 show sample data tables stored in this database.

 The data in the CSE_DEPT database are stored in fi ve tables — LogIn, Faculty,
Course, Student, and StudentCourse. A table consists of row and columns (Fig. 2.1). A
row represents a record, and the column represents a fi eld. Row is called a tuple, and a
column is called an attribute. For example, the Student table has seven columns or fi elds —
 student_id, name, gpa, major, schoolYear, and email. It has fi ve records or rows.

2.3.1 Relational Data Model

 Data model is like a blue print for developing a database. It describes the structure of
the database and various data relationships and constraints on the data. This information

Table 2.2. Faculty table

faculty_id faculty_name office phone college title email

A52990 Black Anderson MTC-218 750-378-9987 Virginia Tech Professor banderson@college.edu

A77587 Debby Angles MTC-320 750-330-2276 University of Chicago Associate Professor dangles@college.edu

B66750 Alice Brown MTC-257 750-330-6650 University of Florida Assistant Professor abrown@college.edu

B78880 Ying Bai MTC-211 750-378-1148 Florida Atlantic University Associate Professor ybai@college.edu

B86590 Satish Bhalla MTC-214 750-378-1061 University of Notre Dame Associate Professor sbhalla@college.edu

H99118 Jeff Henry MTC-336 750-330-8650 Ohio State University Associate Professor jhenry@college.edu

J33486 Steve Johnson MTC-118 750-330-1116 Harvard University Distinguished Professor sjohnson@college.edu

K69880 Jenney King MTC-324 750-378-1230 East Florida University Professor jking@college.edu

Table 2.1. LogIn table

user_name pass_word faculty_id student_id

abrown america B66750

ajade tryagain A97850

awoods smart A78835

banderson birthday A52990

bvalley see B92996

dangles tomorrow A77587

hsmith try H10210

jerica excellent J77896

jhenry test H99118

jking goodman K69880

sbhalla india B86590

sjohnson jermany J33486

ybai reback B78880

c02.indd 14c02.indd 14 4/25/2012 1:56:51 PM4/25/2012 1:56:51 PM

2.3 Sample Database 15

Table 2.3. Course table

course_id course credit classroom schedule enrollment faculty_id

CSC-131A Computers in Society 3 TC-109 M-W-F: 9:00-9:55 AM 28 A52990

CSC-131B Computers in Society 3 TC-114 M-W-F: 9:00-9:55 AM 20 B66750

CSC-131C Computers in Society 3 TC-109 T-H: 11:00-12:25 PM 25 A52990

CSC-131D Computers in Society 3 TC-109 M-W-F: 9:00-9:55 AM 30 B86590

CSC-131E Computers in Society 3 TC-301 M-W-F: 1:00-1:55 PM 25 B66750

CSC-131I Computers in Society 3 TC-109 T-H: 1:00-2:25 PM 32 A52990

CSC-132A Introduction to Programming 3 TC-303 M-W-F: 9:00-9:55 AM 21 J33486

CSC-132B Introduction to Programming 3 TC-302 T-H: 1:00-2:25 PM 21 B78880

CSC-230 Algorithms & Structures 3 TC-301 M-W-F: 1:00-1:55 PM 20 A77587

CSC-232A Programming I 3 TC-305 T-H: 11:00-12:25 PM 28 B66750

CSC-232B Programming I 3 TC-303 T-H: 11:00-12:25 PM 17 A77587

CSC-233A Introduction to Algorithms 3 TC-302 M-W-F: 9:00-9:55 AM 18 H99118

CSC-233B Introduction to Algorithms 3 TC-302 M-W-F: 11:00-11:55 AM 19 K69880

CSC-234A Data Structure & Algorithms 3 TC-302 M-W-F: 9:00-9:55 AM 25 B78880

CSC-234B Data Structure & Algorithms 3 TC-114 T-H: 11:00-12:25 PM 15 J33486

CSC-242 Programming II 3 TC-303 T-H: 1:00-2:25 PM 18 A52990

CSC-320 Object Oriented Programming 3 TC-301 T-H: 1:00-2:25 PM 22 B66750

CSC-331 Applications Programming 3 TC-109 T-H: 11:00-12:25 PM 28 H99118

CSC-333A Computer Arch & Algorithms 3 TC-301 M-W-F: 10:00-10:55 AM 22 A77587

CSC-333B Computer Arch & Algorithms 3 TC-302 T-H: 11:00-12:25 PM 15 A77587

CSC-335 Internet Programming 3 TC-303 M-W-F: 1:00-1:55PM 25 B66750

CSC-432 Discrete Algorithms 3 TC-206 T-H: 11:00-12:25 PM 20 B86590

CSC-439 Database Systems 3 TC-206 M-W-F: 1:00-1:55 PM 18 B86590

CSE-138A Introduction to CSE 3 TC-301 T-H: 1:00-2:25 PM 15 A52990

CSE-138B Introduction to CSE 3 TC-109 T-H: 1:00-2:25 PM 35 J33486

CSE-330 Digital Logic Circuits 3 TC-305 M-W-F: 9:00-9:55 AM 26 K69880

CSE-332 Foundations of Semiconductors 3 TC-305 T-H: 1:00-2:25 PM 24 K69880

CSE-334 Elec. Measurement & Design 3 TC-212 T-H: 11:00-12:25 PM 25 H99118

CSE-430 Bioinformatics in Computer 3 TC-206 Thu: 9:30-11:00 AM 16 B86590

CSE-432 Analog Circuits Design 3 TC-309 M-W-F: 2:00-2:55 PM 18 K69880

CSE-433 Digital Signal Processing 3 TC-206 T-H: 2:00-3:25 PM 18 H99118

CSE-434 Advanced Electronics Systems 3 TC-213 M-W-F: 1:00-1:55 PM 26 B78880

CSE-436 Automatic Control and Design 3 TC-305 M-W-F: 10:00-10:55 AM 29 J33486

CSE-437 Operating Systems 3 TC-303 T-H: 1:00-2:25 PM 17 A77587

CSE-438 Advd Logic & Microprocessor 3 TC-213 M-W-F: 11:00-11:55 AM 35 B78880

CSE-439 Special Topics in CSE 3 TC-206 M-W-F: 10:00-10:55 AM 22 J33486

Table 2.4. Student table

student_id student_name gpa credits major schoolYear email

A78835 Andrew Woods 3.26 108 Computer Science Senior awoods@college.edu

A97850 Ashly Jade 3.57 116 Information System Engineering Junior ajade@college.edu

B92996 Blue Valley 3.52 102 Computer Science Senior bvalley@college.edu

H10210 Holes Smith 3.87 78 Computer Engineering Sophomore hsmith@college.edu

J77896 Erica Johnson 3.95 127 Computer Science Senior ejohnson@college.edu

c02.indd 15c02.indd 15 4/25/2012 1:56:51 PM4/25/2012 1:56:51 PM

www.allitebooks.com

http://www.allitebooks.org

16 Chapter 2 Introduction to Databases

Figure 2.1. Records and fi elds in a table.

Table

ID Name Ages Address Phone

1000 Tom 36 220 Ave 549-0507

Jim1002 58 101 Main 678-1002

Jeff2010 49 25 Court 678-3211

Kim

Record

23 43 Route 202-55873090

Field

Table 2.5. StudentCourse table

s_course_id student_id course_id credit major

1000 H10210 CSC-131D 3 CE

1001 B92996 CSC-132A 3 CS/IS

1002 J77896 CSC-335 3 CS/IS

1003 A78835 CSC-331 3 CE

1004 H10210 CSC-234B 3 CE

1005 J77896 CSC-234A 3 CS/IS

1006 B92996 CSC-233A 3 CS/IS

1007 A78835 CSC-132A 3 CE

1008 A78835 CSE-432 3 CE

1009 A78835 CSE-434 3 CE

1010 J77896 CSC-439 3 CS/IS

1011 H10210 CSC-132A 3 CE

1012 H10210 CSC-331 2 CE

1013 A78835 CSC-335 3 CE

1014 A78835 CSE-438 3 CE

1015 J77896 CSC-432 3 CS/IS

1016 A97850 CSC-132B 3 ISE

1017 A97850 CSC-234A 3 ISE

1018 A97850 CSC-331 3 ISE

1019 A97850 CSC-335 3 ISE

1020 J77896 CSE-439 3 CS/IS

1021 B92996 CSC-230 3 CS/IS

1022 A78835 CSE-332 3 CE

1023 B92996 CSE-430 3 CE

1024 J77896 CSC-333A 3 CS/IS

1025 H10210 CSE-433 3 CE

1026 H10210 CSE-334 3 CE

1027 B92996 CSC-131C 3 CS/IS

1028 B92996 CSC-439 3 CS/IS

c02.indd 16c02.indd 16 4/25/2012 1:56:51 PM4/25/2012 1:56:51 PM

2.4 Identifying Keys 17

is used in building tables, keys, and defi ning relationships. Relational model implies that
a user perceives the database as made up of relations, a database jargon for tables. It is
imperative that all data elements in the tables are represented correctly. In order to
achieve these goals, designers use various tools. The most commonly used tool is the ER.
A well - planned model will give consistent results and will allow changes if needed later
on. The following section further elaborates on the ER.

2.3.2 Entity-Relationship Model

 The ER was fi rst proposed and developed by Peter Chen in 1976. Since then, Charles
Bachman and James Martin have added some refi nements; the model was designed to
communicate the database design in the form of a conceptual schema. The ER is based
on the perception that the real world is made up of entities, their attributes, and relation-
ships. The ER is graphically depicted as ERDs. ERDs are a major modeling tool; they
graphically describe the logical structure of the database. ER diagrams can be used with
ease to construct the relational tables and are a good vehicle for communicating the
database design to the end user or a developer. The three major components of ERD are
entities, relationships, and the attributes.

Entities : An entity is a data object, either real or abstract, about which we want to collect
information. For example, we may want to collect information about a person, a place, or a
thing. An entity in an ER diagram translates into a table. It should preferably be referred
to as an entity set. Some common examples are departments, courses, and students. A single
occurrence of an entity is an instance. There are four entities in the CSE_Dept database,
LogIn, Faculty, Course, and Student. Each entity is translated into a table with the same
name. An instance of the Faculty entity will be Alice Brown and her attributes.

Relationships: A database is made up of related entities. There is a natural association between
the entities; it is referred to as relationship. For example,

 • Students take courses
 • Departments offer certain courses
 • Employees are assigned to departments

 The number of occurrences of one entity associated with single occurrence of a related
entity is referred to as cardinality .

Attributes : Each entity has properties or values called attributes associated with it. The attri-
butes of an entity map into fi elds in a table. Database Processing is one attribute of an entity
called Courses. The domain of an attribute is a set of all possible values from which an
attribute can derive its value.

2.4 IDENTIFYING KEYS

2.4.1 Primary Key and Entity Integrity

 An attribute that uniquely identifi es one and only one instance of an entity is called a
primary key. Sometimes, a primary key consists of a combination of attributes. It is
referred to as a composite key. Entity integrity rule states that no attribute that is a member
of the primary (composite) key may accept a null value.

c02.indd 17c02.indd 17 4/25/2012 1:56:51 PM4/25/2012 1:56:51 PM

18 Chapter 2 Introduction to Databases

 A FacultyID may serve as a primary key for the Faculty entity, assuming that all
faculty members have been assigned a unique FaultyID. However, caution must be exer-
cised when picking an attribute as a primary key. Last Name may not make a good
primary key because a department is likely to have more than one person with the same
last name. Primary keys for the CSE_DEPT database are shown in Table 2.6 .

 Primary keys provide a tuple level addressing mechanism in the relational databases.
Once you defi ne an attribute as a primary key for an entity, the DBMS will enforce the
uniqueness of the primary key. Inserting a duplicate value for primary key fi eld will fail.

2.4.2 Candidate Key

 There can be more than one attribute that uniquely identifi es an instance of an entity.
These are referred to as candidate keys. Any one of them can serve as a primary key. For
example, ID Number as well as Social Security Number may make a suitable primary
key. Candidate keys that are not used as primary key are called alternate keys.

2.4.3 Foreign Keys and Referential Integrity

 Foreign keys are used to create relationships between tables. It is an attribute in one table
whose values are required to match those of primary key in another table. Foreign keys
are created to enforce referential integrity , which states that you may not add a record to
a table containing a foreign key unless there is a corresponding record in the related table
to which it is logically linked. Furthermore, the referential integrity rule also implies that
every value of a foreign key in a table must match the primary key of a related table or
be null. MS Access also makes provision for cascade update and cascade delete, which
imply that changes made in one of the related tables will be refl ected in the other of the
two related tables.

 Consider two tables, Course and Faculty, in the sample database, CSE_DEPT. The
Course table has a foreign key, entitled faculty_id , which is primary key in the Faculty
table. The two tables are logically related through the faculty_id link. Referential integrity
rules imply that we may not add a record to the Course table with a faculty_id , which is
not listed in the Faculty table. In other words, there must be a logical link between the
two related tables. Second, if we change or delete a faculty_id in the Faculty table, it must

Table 2.6. Faculty table

faculty_id faculty_name office phone college title email

A52990 Black Anderson MTC-218 750-378-9987 Virginia Tech Professor banderson@college.edu

A77587 Debby Angles MTC-320 750-330-2276 University of Chicago Associate Professor dangles@college.edu

B66750 Alice Brown MTC-257 750-330-6650 University of Florida Assistant Professor abrown@college.edu

B78880 Ying Bai MTC-211 750-378-1148 Florida Atlantic University Associate Professor ybai@college.edu

B86590 Satish Bhalla MTC-214 750-378-1061 University of Notre Dame Associate Professor sbhalla@college.edu

H99118 Jeff Henry MTC-336 750-330-8650 Ohio State University Associate Professor jhenry@college.edu

J33486 Steve Johnson MTC-118 750-330-1116 Harvard University Distinguished Professor sjohnson@college.edu

K69880 Jenney King MTC-324 750-378-1230 East Florida University Professor jking@college.edu

c02.indd 18c02.indd 18 4/25/2012 1:56:51 PM4/25/2012 1:56:51 PM

2.5 Defi ne Relationships 19

refl ect in the Course table, meaning that all records in the Course table must be modifi ed
using a cascade update or cascade delete (Table 2.7).

2.5 DEFINE RELATIONSHIPS

2.5.1 Connectivity

 Connectivity refers to the types of relationships that entities can have. Basically it can be
one - to - one, one - to - many, and many - to - many . In ERDs, these are indicated by placing 1,
M, or N at one of the two ends of the relationship diagram. Figures illustrate the use of
this notation.

 • A one - to - one (1:1) relationship occurs when one instance of entity A is related to only one
instance of entity B. For example, user_name in the LogIn table and user_name in the
Student table (Fig. 2.2).

 • A one - to - many (1:M) relationship occurs when one instance of entity A is associated with
zero, one, or many instances of entity B. However, entity B is associated with only one
instance of entity A. For example, one department can have many faculty members; each
faculty member is assigned to only one department. In the CSE_DEPT database, one - to -
 many relationship is represented by faculty_id in the Faculty table and faculty_id in the
Course table, student_id in the Student table and student_id in the StudentCourse table,
course_id in the Course table and course_id in the StudentCourse table (Fig. 2.3).

 • A many - to - many (M:N) relationship occurs when one instance of entity A is associated with
zero, one, or many instances of entity B. And one instance of entity B is associated with zero,
one, or many instance of entity A. For example, a student may take many courses and one
course may be taken by more than one student (Fig. 2.4).

 In the CSE_DEPT database, a many - to - many relationship can be realized by using
the third table. For example, in this case, the StudentCourse that works as the third table,
set a many - to - many relationship between the Student and the Course tables.

 This database design assumes that the course table only contains courses taught by
all faculty members in this department for one semester. Therefore, each course can only
be taught by a unique faculty. If one wants to develop a Course table that contains courses
taught by all faculty in more than one semester, the third table, say FacultyCourse table,
should be created to set up a many - to - many relationship between the Faculty and the

Table 2.7. Course (Partial data shown) Faculty (Partial data shown)

course_id course faculty_id

CSC-132A Introduction to Programming J33486

CSC-132B Introduction to Programming B78880

CSC-230 Algorithms & Structures A77587

CSC-232A Programming I B66750

CSC-232B Programming I A77587

CSC-233A Introduction to Algorithms H99118

CSC-233B Introduction to Algorithms K69880

CSC-234A Data Structure & Algorithms B78880

faculty_id faculty_name office

A52990 Black Anderson MTC-218

A77587 Debby Angles MTC-320

B66750 Alice Brown MTC-257

B78880 Ying Bai MTC-211

B86590 Satish Bhalla MTC-214

H99118 Jeff Henry MTC-336

J33486 Steve Johnson MTC-118

K69880 Jenney King MTC-324

c02.indd 19c02.indd 19 4/25/2012 1:56:51 PM4/25/2012 1:56:51 PM

20 Chapter 2 Introduction to Databases

Figure 2.4. Many - to - many relationship between Student and Course tables.

Course

student_id student_name gpa credits

A78835 Andrew Woods 3.26 108

A97850 Ashly Jade 3.57 116

B92996 Blue Valley 3.52 102

H10210 Holes Smith 3.87 78

J77896 Erica Johnson 3.95 127

course_id course faculty_id

CSC-132A Introduction to Programming J33486

CSC-132B Introduction to Programming B78880

CSC-230 Algorithms & Structures A77587

CSC-232A Programming I B66750

CSC-232B Programming I A77587

CSC-233A Introduction to Algorithms H99118

s_course_id student_id course_id credit major

1000 H10210 CSC-131D 3 CE

1001 B92996 CSC-132A 3 CS/IS

1002 J77896 CSC-335 3 CS/IS

1003 A78835 CSC-331 3 CE

1004 H10210 CSC-234B 3 CE

1005 J77896 CSC-234A 3 CS/IS

1006 B92996 CSC-233A 3 CS/IS

Student

StudentCourse

Figure 2.2. One - to - one relationship in the LogIn and the Student tables.

Figure 2.3. One - to - many relationship between Faculty and Course tables.

faculty_id faculty_name office

A52990 Black Anderson MTC-218

A77587 Debby Angles MTC-320

B66750 Alice Brown MTC-257

B78880 Ying Bai MTC-211

B86590 Satish Bhalla MTC-214

H99118 Jeff Henry MTC-336

J33486 Steve Johnson MTC-118

K69880 Jenney King MTC-324

course_id course faculty_id

CSC-132A Introduction to Programming J33486

CSC-132B Introduction to Programming B78880

CSC-230 Algorithms & Structures A77587

CSC-232A Programming I B66750

CSC-232B Programming I A77587

CSC-233A Introduction to Algorithms H99118

CSC-233B Introduction to Algorithms K69880

CSC-234A Data Structure & Algorithms B78880

Faculty Course

c02.indd 20c02.indd 20 4/25/2012 1:56:51 PM4/25/2012 1:56:51 PM

2.6 ER Notation 21

Course table, since one course may be taught by the different faculty for the different
semester.

 The relationships in CSE_DEPT database are summarized in Figure 2.5 .
 Database name: CSE_DEPT
 The fi ve entities are:

 • LogIn

 • Faculty

 • Course

 • Student

 • StudentCourse

 The relationships between these entities are shown in Figure 2.5 . P.K. and F.K. rep-
resent the primary key and the foreign key, respectively.

 Figure 2.6 displays the Microsoft Access relationships diagram among various tables
in the CSE_Dept database. One - to - many relationships is indicated by placing 1 at one
end of the link and ∞ at the other. The many - to - many relationship between the Student
and the Course table was broken down to two one - to - many relationships by creating a
new StudentCourse table.

2.6 ER NOTATION

 There are a number of ER notations available, including Chen ’ s, Bachman, Crow ’ s foot,
and a few others. There is no consensus on the symbols and the styles used to draw ERDs.

Figure 2.5. Relationships in CSE_DEPT database.

one-to-many

user_name pass_word faculty_id student_id faculty_id name office college

student_id name major gpa course_id course credits

s_course_id

faculty_id

student_id course_id

P.K. P.K.

P.K. P.K.

P.K.

F.K. F.K.

F.K.

F.K. F.K.

one-to-many

one-to-many

many-to-many

one-to-many

one-to-many

Student Table
Course Table

Faculty TableLogIn Table

StudentCourse Table

c02.indd 21c02.indd 21 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

22 Chapter 2 Introduction to Databases

Figure 2.6. Relationships are illustrated using MS Access in the CSE_DEPT database.

A number of drawing tools are available to draw ERDs. These include ER Assistant,
Microsoft Visio, and Smart Draw, among others. Commonly used notations are shown in
Figure 2.7 .

2.7 DATA NORMALIZATION

 After identifying tables, attributes, and relationships, the next logical step in database
design is to make sure that the database structure is optimum. Optimum structure is
achieved by eliminating redundancies, various ineffi ciencies, update, and deletion anoma-
lies that usually occur in the unnormalized or partially normalized databases. Data nor-
malization is a progressive process. The steps in the normalization process are called
normal forms. Each normal form progressively improves the database and makes it more
effi cient. In other words, a database that is in second normal form is better than the one
in the fi rst normal form (1NF), and the one in third normal form (3NF) is better than the
one in second normal form (2NF). To be in 3NF, a database has to be in the fi rst and
second normal form. There are fourth and fi fth normal forms, but for most practical pur-
poses, a database meeting the criteria of 3NF is considered to be of good design.

2.7.1 First Normal Form (1 NF)

 A table is in 1NF if values in each column are atomic, that is, there are no repeating
groups of data.

c02.indd 22c02.indd 22 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

2.7 Data Normalization 23

 The following Faculty table (Table 2.8) is not normalized. Some faculty members have
more than one telephone number listed in the phone column. These are called repeating
groups.

 In order to convert this table to 1NF, the data must be atomic. In other words, the
repeating rows must be broken into two or more atomic rows. Table 2.9 illustrates the
Faculty table in 1NF, where repeating groups have been removed. Now it is in 1NF.

2.7.2 Second Normal Form (2 NF)

 A table is in 2NF if it is already in 1NF and every nonkey column is fully dependent upon
the primary key.

 This implies that if the primary key consists of a single column then the table in
1NF is automatically in 2NF. The second part of the defi nition implies that if the key is

Figure 2.7. Commonly used symbols for ER notation.

Cardinality is indicated by
placing 1, N, or M near the
entity it is associated with

A line links entities to
attributes and
relationships

Relationship is represented
by a diamond with lines
connecting the entities

involved

An attribute is represented by
an oval

A weak entity is represented
by a double rectangular box.

Entity is represented by a
rectangular box.

1 M

c02.indd 23c02.indd 23 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

24 Chapter 2 Introduction to Databases

composite, then none of the nonkey columns will depend upon just one of the columns
that participates in the composite key.

 The Faculty table in Table 2.9 is in 1NF. However, it has a composite primary key,
made up of faculty_id and offi ce. The phone number depends on a part of the primary
key, the offi ce, and not on the whole primary key. This can lead to update and deletion
anomalies mentioned above.

 By splitting the old Faculty table (Fig. 2.8) into two new tables, Faculty and Offi ce,
we can remove the dependencies mentioned earlier. Now the faculty table has a primary
key, faculty_id , and the Offi ce table has a primary key, offi ce. The nonkey columns in both
tables now depend only on the primary keys only.

2.7.3 Third Normal Form (3 NF)

 A table is in 3NF if it is already in 2NF, and every nonkey column is nontransitively
dependent upon the primary key. In other words, all nonkey columns are mutually inde-
pendent, but at the same time, they are fully dependent upon the primary key only.

 Another way of stating this is that in order to achieve 3NF, no column should depend
upon any nonkey column. If column B depends on column A, then A is said to function-
ally determine column B; hence the term determinant. Another defi nition of 3NF says
that the table should be in 2NF, and only determinants it contains are candidate keys.

Table 2.8. Unnormalized Faculty table with repeating groups

B78880 Ying Bai MTC-211, SHB-105 750-378-1148, 555-246-4582

B86590 Satish Bhalla MTC-214 750-378-1061

H99118 Jeff Henry MTC-336 750-330-8650

J33486 Steve Johnson MTC-118 750-330-1116

K69880 Jenney King MTC-324 750-378-1230

faculty_id faculty_name office phone

A52990 Black Anderson MTC-218, SHB-205 750-378-9987, 555-255-8897

A77587 Debby Angles MTC-320 750-330-2276

B66750 Alice Brown MTC-257 750-330-6650

Table 2.9. Normalized Faculty table

faculty_id faculty_name office phone

A52990 Black Anderson MTC-218 750-378-9987

A52990 Black Anderson SHB-205 555-255-8897

A77587 Debby Angles MTC-320 750-330-2276

B66750 Alice Brown MTC-257 750-330-6650

B78880 Ying Bai MTC-211 750-378-1148

B78880 Ying Bai SHB-105 555-246-4582

B86590 Satish Bhalla MTC-214 750-378-1061

H99118 Jeff Henry MTC-336 750-330-8650

J33486 Steve Johnson MTC-118 750-330-1116

K69880 Jenney King MTC-324 750-378-1230

c02.indd 24c02.indd 24 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

2.7 Data Normalization 25

 For the Course table in Table 2.10 , all nonkey columns depend on the primary key —
course_id . In addition, name and phone columns also depend on faculty_id . This table is
in 2NF, but it suffers from update, addition, and deletion anomalies because of transitive
dependencies. In order to conform to 3NF, we can split this table into two tables, Course
and Instructor (Tables 2.11 and 2.12). Now we have eliminated the transitive dependen-
cies that are apparent in the Course table in Table 2.10 .

Table 2.10. The old Course table

course_id course classroom faculty_id faculty_name phone

CSC-131A Computers in Society TC-109 A52990 Black Anderson 750-378-9987

CSC-131B Computers in Society TC-114 B66750 Alice Brown 750-330-6650

CSC-131C Computers in Society TC-109 A52990 Black Anderson 750-378-9987

CSC-131D Computers in Society TC-109 B86590 Satish Bhalla 750-378-1061

CSC-131E Computers in Society TC-301 B66750 Alice Brown 750-330-6650

CSC-131I Computers in Society TC-109 A52990 Black Anderson 750-378-9987

CSC-132A Introduction to Programming TC-303 J33486 Steve Johnson 750-330-1116

CSC-132B Introduction to Programming TC-302 B78880 Ying Bai 750-378-1148

Figure 2.8. Converting faulty table into 2NF by decomposing the old table in two, Faculty and Offi ce.

 Old Faculty table in 1NF
faculty_id faculty_name office phone

A52990 Black Anderson MTC-218 750-378-9987

A52990 Black Anderson SHB-205 555-255-8897

A77587 Debby Angles MTC-320 750-330-2276

B66750 Alice Brown MTC-257 750-330-6650

B78880 Ying Bai MTC-211 750-378-1148

B78880 Ying Bai SHB-105 555-246-4582

B86590 Satish Bhalla MTC-214 750-378-1061

H99118 Jeff Henry MTC-336 750-330-8650

J33486 Steve Johnson MTC-118 750-330-1116

K69880 Jenney King MTC-324 750-378-1230

New Faculty table New Office table

faculty_id faculty_name

A52990 Black Anderson

A52990 Black Anderson

A77587 Debby Angles

B66750 Alice Brown

B78880 Ying Bai

B78880 Ying Bai

B86590 Satish Bhalla

H99118 Jeff Henry

J33486 Steve Johnson

K69880 Jenney King

office phone faculty_id

MTC-218 750-378-9987 A52990

SHB-205 555-255-8897 A52990

MTC-320 750-330-2276 A77587

MTC-257 750-330-6650 B66750

MTC-211 750-378-1148 B78880

SHB-105 555-246-4582 B78880

MTC-214 750-378-1061 B86590

MTC-336 750-330-8650 H99118

MTC-118 750-330-1116 J33486

MTC-324 750-378-1230 K69880

c02.indd 25c02.indd 25 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

www.allitebooks.com

http://www.allitebooks.org

26 Chapter 2 Introduction to Databases

2.8 DATABASE COMPONENTS IN SOME
POPULAR DATABASES

 All databases allow for storage, retrieval, and management of data. Simple databases
provide basic services to accomplish these tasks. Many database providers, like Microsoft
SQL Server and Oracle, provide additional services, which necessitates storing many
components in the database other than data. These components, such as views, stored
procedures, and so on, are collectively called database objects. In this section, we will
discuss various objects that make up MS Access, SQL Server, and Oracle databases.

 There are two major types of databases, File Server and Client Server .
 In a File Server database, data are stored in a fi le and each user of the database

retrieves the data, displays the data, or modifi es the data directly from or to the fi le. In a
Client Server database, data are also stored in a fi le; however, all these operations are
mediated through a master program, called a server. MS Access is a File Server database,
whereas Microsoft SQL Server and Oracle are Client Server databases. The Client Server
databases have several advantages over the File Server databases. These include minimiz-
ing chances of crashes, provision of features for recovery, enforcement of security, better
performance, and more effi cient use of the network compared to the fi le server
databases.

2.8.1 Microsoft Access Databases

 Microsoft Access Database Engine is a collection of information stored in a systematic
way that forms the underlying component of a database. Also called a Jet (Joint Engine

Table 2.11. The new Course table

course_id course classroom

CSC-131A Computers in Society TC-109

CSC-131B Computers in Society TC-114

CSC-131C Computers in Society TC-109

CSC-131D Computers in Society TC-109

CSC-131E Computers in Society TC-301

CSC-131I Computers in Society TC-109

CSC-132A Introduction to Programming TC-303

CSC-132B Introduction to Programming TC-302

Table 2.12. The new Instructor table

faculty_id faculty_name phone

A52990 Black Anderson 750-378-9987

B66750 Alice Brown 750-330-6650

A52990 Black Anderson 750-378-9987

B86590 Satish Bhalla 750-378-1061

B66750 Alice Brown 750-330-6650

A52990 Black Anderson 750-378-9987

J33486 Steve Johnson 750-330-1116

B78880 Ying Bai 750-378-1148

A77587 Debby Angles 750-330-2276

c02.indd 26c02.indd 26 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

2.8 Database Components in Some Popular Databases 27

Technology), it allows the manipulation of relational database. It offers a single interface
that other software may use to access Microsoft databases. The supporting software is
developed to provide security, integrity, indexing, record locking, and so on. By executing
the MS Access program, MSACCESS.EXE, you can see the database engine at work and
the user interface it provides. Figure 2.9 shows how a Java application accesses the MS
Access database via ACE OLE database provider.

2.8.1.1 Database File

 Access database is made up of a number of components called objects that are stored in
a single fi le referred to as database fi le . As new objects are created or more data are added
to the database, this fi le gets bigger. This is a complex fi le that stores objects like tables,
queries, forms, reports, macros, and modules. The Access fi les have an .mdb (Microsoft
DataBase) extension. Some of these objects help the user to work with the database;
others are useful for displaying database information in a comprehensible and easy - to -
 read format.

2.8.1.2 Tables

 Before you can create a table in Access, you must create a database container and give
it a name with the extension .mdb. Database creation is simple process and is explained
in detail with an example later in this chapter. Suffi ce it to say that a table is made up of
columns and rows. Columns are referred to as fi elds, which are attributes of an entity.
Rows are referred to as records, also called tuples.

2.8.1.3 Queries

 One of the main purposes of storing data in a database is that the data may be retrieved
later as needed, without having to write complex programs. This purpose is accomplished
in Access and other databases by writing SQL statements. A group of such statements is
called a query. It enables you to retrieve, update, and display data in the tables. You may
display data from more than one table by using a Join operation. In addition, you may
insert or delete data in the tables.

Figure 2.9. Microsoft Access database illustration.

Jet 12.0 OLE DB
Provider

Access
Database

Visual Basic
Applications

Jet 12.0 OLE DB
Provider

Access
Database

Visual Basic
Applications

c02.indd 27c02.indd 27 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

28 Chapter 2 Introduction to Databases

 Access also provides a visual graphic user interface to create queries. This bypasses
writing SQL statements and makes it appealing to beginning and not so savvy users, who
can use wizards or GUI interface to create queries. Queries can extract information in a
variety of ways. You can make them as simple or as complex as you like. You may specify
various criteria to get desired information, perform comparisons, or you may want to
perform some calculations and obtain the results. In essence, operators, functions, and
expressions are the building blocks for Access operation.

2.8.2 SQL Server Databases

 The Microsoft SQL Server Database Engine is a service for storing and processing data
in either a relational (tabular) format or as XML documents. Various tasks performed by
the Database Engine include:

 • Designing and creating a database to hold the relational tables or XML documents.

 • Accessing and modifying the data stored in the database.

 • Implementing websites and applications

 • Building procedures

 • Optimizing the performance of the database.

 The SQL Server database is a complex entity, made up of multiple components. It is
more complex than MS Access database, which can be simply copied and distributed.
Certain procedures have to be followed for copying and distributing an SQL server
database.

 SQL Server is used by a diverse group of professionals with diverse needs and
requirements. To satisfy different needs, SQL Server comes in fi ve editions, Enterprise
edition, Standard edition, Workgroup edition, Developer edition, and Express edition.
The most common editions are Enterprise, Standard, and Workgroup. It is noteworthy
that the database engine is virtually the same in all of these editions.

 SQL Server database can be stored on the disk using three types of fi les — primary
data fi les, secondary data fi les, and transaction log fi les. Primary data fi les are created fi rst
and contain user - defi ned objects, like tables and views, and system objects. These fi le have
an extension of .mdf. If the database grows too big for a disk, it can be stored as second-
ary fi les with an extension .ndf. The SQL Server still treats these fi les as if they are
together. The data fi le is made up of many objects. The transaction log fi les carry an .ldf
extension. All transactions to the database are recorded in this fi le.

 Figure 2.10 illustrates the structure of the SQL Server Database. Each Java applica-
tion has to access the server, which in turn accesses the SQL database.

2.8.2.1 Data Files

 A data fi le is a conglomeration of objects, which includes tables, keys, views, stored pro-
cedures, and others. All these objects are necessary for the effi cient operation of the
database.

c02.indd 28c02.indd 28 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

2.8 Database Components in Some Popular Databases 29

2.8.2.2 Tables

 The data in a relational database reside in tables. These are the building blocks of the
database. Each table consists of columns and rows. Columns represent various attributes
or fi elds in a table. Each row represents one record. For example, one record in the Faculty
table consists of name, offi ce, phone, college, title, and email. Each fi eld has a distinct data
type, meaning that it can contain only one type of data, such as numeric or character.
Tables are the fi rst objects created in a database.

2.8.2.3 Views

 Views are virtual tables, meaning that they do not contain any data. They are stored as
queries in the database, which are executed when needed. A view can contain data from
one or more tables. The views can provide database security. Sensitive information in a
database can be excluded by including nonsensitive information in a view and providing
user access to the views instead of all tables in a database. The views can also hide the
complexities of a database. A user can be using a view that is made up of multiple tables,
whereas it appears as a single table to the user. The user can execute queries against a
view just like a table.

2.8.2.4 Stored Procedures

 Users write queries to retrieve, display, or manipulate data in the database. These queries
can be stored on the client machine or on the server. There are advantages associated
with storing SQL queries on the server rather than on the client machine. It has to do
with the network performance. Usually, users use the same queries over and over again;
frequently, different users are trying to access the same data. Instead of sending the same
queries on the network repeatedly, it improves the network performance and executes
queries faster if the queries are stored on the server where they are compiled and saved
as stored procedures. The users can simply call the stored procedure with a simple
command, like execute stored_procedure A.

Figure 2.10. SQL Server database structure.

SQL
Database

Visual Basic
Applications

SQL
Server

SQL
Database

Visual Basic
Applications

SQL Client
Provider

SQL Client
Provider

c02.indd 29c02.indd 29 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

30 Chapter 2 Introduction to Databases

2.8.2.5 Keys and Relationships

 A primary key is created for each table in the database to effi ciently access records and
to ensure entity integrity . This implies that each record in a table is unique in some way.
Therefore, no two records can have the same primary key. It is defi ned as a globally unique
identifi er. Moreover, a primary key may not have null value, that is, missing data. SQL
server creates a unique index for each primary key. This ensures fast and effi cient access
to data. One or columns can be combined to designate a primary key.

 In a relational database, relationships between tables can be logically defi ned with
the help of foreign keys . A foreign key of one record in a table points specifi cally to a
primary key of a record in another table. This allows a user to join multiple tables and
retrieve information from more than one table at a time. Foreign keys also enforce ref-
erential integrity , a defi ned relationship between the tables that does not allow insertion
or deletion of records in a table unless the foreign key of a record in one table matches
a primary key of a record in another table. In other words, a record in one table cannot
have a foreign key that does not point to a primary key in another table. Additionally a
primary key may not be deleted if there are foreign keys in another table pointing to it.
The foreign key values associated with a primary key must be deleted fi rst. Referential
integrity protects related data from corruption stored in different tables.

2.8.2.6 Indexes

 The indexes are used to fi nd records, quickly and effi ciently, in a table just like one would
use an index in a book. SQL server uses two types of indexes to retrieve and update
data — clustered and nonclustered.

Clustered index sorts the data in a table so that the data can be accessed effi ciently.
It is akin to a dictionary or a phone book where records are arranged alphabetically. So
one can go directly to a specifi c alphabet and from there search sequentially for the spe-
cifi c record. The clustered indexes are like an inverted tree. The index a structure is called
a B - tree for binary - tree. You start with the root page at the top and fi nd the location of
other pages further down at secondary level, following to tertiary level and so on until
you fi nd the desired record. The very bottom pages are the leaf pages and contain the
actual data. There can be only one clustered index per table because clustered indexes
physically rearrange the data.

 Nonclustered indexes do not physically rearrange the data as do the clustered indexes.
They also consist of a binary tree with various levels of pages. The major difference,
however, is that the leaves do not contain the actual data as in the clustered indexes;
instead, they contain pointers that point to the corresponding records in the table. These
pointers are called row locators.

 The indexes can be unique where the duplicate keys are not allowed, or not unique,
which permit duplicate keys. Any column can be used to access data can be used to gen-
erate an index. Usually, the primary and the foreign key columns are used to create
indexes.

2.8.2.7 Transaction Log Files

 A transaction is a logical group of SQL statements that carry out a unit of work. Client
Server databases use log fi les to keep track of transactions that are applied to the

c02.indd 30c02.indd 30 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

2.8 Database Components in Some Popular Databases 31

database. For example, before an update is applied to a database, the database server
creates an entry in the transaction log to generate a before picture of the data in a table
and then applies a transaction and creates another entry to generate an after picture of
the data in that table. This keeps track of all the operations performed on a database.
Transaction logs can be used to recover data in case of crashes or disasters. Transaction
logs are automatically maintained by the SQL Server.

2.8.3 Oracle Databases

 Oracle was designed to be platform independent, making it architecturally more complex
than the SQL Server database. Oracle database contains more fi les than SQL Server
database.

 The Oracle DBMS comes in three levels: Enterprise, Standard, and Personal. The
Enterprise edition is the most powerful and is suitable for large installations using large
number of transactions in a multiuser environment. Standard edition is also used by high -
 level multiuser installations. It lacks some of the utilities available in Enterprise edition.
Personal edition is used in a single - user environment for developing database applica-
tions. The database engine components are virtually the same for all three editions.

 Oracle architecture is made up of several components, including an Oracle server,
Oracle instance, and an Oracle database. The Oracle server contains several fi les, pro-
cesses, and memory structures. Some of these are used to improve the performance of
the database and ensure database recovery in case of a crash. The Oracle server consists
of an Oracle instance, and an Oracle database. An Oracle instance consists of background
processes and memory structures. Background processes perform input/output and
monitor other Oracle processes for better performance and reliability. Oracle database
consists of data fi les that provide the actual physical storage for the data.

2.8.3.1 Data Files

 The main purpose of a database is to store and retrieve data. It consists of a collection
of data that is treated as a unit. An Oracle database has a logical and physical structure.
The logical layer consists of tablespaces, necessary for the smooth operation of an Oracle
installation. Data fi les make up the physical layer of the database. These consist of three
types of fi les: data fi les which contain actual data in the database; redo log fi les , which
contain records of modifi cations made to the database for future recovery in case of
failure; and control fi les , which are used to maintain and verify database integrity. Oracle
server uses other fi les that are not part of the database. These include a parameter fi le
that defi nes the characteristics of an Oracle instance, a password fi le used for authentica-
tion, and an archived redo log fi les, which are copies of the redo log fi les necessary for
recovery from failure. A partial list of some of the components follows.

2.8.3.2 Tables

 Users can store data in a regular table, partitioned table, index - organized table, or clus-
tered table. A regular table is the default table as in other databases. Rows can be stored
in any order. A partitioned table has one or more partitions where rows are stored.

c02.indd 31c02.indd 31 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

32 Chapter 2 Introduction to Databases

Partitions are useful for large tables that can be queried by several processes concurrently.
Index organized tables provide fast key - based access for queries involving exact matches.
The table may have index on one or more of its columns. Instead of using two storage
spaces for the table and a B - tree index, a single storage space is used to store both the
B - tree and other columns. A clustered table or group of tables share the same block called
a cluster. They are grouped together because they share common columns and are fre-
quently used together. Clusters have a cluster key for identifying the rows that need to
be stored together. Cluster keys are independent of the primary key and may be made
up of one or more columns. Clusters are created to improve performance.

2.8.3.3 Views

 Views are like virtual tables and are used in a similar fashion as in the SQL Server data-
bases discussed above.

2.8.3.4 Stored Procedures

 In Oracle, functions and procedures may be saved as stored program units. Multiple input
arguments (parameters) may be passed as input to functions and procedures; however,
functions return only one value as output, whereas procedures may return multiple values
as output. The advantages to creating and using stored procedures are the same as men-
tioned above for the SQL Server. By storing procedures on the server individual, SQL
statements do not have to be transmitted over the network, thus reducing the network
traffi c. In addition, commonly used SQL statements are saved as functions or procedures
and may be used again and again by various users, thus saving rewriting the same code
over and over again. The stored procedures should be made fl exible so that different users
are able to pass input information to the procedure in the form of arguments or param-
eters and get the desired output.

 Figure 2.11 shows the syntax to create a stored procedure in Oracle. It has three
sections — a header, a body, and an exception section. The procedure is defi ned in the
header section. Input and output parameters, along with their data types, are declared
here and transmit information to or from the procedure. The body section of the proce-
dure starts with a key word BEGIN and consists of SQL statements. The exceptions
section of the procedure begins with the keyword EXCEPTION and contains exception

Figure 2.11. Syntax for creating a stored procedure in oracle.

CREATE OR REPLACE PROCEDURE procedure_name

(parameter datatype, parameter datatype, ….)

IS
declare variables here

BEGIN

PL/SQL OR SQL statements

EXCEPTIONS

exception handlers

END

Header
Section

Body
Section

Exception
Section

c02.indd 32c02.indd 32 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

2.8 Database Components in Some Popular Databases 33

handlers that are designed to handle the occurrence of some conditions that changes the
normal fl ow of execution.

2.8.3.5 Indexes

 Indexes are created to provide direct access to rows. An index is a tree structure. Indexes
can be classifi ed on their logic design or their physical implementation. Logical classifi ca-
tion is based on application perspective, whereas physical classifi cation is based on how
the indexes are stored. Indexes can be partitioned or nonpartitioned. Large tables use
partitioned indexes, which spreads an index to multiple table spaces, thus decreasing
contention for index look up and increasing manageability. An index may consist of a
single column or multiple columns; it may be unique or nonunique. Some of these indexes
are outlined below.

Function - based indexes precompute the value of a function or expression of one or more
columns and store it in an index. It can be created as a B - tree or as a bit map. It can improve
the performance of queries performed on tables that rarely change.

Domain indexes are application specifi c and are created and managed by the user or
applications. Single - column indexes can be built on text, spatial, scalar, object, or LOB data
types.

B - tree indexes store a list of row IDs for each key. Structure of a B - tree index is similar to the
ones in the SQL Server described above. The leaf nodes contain indexes that point to rows
in a table. The leaf blocks allow the scanning of the index in either ascending or descending
order. Oracle server maintains all indexes when insert, update, or delete operations are
performed on a table.

Bitmap indexes are useful when columns have low cardinality and a large number of rows. For
example, a column may contain few distinct values, like Y/N for marital status, or M/F for
gender. A bitmap is organized like a B - tree where the leaf nodes store a bitmap instead of
row IDs. When changes are made to the key columns, bit maps must be modifi ed.

2.8.3.6 Initialization Parameter Files

 Oracle server must read the initialization parameter fi le before starting an oracle data-
base instance. There are two types of initialization parameter fi les: static parameter fi le
and a persistent parameter fi le. An initialization parameter fi le contains a list of instance
parameters, and the name of the database the instance is associated with, the name and
location of control fi les, and information about the undo segments. Multiple initialization
parameter fi les can exist to optimize performance.

2.8.3.7 Control Files

 A control fi le is a small binary fi le that defi nes the current state of the database. Before
a database can be opened, a control fi le is read to determine if the database is in a valid
state or not. It maintains the integrity of the database. Oracle uses a single - control fi le
per database. It is maintained continuously by the server and can be maintained only by
the Oracle server. It cannot be edited by a user or database administrator. A control fi le
contains: database name and identifi er, time stamp of database creation, tablespace name,

c02.indd 33c02.indd 33 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

34 Chapter 2 Introduction to Databases

names and location of data fi les and redo log fi les, current log fi les sequence number, and
archive and backup information.

2.8.3.8 Redo Log Files

 Oracle ’ s redo log fi les provide a way to recover data in the event of a database failure.
All transactions are written to a redo log buffer and passed on to the redo log fi les.

 Redo log fi les record all changes to the data, provide a recovery mechanism, and can
be organized into groups. A set of identical copies of online redo log fi les is called a redo
log fi le group. The Oracle server needs a minimum of two online redo log fi le groups for
normal operations. The initial set of redo log fi le groups and members are created during
the database creation. Redo log fi les are used in a cyclic fashion. Each redo log fi le group
is identifi ed by a log sequence number and is overwritten each time the log is reused. In
other words, when a redo log fi le is full, then the log writer moves to the second redo log
fi le. After the second one is full, the fi rst one is reused.

2.8.3.9 Password Files

 Depending upon whether the database is administered locally or remotely, one can
choose either an operating system or a password fi le authentication to authenticate
database administrators. Oracle provides a password utility to create a password fi le.
Administrators use the GRANT command to provide access to the database using the
password fi le.

2.9 CREATE MICROSOFT ACCESS SAMPLE DATABASE

 In this section, you will learn how to create a sample Microsoft Access database CSE_
DEPT.accdb and its database fi le. As we mentioned in the previous sections, the Access
is a fi le - based database system, which means that the database is composed of a set of
data tables that are represented in the form of fi les.

 Open the Microsoft Offi ce Access 2007. Select Blank Database item and enter
CSE_DEPT into the File Name box as the database name and keep the extension accdb
unchanged. Click the small fi le folder icon that is next to the File Name box to open the
File New Database dialog to select the desired destination to save this new database.
In our case, select the C:\Database and then click the OK button. Now click the Create
button to create this new database.

2.9.1 Create the LogIn Table

 After a new blank database is created, click the drop - down arrow of the View button
from the Toolbar, and select the Design View item to open the database in the design
view. Enter LogIn into the Table Name box of the pop - up dialog as the name of our
fi rst table, LogIn. Click the OK button to open this table in the design view. Enter the data,
shown in Figure 2.12 , into this design view to build our LogIn table.

c02.indd 34c02.indd 34 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

2.9 Create Microsoft Access Sample Database 35

 Three columns are displayed in this Design view : Field Name, Data Type , and
Description . The fi rst table you want to create is the LogIn table with four columns:
user_name , pass_word , faculty_id , and student_id . Enter user_name into the
fi rst Field Name box. The data type for this user_name should be Text , so click the
drop - down arrow of the Data Type box and select Text . You can enter some comments
in the Description box to indicate the purpose of these data. In this case, just enter:
Primary key for the LogIn table since you need this column as the primary key for this
table.

 Similarly, enter the pass_word, faculty_id , and student_id into the second,
third, and fourth fi elds with the data type as Text for those fi elds. Now you need to assign
the user_name column as the primary key for this table. In the previous versions of the
Microsoft Offi ce Access, such as Offi ce 2003 or XP, you need to click and select the fi rst
row user_name from the table, and then go to the Toolbar and select the Primary key
tool that is displayed as a key. But starting from Offi ce 2007, you do not need to do that

Figure 2.12. The Design view of the LogIn table.

 Starting from Offi ce 2007, Microsoft released a new Access database format, accdb , which
is different from old formats and contains a quite few new functionalities that the old Access
formats do not have, such as allowing you to store fi le attachments as parts of your database
fi les, use multivalued fi elds, integrate with SharePoint and Outlook and perform encryption
improvements. You can convert the old format, such as Access 2000 and Access 2002 – 2003,
with the . mdb extension to this new format with the extension . accdb if you like.

c02.indd 35c02.indd 35 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

www.allitebooks.com

http://www.allitebooks.org

36 Chapter 2 Introduction to Databases

since the fi rst column has been selected as the primary key by default, which is repre-
sented as a key sign and is shown in Figure 2.12 .

 Click the Save button on the Toolbar to save the design for this table. Your fi nished
Design view of the LogIn table should match the one that is shown in Figure 2.12 .

 Next, you need to add the data into this LogIn table. To do that, you need to open
the Data Sheet view of the table. You can open this view by clicking the drop - down
arrow of the View tool on the Toolbar, which is the fi rst tool located on the Toolbar, then
select the Data Sheet view .

 Four data columns, user_name , pass_word , faculty_id , and student_id , are
displayed when the DataSheet view of this LogIn table is opened. Enter the data
shown in Table 2.13 into this table. Your fi nished LogIn table is shown in Figure 2.13 .

 Your fi nished LogIn table should match the one that is shown in Figure 2.13 . Click
the Save button on the Toolbar to save this table. Then click the Close button that is
located on the upper - right corner of the table to close this LogIn table.

2.9.2 Create the Faculty Table

 Now, let ’ s continue to create the second table Faculty . Click the Create menu item
from the menu bar and select the Table icon from the Toolbar to create a new table.
Click the Home menu item and select the Design View by clicking the drop - down arrow
from the View tool on the Toolbar. Enter Faculty into the Table Name box of the
pop - up dialog as the name for this new table, and click the OK .

 Seven columns are included in this table; they are: faculty_id , faculty_name ,
office , phone , college , title , and email . The data types for all columns in this table
are Text , since all of them are string variables. You can redefi ne the length of each Text
string by modifying the Field Size in the Field Properties pane located below of the table,
which is shown in Figure 2.14 . The default length for each text string is 255.

 Now you need to assign the primary key for this table. As we discussed in the last
section, you do not need to do this in Offi ce 2007 Access since the fi rst column, faculty_id ,
has been selected as the Primary key by default. Click the Save tool on the Toolbar to
save this table. The fi nished Design View of the Faculty table is shown in Figure 2.14 .

Table 2.13. The data in the LogIn table

user_name pass_word faculty_id student_id

abrown america B66750

ajade tryagain A97850

awoods smart A78835

banderson birthday A52990

bvalley see B92996

dangles tomorrow A77587

hsmith try H10210

jerica excellent J77896

jhenry test H99118

jking goodman K69880

sbhalla india B86590

sjohnson jermany J33486

ybai reback B78880

c02.indd 36c02.indd 36 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

2.9 Create Microsoft Access Sample Database 37

Figure 2.13. The completed LogIn table.

Figure 2.14. The Design view of the Faculty table.

c02.indd 37c02.indd 37 4/25/2012 1:56:52 PM4/25/2012 1:56:52 PM

38 Chapter 2 Introduction to Databases

Figure 2.15. The completed Faculty table.

Table 2.14. The data in the Faculty table

faculty_id faculty_name office phone college title email

A52990 Black Anderson MTC-218 750-378-9987 Virginia Tech Professor banderson@college.edu

A77587 Debby Angles MTC-320 750-330-2276 University of Chicago Associate Professor dangles@college.edu

B66750 Alice Brown MTC-257 750-330-6650 University of Florida Assistant Professor abrown@college.edu

B78880 Ying Bai MTC-211 750-378-1148 Florida Atlantic University Associate Professor ybai@college.edu

B86590 Satish Bhalla MTC-214 750-378-1061 University of Notre Dame Associate Professor sbhalla@college.edu

H99118 Jeff Henry MTC-336 750-330-8650 Ohio State University Associate Professor jhenry@college.edu

J33486 Steve Johnson MTC-118 750-330-1116 Harvard University Distinguished Professor sjohnson@college.edu

K69880 Jenney King MTC-324 750-378-1230 East Florida University Professor jking@college.edu

 Now open the DataSheet view of the Faculty table by clicking the Home menu
item, and then the drop - down arrow of the View tool, and select the Datasheet View item.
Enter the data that are shown in Table 2.14 into this opened Faculty table. The fi nished
Faculty table should match the one that is shown in Figure 2.15 .

2.9.3 Create the Other Tables

 Similarly, you need to create the following three tables: Course, Student , and
StudentCourse . Select the course_id , student_id , and s_course_id columns as
the primary key for the Course , Student , and StudentCourse tables (refer to Tables
 2.15 – 2.17). For the data type selections, follow the directions below:

 The data type selections for the Course table:

 • course_id — Text

 • credit — Number

 • enrolment — Number

 • All other columns — Text

c02.indd 38c02.indd 38 4/25/2012 1:56:53 PM4/25/2012 1:56:53 PM

2.9 Create Microsoft Access Sample Database 39

Table 2.16. The data in the Student table

student_id student_name gpa credits major schoolYear email

A78835 Andrew Woods 3.26 108 Computer Science Senior awoods@college.edu

A97850 Ashly Jade 3.57 116 Information System Engineering Junior ajade@college.edu

B92996 Blue Valley 3.52 102 Computer Science Senior bvalley@college.edu

H10210 Holes Smith 3.87 78 Computer Engineering Sophomore hsmith@college.edu

J77896 Erica Johnson 3.95 127 Computer Science Senior ejohnson@college.edu

Table 2.15. The data in the Course table

CSC-131I Computers in Society 3 TC-109 T-H: 1:00-2:25 PM 32 A52990

CSC-132A Introduction to Programming 3 TC-303 M-W-F: 9:00-9:55 AM 21 J33486

CSC-132B Introduction to Programming 3 TC-302 T-H: 1:00-2:25 PM 21 B78880

CSC-230 Algorithms & Structures 3 TC-301 M-W-F: 1:00-1:55 PM 20 A77587

CSC-232A Programming I 3 TC-305 T-H: 11:00-12:25 PM 28 B66750

CSC-232B Programming I 3 TC-303 T-H: 11:00-12:25 PM 17 A77587

CSC-233A Introduction to Algorithms 3 TC-302 M-W-F: 9:00-9:55 AM 18 H99118

CSC-233B Introduction to Algorithms 3 TC-302 M-W-F: 11:00-11:55 AM 19 K69880

CSC-234A Data Structure & Algorithms 3 TC-302 M-W-F: 9:00-9:55 AM 25 B78880

CSC-234B Data Structure & Algorithms 3 TC-114 T-H: 11:00-12:25 PM 15 J33486

CSC-242 Programming II 3 TC-303 T-H: 1:00-2:25 PM 18 A52990

CSC-320 Object Oriented Programming 3 TC-301 T-H: 1:00-2:25 PM 22 B66750

CSC-331 Applications Programming 3 TC-109 T-H: 11:00-12:25 PM 28 H99118

CSC-333A Computer Arch & Algorithms 3 TC-301 M-W-F: 10:00-10:55 AM 22 A77587

CSC-333B Computer Arch & Algorithms 3 TC-302 T-H: 11:00-12:25 PM 15 A77587

CSC-335 Internet Programming 3 TC-303 M-W-F: 1:00-1:55 PM 25 B66750

CSC-432 Discrete Algorithms 3 TC-206 T-H: 11:00-12:25 PM 20 B86590

CSC-439 Database Systems 3 TC-206 M-W-F: 1:00-1:55 PM 18 B86590

CSE-138A Introduction to CSE 3 TC-301 T-H: 1:00-2:25 PM 15 A52990

CSE-138B Introduction to CSE 3 TC-109 T-H: 1:00-2:25 PM 35 J33486

CSE-330 Digital Logic Circuits 3 TC-305 M-W-F: 9:00-9:55 AM 26 K69880

CSE-332 Foundations of Semiconductors 3 TC-305 T-H: 1:00-2:25 PM 24 K69880

CSE-334 Elec Measurement & Design 3 TC-212 T-H: 11:00-12:25 PM 25 H99118

CSE-430 Bioinformatics in Computer 3 TC-206 Thu: 9:30-11:00 AM 16 B86590

CSE-432 Analog Circuits Design 3 TC-309 M-W-F: 2:00-2:55 PM 18 K69880

CSE-433 Digital Signal Processing 3 TC-206 T-H: 2:00-3:25 PM 18 H99118

CSE-434 Advanced Electronics Systems 3 TC-213 M-W-F: 1:00-1:55 PM 26 B78880

CSE-436 Automatic Control and Design 3 TC-305 M-W-F: 10:00-10:55 AM 29 J33486

CSE-437 Operating Systems 3 TC-303 T-H: 1:00-2:25 PM 17 A77587

CSE-438 Advd Logic & Microprocessor 3 TC-213 M-W-F: 11:00-11:55 AM 35 B78880

CSE-439 Special Topics in CSE 3 TC-206 M-W-F: 10:00-10:55 AM 22 J33486

course_id course credit classroom schedule enrollment faculty_id

CSC-131A Computers in Society 3 TC-109 M-W-F: 9:00-9:55 AM 28 A52990

CSC-131B Computers in Society 3 TC-114 M-W-F: 9:00-9:55 AM 20 B66750

CSC-131C Computers in Society 3 TC-109 T-H: 11:00-12:25 PM 25 A52990

CSC-131D Computers in Society 3 TC-109 M-W-F: 9:00-9:55 AM 30 B86590

CSC-131E Computers in Society 3 TC-301 M-W-F: 1:00-1:55 PM 25 B66750

course_id course credit classroom schedule enrollment faculty_id

CSC-131A Computers in Society 3 TC-109 M-W-F: 9:00-9:55 AM 28 A52990

CSC-131B Computers in Society 3 TC-114 M-W-F: 9:00-9:55 AM 20 B66750

CSC-131C Computers in Society 3 TC-109 T-H: 11:00-12:25 PM 25 A52990

CSC-131D Computers in Society 3 TC-109 M-W-F: 9:00-9:55 AM 30 B86590

CSC-131E Computers in Society 3 TC-301 M-W-F: 1:00-1:55 PM 25 B66750

c02.indd 39c02.indd 39 4/25/2012 1:56:53 PM4/25/2012 1:56:53 PM

40 Chapter 2 Introduction to Databases

 The data type selections for the Student table:

 • student_id — Text

 • credits — Number

 • All other columns — Text

 The data type selections for the StudentCourse table:

 • s_course_id — Number

 • credit — Number

 • All other columns — Text

 Enter the data that are shown in Tables 2.15 – 2.17 into each associated table, and save
each table as Course , Student , and StudentCourse , respectively.

 The fi nished Course table is shown in Figure 2.16 . The completed Student and
StudentCourse tables are shown in Figures 2.17 and 2.18 .

Table 2.17. The data in the StudentCourse table

1003 A78835 CSC-331 3 CE

1004 H10210 CSC-234B 3 CE

1005 J77896 CSC-234A 3 CS/IS

1006 B92996 CSC-233A 3 CS/IS

1007 A78835 CSC-132A 3 CE

1008 A78835 CSE-432 3 CE

1009 A78835 CSE-434 3 CE

1010 J77896 CSC-439 3 CS/IS

1011 H10210 CSC-132A 3 CE

1012 H10210 CSC-331 3 CE

1013 A78835 CSC-335 3 CE

1014 A78835 CSE-438 3 CE

1015 J77896 CSC-432 3 CS/IS

1016 A97850 CSC-132B 3 ISE

1017 A97850 CSC-234A 3 ISE

1018 A97850 CSC-331 3 ISE

1019 A97850 CSC-335 3 ISE

1020 J77896 CSE-439 3 CS/IS

1021 B92996 CSC-230 3 CS/IS

1022 A78835 CSE-332 3 CE

1023 B92996 CSE-430 3 CE

1024 J77896 CSC-333A 3 CS/IS

1025 H10210 CSE-433 3 CE

1026 H10210 CSE-334 3 CE

1027 B92996 CSC-131C 3 CS/IS

1028 B92996 CSC-439 3 CS/IS

s_course_id student_id course_id credit major

1000 H10210 CSC-131D 3 CE

1001 B92996 CSC-132A 3 CS/IS

1002 J77896 CSC-335 3 CS/IS

c02.indd 40c02.indd 40 4/25/2012 1:56:53 PM4/25/2012 1:56:53 PM

2.9 Create Microsoft Access Sample Database 41

Figure 2.16. The completed Course table.

Figure 2.17. The completed Student table.

2.9.4 Create Relationships among Tables

 All fi ve tables are completed, and now we need to set up the relationships between these
fi ve tables by using the primary and foreign keys. Go to the Database Tools| Relationships
menu item to open the Show Table dialog. Keep the default tab Tables selected, and
select all fi ve tables by pressing and holding the Shift key on the keyboard and clicking
the last table — StudentCourse . Click the Add button, and then the Close button to
close this dialog box. All fi ve tables are added and displayed in the Relationships dialog
box. The relationships we want to add are shown in Figure 2.19 .

c02.indd 41c02.indd 41 4/25/2012 1:56:53 PM4/25/2012 1:56:53 PM

42 Chapter 2 Introduction to Databases

Figure 2.18. The completed StudentCourse table.

Figure 2.19. Relationships between tables.

one-to-many

user_name pass_word faculty_id student_id faculty_id name office college

student_id name major gpa course_id course credits

s_course_id

faculty_id

student_id course_id

P.K. P.K.

P.K. P.K.

P.K.

F.K. F.K.

F.K.

F.K. F.K.

one-to-many

one-to-many

many-to-many

one-to-many

one-to-many

Student Table
Course Table

Faculty TableLogIn Table

StudentCourse Table

c02.indd 42c02.indd 42 4/25/2012 1:56:53 PM4/25/2012 1:56:53 PM

2.9 Create Microsoft Access Sample Database 43

 The P.K. and F.K. in Figure 2.19 represent the Primary and Foreign keys, respectively.
For example, the faculty_id in the Faculty table is a primary key, and it can be connected
with the faculty_id that is a foreign key in the LogIn table. The relationship between
these two tables are one - to - many, since the unique primary key faculty_id in the Faculty
table can be connected to multiple foreign key, that is, faculty_id located in the LogIn
table.

 To set this relationship between these two tables, click faculty_id from the Faculty
table and drag to the faculty_id in the LogIn table. The Edit Relationships dialog
box is displayed, which is shown in Figure 2.20 .

 Select the Enforce Referential Integrity checkbox to set up this reference integrity
between these two fi elds. Also check the following two checkboxes:

 • Cascade Update Related Fields

 • Cascade Delete Related Records

 The purpose of checking these two checkboxes is that all fi elds or records in the
cascaded or child tables will be updated or deleted when the related fi elds or records in
the parent tables are updated or deleted. This will greatly simplify the updating and delet-
ing operations for a given relational database that contains a lot of related tables. Refer
to Chapters 6 and 7 for more detailed discussions about the data updating and deleting
actions.

 Click on the Create button to create this relationship. Similarly, you can create all
other relationships between these fi ve tables. One point you need to remember when you
perform this dragging operation is that always start this drag from the Primary key in the
parent table and end it with the Foreign key in the child table. As shown in Figure 2.20 ,
the table located in the left of the Edit Relationships dialog is considered as the
parent table, and the right of this dialog is the child table. Therefore, the faculty_id in the
left is the Primary key, and the faculty_id in the right is the Foreign key, respectively.

 The fi nished relationships dialog should matched one that is shown in Figure 2.21 .
 A completed Microsoft Access 2007 database fi le CSE_DEPT.accdb can be found in

the folder Database\Access that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1). Refer to Appendix C if you want to use this sample database in your
applications.

Figure 2.20. Edit Relationships dialog box.

c02.indd 43c02.indd 43 4/25/2012 1:56:53 PM4/25/2012 1:56:53 PM

44 Chapter 2 Introduction to Databases

2.10 CREATE MICROSOFT SQL SERVER 2008
SAMPLE DATABASE

 After you fi nished the installation of SQL Server 2008 Management Studio (refer to
Appendix A), you can begin to use it to connect to the server and build your database.
To start, go to Start|All Programs|Microsoft SQL Server 2008 and select SQL Server
Management Studio . A connection dialog is opened as shown in Figure 2.22 .

 Your computer name followed by your server name should be displayed in the Server
name: box. In this case, it is SMART\SQL2008EXPRESS . The Windows NT default
security engine is used by selecting the Windows Authentication method from the
Authentication box. The User name box contains the name you entered when you
register for your computer. Click the Connect button to connect your client to your server.

Figure 2.21. The completed relationships for tables.

 During the process of creating relationships between tables, sometimes an error message
may be displayed to indicate that some of the tables are used by other users and are not locked
to allow you to perform this relationship creation. In that case, just save your current result,
close your database, and exit the Access. This error will be solved when you restart Access and
open your database again. The reason for that is because some tables are considered to be
used by you when you fi nished creating those tables and continue to perform the creating of
the relationships between them.

c02.indd 44c02.indd 44 4/25/2012 1:56:53 PM4/25/2012 1:56:53 PM

2.10 Create Microsoft SQL Server 2008 Sample Database 45

 The server management studio is opened when this connection is completed, which
is shown in Figure 2.23 .

 To create a new database, right - click on the Databases folder from the Object
Explorer window, and select the New Database item from the pop - up menu. Enter
CSE_DEPT into the Database name box in the New Database dialog as the name of our
database, keep all other settings unchanged, and then click the OK button. You can fi nd
that a new database named CSE_DEPT is created, and it is located under the Database
folder in the Object Explorer window.

Figure 2.23. The opened server management studio.

Figure 2.22. Connect to the SQL Server 2008.

c02.indd 45c02.indd 45 4/25/2012 1:56:53 PM4/25/2012 1:56:53 PM

www.allitebooks.com

http://www.allitebooks.org

46 Chapter 2 Introduction to Databases

 Then you need to create data tables. For this sample database, you need to create
fi ve data tables: LogIn , Faculty , Course , Student , and StudentCourse . Expand the
CSE_DEPT database folder by clicking the plus symbol next to it. Right - click on the
Tables folder and select the New Table item; a new table window is displayed, which
is shown in Figure 2.24 .

2.10.1 Create the LogIn Table

 A default data table named dbo.Table_1 is created, as shown in Figure 2.24 . Three
columns are displayed in this new table: Column Name , Data Type , and Allow Nulls ,
which allows you to enter the name, the data type, and check mark for each column. You
can check the checkbox if you allow that column to be empty; otherwise, do not check it
if you want that column to must contain a valid data. Generally, for the column that has
been selected to work as the primary key, you should not check the checkbox associated
with that column.

 The fi rst table is LogIn table, which has four columns with the following column
names: user_name , pass_word , faculty_id , and student_id . Enter those four
names into four Column Names columns. The data types for these four columns are all
nvarchar(50) , which means that this is a varied char type with a maximum of 50 letters.
Enter those data types into each Data Type column. The fi rst column user_name is
selected as the primary key, so leave the checkbox blank for that column and check the
other three checkboxes.

 To make the fi rst column user_name as a primary key, click on the fi rst row and then
go to the Toolbar and select the Primary Key (displayed as a key) tool. In this way, a
symbol of primary key is displayed on the left of this row, which is shown in Figure 2.24 .

 Before we can continue to fi nish this LogIn table, we need fi rst to save and name this
table. Go to File|Save Table_1 and enter the LogIn as the name for this new table.
Click the OK button to fi nish this saving. A new table named dbo.LogIn is added into
the new database under the Tables folder in the Object Explorer window.

 To add data into this LogIn table, right - click on this table and select Edit Top 200
Rows item from the pop - up menu. Enter all login data that are shown in Table 2.18

Figure 2.24. The new table window.

c02.indd 46c02.indd 46 4/25/2012 1:56:53 PM4/25/2012 1:56:53 PM

2.10 Create Microsoft SQL Server 2008 Sample Database 47

into this table. Your fi nished LogIn table should match the one that is shown in Figure
 2.25 .

 One point to be noted is that you must place a NULL for any fi eld that has no value
in this LogIn table since it is different for the blank fi eld between the Microsoft Access
and the SQL Server database. Go to the File|Save All item to save this table. Now let ’ s
continue to create the second table Faculty .

Figure 2.25. The fi nished LogIn table.

Table 2.18. The data in the LogIn table

user_name pass_word faculty_id student_id

abrown america B66750 NULL

ajade tryagain NULL A97850

awoods smart NULL A78835

banderson birthday A52990 NULL

bvalley see NULL B92996

dangles tomorrow A77587 NULL

hsmith try NULL H10210

jerica excellent NULL J77896

jhenry test H99118 NULL

jking goodman K69880 NULL

sbhalla india B86590 NULL

sjohnson jermany J33486 NULL

ybai reback B78880 NULL

c02.indd 47c02.indd 47 4/25/2012 1:56:54 PM4/25/2012 1:56:54 PM

48 Chapter 2 Introduction to Databases

2.10.2 Create the Faculty Table

 Right - click on the Tables folder under the CSE_DEPT database folder and select the
New Table item to open the design view of a new table, which is shown in Figure 2.26 .

 For this table, we have seven columns: faculty_id , faculty_name , office ,
phone , college , title , and email . The data types for the columns faculty_id and
faculty_name are nvarchar(50) , and all other data types can be either text or
nvarchar(50) , since all of them are string variables. The reason we selected the nvar-
char(50) as the data type for the faculty_id is that a primary key can work for
this data type, but it does not work for the text . The fi nished design view of the Faculty
table should match the one that is shown in Figure 2.26 .

 Since we selected the faculty_id column as the primary key, click on that row and
then go to the Toolbar and select the Primary Key tool. In this way, the faculty_id
is chosen as the primary key for this table, which is shown in Figure 2.26 .

 Now go to the File menu item and select the Save Table_1 , and enter Faculty
into the box for the Choose Name dialog as the name for this table. Click OK to save this
table.

 Next, you need to enter the data into this Faculty table. To do that, fi rst, open the
table by right - clicking on the dbo.Faculty folder under the CSE_DEPT database folder
in the Object Explorer window, and then select Open Table item to open this table.
Enter the data that are shown in Table 2.19 into this Faculty table.

 Your fi nished Faculty table should match the one that is shown in Figure 2.27 .
 Now go to the File menu item and select Save All to save this completed Faculty

data table. Your fi nished Faculty data table will be displayed as a table named dbo.
Faculty that has been added into the new database CSE_DEPT under the folder Tables
in the Object Explorer window.

Figure 2.26. The design view of the Faculty table.

c02.indd 48c02.indd 48 4/25/2012 1:56:54 PM4/25/2012 1:56:54 PM

2.10 Create Microsoft SQL Server 2008 Sample Database 49

Figure 2.27. The completed Faculty table.

Table 2.19. The data in the Faculty table

faculty_id faculty_name office phone college title email

A52990 Black Anderson MTC-218 750-378-9987 Virginia Tech Professor banderson@college.edu

A77587 Debby Angles MTC-320 750-330-2276 University of Chicago Associate Professor dangles@college.edu

B66750 Alice Brown MTC-257 750-330-6650 University of Florida Assistant Professor abrown@college.edu

B78880 Ying Bai MTC-211 750-378-1148 Florida Atlantic University Associate Professor ybai@college.edu

B86590 Satish Bhalla MTC-214 750-378-1061 University of Notre Dame Associate Professor sbhalla@college.edu

H99118 Jeff Henry MTC-336 750-330-8650 Ohio State University Associate Professor jhenry@college.edu

J33486 Steve Johnson MTC-118 750-330-1116 Harvard University Distinguished Professor sjohnson@college.edu

K69880 Jenney King MTC-324 750-378-1230 East Florida University Professor jking@college.edu

2.10.3 Create Other Tables

 Similarly, you need to create the rest of three tables: Course , Student , and
StudentCourse . Select course_id , student_id , and s_course_id as the primary
keys for these three tables (refer to Tables 2.20 – 2.22). For the data type selections, follow
the directions below:

 The data type selections for the Course table:

 • course_id — nvarchar(50) (Primary key)

 • credit — smallint

 • enrolment — int

 • faculty_id — nvarchar(50)

 • All other columns — either nvarchar(50) or text

 The data type selections for the Student table:

 • student_id — nvarchar(50) (Primary key)

 • student_name — nvarchar(50)

 • gpa — float

c02.indd 49c02.indd 49 4/25/2012 1:56:54 PM4/25/2012 1:56:54 PM

50 Chapter 2 Introduction to Databases

 • credits — int

 • All other columns — either nvarchar(50) or text

 The data type selections for the StudentCourse table:

 • s_course_id — int (Primary key)

 • student_id — nvarchar(50)

 • course_id — nvarchar(50)

 • credit — int

 • major — either nvarchar(50) or text

 Enter the data that are shown in Tables 2.20 – 2.22 into each associated table, and save
each table as Course , Student , and StudentCourse , respectively.

Table 2.20. The data in the Course table

CSE-439 Special Topics in CSE 3 TC-206 M-W-F: 10:00-10:55 AM 22 J33486

course_id course credit classroom schedule enrollment faculty_id

CSC-131A Computers in Society 3 TC-109 M-W-F: 9:00-9:55 AM 28 A52990

CSC-131B Computers in Society 3 TC-114 M-W-F: 9:00-9:55 AM 20 B66750

CSC-131C Computers in Society 3 TC-109 T-H: 11:00-12:25 PM 25 A52990

CSC-131D Computers in Society 3 TC-109 M-W-F: 9:00-9:55 AM 30 B86590

CSC-131E Computers in Society 3 TC-301 M-W-F: 1:00-1:55 PM 25 B66750

CSC-131I Computers in Society 3 TC-109 T-H: 1:00-2:25 PM 32 A52990

CSC-132A Introduction to Programming 3 TC-303 M-W-F: 9:00-9:55 AM 21 J33486

CSC-132B Introduction to Programming 3 TC-302 T-H: 1:00-2:25 PM 21 B78880

CSC-230 Algorithms & Structures 3 TC-301 M-W-F: 1:00-1:55 PM 20 A77587

CSC-232A Programming I 3 TC-305 T-H: 11:00-12:25 PM 28 B66750

CSC-232B Programming I 3 TC-303 T-H: 11:00-12:25 PM 17 A77587

CSC-233A Introduction to Algorithms 3 TC-302 M-W-F: 9:00-9:55 AM 18 H99118

CSC-233B Introduction to Algorithms 3 TC-302 M-W-F: 11:00-11:55 AM 19 K69880

CSC-234A Data Structure & Algorithms 3 TC-302 M-W-F: 9:00-9:55 AM 25 B78880

CSC-234B Data Structure & Algorithms 3 TC-114 T-H: 11:00-12:25 PM 15 J33486

CSC-242 Programming II 3 TC-303 T-H: 1:00-2:25 PM 18 A52990

CSC-320 Object Oriented Programming 3 TC-301 T-H: 1:00-2:25 PM 22 B66750

CSC-331 Applications Programming 3 TC-109 T-H: 11:00-12:25 PM 28 H99118

CSC-333A Computer Arch & Algorithms 3 TC-301 M-W-F: 10:00-10:55 AM 22 A77587

CSC-333B Computer Arch & Algorithms 3 TC-302 T-H: 11:00-12:25 PM 15 A77587

CSC-335 Internet Programming 3 TC-303 M-W-F: 1:00-1:55 PM 25 B66750

CSC-432 Discrete Algorithms 3 TC-206 T-H: 11:00-12:25 PM 20 B86590

CSC-439 Database Systems 3 TC-206 M-W-F: 1:00-1:55 PM 18 B86590

CSE-138A Introduction to CSE 3 TC-301 T-H: 1:00-2:25 PM 15 A52990

CSE-138B Introduction to CSE 3 TC-109 T-H: 1:00-2:25 PM 35 J33486

CSE-330 Digital Logic Circuits 3 TC-305 M-W-F: 9:00-9:55 AM 26 K69880

CSE-332 Foundations of Semiconductors 3 TC-305 T-H: 1:00-2:25 PM 24 K69880

CSE-334 Elec. Measurement & Design 3 TC-212 T-H: 11:00-12:25 PM 25 H99118

CSE-430 Bioinformatics in Computer 3 TC-206 Thu: 9:30-11:00 AM 16 B86590

CSE-432 Analog Circuits Design 3 TC-309 M-W-F: 2:00-2:55 PM 18 K69880

CSE-433 Digital Signal Processing 3 TC-206 T-H: 2:00-3:25 PM 18 H99118

CSE-434 Advanced Electronics Systems 3 TC-213 M-W-F: 1:00-1:55 PM 26 B78880

CSE-436 Automatic Control and Design 3 TC-305 M-W-F: 10:00-10:55 AM 29 J33486

CSE-437 Operating Systems 3 TC-303 T-H: 1:00-2:25 PM 17 A77587

CSE-438 Advd Logic & Microprocessor 3 TC-213 M-W-F: 11:00-11:55 AM 35 B78880

c02.indd 50c02.indd 50 4/25/2012 1:56:54 PM4/25/2012 1:56:54 PM

2.10 Create Microsoft SQL Server 2008 Sample Database 51

Table 2.21. The data in the Student table

student_id student_name gpa credits major schoolYear email

A78835 Andrew Woods 3.26 108 Computer Science Senior awoods@college.edu

A97850 Ashly Jade 3.57 116 Information System Engineering Junior ajade@college.edu

B92996 Blue Valley 3.52 102 Computer Science Senior bvalley@college.edu

H10210 Holes Smith 3.87 78 Computer Engineering Sophomore hsmith@college.edu

J77896 Erica Johnson 3.95 127 Computer Science Senior ejohnson@college.edu

Table 2.22. The data in the StudentCourse table

s_course_id student_id course_id credit major

1000 H10210 CSC-131D 3 CE

1001 B92996 CSC-132A 3 CS/IS

1002 J77896 CSC-335 3 CS/IS

1003 A78835 CSC-331 3 CE

1004 H10210 CSC-234B 3 CE

1005 J77896 CSC-234A 3 CS/IS

1006 B92996 CSC-233A 3 CS/IS

1007 A78835 CSC-132A 3 CE

1008 A78835 CSE-432 3 CE

1009 A78835 CSE-434 3 CE

1010 J77896 CSC-439 3 CS/IS

1011 H10210 CSC-132A 3 CE

1012 H10210 CSC-331 2 CE

1013 A78835 CSC-335 3 CE

1014 A78835 CSE-438 3 CE

1015 J77896 CSC-432 3 CS/IS

1016 A97850 CSC-132B 3 ISE

1017 A97850 CSC-234A 3 ISE

1018 A97850 CSC-331 3 ISE

1019 A97850 CSC-335 3 ISE

1020 J77896 CSE-439 3 CS/IS

1021 B92996 CSC-230 3 CS/IS

1022 A78835 CSE-332 3 CE

1023 B92996 CSE-430 3 CE

1024 J77896 CSC-333A 3 CS/IS

1025 H10210 CSE-433 3 CE

1026 H10210 CSE-334 3 CE

1027 B92996 CSC-131C 3 CS/IS

1028 B92996 CSC-439 3 CS/IS

 The fi nished Course table should match the one that is shown in Figure 2.28 .
 The fi nished Student table should match the one that is shown in Figure 2.29 . The

fi nished StudentCourse table should match the one that is shown in Figure 2.30 .
 One point you need to note is that you can copy the content of the whole table from

the Microsoft Access database fi le to the associated data table opened in the Microsoft
SQL Server environment if the Microsoft Access database has been developed.

 To make these copies and pastes, fi rst you must select a whole blank row from your
destination table — table in the Microsoft SQL Server database, and then select all data

c02.indd 51c02.indd 51 4/25/2012 1:56:54 PM4/25/2012 1:56:54 PM

52 Chapter 2 Introduction to Databases

Figure 2.28. The completed Course table.

Figure 2.29. The completed Student table.

c02.indd 52c02.indd 52 4/25/2012 1:56:54 PM4/25/2012 1:56:54 PM

2.10 Create Microsoft SQL Server 2008 Sample Database 53

rows from your source table — Microsoft Access database fi le by highlighting them, and
choose the Copy menu item. Next, you need to paste those rows by clicking that blank
row in the Microsoft SQL Server database and then click the Paste item from the Edit
menu item. An error message may be displayed as shown in Figure 2.31 .

 Just click OK button and your data will be pasted to your destination table without
problem. The reason for that error message is because of the primary key that cannot be
a NULL value. Before you can fi nish this paste operation, the table cannot identify
whether you will have a non - null value in your source row that will be pasted in this
column or not.

Figure 2.30. The completed StudentCourse table.

Figure 2.31. An error message when performing a paste job.

c02.indd 53c02.indd 53 4/25/2012 1:56:54 PM4/25/2012 1:56:54 PM

54 Chapter 2 Introduction to Databases

2.10.4 Create Relationships among Tables

 Next, we need to set up relationships among these fi ve tables using the Primary and
Foreign Keys. In Microsoft SQL Server 2008 Express database environment, the relation-
ship between tables can be set by using the Keys folder under each data table from the
Object Explorer window. Now let ’ s begin to set up the relationship between the LogIn
and the Faculty tables.

2.10.4.1 Create Relationship between the LogIn and the Faculty Tables

 The relationship between the Faculty and the LogIn table is one - to - many, which means
that the faculty_id is a primary key in the Faculty table, and it can be mapped to
many faculty_id that are foreign keys in the LogIn table. To set up this relationship,
expand the LogIn table and the Keys folder that is under the LogIn table. Currently,
only one primary key, PK_LogIn , exists under the Keys folder.

 To add a new foreign key, right - click on the Keys folder and select New Foreign
Key item from the pop - up menu to open the Foreign Key Relationships dialog,
which is shown in Figure 2.32 .

 The default foreign relationship is FK_LogIn_LogIn * , which is displayed in the
Selected Relationship box. Right now, we want to create the foreign relationship
between the LogIn and the Faculty tables, so change the name of this foreign relation-
ship to FK_LogIn_Faculty by modifying its name in the (Name) box that is under the
Identity pane, and then press the Enter key from your keyboard. Then select two tables
by clicking on the Tables And Columns Specification item that is under the
General pane. Click the expansion button that is located on the right of the Tables And

Figure 2.32. The opened Foreign Key Relationships dialog box.

c02.indd 54c02.indd 54 4/25/2012 1:56:54 PM4/25/2012 1:56:54 PM

2.10 Create Microsoft SQL Server 2008 Sample Database 55

Columns Specification item to open the Tables and Columns dialog, which is
shown in Figure 2.33 .

 Click the drop - down arrow from the Primary key table combo box and select
the Faculty table since we need the primary key faculty_id from this table, then click
the blank row that is just below the Primary key table combo box and select the
faculty_id column. You can see that the LogIn table has been automatically selected
and displayed in the Foreign key table combo box. Click the drop - down arrow from
the box that is just under the Foreign key table combo box and select the faculty_id
as the foreign key for the LogIn table. Your fi nished Tables and Columns dialog should
match the one that is shown in Figure 2.34 .

Figure 2.33. The opened Tables and Columns dialog box.

Figure 2.34. The fi nished Tables and Columns dialog box.

c02.indd 55c02.indd 55 4/25/2012 1:56:54 PM4/25/2012 1:56:54 PM

56 Chapter 2 Introduction to Databases

 Click on the OK button to close this dialog.
 Before we can close this dialog, we need to do one more thing, which is to set up a

cascaded relationship between the Primary key (faculty_id) in the parent table Faculty
and the Foreign keys (faculty_id) in the child table LogIn. The reason we need to do this
is because we want to simplify the data updating and deleting operations between these
tables in a relational database such as CSE_DEPT. You will have a better understanding
about this cascading later on when you learn how to update and delete data against a
relational database in Chapter 7 .

 To do this cascading, scroll down along this Foreign Key Relationships dialog and
expand the item Table Designer. You will fi nd the INSERT And UPDATE Specifi cations
item. Expand this item by clicking the small plus icon; two subitems are displayed, which
are:

 • Delete Rule

 • Update Rule

 The default value for both subitems is No Action . Click on the No Action box for
the Delete Rule item and then click on the drop - down arrow, and select the Cascade
item from the list. Perform the same operation for the Update Rule item. Your fi nished
Foreign Key Relationships dialog should match the one that is shown in Figure 2.35 .

 In this way, we established the cascaded relationship between the Primary key in the
parent table and the Foreign keys in the child table. Later on, when you update or delete
any Primary key from a parent table, the related foreign keys in the child tables will also
be updated or deleted without other additional operations. It is convenient! Click the
Close button to close this dialog.

Figure 2.35. The fi nished Foreign Key Relationships dialog.

c02.indd 56c02.indd 56 4/25/2012 1:56:55 PM4/25/2012 1:56:55 PM

2.10 Create Microsoft SQL Server 2008 Sample Database 57

 Go to the File|Save LogIn menu item to open the Save dialog, and click the Yes
button to save this relationship. You can select Yes or No to the Save Change Script
dialog box if it appears.

 Now right - click on the Keys folder under the LogIn table from the Object Explorer
window, and select the Refresh item from the pop - up menu to refresh this Keys folder.
Immediately, you can fi nd that a new foreign key named FK_LogIn_Faculty has
appeared under this Keys folder. This is our newly created foreign key, which sets the
relationship between our LogIn and Faculty tables. You can confi rm and fi nd this newly
created foreign key by right - clicking on the Keys folder that is under the Faculty table.

2.10.4.2 Create Relationship between the LogIn and the Student Tables

 Similarly, you can create a foreign key for the LogIn table and set up a one - to - many
relationship between the Student and the LogIn tables.

 Right - click on the Keys folder that is under the dbo.LogIn table and select the New
Foreign Key item from the pop - up menu to open the Foreign Key Relationships
dialog. Change the name to FK_LogIn_Student and press the Enter key from your
keyboard. Go to the Tables And Columns Specification item to open the Tables
and Columns dialog, then select the Student table from the Primary key table
combo box and student_id from the box that is under the Primary key table combo
box. Select the student_id from the box that is under the Foreign key table combo
box. Your fi nished Tables and Columns dialog should match the one that is shown in
Figure 2.36 .

 Click the OK to close this dialog box. Do not forget to establish the cascaded rela-
tionship for Delete Rule and Update Rule items by expanding the Table Designer and

Figure 2.36. The completed Tables and Columns dialog.

c02.indd 57c02.indd 57 4/25/2012 1:56:55 PM4/25/2012 1:56:55 PM

58 Chapter 2 Introduction to Databases

the INSERT And UPDATE Specifi cations items, respectively. Click the Close button to
close the Foreign Key Relationships dialog box.

 Go to the File|Save LogIn menu item to save this relationship. Click Yes for the
following dialog box to fi nish this saving. Now, right - click on the Keys folder that is under
the dbo.LogIn table, and select Refresh item to show our newly created foreign key
FK_LogIn_Student .

2.10.4.3 Create Relationship between the Faculty and the Course Tables

 The relationship between the Faculty and the Course tables is one - to - many, and the
faculty_id in the Faculty table is a Primary key, and the faculty_id in the Course
table is a Foreign key.

 Right - click on the Keys folder under the dbo.Course table from the Object Explorer
window and select the New Foreign Key item from the pop - up menu. On the opened
Foreign Key Relationships dialog, change the name of this new relationship to
FK_Course_Faculty in the (Name) box and press the Enter key from the keyboard.
In the opened Tables and Columns dialog box, select the Faculty table from the
Primary key table combo box and select the faculty_id from the box that is just
under the Primary key table combo box. Then select the faculty_id from the box
that is just under the Foreign key table combo box. Your fi nished Tables and
Columns dialog should match the one that is shown in Figure 2.37 .

 Click the OK to close this dialog and set up the cascaded relationship for the Delete
Rule and the Update Rule items, and then click the Close button to close the Foreign
Key Relationships dialog box. Go to the File|Save Course menu item and click
Yes for the following dialog box to save this setting.

Figure 2.37. The fi nished Tables and Columns dialog.

c02.indd 58c02.indd 58 4/25/2012 1:56:55 PM4/25/2012 1:56:55 PM

2.10 Create Microsoft SQL Server 2008 Sample Database 59

 Now right - click on the Keys folder under the dbo.Course table, and select the
Refresh item. Immediately, you can fi nd our newly created relationship key
FK_Course_Faculty .

2.10.4.4 Create Relationship between the Student

and the StudentCourse Tables

 The relationship between the Student and the StudentCourse tables is one - to - many,
and the student_id in the Student table is a Primary key, and the student_id in the
StudentCourse table is a Foreign key.

 Right - click on the Keys folder under the dbo.StudentCourse table from the
Object Explorer window and select the New Foreign Key item from the pop - up menu.
On the opened Foreign Key Relationships dialog, change the name of this new
relationship to FK_StudentCourse_Student in the (Name) box and press the Enter
key from the keyboard. In the opened Tables and Columns dialog box, select the
Student table from the Primary key table combo box and select the student_id
from the box that is just under the Primary key table combo box. Then select the
student_id from the box that is just under the Foreign key table combo box. The
fi nished Tables and Columns dialog should match the one that is shown in Figure
 2.38 .

 Click the OK button to close this dialog and set up the cascaded relationship for
Delete Rule and the Update Rule items, and then click the Close button to close the
Foreign Key Relationships dialog box. Go to the File|Save StudentCourse
menu item and click Yes for the following dialog box to save this relationship.

 Now, right - click on the Keys folder under the dbo.StudentCourse table, and
select Refresh . Immediately, you can fi nd our newly created relationship key
FK_StudentCourse_Student .

Figure 2.38. The fi nished Tables and Columns dialog.

c02.indd 59c02.indd 59 4/25/2012 1:56:55 PM4/25/2012 1:56:55 PM

60 Chapter 2 Introduction to Databases

2.10.4.5 Create Relationship between the Course

and the StudentCourse Tables

 The relationship between the Course and the StudentCourse tables is one - to - many,
and the course_id in the Course table is a Primary key, and the course_id in the
StudentCourse table is a Foreign key.

 Right - click on the Keys folder under the dbo.StudentCourse table from the
Object Explorer window and select the New Foreign Key item from the pop - up menu.
On the opened Foreign Key Relationships dialog, change the name of this new
relationship to FK_StudentCourse_Course in the (Name) box and press the Enter
key from the keyboard. In the opened Tables and Columns dialog box, select the
Course table from the Primary key table combo box and select the course_id
from the box that is just under the Primary key table combo box. Then select
the course_id from the box that is just under the Foreign key table combo box.
Your fi nished Tables and Columns dialog should match the one that is shown in
Figure 2.39 .

 Click the OK button to close this dialog and do not forget to establish a cascaded
relationship for the Delete Rule and the Update Rule items, and then click the Close
button to close theForeign Key Relationships dialog box. Then go to the File|Save
StudentCourse menu item and click Yes for the following dialog box to save this
relationship.

 Now, right - click on the Keys folder under the dbo.StudentCourse table, and select
the Refresh item. Immediately, you can fi nd our newly created relationship key
FK_StudentCourse_Course .

 At this point, we complete setting the relationships among our fi ve data tables.
 A completed Microsoft SQL Server 2008 sample database fi le CSE_DEPT.mdf can

be found in the folder Database\SQLServer that is located at the Wiley ftp site (refer to
Figure 1.2 in Chapter 1). The completed relationships for these tables are shown in Figure
 2.40 .

Figure 2.39. The fi nished Tables and Columns dialog.

c02.indd 60c02.indd 60 4/25/2012 1:56:55 PM4/25/2012 1:56:55 PM

2.11 Create Oracle 11g XE Sample Database 61

2.11 CREATE ORACLE 11 G XE SAMPLE DATABASE

 After you download and install Oracle Database 11g XE (refer to Appendix B), you need
to create a customer Oracle database. Creating the customer ’ s database in Oracle
Database 11g XE is different from creating a customer database in Microsoft Access or
in SQL Server database management system (MDBS). In Oracle Database 11g XE, you
need to create a new user or user account if you want to create a new customer database.
Each user or user account is related to a schema or a database, and the name of each
user is equal to the name of the associated schema or database.

 Therefore, you need to perform two steps to create a customer Oracle database:

1. Create a new customer user or user account

2. Create Oracle database objects, such as tables, schemas and relations

 To do that, you need to start this job from the Oracle 11g XE Home page in the
server. To connect your computer to your Oracle server, go to Start\All Programs\Oracle
Database 11g Express Edition\Get Started to open the Home page, which is shown in
Figure 2.41 .

 It looks totally different with Oracle Database 10g XE. Yes, starting from 11g, a lot
of new functions have been added into the Oracle database server and tools. Different
tabs have the different purposes. Most newly added tabs are used for the Web and
network database controls and operations. You can go through the entire workspace to

Figure 2.40. Relationships among tables.

c02.indd 61c02.indd 61 4/25/2012 1:56:55 PM4/25/2012 1:56:55 PM

62 Chapter 2 Introduction to Databases

get a fully understanding about this new product by clicking and viewing each tab one
by one.

 The most important tab to us is the Application Express (APEX) tab, and we will
mainly use this component to create and build our sample database later.

 Oracle Database 11g XE provides two ways to enable us to create and build our
customer database, which are:

1. Use the Oracle APEX

2. Use the Oracle SQL Developer

 In this section, we will concentrate on using the Oracle APEX to create and build
our customer Oracle database CSE_DEPT. Refer to Appendix C to get more details in
how to use the Oracle SQL Developer to create and build a customer Oracle database.

 To access any component in the Oracle Database 11g XE home page shown in Figure
 2.41 , including the Storage, Sessions, Parameters, and APEX compontents, you need to
log in as an Administrator using the SYSTEM as the username and the password you
used when you installed the Oracle Database 11g XE. In our applications, we used reback
as this password. Refer to Appendix B to get more details about this password.

 In Oracle Database 11g XE, only a single database instance is allowed to be created
and implemented for any database applications. To make the database simple and easy,
each database object is considered as a schema, and each schema is related to a user or
a user account. When you create a new user and assign a new account to that user, you
create a new schema. A schema is a logical container for the database objects (such as

Figure 2.41. The opened Home page.

c02.indd 62c02.indd 62 4/25/2012 1:56:55 PM4/25/2012 1:56:55 PM

2.11 Create Oracle 11g XE Sample Database 63

tables, views, triggers, etc.) that the user creates. The schema name is the same as the
username, and can be used to unambiguously refer to objects owned by the user.

 Now let ’ s begin this customer database creation process by starting to create a new
customer user or user account CSE_DEPT using the APEX.

2.11.1 Create a New Oracle Customer User or User Account

 To use Oracle APEX, you must create at least one APEX workspace. For this application,
you will create a workspace for the CSE_DEPT user, so that you can develop the sample
application using the CSE_DEPT database account.

 To create a new APEX workspace, perform the following steps:

1. Open the Oracle Database 11g XE Home page by going to Start\All Programs\Oracle
Database 11g Express Edition\Get Started .

2. On the opened database home page, click on the APEX tab.

3. On the Login page, log in as an administrator by entering the SYSTEM into the Username
box and the password you used when you installed the Oracle Database 11g XE into the
Password box. In this application, just enter reback into the Password box. Then click on
the Login button to go to the next page.

4. On the opened Oracle APEX page, which is shown in Figure 2.42 , check the Create New
radio button to create a workspace for a new database user CSE_DEPT. Since we want to
use the same user for both workspace and database, enter CSE_DEPT into the Database
Username and the APEX Username boxes. To make the password simple, we still use
reback as the password for this user account. Enter reback to the Password and Confi rm
Password boxes, and click on the Create Workspace button to continue.

Figure 2.42. The opened Oracle Application Express page.

c02.indd 63c02.indd 63 4/25/2012 1:56:55 PM4/25/2012 1:56:55 PM

64 Chapter 2 Introduction to Databases

5. On the next page shown in Figure 2.43 , click on the click here link to log in to the newly
created workspace.

6. The fi rst time you attempt to access the workspace, you will be prompted to reset the pass-
word for the workspace. You can specify the same password or a different one. In this
application, we will use the same password, reback , to log in to the workspace. Enter reback
into both Current, New, and Confi rm New Password boxes, and click on the Apply Changes
button to complete this login process.

7. Click on the Return button to go back to the workspace login page and relog in to the
workspace using the updated password.

 All tools and components provided by Oracle Database 11g XE are displayed in the
opened workspace, which is shown in Figure 2.44 .

 The functions of each component are briefl y introduced below:

 • Application Builder is the starting point you need to follow to create and implement your
customer database and objects in the APEX. For any customer database or objects, you need
fi rst to create an application if you want to build and implement your customer database in
the APEX environment. However, if you want to create a new customer database that is
connected and used by a third - party system, as in our applications, you do not need to create
any application.

 • SQL Workshop provides fi ve SQL - related components to enable users to create and build
customer database and objects. By using this workshop, you can

1. Create new data tables, including data columns and constraints, using the Object Browser .
2. Debug and test the SQL queries using the SQL Commands .
3. Create SQL statements using the SQL Scripts .
4. Build the specifi ed SQL queries using the Query Builder .
5. Create database related reports and DDL using the Utilities .

Figure 2.43. The newly created CSE_DEPT workspace.

click here link

c02.indd 64c02.indd 64 4/25/2012 1:56:55 PM4/25/2012 1:56:55 PM

2.11 Create Oracle 11g XE Sample Database 65

 • Team Development provides all tools and utilities used to support team development
procedures and environment.

 • Administration provides functions in creating and managing all user accounts and general
database services.

 In the following section, we will use the SQL Workshop, the Object Browser, to be
exact, to create and build our customer database CSE_DEPT.

2.11.2 Create New Customer Sample Database CSE_DEPT

 After logging in to the APEX workspace, click on the SQL Workshop component, and
then click on the Object Browser component to open the Object Browser page, which
is shown in Figure 2.45 .

 Perform the following operations to create our new sample database CSE_DEPT:

1. On the opened Object Browser page, click on the Create button, as shown in Figure 2.45 .

2. On the next page, click on the Table icon to open the Create Table page, which is shown
in Figure 2.46 .

Figure 2.44. Development tools provided by Oracle 11g XE.

c02.indd 65c02.indd 65 4/25/2012 1:56:55 PM4/25/2012 1:56:55 PM

66 Chapter 2 Introduction to Databases

3. A fl owchart of developing the table is shown in the left pane of this Create Table page. The
fi rst step in the fl owchart is the Columns , which means that you need to create each column
based on the information of your data table, such as the Column Name, Type, Precision,
Scale, and Not Null. First, enter LogIn into the Table Name box. For our LogIn table, we
have four columns: user_name, pass_word, faculty_id , and student_id . The data type for
all columns is VARCHAR2, since this data type is fl exible, and it can contain varying - length

Figure 2.45. The opened Object Browser page.

Click on
Create button

Figure 2.46. The Column wizard.

c02.indd 66c02.indd 66 4/25/2012 1:56:55 PM4/25/2012 1:56:55 PM

2.11 Create Oracle 11g XE Sample Database 67

characters. The upper bound of the length is 30, which is determined by the number you
entered in the Scale box, and it means that each column can contain up to 30 characters.
Since the user_name is selected as the primary key for this table, check the Not Null
checkbox next to this column to indicate that this column cannot contain a blank value.
Your fi nished fi rst step is shown in Figure 2.46 .

4. Click the Next button to go to the Primary Key page to assign the primary key for this
table, which is shown in Figure 2.47 .

5. Since we have defi ned the user_name column as the primary key for the LogIn table,
therefore, check the Not Populated radio button and select the USER_NAME column from
the Primary Key combo box. Since we do not have any Composite Primary Key for this
table, just keep this box unchanged. Your fi nished Primary Key page should match the one
that is shown in Figure 2.47 . Click on the Next button to go to the Foreign Key page to
assign foreign keys for this table.

6. Since we have not created any other table, therefore, we cannot select our foreign key for
this LogIn table right now. We leave this job to be handled later. Click on the Next button
to go to the next page. The next page allows you to set up some constraints on this table,
which is shown in Figure 2.48 .

7. No constraint is needed for this sample database at this moment, so you can click on the
Next button to go to the last page to confi rm our LogIn table. The opened Confi rm page is
shown in Figure 2.49 .

8. Click on the Create button to confi rm and create this new LogIn table. Your created LogIn
table should match the one that is shown in Figure 2.50 if it is successful. The newly created
LogIn table is also added into the left pane.

 After the LogIn table is created, the necessary editing tools are attached with this
table and displayed at the top of this table. The top row of these tools contains object
editing tools, and the bottom line includes the actual editing methods. The editing methods
include Add Column, Modify Column, Rename Column, and Drop Column, and these
methods are straightforward in meaning without question.

Figure 2.47. The opened Primary Key wizard.

c02.indd 67c02.indd 67 4/25/2012 1:56:55 PM4/25/2012 1:56:55 PM

68 Chapter 2 Introduction to Databases

Figure 2.48. The opened setup constraints wizard.

Figure 2.49. The opened Confi rmation wizard.

c02.indd 68c02.indd 68 4/25/2012 1:56:56 PM4/25/2012 1:56:56 PM

2.11 Create Oracle 11g XE Sample Database 69

 To add data into this new LogIn table, you need to use and open the Data object tool
in the top row.

2.11.3 Create the LogIn Data Table

 Perform the following operations to add all columns to this newly created LogIn table:

1. Click on the Data tool to open the Data page, which is shown in Figure 2.51 .

2. Click on the Insert Row button to open the datasheet view of the LogIn table, which is
shown in Figure 2.52 .

3. Add the following data columns into the fi rst row:

A. User Name: abrown
B. Pass Word: america
C. Faculty Id: B66750
D. Student Id:

 Since this user is a faculty, leave the Student Id column blank (don ’ t place a NULL in
here, otherwise you will have trouble when you create a foreign key for this table later!).
Your fi nished fi rst row is shown in Figure 2.52 .

4. Click on the Create and Create Another button to create the next row. Similarly, add each
row that is shown in Table 2.23 into each row on the LogIn table. For any blank column,
either faculty_id or student_id, on each row shown in Table 2.23 , leave that column blank
and do not place a NULL for that column since it is different for a blank column in the
Microsoft Access and Oracle database system.

 You can click on the Create button after you add the fi nal row into your table. Your
fi nished LogIn table should match the one that is shown in Figure 2.53 .

Figure 2.50. The created LogIn table.

c02.indd 69c02.indd 69 4/25/2012 1:56:56 PM4/25/2012 1:56:56 PM

70 Chapter 2 Introduction to Databases

Figure 2.51. The opened Data page.

Figure 2.52. The opened datasheet view of the LogIn table.

c02.indd 70c02.indd 70 4/25/2012 1:56:56 PM4/25/2012 1:56:56 PM

2.11 Create Oracle 11g XE Sample Database 71

 Next let ’ s create our second table — Faculty table.

2.11.4 Create the Faculty Data Table

 Click on the Table tool on the top row and click on the Create button to create another
new table. Select the Table item to open a new table page. Enter Faculty into the Table
Name box as the name for this new table, and enter the following columns into this table:

Table 2.23. The data in the LogIn table

user_name pass_word faculty_id student_id

abrown america B66750

ajade tryagain A97850

awoods smart A78835

banderson birthday A52990

bvalley see B92996

dangles tomorrow A77587

hsmith try H10210

jerica excellent J77896

jhenry test H99118

jking goodman K69880

sbhalla india B86590

sjohnson jermany J33486

ybai reback B78880

 A signifi cant difference for the blank column in the Microsoft Access database and the
Oracle database system is that a NULL should be placed for those blank columns in the
Microsoft Access database. However, you cannot express a blank column in a same way as that
in Microsoft Access database system. Instead, in Oracle database, you just leave a blank column
as it without entering any staff for that column. Otherwise, you would meet trouble when you
create foreign keys for those blank columns in Oracle database system.

 • faculty_id: VARCHAR2(10)

 • faculty_name: VARCHAR2 (30)

 • offi ce: VARCHAR2 (30)

 • phone: CHAR(30)

 • college: VARCHAR2 (50)

 • title: VARCHAR2 (30)

 • email: VARCHAR2 (30)

 The popular data types used in the Oracle database include NUMBER, CHAR, and
VARCHAR2. Each data type has its upper bound and low bound. The difference between
the CHAR and the VARCHAR2 is that the former is used to store a fi xed - length string
and the latter can provide a varying - length string, which means that the real length of the

c02.indd 71c02.indd 71 4/25/2012 1:56:56 PM4/25/2012 1:56:56 PM

72 Chapter 2 Introduction to Databases

Figure 2.53. The completed LogIn table.

string depends on the number of real letters entered by the user. The data types for all
columns are VARCHAR2 with one exception, which is the phone column that has a
CHAR type with an upper bound of 30 letters, since our phone number is composed of
10 digits, and we can extend this length to 30 with two dashes. For all other columns, the
length varies with the different input information, so the VARCHAR2 is selected for
those columns.

 The fi nished Columns page of your Faculty table is shown in Figure 2.54 . You need
to check the Not Null checkbox for the faculty_id column since we have selected this
column as the primary key for this table.

 Click on the Next button to go to the next page to add the primary key for this table,
which is shown in Figure 2.55 .

 Check the Not Populated from the Primary Key list since we don ’ t want to use
any Sequence object to automatically generate a sequence of numeric number as our
primary key. Then select the FACULTY_ID(VARCHAR2) from the Primary Key combo
box to select this column as the primary key for this table. Keep the Composite Primary

c02.indd 72c02.indd 72 4/25/2012 1:56:56 PM4/25/2012 1:56:56 PM

2.11 Create Oracle 11g XE Sample Database 73

Figure 2.55. The opened primary key wizard.

Figure 2.54. The fi nished design view of the faculty table.

Key box untouched since we do not have that kind of key in this table, and click on the
Next button to go to the Foreign Keys page.

 Since we have not fi nished creating all fi ve tables to use any of them as our reference
tables with the foreign key, just click on the Next button at this moment to continue and
we will do the foreign key for this table later. Click on the Next button for the Constraints

c02.indd 73c02.indd 73 4/25/2012 1:56:56 PM4/25/2012 1:56:56 PM

74 Chapter 2 Introduction to Databases

Figure 2.56. The completed columns in the Faculty table.

page since we will do that later when all fi ve tables are created. Your opened Confi rm
page is shown in Figure 2.56 .

 Click on the Create button to create this Faculty table. Your fi nished design view of
the Faculty table is shown in Figure 2.57 .

 Now click on the Data object tool to add the data into this new table. Click on the
Insert Row button to add all rows that are shown in Table 2.24 into this table.

 Click on the Create and Create Another button when the fi rst row is done, and
continue to create all rows with the data shown in Table 2.24 . You may click on the Create
button for your last row. Your fi nished Faculty table should match the one that is shown
in Figure 2.58 .

 Next, let ’ s create the rest of three tables, Course , Student , and StudentCourse .

2.11.5 Create Other Tables

 Similarly, you can continue to create the following three tables: Course , Student , and
StudentCourse based on the data shown in Tables 2.25 – 2.27 .

 The data types used in the Course table are:

c02.indd 74c02.indd 74 4/25/2012 1:56:56 PM4/25/2012 1:56:56 PM

2.11 Create Oracle 11g XE Sample Database 75

Figure 2.57. The completed columns in the Faculty table.

Table 2.24. The data in the Faculty table

faculty_id faculty_name office phone college title email

A52990 Black Anderson MTC-218 750-378-9987 Virginia Tech Professor banderson@college.edu

A77587 Debby Angles MTC-320 750-330-2276 University of Chicago Associate Professor dangles@college.edu

B66750 Alice Brown MTC-257 750-330-6650 University of Florida Assistant Professor abrown@college.edu

B78880 Ying Bai MTC-211 750-378-1148 Florida Atlantic University Associate Professor ybai@college.edu

B86590 Satish Bhalla MTC-214 750-378-1061 University of Notre Dame Associate Professor sbhalla@college.edu

H99118 Jeff Henry MTC-336 750-330-8650 Ohio State University Associate Professor jhenry@college.edu

J33486 Steve Johnson MTC-118 750-330-1116 Harvard University Distinguished Professor sjohnson@college.edu

K69880 Jenney King MTC-324 750-378-1230 East Florida University Professor jking@college.edu

 • course_id: VARCHAR2(10) — Primary Key

 • course: VARCHAR2(40)

 • credit: NUMBER(1, 0) — precision = 1, scale = 0 (1 - bit integer)

 • classroom: CHAR(10)

 • schedule: VARCHAR2(40)

 • enrollment: NUMBER(2, 0) — precision = 2, scale = 0 (2 - bit integer)

 • faculty_id VARCHAR2(10)

c02.indd 75c02.indd 75 4/25/2012 1:56:56 PM4/25/2012 1:56:56 PM

76 Chapter 2 Introduction to Databases

Figure 2.58. The fi nished Faculty table.

 The data types used in the Student table are:

 • student_id: VARCHAR2(10) — Primary Key

 • student_name: VARCHAR2(30)

 • gpa: NUMBER(3, 2) — precision = 3, scale = 2 (3 - bit fl oating point data
with 2 - bit after the decimal point)

 • credits: NUMBER(3, 0) — precision = 3, scale = 0 (3 - bit integer)

 • major: VARCHAR2(40)

 • schoolYear: VARCHAR2(20)

 • email: VARCHAR2(30)

 • s_course_id: NUMBER(4, 0) — precision = 4, scale = 0 (4 - bit integer)
 Primary Key

 • student_id: VARCHAR2(10)

 • course_id: VARCHAR2(10)

 • credit: NUMBER(1, 0) — precision = 1, scale = 0 (1 - bit integer)

 • major: VARCHAR2(40)

 The data types used in the StudentCourse table are:

c02.indd 76c02.indd 76 4/25/2012 1:56:56 PM4/25/2012 1:56:56 PM

2.11 Create Oracle 11g XE Sample Database 77

Table 2.25. The data in the Course table

CSC-333A Computer Arch & Algorithms 3 TC-301 M-W-F: 10:00-10:55 AM 22 A77587

CSC-333B Computer Arch & Algorithms 3 TC-302 T-H: 11:00-12:25 PM 15 A77587

CSC-335 Internet Programming 3 TC-303 M-W-F: 1:00-1:55 PM 25 B66750

CSC-432 Discrete Algorithms 3 TC-206 T-H: 11:00-12:25 PM 20 B86590

CSC-439 Database Systems 3 TC-206 M-W-F: 1:00-1:55 PM 18 B86590

CSE-138A Introduction to CSE 3 TC-301 T-H: 1:00-2:25 PM 15 A52990

CSE-138B Introduction to CSE 3 TC-109 T-H: 1:00-2:25 PM 35 J33486

CSE-330 Digital Logic Circuits 3 TC-305 M-W-F: 9:00-9:55 AM 26 K69880

CSE-332 Foundations of Semiconductors 3 TC-305 T-H: 1:00-2:25 PM 24 K69880

CSE-334 Elec Measurement & Design 3 TC-212 T-H: 11:00-12:25 PM 25 H99118

CSE-430 Bioinformatics in Computer 3 TC-206 Thu: 9:30-11:00 AM 16 B86590

CSE-432 Analog Circuits Design 3 TC-309 M-W-F: 2:00-2:55 PM 18 K69880

CSE-433 Digital Signal Processing 3 TC-206 T-H: 2:00-3:25 PM 18 H99118

CSE-434 Advanced Electronics Systems 3 TC-213 M-W-F: 1:00-1:55 PM 26 B78880

CSE-436 Automatic Control and Design 3 TC-305 M-W-F: 10:00-10:55 AM 29 J33486

CSE-437 Operating Systems 3 TC-303 T-H: 1:00-2:25 PM 17 A77587

CSE-438 Advd Logic & Microprocessor 3 TC-213 M-W-F: 11:00-11:55 AM 35 B78880

CSE-439 Special Topics in CSE 3 TC-206 M-W-F: 10:00-10:55 AM 22 J33486

course_id course credit classroom schedule enrollment faculty_id

CSC-131A Computers in Society 3 TC-109 M-W-F: 9:00-9:55 AM 28 A52990

CSC-131B Computers in Society 3 TC-114 M-W-F: 9:00-9:55 AM 20 B66750

CSC-131C Computers in Society 3 TC-109 T-H: 11:00-12:25 PM 25 A52990

CSC-131D Computers in Society 3 TC-119 M-W-F: 9:00-9:55 AM 30 B86590

CSC-131E Computers in Society 3 TC-301 M-W-F: 1:00-1:55 PM 25 B66750

CSC-131F Computers in Society 3 TC-109 T-H: 1:00-2:25 PM 32 A52990

CSC-132A Introduction to Programming 3 TC-303 M-W-F: 9:00-9:55 AM 21 J33486

CSC-132B Introduction to Programming 3 TC-302 T-H: 1:00-2:25 PM 21 B78880

CSC-230 Algorithms & Structures 3 TC-301 M-W-F: 1:00-1:55 PM 20 A77587

CSC-232A Programming I 3 TC-305 T-H: 11:00-12:25 PM 28 B66750

CSC-232B Programming I 3 TC-303 T-H: 11:00-12:25 PM 17 A77587

CSC-233A Introduction to Algorithms 3 TC-302 M-W-F: 9:00-9:55 AM 18 H99118

CSC-233B Introduction to Algorithms 3 TC-302 M-W-F: 11:00-11:55 AM 19 K69880

CSC-234A Data Structure & Algorithms 3 TC-302 M-W-F: 9:00-9:55 AM 25 B78880

CSC-234B Data Structure & Algorithms 3 TC-114 T-H: 11:00-12:25 PM 15 J33486

CSC-242 Programming II 3 TC-303 T-H: 1:00-2:25 PM 18 A52990

CSC-320 Object Oriented Programming 3 TC-301 T-H: 1:00-2:25 PM 22 B66750

CSC-331 Applications Programming 3 TC-109 T-H: 11:00-12:25 PM 28 H99118

Table 2.26. The data in the Student table

student_id student_name gpa credits major schoolYear email

A78835 Andrew Woods 3.26 108 Computer Science Senior awoods@college.edu

A97850 Ashly Jade 3.57 116 Information System Engineering Junior ajade@college.edu

B92996 Blue Valley 3.52 102 Computer Science Senior bvalley@college.edu

H10210 Holes Smith 3.87 78 Computer Engineering Sophomore hsmith@college.edu

J77896 Erica Johnson 3.95 127 Computer Science Senior ejohnson@college.edu

c02.indd 77c02.indd 77 4/25/2012 1:56:57 PM4/25/2012 1:56:57 PM

78 Chapter 2 Introduction to Databases

 Your fi nished Course , Student , and StudentCourse tables are shown in Figure
 2.59 – 2.61 , respectively.

 Next, let ’ s create the constraints between these fi ve tables to get relationships among
these tables.

2.11.6 Create the Constraints between Tables

 Now it is the time for us to set up the relationships between our fi ve tables using the
Primary and Foreign keys. Since we have already selected the Primary key for each table
when we create and build those tables, therefore, we only need to take care of the Foreign
keys and connect them with the associated Primary keys in the related tables. Let ’ s start
from the fi rst table, LogIn table.

2.11.6.1 Create the Constraints between the LogIn and Faculty Tables

 Now let ’ s create the constraints between the LogIn and the Faculty tables by using a
foreign key. Exactly, create a foreign key for the LogIn table and connect it to the primary

Table 2.27. The data in the StudentCourse table

1016 A97850 CSC-132B 3 ISE

1017 A97850 CSC-234A 3 ISE

1018 A97850 CSC-331 3 ISE

1019 A97850 CSC-335 3 ISE

1020 J77896 CSE-439 3 CS/IS

1021 B92996 CSC-230 3 CS/IS

1022 A78835 CSE-332 3 CE

1023 B92996 CSE-430 3 CE

1024 J77896 CSC-333A 3 CS/IS

1025 H10210 CSE-433 3 CE

1026 H10210 CSE-334 3 CE

1027 B92996 CSC-131C 3 CS/IS

1028 B92996 CSC-439 3 CS/IS

s_course_id student_id course_id credit major

1000 H10210 CSC-131D 3 CE

1001 B92996 CSC-132A 3 CS/IS

1002 J77896 CSC-335 3 CS/IS

1003 A78835 CSC-331 3 CE

1004 H10210 CSC-234B 3 CE

1005 J77896 CSC-234A 3 CS/IS

1006 B92996 CSC-233A 3 CS/IS

1007 A78835 CSC-132A 3 CE

1008 A78835 CSE-432 3 CE

1009 A78835 CSE-434 3 CE

1010 J77896 CSC-439 3 CS/IS

1011 H10210 CSC-132A 3 CE

1012 H10210 CSC-331 3 CE

1013 A78835 CSC-335 3 CE

1014 A78835 CSE-438 3 CE

1015 J77896 CSC-432 3 CS/IS

c02.indd 78c02.indd 78 4/25/2012 1:56:57 PM4/25/2012 1:56:57 PM

2.11 Create Oracle 11g XE Sample Database 79

Figure 2.59. The completed Course table.

Figure 2.60. The completed Student table.

c02.indd 79c02.indd 79 4/25/2012 1:56:57 PM4/25/2012 1:56:57 PM

80 Chapter 2 Introduction to Databases

key in the Faculty table. The faculty_id is a foreign key in the LogIn table but it is a
primary key in the Faculty table. A one - to - many relationship exists between the faculty_
id in the Faculty table and the faculty_id in the LogIn table.

 Perform the following operations to set up this one - to - many relationship between
the Faculty and the LogIn tables:

1. Log in to the Oracle Database 11g XE APEX using the SYSTEM as the Username and the
administration password as the password.

2. Log in to the Workspace using the customer user name, CSE_DEPT and the customer
database password.

3. Click on the SQL Workshop and then the Object Browser icon to list all tables.

4. Select the LogIn table from the left pane to open it.

5. Click on the Constraints tab and then the Create button that is the fi rst button in the
second row.

Figure 2.61. The completed StudentCourse table.

c02.indd 80c02.indd 80 4/25/2012 1:56:57 PM4/25/2012 1:56:57 PM

2.11 Create Oracle 11g XE Sample Database 81

6. Enter LOGIN_FACULTY_FK into the Constraint Name box, and select the Foreign Key
from the Constraint Type box, which is shown in Figure 2.62 .

7. Check the Cascade Delete checkbox. Then select the FACULTY_ID from the LogIn table
as the foreign key column. Select the FACULTY table from the Reference Table Name
box as the reference table, and select the FACULTY_ID from the Reference Table Column
List as the reference table column. Your fi nished Add Constraint wizard should match the
one that is shown in Figure 2.62 .

8. Click on the Next button to go to the next wizard, and then click on the Finish button to
confi rm this foreign key ’ s creation.

 Next, let ’ s continue to create the constraint relationship between the LogIn and the
Student table.

2.11.6.2 Create the Constraints between the LogIn and Student Tables

 The relationship between the Student and the LogIn table is a one - to - many relationship.
The student_id in the Student table is a primary key, but the student_id in the LogIn
table is a foreign key. Multiple student_id can exist in the LogIn table, but only one or
unique student_id can be found from the Student table.

Figure 2.62. Create the foreign key between the LogIn and the Faculty table.

c02.indd 81c02.indd 81 4/25/2012 1:56:57 PM4/25/2012 1:56:57 PM

82 Chapter 2 Introduction to Databases

Figure 2.63. Create the foreign key between the LogIn and the Student table.

 To create a foreign key from the LogIn table and connect it to the primary key in
the Student table, perform the following operations:

1. Open the LogIn table if it is not opened, and click on the Constraints tab, and then click
on the Create button that is the fi rst button in the second row to open the Add Constraint
wizard.

2. Enter LOGIN_STUDENT_FK into the Constraint Name box, and select the Foreign Key
from the Constraint Type box, which is shown in Figure 2.63 .

3. Check the Cascade Delete checkbox. Then select the STUDENT_ID from the LogIn table
as the foreign key column. Select the STUDENT table from the Reference Table Name
box as the reference table, and select the STUDENT_ID from the Reference Table Column
List as the reference table column. Your fi nished Add Constraint wizard should match the
one that is shown in Figure 2.63 .

4. Click on the Next button to go to the next wizard, and then the Finish button to confi rm
this foreign key ’ s creation. Your fi nished foreign key creation wizard for the LogIn table
should match the one that is shown in Figure 2.64 .

 Recall that when we created the LogIn table in Section 2.11.3 , we emphasized that
for the blank fi elds in both faculty_id and student_id columns, you should not place a
NULL into these fi elds and just leave those fi elds blank. The reason for this is that an

c02.indd 82c02.indd 82 4/25/2012 1:56:57 PM4/25/2012 1:56:57 PM

2.11 Create Oracle 11g XE Sample Database 83

Figure 2.64. The fi nished foreign key creation wizard for the LogIn table.

ALTER TABLE command will be issued when you create a foreign key for the LogIn
table, since the NULL cannot be recognized by this command, therefore an error ORA-
02298 occurs and your creation of a foreign key will fail.

2.11.6.3 Create the Constraints between the Course and Faculty Tables

 The relationship between the Faculty table and the Course table is a one - to - many rela-
tionship. The faculty_id in the Faculty table is a primary key, but it is a foreign key in the
Course table. This means that only unique faculty_id exist in the Faculty table, but mul-
tiple faculty_id can exist in the Course table since one faculty can teach multiple courses.

 Open the Course table by clicking on it from the left pane. Click on the Constraints
tab and then the Create button. Enter COURSE_FACULTY_FK into the Constraint
Name box, and select the Foreign Key from the Constraint Type box, which is shown in
Figure 2.65 . Check on the Cascade Delete checkbox. Then select the FACULTY_ID from
the Course table as the foreign key column. Select the FACULTY table from the Reference
Table Name box as the reference table, and select the FACULTY_ID from the Reference
Table Column List as the reference table column. Your fi nished Add Constraint wizard
should match the one that is shown in Figure 2.65 .

 Click on the Next button to go to the next wizard, and then click on the Finish button
to confi rm this foreign key ’ s creation. Your fi nished foreign key creation wizard for the
Course table should match the one that is shown in Figure 2.66 .

2.11.6.4 Create the Constraints between the StudentCourse

and Student Tables

 The relationship between the Student table and the StudentCourse table is a one - to - many
relationship. The primary key student_id in the Student table is a foreign key in the
StudentCourse table since one student can take multiple different courses. In order to

c02.indd 83c02.indd 83 4/25/2012 1:56:57 PM4/25/2012 1:56:57 PM

84 Chapter 2 Introduction to Databases

Figure 2.65. Create the foreign key between the Course and the Faculty table.

Figure 2.66. The fi nished foreign key creation wizard for the Course table.

create this relationship by using the foreign key, fi rst let ’ s open the StudentCourse table
by clicking on it from the left pane.

 Click on the Constraints tab and then the Create button that is the fi rst button
on the second row. Enter STUDENTCOURSE_STUDENT_FK into the Constraint
Name box, and select the Foreign Key from the Constraint Type box, which is shown in

c02.indd 84c02.indd 84 4/25/2012 1:56:57 PM4/25/2012 1:56:57 PM

2.11 Create Oracle 11g XE Sample Database 85

Figure 2.67 . Check the Cascade Delete checkbox. Then select the STUDENT_ID from
the StudentCourse table as the foreign key column. Select the STUDENT table from
the Reference Table Name box as the reference table, and select the STUDENT_ID
from the Reference Table Column List as the reference table column. Your fi nished Add
Constraint wizard should match the one that is shown in Figure 2.67 .

 Click on the Next button to go to the next wizard, and then click on the Finish button
to confi rm this foreign key ’ s creation.

 Finally, let ’ s handle and create the constraint relationship between the StudentCourse
and the Course tables.

2.11.6.5 Create the Constraints between the StudentCourse

and Course Tables

 The relationship between the Course table and the StudentCourse table is a one - to - many
relationship. The primary key course_id in the Course table is a foreign key in the
StudentCourse table, since one course can be taken by multiple different students. By
using the StudentCourse table as an intermediate table, a many - to - many relationship can
be built between the Student and the Course tables.

 To create this relationship by using the foreign key, open the StudentCourse table by
clicking on it from the left pane. Click on the Constraints tab and then the Create button

Figure 2.67. Create the foreign key between the StudentCourse and the Student table.

c02.indd 85c02.indd 85 4/25/2012 1:56:57 PM4/25/2012 1:56:57 PM

86 Chapter 2 Introduction to Databases

that is the fi rst button on the second row. Enter STUDENTCOURSE_COURSE_FK into
the Constraint Name box, and select the Foreign Key from the Constraint Type box,
which is shown in Figure 2.68 . Check the Cascade Delete checkbox. Then select the
COURSE_ID from the StudentCourse table as the foreign key column. Select the COURSE
table from the Reference Table Name box as the reference table, and select the COURSE_
ID from the Reference Table Column List as the reference table column. Your fi nished
Add Constraint wizard should match the one that is shown in Figure 2.68 .

 Click on the Next button to go to the next wizard, and then click on the Finish button
to confi rm this foreign key ’ s creation. Your fi nished foreign key creation wizard for the
StudentCourse table should match the one that is shown in Figure 2.69 .

 Our customer database creation for Oracle Database 11g Express Edition is com-
pleted. A completed Oracle 11g XE sample database CSE_DEPT that is represented by
a group of table fi les can be found in the folder Database\Oracle that is located at the
Wiley ftp site (refer to Figure 1.2 in Chapter 1).

 At this point, we have fi nished developing and creating all sample databases we need
to use later. All of these sample databases will be utilized for the different applications
we will develop in this book.

Figure 2.68. Create the foreign key between the StudentCourse and the Course table.

c02.indd 86c02.indd 86 4/25/2012 1:56:58 PM4/25/2012 1:56:58 PM

2.12 Chapter Summary 87

 Since the Oracle Database 11g XE is very different with other databases, such as
Microsoft Access and SQL Server 2008, it can be seen that the creation and building
process for this customer database is relatively complicated. To convenience readers and
make this process simple, we have developed these fi ve tables and converted them to the
associated text fi les. To use those fi ve text fi les to create a customer database CSE_DEPT,
you need to refer to Appendix D to get the knowledge in how to use the Utilities of
Oracle Database 11g XE to Unload the fi ve tables to fi ve Text fi les, and how to Load
those fi ve table fi les into a new customer Oracle database to create a new customer Oracle
database easily.

2.12 CHAPTER SUMMARY

 A detailed discussion and analysis of the structure and components about popular data-
base systems are provided in this chapter. Some key technologies in developing and
designing database are also given and discussed in this part. The procedure and compo-
nents to develop a relational database are analyzed in detail with some real data tables
in our sample database CSE_DEPT. The process in developing and building a sample
database is discussed in detail with the following points:

 • Defi ning relationships

 • Normalizing the data

 • Implementing the relational database

 In the second part of this chapter, three sample databases that are developed with
three popular DBMS, such as Microsoft Access 2007, SQL Server 2008, and Oracle
Database 11g XE, are provided in detail. All of these three sample databases will be used
in the following chapters throughout the whole book.

Figure 2.69. The fi nished foreign key creation wizard for the StudentCourse table.

c02.indd 87c02.indd 87 4/25/2012 1:56:58 PM4/25/2012 1:56:58 PM

88 Chapter 2 Introduction to Databases

HOMEWORK

I. True/False Selections

 _____ 1. Database development process involves project planning, problem analysis, logical design,
physical design, implementation, and maintenance

 _____ 2. Duplication of data creates problems with data integrity.

 _____ 3. If the primary key consists of a single column, then the table in 1NF is automatically in
2NF.

 _____ 4. A table is in 1NF if there are no repeating groups of data in any column.

 _____ 5. When a user perceives the database as made up of tables, it is called a Network Model.

 _____ 6. Entity integrity rule states that no attribute that is a member of the primary (composite)
key may accept a null value.

 _____ 7. When creating data tables for the Microsoft Access database, a blank fi eld can be kept as
a blank without any letter in it.

 _____ 8. To create data tables in SQL Server database, a blank fi eld can be kept as a blank without
any letter in it.

 _____ 9. The name of each data table in SQL Server database must be prefi xed by the keyword
dbo.

 ____ 10. The Sequence object in Oracle database is used to automatically create a sequence of
numeric numbers that work as the primary keys.

II. Multiple Choices

1. There are many advantages to using an integrated database approach over that of a fi le process-
ing approach. These include

a. Minimizing data redundancy
b. Improving security
c. Data independence
d. All of the above

2. Entity integrity rule implies that no attribute that is a member of the primary key may accept

a. Null value
b. Integer data type
c. Character data type
d. Real data type

3. Reducing data redundancy will lead to _____

a. Deletion anamolies
b. Data consistency
c. Loss of effi ciency
d. None of the above

4. ______ keys are used to create relationships among various tables in a database

a. Primary keys
b. Candidate keys

c02.indd 88c02.indd 88 4/25/2012 1:56:58 PM4/25/2012 1:56:58 PM

Homework 89

c. Foreign keys
d. Composite keys

5. In a small university, the Department of Computer Science has six faculty members. However,
each faculty member belongs to only the Computer Science Department. This type of relation-
ship is called _________

a. One - to - one
b. One - to - many
c. Many - to - many
d. None of the above

6. The Client Server databases have several advantages over the File Server databases. These
include ________

a. Minimizing chances of crashes
b. Provision of features for recovery
c. Enforcement of security
d. Effi cient use of the network
e. All of the above

7. One can create the foreign keys between tables ______

a. Before any table can be created
b. When some tables are created
c. After all tables are created
d. With no limitations

8. To create foreign keys between tables, fi rst one must select the table that contains a _______
key and then select another table that has a _______ key.

a. Primary, foreign
b. Primary, primary
c. Foreign, primary
d. Foreign, foreign

9. The data type VARCHAR2 in Oracle database is a string variable with _______

a. Limited length
b. Fixed length
c. Certain number of letters
d. Varying length

10. For data tables in Oracle Database 10g XE, a blank fi eld must be ________

a. Indicated by NULL
b. Kept as a blank
c. Either by NULL or a blank
d. Avoided

III. Exercises

1. What are the advantages to using an integrated database approach over that of a fi le processing
approach?

2. Defi ne entity integrity and referential integrity. Describe the reasons for enforcing these
rules.

c02.indd 89c02.indd 89 4/25/2012 1:56:58 PM4/25/2012 1:56:58 PM

90 Chapter 2 Introduction to Databases

3. Entities can have three types of relationships. It can be one - to - one, one - to - many , and many - to -
 many . Defi ne each type of relationship. Draw ER diagrams to illustrate each type of
relationship.

4. List all steps to create Foreign keys between data tables for SQL Server database in the SQL
Server Management Studio Express. Illustrate those steps by using a real example. For instance,
how to create foreign keys between the LogIn and the Faculty table.

5. List all steps to create Foreign keys between data tables for Oracle database in the Oracle
Database 11g XE. Illustrate those steps by using a real example. For instance, how to create
foreign keys between the StudentCourse and the Course table.

c02.indd 90c02.indd 90 4/25/2012 1:56:58 PM4/25/2012 1:56:58 PM

 Chapter 3

Introduction to ADO.NET

 It has been a long story for software developers to generate and implement sophisticated
data processing techniques to improve and enhance data operations. The evolution of
data access application programming interface (API) is also a long process focusing pre-
dominantly on how to deal with relational data in a more fl exible method. The methodol-
ogy development has been focused on Microsoft - based APIs, such as Open Database
Connectivity (ODBC), Object Linking And Embedding, Database (OLEDB), Microsoft
Jet, Data Access Object s (DAO s), and Remote Data Object s (RDO s), in addition to many
non - Microsoft - based APIs. These APIs did not bridge the gap between object - based and
semi - structured (XML) data programming needs. Combine this problem with the task of
dealing with many different data stores, nonrelational data like XML and applications
applying across multiple languages are challenging topics, and you should have a tremen-
dous opportunity for complete rearchitecture. The ADO.NET is a good solution for these
challenges.

3.1 THE ADO AND ADO.NET

 ActiveX Data Object (ADO) is developed based on Object Linking and Embedding
(OLE) and Component Object Model (COM) technologies. COM is used by developers
to create reusable software components, link components together to build applications,
and take advantage of Windows services. In the recent decade, ADO has been the pre-
ferred interface for Visual Basic programmers to access various data sources, with ADO
2.7 being the latest version of this technology. The development history of data - accessing
methods can be traced back to the mid - 1990s with DAO, and then followed by RDO,
which was based on the ODBC. In the late 1990s, ADO, which is based on OLEDB, was
developed. This technology is widely applied in most object - oriented programming and
database applications during the last decade.

 Starting from ADO.NET 2.0, Microsoft released some new versions for this product,
such as ADO.NET 3.5, with Visual Studio.NET 2008, and ADO.NET 4.0, which is released

Practical Database Programming with Visual Basic.NET, Second Edition. Ying Bai.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.

91

c03.indd 91c03.indd 91 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

92 Chapter 3 Introduction to ADO.NET

with Visual Studio.NET 2010, and it is the updated version of ADO.NET that is based
mainly on the Microsoft .NET Framework 4.0.

 The underlying technology applied in ADO.NET 3.5 is very different from the COM -
 based ADO. The ADO.NET Common Language Runtime provides bidirectional, trans-
parent integration with COM. This means that COM and ADO.NET applications and
components can use functionality from each system. But the ADO.NET 3.5 Framework
provides developers with a signifi cant number of benefi ts, including a more robust,
evidence - based security model, automatic memory management native Web services
support, and Language Integrated Query (LINQ). For its new developments, ADO.NET
3.5 is highly recommended as a preferred technology because of its powerful managed
runtime environment and services.

 ADO.NET 4.0 provides the following new features and components compared with
the earlier versions:

 • LINQ to DataSet

 • LINQ to SQL

 • LINQ to Entities (ADO.NET Entity Framework)

 • WCF Data Services (ADO.NET Data Services)

 • XML and ADO.NET

 Figure 3.1 shows an overview of how the ADO.NET LINQ technologies relate to
high - level programming languages and LINQ - enabled data sources.

 This chapter will provide a detailed introduction to ADO.NET and its components,
and these components will be utilized for the rest of the book.

Figure 3.1. ADO.NET LINQ techniques.

.NET Language-Integrated Query

.NET Language-Integrated Query (LINQ)

C# VB Other

LINQ enabled data sources

ADO.NET LINQ Technologies

LINQ

to Objects

LINQ

to DataSet

LINQ

to SQL

LINQ

to Entities

LINQ

to XML

Objects Relational XML

c03.indd 92c03.indd 92 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

3.2 Overview of ADO.NET 93

 In this chapter, you will:

 • Learn the basic classes in ADO.NET and its architecture

 • Learn the different ADO.NET data providers

 • Learn about the Connection and Command components

 • Learn about the Parameters collection component

 • Learn about the DataAdapter and DataReader components

 • Learn about the DataSet and DataTable components

 • Learn about the ADO.NET 4.1 Entity Framework (EF)

 • Learn about the ADO.NET 4.1 Entity Framework Tools (EFT)

 • Learn about the ADO.NET 4.1 Entity Data Model (EDM)

 First, let ’ s have a global picture of ADO.NET and its components.

3.2 OVERVIEW OF ADO.NET

 ADO.NET is a set of classes that expose data access services to the Microsoft .NET
programmer. ADO.NET provides a rich set of components for creating distributed, data -
 sharing applications. It is an integral part of the Microsoft .NET Framework, providing
access to relational, XML, and application data. ADO.NET supports a variety of develop-
ment needs, including the creation of front - end database clients and middle - tier business
objects used by applications, tools, languages, or Internet browsers.

 All ADO.NET classes are located at the System.Data namespace with two fi les
named System.Data.dll and System.Xml.dll. When compiling code that uses the System.
Data namespace, reference both System.Data.dll and System.Xml.dll.

 Basically speaking, ADO.NET provides a set of classes to support you to develop
database applications and enable you to connect to a data source to retrieve, manipulate,
and update data with your database. The classes provided by ADO.NET are core in
developing a professional data - driven application, and they can be divided into the fol-
lowing three major components:

 • Data Provider

 • DataSet

 • DataTable

 These three components are located at the different namespaces. The DataSet
and the DataTable classes are located at the System.Data namespace. The Data
Provider classes are located at the different namespaces based on the types of the Data
Providers.

 Data Provider contains four classes: Connection, Command, DataAdapter, and
DataReader. These four classes can be used to perform the different functionalities to
help you to:

1. Set a connection between your project and the data source using the Connection object

2. Execute data queries to retrieve, manipulate, and update data using the Command object

c03.indd 93c03.indd 93 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

94 Chapter 3 Introduction to ADO.NET

3. Move the data between your DataSet and your database using the DataAdapter object

4. Perform data queries from the database (read - only) using the DataReader object

 The DataSet class can be considered as a table container, and it can contain multiple
data tables. These data tables are only a mapping to those real data tables in your data-
base. But these data tables can also be used separately without connecting to the DataSet.
In this case, each data table can be considered as a DataTable object.

 The DataSet and DataTable classes have no direct relationship with the Data Provider
class; therefore, they are often called Data Provider - independent components. Four
classes, such as Connection, Command, DataAdapter, and DataReader, that belong to
Data Provider are often called Data Provider - dependent components.

 To get a clearer picture of ADO.NET, let ’ s fi rst take a look at the architecture of
ADO.NET.

3.3 THE ARCHITECTURE OF ADO.NET

 The ADO.NET architecture can be divided into two logical pieces: command execution
and caching.

 Command execution requires features like connectivity, execution, and reading of
results. These features are enabled with ADO.NET Data Providers. Caching of results is
handled by the DataSet.

 The Data Provider enables connectivity and command execution to underlying data
sources. Note that these data sources do not have to be relational databases. Once a
command has been executed, the results can be read using a DataReader. A DataReader
provides effi cient forward - only stream level access to the results. In addition, results can
be used to render a DataSet a DataAdapter. This is typically called “ fi lling the DataSet. ”

 Figure 3.2 shows a typical architecture of ADO.NET 2.0.
 In this architecture, the data tables are embedded into the DataSet as a DataTable -

 Collection, and the data transactions between the DataSet and the Data Provider, such
as SELECT, INSERT, UPDATE, and DELETE, are made by using the DataAdapter via
its own four different methods: SelectCommand, InsertCommand, UpdateCommand, and
DeleteCommand, respectively. The Connection object is only used to set a connection

Figure 3.2. A typical architecture of ADO.NET.

Connection

Command

Data Reader

Data SetData Provider

Data base

Transaction

Parameters

Data Adapter

Delete Command

Select Command

Insert Command

Update Command

Data Table Collection

Constraint Collection

Data Table

Data Row Collection

Data Column Collection

Data Relation Collection

Your
Application

c03.indd 94c03.indd 94 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

3.4 The Components of ADO.NET 95

between your data source and your applications. The DataReader object is not used for
this architecture. As you will see from the sample project in the following chapters, to
execute the different methods under the DataAdapter to perform the data query is to
call the Command object with different parameters.

 Another ADO.NET 2.0 architecture is shown in Figure 3.3 .
 In this architecture, the data tables are not embedded into the DataSet but treated

as independent data tables, and each table can be considered as an individual DataTable
object. The data transactions between the Data Provider and the DataTable are realized
by executing the different methods of the Command object with the associated param-
eters. The ExecuteReader() method of the Command object is called when a data query
is made from the data source, which is equivalent to executing an SQL SELECT state-
ment, and the returned data should be stored to the DataReader object. When perform-
ing other data - accessing operations, such as INSERT, UPDATE, or DELETE, the
ExecuteNonQuery() method of the Command object should be called with the suitable
parameters attached to the Command object.

 Keeping these two ADO.NET architectures in mind, we will have a more detailed
discussion for each component of ADO.NET below. The sample projects developed in
the following sections utilized these two architectures to perform the data query from
and the data accessing to the data source.

3.4 THE COMPONENTS OF ADO.NET

 As we discussed in Section 3.2 , ADO.NET is composed of three major components: Data
Provider, DataSet, and DataTable. First, let ’ s take a look at the Data Provider.

3.4.1 The Data Provider

 The Data Provider can also be called a data driver, and it can be used as a major com-
ponent for your data - driven applications. The functionalities of the Data Provider, as its
name means, are to:

Figure 3.3. Another architecture of ADO.NET.

Connection

Data Adapter

Data Reader

Data Provider

Data base

Transaction Command

Execute Reader

Parameters

Execute Non Query

Execute Scalar

Data Set
Data Relation Collection

Constraint Collection

Data Table

Data Row Collection

Data Column Collection

Your
Application

c03.indd 95c03.indd 95 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

96 Chapter 3 Introduction to ADO.NET

Table 3.1. Namespaces for different Data Providers, Data S et, and Data T able

 Namespaces Descriptions

 System.Data Holds the DataSet and DataTable classes
 System.Data.OleDb Holds the class collection used to access an OLEDB data source
 System.Data.SqlClient Holds the classes used to access an SQL Server 7.0 data source

or later
 System.Data.Odbc Holds the class collection used to access an ODBC data source
 System.Data.OracleClient Holds the classes used to access an Oracle data source

 • Connect your data source with your applications

 • Execute different methods to perform the associated data query and data - accessing opera-
tions between your data source and your applications

 • Disconnect the data source when the data operations are done

 The Data Provider is physically composed of a binary library fi le, and this library is
in the DLL fi le format. Sometimes, this DLL fi le depends on other DLL fi les, so in fact,
a Data Provider can be made up of several DLL fi les. Based on different kinds of data-
bases, the Data Provider can have several versions, and each version is matched to each
kind of database. The popular versions of the Data Provider are:

 • O pen D ata B ase C onnectivity (Odbc) Data Provider (ODBC.NET)

 • O bject L inking and E mbeding D ata B ase (OleDb) Data Provider (OLEDB.NET)

 • SQL Server (Sql) Data Provider (SQL Server.NET)

 • Oracle (Oracle) Data Provider (Oracle.NET)

 Each Data Provider can be simplifi ed by using an associated keyword, which is the
letters enclosed by the parentheses above. For instance, the keyword for the ODBC Data
Provider is Odbc, the keyword for an SQL Server Data Provider is Sql, and so on.

 In order to distinguish from the older Data Providers, such as Microsoft ODBC,
Microsoft OLE DB, Microsoft SQL Server, and Oracle, in some books, all different Data
Providers included in ADO.NET are extended by the suffi x .NET, such as OLE DB.NET,
ODBC.NET, SQL Server.NET, and Oracle.NET. Since most Data Providers discussed in
this book belong to ADO.NET, generally, we do not need to add the .NET suffi x, but we
will add this suffi x if the old Data Providers are used.

 The different data providers are located at different namespaces, and these namespaces
hold the various data classes that you must import into your code in order to use those
classes in your project.

 Table 3.1 lists the most popular namespaces used by different data providers and used
by the DataSet and the DataTable.

 Since the different Data Provider is located at the different namespace, as shown in
Table 3.1 , you must fi rst import the appropriate namespace into your Visual Basic.NET
2005 project, that is, into the each form ’ s code window, whenever you want to use that
Data Provider. Also, all classes provided by that Data Provider must be prefi xed by

c03.indd 96c03.indd 96 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

3.4 The Components of ADO.NET 97

the associated keyword. For example, you must use “ imports System.Data.OleDb ” to
import the namespace of the OLEDB.NET Data Provider if you want to use this Data
Provider in your project, and also all classes belong to that Data Provider must be prefi xed
by the associated keyword OleDb, such as OleDbConnection, OleDbCommand,
OleDbData - Adapter, and OleDbDataReader. The same thing holds true for all other
Data Providers.

 Although different Data Providers are located at different namespaces and have
different prefi xes, the classes of these Data Providers have similar methods or properties
with the same name. For example, no matter what kind of Data Provider you are using,
such as an OleDb, an Sql or an Oracle, they have methods or properties with the same
name, such as Connection String property, Open() and Close() method, as well as the
ExecuteReader() method. This provides the fl exibility for the programmers and allows
them to use different Data Providers to access the different data source by only modifying
the prefi x applied before each class.

 The following sections provide a more detailed discussion for each specifi c Data
Provider. These discussions will give you a direction or guideline to help you to select the
appropriate Data Provider when you want to use them to develop the different data -
 driven applications.

3.4.1.1 The ODBC Data Provider

 The .NET Framework Data Provider for ODBC uses native ODBC Driver Manager
(DM) through COM interop to enable data access. The ODBC data provider supports
both local and distributed transactions. For distributed transactions, the ODBC data
provider, by default, automatically enlists in a transaction and obtains transaction details
from Windows 2000 Component Services.

 The ODBC .NET data provider provides access to ODBC data sources with the help
of native ODBC drivers in the same way that the OleDb.NET data provider accesses
native OLE DB providers.

 The ODBC.NET supports the following Data Providers:

 • SQL Server

 • Microsoft ODBC for Oracle

 • Microsoft Access Driver (* .mdb)

 Some older database systems only support ODBC as the data access technique, which
include older versions of SQL Server and Oracle, as well as some third - party database,
such as Sybase.

3.4.1.2 The OLEDB Data Provider

 The System.Data.OleDb namespace holds all classes used by the .NET Framework Data
Provider for OLE DB. The .NET Framework Data Provider for OLE DB describes a
collection of classes used to access an OLE DB data source in the managed space. Using
the OleDbDataAdapter, you can fi ll a memory - resident DataSet that you can use to query
and update the data source. The OLE DB.NET data access technique supports the fol-
lowing Data Providers:

c03.indd 97c03.indd 97 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

98 Chapter 3 Introduction to ADO.NET

 • Microsoft Access

 • SQL Server (7.0 or later)

 • Oracle (9i or later)

 One advantage of using the OLEDB.NET Data Provider is to allow users to develop
a generic data - driven application. The so - called generic application means that you can
use the OLEDB.NET Data Provider to access any data source, such as Microsoft Access,
SQL Server, Oracle, and other data source that support the OLEDB.

 Table 3.2 shows the compatibility between the OLEDB Data Provider and the OLE
DB.NET Data Provider.

3.4.1.3 The SQL Server Data Provider

 This Data Provider provides access to an SQL Server version 7.0 or later database using
its own internal protocol. The functionality of the data provider is designed to be similar
to that of the .NET Framework data providers for OLE DB, ODBC, and Oracle. All
classes related to this Data Provider are defi ned in a DLL fi le and is located at the System.
Data.SqlClient namespace. Although Microsoft provides different Data Providers to
access the data in SQL Server database, such as the ODBC and OLE DB, for the sake
of optimal data operations, it is highly recommended to use this Data Provider to access
the data in an SQL Server data source.

 As shown in Table 3.2 , this Data Provider is a new version, and it can only work for
the SQL Server version 7.0 and later. If an old version of SQL Server is used, you need
to use either an OLE DB.NET or a SQLOLEDB Data Provider.

3.4.1.4 The Oracle Data Provider

 This Data Provider is an add - on component to the .NET Framework that provides access
to the Oracle database. All classes related to this Data Provider are located in the System.
Data.OracleClient namespace. This provider relies upon Oracle Client Interfaces pro-
vided by the Oracle Client Software. You need to install the Oracle Client software on
your computer to use this Data Provider.

 Microsoft provides multiple ways to access the data stored in an Oracle database,
such as Microsoft ODBC for Oracle and OLE DB; you should use this Data Provider to
access the data in an Oracle data source since this one provides the most effi cient way to
access the Oracle database.

 This Data Provider can only work for the recent versions of the Oracle database, such
as 8.1.7, and later versions. For old versions of the Oracle database, you need to use either
MSDAORA or an OLE DB.NET.

Table 3.2. The compatibility between the OLEDB and OLEDB.NET

 Provider Name Descriptions

 SQLOLEDB Used for Microsoft SQL Server 6.5 or earlier
 Microsoft.Jet.OLEDB.4.0 Use for Microsoft JET database (Microsoft Access)
 MSDAORA Use for Oracle version 7 and later

c03.indd 98c03.indd 98 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

3.4 The Components of ADO.NET 99

 As we mentioned in the previous parts, all different Data Providers use the similar
objects, properties, and methods to perform the data operations for the different data-
bases. In the following sections, we will make a detailed discussion for these similar
objects, properties, and methods used for the different Data Providers.

3.4.2 The Connection Class

 As shown in Figures 3.2 and 3.3 , the Data Provider contains four subclasses, and the
Connection component is one of them. This class provides a connection between your
applications and the database you selected to connect to your project. To use this class
to set up a connection between your application and the desired database, you need fi rst
to create an instance or an object based on this class. Depending on your applications,
you can create a global connection instance for your entire project or you can create some
local connection objects for each of your form windows. Generally, a global instance is a
good choice, since you do not need to perform multiple open and close operations
for connection objects. A global connection instance is used in all sample projects in
this book.

 The Connection object you want to use depends on the type of data source you
selected. Data Provider provides four different Connection classes, and each one is
matched to one different database. Table 3.3 lists these popular Connection classes used
for the different data sources:

 The New keyword is used to create a new instance or object of the Connection class.
Although different Connection classes provide different overloaded constructors, two
popular constructors are utilized widely for Visual Basic.NET. One of them does not
accept any argument, but another one accepts a connection string as the argument, and
this constructor is the most commonly used for data connections.

 The connection string is a property of the Connection class, and it provides all neces-
sary information to connect to your data source. Regularly, this connection string contains
a quite few parameters to defi ne a connection, but only fi ve of them are popularly utilized
for most data - driven applications:

1. Provider

2. Data Source

3. Database

Table 3.3. The Connection classes and databases

 Connection Class Associated Database

 OdbcConnection ODBC Data Source
 OleDbConnection OLE DB Database
 SqlConnection SQL Server Database
 OracleConnection Oracle Database

c03.indd 99c03.indd 99 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

100 Chapter 3 Introduction to ADO.NET

4. User ID

5. Password

 For different databases, the parameters contained in the connection string may have
a little difference. For example, both OLE DB and ODBC databases need all of these
fi ve parameters to be included in a connection string to connect to OleDb or Odbc data
source. But for the SQL Server database connection, you may need to use the Server to
replace the Provider parameter, and for the Oracle database connection, you do not need
the Provider and Database parameters at all for your connection string. You can fi nd
these differences in Section 5.18.1 in Chapter 5 .

 The parameter names in a connection string are case insensitive, but some of param-
eters, such as the Password or PWD, may be case sensitive. Many of the connection string
properties can be read out separately. For example, one of properties, state, is one of the
most useful property for your data - driven applications. By checking this property, you
can get to know what is the current connection status between your database and your
project, and this checking is necessary for you to make the decision which way your
program is supposed to go. Also, you can avoid the unnecessary errors related to the data
source connection by checking this property. For example, you cannot perform any data
operation if your database has not been connected to your application. By checking this
property, you can get a clear picture whether your application is connected to your data-
base or not.

 A typical data connection instance with a general connection string can be expressed
by the following codes:

 Connection = New xxx Connection(“ Provider = MyProvider; ” & _
 “ Data Source = MyServer; ” & _
 “ Database = MyDatabase; ” & _
 “ User ID = MyUserID; ” & _
 “ Password = MyPassWord; ”)

where xxx should be replaced by the selected Data Provider in your real application, such
as OleDb, Sql, or Oracle. You need to use the real parameter values implemented in your
applications to replace those nominal values, such as MyServer, MyDatabase, MyUserID,
and MyPassWord, in your application.

 The Provider parameter indicates the database driver you selected. If you installed
a local SQL server and client such as the SQL Server 2008 Express on your computer,
the Provider should be localhost. If you are using a remote SQL Server instance, you
need to use that remote server ’ s network name. If you are using the default named
instance of SQLX on your computer, you need to use .\SQLEXPRESS as the value for
your Provider parameter. For the Oracle server database, you do not need to use this
parameter.

 The Data Source parameter indicates the name of the network computer on which
your SQL server or Oracle server is installed and running.

 The Database parameter indicates your database name.
 The User ID and Password parameters are used for the security issue for your data-

base. In most cases, the default Windows NT Security Authentication is utilized.
 Some typical Connection instances used for the different databases are listed

below:

c03.indd 100c03.indd 100 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

3.4 The Components of ADO.NET 101

 OLE DB Data Provider for Microsoft Access Database

 Connection = New OleDbConnection(" Provider = Microsoft.ACE.OLEDB.12.0; " & _
 " Data Source = C:\\database\\CSE_DEPT.accdb; " & _
 " User ID = MyUserID; " & _
 " Password = MyPassWord; ")

 SQL Server Data Provider for SQL Server Database

 Connection = New SqlConnection(" Server = localhost; " + _
 " Data Source = Susan\SQLEXPRESS; " + _
 " Database = CSE_DEPT; " + _
 " Integrated Security = SSPI ")

 Oracle Data Provider for Oracle Database

 Connection = New OracleConnection(
 " Data Source = XE; " + _
 " User ID = system; " + _
 " Password = reback ")

 Besides these important properties, such as the connection string and state, the
Connection class contains some important methods, such as the Open() and Close()
methods. To make a real connection between your data source and your application, the
Open() method is needed, and the Close() method is also needed when you fi nished the
data operations and you want to exit your application.

3.4.2.1 The Open() Method of the Connection Class

 To create a real connection between your database and your applications, the Open()
method of the Connection class is called, and it is used to open a connection to a data
source with the property settings specifi ed by the connection string. An important issue
for this connection is that you must make sure that this connection is a bug - free connec-
tion; in other words, the connection is successful, and you can use this connection to access
data from your application to your desired data source without any problem. One of the
effi cient ways to do this is to use the Try Catch block to embed this Open() opera-
tion to try to fi nd and catch the typical possible errors caused by this connection. An
example coding of opening an OLEDB connection is shown in Figure 3.4 .

Figure 3.4. An example code of the opening a connection.

Dim strConnectionString As String = " Provider=Microsoft.ACE.OLEDB.12.0;" & _
"Data Source=C:\\database\\Access\\CSE_DEPT.accdb;"

accConnection = New OleDbConnection(strConnectionString)

Try
accConnection.Open()

Catch OleDbExceptionErr As OleDbException
MessageBox.Show(OleDbExceptionErr.Message, "Access Error")

Catch InvalidOperationExceptionErr As InvalidOperationException
MessageBox.Show(InvalidOperationExceptionErr.Message, "Access Error")

End Try

If accConnection.State <> ConnectionState.Open Then
MessageBox.Show("Database Connection is Failed")
Exit Sub

End If

c03.indd 101c03.indd 101 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

102 Chapter 3 Introduction to ADO.NET

 The Microsoft.ACE.OLEDB.12.0 driver, which is a driver for the Microsoft Access
2007, is used as the data provider and the Microsoft Access 2007 database fi le CSE_
DEPT.accdb is located at the database\Access folder at our local computer. The
Open() method, which is embedded inside the Try Catch block, is called after a new
OleDbConnection object is created to open this connection. Two possible typical errors,
either an OleDbException or an InvalidOperationException, could have happened
after this Open() method is executed. A related message would be displayed if any one
of those errors occurred and caught.

 To make sure that the connection is bug - free, one of the properties of the
Connection class, State, is used. This property has two possible values: Open or
Closed. By checking this property, you can confi rm that the connection is successful
or not.

3.4.2.2 The Close() Method of the Connection Class

 The Close() method is a partner of the Open() method, and it is used to close a connec-
tion between your database and your applications when you fi nished your data operations
to the data source. You should close any connection object you connected to your data
source after you fi nished the data access to that data source, otherwise a possible error
may be encountered when you try reopen that connection in the next time as you run
your project.

 Unlike the Open() method, which is a key to your data access and operation to your
data source, the Close() method does not throw any exceptions when you try to close a
connection that has already been closed. So you do not need to use a Try … .Catch block
to catch any error for this method.

3.4.2.3 The Dispose() Method of the Connection Class

 The Dispose() method of the Connection class is an overloaded method, and it is used
to releases the resources used by the Connection object. You need to call this method
after the Close() method is executed to perform a cleanup job to release all resources
used by the Connection object during your data access and operations to your data
source. Although it is unnecessary for you to have to call this Dispose() method to do
the cleanup job since one of the system tools, Garbage Collection, can periodically check
and clean all resources used by unused objects in your computer, it is highly recom-
mended for you to make this kind of coding to make your program more professional
and effi cient.

 After the Close() and Dispose() methods are executed, you can release your refer-
ence to the Connection instance by setting it to Nothing. A part of the sample code is
shown in Figure 3.5 .

 Now that we fi nished the discussion for the fi rst component defi ned in a Data
Provider, the Connection object, let ’ s take a look at the next object, the Command object.
Since a close relationship exists between the Command and the Parameter object, we
discuss these two objects in one section.

c03.indd 102c03.indd 102 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

3.4 The Components of ADO.NET 103

3.4.3 The Command and the Parameter Classes

 Command objects are used to execute commands against your database, such as a data
query, an action query, and even a stored procedure. In fact, all data accesses and data
operations between your data source and your applications are achieved by executing
the Command object with a set of parameters.

 Command class can be divided into the different categories, and these categories are
based on the different Data Providers. For the popular Data Providers, such as OLE DB,
ODBC, SQL Server, and Oracle, each one has its own Command class. Each Command
class is identifi ed by the different prefi x such as OleDbCommand, OdbcCommand,
SqlCommand, and OracleCommand. Although these different Command objects belong
to the different Data Providers, they have similar properties and methods, and they are
equivalent in functionalities.

 Depending on the architecture of ADO.NET, the Command object can have two
different roles when you are using it to perform a data query or a data action. Refer
to Figures 3.2 and 3.3 in this chapter. In Figure 3.2 , if a TableAdapter is utilized to
perform a data query and all data tables are embedded into the DataSet as a data -
catching unit, the Command object is embedded into the different data query method
of the TableAdapter, such as SelectCommand, InsertCommand, UpdateCommand,
and DeleteCommand, and is executed based on the associated query type. In this case,
the Command object can be executed indirectly, which means that you do not need to
use any Executing method to run the Command object directly; instead, you can run it
by executing the associated method of the TableAdapter.

 In Figure 3.3 , each data table can be considered as an individual table. The Command
object can be executed directly based on the attached parameter collection that is created
and initialized by the user.

 No matter which role you want to use for the Command object in your application,
you should fi rst create, initialize, and attach the Parameters collection to the Command
object before you can use it. Also, you must initialize the Command object by assigning
the suitable properties to it in order to use the Command object to access the data source
to perform any data query or data action. Some of the most popular properties of the
Command class are discussed below.

3.4.3.1 The Properties of the Command Class

 The Command class contains more than 10 properties, but only four of them are used
popularly in most applications:

Figure 3.5. An example code for the cleanup of resources.

' clean up the objects used

accConnection.Close()

accConnection.Dispose()

accConnection = Nothing

c03.indd 103c03.indd 103 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

104 Chapter 3 Introduction to ADO.NET

 • Connection property

 • CommandType property

 • CommandText property

 • Parameters property

 The Connection property is used to hold a valid Connection object, and the Command
object can be executed to access the connected database based on this Connection object.

 The CommandType property is used to indicate what kind of command that is stored
in the CommandText property should be executed. In other words, the CommandType
property specifi es how the CommandText property can be interpreted. In total, three
CommandType properties are available: Text, TableDirect, and StoredProcedure. The
default value of this property is Text.

 The content of the CommandText property is determined by the value of the
CommandType property. It contains a complete SQL statement if the value of the
CommandType property is Text. It may contain a group of SQL statements if the value
of the CommandType property is StoredProcedure.

 The Parameters property is used to hold a collection of the Parameter objects.
You need to note that Parameters is a collection, but the Parameter is an object, which
means that the former contains a group of objects and you can add the latter to the
former.

 You must fi rst create and initialize a Parameter object before you can add that object
to the Parameters collection for a Command object.

3.4.3.2 The Constructors and Properties of the Parameter Class

 The Parameter class has four popular constructors, which are shown in Figure 3.6 (an
SQL Server Data Provider is used as an example).

 The fi rst constructor is a blank one, and you need to initialize each property of the
Parameter object one by one if you want to use this constructor to instantiate a new
Parameter object. Three popular properties of a Parameter object are:

 • ParameterName

 • Value

 • DbType

 The fi rst property ParameterName contains the name of the selected parameter. The
second property Value is the value of the selected parameter, and it is an object. The third
property DbType is used to defi ne the data type of the selected parameter.

 All parameters in the Parameter object must have a data type, and you can indicate
a data type for a selected parameter by specifying the DbType property. ADO.NET and

Figure 3.6. Four constructors of the Parameter class.

Dim sqlParameter As New SqlParameter()
Dim sqlParameter As New SqlParameter(ParamName, objValue)
Dim sqlParameter As New SqlParameter(ParamName, sqlDbType)
Dim sqlParameter As New SqlParameter(ParamName, sqlDbType, intSize)

c03.indd 104c03.indd 104 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

3.4 The Components of ADO.NET 105

ADO.NET Data Provider have different defi nitions for the data types they provided. The
DbType is the data type used by ADO.NET, but ADO.NET Data Provider has another
four different popular data types, and each one is associated with a Data Provider. Table
 3.4 lists these data types, as well the associated Data Providers.

 Even the data types provided by ADO.NET and ADO.NET Data Provider are dif-
ferent, but they have a direct connection between them. As a user, you can use any data
type you like, and the other one will be automatically changed to the corresponding value
if you set one of them. For example, if you set the DbType property of an SqlParameter
object to String, the SqlDbType parameter will be automatically set to Char. In this book,
we always use the data types defi ned in the ADO.NET Data Provider since all parameters
discussed in this section are related to the different Data Provider.

 The default data type for the DbType property is String.

3.4.3.3 Parameter Mapping

 When you add a Parameter object to the Parameters collection of a Command object by
attaching that Parameter object to the Parameters property of the Command class, the
Command object needs to know the relationship between that added parameter and the
parameters you used in your SQL query string, such as a SELECT statement. In other
words, the Command object needs to identify which parameter used in your SQL state-
ment should be mapped to this added parameter. Different parameter mappings are used
for different Data Providers. Table 3.5 lists these mappings.

 Both OLE DB and ODBC Data Providers used a so - called Positional Parameter
Mapping, which means that the relationship between the parameters defi ned in an
SQL statement and the added parameters into a Parameters collection is one - to - one in
the order. In other words, the order in which the parameters appear in an SQL statement
and the order in which the parameters are added into the Parameters collection
should be exactly identical. The Positional Parameter Mapping is indicated with a ques-
tion mark ? .

Table 3.4. The data types and the associated Data Provider

 Data Type Associated Data Provider

 OdbcType ODBC Data Provider
 OleDbType OLE DB Provider
 SqlDbType SQL Server Data Provider
 OracleType Oracle Data Provider

Table 3.5. The different parameter mappings

 Parameter Mapping Associated Data Provider

 Positional Parameter Mapping ODBC Data Provider
 Positional Parameter Mapping OLE DB Provider
 Named Parameter Mapping SQL Server Data Provider
 Named Parameter Mapping Oracle Data Provider

c03.indd 105c03.indd 105 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

106 Chapter 3 Introduction to ADO.NET

Figure 3.7. An example of initializing the property of a Parameter object.

Dim paramUserName As New SqlParameter
Dim paramPassWord As New SqlParameter

paramUserName.ParameterName = "@Param1"
paramUserName.Value = txtUserName.Text
paramPassWord.ParameterName = "@Param2"
paramPassWord.Value = txtPassWord.Text

 For example, the following SQL statement is used for an OLE DB Data Provider as
a query string:

 SELECT id, user_name, pass_word FROM LogIn WHERE (user_name = ?) AND (pass_word = ?)

 The user_name and pass_word are mapped to two columns in the LogIn data table.
Two dynamic parameters are represented by two question marks ? in this SQL statement.
To add a Parameter object to the Parameters collection of a Command object accCom-
mand, you need to use the Add() method as below:

 accCommand.Parameters.Add(" user_name " , OleDbType.Char).Value = txtUserName.Text
 accCommand.Parameters.Add(" pass_word " , OleDbType.Char, 8).Value = txtPassWord.Text

 You must be careful with the order in which you add these two parameters, user_
name and pass_word, and make sure that this order is identical with the order in which
those two dynamic parameters (?) appear in the above SQL statement.

 Both SQL Server and Oracle Data Provider used the Named Parameter Mapping,
which means that each parameter, either defi ned in an SQL statement or added into a
Parameters collection, is identifi ed by the name. In other words, the name of the param-
eter that appears in an SQL statement or a stored procedure must be identical with the
name of the parameter you added into a Parameters collection.

 For example, the following SQL statement is used for an SQL Server Data Provider
as a query string:

 SELECT id, user_name, pass_word FROM LogIn WHERE (user_name LIKE @Param1)
 AND (pass_word LIKE @Param2)

 The user_name and pass_word are mapped to two columns in the LogIn data table.
Compared with the above SQL statement, two dynamic parameters are represented by
two nominal parameters, @Param1 and @Param2 , in this SQL statement. The equal
operator is replaced by the SQL comparator LIKE for two parameters. This changing is
required by the SQL Server Data Provider.

 Then you need two Parameter objects associated with your Command object; an
example of initializing these two Parameter objects is shown in Figure 3.7 .

 Where two ParameterName properties are assigned with two dynamic parameters,
@Param1 and @Param2 , respectively. Both Param1 and Param2 are nominal names

c03.indd 106c03.indd 106 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

3.4 The Components of ADO.NET 107

of the dynamic parameters, and an @ symbol is prefi xed before each parameter since this
is the requirement of the SQL Server database when a dynamic parameter is utilized in
an SQL statement.

 You can see from this piece of codes that the name of each parameter you used for
each Parameter object must be identical with the name you defi ned in your SQL state-
ment. Since the SQL Server and Oracle Data Provider use Named Parameter Mapping ,
you do not need to worry about the order in which you added Parameter objects into the
Parameters collection of the Command object.

 To add Parameter objects into a Parameters collection of a Command object, you
need to use some methods defi ned in the ParameterCollection class.

3.4.3.4 The Methods of the ParameterCollection Class

 Each ParameterCollection class has more than 10 methods, but only two of them are most
often utilized in the data - driven applications, which are Add() and AddWithValue()
methods.

Each Parameter object must be added into the Parameters collection of a Command
object before you can execute that Command object to perform any data query or data
action.

 As we mentioned in the last section, you do not need to worry about the order in
which you added the parameter into the Parameter object if you are using a Named
Parameter Mapping Data Provider, such as an SQL Server or an Oracle. But you must
pay attention to the order in which you added the parameter into the Parameter object
if you are using a Positional Parameter Mapping Data Providers, such as an OLE DB or
an ODBC.

 To add Parameter objects to an Parameters collection of a Command object, two
popular ways are generally adopted, the Add() method and the AddWithValue() method.

 The Add() method is an overloaded method, and it has fi ve different protocols, but
only two of them are widely used. The protocols of these two methods are shown below.

 ParameterCollection. Add (value As SqlParameter) As SqlParameter
 ParameterCollection. Add (parameterName As String, Value As Object)

 The fi rst method needs a Parameter object as the argument, and that Parameter
object should have been created and initialized before you call this Add() method to add
it into the collection if you want to use this method.

 The Parameters property in the Command class is a collection of a set of Parameter
objects. You need fi rst to create and initialize a Parameter object, and then you can add that
Parameter object to the Parameters collection. In this way, you can assign that Parameter object
to a Command object.

c03.indd 107c03.indd 107 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

108 Chapter 3 Introduction to ADO.NET

 The second method contains two arguments. The fi rst one is a String that contains
the ParameterName, and the second is an object that includes the value of that
parameter.

 The AddWithValue() method is similar to the second Add() method with the follow-
ing protocol:

 ParameterCollection. AddWithValue (parameterName As String, Value As Object)

 An example of using these two methods to add Parameter objects into a Parameters
collection is shown in Figure 3.8 .

 The top section is used to create and initialize the Parameter objects, which we have
discussed in the previous sections.

 First, the Add() method is executed to add two Parameter objects, paramUserName
and paramPassWord , to the Parameters collection of the Command object sqlCom-
mand . To use this method, two Parameter objects should have been initialized.

 The second way to do this job is to use the AddWithValue() method to add these
two Parameter objects, which is similar to the second protocol of the Add() method.

3.4.3.5 The Constructor of the Command Class

 The constructor of the Command class is an overloaded method, and it has multiple
protocols. Four popular protocols are listed in Figure 3.9 (an SQL Server Data Provider
is used as an example).

 The fi rst constructor is a blank one without any argument. You have to create and
assign each property to the associated property of the Command object separately if you
want to use this constructor to instantiate a new Command object.

Figure 3.8. Two methods to add Parameter objects.

Dim paramUserName As New SqlParameter
Dim paramPassWord As New SqlParameter

paramUserName.ParameterName = "@Param1"
paramUserName.Value = txtUserName.Text
paramPassWord.ParameterName = "@Param2"
paramPassWord.Value = txtPassWord.Text

sqlCommand.Parameters.Add(paramUserName)
sqlCommand.Parameters.Add(paramPassWord)

sqlCommand.Parameters.AddWithValue("@Param1", txtUserName.Text)
sqlCommand.Parameters.AddWithValue("@Param2", txtPassWord.Text)

Figure 3.9. Three popular protocols of the constructor of the Command class.

Dim sqlCommand As New SqlCommand()
Dim sqlCommand As New SqlCommand(connString)
Dim sqlCommand As New SqlCommand(connString, SqlConnection)
Dim sqlCommand As New SqlCommand(connString, SqlConnection, SqlTransaction)

c03.indd 108c03.indd 108 4/25/2012 1:57:06 PM4/25/2012 1:57:06 PM

3.4 The Components of ADO.NET 109

 The second constructor contains two arguments: the fi rst one is the parameter name
that is a string variable, and the second is the value that is an object. The following two
constructors are similar to the second one, and the difference is that a data type and a
data size argument are included.

 An example of creating an SqlCommand object is shown in Figure 3.10 . This example
contains the following functionalities:

1. Create a SqlCommand object

2. Create two SqlParameter objects

3. Initialize two SqlParameter objects

4. Initialize the SqlCommand object

5. Add two Parameter objects into the Parameters collection of the Command object
sqlCommand

 The top two lines of the coding create an SQL statement with two dynamic param-
eters, user_name and pass_word. Then two strings are concatenated to form a complete
string. Two SqlParameter and a SqlCommand objects are created in the following lines.

 Then two SqlParameter objects are initialized with nominal parameters and the
associated text box ’ s contents. After this, the SqlCommand object is initialized with four
properties of the Command class.

 Now let ’ s take care of the popular methods used in the Command class.

3.4.3.6 The Methods of the Command Class

 In the last section, we discussed how to create an instance of the Command class and how
to initialize the Parameters collection of a Command object by attaching Parameter
objects to that Command object. Those steps are prerequisite to execute a Command
object. The actual execution of a Command object is to run one of methods of the
Command class to perform the associated data queries or data actions. Four popular
methods are widely utilized for most data - driven applications, and Table 3.6 lists these
methods.

Figure 3.10. An example of creating a SqlCommand object.

Dim cmdString1 As String = "SELECT id, user_name, pass_word FROM LogIn "
Dim cmdString2 As String = "WHERE (user_name LIKE @Param1) AND (pass_word LIKE @Param2)"
Dim cmdString As String = cmdString1 & cmdString2
Dim paramUserName As New SqlParameter
Dim paramPassWord As New SqlParameter
Dim sqlCommand As New SqlCommand

paramUserName.ParameterName = "@Param1"
paramUserName.Value = txtUserName.Text
paramPassWord.ParameterName = "@Param2"
paramPassWord.Value = txtPassWord.Text
sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add(paramUserName)
sqlCommand.Parameters.Add(paramPassWord)

c03.indd 109c03.indd 109 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

110 Chapter 3 Introduction to ADO.NET

 As we mentioned in the last section, the Command object is a Data Provider -
 dependent object, so four different versions of the Command object are developed, and
each version is determined by the Data Provider the user selected and used in the
application, such as the OleDbCommand, OdbcCommand, SqlCommand, and an
OracleCommand. Although each Command object is dependent on the Data Provider,
all methods of the Command object are similar in functionality and have the same roles
in a data - driven application.

3.4.3.6.1 The ExecuteReader Method The ExecuteReader() method is a data query
method, and it can only be used to execute a read - out operation from a database. The
most popular matched operation is to execute an SQL SELECT statement to return rows
to a DataReader by using this method. Depending on which Data Provider you are using,
the different DataReader object should be utilized as the data receiver to hold the
returned rows. Remember, the DataReader class is a read - only class, and it can only be
used as a data holder. You cannot perform any data updating by using the DataReader.

 The following example coding can be used to execute an SQL SELECT statement,
which is shown in Figure 3.11 .

 As shown in Figure 3.11 , as the ExecuteReader method is called, an SQL SELECT
statement is executed to retrieve the id, user_name, and pass_word from the LogIn table.
The returned rows are assigned to the sqlDataReader object. Please note that the
SqlCommand object should already be created and initialized before the ExecuteReader()
method can be called.

Figure 3.11. An example code of running of ExecuteReader method.

Dim cmdString As String = "SELECT id, user_name, pass_word FROM LogIn "
Dim sqlCommand As New SqlCommand

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlDataReader = sqlCommand.ExecuteReader

Table 3.6. Methods of the Command class

 Method Name Functionality

 ExecuteReader Executes commands that return rows, such as a SQL SELECT
statement. The returned rows are located in an
OdbcDataReader, an OleDbDataReader, a SqlDataReader, or
an OracleDataReader, depending on which Data Provider you
are using.

 ExecuteScalar Retrieves a single value from the database.
 ExecuteNonQuery Executes a nonquery command, such as SQL INSERT,

DELETE, UPDATE, and SET statements.
 ExecuteXmlReader
(SqlCommand only)

 Similar to the ExecuteReader method, but the returned rows
must be expressed using XML. This method is only available
for the SQL Server Data Provider.

c03.indd 110c03.indd 110 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 111

3.4.3.6.2 The ExecuteScalar Method The ExecuteScalar method is used to retrieve
a single value from a database. This method is faster and has substantially less overhead
than the ExecuteReader method. You should use this method whenever a single value
needs to be retrieved from a data source.

 A sample coding of using this method is shown in Figure 3.12 .
 In this sample, the SQL SELECT statement is try to pick up a password based on

the username ybai, from the LogIn data table. This password can be considered as a single
value. The ExecuteScalar method is called after an SqlCommand object is created and
initialized. The returned single value is a String, and it is assigned to a String variable
passWord.

 Section 5.9 in Chapter 5 provides an example of using this method to pick up a single
value, which is a password, from the LogIn data table from the CSE_DEPT database.

3.4.3.6.3 The ExecuteNonQuery Method As we mentioned, the ExecuteReader
method is a read - out method and it can only be used to perform a data query job. To
execute the different SQL Statements, such as INSERT, UPDATE, or DELETE com-
mands, the ExecuteNonQuery method is needed.

 Figure 3.13 shows a sample of coding using this method to insert to and delete a
record from the LogIn data table.

 As shown in Figure 3.13 , the fi rst SQL statement is to try to insert a new password
into the LogIn data table with a value reback. After an SqlCommand object is created
and initialized, the ExecuteNonQuery method is called to execute this INSERT state-
ment. Similar procedure is performed for the DELETE statement.

 Now let ’ s look at the last class in the Data Provider, DataReader.

Figure 3.12. A sample code of using the ExecuteScalar method.

Dim cmdString As String = "SELECT pass_word FROM LogIn WHERE (user_name = ybai)"
Dim sqlCommand As New SqlCommand
Dim passWord As String

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
passWord = sqlCommand.ExecuteScalar()

Figure 3.13. An example code of using the ExecuteNonQuery method.

Dim cmdString1 As String = "INSERT INTO LogIn (pass_word) VALUES (‘reback’)"
Dim cmdString2 As String = "DELETE FROM LogIn WHERE (user_name = ybai)"
Dim sqlCommand As New SqlCommand

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString1
sqlCommand.ExecuteNonQuery()
sqlCommand.CommandText = cmdString2
sqlCommand.ExecuteNonQuery()

c03.indd 111c03.indd 111 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

112 Chapter 3 Introduction to ADO.NET

3.4.4 The DataAdapter Class

 The DataAdapter serves as a bridge between a DataSet and a data source for retrieving
and saving data. The DataAdapter provides this bridge by mapping Fill, which changes
the data in the DataSet to match the data in the data source, and Update, which changes
the data in the data source to match the data in the DataSet.

 The DataAdapter connects to your database using a Connection object, and it uses
Command objects to retrieve data from the database and populate those data to the
DataSet and related classes, such as DataTables; also, the DataAdapter uses Command
objects to send data from your DataSet to your database.

 To perform data query from your database to the DataSet, the DataAdapter uses the
suitable Command objects and assign them to the appropriate DataAdapter properties,
such as SelectCommand, and execute that Command. To perform other data manipula-
tions, the DataAdapter uses the same Command objects, but assign them with different
properties, such as InsertCommand, UpdateCommand, and DeleteCommand to complete
the associated data operations.

 As we mentioned in the previous section, the DataAdapter is a subcomponent of
the Data Provider, so it is a Data Provider - dependent component. This means that
the DataAdapter has different versions based on the used Data Provider. Four popu-
lar DataAdapters are: OleDbDataAdapter, OdbcDataAdapter, SqlDataAdapter, and
OracleDataAdapter. Different DataAdapters are located at the different namespaces.

 If you are connecting to a SQL Server database, you can increase overall performance
by using the SqlDataAdapter along with its associated SqlCommand and SqlConnection
objects. For OLE DB - supported data sources, use the OleDbDataAdapter with its associ-
ated OleDbCommand and OleDbConnection objects. For ODBC - supported data sources,
use the OdbcDataAdapter with its associated OdbcCommand and OdbcConnection
objects. For Oracle databases, use the OracleDataAdapter with its associated
OracleCommand and OracleConnection objects.

3.4.4.1 The Constructor of the DataAdapter Class

 The constructor of the DataAdapter class is an overloaded method, and it has multiple
protocols. Two popular protocols are listed in Table 3.7 (An SQL Server Data Provider
is used as an example.).

 The fi rst constructor is most often used in the most data - driven applications.

3.4.4.2 The Properties of the DataAdapter Class

 Some popular properties of the DataAdapter class are listed in Table 3.8 .

Table 3.7. The constructors of the Data A dapter class

 Constructor Descriptions

 SqlDataAdapter() Initializes a new instance of a DataAdapter class
 SqlDataAdapter(from) Initializes a new instance of a DataAdapter class

from an existing object of the same type

c03.indd 112c03.indd 112 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 113

3.4.4.3 The Methods of the DataAdapter Class

 The DataAdapter has more than 10 methods available to help users to develop profes-
sional data - driven applications. Table 3.9 lists some of the most often used methods.

 Among these methods, Dispose, Fill, FillSchema, and Update are the most often used
methods. The Dispose method should be used to release the used DataAdapter after the
DataAdapter completes its job. The Fill method should be used to populate a DataSet
after the Command object is initialized and ready to be used. The FillSchema method
should be called if you want to add a new DataTable into the DataSet, and the Update
method should be used if you want to perform some data manipulations, such as Insert,
Update, and Delete with the database and the DataSet.

3.4.4.4 The Events of the DataAdapter Class

 Two events are available to the DataAdapter class, and these events are listed in
Table 3.10 .

Table 3.8. The public properties of the Data A dapter class

 Properties Descriptions

 AcceptChangesDuringFill Gets or sets a value indicating whether AcceptChanges is
called on a DataRow after it is added to the DataTable
during any of the Fill operations.

 MissingMappingAction Determines the action to take when incoming data does not
have a matching table or column.

 MissingSchemaAction Determines the action to take when existing DataSet
schema does not match incoming data.

 TableMappings Gets a collection that provides the master mapping between
a source table and a DataTable.

Table 3.9. The public methods of the Data A dapter class

 Methods Descriptions

 Dispose Releases the resources used by the DataAdapter.
 Fill Add or refreshes rows in the DataSet to match those in the data

source using the DataSet name, and creates a DataTable.
 FillSchema Adds a DataTable to the specifi ed DataSet.
 GetFillParameters Gets the parameters set by the user when executing an SQL

SELECT statement.
 ToString Returns a String containing the name of the Component, if any. This

method should not be overridden.
 Update Calls the respective INSERT, UPDATE, or DELETE statements for

each inserted, updated, or deleted row in the specifi ed DataSet
from a named DataTable.

c03.indd 113c03.indd 113 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

114 Chapter 3 Introduction to ADO.NET

 Before we can complete this section, a coding example is provided to show readers
how to use the DataAdapter to perform some data access and data actions between your
DataSet and your database. Figure 3.14 shows an example of using a SQL Server
DataAdapter (assuming that a Connection object sqlConnection has been created).

 Starting from step A , an SQL SELECT statement string is created with some other
new object declarations, such as a new instance of the SqlCommand class, a new object
of the SqlDataAdapter class, and a new instance of the DataSet class. The DataSet class
will be discussed in the following section, and it is used as a table container to hold a
collection of data tables. The Fill method of the DataAdapter class can be used to popu-
late the data tables embedded in the DataSet later.

 In step B , the SqlCommand object is initialized with the Connection object,
CommandType, and the command string.

 The instance of the SqlDataAdapter, sqlDataAdapter, is initialized with the command
string and the SqlConnection object in step C .

 In step D , the initialized SqlCommand object, sqlCommand, is assigned to the
SelectCommand property of the sqlDataAdapter. Also, the DataSet is initialized and
cleared to make it ready to be fi lled by executing the Fill method of the sqlDataAdapter
to populate the data table in the DataSet later.

 The Fill method is called to execute a population of data from the Faculty data table
into the mapping of that table in the DataSet in step E .

Table 3.10. The events of the Data A dapter class

 Events Descriptions

 Disposed Occurs when the component is disposed by a call to the Dispose method.
 FillError Returned when an error occurs during a fi ll operation.

Figure 3.14. An example of using the SqlDataAdapter to fi ll the DataSet.

Dim cmdString As String = "SELECT name, office, title, college FROM Faculty"
Dim sqlCommand As New SqlCommand
Dim sqlDataAdapter As SqlDataAdapter
Dim sqlDataSet As DataSet

 sqlCommand.Connection = sqlConnection
 sqlCommand.CommandType = CommandType.Text
 sqlCommand.CommandText = cmdString

 sqlDataAdapter = New SqlDataAdapter(cmdString, sqlConnection)
 sqlDataAdapter.SelectCommand = sqlCommand
 sqlDataSet = New DataSet()
 sqlDataSet.Clear()

Dim intValue As Integer = sqlDataAdapter.Fill(sqlDataSet)
 If intValue = 0 Then
 MessageBox.Show("No valid faculty found!")
 End If

 sqlDataSet.Dispose()
 sqlDataAdapter.Dispose()
 sqlCommand.Dispose()
 sqlCommand = Nothing

A

B

C
D

E

F

c03.indd 114c03.indd 114 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 115

 An integer variable Index is used to hold the returned value of calling this Fill
method. This value is equal to the number of rows fi lled into the Faculty table in the
DataSet. If this value is 0, which means that no matched row has been found from
the Faculty table in the database, and 0 row has been fi lled into the Faculty table in the
DataSet, an error message is displayed. Otherwise, this fi ll is successful.

 In step F , all components used for this piece of codes are released by using the
Dispose method.

3.4.5 The DataReader Class

 The DataReader class is a read - only class, and it can only be used to retrieve and hold
the data rows returned from a database executing an ExecuteReader method. This class
provides a way of reading a forward - only stream of rows from a database. Depending
on the Data Provider you are using, four popular DataReaders are provided by four
Data Providers. They are OdbcDataReader, OleDbDataReader, SqlDataReader, and
OracleDataReader.

 To create a DataReader instance, you must call the ExecuteReader method of the
Command object instead of directly using a constructor, since the DataReader class does
not have any public constructor. The following code that is used to create an instance of
the SqlDataReader is incorrect:

 Dim sqlDataReader As New SqlDataReader()

 While the DataReader object is being used, the associated Connection is busy serving
the DataReader, and no other operations can be performed on the Connection other
than closing it. This is the case until the Close method of the DataReader is called. For
instance, you cannot retrieve output parameters until after you call the Close method to
close the connected DataReader.

 The IsClosed property of the DataReader class can be used to check if the DataReader
has been closed or not, and this property returns a Boolean value. A True means that the
DataReader has been closed. It is a good habit to call the Close method to close the
DataReader each time when you fi nished data query using that DataReader to avoid
the troubles caused by the multiple connections to the database.

 Table 3.11 lists most public properties of the SqlDataReader class. All other
DataReader classes have the similar properties.

 The DataReader class has more than 50 public methods. Table 3.12 lists the most
useful methods of the SqlDataReader class. All other DataReader classes have similar
methods.

 When you run the ExecuteReader method to retrieve data rows from a database and
assign them to a DataReader object, each time, the DataReader can only retrieve and
hold one row. So if you want to read out all rows from a data table, a loop should be used
to sequentially retrieve each row from the database.

 The DataReader object provides the most effi cient ways to read data from the data-
base, and you should use this object whenever you just want to read the data from the
database from the start to fi nish to populate a list on a form or to populate an array or
collection. It can also be used to populate a DataSet or a DataTable.

c03.indd 115c03.indd 115 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

116 Chapter 3 Introduction to ADO.NET

Table 3.11. Popular properties of the Sql D ata R eader class

 Property Name Value Type Functionality

 FieldCount Integer Gets the number of columns in the current
row.

 HasRows Boolean Gets a value that indicates whether the
SqlDataReader contains one or more rows.

 IsClosed Boolean Retrieves a Boolean value that indicates
whether the specifi ed SqlDataReader
instance has been closed.

 Item(Int32) Native Gets the value of the specifi ed column in its
native format given the column ordinal.

 Item(String) Native Gets the value of the specifi ed column in its
native format given the column name.

 RecordsAffected Integer Gets the number of rows changed, inserted,
or deleted by execution of the Transact -
 SQL statement.

 VisibleFieldCount Integer Gets the number of fi elds in the
SqlDataReader that are not hidden.

Table 3.12. Popular methods of the Sql D ata R eader class

 Method Name Functionality

 Close Closes the opened SqlDataReader object.
 Dispose Releases the resources used by the DbDataReader.
 GetByte Gets the value of the specifi ed column as a byte.
 GetName Gets the name of the specifi ed column.
 GetString Gets the value of the specifi ed column as a string.
 GetValue Gets the value of the specifi ed column in its native format.
 IsDBNull Gets a value that indicates whether the column contains

nonexistent or missing values.
 NextResult Advances the data reader to the next result, when reading

the results of batch Transact - SQL statements.
 Read Advances the SqlDataReader to the next record.
 ToString Returns a String that represents the current Object .

 Figure 3.15 shows a sample code of the usage of SqlDataReader object to continu-
ously retrieve all records (rows) from the Faculty data table suppose a Connection object
sqlConnection has been created.

 The functionality of this piece of codes is explained below.
 Starting from section A , a new SqlCommand and a SqlDataReader object is created

with a SQL SELECT statement string object. The Command object is initialized in section
B . In section C , the ExecuteReader method is called to retrieve the data row from the
Faculty data table and assign the resulting row to the SqlDataReader object. By checking

c03.indd 116c03.indd 116 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 117

the HasRows property (refer to Table 3.11), one can determine whether a valid row has
been collected or not. If a valid row has been retrieved, a While and For . . . Next loop is
utilized to sequentially read out all rows one by one using the Read method (refer to
Table 3.12). The Item(Int32) property (refer to Table 3.11) and the ToString() method
(refer to Table 3.12) are used to populate the retrieved row to a Label control collection
object. The FieldCount property (refer to Table 3.11) is used as the termination condition
for the For . . . Next loop, and its termination value is FieldCount – 1 since the loop
starts from 0, not 1. If the HasRows property returns a False, which means that no row
has been retrieved from the Faculty table, an error message will be displayed in section
D . Finally, before we can fi nish this data query job, we need to clean up the sources
we used. In section E , the Close and Dispose (refer to Table 3.12) methods are utilized
to fi nish this cleaning job.

 Before we can fi nish this section and move to the next one, we need to discuss one
more staff, which is the DataReader Exceptions. Table 3.13 lists often - used Exceptions.

 You can use the Try . . . Catch block to handle those Exceptions in your applications
to avoid unnecessary debug processes as your project runs.

3.4.6 The DataSet Component

 The DataSet, which is an in - memory cache of data retrieved from a database, is a major
component of ADO.NET architecture. The DataSet consists of a collection of DataTable
objects that you can relate to each other with DataRelation objects. In other words, a
DataSet object can be considered as a table container that contains a set of data tables
with the DataRelation as a bridge to relate all tables together. The relationship between
a DataSet and a set of DataTable objects can be defi ned:

Figure 3.15. An example code of using the SqlDataReader object.

Dim cmdString As String = "SELECT name, office, title, college FROM Faculty"
Dim sqlCommand As New SqlCommand
Dim sqlDataReader As SqlDataReader

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString

sqlDataReader = sqlCommand.ExecuteReader
If sqlDataReader.HasRows = True Then

While FacultyReader.Read()
For intIndex As Integer = 0 To FacultyReader.FieldCount - 1

FacultyLabel(intIndex).Text = FacultyReader.Item(intIndex).ToString
Next intIndex

End While
Else

MessageBox.Show("No matched faculty found!")
End If

sqlDataReader.Close()
sqlDataReader = Nothing
sqlCommand.Dispose()
sqlCommand = Nothing

A

B

C

D

E

c03.indd 117c03.indd 117 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

118 Chapter 3 Introduction to ADO.NET

 • A DataSet class holds a data table collection, which contains a set of data tables or DataTable
objects, and the Relations collection, which contains a set of DataRelation objects. This
Relations collection sets up all relationships among those DataTable objects.

 • A DataTable class holds the Rows collection, which contains a set of data rows or DataRow
objects, and the Columns collection, which contains a set of data columns or DataColumn
objects. The Rows collection contains all data rows in the data table, and the Columns col-
lection contains the actual schema of the data table.

 The defi nition of the DataSet class is a generic idea, which means that it is not tied
to any specifi c type of database. Data can be loaded into a DataSet by using a TableAdapter
from many different databases, such as Microsoft Access, Microsoft SQL Server, Oracle,
Microsoft Exchange, or any OLEDB - or ODBC - compliant database.

 Although not tied to any specifi c database, the DataSet class is designed to contain
relational tabular data as one would fi nd in a relational database.

 Each table included in the DataSet is represented in the DataSet as a DataTable. The
DataTable can be considered as a direct mapping to the real table in the database. For
example, the LogIn data table, LogInDataTable, is a data table component or DataTable
that can be mapped to the real table LogIn in the Department database. The relationship
between any tables is realized in the DataSet as a DataRelation object. The DataRelation
object provides the information that relates a child table to a parent table via a foreign
key. A DataSet can hold any number of tables with any number of relationships defi ned
between tables. From this point of view, a DataSet can be considered as a mini - database
engine, so it can contain all information of tables it holds, such as the column name and
data type, all relationships between tables, and more importantly, it contains most man-
agement functionalities of the tables ,such as browse, select, insert, update, and delete
data from tables.

 A DataSet is a container, and it keeps its data or tables in memory as XML fi les. In
Visual Studio.NET 2003, when one wants to edit the structure of a DataSet, one must do
that by editing an XML Schema or XSD fi le. Although there is a visual designer, the
terminology and user interface are not consistent with a DataSet and its constituent
objects.

Table 3.13. Popular Exceptions of the Data R eader class

 Exception Name Functionality

 IndexOutOfRangeException If an index does not exist within the range, array, or
collection, this exception occurs.

 InvalidCastException If you try to convert a database value using one of Get
methods to convert a column value to a specifi c data
type, this exception occurs.

 InvalidOperationException If you perform an invalid operation, either a property or a
method, this exception occurs.

 NotSupportedException If you try to use any property or method on a
DataReader object that has not been opened or
connected, this exception occurs.

c03.indd 118c03.indd 118 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 119

 With the Visual Basic 2010, one can easily edit the structure of a DataSet and make
any changes to the structure of that DataSet by using the DataSet Designer in the Data
Source window. More important, one can graphically manipulate the tables and queries
in a manner more directly tied to the DataSet rather than having to deal with an XML
Schema (XSD).

 Summarily, the DataSet object is a very powerful component that can contain mul-
tiple data tables with all information related to those tables. By using this object, one can
easily browse, access, and manipulate data stored in it. We will explore this component in
more detail in the following sections when a real project is built.

 As we mentioned before, when your build a data - driven project and set up a connec-
tion between your project and a database by using ADO.NET, the data tables in the
DataSet can be populated with data coming from your database by using the data query
methods or the Fill method. From this point of view, you can consider the DataSet as a
data source , and it contains all mapped data tables from the database you connected to
your project. In some books, the terminology data source means the DataSet.

 Figure 3.16 shows a global relationship between the DataSet object, other data
objects, and the Visual Basic 2010 application.

 A DataSet can be typed or untyped, and the difference between them is that the
typed DataSet object has a schema and the untyped DataSet does not. In your data - driven
applications, you can select to use either kind of DataSet as you like. But the typed
DataSet has more support in Visual Studio 2010.

 A typed DataSet object provides you with easier way to access the content of the
data table fi elds through strongly typed programming. The so - called strongly typed pro-
gramming uses information from the underlying data scheme, which means that you can
directly access and manipulate those data objects related to data tables. Another point is
that a typed DataSet has a reference to an XML schema fi le, and this fi le has an extension
of the .xsd. A complete description of the structure of all data tables included in the
DataSet is provided in this schema fi le.

3.4.6.1 The DataSet Constructor

 The DataSet class has four public overloaded constructors, and Table 3.14 lists two of the
most often used constructors.

Figure 3.16. A global representation of the DataSet and other data objects.

DataT

DataSet

DataTDataT
DataTable

TableAdapter

Database

DataT

BindingSource

...

TableAdapter

BindingNavigator

...

DataT
DataGridView

VB Form

c03.indd 119c03.indd 119 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

120 Chapter 3 Introduction to ADO.NET

 The fi rst constructor is used to create a new instance of the DataSet class with a blank
parameter. The second constructor is used to create a new instance of the DataSet with
the specifi c name of the new instance.

3.4.6.2 The DataSet Properties

 The DataSet class has more than 15 public properties. Table 3.15 lists the most often used
properties.

 Among these properties, the DataSetName , IsInitialized , and Tables are the
most often used properties in your data - driven applications.

3.4.6.3 The DataSet Methods

 The DataSet class has more than 30 public methods. Table 3.16 lists the most often used
methods.

 Among those methods, the Clear, Dispose, and Merge methods are often used. Before
you can fi ll a DataSet, it had better execute the Clear method to clean up the DataSet to
avoid any possible old data. Often in your applications, you need to merge other DataSets
or data arrays into the current DataSet object by using the Merge method. After you

Table 3.14. Popular constructors of the Data S et class

 Constructor Functionality

 DataSet() Initializes a new instance of the DataSet class.
 DataSet(String) Initializes a new instance of a DataSet class with the given name.

Table 3.15. Public properties of the Data S et class

 Property Name Type Functionality

 DataSetName String Gets or sets the name of the current
DataSet.

 DefaultViewManager DataViewManager Gets a custom view of the data
contained in the DataSet to allow
fi ltering, searching, and navigating using
a custom DataViewManager

 HasErrors Boolean Gets a value indicating whether there
are errors in any of the DataTable
objects within this DataSet .

 IsInitialized Boolean Gets a value that indicates whether the
DataSet is initialized.

 Namespace String Gets or sets the namespace of the
DataSet .

 Tables DataTableCollection Gets the collection of tables contained in
the DataSet .

c03.indd 120c03.indd 120 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 121

Table 3.16. Public methods of the Data S et class

 Method Name Functionality

 BeginInit Begins the initialization of a DataSet that is used on a form or used
by another component. The initialization occurs at run time.

 Clear Clears the DataSet of any data by removing all rows in all tables.
 Copy Copies both the structure and data for this DataSet .
 Dispose Releases the resources used by the MarshalByValueComponent.
 GetChanges Gets a copy of the DataSet containing all changes made to it since it

was last loaded, or since AcceptChanges was called.
 HasChanges Gets a value indicating whether the DataSet has changes, including

new, deleted, or modifi ed rows.
 Load Fills a DataSet with values from a data source using the supplied

IDataReader.
 Merge Merges a specifi ed DataSet , DataTable , or array of DataRow

objects into the current DataSet or DataTable .
 Reset Resets the DataSet to its original state. Subclasses should override

Reset to restore a DataSet to its original state.
 ToString Returns a String containing the name of the Component, if any. This

method should not be overridden.
 WriteXml Writes XML data, and optionally the schema, from the DataSet .
 WriteXmlSchema Writes the DataSet structure as an XML schema.

fi nished your data query or data action using the DataSet, you need to release it by
executing the Dispose method.

3.4.6.4 The DataSet Events

 DataSet class has three public events, and Table 3.17 lists these events.
 The Disposed event is used to trigger the Dispose event procedure as this event

occurs. The Initialized event is used to make a mark to indicate that the DataSet has been
initialized to your applications. The Mergefailed event is triggered when a confl ict occurs
and the EnforceConstraints property is set to True as you want to merge a DataSet with
an array of DataRow objects, another DataSet, or a DataTable.

 Before we can fi nish this section, we need to show you how to create, initialize, and
implement a real DataSet object in a data - driven application. A piece of codes shown in
Figure 3.17 is used to illustrate these issues, and a SQL Server Data Provider is utilized

Table 3.17. Public events of the Data S et class

 Event Name Descriptions

 Disposed Adds an event handler to listen to the Disposed event on the
component.

 Initialized Occurs after the DataSet is initialized.
 Mergefailed Occurs when a target and source DataRow have the same

primary key value, and EnforceConstraints is set to true.

c03.indd 121c03.indd 121 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

122 Chapter 3 Introduction to ADO.NET

for this example. We assume that an SqlConnection object, sqlConnection , has been
created and initialized for this example.

 Starting from step A , some initialization jobs are performed. An SQL SELECT state-
ment is created; an SqlCommand object, an SqlDataAdapter object, and a DataSet object
are also created. The integer variable intValue is used to hold the returned value from
calling the Fill() method.

 In section B , the SqlCommand object is initialized by assigning the SqlConnection
object to the Connection property, the CommandType.Text to the CommandType prop-
erty, and the cmdString to the CommandText property of the SqlCommand object.

 The initialized SqlCommand object is assigned to the SelectCommand property
of the SqlDataAdapter object in step C . Then a new DataSet object sqlDataSet is
initialized, and the Clear method is called to clean up the DataSet object before it can
be fi lled.

 Then in step D , the Fill method of the SqlDataAdapter object is executed to fi ll
the sqlDataSet . If this fi ll is successful, which means that the sqlDataSet (i.e., the
DataTable in the sqlDataSet) has been fi lled by some data rows, the returned value
should be greater than 0. Otherwise, it means that some errors occurred for this fi ll, and
an error message will be displayed to warn the user.

 Before the project can be completed, all resources used in this piece of codes should
be released and cleaned up. These cleaning jobs are performed in step E by executing
some related method, such as Dispose .

 You need to note that when the Fill method is executed to fi ll a DataSet, the Fill
method retrieves rows from the data source using the SELECT statement specifi ed by
an associated CommandText property. The Connection object associated with the
SELECT statement must be valid, but it does not need to be open. If the connection is
closed before Fill is called, it is opened to retrieve data, and then closed. If the connec-
tion is open before Fill is called, it still remains open.

 The Fill operation then adds the rows to destination DataTable objects in the DataSet,
creating the DataTable objects if they do not already exist. When creating DataTable

Figure 3.17. An example of using the DataSet.

Dim cmdString As String = "SELECT name, office, title, college FROM Faculty"
Dim sqlCommand As New SqlCommand
Dim sqlDataAdapter As SqlDataAdapter
Dim sqlDataSet As DataSet
Dim intValue As Integer

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString

sqlDataAdapter.SelectCommand = sqlCommand
sqlDataSet = New DataSet()
sqlDataSet.Clear()
intValue = sqlDataAdapter.Fill(sqlDataSet)
If intValue = 0 Then

MessageBox.Show("No valid faculty found!")
End If

sqlDataSet.Dispose()
sqlDataAdapter.Dispose()
sqlCommand.Dispose()
sqlCommand = Nothing

A

B

C

D

E

c03.indd 122c03.indd 122 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 123

objects, the Fill operation normally creates only column name metadata. However, if
the MissingSchemaAction property is set to AddWithKey , appropriate primary keys
and constraints are also created.

 If the Fill returns the results of an OUTER JOIN, the DataAdapter does not set a
PrimaryKey value for the resulting DataTable. You must explicitly defi ne the primary
key to ensure that duplicate rows are resolved correctly.

 You can use the Fill method multiple times on the same DataTable. If a primary
key exists, incoming rows are merged with matching rows that already exist. If no primary
key exists, incoming rows are appended to the DataTable.

3.4.7 The DataTable Component

 DataTable class can be considered as a container that holds the Rows and Columns col-
lections, and the Rows and Columns collections contain a set of rows (or DataRow
objects) and a set of columns (or DataColumn objects) from a data table in a database.
The DataTable is directly mapping to a real data table in a database or a data source,
and it store its data in a mapping area or a block of memory space that is associated to
a data table in a database as your project runs. The DataTable object can be used in two
ways as we mentioned in the previous sections. One way is that a group of DataTable
objects, in which each DataTable object is mapped to a data table in the real database,
can be integrated into a DataSet object. All of these DataTable objects can be popu-
lated by executing the Fill method of the DataAdapter object (refer to the example in
Section 3.4.4.4). The argument of the Fill method is not a DataTable , but a DataSet
object, since all DataTable objects are embedded into that DataSet object already. The
second way to use the DataTable is that each DataTable can be considered as a single
standalone data table object, and each table can be populated or manipulated by execut-
ing either the ExecuteReader or ExecuteNonQuery method of the Command object.

 The DataTable class is located in the System.Data namespace, and it is a Data
Provider independent component, which means that only one set of DataTable objects
are existed no matter what kind of Data Provider you are using in your applications.

 The DataTable is a central object in the ADO.NET library. Other objects that use
the DataTable include the DataSet and the DataView .

 When accessing DataTable objects, note that they are conditionally case sensitive. For
example, if one DataTable is named “ faculty ” and another is named “ Faculty ” , a string
used to search for one of the tables is regarded as case sensitive. However, if faculty exists
and Faculty does not, the search string is regarded as case insensitive. A DataSet can
contain two DataTable objects that have the same TableName property value but differ-
ent Namespace property values.

 If you are creating a DataTable programmatically, you must fi rst defi ne its schema
by adding DataColumn objects to the DataColumnCollection (accessed through the
Columns property). To add rows to a DataTable, you must fi rst use the NewRow method

to return a new DataRow object. The NewRow method returns a row with the schema of
the DataTable, as it is defi ned by the table ’ s DataColumnCollection. The maximum
number of rows that a DataTable can store is 16,777,216.

 The DataTable also contains a collection of Constraint objects that can be used to
ensure the integrity of the data. The DataTable class is a member of the System.Data

c03.indd 123c03.indd 123 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

124 Chapter 3 Introduction to ADO.NET

namespace within the .NET Framework class library. You can create and use a DataTable
independently or as a member of a DataSet , and DataTable objects can also be used
in conjunction with other .NET Framework objects, including the DataView . As we
mentioned in the last section, you access the collection of tables in a DataSet through
the Tables property of the DataSet object.

 In addition to a schema, a DataTable must also have rows to contain and order data.
The DataRow class represents the actual data contained in a table. You use the DataRow
and its properties and methods to retrieve, evaluate, and manipulate the data in a table.
As you access and change the data within a row, the DataRow object maintains both its
current and original state.

3.4.7.1 The DataTable Constructor

 The DataTable has four overloaded constructors, and Table 3.18 lists three most often
used constructors.

 You can create a DataTable object by using the appropriate DataTable construc-
tor. You can add it to the DataSet by using the Add method to add it to the DataTable
object ’ s Tables collection.

 You can also create DataTable objects within a DataSet by using the Fill or
FillSchema methods of the DataAdapter object, or from a predefi ned or inferred
XML schema using the ReadXml , ReadXmlSchema , or InferXmlSchema methods of
the DataSet . Note that after you have added a DataTable as a member of the Tables
collection of one DataSet, you cannot add it to the collection of tables of any other
DataSet.

 When you fi rst create a DataTable, it does not have a schema (that is, a structure).
To defi ne the schema of the table, you must create and add DataColumn objects to the
Columns collection of the table. You can also defi ne a primary key column for the table,
and create and add Constraint objects to the Constraints collection of the table.
After you have defi ned the schema for a DataTable , you can add rows of data to the
table by adding DataRow objects to the Rows collection of the table.

 You are not required to supply a value for the TableName property when you create
a DataTable ; you can specify the property at another time, or you can leave it empty.
However, when you add a table without a TableName value to a DataSet , the table will
be given an incremental default name of Table N, starting with “ Table ” for Table0 .

 Figure 3.18 shows an example of creating a new DataTable and a DataSet, and then
adding the DataTable into the DataSet object.

Table 3.18. Three popular constructors of the Data T able class

 Constructors Descriptions

 DataTable() Initializes a new instance of the DataTable class with no
arguments.

 DataTable(String) Initializes a new instance of the DataTable class with
the specifi ed table name.

 DataTable(String, String) Initializes a new instance of the DataTable class using
the specifi ed table name and namespace.

c03.indd 124c03.indd 124 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 125

 First, you need to create two instances of the DataSet and the DataTable, respectively.
Then you can add this new DataTable instance into the new DataSet object by using the
Add method.

3.4.7.2 The DataTable Properties

 The DataTable class has more than 20 properties. Table 3.19 lists some of the most often
used properties.

 Among these properties, the Columns and Rows properties are very important to
us, and both properties are collections of DataColumn and DataRow in the current
DataTable object. The Columns property contains a collection of DataColumn objects in
the current DataTable, and each column in the table can be considered as a DataColumn
object, and can be added into this Columns collection. Similar situation happened to the
Rows property. The Rows property contains a collection of DataRow objects that are
composed of all rows in the current DataTable object. You can get the total number of
columns and rows from the current DataTable by calling these two properties.

Table 3.19. The popular properties of the Data T able class

 Properties Descriptions

 Columns The data type of the Columns property is DataColumn - Collection,
which means that it contains a collection of DataColumn objects.
Each column in the DataTable can be considered as a
DataColumn object.

 By calling this property, a collection of DataColumn objects existed
in the DataTable can be retrieved.

 DataSet Gets the DataSet to which this table belongs.
 IsInitialized Gets a value that indicates whether the DataTable is initialized.
 Namespace Gets or sets the namespace for the XML representation of the data

stored in the DataTable.
 PrimaryKey Gets or sets an array of columns that function as primary keys for

the data table.
 Rows The data type of the Rows property is DataRowCollection, which

means that it contains a collection of DataRow objects. Each row
in the DataTable can be considered as a DataRow object.

 By calling this property, a collection of DataRow objects existed in
the DataTable can be retrieved.

 TableName Gets or sets the name of the DataTable.

Figure 3.18. An example of adding a DataTable into a DataSet.

Dim FacultyDataSet As DataSet
Dim FacultyTable As DataTable

FacultyDataSet = New DataSet()
FacultyTable = New DataTable(“Faculty”)
FacultyDataSet.Tables.Add(FacultyTable)

c03.indd 125c03.indd 125 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

126 Chapter 3 Introduction to ADO.NET

Table 3.20. The popular methods of the Data T able class

 Methods Descriptions

 Clear Clears the DataTable of all data.
 Copy Copies both the structure and data for this DataTable.
 Dispose Release the resources used by the MarshalByValue - Component.
 GetChanges Gets a copy of the DataTable containing all changes made to it

since it was last loaded, or since AcceptChanges was called.
 GetType Gets the Type of the current instance.
 ImportRow Copies a DataRow into a DataTable, preserving any property

settings, as well as original and current values.
 Load Fills a DataTable with values from a data source using the

supplied IDataReader. If the DataTable already contains rows,
the incoming data from the data source is merged with the
existing rows.

 LoadDataRow Finds and updates a specifi c row. If no matching row is found, a
new row is created using the given values.

 Merge Merge the specifi ed DataTable with the current DataTable.
 NewRow Creates a new DataRow with the same schema as the table.
 ReadXml Reads XML schema and data into the DataTable.
 RejectChanges Rolls back all changes that have been made to the table since it

was loaded, or the last time AcceptChanges was called.
 Reset Resets the DataTable to its original state.
 Select Gets an array of DataRow objects.
 ToString Gets the TableName and DisplayExpression, if there is one as a

concatenated string.
 WriteXml Writes the current contents of the DataTable as XML.

3.4.7.3 The DataTable Methods

 The DataTable class has about 50 different methods with 33 public methods, and Table
 3.20 lists some most often used methods.

 Among these methods, three of them are important to us: NewRow, ImportRow, and
LoadDataRow. Calling NewRow adds a row to the data table using the existing table
schema, but with default values for the row, and sets the DataRowState to Added. Calling
ImportRow preserves the existing DataRowState along with other values in the row.
Calling LoadDataRow is to fi nd and update a data row from the current data table. This
method has two arguments, the Value (As Object) and the Accept Condition (As Boolean).
The Value is used to update the data row if that row were found, and the Condition is
used to indicate whether the table allows this update to be made or not. If no matching
row is found, a new row is created with the given Value.

3.4.7.4 The DataTable Events

 The DataTable class contains 11 public events, and Table 3.21 lists these events.

c03.indd 126c03.indd 126 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 127

 The most often used events are ColumnChanged , Initialized , RowChanged , and
RowDeleted . By using these events, one can track and monitor the real situations that
occurred in the DataTable .

 Before we can fi nish this section, we need to show users how to create a data table
and how to add data columns and rows into this new table. Figure 3.19 shows a complete

Table 3.21. The public events of the Data T able class

 Events Descriptions

 ColumnChanged Occurs after a value has been changed for the specifi ed
DataColumn in a DataRow.

 ColumnChanging Occurs when a value is being changed for the specifi ed
DataColumn in a DataRow.

 Disposed Adds an event handler to listen to the Disposed event on the
component.

 Initialized Occurs after the DataTable is initialized.
 RowChanged Occurs after a DataRow has been changed successfully.
 RowChanging Occurs when a DataRow is changing.
 RowDeleted Occurs after a row in the table has been deleted.
 RowDeleting Occurs before a row in the table is about to be deleted.
 TableCleared Occurs after a DataTable is cleared.
 TableClearing Occurs when a DataTable is being cleared.
 TableNewRow Occurs when a new DataRow is inserted.

Figure 3.19. An example of creating a new table and adding data into the table.

'Create a new DataTable
Dim FacultyTable As DataTable = New DataTable("FacultyTable")

'Declare DataColumn and DataRow variables
Dim column As DataColumn
Dim row As DataRow

'Create new DataColumn, set DataType, ColumnName and add to DataTable
column = New DataColumn
column.DataType = System.Type.GetType("System.Int32")
column.ColumnName = "FacultyId"
FacultyTable.Columns.Add(column)

'Create another column.
column = New DataColumn
column.DataType = Type.GetType("System.String")
column.ColumnName = "FacultyOffice"
FacultyTable.Columns.Add(column)

'Create new DataRow objects and add to DataTable.
Dim Index As Integer
For Index = 1 To 10

row = FacultyTable.NewRow
row("FacultyId") = Index
row("FacultyOffice") = "TC- " & Index
FacultyTable.Rows.Add(row)

Next Index

A

B

C

D

E

F

c03.indd 127c03.indd 127 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

128 Chapter 3 Introduction to ADO.NET

example of creating a new data table object and adding columns and rows into this table.
The data table is named FacultyTable.

 Refer to Figure 3.19 ; starting from step A , a new instance of the data table
FacultyTable is created and initialized to a blank table.

 In order to add data into this new table, you need to use the Columns and Rows
collections, and these two collections contain the DataColumn and DataRow objects. So
next, you need to create DataColumn and DataRow objects, respectively. Step B fi nished
these objects ’ declarations.

 In step C , a new instance of the DataColumn , column , is created by using the New
keyword. Two DataColumn properties, DataType and ColumnName , are used to initialize
the fi rst DataColumn object with the data type as integer (System.Int32) and with the
column name as FacultyId , respectively. Finally, the completed object of the DataColumn
is added into the FacultyTable using the Add method of the Columns collection class.

 The second data column, with the column data type as string (System.String) and
the column name as the FacultyOffi ce , is added into the FacultyTable in a similar way
as we did for the fi rst data column FacultyId in step D .

 In step E , a For…Next loop is utilized to simplify the procedure of adding new data
rows into this FacultyTable . First, a loop counter Index is created, and a new instance
of the DataRow is created with the method of the DataTable — NewRow (refer to Table
 3.20). In total, we create and add 10 rows into this FacultyTable object. For the fi rst column
FacultyId , the loop counter Index is assigned to this column for each row. But for the
second column FacultyOffi ce, the building name combined with the loop counter Index
is assigned to this column for each row. Finally, in step F , the DataRow object, row , is
added into this FacultyTable using the Add method that belongs to the Rows collec-
tion class.

 The completed FacultyTable should match the one that is shown in Table 3.22 .

3.4.8 ADO.NET Entity Framework 4.1

 Most traditional databases use the relational model of data, such as Microsoft Access,
SQL Server, and Oracle. But today, almost all programming languages are object - oriented
languages, and the object - oriented model of data structures are widely implemented in

Table 3.22. The completed Faculty T able

 FacultyId FacultyOffi ce

 1 TC - 1
 2 TC - 2
 3 TC - 3
 4 TC - 4
 5 TC - 5
 6 TC - 6
 7 TC - 7
 8 TC - 8
 9 TC - 9

 10 TC - 10

c03.indd 128c03.indd 128 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 129

modern programs developed with those languages. Therefore, a potential contradiction
exists between the relational model of data in databases and the object - oriented model
of programming applied in our real world today. Although some new components were
added into ADO.NET 2.0 to try to solve this contradiction, still it does not give a full
solution for this issue.

 A revolutionary solution of this problem came with the release of ADO.NET 4.1
based on the .NET Framework 4.1 and the addition of LINQ to Visual Studio.NET 2010.
The main contributions of ADO.NET 4.1 include that some new components, ADO.NET
4.1 Entity Framework and ADO.NET 4.1 EDM Tools, are added into ADO.NET 4.1. With
these new components, the contradiction that existed between the relational model of
data used in databases and the object - oriented programming projects can be fully resolved.

 The fi rst version of Entity Framework was included with .NET Framework 3.5 Service
Pack 1 and Visual Studio 2008 Service Pack 1, released on August 2008. The second
version of Entity Framework, named Entity Framework 4.0, was released as part of .NET
4.0 on April 2010, and has addressed many of the criticisms made of version 1. A third
version of Entity Framework, version 4.1, was released on April 12, 2011. There were
several betas (called Community Technology Previews) of it, the last of which was released
in March 2011.

 One of the primary goals on ADO.NET 4.1 Entity Framework is to raise the level of
abstraction available for data programming, thus simplifying the development of data -
 aware applications and enabling developers to write less code. The Entity Framework is
the evolution of ADO.NET that allows developers to program in terms of the standard
ADO.NET 4.1 abstraction or in terms of persistent objects (ORM) and is built upon the
standard ADO.NET 4.1 Provider model that allows access to third - party databases. The
Entity Framework introduces a new set of services around the EDM (a medium for defi n-
ing domain models for an application).

 ADO.NET 4.1 provides an abstract database structure that converts the traditional
logic database structure to an abstract or object structure with three layers:

 • Conceptual layer

 • Mapping layer

 • Logical layer

 ADO.NET 4.1 Entity Framework defi nes these three layers using a group of XML
fi les, and these XML fi les provide a level of abstraction to enable users to program against
the object - oriented Conceptual model instead of the traditional relational data model.

 The Conceptual layer provides a way to allow developers to build object - oriented
codes to access databases, and each component in databases can be considered as an
object or entity in this layer. The conceptual schema defi nition language (CSDL) is used
in those XML fi les to defi ne entities and relationships that will be recognized and used
by the Mapping layer to set up mapping between entities and relational data tables. The
Mapping layer uses mapping schema language (MSL) to establish mappings between
entities in the Conceptual layer and the relational data structure in the Logical layer. The
relational database schema is defi ned in an XML fi le using store schema defi nition lan-
guage (SSDL) in the Logical layer. The Mapping layer works as a bridge or a converter
to connect the Conceptual layer to the Logical layer and interpret between the object -
 oriented data model in the Conceptual layer and the relational data model in the Logical

c03.indd 129c03.indd 129 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

130 Chapter 3 Introduction to ADO.NET

Figure 3.20. The mapping relationship between three layers.

(a) (b)

Object-Oriented

Model

Conceptual Layer

Mapping Layer

Logical Layer

Relational Data

Model

Application

ORM interface

Entity Framework

Entity Data Model (EDM)
Describes object-relational mapping

ADO.NET Provider

Queries/ Updates

Data Store

layer. The mapping that is shown in Figure 3.20 a allows users to code against the
Conceptual layer and map those codes into the Logical layer.

 An architecture of implementing Entity Framework 4.1 is shown in Figure 3.20 b.
 The Entity Framework 4.1 is built on the existing ADO.NET provider model, with

existing providers being updated additively to support the new Entity Framework func-
tionality. Because of this, existing applications built on ADO.NET can be carried forward
to the Entity Framework 4.1 easily with a programming model that is familiar to ADO.
NET developers.

 A useful data component is provided by the Conceptual layer to enable users to
develop object - oriented codes, and it is called EntityClient. In fact, the EntityClient is a
Data Provider with the associated components such as Connection (EntityConnection),
Command (EntityCommand), and DataReader (EntityDataReader). The EntityClient is
similar to other Data Providers we discussed in the previous sections in this chapter, but
it includes new components and functionalities. Figure 3.21 shows the Entity Framework
architecture for accessing data.

 As can be found from Figure 3.21 , the Entity Framework includes the EntityClient
data provider. This provider manages connections, translates entity queries into data
source - specifi c queries, and returns a data reader that the Entity Framework uses to
materialize entity data into objects. When object materialization is not required, the
EntityClient provider can also be used like a standard ADO.NET data provider by
enabling applications to execute Entity SQL queries and consume the returned read - only
data reader.

3.4.8.1 Advantages of Using the Entity Framework 4.1

 In summary, using the Entity Framework 4.1 to write data - oriented applications provides
the following benefi ts:

1. Reduced development time. The framework provides the core data access capabilities so
developers can concentrate on application logic.

c03.indd 130c03.indd 130 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 131

2. Developers can work in terms of a more application - centric object model, including types
with inheritance, complex members, and relationships. In .NET Framework 4, the Entity
Framework also supports Persistence Ignorance through Plain Old CLR Objects (POCO)
entities.

3. Applications are freed from hard - coded dependencies on a particular data engine or storage
schema by supporting a conceptual model that is independent of the physical/storage model.

4. Mappings between the object model and the storage - specifi c schema can change without
changing the application code.

5. LINQ support (called LINQ to Entities) provides IntelliSense and compile - time syntax
validation for writing queries against a conceptual model.

 The Entity Framework uses the EDM to describe the application - specifi c object or
 “ conceptual ” model against which the developer programs. The EDM builds on the
widely known Entity Relationship model to raise the abstraction level above logical
database schemas. The EDM was developed with the primary goal of becoming the
common data model across a suite of developer and server technologies from Microsoft.
Thus, an EDM created for use with the Entity Framework can also be leveraged with
WCF Data Services (formerly ADO.NET Data Services), Windows Azure Table Storage,
SharePoint 2010, SQL Server Reporting Services, and SQL Server PowerPivot for Excel,
with more coming in the future.

 The core of ADO.NET 4.1 Entity Framework is its EDM, and the user can access
and use this model using the ADO.NET 4.1 EDM Tools that includes the EDM item

Figure 3.21. Entity Framework architecture.

Data Source

Entity

SQL

Query

Entity

SQL

Query

LINQ

to

Entities

IEnumerable

<T>

Object Services

Command

Tree

Command

Tree

Entity

Data Reader

Entity Client Data Provider

DB Data Reader

ADO.NET Data Providers

Conceptual

Model

Mapping

Storage

Model

c03.indd 131c03.indd 131 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

132 Chapter 3 Introduction to ADO.NET

template, the EDM wizard, EDM Designer, entity mapping details, and the entity model
browser.

 In the following sections, we will discuss the EDM and how to use these EDM Tools
to create, build, and develop EDM and implement it in your actual data - driven
applications.

 First, let ’ s take a closer look at the ADO.NET 4.1 EDM.

3.4.8.2 The ADO.NET 4.1 Entity Data Model

 The ADO.NET 4.1 EDM is a data model for defi ning application data as sets of entities
and relationships to which common language runtime (CLR) types and storage structures
can be mapped. This enables developers to create data access applications by program-
ming against a conceptual application model instead of programming directly against a
relational storage schema.

 EDM design approaches can be divided into three categories:

1. Database First

2. Model First

3. Code First

 Let ’ s have a brief discussion for each of these components one by one.

3.4.8.2.1 Database First Entity Framework supports several approaches for creating
EDMs. Database First approach was historically the fi rst one. It appeared in Entity
Framework v1, and its support was implemented in Visual Studio 2008. This approach
considers that an existing database is used, or the new database is created fi rst, and then
EDM is generated from this database with EDM Wizard.

 All needed model changes in its conceptual (CSDL) and mapping (MSL) part are
performed with EDM Designer. If the storage part needs changing, the database must be
modifi ed fi rst, and then EDM is updated with Update Model Wizard.

 Database First approach is supported in Visual Studio 2008/2010 for MS SQL Server
only. However, there are third - party solutions that provide Database First support in
Visual Studio for other database servers: DB2, Effi Proz, Firebird, Informix, MySQL,
Oracle, PostgreSQL, SQLite, Sybase, and VistaDB. Besides, there are third - party tools
that extend or completely replace standard EDM Wizard, EDM Designer, and Update
Model Wizard.

3.4.8.2.2 Model First A Model First approach was supported in Visual Studio 2010,
which was released together with the second Entity Framework version (Entity Framework
4.0). In the Model First approach, the development starts from scratch. At fi rst, the con-
ceptual model is created with EDM Designer, entities and relations are added to the
model, but mapping is not created. After this, Generate Database Wizard is used to gener-
ate storage (SSDL) and mapping (MSL) parts from the conceptual part of the model and
save them to the edmx fi le. Then the wizard generates DDL script for creating the data-
base, which includes tables and foreign keys.

 If the model was modifi ed, the Generate Database Wizard should be used again to
keep the model and the database consistent. In such case, the generated DDL script

c03.indd 132c03.indd 132 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 133

contains DROP statements for tables, corresponding to old SSDL from the . edmx fi le,
and CREATE statements for tables, corresponding to new SSDL, generated by the wizard
from the conceptual part. In the Model First approach, the developer should not edit
storage part or customize mapping, because they will be regenerated each time when
Generate Database Wizard is launched.

 Model First in Visual Studio 2010 is supported only for MS SQL Server. However,
there are third - party solutions that provide support for other databases, such as Oracle,
MySQL, and PostgreSQL. Besides, there are third - party tools for complete replacement
of EDM Designer and Generate Database Wizard in the context of Model First approach.

3.4.8.2.3 Code First Entity Framework 4.1 Release to Web (RTW) is a new technique
that is the fi rst fully supported go - live release of the DbContext API and Code First
development workfl ow.

 Code First allows you to defi ne your model using Visual C# or Visual Basic.NET
classes; optionally additional confi guration can be performed using attributes on your
classes and properties or by using a Fluent API. Your model can be used to generate a
database schema or to map to an existing database.

 The following tools are designed to help you work with the EDM:

 • The ADO.NET 4.1 EDM item template is available for Visual Basic.NET project type, ASP.
NET Web Site, and Web Application projects, and launches the EDM Wizard.

 • The EDM Wizard generates an EDM, which is encapsulated in an .edmx fi le. The wizard
can generate the EDM from an existing database. The wizard also adds a connection string
to the App.Confi g or Web.Confi g fi le and confi gures a single - fi le generator to run on the
conceptual model contained in the .edmx fi le. This single - fi le generator will generate Visual
C# or Visual Basic.NET code from the conceptual model defi ned in the .edmx fi le.

 • The ADO.NET EDM Designer provides visual tools to view and edit the EDM graphically.
You can open an .edmx fi le in the designer and create entities and map entities to database
tables and columns.

 • EdmGen.exe is a command - line tool that can be used to also generate models, validate
existing models, and perform other functions on your EDM metadata fi les.

 We will provide a detailed discussion for each of these tools in the following
sections.

3.4.8.2.4 Entity Data Model Item Template The ADO.NET 4.1 EDM item tem-
plate is the starting point to the EDM tools. The ADO.NET 4.1 EDM item template is
available for Visual C# and Visual Basic.NET project types. It can be added to Console
Application, Windows Application, Class Library, ASP.NET Web Service Application,
ASP.NET Web Application, or ASP.NET Web Site projects. You can add multiple ADO.
NET 4.1 EDM items to the same project, with each item containing fi les that were gener-
ated from a different database and/or tables within the same database.

 When you add the ADO.NET 4.1 EDM item template to your project, Visual Studio:

 • Adds references to the System.Data, System.Data.Entity, System.Core, System.Security, and
System.Runtime.Serialization assemblies if the project does not already have them.

 • Starts the EDM Wizard. The wizard is used to generate an EDM from an existing database.
The wizard creates an .edmx fi le, which contains the model information. You can use the
.edmx fi le in the ADO.NET EDM Designer to view or modify the model.

c03.indd 133c03.indd 133 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

134 Chapter 3 Introduction to ADO.NET

 • Creates a source code fi le that contains the classes generated from the conceptual model.
The source code fi le is auto - generated, and is updated when the .edmx fi le changes, and is
compiled as part of the project.

 Next, let ’ s have a closer look at the EDM Wizard.

3.4.8.2.5 Entity Data Model Wizard The EDM Wizard is used to generate an .edmx
fi le. It also allows you to create a model from an existing database, or to generate an
empty model.

 The EDM Wizard starts after you add an ADO.NET 4.1 EDM to your project. The
wizard is used to generate an EDM. The wizard creates an .edmx fi le that contains the
model information. The .edmx fi le is used by the ADO.NET 4.1 EDM Designer, which
enables you to view and edit the mappings graphically.

 You can select to create an empty model or to generate the model from an existing
database. Generating the model from an existing database is the recommended practice
for this release of the EDM tools.

 The Wizard also creates a source code fi le that contains the classes generated
from the CSDL information encapsulated in the .edmx fi le. The source code fi le is auto -
 generated and is updated when the .edmx fi le changes.

 Depending on your selections, the Wizard will help you with the following steps.

 • Choose the Model Contents : By selecting Generate from database , you can generate an
.edmx fi le from an existing database. Then, the EDM Wizard will guide you through selecting
a data source, database, and database objects to include in the conceptual model. By selecting
Empty model , you can add an .edmx fi le that contains empty a conceptual model, a storage
model, and mapping sections to your project. Select this option if you plan to use the Entity
Designer to build your conceptual model and later generate a database that supports
the model.

 • Choose the Database Connection : You can choose an existing connection from the drop -
 down list of connections or click New Database Connection to open the Connection
Properties dialog box and create a new connection to the database.

 • Choose Your Database Objects : You can select the tables, views, and stored procedures to
include in the EDM.

 Beginning with Visual Studio 2010, the Choose Your Database Objects dialog box
also allows you to perform the following customizations:

1. Apply English - language rules for singulars and plurals to entity, entity set, and navigation
property names when the .edmx fi le is generated.

2. Include foreign key columns as properties on entity types.

 Upon closing, the EDM Wizard creates an .edmx fi le that contains the model infor-
mation. The .edmx fi le is used by the Entity Designer, which enables you to view and edit
the conceptual model and mappings graphically.

 Now let ’ s have a closer look at the real part — ADO.NET 4.1 EDM Designer.

3.4.8.2.6 Entity Data Model Designer The ADO.NET 4.1 EDM Designer provides
visual tools for creating and editing an EDM. You can use the Entity Model Designer to
visually create and modify entities, associations, mappings, and inheritance relationships.
You can also validate an .edmx fi le using the Entity Model Designer.

c03.indd 134c03.indd 134 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 135

 The ADO.NET EDM Designer includes the following components:

 • A visual design surface for creating and editing the conceptual model. You can create,
modify, or delete entities and associations.

 • An Entity Mapping Details window to view and edit mappings. You can map entity types
or associations to database tables and columns.

 • An Entity Model Browser to give you a tree view of the EDM.

 • Toolbox controls to create entities, associations, and inheritance relationships.

 The ADO.NET 4.1 EDM Designer is integrated with the Visual Studio.NET 2010
components. You can view and edit information using the Properties window, and errors
are reported in the Error List.

 Figure 3.22 shows an example of the ADO.NET 4.1 EDM Designer.
 Two important functionalities of using the EDM Designer are:

Opening the ADO.NET EDM Designer : The ADO.NET 4.1 EDM Designer is designed to
work with an .edmx fi le. The .edmx fi le is an encapsulation of three EDM metadata artifact
fi les, the CSDL, the SSDL, and the MSL fi les. When you run the EDM Wizard, an .edmx fi le
is created and added to your solution. You open the ADO.NET EDM Designer by double -
 clicking on the .edmx fi le in the Solution Explorer.

Validating the EDM : As you make changes to the EDM, the ADO.NET EDM Designer vali-
dates the modifi cations and reports errors in the Error List. You can also validate the EDM
at any time by right - clicking on the design surface and selecting Validate Model .

Figure 3.22. An example of ADO.NET 4.1 Entity Data Model Designer.

c03.indd 135c03.indd 135 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

136 Chapter 3 Introduction to ADO.NET

3.4.8.2.7 Entity Model Browser The Entity Model Browser is a Visual Studio tool
window that is integrated with the ADO.NET 4.1 EDM Designer. It provides a tree view
of the EDM. The Entity Model Browser groups the information into two nodes.

 The fi rst node shows you the conceptual model. By expanding the underlying nodes,
you can view all entity types and associations in the model.

 The second node shows you the target database model. By expanding the underlying
nodes, you can see what parts of the database tables, views, and stored procedures have
been imported into the model.

 The EDM Browser enables you to do the following:

 • Clicking an item in the Model Browser makes it active in the Properties window and the
Mapping Details window. You can use these windows to modify the properties and entity
mappings.

 • Create a function import from a stored procedure.

 • Update the storage model when changes are made to the underlying database.

 • Delete tables, views, and stored procedures from the storage model.

 • Locate an entity type on the design surface. In the Model Browser , right - click the entity
name in the tree view of the conceptual model and select Show in Designer . The visual
representation of the model will be adjusted so that the entity type is visible on the design
surface.

 • Search the tree view of the conceptual and storage models. The search bar at the top of the
Model Browser window allows you to search object names for a specifi ed string.

 The Entity Model Browser opens when the ADO.NET 4.1 EDM Designer is opened.
If the Entity Model Browser is not visible, right - click on the main design surface and
select Model Browser .

3.4.8.3 Using the ADO.NET 4.1 Entity Data Model Wizard

 In this section, we will use a project example to illustrate how to use the EDM Wizard
to develop a Database First data - driven application to connect to our database, to create
entity classes, to set up associations between entities, and to set up mapping relationships
between entities and data tables in our database. Creating applications using the EDM
can be signifi cantly simplifi ed by using the ADO.NET EDM item template and the EDM
Wizard.

 This section steps you through the following tasks:

 • Create a new Visual Basic.NET Windows - based application.

 • Use the EDM Wizard to select a data source and generate an EDM from our CSE_DEPT
database.

 • Use the entities in this application.

 Let ’ s begin with creating a new Database First Visual Basic.NET Windows - based
project named EDModel.

3.4.8.3.1 Create a New Database First Visual Basic. NET Windows -Based Project

Open Visual Studio.NET 2010 and select File|New Project items to create a new project.
Perform the following operations to create this new project:

c03.indd 136c03.indd 136 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 137

1. Select Visual Basic as the project type and Windows Forms Application as the Template
for this new project.

2. Click on Other Project Types and Visual Studio Solutions from the Recent Templates
window.

3. Enter EDModel Solution into the Name box and select any folder as the Location to save
this project. Then click on the OK button to create this new project.

4. Right - click on the newly created blank solution from the Solution Explorer window and
select Add|New Project item.

5. Enter EDModel Project into the Name box and click on the OK button.

 Now perform the following operations to change the properties of this new project:

1. Change the fi le object ’ s name from Form1.vb to EDModel Form.vb .

2. Change the Windows Form object ’ s name from Form1 to EDModelForm .

3. Change the content of the Text property of the Windows Form object from Form1 to Entity
Data Model Form .

4. Change the StartPosition property of the form window to CenterScreen.

5. Add a Button control to the form window and name this button as cmdShow and set its
Text property to Show Faculty . Set its Font property to Bold — 12.

6. Add a Listbox control to the form window and name it as FacultyList . Set its Font property
to Bold — 10.

 Your fi nished EDModelForm window should match the one that is shown in Figure
 3.23 .

 Now let ’ s handle to generate our EDM Wizard using the EDM Tools. The ADO.NET
EDM item template is the starting point for the EDM tools.

3.4.8.3.2 Generate the Entity Data Model Files Before we can continue to generate
the EDM fi les, we must fi rst confi rm whether we have installed ADO.NET Entity
Framework 4.1 and ADO.NET 4.1 Entity Framework Tools in our computer. To do this
confi rmation, just right - click the project EDModel Project and select Add|New Item to

Figure 3.23. The EDModelForm window.

c03.indd 137c03.indd 137 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

138 Chapter 3 Introduction to ADO.NET

open the Add New Item dialog box. If you cannot fi nd the item ADO.NET Entity Data
Model from the Templates box, this means that you have not installed ADO.NET Entity
Framework 4.1 and its Tools. Therefore, let ’ s fi rst download these components and install
them in your computer.

 One point to be noted is that you should have installed NET Framework 4.0 RTM
before you can install the ADO.NET Entity Framework 4.1. Go to the site http://www.
microsoft.com/downloads/ en/details.aspx?FamilyID = 9cfb2d51 - 5ff4 - 4491 - b0e5 - b386f32c0
992 & displaylang = en to download and install NET Framework 4.0.

 Let ’ s perform the following operations to complete the download and installation for
ADO.NET Entity Framework 4.1 and ADO.NET 4.1 Entity Framework Tools:

1. Open the Microsoft download home page: http://msdn.microsoft.com/en - us/data/aa937723.
aspx .

2. Select the item Download Entity Framework 4.1 under the Learn Entity Framework title.
3. On the opened download window, click on the Download button for the item

EntityFramework41.exe and click on the Run button to begin the downloading and
installation process.

4. Follow the screen ’ s instructions to complete this downloading and installation process. Click
on the Finish button when this process is done.

 Now we can continue to the process to generate the EDM Files and use the EDM
Wizard.

 Perform the following operations to generate our EDM Wizard:

1. Right - click the project EDModel Project from the Solution Explorer window and select
the Add|New Item from the pop - up menu.

2. In the opened Add New Item dialog box, select the item ADO.NET Entity Data Model
from the Installed Templates window and click on the Add button to open the EDM
Wizard.

3. This wizard allows us to choose the model contents and generate a model from our data-
base. Keep the default selection Generate from database unchanged and click on the
Next button.

4. The next wizard enables us to set up a database connection to our target database. Click
on the New Connection button to generate a new connection to our target SQL Server
2008 sample database CSE_DEPT.mdf .

5. On the opened Connection Properties wizard, make sure that the Data Source box con-
tained the Microsoft SQL Server Database File . Otherwise, you need to click on the
Change button to select the correct data source type. Then click on the Browse button
to fi nd our target database fi le CSE_DEPT.mdf. Regularly, this fi le should be located at
the folder: C:\Program Files\Microsoft SQL Server\ MSSQL10.SQL2008EXPRESS\
MSSQL\DATA . Browse to that folder and select our database fi le CSE_DEPT.mdf, and
click on the Open button.

6. Your fi nished Connection Properties wizard should match the one that is shown in Figure
 3.24 .

7. Before we can test this database connection, click on the Advanced button to open the
Advanced Properties wizard to confi rm that we are using the correct data source for this
connection. Make sure that the Data Source box contains our current target database
engine .\SQL2008EXPRESS . Click on the OK button to complete this confi rmation.

c03.indd 138c03.indd 138 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 139

8. Click on the Test Connection button to test this database connection. A successful
connection dialog box should be displayed if this connection is fi ne. Click on the OK button
to return to the EDM Wizard, which is shown in Figure 3.25 . Click on the Next button to
continue.

9. Click on the Yes button to the next dialog box to enable the database fi le to be copied
into our current project with the modifi ed connection.

10. In the next window, check all components related to our connected sample database since
we may need to use some or all of them in our project. Your fi nished EDM Wizard should
match the one that is shown in Figure 3.26 . Click on the Finish button to complete this
database selection and connection process.

11. On the opened Solution Explorer window, change the name of newly created EDM fi le
from Model1.edmx to EDModel.edmx .

12. Your fi nished Solution Explorer window is shown in Figure 3.27 .

 To see this EDM in Designer view, double - click the newly added Entity Data Model
EDModel.edmx, and the Designer view is shown in Figure 3.28 .

 Five tables and connections between them are displayed in this view. On each table,
two groups of entity properties are displayed, Properties and Navigation properties. The
fi rst category contains all entity properties (mapped to columns in our physical table),
and the second category contains all related entities (mapped to related tables by using
the primary - foreign keys) in this database. The connections between each entity (mapped
to data table) are called associations.

 As you double - click this Entity Data Model EDModel.edmx, another tool, Mapping
Details , is also displayed under this Designer view, which is shown in Figure 3.29 .

Figure 3.24. The Connection properties wizard.

c03.indd 139c03.indd 139 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

140 Chapter 3 Introduction to ADO.NET

Figure 3.25. The Entity Data Model Wizard.

Figure 3.26. The fi nished Entity Data Model Wizard.

c03.indd 140c03.indd 140 4/25/2012 1:57:07 PM4/25/2012 1:57:07 PM

3.4 The Components of ADO.NET 141

Figure 3.27. The fi nished Solution Explorer window.

Figure 3.28. The Designer view of the Entity Data Model EDModel.

c03.indd 141c03.indd 141 4/25/2012 1:57:08 PM4/25/2012 1:57:08 PM

142 Chapter 3 Introduction to ADO.NET

 If this Mapping Details did not open, you can open it by right - clicking on this
Designer view and select the item Mapping Details from the pop - up menu. To see a
Mapping Details, you also need to select an entity (table) to do it.

 Besides these tools, an XML mapping fi le associated with our EDM EDModel is also
created. To open this fi le, right - click our newly created Entity Data Model EDModel.
edmx from the Solution Explorer window and select the item Open With to open the
Open With dialog box, which is shown in Figure 3.30 .

 Select the item XML (Text) Editor and then click the OK to open this XML mapping
fi le. Regularly, the EDM fi le EDModel.edmx should be closed before this XML fi le can
be opened. Click on the Yes button to the MessageBox to open this fi le.

Figure 3.29. An example of Mapping Details — Faculty entity.

Figure 3.30. The Open With dialog box.

c03.indd 142c03.indd 142 4/25/2012 1:57:08 PM4/25/2012 1:57:08 PM

3.4 The Components of ADO.NET 143

 Now if you open the App.Config fi le, you can fi nd that our connection string,
CSE_DEPTEntities , which we created using the EDM Wizard, is under the <connec-
tionStrings> tag in this fi le.

 At this point, we have fi nished creating our EDM, and now we can use this model to
build our Visual Basic.NET data - driven application to show readers how to make it work.

3.4.8.3.3 Use the ADO.NET 4.1 Entity Data Model Wizard The functionality of
this project is that all faculty members in our Faculty table will be retrieved and displayed
in the listbox control FacultyList as the user clicks the Show Faculty button as the project
runs. Now let ’ s use the EDM to perform the coding for the EDModelForm to realize this
functionality.

 The fi rst coding is to add the namespace System.Data.EntityClient to the namespace
declaration section of the code window of EDModelForm object, since we need to use
this Data Provider that is defi ned in that namespace.

 Then we need to do the coding for the Show Faculty button ’ s Click event procedure.
Select the form object EDModel Form.vb from the Solution Explorer window and click
the View Designer button to open its form window. Double - click the Show Faculty button
to open its Click event procedure, and enter the following codes that are shown in Figure
 3.31 into this method.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The namespace System.Data.EntityClient is added into the namespace declaration
section of this code window to make sure that we can use this Data Provider.

Figure 3.31. The codes for the cmdShow_Click event procedure.

Imports System
Imports System.Collections.Generic
Imports System.ComponentModel
Imports System.Data
Imports System.Drawing
Imports System.Data.EntityClient
Imports System.Linq
Imports System.Text
Imports System.Windows.Forms

Public Class DBModelForm

Private Sub cmdShow_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdShow.Click
Dim cmdString As String = "SELECT fname.faculty_name FROM CSE_DEPTEntities.Faculties as fname"
Dim Conn = New EntityConnection("name=CSE_DEPTEntities")

 Conn.Open()
Dim cmd = Conn.CreateCommand()

 cmd.CommandText = cmdString
Dim rd As EntityDataReader

 rd = cmd.ExecuteReader(CommandBehavior.SequentialAccess)
 FacultyList.Items.Clear()

While (rd.Read())
 FacultyList.Items.Add(rd("faculty_name"))

End While

 Conn.Close()
End Sub

End Class

A

B
C
D
E

F
G
H

I

J

cmdShow Click

c03.indd 143c03.indd 143 4/25/2012 1:57:08 PM4/25/2012 1:57:08 PM

144 Chapter 3 Introduction to ADO.NET

Figure 3.32. The running result of the project EDModel.

B. The query string is defi ned fi rst, and this string is different with those we used for
SQL Server or Access databases. The fname is a nominal entity, and the Faculties is the
real entity that can be accessed via the connection string. The column we want to query is
the faculty_name that is mapped to an entity property in this query string. The FROM
clause is composed of EntityContainer.EntitySet; therefore, the connection string that
represents the EntityContainer is prefi xed before the table Faculties that is exactly an
EntitySet.

C. An EntityConnection object is created here to replace either a SqlConnection or
OleDbConnection object with the connection string as the argument. You can copy this
connection string from the App.Confi g fi le if you like.

D. The Open() method is executed to open this connection.

E. An EntityCommand instance cmd is created using the CreateCommand() method based
on the Connection object. Then the Command object is initialized by assigning the query
string cmdString to the CommandText property.

F. A new EntityDataReader instance rd is created, and this instance works as a data reader
to call the ExecuteReader() method to retrieve all desired data later.

G. The ExecuteReader() method is called to retrieve back all faculty_name and assign them
to the EntityDataReader object rd .

H. The listbox control FacultyList is cleaned up before it can be fi lled.

I. A While loop is utilized to pick up all faculty_name from the EntityDataReader rd and
add each of them into the FacultyList control by using the Add() method. The point is
that all faculty_name is read out using the SequentialAccess mode; therefore, all data are
read out and stored in a collection or an array in the EntityDataReader. In Visual Basic.
NET, a pair of parenthesis is used to indicate each element on a collection or an array.
Also, since we created a nontyped DataSet, each column or entity property must be clearly
indicated with the name of the column or the entity.

J. Finally the connection is closed to release the connection object.

 Now, let ’ s run the project to test our codes. Click the Start Debugging button to run
the project. The EDModelForm window is displayed, which is shown in Figure 3.32 . Click
on the Show Faculty button to connect to our sample database and retrieve all faculty
names. The running result is shown in Figure 3.32 .

c03.indd 144c03.indd 144 4/25/2012 1:57:08 PM4/25/2012 1:57:08 PM

3.5 Chapter Summary 145

 Click on the Close button that is located at the upper - right corner of this form to
stop and close our project.

 It can be found from this piece of codes that it is relatively simple and easy to use
the EDM to access and manipulate data against the database.

3.5 CHAPTER SUMMARY

 The main topic of this chapter is an introduction to ADO.NET, which includes the archi-
tectures, organizations, and components of ADO.NET.

 Detailed discussions and descriptions are provided in this chapter to give readers
both fundamental and practical ideas and pictures in how to use components in ADO.
NET to develop professional data - driven applications. Two ADO.NET architectures are
discussed to enable users to follow the directions to design and build their preferred
projects based on the different organizations of ADO.NET.

 A history of the development of ADO.NET is fi rst introduced in this chapter, which
includes ADO.NET 2.0, ADO.NET 3.5, and ADO.NET 4.1. Different data - related objects
are discussed, such as DAO, RDO, ODBC, OLEDB, and ADO. The difference between
ADO and ADO.NET is provided in detail.

 Fundamentally, ADO.NET is a class container, and it contains three basic compo-
nents: Data Provider, DataSet, and DataTable. Furthermore, the Data Provider contains
four subcomponents: Connection, Command, TableAdapter, and DataReader. You should
keep in mind that the Data Provider comes in multiple versions based on the type of the
database you are using in your applications. So from this point of view, all four subcom-
ponents of the Data Provider are called Data Provider - dependent components. The
popular versions of the Data Provider are:

 • OLE DB Data Provider

 • ODBC Data Provider

 • Microsoft SQL Server Data Provider

 • Oracle Data Provider

 Each version of the Data Provider is used for one specifi c database. But one excep-
tion is that both OLE DB and ODBC data Providers can work for some other databases,
such as Microsoft Access, Microsoft SQL Server, and Oracle databases. In most cases, you
should use the matched version of the Data Provider for a specifi c database; even the
OLE DB and ODBC can work for that kind of database since the former can provide
more effi cient processing technique and faster accessing and manipulating speed com-
pared with the latter.

 To access and manipulate data in databases, you can use one of two ADO.NET
architectures: you can use the DataAdapter to access and manipulate data in the DataSet
that is considered as a DataTables collector by executing some properties of the
DataAdapter, such as SelectCommand, InsertCommand, UpdateCommand, and
DeleteCommand. Alternatively, you can treat each DataTable as a single table object and
access and manipulate data in each table by executing the different methods of the
Command object, such as ExecuteReader and ExecuteNonQuery.

c03.indd 145c03.indd 145 4/25/2012 1:57:08 PM4/25/2012 1:57:08 PM

146 Chapter 3 Introduction to ADO.NET

 A key point in using the Connection object of the Data Provider to set up a connec-
tion between your applications and your data source is the connection string, which has
different formats and styles depending on the database you are using. The popular com-
ponents of the connection string include Provider, Data Source, Database, Use ID, and
Password. But some connection strings only use a limited number of components, such
as the Data Provider for the Oracle database.

 An important point in using the Command object to access and manipulate data in
your data source is the Parameter component. The Parameter class contains all properties
and methods that can be used to set up specifi c parameters for the Command object.
Each Parameter object contains a set of parameters, and each Parameter object can be
assigned to the Parameters collection that is one property of the Command object.

 By fi nishing this chapter, you should be able to:

 • Understand the architecture and organization of ADO.NET

 • Understand three components of ADO.NET, such as the Data Provider, DataSet, and the
DataTable

 • Use the Connection object to connect to a Microsoft Access, Microsoft SQL Server, and
Oracle database

 • Use the Command and Parameter objects to select, insert, and delete data using a string
variable containing a SQL statement

 • Use the DataAdapter object to fi ll a DataSet using the Fill method

 • Read data from the data source using the DataReader object

 • Read data from the DataTable using the SelectCommand property of the DataAdapter
object

 • Create DataSet and DataTable objects and add data into the DataTable object

 In Chapter 5 , we will discuss the data query technique with two methods: using Tools
and Wizards provided by Visual Studio.NET 2010, and using the runtime object method
to develop simple, but effi cient data query applications with three databases: Access, SQL
Server, and Oracle. Both methods are introduced in two parts: Part I: Using the tools and
wizards provided by Visual Studio.NET 2010 to develop data query project, and Part II:
Using the Runtime objects to perform the data query job for three databases.

HOMEWORK

I. True/False Selections

 _____ 1. ADO.NET is composed of four major components: Data Provider, DataSet, DataReader,
and DataTable.

 _____ 2. ADO is developed based on OLE and COM technologies.

 _____ 3. ADO.NET is a new version of ADO, and it is based mainly on the Microsoft .NET
Framework.

 _____ 4. The Connection object is used to set up a connection between your data - driven application
and your data source.

 _____ 5. Both OLE DB and ODBC Data Providers can work for the SQL Server and Oracle
databases.

c03.indd 146c03.indd 146 4/25/2012 1:57:08 PM4/25/2012 1:57:08 PM

Homework 147

 _____ 6. Different ADO.NET components are located at the different namespaces. The DataSet
and DataTable are located at the System.Data namespace.

 _____ 7. The DataSet can be considered as a container that contains multiple data tables, but those
tables are only a mapping of the real data tables in the database.

 _____ 8. The ExecuteReader() method is a data query method, and it can only be used to execute
a read - out operation from a database.

 _____ 9. Both SQL Server and Oracle Data Providers used a so - called Named Parameter Mapping
technique.

 ____ 10. The DataTable object is a Data Provider - independent object.

II. Multiple Choices

1. To populate data from a database to a DataSet object, one needs to use the _____

a. Data Source
b. DataAdapter (TableAdapter)
c. Runtime object
d. Wizards

2. The Parameters property of the Command class ________

a. Is a Parameter object
b. Contains a collection of Parameter objects
c. Contains a Parameter object
d. Contains the parameters of the Command object

3. To add a Parameter object to the Parameters property of the Command object, one needs to
use the ______ method that belongs to the _______

a. Insert, Command
b. Add, Command
c. Insert, Parameters collection
d. Add, Parameters collection

4. DataTable class is a container that holds the _______ and _______ objects

a. DataTable, DataRelation
b. DataRow, DataColumn
c. DataRowCollection, DataColumnCollection
d. Row, Column

5. The _______ is a property of the DataTable class, and it is also a collection of DataRow objects.
Each DataRow can be mapped to a _____ in the DataTable

a. Rows, column
b. Columns, column
c. Row, row
d. Rows, row

6. The ______ data provider can be used to execute the data query for ______ data providers

a. SQL Server, OleDb and Oracle
b. OleDb, SQL Server and Oracle
c. Oracle, SQL Server and OleDb
d. SQL Server, Odbc and Oracle

c03.indd 147c03.indd 147 4/25/2012 1:57:08 PM4/25/2012 1:57:08 PM

148 Chapter 3 Introduction to ADO.NET

7. To perform a Fill() method to fi ll a data table, it executes the ______ object with suitable
parameters

a. DataAdapter
b. Connection
c. DataReader
d. Command

8. The DataReader is a read - only class and it can only be used to retrieve and hold the data rows
returned from a database when executing a(n) _______ method.

a. Fill
b. ExecuteNonQuery
c. ExecuteReader
d. ExecuteQuery

9. One needs to use ______ method to release all objects used for a data - driven application before
one can exit the project

a. Release
b. Nothing
c. Clear
d. Dispose

10. To ____ data between the DataSet and the database, the ___ object should be used

a. Bind, BindingSource
b. Add, TableAdapter
c. Move, TableAdapter
d. Remove, DataReader

III. Exercises

1. Explain two architectures of ADO.NET, and illustrate the functionality of these two architec-
tures using block diagrams.

2. List three basic components of ADO.NET and the different versions of the Data Provider, as
well as their subcomponents.

3. Explain the relationship between the Command and Parameter objects. Illustrate how to add
Parameter objects to the Parameters collection that is a property of the Command object using
an example. Assuming that an SQL Server Data Provider is used with two parameters: param-
eter_name: username , password , parameter_ value: “ NoName ” , “ ComeBack ” .

4. Explain the relationship between the DataSet and DataTable. Illustrate how to use the Fill
method to populate a DataTable in the DataSet. Assuming that the data query string is an SQL
SELECT statement: “ SELECT faculty_id, name FROM Faculty ” , and an SQL Server Data
Provider is utilized.

5. List three new features used for ADO.NET Entity Framework 4.1 to facility the database
developments.

c03.indd 148c03.indd 148 4/25/2012 1:57:08 PM4/25/2012 1:57:08 PM

 Chapter 4

Introduction to Language
Integrated Query (LINQ)

Practical Database Programming with Visual Basic.NET, Second Edition. Ying Bai.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.

149

 Language Integrated Query (LINQ) is a groundbreaking innovation in Visual Studio 2010
and .NET Framework version 4.0 that bridges the gap between the world of objects and
the world of data.

 Traditionally, queries against data are expressed as simple strings without type check-
ing at compile time or IntelliSense support. Furthermore, you have to learn a different
query language for each type of data source: Microsoft Access, SQL databases, XML
documents, various Web services, and Oracle databases. LINQ makes a query as a fi rst -
 class language construct in C# and Visual Basic. You write queries against strongly typed
collections of objects by using language keywords and familiar operators.

 In Visual Studio.NET, you can write LINQ queries in Visual Basic.NET with SQL
Server databases, XML documents, ADO.NET DataSets, and any collection of objects
that supports IEnumerable or the generic IEnumerable(Of T) interface. As we mentioned
in Chapter 3 , LINQ support for the ADO.NET 4.1 Entity Framework is also planned,
and LINQ providers are being written by third parties for many Web services and other
database implementations.

 You can use LINQ queries in new projects, or alongside non - LINQ queries in existing
projects. The only requirement is that the project should be developed under the .NET
Framework 4.0 environment.

 Before we can dig deeper on LINQ, we had better have a general and global picture
about LINQ. Let ’ s start from the basic introduction about the LINQ.

4.1 OVERVIEW OF LANGUAGE INTEGRATED QUERY

 The LINQ pattern is established on the basis of a group of methods called standard query
operators (SQOs). Most of these methods operate on sequences, where a sequence is an
object whose type implements the IEnumerable(Of T) interface or the IQueryable(Of
T) interface. The standard query operators provide query capabilities, including fi ltering,
projection, aggregation, sorting, and more.

c04.indd 149c04.indd 149 4/25/2012 1:57:14 PM4/25/2012 1:57:14 PM

150 Chapter 4 Introduction to Language Integrated Query (LINQ)

 All SQO methods are located at the namespace System.Linq. To use these methods,
one must declare this namespace with the directive like: Imports System.Linq in the
namespace declaration section of the code windows.

 There are some confused signs and terminologies, such as IEnumerable,
IEnumerable(Of T), IQueryable, and IQueryable(Of T) interfaces; let ’ s have a closer look
at these terminologies fi rst.

4.1.1 Some Special Interfaces Used in LINQ

 Four interfaces, IEnumerable, IEnumerable(Of T), IQueryable, and IQueryable(Of T),
are widely used in LINQ queries via SQO. In fact, two interfaces, IEnumerable and
IQueryable, are mainly used for the nongeneric collections supported by the earlier ver-
sions of C# and Visual Basic and the other two interfaces. IEnumerable(Of T) and
IQueryable(Of T), are used to convert the data type of collections compatible with those
in the System.Collection.Generic in Visual Basic.NET to either IEnumerable(Of T)
(LINQ to Objects) or IQueryable(Of T) (LINQ to SQL), since LINQ uses a stronger
typed collection or sequence as the data sources, and any data in those data sources must
be converted to this stronger typed collection before the LINQ can be implemented. Most
LINQ queries are performed on arrays or collections that implement the IEnumerable(Of
T) or IEnumerable interfaces. But a LINQ to SQL query is performed on classes that
implement the IQueryable(Of T) interface. The relationship between the IEnumerable(Of
T) and the IQueryable(Of T) interfaces is: IQueryable(Of T) implements IEnumerable(Of
T), therefore, besides the Standard Query Operator (SQO), the LINQ to SQL queries
have additional query operators, since it uses the IQueryable(Of T) interface.

4.1.1.1 The IEnumerable and IEnumerable(Of T) Interfaces

 The IEnumerable(Of T) interface is a key part of LINQ to Objects, and it allows all of
early generic collection classes to implement it. This interface permits the enumeration
of a collection ’ s elements. All of the collections in the System.Collections.Generic
namespace support the IEnumerable(Of T) interface. Here, T means the converted data
type of the sequence or collection. For example, if you have an IEnumerable of int ,
expressed by IEnumerable(Of int), you have a sequence or a collection of int s.

 For nongeneric collections that exist in the old version of Visual Basic, they support
the IEnumerable interface, but they do not support the IEnumerable(Of T) interface
because of the stronger typed property of the latter. Therefore, you cannot directly call
those SQO methods whose fi rst argument is an IEnumerable(Of T) using nongeneric
collections. However, you can still perform LINQ queries using those collections by
calling the Cast or OfType SQO to generate a sequence that implements IEnumerable
(Of T).

 Here, a coding example of using LINQ to Object is shown in Figure 4.1 .
 The type IEnumerable(Of int) plays two important roles in this piece of codes.

1. The query expression has a data source called intArray that implements IEnumerable
(Of int).

2. The query expression returns an instance of IEnumerable(Of int).

c04.indd 150c04.indd 150 4/25/2012 1:57:14 PM4/25/2012 1:57:14 PM

4.1 Overview of Language Integrated Query 151

 Every LINQ to Objects query expression, including the one shown above, will begin
with a line of this type:

 From x In y

 In each case, the data source represented by the variable y must support the
IEnumerable(Of T) interface. As you have already seen, the array of integers shown in
this example supports that interface.

 The query shown in Figure 4.1 can also be rewritten in a way that is shown in
Figure 4.2 .

 This code makes explicit the type of the variable returned by this query, IEnumerable(Of
int). In practice, you will fi nd that most LINQ to Objects queries return IEnumerable(Of
T), for different data type T.

 By fi nishing these two examples, it should be clear to you that interface IEnumerable
and IEnumerable(Of T) play a key role in LINQ to Objects queries. The former is used
for the nongeneric collections, and the latter is for the generic collections. The point is
that a typical LINQ to Objects query expression not only takes a class that implements
IEnumerable(Of T) as its data source, but it also returns an instance with the same type.

4.1.1.2 The IQueryable and IQueryable(Of T) Interfaces

 As we discussed in the previous section, IQueryable and IQueryable(Of T) are two inter-
faces used for LINQ to SQL queries. Similar to IEnumerable and IEnumerable(Of T)

Figure 4.1. A coding example of using LINQ to Object query.

// create an integer array
Dim myArray() As Integer = {1, 2, 3, 4, 5}

Dim intArray As IEnumerable(Of Integer) = myArray.Select(Function(i) i)
Dim query = From num In intArray

Where num >= 3
Select num

For Each intResult In query
Console.WriteLine(intResult)

Next
Console.WriteLine("Press any key to exit")
Console.ReadKey()

Figure 4.2. A modifi cation of the coding example of using LINQ to Object query.

// create an integer array
Dim myArray() As Integer = {1, 2, 3, 4, 5}

Dim query As IEnumerable(Of Integer) = From num In myArray
Where num >= 3
Select num

For Each intResult In query
Console.WriteLine(intResult)

Next
Console.WriteLine("Press any key to exit")
Console.ReadKey()

c04.indd 151c04.indd 151 4/25/2012 1:57:14 PM4/25/2012 1:57:14 PM

152 Chapter 4 Introduction to Language Integrated Query (LINQ)

interfaces, in which the Standard Query Operator methods are defi ned as the static
members in the Enumerable class, the Standard Query Operator methods applied for the
IQueryable(Of T) interface are defi ned as static members of the Queryable class. The
IQueryable interface is mainly used for the nongeneric collections, and the IQueryable(Of
T) is used for generic collections. Another point is that the IQueryable(Of T) interface
is inherited from the IEnumerable(Of T) interface from the Queryable class, and the
defi nition of this interface is:

 interface IQueryable(Of T) : IEnumerable(Of T), Queryable

 From this inheritance, one can treat an IQueryable(Of T) sequence as an
IEnumerable(Of T) sequence.

 Figure 4.3 shows an example of using the IQueryable interface to perform a query
to the sample database CSE_DEPT. A database connection has been made using the
DataContext object before this piece of codes can be executed. The LogIn is the name
of a table in this sample database, and it has been converted to an entity before the LINQ
query can be performed. An IQueryable(Of T) interface, a Standard Query Operator, is
utilized to perform this query. The LogIn works as a type in the IQueryable(Of T) inter-
face to make sure that both input sequence and returned sequence are strongly typed
sequences with the type of LogIn. The Standard Query Operator fetches and returns
the matched sequence and assigns them to the associated string variables using the
foreach loop.

 Now let ’ s have a closer look at the Standard Query Operator (SQO).

4.1.2 Standard Query Operators

 There are two sets of LINQ Standard Query Operators, one that operates on objects of
type IEnumerable(Of T) and the other that operates on objects of type IQueryable(Of
T). The methods that make up each set are static members of the Enumerable and
Queryable classes, respectively. They are defi ned as extension methods of the type that
they operate on. This means that they can be called by using either static method syntax
or instance method syntax.

Figure 4.3. A coding example of using LINQ to SQL query.

‘create a database connection using the DataContext object
Dim cse_dept As CSE_DEPTDataContext

‘create local string variables
Dim username As String = String.Empty
Dim password As String = String.Empty

‘LINQ query expression
Dim loginfo As IQueryable(Of LogIn) = From lg In cse_dept.LogIns

Where lg.user_name = txtUserName.Text &
lg.pass_word = txtPassWord.Text
Select lg

For Each log In loginfo
username = log.user_name
password = log.pass_word

Next

c04.indd 152c04.indd 152 4/25/2012 1:57:14 PM4/25/2012 1:57:14 PM

4.1 Overview of Language Integrated Query 153

 In addition, several standard query operator methods operate on types other than
those based on IEnumerable(Of T) or IQueryable(Of T). The Enumerable type defi nes
two such methods that both operate on objects of type IEnumerable. These methods,
Cast(Of TResult)(IEnumerable) and OfType(Of TResult)(IEnumerable), let you enable
a nonparameterized, or nongeneric, collection to be queried in the LINQ pattern. They
do this by creating a strongly typed collection of objects. The Queryable class defi nes two
similar methods, Cast(Of TResult)(IQueryable) and OfType(Of TResult)(IQueryable),
which operate on objects of type Queryable.

 The standard query operators differ in the timing of their execution, depending on
whether they return a singleton value or a sequence of values. Those methods that return
a singleton value (e.g., Average and Sum) execute immediately. Methods that return a
sequence defer the query execution and return an enumerable object.

 In the case of methods that operate on in - memory collections, that is, those methods
that extend IEnumerable(Of T), the returned enumerable object captures the arguments
that were passed to the method. When that object is enumerated, the logic of the query
operator is employed, and the query results are returned.

 In contrast, methods that extend IQueryable(Of T) do not implement any querying
behavior, but build an expression tree that represents the query to be performed. The
query processing is handled by the source IQueryable(Of T) object.

 Calls to query methods can be chained together in one query, which enables queries
to become arbitrarily complex.

 According to their functionality, the Standard Query Operator can be divided into
two categories: Deferred Standard Query Operators and Nondeferred Standard Query
Operators. Table 4.1 lists some most often used Standard Query Operators.

Table 4.1. Most often used standard query operators

 Standard Query Operator Purpose Deferred

 All Quantifi ers No
 Any Quantifi ers No
 AsEnumerable Conversion Yes
 Average Aggregate No
 Cast Conversion Yes
 Distinct Set Yes
 ElementAt Element No
 First Element No
 Join Join Yes
 Last Element No
 OfType Conversion Yes
 OrderBy Ordering Yes
 Select Projection Yes
 Single Element No
 Sum Aggregate No
 ToArray Conversion No
 ToList Conversion No
 Where Restriction Yes

c04.indd 153c04.indd 153 4/25/2012 1:57:14 PM4/25/2012 1:57:14 PM

154 Chapter 4 Introduction to Language Integrated Query (LINQ)

 Because of the limitation of the space, we will select some of the most often used
Standard Query Operator methods and give a detailed discussion for them one by one.

4.1.3 Deferred Standard Query Operators

 Both deferred Standard Query Operators and nondeferred operators are organized based
on their purpose, and we start this discussion based on the alphabet order.

4.1.3.1 AsEnumerable (Conversion Purpose)

 The AsEnumerable operator method has no effect other than to change the compile - time
type of source from a type that implements IEnumerable(Of T) to IEnumerable(Of T)
itself. This means that if an input sequence has a type of IEnumerable(Of T), the output
sequence will also be converted to one that has the same type, IEnumerable.

 An example coding of using this operator is shown in Figure 4.4 .
 The key point for this query structure is the operator AsEnumerable(). Since differ-

ent database systems use different collections and query operators, therefore, those col-
lections must be converted to the the type of IEnumerable(Of T) in order to use the
LINQ technique, because all data operations in LINQ use Standard Query Operator
methods that can perform complex data queries on an IEnumerable(Of T) sequence. A
compiling error would be encountered without this operator.

4.1.3.2 Cast (Conversion Purpose)

 A Cast operator provides a method for explicit conversion of the type of an object in an
input sequence to an output sequence with a specifi c type. The compiler treats cast -
 expression as type type - name after a type cast has been made. A point to be noticed is
that the Cast operator method works on the IEnumerable interface, not IEnumerable
(Of T) interface, and it can convert any object with an IEnumerable type to IEnumerable
(Of T) type.

 An example coding using this operator is shown in Figure 4.5 .

4.1.3.3 Join (Join Purpose)

 A join of two data sources is the association of objects in one data source with objects
that share a common attribute in another data source.

Figure 4.4. An example code for the operator AsEnumerable.

FacultyDataAdapter.SelectCommand = accCommand
FacultyDataAdapter.Fill(ds, "Faculty")
Dim facultyinfo = From fi In ds.Tables("Faculty").AsEnumerable()

Where fi.Field(Of String)("faculty_name").Equals(ComboName.Text)
Select fi

For Each fRow in facultyinfo
‘Display selected fRow elements…

Next

c04.indd 154c04.indd 154 4/25/2012 1:57:14 PM4/25/2012 1:57:14 PM

4.1 Overview of Language Integrated Query 155

 Joining is an important operation in queries that target data sources whose relation-
ships to each other cannot be followed directly. In object - oriented programming, this
could mean a correlation between objects that is not modeled, such as the backwards
direction of a one - way relationship. An example of a one - way relationship is a Customer
class that has a property of type City, but the City class does not have a property that is
a collection of Customer objects. If you have a list of City objects and you want to fi nd
all the customers in each city, you could use a join operation to fi nd them.

 The join methods provided in the LINQ framework are Join and GroupJoin. These
methods perform equijoins, or joins that match two data sources based on equality of
their keys. In relational database terms, Join implements an inner join, a type of join in
which only those objects that have a match in the other dataset are returned. The
GroupJoin method has no direct equivalent in relational database terms, but it imple-
ments a superset of inner joins and left outer joins. A left outer join is a join that returns
each element of the fi rst (left) data source, even if it has no correlated elements in the
other data source.

 An example coding using this operator is shown in Figure 4.6 .
 The issue is that we want to query all courses (course_id) taught by the selected

faculty from the Course table based on the faculty_name. But the problem is that there
is no faculty_name column in the Course table, and only faculty_id is associated with
related course_id. Therefore, we have to get the faculty_id from the Faculty table fi rst
based on the faculty_name, and then query the course_id from the Course table based
on the queried faculty_id. This problem can be effectively solved by using a join operator
method shown in Figure 4.6 .

Figure 4.5. An example code for the operator Cast.

Dim fruits As New System.Collections.ArrayList()
fruits.Add("apple")
fruits.Add("mango")
Dim query As IEnumerable(Of String) = fruits.Cast(Of String).Select(Function(fruit) fruit)

For Each fruit In query
Console.WriteLine(fruit)

Next

‘the running result of this piece of codes is:

apple
mango

Figure 4.6. An example code for the operator Join.

Dim courseinfo = Course.Join(Faculty, Function(ci) ci.faculty_id, _
Function(fi) fi.faculty_id, _
Function(ci, fi) New With {.faculty_name = ComboName.Text And course_id = ci.course_id})

For Each cid In courseinfo
CourseList.Items.Add(cid.course_id)

Next

c04.indd 155c04.indd 155 4/25/2012 1:57:14 PM4/25/2012 1:57:14 PM

156 Chapter 4 Introduction to Language Integrated Query (LINQ)

4.1.3.4 OfType (Conversion Purpose)

 This operator method is implemented by using deferred execution. The immediate return
value is an object that stores all the information that is required to perform the action.
The query represented by this method is not executed until the object is enumer-
ated either by calling its GetEnumerator method directly or by using For Each in Visual
Basic.NET.

 An example coding of using this operator is shown in Figure 4.7 .
 The OfType(Of TResult)(IEnumerable) method returns only those elements in the

source that can be cast to type TResult. To instead receive an exception if an element
cannot be cast to type TResult, use Cast(Of TResult)(IEnumerable).

 This method is one of the few standard query operator methods that can be applied
to a collection that has a nonparameterized type, such as an ArrayList. This is because
OfType(Of TResult) extends the type IEnumerable. OfType(Of TResult) cannot only be
applied to collections that are based on the parameterized IEnumerable(Of T) type, but
collections that are based on the nonparameterized IEnumerable type also.

 By applying OfType(Of TResult) to a collection that implements IEnumerable, you
gain the ability to query the collection by using the Standard Query Operators. For
example, specifying a type argument of Object to OfType(Of TResult) would return an
object of type IEnumerable(Of Object) in Visual Basic, to which the standard query
operators can be applied.

4.1.3.5 OrderBy (Ordering Purpose)

 This operator method is used to sort the elements of an input sequence in ascending order
based on the keySelector method. The output sequence will be an ordered one in a type
of IOrderedEnumerable(Of TElement). Both IEnumerable and IQueryable classes
contain this operator method.

 An example coding of using this operator is shown in Figure 4.8 .

Figure 4.7. An example code for the operator OfType.

Dim fruits As New System.Collections.ArrayList(2)

fruits.Add("Mango")
fruits.Add("Orange")

Dim query As IEnumerable(Of String) = fruits.OfType(Of String)()

Console.WriteLine("Elements of type 'string' are:" & vbCrLf)
For Each fruit As String In query

Console.WriteLine(fruit)
Next

‘the running result of this piece of codes is:

Elements of type 'string' are:
Mango
Orange

c04.indd 156c04.indd 156 4/25/2012 1:57:14 PM4/25/2012 1:57:14 PM

4.1 Overview of Language Integrated Query 157

4.1.3.6 Select (Projection Purpose)

 Both IEnumerable and IQueryable classes contain this operator method.
 This operator method is implemented by using deferred execution. The immediate

return value is an object that stores all the information that is required to perform the
action. The query represented by this method is not executed until the object is enumer-
ated either by calling its GetEnumerator method directly or by using For Each in Visual
Basic.NET.

 This projection method requires the transform function, selector, to produce one
value for each value in the source sequence, source. If selector returns a value that is itself
a collection, it is up to the consumer to traverse the subsequences manually. In such a
situation, it might be better for your query to return a single coalesced sequence of values.
To achieve this, use the SelectMany method instead of Select. Although SelectMany
works similarly to Select, it differs in that the transform function returns a collection that
is then expanded by SelectMany before it is returned.

 In query expression syntax, a Select in Visual Basic.NET clause translates to an invo-
cation of Select.

 An example coding of using this operator is shown in Figure 4.9 .

Figure 4.8. An example code for the operator OrderBy.

Sub OrderByEx()
'Create an array of Pet objects.
Dim pets() As Pet = {New Pet With {.Name = "Barley", .Age = 8}, _

New Pet With {.Name = "Boots", .Age = 4}, _
New Pet With {.Name = "Whiskers", .Age = 1}}

Dim query As IEnumerable(Of Pet) = pets.OrderBy(Function(pet) pet.Age)
For Each pt As Pet In query

Console.WriteLine(pt.Name & " - " & pt.Age)
Next
End Sub

‘the running result of this piece of codes is:

Whiskers - 1
Boots - 4
Barley - 8

Figure 4.9. An example code for the operator Select.

Dim squares As IEnumerable(Of Integer) = Enumerable.Range(1, 5).Select(Function(x) x * x)
For Each num As Integer In squares

Console.WriteLine(num)
Next

‘the running result of this piece of codes is:

1
4
9
16
25

c04.indd 157c04.indd 157 4/25/2012 1:57:14 PM4/25/2012 1:57:14 PM

158 Chapter 4 Introduction to Language Integrated Query (LINQ)

4.1.3.7 Where (Restriction Purpose)

 Both IEnumerable and IQueryable classes contain this operator method.
 This method is implemented by using deferred execution. The immediate return value

is an object that stores all the information that is required to perform the action. The
query represented by this method is not executed until the object is enumerated either
by calling its GetEnumerator method directly or by using For Each in Visual Basic.NET.

 An example coding of using this operator is shown in Figure 4.10 .
 In query expression syntax, a Where in Visual Basic.NET clause translates to an

invocation of Where(Of TSource)IEnumerable(Of TSource), Func(Of TSource, Boolean).

4.1.4 Nondeferred Standard Query Operators

 Some of the most often used nondeferred Standard Query Operator methods are dis-
cussed in this section.

4.1.4.1 ElementAt (Element Purpose)

 This operator method returns the element at a specifi ed index in a sequence. If the type
of source implements IList(Of T), that implementation is used to obtain the element at
the specifi ed index. Otherwise, this method obtains the specifi ed element.

 This method throws an exception if index is out of range. To instead return a
default value when the specifi ed index is out of range, use the ElementAtOrDefault(Of
TSource) method.

 An example coding of using this operator is shown in Figure 4.11 .

Figure 4.10. An example code for the operator Where.

Dim fruits As New List(Of String)(New String() {"apple", "passionfruit", "banana", "mango", _
"orange", "blueberry", "grape", "strawberry"})

Dim query As IEnumerable(Of String) = fruits.Where(Function(fruit) fruit.Length < 6)

For Each fruit in query
Console.WriteLine(fruit)

Next

‘the running result of this piece of codes is:

apple
mango
grape

Figure 4.11. An example code for the operator ElementAt.

‘Create a string array
Dim names() As String = _

{"Hartono, Tommy", "Adams, Terry", "Andersen, Henriette Thaulow", "Hedlund, Magnus", "Ito, Shu"}
Dim name As String = names.ElementAt(2)

Console.WriteLine("The name chosen at position 2 is " & name)

‘the running result of this piece of codes is:

Andersen, Henriette Thaulow

c04.indd 158c04.indd 158 4/25/2012 1:57:14 PM4/25/2012 1:57:14 PM

4.1 Overview of Language Integrated Query 159

4.1.4.2 First (Element Purpose)

 This operator method returns the fi rst element of an input sequence. The method First(Of
TSource)(IEnumerable(Of TSource) throws an exception if the source contains no ele-
ments. To instead return a default value when the source sequence is empty, use the
FirstOrDefault method.

 An example coding of using this operator is shown in Figure 4.12 .

4.1.4.3 Last (Element Purpose)

 This operator method returns the last element of a sequence. The method Last(Of
TSource)(IEnumerable[Of TSource]) throws an exception if the source contains no ele-
ments. To instead return a default value when the source sequence is empty, use the
LastOrDefault method.

 An example coding of using this operator is shown in Figure 4.13 .

4.1.4.4 Single (Element Purpose)

 This operator method returns a single, specifi c element of an input sequence of values.
The Single(Of TSource)(IEnumerable[Of TSource]) method throws an exception if the
input sequence is empty. To instead return Nothing when the input sequence is empty,
use SingleOrDefault.

 An example coding of using this operator is shown in Figure 4.14 .

Figure 4.12. An example code for the operator First.

‘Create a string array
Dim numbers() As Integer = {9, 34, 65, 92, 87, 435, 3, 54, 83, 23, 87, 435, 67, 12, 19}

'Select the first element in the array
Dim first As Integer = numbers.First()

Console.WriteLine(first)

‘the running result of this piece of codes is:

9

Figure 4.13. An example code for the operator Last.

Dim numbers() As Integer = {9, 34, 65, 92, 87, 435, 3, 54, 83, 23, 87, 67, 12, 19}

Dim last As Integer = numbers.Last()

Console.WriteLine(last)

‘the running result of this piece of codes is 19

Figure 4.14. An example code for the operator Single.

Dim fruits() As String = {"orange"}

Dim fruit As String = fruits.Single()

Console.WriteLine(fruit)

‘the running result of this piece of codes is: orange

c04.indd 159c04.indd 159 4/25/2012 1:57:14 PM4/25/2012 1:57:14 PM

160 Chapter 4 Introduction to Language Integrated Query (LINQ)

4.1.4.5 ToArray (Conversion Purpose)

 This operator method converts a collection to an array. This method forces query execu-
tion. The ToArray(Of TSource)(IEnumerable[Of TSource]) method forces immediate
query evaluation and returns an array that contains the query results. You can append
this method to your query in order to obtain a cached copy of the query results.

 An example coding of using this operator is shown in Figure 4.15 .

4.1.4.6 ToList (Conversion Purpose)

 This operator method converts a collection to a List(Of T). This method forces query
execution. The ToList(Of TSource)(IEnumerable[Of TSource]) method forces immediate
query evaluation and returns a List(Of T) that contains the query results. You can append
this method to your query in order to obtain a cached copy of the query results.

 An example coding of using this operator is shown in Figure 4.16 .
 Now we have fi nished a detailed discussion about the Standard Query Operator

methods, and they are actual methods to be executed to perform a LINQ query. Next,

Figure 4.15. An example code for the operator ToArray.

Module ToArrayClass

Sub Main()

Dim sArray As String() = {"G", "H", "a", "H", "over", "Jack"}

Dim names As String() = sArray.OfType(Of String).ToArray()
For Each name In names

Console.WriteLine(name)
Next

End Sub

End Module
‘the running result of this piece of codes is:

GHaHoverJack

Figure 4.16. An example code for the operator ToList.

Dim fruits() As String = {"apple", "banana", "mango", "orange", "blueberry", "grape", "strawberry"}

Dim lengths As List(Of Integer) = fruits.Select(Function(fruit) fruit.Length).ToList()
For Each length As Integer In lengths

Console.WriteLine(length)
Next

‘the running result of this piece of codes is:

5
6
5
6
9
5
10

c04.indd 160c04.indd 160 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.2 Introduction to LINQ Query 161

we will go ahead to discuss the LINQ query. We organize this part in the following
sequence. First, we will provide an introduction about the LINQ query. Then we divide
this discussion into seven sections:

1. Architecture and Components of LINQ

2. LINQ to Objects

3. LINQ to DataSet

4. LINQ to SQL

5. LINQ to Entities

6. LINQ to XML

7. Visual Basic.NET Language Enhancement for LINQ

 Three components: LINQ to DataSet, LINQ to SQL, and LINQ to Entities
belong to LINQ to ADO.NET. Now let ’ s start with the fi rst part, Introduction to
LINQ Query.

4.2 INTRODUCTION TO LINQ QUERY

 A query is basically an expression that retrieves data from a data source. Queries are
usually expressed in a specialized query language, such as Microsoft Access, SQL Server,
Oracle, or XML document. Different languages have been developed over time for the
various types of data sources, for example, SQL for relational databases and XQuery for
XML. Therefore, developers have had to learn a new query language for each type of
data source or data format that they must support. LINQ simplifi es this situation by
offering a consistent model for working with data across various kinds of data sources
and formats. In a LINQ query, you are always working with objects. You use the same
basic coding patterns to query and transform data in XML documents, SQL databases,
ADO.NET DataSets, .NET collections, and any other format for which a LINQ provider
is available.

 LINQ can be considered as a pattern or model that is supported by a collection of
so - called Standard Query Operator methods we discussed in the last section, and all those
Standard Query Operator methods are static methods defi ned in either IEnumerable or
IQueryable classes in the namespace System.Linq . The data operated in LINQ query are
object sequences with the data type of either IEnumerable(Of T) or IQueryable(Of T),
where T is the actual data type of the objects stored in the sequence.

 From another point of view, LINQ can also be considered as a converter or bridge
that sets up a mapping relationship between the abstract objects implemented in Standard
Query Operators and the physical relational databases implemented in the real world. It
is the LINQ that allows developers to directly access and manipulate data in different
databases using objects with the same basic coding patterns. With the help of LINQ, the
headache caused by learning and using different syntaxes, formats, and query structures
for different data sources in order to access and query them can be removed. The effi -
ciency of database queries can be signifi cantly improved, and the query process can also
be greatly simplifi ed.

c04.indd 161c04.indd 161 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

162 Chapter 4 Introduction to Language Integrated Query (LINQ)

 Structurally, all LINQ query operations consist of three distinct actions:

1. Obtain the data source.

2. Create the query.

3. Execute the query.

 In order to help you to have a better understanding about the LINQ and its running
process, let ’ s have an example to illustrate how the three parts of a query operation are
expressed in source code. The example uses an integer array as a data source for conve-
nience; however, the same concepts apply to other data sources, too.

 The example codes are shown in Figure 4.17 .
 The exact running process of this piece of codes is shown in Figure 4.18 .
 The key point is: in LINQ, the execution of the query is distinct from the query itself;

in other words, when you create a query in step 2, you have not retrieved any data, and
the real data query occurs in step 3, Query Execution using the For Each loop.

 Let ’ s have a closer look at this piece of codes and the mapped process to have a clear
picture about the LINQ query and its process.

 The Data Source used in this example is an integer array numbers ; it implicitly sup-
ports the generic IEnumerable(Of T) interface. This fact means it can be queried with
LINQ. A query is executed in a For Each loop, and For Each requires IEnumerable or
IEnumerable(Of T). Types that support IEnumerable(Of T) or a derived interface, such
as the generic IQueryable(Of T), are called queryable types.

 The Query specifi es what information to retrieve from the data source or sources.
Optionally, a query also specifi es how that information should be sorted, grouped, and
shaped before it is returned. A query is stored in a query variable and initialized with a
query expression.

 A typical basic form of the query expression is shown in Figure 4.19 .
 Three clauses, From , Where , and Select , are mostly used for most LINQ queries.

Figure 4.17. An example code for the LINQ query.

Module IntroLINQ

Sub Main()
'1. Data Source
Dim numbers As Integer() = {0, 1, 2, 3, 4, 5, 6}

'2. Query creation. The numQuery is an IEnumerable(Of Int)
Dim numQuery = From num In numbers

Where (num Mod 2) = 0
Select num

'3. Query execution.
For Each num In numQuery

Console.Write("{0,1} ", num)
Next
Console.WriteLine(vbNewLine & "Press any key to continue...")
Console.ReadKey()

End Sub

End Module

‘the running result of this piece of codes is: 0 2 4 6

c04.indd 162c04.indd 162 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.2 Introduction to LINQ Query 163

 The query used in this example returns all the even numbers from the integer array.
The query expression contains three clauses: From, Where, and Select. If you are familiar
with SQL, you will have noticed that the ordering of the clauses is reversed from the
order in SQL. The From clause specifi es the data source, the Where clause applies
the fi lter, and the Select clause specifi es the type of the returned elements. For now,
the important point is that in LINQ, the query variable itself takes no action and returns
no data. It just stores the information that is required to produce the results when the
query is executed at some later point.

 The Query Execution in this example is a deferred execution since all operator
methods used in this query are deferred operators (refer to Table 4.1).

 The For Each statement with an iteration variable num is used for this query
execution to pick up each item from the data source and assign it to the variable
num . A Console.Write() method is executed to display each received data item, and
this query process will continue until all data items have been retrieved from the
data source.

Figure 4.18. The running process of a LINQ query.

Figure 4.19. A typical query expression of LINQ query.

From [identifier] In [data source]
Let [expression]
Where [boolean expression]
Order By [[expression](ascending/descending)], [optionally repeat]
Select [expression]
Group [expression] By [expression] Into [expression]

c04.indd 163c04.indd 163 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

164 Chapter 4 Introduction to Language Integrated Query (LINQ)

 Because the query variable itself never holds the query results, you can execute it as
often as you like. For example, you may have a database that is being updated continually
by a separate application. In your application, you could create one query that retrieves
the latest data, and you could execute it repeatedly at some interval to retrieve different
results every time.

 Queries that perform aggregation functions over a range of source elements must
fi rst iterate over those elements. Examples of such queries are Count , Max , Average , and
First . These execute without an explicit For Each statement because the query itself must
use For Each in order to return a result. Note also that these types of queries return a
single value, not an IEnumerable collection. To force immediate execution of any query
and cache its results, you can call the ToList(Of TSource) or ToArray(Of TSource)
methods. You can also force execution by putting the For Each loop immediately after
the query expression. However, by calling ToList or ToArray, you also cache all the data
in a single collection object.

4.3 THE ARCHITECTURE AND COMPONENTS OF LINQ

 LINQ is composed of three major components: LINQ to Objects, LINQ to ADO.NET,
and LINQ to XML. A detailed organization or the LINQ can be written as:

1. LINQ to Objects

2. LINQ to ADO.NET (LINQ to DataSet, LINQ to SQL and LINQ to Entities)

3. LINQ to XML

 All three components are located at the different namespaces provided by .NET
Framework 4.0, which is shown in Table 4.2 .

 A typical LINQ architecture is shown in Figure 4.20 .
 Now let ’ s give a brief introduction for each component in LINQ.

Table 4.2. LINQ related namespaces

 Namespace Purpose

 System.Linq Classes and interfaces that support LINQ queries are located
at this namespace

 System.Collections.Generic All components related to IEnumerable and
IEnumerable(Of T) are located at this namespace (LINQ to
Objects)

 System.Data.Linq All classes and interfaces related to LINQ to SQL are
defi ned in this namespace

 System.XML.Linq All classes and interfaces related to LINQ to XML are
defi ned in this namespace

 System.Data.Linq.Mapping Map a class as an entity class associated with a physical
database

c04.indd 164c04.indd 164 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.3 The Architecture and Components of LINQ 165

4.3.1 Overview of LINQ to Objects

 The LINQ to Objects refers to the use of LINQ queries with any IEnumerable or
IEnumerable(Of T) collection directly, without the use of an intermediate LINQ provider
or API, such as LINQ to SQL or LINQ to XML. The actual LINQ queries are performed
by using the Standard Query Operator methods that are static methods of the static
System.Linq.Enumerable class that you use to create LINQ to Objects queries. You can
use LINQ to query any enumerable collections, such as List(Of T), Array, or Dictionary(Of
TKey, TValue). The collection may be user - defi ned or may be returned by a .NET
Framework API.

 In a basic sense, LINQ to Objects represents a new approach to collections, which
includes arrays and in - memory data collections. In the old way, you had to write complex
foreach loops that specifi ed how to retrieve data from a collection. In the LINQ approach,
you write declarative code that describes what you want to retrieve.

 In addition, LINQ queries offer three main advantages over traditional For
Each loops:

1. They are more concise and readable, especially when fi ltering multiple conditions.

2. They provide powerful fi ltering, ordering, and grouping capabilities with a minimum of
application code.

3. They can be ported to other data sources with little or no modifi cation.

 In general, the more complex the operation you want to perform on the data, the
more benefi t you will realize by using LINQ instead of traditional iteration techniques.

4.3.2 Overview of LINQ to DataSet

 LINQ to DataSet belongs to LINQ to ADO.NET, and it is a subcomponent of LINQ to
ADO.NET.

 LINQ to DataSet makes it easier and faster to query over data cached in a DataSet
object. Specifi cally, LINQ to DataSet simplifi es querying by enabling developers to
write queries from the programming language itself, instead of by using a separate query

Figure 4.20. A typical LINQ architecture.

LINQ
to

Objects

LINQ

Database

LINQ
to

DataSet

LINQ
to

SQL

LINQ
to

Entities

LINQ to ADO.NET

LINQ
to

XML

c04.indd 165c04.indd 165 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

166 Chapter 4 Introduction to Language Integrated Query (LINQ)

language. This is especially useful for Visual Studio developers, who can now take advan-
tage of the compile - time syntax checking, static typing, and IntelliSense support provided
by the Visual Studio in their queries.

 LINQ to DataSet can also be used to query over data that has been consolidated
from one or more data sources. This enables many scenarios that require fl exibility in
how data is represented and handled, such as querying locally aggregated data and
middle - tier caching in Web applications. In particular, generic reporting, analysis, and
business intelligence applications require this method of manipulation.

 The LINQ to DataSet functionality is exposed primarily through the extension
methods in the DataRowExtensions and DataTableExtensions classes. LINQ to DataSet
builds on and uses the existing ADO.NET 2.0 architecture, and is not meant to replace
ADO.NET 2.0 in application code. Existing ADO.NET 2.0 code will continue to function
in a LINQ to DataSet application. The relationship of LINQ to DataSet to ADO.NET
2.0 and the data store can be illustrated in Figure 4.21 .

 It can be found from Figure 4.21 that LINQ to DataSet is built based on ADO.NET
2.0 and uses its all components, including Connection, Command, DataAdapter, and
DataReader. The advantage of this structure is that all developers using ADO.NET 2.0
can continue their database implementations and developments without problem.

4.3.3 Overview of LINQ to SQL

 LINQ to SQL belongs to LINQ to ADO.NET and it is a sub - component of LINQ to
ADO.NET.

 LINQ to SQL is a component of .NET Framework version 4.0 that provides a
runtime infrastructure for managing relational data as objects. As we discussed in Chapter

Figure 4.21. The relationship between LINQ to DataSet and ADO.NET 2.0.

LINQ to DataSet

ADO.NET 2.0

ADO.NET DataSet

Connection, Command,

DataReader

Concrete ADO.NET
Data Providers

Data Source

c04.indd 166c04.indd 166 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.3 The Architecture and Components of LINQ 167

 3 , in LINQ to SQL, the data model of a relational database is mapped to an object model
expressed in the programming language of the developer with three layers. When the
application runs, LINQ to SQL translates into SQL the language - integrated queries in
the object model and sends them to the database for execution. When the database
returns the results, LINQ to SQL translates them back to objects that you can work with
in your own programming language.

 Two popular LINQ to SQL Tools, SQLMetal and Object Relational Designer , are
widely used in developing applications of using LINQ to SQL. The SQLMetal provides
a DOS - like template with a black - and - white window. Developers using Visual Studio
typically use the Object Relational Designer, which provides a graphic user interface
(GUI) for implementing many of the features of LINQ to SQL.

4.3.4 Overview of LINQ to Entities

 LINQ to Entities belongs to LINQ to ADO.NET, and it is a subcomponent of LINQ to
ADO.NET.

 Through the Entity Data Model (EDM) we discussed in Section 3.4.8.1 in Chapter
 3 , ADO.NET 4.0 exposes entities as objects in the .NET environment. This makes the
object layer an ideal target for LINQ support. Therefore, LINQ to ADO.NET includes
LINQ to Entities. LINQ to Entities enables developers to write queries against the data-
base from the same language used to build the business logic. Figure 4.22 shows the
relationship between LINQ to Entities and the Entity Framework, ADO.NET, and the
data store.

 It can be found that the Entities and EDM released by ADO.NET 4.0 locates at the
top of this LINQ to Entities, and they are converted to the logical model by the Mapping
Provider and interfaced to the data components, such as Data Providers defi ned in ADO.

Figure 4.22. Relationship between LINQ to Entities, the Entity Framework, and ADO.NET.

Objects
Services

ADO.NET Entity Services

Database

Object Mapping

Connection, Command, DataReader

Entities
SQL

Entity Data Model

Client-Side Views

Mapping Provider

ADO.NET 2.0

Concrete ADO.NET Data Providers

c04.indd 167c04.indd 167 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

168 Chapter 4 Introduction to Language Integrated Query (LINQ)

NET 2.0. The bottom components used for this model are still “ old ” components that
work for the ADO.NET 2.0.

 Most applications are currently written on the relational databases, and they are
compatible with ADO.NET 2.0. At some point, these applications will have to interact
with the data represented in a relational form. Database schemas are not always ideal for
building applications, and the conceptual models of applications differ from the logical
models of databases. The EDM released with ADO.NET 4.0 is a conceptual data model
that can be used to model the data of a particular domain so that applications can interact
with data as entities or objects.

4.3.5 Overview of LINQ to XML

 LINQ to XML is a LINQ - enabled, in - memory XML programming interface that enables
you to work with XML from within the .NET Framework programming languages.

 LINQ to XML provides an in - memory XML programming interface that leverages
the .NET Language - Integrated Query (LINQ) Framework. LINQ to XML uses the latest
.NET Framework language capabilities and is comparable with an updated, redesigned
 Document Object Model (DOM) XML programming interface. This interface was previ-
ously known as XLing in older prereleases of LINQ.

 The LINQ family of technologies provides a consistent query experience for objects
(LINQ), relational databases (LINQ to SQL), and XML (LINQ to XML).

 At this point, we have fi nished an overview for the LINQ family. Now let ’ s go a little
deeper into those topics to get a more detailed discussion for each of them.

4.4 LINQ TO OBJECTS

 As we mentioned in the previous section, LINQ to Objects is used to query any sequences
or collections that are either explicitly or implicitly compatible with IEnumerable
sequences or IENumerable(Of T) collections. Since any IEnumerable collection contains
a sequence of objects with a data type that is compatible with IENumerable(Of T), there-
fore, there is no need to use any LINQ API, such as LINQ to SQL, to convert or map
this collection from an object model to a relational model, and the LINQ to Objects can
be directly implemented to those collections or sequences to perform the queries.

 Regularly, LINQ to Objects is mainly used to query arrays and in - memory data col-
lections. In fact, it can be used to query for any enumerable collections, such as List(Of
T), Array, or Dictionary(Of TKey, TValue). All of these queries are performed by execut-
ing Standard Query Operator methods defi ned in the IEnumerable class. The difference
between the IEnumerable and IENumerable(Of T) interfaces is that the former is used
for nongeneric collections, and the latter is used for generic collections. In Sections 4.1.3
and 4.1.4 , we have provided a very detailed discussion about the Standard Query
Operators. Now let ’ s give a little more detailed discussion about the LINQ to Objects
using those Standard Query Operators. We divide this discussion into the following
four parts:

c04.indd 168c04.indd 168 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.4 LINQ to Objects 169

1. LINQ and ArrayList

2. LINQ and Strings

3. LINQ and File Directories

4. LINQ and Refl ection

 Let ’ s starts with the fi rst part, LINQ and ArrayList.

4.4.1 LINQ and ArrayList

 When using LINQ to query nongeneric IEnumerable collections, such as ArrayList, you
must explicitly declare the type of the range variable to refl ect the specifi c type of the
objects in the collection. For example, if you have an ArrayList of Student objects, your
From clause in a query should look like this:

 Dim query = From s As Student In arrList

 By specifying the type of the range variable s with Student , you are casting each item
in the ArrayList arrList to a Student.

 The use of an explicitly typed range variable in a query expression is equivalent to
calling the Cast(Of TResult) method. Cast(Of TResult) throws an exception if the speci-
fi ed cast cannot be performed. Cast(Of TResult) and OfType(Of TResult) are the two
Standard Query Operator methods we discussed in Section 4.1.3 , and these two methods
operate on nongeneric IEnumerable types.

 Let ’ s illustrate this kind of LINQ query with a Visual Basic.NET example project
named NonGenericLINQ.vb . Create a new Visual Basic.NET Console project and name
it as NonGenericLINQ , and enter the codes that are shown in Figure 4.23 into the code
window of this new project.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The System.Collections namespace is fi rst added into this project since all nongeneric col-
lections are defi ned in this namespace. In order to use any nongeneric collection, such as
ArrayList, you must import this namespace in this project before it can be used.

B. A new Student class with two properties is created, and this class is used as a protocol for
those objects to be created and added into the ArrayList nongeneric collection late.

C. A new instance of the ArrayList class arrList is created and initialized by adding four new
Student objects.

D. A LINQ query is created with the student as the range variable whose type is defi ned as
Student by a Cast operator method. The fi ltering condition is that all student objects should
be selected as long as their fi rst Scores ’ s value is greater than 95.

E. The For Each loop is used to pick up all query results one by one and assign it to the itera-
tion variable student . A Console.WriteLine() method is executed to display each received
data item, including the student ’ s name and scores. This query process will continue until
all data items have been retrieved from the ArrayList.

F. Two code lines here allow users to run this project in the Debugging mode. As you know,
the Console window cannot be kept in the opening status if you run the project in the
Debugging mode without these two lines of codes.

c04.indd 169c04.indd 169 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

170 Chapter 4 Introduction to Language Integrated Query (LINQ)

 Now that you can Build and Run the project, the running result should be:

 Svetlana Omelchenko: 98
 Cesar Garcia: 97
 Press any key to exit.

 A complete Visual Basic.NET Console project named NonGenericLINQ can be
found in the folder DBProjects\Chapter 4 that is located at the Wiley ftp site (refer to
Fig. 1.2 in Chapter 1).

4.4.2 LINQ and Strings

 LINQ can be used to query and transform strings and collections of strings. It can be
especially useful with semi - structured data in text fi les. LINQ queries can be combined
with traditional string functions and regular expressions. For example, you can use the
Split or Split() method to create an array of strings that you can then query or modify
by using LINQ. You can use the IsMatch() method in the where clause of a LINQ query.
And you can use LINQ to query or modify the MatchCollection results returned by a
regular expression.

 You can query, analyze, and modify text blocks by splitting them into a queryable
array of smaller strings by using the Split() method. You can split the source text into

Figure 4.23. The codes for the example project NonGenericLINQ.

Imports System.Collections
Imports System.Linq

Module NonGenericLINQ

Public Class Student
Public Property StudentName As String
Public Property Scores As Integer()

End Class

Sub Main()

Dim arrList As New ArrayList()
arrList.Add(New Student With {.StudentName = "Svetlana Omelchenko", .Scores = New Integer() {98, 92, 81, 60}})
arrList.Add(New Student With {.StudentName = "Claire O’Donnell", .Scores = New Integer() {75, 84, 91, 39}})
arrList.Add(New Student With {.StudentName = "Sven Mortensen", .Scores = New Integer() {88, 94, 65, 91}})
arrList.Add(New Student With {.StudentName = "Cesar Garcia", .Scores = New Integer() {97, 89, 85, 82}})

'Use an explicit type for non-generic collections
Dim query = From student As Student In arrList

Where student.Scores(0) > 95
Select student

For Each student As Student In query
Console.WriteLine(student.StudentName & ": " & student.Scores(0))

Next

'Keep the console window open in debug mode.
Console.WriteLine("Press any key to exit.")
Console.ReadKey()

End Sub

End Module

A

B

C

D

E

F

NonGenericLINQ Main

c04.indd 170c04.indd 170 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.4 LINQ to Objects 171

words, sentences, paragraphs, pages, or any other criteria, and then perform additional
splits if they are required in your query. Many different types of text fi les consist of a
series of lines, often with similar formatting, such as tab - or comma - delimited fi les or
fi xed - length lines. After you read such a text fi le into memory, you can use LINQ to query
and/or modify the lines. LINQ queries also simplify the task of combining data from
multiple sources.

 Two example projects are provided in this part to illustrate (1) how to query a string
to determine the number of numeric digits it contains, and (2) how to sort lines of struc-
tured text, such as comma - separated values, by any fi eld in the line.

4.4.2.1 Query a String to Determine the Number of Numeric Digits

 Because the String class implements the generic IEnumerable(Of T) interface, any string
can be queried as a sequence of characters. However, this is not a common use of LINQ.
For complex pattern matching operations, use the Regex class.

 The following example queries a string to determine the number of numeric digits it
contains. Note that the query is “ reused ” after it is executed the fi rst time. This is possible
because the query itself does not store any actual results.

 Create a new Visual Basic.NET Console project and name it as QueryStringLINQ ,
and enter the codes that are shown in Figure 4.24 into the code window of this
new project.

Figure 4.24. The codes for the example project QueryStringLINQ.

Module QueryStringLINQ

Sub Main()

Dim aString As String = "ABCDE99F-J74-12-89A"
Dim stringQuery As IEnumerable(Of Char) = From ch In aString

Where Char.IsDigit(ch)
Select ch

For Each c As Char In stringQuery
Console.Write(c & " ")

Next

'Call the Count method on the existing query.
Dim count As Integer = stringQuery.Count()
Console.WriteLine(System.Environment.NewLine & "Count = " & count)

'Select all characters before the first '-'
Dim stringQuery2 As IEnumerable(Of Char) = aString.TakeWhile(Function(c) c <> "-")

'Execute the second query
For Each ch In stringQuery2

Console.Write(ch)
Next

Console.WriteLine(System.Environment.NewLine & "Press any key to exit")
Console.ReadKey()

End Sub

End Module

A
B

C

D

E

F

G

QueryStringLINQ Main

c04.indd 171c04.indd 171 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

172 Chapter 4 Introduction to Language Integrated Query (LINQ)

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A string object or a generic collection aString is created, and this will work as a data source
to be queried by LINQ to Objects.

B. The LINQ to Objects query is created and initialized with three clauses. The method
IsDigit() is used as the fi ltering condition for the where clause, and ch is the range variable.
All digital element in this string collection will be fi ltered, selected, and returned. A Cast()
operator is used for the returned query collection with an IEnumerable(Of T) interface,
and T is replaced by the real data type Char here.

C. The query is executed by using a For Each loop, and c is an iteration variable. The queried
digits are displayed by using the Console.WriteLine() method.

D. The Count() method is executed to query the number of digits existing in the queried
string. This query is “ reused ” because the query itself does not store any actual results.

E. Another query or the second query is created and initialized. The purpose of this query is
to retrieve all letters before the fi rst dash line in the string collection.

F. The second query is executed, and the result is displayed using the Console.Write() method.

G. The purpose of these two coding lines is to allow users to run this project in a Debugg-
ing mode.

 Now you can run the project in Debugging mode by clicking Debug|Start Debugging
menu item, and the running result of this project is:

 9 9 7 4 1 2 8 9 Count = 8
 ABCDE99F
 Press any key to exit

 A complete Visual Basic.NET Console project named QueryStringLINQ can be
found in the folder DBProjects\Chapter 4 that is located at the Wiley ftp site (refer to
Fig. 1.2 in Chapter 1).

 Our fi rst LINQ and Strings example is successful, and let ’ s have a look at the second
example.

4.4.2.2 Sort Lines of Structured Text by any Field in the Line

 This example shows readers how to sort lines of structured text, such as comma - separated
values, by any fi eld in the line. The fi eld may be dynamically specifi ed at runtime. Assume
that the fi elds in a sample text fi le scores.csv represent a student ’ s ID number, followed
by a series of four test scores.

 First, let ’ s create a new Visual Basic.NET Console project named SortLinesLINQ
and save this project into an appropriate location in your computer. Then we need
to create a sample text fi le scores.csv that will be used for our new project created
above.

 Open the NotePad editor and enter the codes that are shown in Figure 4.25 into this
opened text editor.

 This fi le represents spreadsheet data. Column 1 is the student ’ s ID, and columns 2
through 5 are test scores.

 Click on the File|Save As menu item from the NotePad editor to open the Save As
dialog box. Browse to the folder in which our new Visual Basic.NET Console project

c04.indd 172c04.indd 172 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.4 LINQ to Objects 173

SortLinesLINQ Solution is located. Enter “ scores.csv ” into the File name box and click
on the Save button to save this sample fi le. The point to be noticed is that the fi le name
scores.csv must be enclosed by a pair of double quotation marks when you save this fi le
in the extension .csv . Otherwise, the fi le will be saved with a text extension.

 Close the NotePad editor, and now let ’ s develop the codes for our new Visual Basic.
NET Console project SortLinesLINQ .

 Open the code window of our new Visual Basic.NET Console project SortLinesLINQ
and enter the codes that are shown in Figure 4.26 into this code window.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A string collection scores is created as the data source for this project, and this collection
is a generic collection that is compatible with the IEnumerable(Of T) data type. The
method ReadAllLines() is executed to open and read the sample fi le scores.csv we created
at the beginning of this section, and assign this fi le to the scores string collection.

B. A local integer variable sortField is initialized to 1, which means that we want to use the
fi rst column in this string collection, student ID, as the fi ltering criteria. You can change
this criterion by selecting any other column if you like.

C. The query is built and executed by calling a function RunQuery() with two arguments: the
data source scores and the fi ltering criteria sortField . The queried results are displayed by
executing the method Console.WriteLine().

D. The purpose of these two coding lines is to allow users to run this project in a Debugging
mode.

E. The body of the function RunQuery() starts from here. One point to be noticed is that the
accessing mode for this function is Private, which means that all other event procedures
defi ned in this console application can call and use this function.

F. The query is built with four clauses. The Split() method is used in the Let clause to allow
the string to be split into different pieces at each comma. The queried result is distributed
in a descending order by using the Order By operator.

G. The queried result is returned to the calling method.

 Now run the project by clicking the Debug|Start Debugging menu item, and the
running result of this project is shown in Figure 4.27 .

Figure 4.25. The content of the sample text fi le scores.csv.

111, 97, 92, 81, 60
112, 75, 84, 91, 39
113, 88, 94, 65, 91
114, 97, 89, 85, 82
115, 35, 72, 91, 70
116, 99, 86, 90, 94
117, 93, 92, 80, 87
118, 92, 90, 83, 78
119, 68, 79, 88, 92
120, 99, 82, 81, 79
121, 96, 85, 91, 60
122, 94, 92, 91, 91

c04.indd 173c04.indd 173 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

174 Chapter 4 Introduction to Language Integrated Query (LINQ)

Figure 4.27. The running result of the project SortLinesLINQ.

Sorted highest to lowest by field 1:
116, 99, 86, 90, 94
120, 99, 82, 81, 79
111, 97, 92, 81, 60
114, 97, 89, 85, 82
121, 96, 85, 91, 60
122, 94, 92, 91, 91
117, 93, 92, 80, 87
118, 92, 90, 83, 78
113, 88, 94, 65, 91
112, 75, 84, 91, 39
119, 68, 79, 88, 92
115, 35, 72, 91, 70

Press any key to exit.

Figure 4.26. The codes for the example project SortLinesLINQ.

Module SortLinesLINQ

Sub Main()

'Create an IEnumerable data source
Dim scores As String() = System.IO.File.ReadAllLines("../../../scores.csv")

'Change this to any value from 0 to 4
Dim sortField As Integer = 1
Console.WriteLine("Sorted highest to lowest by field " & sortField)

'The query is executed here.
For Each str As String In RunQuery(scores, sortField)

Console.WriteLine(str)
Next

'Keep console window open in debug mode.
Console.WriteLine("Press any key to exit.")
Console.ReadKey()

End Sub

Private Function RunQuery(ByVal source As IEnumerable(Of String), ByVal num As Integer) As IEnumerable(Of String)

Dim scoreQuery = From line In source
Let fields = line.Split(New Char() {","})
Order By fields(num) Descending
Select line

Return scoreQuery

End Function

End Module

A

B

C

D

E

F

G

SortLinesLINQ Main

c04.indd 174c04.indd 174 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.4 LINQ to Objects 175

 A complete Visual Basic.NET Console project named SortLinesLINQ can be found
in the folder DBProjects\Chapter 4 that is located at the Wiley ftp site (refer to Fig. 1.2
in Chapter 1). Next, let ’ s take care of another LINQ to Objects query, LINQ and File
Directories.

4.4.3 LINQ and File Directories

 Many fi le system operations are essentially queries and are therefore well - suited to the
LINQ approach. Note that the queries for those fi le system are read - only. They are not
used to change the contents of the original fi les or folders. This follows the rule that
queries should not cause any side effects. In general, any code (including queries that
perform create/update/delete operators) that modifi es source data should be kept sepa-
rate from the code that just queries the data.

 Different fi le operations or queries are existed for the fi le systems. The most typical
operations include

1. Query for Files with a Specifi ed Attribute or Name

2. Group Files by Extension (LINQ)

3. Query for the Total Number of Bytes in a Set of Folders (LINQ)

4. Query for the Largest File or Files in a Directory Tree (LINQ)

5. Query for Duplicate Files in a Directory Tree (LINQ)

6. Query the Contents of Files in a Folder (LINQ)

 There is some complexity involved in creating a data source that accurately repre-
sents the contents of the fi le system and handles exceptions gracefully. The examples in
this section create a snapshot collection of FileInfo objects that represents all the fi les
under a specifi ed root folder and all its subfolders. The actual state of each FileInfo may
change in the time between when you begin and end executing a query. For example, you
can create a list of FileInfo objects to use as a data source. If you try to access the Length
property in a query, the FileInfo object will try to access the fi le system to update the
value of Length . If the fi le no longer exists, you will get a FileNotFoundException in your
query, even though you are not querying the fi le system directly. Some queries in this
section use a separate method that consumes these particular exceptions in certain cases.
Another option is to keep your data source updated dynamically by using the
FileSystemWatcher.

 Because of the limitation of the space, here we only discuss one fi le operation or
query, which is to open, inspect, and query the contents of fi les in a selected folder (the
sixth operation).

4.4.3.1 Query the Contents of Files in a Folder

 This example shows how to query over all the fi les in a specifi ed directory tree, open each
fi le, and inspect its contents. This type of technique could be used to create indexes or
reverse indexes of the contents of a directory tree. A simple string search is performed
in this example. However, more complex types of pattern matching can be performed
with a regular expression.

c04.indd 175c04.indd 175 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

176 Chapter 4 Introduction to Language Integrated Query (LINQ)

 Create a new Visual Basic.NET Console project named QueryContentsLINQ , and
then open the code window of this new project and enter the codes that are shown in
Figure 4.28 into the code window of this project.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A string object startFolder is created, and the value of this object is the default path of
the Visual Studio.NET 2010, in which all fi les of the Visual Studio.NET 2010 are installed.
You can modify this path if you installed your Visual Studio.NET 2010 at a different folder
in your computer.

B. An IEnumerable(Of T) interface is used to defi ne the data type of the queried fi les fi leList .
The real data type applied here is System.IO.FileInfo, which is used to replace the nominal
type T. The method GetFiles() is executed to open and access the queried fi les with the fi le
path as the argument of this method.

Figure 4.28. The codes for the example project QueryContentsLINQ.

Module QueryContentsLINQ

Sub Main()

'Modify this path as necessary.
Dim startFolder = "c:\program files\Microsoft Visual Studio 9.0\"

'Take a snapshot of the file system.
Dim dir As New System.IO.DirectoryInfo(startFolder)
Dim fileList As IEnumerable(Of System.IO.FileInfo) = dir.GetFiles("*.*", System.IO.SearchOption.AllDirectories)

Dim searchTerm = "Visual Studio"

'Search the contents of each file.
Dim queryMatchingFiles = From file In fileList _

Where file.Extension = ".dll" _
Let fileText = GetFileText(file.FullName) _
Where fileText.Contains(searchTerm) _
Select file.FullName

Console.WriteLine("The term " & searchTerm & " was found in:")

'Execute the query.
For Each filename In queryMatchingFiles

Console.WriteLine(filename)
Next

'Keep the console window open in debug mode.
Console.WriteLine("Press any key to exit")
Console.ReadKey()

End Sub

Private Function GetFileText(ByVal name As String) As String

'If the file has been deleted, an empty string is returned.
Dim fileContents = String.Empty

'If the file has been deleted since we took the snapshot, an empty string returned.
If System.IO.File.Exists(name) Then

fileContents = System.IO.File.ReadAllText(name)
End If

Return fileContents

End Function

End Module

A

B

C

D

E

F

G

H

I

J

K

QueryContentsLINQ Main

c04.indd 176c04.indd 176 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.4 LINQ to Objects 177

C. The query criterion Visual Studio , which is a keyword to be searched by this query, is
assigned to a string object searchTerm that will be used in the following query process.

D. The LINQ query is created and initialized with four clauses, From , Let , Where , and Select .
The range variable fi le is selected from the opened fi les fi leList . The method GetFileText()
will be executed to read back the contents of the matched fi les using the Let clause. Two
Where clauses are used here to fi lter the matched fi les with both an extension .dll and a
keyword Visual Studio in the fi le name.

E. The Console.WriteLine() method is executed to indicate that the following matched fi les
contain the searched keyword Visual Studio in their fi le names.

F. The LINQ query is executed to pick up all fi les that have a fi le name that contains the
keyword Visual Studio , and all searched fi les are displayed by using the method Console.
WriteLine().

G. The purpose of these two coding lines is to allow users to run this project in a Debugg-
ing mode.

H. The body of the function GetFileText() starts from here. The point is that this method must
be defi ned as a private function to indicate that this function can be called by all other
procedures defi ned in this console application.

I. The string object fi leContents is initialized with an empty string object.

J. The system method Exists() is executed to fi nd all fi les whose names contain the keyword
Visual Studio . All of the matched fi les will be opened, and the contents will be read back
by the method ReadAllText(), and assigned to the string object fi leContents .

K. The read out fi leContents object is returned to the calling method.

 Now you can build and run the project by clicking the Debug|Start Debugging menu
item. All fi les that have an extension of . dll , and under the path C:\program fi les\Microsoft
Visual Studio 9.0\ and whose name contains the keyword Visual Studio are found and
displayed as this project runs.

 Press any key from the keyboard to exit this project.
 A complete Visual Basic.NET Console project named QueryContentsLINQ can be

found in the folder DBProjects\Chapter 4 that is located at the Wiley ftp site (refer to
Fig. 1.2 in Chapter 1). Next, let ’ s have a discussion about another query related to LINQ
to Objects, the LINQ and Refl ection.

4.4.4 LINQ and Refl ection

 The .NET Framework 4.0 class library refl ection APIs can be used to examine the meta-
data in a .NET assembly and create collections of types, type members, parameters, and
so on that are in that assembly. Because these collections support the generic IEnumerable
interface, they can be queried by using LINQ to Objects query.

 To make it simple and easy, in this section, we will use one example project to illus-
trate how LINQ can be used with refl ection to retrieve specifi c metadata about methods
that match a specifi ed search criterion. In this case, the query will fi nd the names of all
the methods in the assembly that return enumerable types, such as arrays.

 Create a new Visual Basic.NET console project and name it as QueryRefl ectionLINQ .
Open the code window of this new project and enter the codes that are shown in Figure
 4.29 into this window.

c04.indd 177c04.indd 177 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

178 Chapter 4 Introduction to Language Integrated Query (LINQ)

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The namespace System.Refl ection is added into the namespace declaration part of this
project, since we need to use some components defi ned in this namespace in this coding.

B. An Assembly object is created with the Load() method is executed to load and assign this
new Assembly to the instance assembly.

C. The LINQ query is created and initialized with three clauses. The GetTypes() method is
used to obtain the data type of all queried methods. The fi rst Where clause is used to fi lter
methods in the Public type. The second From clause is used to get the desired methods
based on the data type Public. The second Where clause is used to fi lter all methods with
two criteria: (1) the returning type of the method is array, and (2) the returning type of
those methods should not be System.String . Also, the queried methods ’ names are con-
verted to string.

D. Two For Each loops are utilized here. The fi rst one is used to retrieve and display the data
type of the queried methods, and the second one is used to retrieve and display the names
of the queried methods.

E. The purpose of this coding line is to allow users to run this project in a Debugging mode.

 Now you can build and run the project by clicking the Debug|Start Debugging menu
item. The running results are displayed in the console window.

 A complete Visual Basic.NET Console project named QueryRefl ectionLINQ can be
found in the folder DBProjects\Chapter 4 that is located at the Wiley ftp site (refer to
Fig. 1.2 in Chapter 1).

Figure 4.29. The codes for the example project QueryRefl ectionLINQ.

Imports System.Reflection
Imports System.IO
Imports System.Linq

Module QueryReflectionLINQ

Sub Main()
Dim asmbly As Assembly =

Assembly.Load("System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken= b77a5c561934e089")

Dim pubTypesQuery = From type In asmbly.GetTypes()
Where type.IsPublic
From method In type.GetMethods()
Where method.ReturnType.IsArray = True And method.ReturnType.FullName <> "System.String"
Let name = method.ToString()
Let typeName = type.ToString()
Group name By typeName Into methodNames = Group

Console.WriteLine("Getting ready to iterate")
For Each item In pubTypesQuery

Console.WriteLine(item.methodNames)
For Each type In item.methodNames

Console.WriteLine(" " & type)
Next

Next
Console.ReadKey()

End Sub

End Module

A

B

C

D

E

QueryReflectionLINQ Main

c04.indd 178c04.indd 178 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.5 LINQ to DataSet 179

4.5 LINQ TO DATASET

 As we discussed in the previous section, LINQ to DataSet is a subcomponent of LINQ
to ADO.NET.

 The DataSet, of which we provided a very detailed discussion in Chapter 3 , is one of
the most widely used components in ADO.NET, and it is a key element of the discon-
nected programming model that ADO.NET is built on. Despite this prominence, however,
the DataSet has limited query capabilities.

 LINQ to DataSet enables you to build richer query capabilities into DataSet by using
the same query functionality that is available for many other data sources. Because the
LINQ to DataSet is built on the existing ADO.NET 2.0 architecture, the codes developed
by using ADO.NET 2.0 will continue to function in a LINQ to DataSet application
without modifi cations. This is a very valuable advantage, since any new component has
its own architecture and tools with a defi nite learning process to understand it.

 Among all LINQ to DataSet query operations, the following three are the most often
implemented in most popular applications:

1. Perform operations to DataSet objects

2. Perform operations to DataRow objects using the extension methods

3. Perform operations to DataTable objects

 First, let ’ s have a little deeper understanding about the LINQ to DataSet, or the
operations to the DataSet objects.

4.5.1 Operations to DataSet Objects

 Data sources that implement the IEnumerable(Of T) generic interface can be queried
through LINQ using the Standard Query Operator (SQO) methods. Using AsEnumerable
SQO to query a DataTable returns an object that implements the generic IEnumerable(Of
T) interface, which serves as the data source for LINQ to DataSet queries.

 In the query, you specify exactly the information that you want to retrieve from the
data source. A query can also specify how that information should be sorted, grouped,
and shaped before it is returned. In LINQ, a query is stored in a variable. If the query is
designed to return a sequence of values, the query variable itself must be an enumerable
type. This query variable takes no action and returns no data; it only stores the query
information. After you create a query, you must execute that query to retrieve any data.

 In a query that returns a sequence of values, the query variable itself never holds the
query results and only stores the query commands. Execution of the query is deferred
until the query variable is iterated over in a For Each loop. This is called deferred execu-
tion; that is, query execution occurs some time after the query is constructed. This means
that you can execute a query as often as you want to. This is useful when, for example,
you have a database that is being updated by other applications. In your application, you
can create a query to retrieve the latest information and repeatedly execute the query,
returning the updated information every time.

 In contrast to deferred queries, which return a sequence of values, queries that return
a singleton value are executed immediately. Some examples of singleton queries are

c04.indd 179c04.indd 179 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

180 Chapter 4 Introduction to Language Integrated Query (LINQ)

Count, Max, Average, and First. These execute immediately because the query results are
required to calculate the singleton result. For example, in order to fi nd the average of the
query results, the query must be executed so that the averaging function has input data
to work with. You can also use the ToList(Of TSource) or ToArray(Of TSource) methods
on a query to force immediate execution of a query that does not produce a singleton
value. These techniques to force immediate execution can be useful when you want to
cache the results of a query.

 Basically, to perform a LINQ to DataSet query, three steps are needed:

1. Create a new DataSet instance

2. Populate the DataSet instance using the Fill() method

3. Query the DataSet instance using LINQ to DataSet

 After a DataSet object has been populated with data, you can begin querying it.
Formulating queries with LINQ to DataSet is similar to using Language - Integrated
Query (LINQ) against other LINQ - enabled data sources. Remember, however, that when
you use LINQ queries over a DataSet object, you are querying an enumeration of
DataRow objects instead of an enumeration of a custom type. This means that you can
use any of the members of the DataRow class in your LINQ queries. This lets you to
create rich and complex queries.

 As with other implementations of LINQ, you can create LINQ to DataSet queries
in two different forms: query expression syntax and method - based query syntax. Basically,
the query expression syntax will be fi nally converted to the method - based query syntax
as the compiling time if the query is written as the query expression, and the query will
be executed by calling the Standard Query Operator methods as the project runs.

4.5.1.1 Query Expression Syntax

 A query expression is a query expressed in query syntax. A query expression is a fi rst -
 class language construct. It is just like any other expression and can be used in any context
in which a query expression is valid. A query expression consists of a set of clauses written
in a declarative syntax similar to SQL or XQuery. Each clause in turn contains one or
more expressions, and these expressions may themselves be either a query expression or
contain a query expression.

 A query expression must begin with a From clause and must end with a Select
or Group clause. Between the fi rst From clause and the last Select or Group clause, it
can contain one or more of these optional clauses: Where , Order By , Join , Let , and
even additional From clauses. You can also use the Into keyword to enable the result of
a Join or Group clause to serve as the source for additional query clauses in the same
query expression.

 In all LINQ queries (including LINQ to DataSet), all of clauses will be converted to
the associated Standard Query Operator methods, such as From , Where , Order By , Join ,
Let , and Select , as the queries are compiled. Refer to Table 4.1 in this chapter to get the
most often used Standard Query Operators and their defi nitions.

 In LINQ, a query variable is always strongly typed, and it can be any variable that
stores a query instead of the results of a query. More specifi cally, a query variable is always

c04.indd 180c04.indd 180 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.5 LINQ to DataSet 181

an enumerable type that will produce a sequence of elements when it is iterated over in
a For Each loop or a direct call to its method IEnumerator.MoveNext .

 The following code example shows a simple query expression with one data source,
one fi ltering clause, one ordering clause, and no transformation of the source elements.
The Select clause ends the query.

 An integer array is created here, and this array works as a data source. The variable
scoreQuery is a query variable, and it contains only the query command and does not
contain any query result. This query is composed of four clauses: From , Where , Order
By , and Select . Both the fi rst and the last clause are required, and the others are optional.
The query is casted to a type of IEnumerable(Of Int32) by using an IEnumerable(Of T)
interface. The testScore is an iteration variable that is scanned through the For Each
loop to get and display each queried data when this query is executed. When the For Each
statement executes, the query results are not returned through the query variable score-
Query . Rather, they are returned through the iteration variable testScore .

 An alternative way to write this query expression is to use the so - called implicit typing
of query variables. The difference between the explicit and implicit typing of query vari-
ables is that in the former situation, the relationship between the query variable score-
Query and the Select clause is clearly indicated by the IEnumerable(Of T) interface, and
this makes sure that the type of returned collection is IEnumerable(Of T), which can be
queried by LINQ. In the latter situation, we do not exactly know the data type of the
query variable, and, therefore, an implicit type scoreQuery is used to instruct the compiler
to infer the type of a query variable (or any other local variable) at the compiling time.
The example codes written in Figure 4.30 can be expressed in another format that is
shown in Figure 4.31 by using the implicit typing of query variable.

 Here, the implicit type is used to replace the explicit type IEnumerable(Of T) for the
query variable, and it can be converted to the IEnumerable(Of Int32) automatically as
this piece of codes is compiled.

Figure 4.30. The example codes for the query expression syntax.

Module QueryExpression

Dim scores As Integer() = {90, 71, 82, 93, 75, 82}

Sub main()
'Query Expression.
Dim scoreQuery As IEnumerable(Of Int32) = From score In scores

Where score > 80
Order By score Descending
Select score

'Execute the query to produce the results
For Each testScore In scoreQuery

Console.Write("{0, 1} ", testScore)
Next
Console.WriteLine(vbNewLine & "Press any key to continue...")
Console.ReadKey()

End Sub

End Module

‘Outputs: 93 90 82 82

c04.indd 181c04.indd 181 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

182 Chapter 4 Introduction to Language Integrated Query (LINQ)

4.5.1.2 Method-Based Query Syntax

 Most queries used in the general LINQ queries are written as query expressions by using
the declarative query syntax. However, the .NET Common Language Runtime (CLR)
has no notion of query syntax in itself. Therefore, at compile time, query expressions are
converted to something that the CLR can understand — method calls. These methods are
Standard Query Operators (SQO) methods, and they have names equivalent to query
clauses, such as Where , Select , GroupBy , Join , Max , Average , and so on. You can call
them directly by using method syntax instead of query syntax. In Sections 4.1.3 and 4.1.4 ,
we have provided a very detailed discussion about the Standard Query Operator methods.
Refer to that section to get more details for those methods and their implementations.

 In general, we recommend query syntax because it is usually simpler and more read-
able; however, there is no semantic difference between method syntax and query syntax.
In addition, some queries, such as those that retrieve the number of elements that match
a specifi ed condition, or that retrieve the element that has the maximum value in a source
sequence, can only be expressed as method calls. The reference documentation for the
Standard Query Operators in the System.Linq namespace generally uses method syntax.
Therefore, even when getting started in writing LINQ queries, it is useful to be familiar
with how to use method syntax in queries and in query expressions themselves.

 We have discussed the Standard Query Operator with a quite few of examples using
the method syntax in Sections 4.1.3 and 4.1.4 . Refer to those sections to get a clear picture
in how to create and use method syntax to directly call SQO methods to perform LINQ
queries. In this section, we just give an example to illustrate the different formats in using
the query syntax and the method syntax for a given data source.

 Create a new Visual Basic console project QueryMethodSyntax . Open the code
window of this new project and enter the codes that are shown in Figure 4.32 into this
code window.

Figure 4.31. The example codes for the query expression in implicit typing of query variable.

Module QueryExpression

Dim scores As Integer() = {90, 71, 82, 93, 75, 82}

Sub main()
'Query Expression.
Dim scoreQuery = From score In scores

Where score > 80
Order By score Descending
Select score

'Execute the query to produce the results
For Each testScore In scoreQuery

Console.Write("{0, 1} ", testScore)
Next
Console.WriteLine(vbNewLine & "Press any key to continue...")
Console.ReadKey()

End Sub

End Module

‘Outputs: 93 90 82 82

c04.indd 182c04.indd 182 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.5 LINQ to DataSet 183

 Let ’ s have a closer look at this piece of codes to see how it works.

A. An integer array is created, and it works as a data source for this project.

B. The fi rst query that uses a query syntax is created and initialized with four clauses. The
query variable is named querySyntax with a type of IEnumerable(Of Int32).

C. The second query that uses a method syntax is created and initialized with the Standard
Query Operator methods Where() and Order By() .

D. The fi rst query is executed using a For Each loop, and the query result is displayed by
using the Console.Write() method.

E. The second query is executed, and the result is displayed, too.

F. The purpose of these two coding lines is to allow users to run this project in a Debugging
mode.

 It can be found that the method syntax looks simpler in structure and easy to code
compared with the query syntax from this piece of codes. In fact, the fi rst query with the
query syntax will be converted to the second query with the method syntax as the project
is compiled.

 Now you can build and run the project. You can fi nd that the running result is identi-
cal for both syntaxes.

Figure 4.32. The codes for the example project QueryMethodSyntax.

Imports System
Imports System.Collections.Generic
Imports System.Linq
Imports System.Text

Module QueryMethodSyntax

Sub Main()

Dim numbers As Integer() = {5, 10, 8, 3, 6, 12}

'Query syntax:
Dim querySyntax As IEnumerable(Of Int32) = From num In numbers

Where num Mod 2 = 0
Order By (num)
Select num

'Method syntax:
Dim methodSyntax As IEnumerable(Of Int32) = numbers.Where(Function(num) num Mod 2 = 0).OrderBy(Function(n) n)
'Execute the query in query syntax
For Each i As Integer In querySyntax

Console.Write(i & " ")
Next
Console.WriteLine(System.Environment.NewLine)
'Execute the query in method syntax
For Each i As Integer In methodSyntax

Console.Write(i & " ")
Next
'Keep the console open in debug mode.
Console.WriteLine(System.Environment.NewLine)
Console.WriteLine("Press any key to exit... ")
Console.ReadKey()

End Sub

End Module

A

B

C

D

E

F

QueryMethodSyntax Main

c04.indd 183c04.indd 183 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

184 Chapter 4 Introduction to Language Integrated Query (LINQ)

 A complete Visual Basic.NET Console project QueryMethodSyntax can be found
in the folder DBProjects\Chapter 4 that is located at the Wiley ftp site (refer to Fig. 1.2
in Chapter 1).

 Besides the general and special properties of query expression discussed above, the
following points are also important to understand query expressions:

1. Query expressions can be used to query and to transform data from any LINQ - enabled
data source. For example, a single query can retrieve data from a DataSet and produce an
XML stream as output.

2. Query expressions are easy to master because they use many familiar C language
constructs.

3. The variables in a query expression are all strongly typed, although in many cases, you do
not have to provide the type explicitly because the compiler can infer it if an implicit type
var is used.

4. A query is not executed until you iterate over the query variable in a For Each loop.

5. At compile time, query expressions are converted to Standard Query Operator method calls
according to the rules set forth in the Visual Basic specifi cation. Any query that can be
expressed by using query syntax can also be expressed by using method syntax. However,
in most cases, query syntax is more readable and concise.

6. As a rule, when you write LINQ queries, we recommend that you use query syntax when-
ever possible and method syntax whenever necessary. There is no semantic or performance
difference between the two different forms. Query expressions are often more readable than
equivalent expressions written in method syntax.

7. Some query operations, such as Count or Max , have no equivalent query expression clause
and must therefore be expressed as a method call. Method syntax can be combined with
query syntax in various ways.

8. Query expressions can be compiled to expression trees or to delegates, depending on the
type that the query is applied to. IEnumerable(Of T) queries are compiled to delegates.
IQueryable and IQueryable(Of T) queries are compiled to expression trees.

 Now let ’ s start the LINQ to DataSet with the single table query.

4.5.1.3 Query the Single Table

 LINQ queries work on data sources that implement the IEnumerable(Of T) interface or
the IQueryable interface. The DataTable class does not implement either interface, so
you must call the AsEnumerable method if you want to use the DataTable as a source
in the From clause of a LINQ query.

 As we discussed in Section 4.5.1 , to perform LINQ to DataSet query, the fi rst step is
to create an instance of the DataSet and fi ll it with the data from the database. To fi ll a
DataSet, a DataAdapter can be used with the Fill() method that is attached to that
DataAdapter. Each DataAdapter can only be used to fi ll a single DataTable in a DataSet.

 In this section, we show readers an example in querying a single DataTable
using the LINQ to DataSet. Create a new Visual Basic.NET console project
DataSetSingleTableLINQ . On the opened project, change the File Name property to
DataSetSingleTableLINQ.vb . Open the code window of this new project and enter the
codes that are shown in Figure 4.33 .

c04.indd 184c04.indd 184 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.5 LINQ to DataSet 185

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Two namespaces, System.Data and System.Data.OleDb , must be added into the
namespace declaration section of this project, since we need to use some OleDb data
components, such as DataAdapter, Command, and Connection.

B. An SQL query string is created to query all columns from the Faculty data table in the
DataSet. Also, all OleDb data components are created in this part, including a non - OleDb
data component, DataSet.

C. The connection string is declared since we need to use it to connect to our sample database
CSE_DEPT.accdb that was developed in Microsoft Access 2007. You need to modify this
string based on the real location where you save your database.

D. The Connection object accConnection is initialized with the connection string and a con-
nection is executed by calling the Open() method. Regularly, a Try . . . Catch block should
be used for this connection operation to catch up any possible exception. Here, we skip it,
since we trying to make this connection coding simple.

E. The Command object is initialized with Connection, CommandType, and CommandText
properties.

Figure 4.33. The codes for the example project DataSetSingleTableLINQ.

Imports System
Imports System.Data
Imports System.Data.OleDb
Imports System.Linq

Module DataSetSingleTableLINQ

Sub Main()

Dim cmdString As String = "SELECT * FROM Faculty"
Dim dataAdapter As New OleDbDataAdapter()
Dim accConnection As New OleDbConnection()
Dim accCommand As New OleDbCommand()
Dim ds As New DataSet()
Dim connString As String = "Provider=Microsoft.ACE.OLEDB.12.0; " &

"Data Source=C:\\database\\Access\\CSE_DEPT.accdb;"
accConnection = New OleDbConnection(connString)
accConnection.Open()
accCommand.Connection = accConnection
accCommand.CommandType = CommandType.Text
accCommand.CommandText = cmdString

dataAdapter.SelectCommand = accCommand
dataAdapter.Fill(ds, "Faculty")

Dim facultyinfo = From fi In ds.Tables("Faculty").AsEnumerable()
Where fi.Field(Of String)("faculty_name").Equals("Ying Bai")
Select fi

For Each fRow In facultyinfo
Console.WriteLine("{0}, {1}, {2}, {3}, {4}", fRow.Field(Of String)("title"), fRow.Field(Of String)("office"), _

fRow.Field(Of String)("phone"), fRow.Field(Of String)("college"), fRow.Field(Of String)("email"))
Next

accConnection.Close()
Console.WriteLine("Press any key to continue...")
Console.ReadKey()

End Sub

End Module

A

B

C

D

E

F

G

H

I

DataSetSingleTableLINQ Main

c04.indd 185c04.indd 185 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

186 Chapter 4 Introduction to Language Integrated Query (LINQ)

F. The initialized Command object is assigned to the SelectCommand property of the
DataAdapter, and the DataSet is fi lled with the Fill() method. The point is that only a
single table, Faculty , is fi lled in this operation.

G. A LINQ to DataSet query is created with three clauses, From , Where , and Select . The
data type of the query variable facultyinfo is an implicit, and it can be inferred by the
compiler as the project is compiled. The Faculty data table works as a data source for this
LINQ to DataSet query; therefore, the AsEnumerable() method must be used to convert
it to an IEnumerable(Of T) type. The Where clause is used to fi lter the desired information
for the selected faculty member (faculty_name). All of these clauses will be converted to
the associated Standard Query Operator methods that will be executed to perform and
complete this query.

H. The For Each loop then enumerates the enumerable object returned by selecting and
yielding the query results. Because query is an Enumerable type, which implements
IEnumerable(Of T), the evaluation of the query is deferred until the query variable is
iterated over using the For Each loop. Deferred query evaluation allows queries to be kept
as values that can be evaluated multiple times, each time yielding potentially different
results.

I. Finally, the connection to our sample database is closed by calling the Close() method.

 Now you can build and run this project by clicking Debug|Start Debugging. Related
information for the selected faculty will be retrieved and displayed in the console window.

 A complete Visual Basic.NET Console project DataSetSingleTableLINQ can be
found in the folder DBProjects\Chapter 4 that is located at the Wiley ftp site (refer to
Fig. 1.2 in Chapter 1).

 Next, let ’ s take a look at querying the cross tables using LINQ to DataSet.

4.5.1.4 Query the Cross Tables

 A DataSet object must fi rst be populated before you can query over it with LINQ to
DataSet.

 There are several different ways to populate the DataSet. From the example we
discussed in the last section, we used the DataAdapter class with the Fill() method to do
this population operation.

 In addition to querying a single table, you can also perform cross - table queries in
LINQ to DataSet. This is done by using a join clause. A join is the association of objects
in one data source with objects that share a common attribute in another data source,
such as a faculty_id in the LogIn table and in the Faculty table. In object - oriented pro-
gramming, relationships between objects are relatively easy to navigate because each
object has a member that references another object. In external database tables, however,
navigating relationships is not as straightforward. Database tables do not contain built - in
relationships. In these cases, the Join operation can be used to match elements from each
source. For example, given two tables that contain faculty information and course infor-
mation, you could use a join operation to match course information and faculty for the
same faculty_id .

 The LINQ framework provides two join operators, Join and GroupJoin. These opera-
tors perform equi - joins: that is, joins that match two data sources only when their keys
are equal. (By contrast, Transact - SQL supports join operators other than Equals, such as
the Less Than operator.)

c04.indd 186c04.indd 186 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.5 LINQ to DataSet 187

 In relational database terms, Join implements an inner join. An inner join is a type
of join in which only those objects that have a match in the opposite data set are returned.

 In this section, we use an example project to illustrate how to use Join operator to
perform a multi - table query using LINQ to DataSet. The functionality of this project is:

1. Populate a DataSet instance; populate two data tables, Faculty and Course, with two
DataAdapters.

2. Using LINQ to DataSet join query to perform the cross - table query

 Now create a new Visual Basic.NET console project and name it
DataSetCrossTableLINQ . On the opened project, change the File Name property to
DataSetCrossTableLINQ.vb . Open the code window and enter the codes that are shown
in Figure 4.34 into this window.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Two namespaces, System.Data and System.Data.OleDb , must be added into the
namespace declaration section of this project since we need to use some OleDb data
components, such as DataAdapter, Command, and Connection.

B. Two SQL query strings are created to query some columns from the Faculty and the Course
data tables in the DataSet. Also, all OleDb data components, including two sets of Command
and DataAdapter objects, are created in this part, including a non - OleDb data component,
DataSet. Each set of components is used to fi ll an associated data table in the DataSet.

C. The connection string is declared since we need to use it to connect to our sample database
CSE_DEPT.accdb that was developed in Microsoft Access 2007. You need to modify this
string based on the real location in which you save your database.

D. The Connection object accConnection is initialized with the connection string, and a con-
nection is executed by calling the Open() method. Regularly, a Try . . . Catch block should
be used for this connection operation to catch up any possible exception. Here, we skip it,
since we try to make this connection coding simple.

E. The facultyCommand object is initialized with Connection, CommandType, and
CommandText properties.

F. The initialized facultyCommand object is assigned to the SelectCommand property of
the facultyAdapter , and the DataSet is fi lled with the Fill() method. The point is that only
a single table, Faculty , is fi lled in this operation.

G. The courseCommand object is initialized with Connection, CommandType, and
CommandText properties. The initialized courseCommand object is assigned to the
SelectCommand property of the courseAdapter , and the DataSet is fi lled with the Fill()
method. The point is that only a single table, Course , is fi lled in this operation.

H. A LINQ to DataSet query is created with a Join clause. The data type of the query vari-
able courseinfo is an implicit, and it can be inferred by the compiler as the project is
compiled. Two data tables, Faculty and Course , work as a joined data source for this LINQ
to DataSet query, therefore, the AsEnumerable() method must be used to convert them
to an IEnumerable(Of T) type. Two identical fi elds, faculty_id , i.e., a primary key in the
Faculty table and a foreign key in the Course tables, works as a joined criterion to link
two tables together. The Where clause is used to fi lter the desired course information for
the selected faculty member (faculty_name). All of these clauses will be converted to the
associated Standard Query Operator methods that will be executed to perform and com-
plete this query.

c04.indd 187c04.indd 187 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

188 Chapter 4 Introduction to Language Integrated Query (LINQ)

I. The For Each loop then enumerates the enumerable object returned by selecting and
yielding the query results. Because query is an Enumerable type, which implements
IEnumerable(Of T), the evaluation of the query is deferred until the query variable is
iterated over using the For Each loop. Deferred query evaluation allows queries to be kept
as values that can be evaluated multiple times, each time yielding potentially different
results. All courses taught by the selected faculty are retrieved and displayed when this For
Each loop is done.

Figure 4.34. The codes for the example project DataSetCrossTableLINQ.

Imports System
Imports System.Data
Imports System.Data.OleDb
Imports System.Linq

Module DataSetCrossTableLINQ

Sub Main()

Dim strFaculty As String = "SELECT faculty_id, faculty_name FROM Faculty"
Dim strCourse As String = "SELECT course_id, faculty_id FROM Course"
Dim facultyAdapter As New OleDbDataAdapter()
Dim courseAdapter As New OleDbDataAdapter()
Dim accConnection As New OleDbConnection()
Dim facultyCommand As New OleDbCommand()
Dim courseCommand As New OleDbCommand()
Dim ds As New DataSet()
Dim connString As String = "Provider=Microsoft.ACE.OLEDB.12.0; " &

"Data Source=C:\\database\\Access\\CSE_DEPT.accdb;"
accConnection = New OleDbConnection(connString)
accConnection.Open()

facultyCommand.Connection = accConnection
facultyCommand.CommandType = CommandType.Text
facultyCommand.CommandText = strFaculty
facultyAdapter.SelectCommand = facultyCommand
facultyAdapter.Fill(ds, "Faculty")

courseCommand.Connection = accConnection
courseCommand.CommandType = CommandType.Text
courseCommand.CommandText = strCourse
courseAdapter.SelectCommand = courseCommand
courseAdapter.Fill(ds, "Course")

Dim courseinfo = From ci In ds.Tables("Course").AsEnumerable()
Join fi In ds.Tables("faculty").AsEnumerable()
On ci.Field(Of String)("faculty_id") Equals fi.Field(Of String)("faculty_id")
Where fi.Field(Of String)("faculty_name").Equals("Ying Bai")
Select New With {.course_id = ci.Field(Of String)("course_id")}

For Each cid In courseinfo
Console.WriteLine(cid.course_id)

Next

accConnection.Close()
facultyCommand.Dispose()
courseCommand.Dispose()
facultyAdapter.Dispose()
courseAdapter.Dispose()

Console.WriteLine("Press any key to continue...")
Console.ReadKey()

End Sub

End Module

A

B

C

D

E

F

G

H

I

J

K

DataSetCrossTableLINQ Main

c04.indd 188c04.indd 188 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.5 LINQ to DataSet 189

J. Finally, the connection to our sample database is closed by calling the Close() method, and
all data components used in this project are released.

K. These two coding lines are used to enable this console project to be run in the Debugging
mode.

 Now you can build and run this project. One point to be noticed is the connection
string implemented in this project. You need to modify this string in step C if you installed
your database fi le CSE_DEPT.accdb in a different folder.

 Click the Debug|Start Debugging menu item to run the project, and you can fi nd that
all courses (course_id) taught by the selected faculty are retrieved and displayed in this
console window.

 A complete Visual Basic.NET Console project DataSetCrossTableLINQ can be
found in the folder DBProjects\Chapter 4 that is located at the Wiley ftp site (refer to
Fig. 1.2 in Chapter 1).

 Next, let ’ s take a look at querying typed DataSet with LINQ to DataSet.

4.5.1.5 Query Typed DataSet

 If the schema of the DataSet is known at application design time, it is highly recom-
mended that you use a typed DataSet when using LINQ to DataSet. A typed DataSet
is a class that derives from a DataSet. As such, it inherits all the methods, events,
and properties of a DataSet. Additionally, a typed DataSet provides strongly typed
methods, events, and properties. This means that you can access tables and columns by
name instead of using collection - based methods. This makes queries simpler and more
readable.

 LINQ to DataSet also supports querying over a typed DataSet. With a typed DataSet,
you do not have to use the generic Field() method or SetField() method to access column
data. Property names are available at compile time because the type information is
included in the DataSet. LINQ to DataSet provides access to column values as the correct
type, so that the type mismatch errors are caught when the code is compiled instead of
at runtime.

 Before you can begin querying a typed DataSet, you must generate the class by using
the DataSet Designer in Visual Studio 2010.

 In this section, we show readers how to use LINQ to DataSet to query a typed
DataSet. In fact, it is very easy to perform this kind of query as long as a typed DataSet
has been created. There are two ways to create a typed DataSet: using the Data Source
Confi guration Wizard or using the DataSet Designer. Both belong to the Design Tools
and Wizards provided by Visual Studio.NET 2010.

 We will use the second method, DataSet Designer, to create a typed DataSet. The
database we will use is our sample database CSE_DEPT.accdb developed in Microsoft
Access 2007.

 Create a new Visual Basic.NET console project TypedDataSetLINQ and change the
File Name property to TypedDataSetLINQ.vb .

 Let ’ s fi rst create our typed DataSet. On the opened new project, right - click our new
project TypedDataSetLINQ from the Solution Explorer window. Select the Add|New
Item from the pop - up menu to open the Add New item dialog box, which is shown in
Figure 4.35 .

c04.indd 189c04.indd 189 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

190 Chapter 4 Introduction to Language Integrated Query (LINQ)

 Click on the DataSet from the Template list and enter CSE_DEPTDataSet.xsd into
the Name box as the name for this DataSet. Click on the Add button to add this DataSet
into our project. Your fi nished Add New Item dialog box should match the one that is
shown in Figure 4.35 .

 Next, we need to select our data source for our new DataSet. Open the Server
Explorer window and right - click the fi rst folder Data Connections if you have not con-
nected any data source. Then click the Add Connection item from the popup menu, and
the Add Connection dialog box appears, which is shown in Figure 4.36 a.

 Make sure that the Data source box contains Microsoft Access Database File and
click on the Browse button to locate the folder in which our sample database fi le CSE_
DEPT.accdb is located. In this application, it is C:\database\Access . Browse to this
folder and select our sample database fi le CSE_DEPT.accdb and click on the Open
button. Your fi nished Add Connection dialog box should match the one that is shown in
Figure 4.36 a.

 You can click on the Test Connection button to test this connection. Click on the
OK button to fi nish this process if the connection test is successful.

 Now you can fi nd that a new data connection folder has been added into the Server
Explorer window with our sample database CSE_DEPT.accdb . If you expand the Tables
folder under this data source, you can fi nd all fi ve tables, which is shown in Figure 4.36 b,
in our sample database.

 Open the DataSet Designer by double - clicking on the item CSE_DEPTDataSet.xsd
from the Solution Explorer window if it is not opened, and then drag the Faculty and
the Course tables from the Server Explorer window and place them to the DataSet
Designer. You can drag/place all fi ve tables if you like, but here we only need to drag two

Figure 4.35. The opened Add New Item dialog box.

c04.indd 190c04.indd 190 4/25/2012 1:57:15 PM4/25/2012 1:57:15 PM

4.5 LINQ to DataSet 191

of them. We only need to use the Faculty table in this project, and it does not matter if
you drag more tables without using them.

 Now we have fi nished creating our typed DataSet and the connection to our data
source. Next, we need to perform the coding to use LINQ to DataSet to perform the
query to this typed DataSet.

 Double - click on our new project TypedDataSetLINQ.vb from the Solution Explorer
window to open the code window of this project. Enter the codes that are shown in Figure
 4.37 into this window.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Two namespaces, System.Data and System.Data.OleDb , must be added into the
namespace declaration section of this project, since we need to use some OleDb data
components, such as DataAdapter, Command, and Connection.

B. A new instance of the FacultyTableAdapter da is created since we need it to fi ll the
DataSet later. All TableAdapters are defi ned in the CSE_DEPTDataSetTableAdapters
namespace; therefore, we must prefi x it in front of the FacultyTableAdapter class.

C. A new DataSet instance ds is also created.

D. The new instance of DataSet is populated with data using the Fill() method. Only the
Faculty table is fi lled with data obtained from the Faculty table in our sample database
CSE_DEPT.

E. The LINQ to DataSet query is created with three clauses. The data type of the query vari-
able is an implicit data type, and it can be inferred to the suitable type as the compiling
time. Since we are using a typed DataSet, we can directly use the table name, Faculty , after
the DataSet without worrying about the Field(Of T) setup with the real table name.

Figure 4.36. The Add Connection dialog and the Server Explorer window.

(a) (b)

c04.indd 191c04.indd 191 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

192 Chapter 4 Introduction to Language Integrated Query (LINQ)

F. The For Each loop is executed to perform this query, and each queried column from the
Faculty table is displayed using the Console.WriteLine() method. Compared with the same
displaying operation in Figure 4.33 in Section 4.5.1.3 , you can fi nd that each column in the
queried result can be accessed by using its name in this operation since a typed DataSet
is used in this project.

G. These two coding lines enable this console project to be run in the Debugging mode.

 Now you can build and run the project. Click on the Debug|Start Debugging item to
run the project, and you can fi nd all pieces of information related to the selected faculty
are retrieved and displayed in this console window. Our project is successful!

 A complete Visual Basic.NET Console project TypedDataSetLINQ can be found in
the folder DBProjects\Chapter 4 that is located at the Wiley ftp site (refer to Fig. 1.2 in
Chapter 1).

4.5.2 Operations to DataRow Objects Using
the Extension Methods

 The LINQ to DataSet functionality is exposed primarily through the extension methods
in the DataRowExtensions and DataTableExtensions classes. In Visual Basic.NET, you
can call either of these methods as an instance method on any object of type. When you
use instance method syntax to call this method, omit the fi rst parameter. The DataSet
API has been extended with two new methods of the DataRow class, Field() and
SetField() . You can use these to form LINQ expressions and method queries against

Figure 4.37. The codes for the example project TypedDataSetLINQ.

Imports System
Imports System.Data
Imports System.Data.OleDb
Imports System.Collections.Generic
Imports System.Linq

Module TypedDataSetLINQ

Sub Main()

Dim da As New CSE_DEPTDataSetTableAdapters.FacultyTableAdapter()
Dim ds As New CSE_DEPTDataSet()
da.Fill(ds.Faculty)

Dim faculty = From fi In ds.Faculty
Where fi.faculty_name = "Ying Bai"
Select fi

For Each f In faculty
Console.WriteLine("{0}, {1}, {2}, {3}, {4}", f.title, f.office, f.phone, f.college, f.email)

Next
Console.WriteLine("Press any key to continue...")
Console.ReadKey()

End Sub

End Module

A

B
C
D

E

F

G

TypedDataSetLINQ Main

c04.indd 192c04.indd 192 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

4.5 LINQ to DataSet 193

DataTable objects. They are the recommended methods to use for accessing column
values within LINQ expressions and method queries.

 In this section, we show readers how to access and manipulate column values using
the extension methods provided by the DataRow class, the Field() and SetField() methods.
These methods provide easier access to column values for developers, especially regard-
ing null values. The DataSet uses Value to represent null values, whereas LINQ uses the
nullable type support introduced in the .NET Framework 2.0. Using the preexisting
column accessor in DataRow requires you to cast the return object to the appropriate
type. If a particular fi eld in a DataRow can be null, you must explicitly check for a null
value because returning Value and implicitly casting it to another type throws an
InvalidCastException.

 The Field() method allows users to obtain the value of a column from the DataRow
object and handles the casting of DBNull.Value . In total, the Field() method has six dif-
ferent prototypes. The SetField() method, which has three prototypes, allows users to set
a new value for a column from the DataRow object, including handling a nullable data
type whose value is null.

 Now let ’ s create a new Visual Basic.NET console project to illustrate how to use the
Field() method to retrieve some columns ’ values from the DataRow object. The database
we will use is still our sample Access 2007 database CSE_DEPT.accdb . Open Visual
Studio.NET 2010 and create a new Visual Basic.NET console project DataRowFieldLINQ .
Open the code window of this new project and enter the codes that are shown in Figure
 4.38 into this window.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Two namespaces, System.Data and System.Data.OleDb , must be added into the
namespace declaration section of this project since we need to use some OleDb data
components, such as DataAdapter, Command, and Connection.

B. A SQL query string is created to query all columns from the Faculty data table in the
DataSet. Also, all OleDb data components are created in this part including a non - OleDb
data component, DataSet.

C. The connection string is declared since we need to use it to connect to our sample database
CSE_DEPT.accdb that was developed in Microsoft Access 2007. You need to modify this
string based on the real location in which you saved your database.

D. The Connection object accConnection is initialized with the connection string, and a con-
nection is executed by calling the Open() method. A Try . . . Catch block should be used
regularly for this connection operation to catch up any possible exception. Here, we skip
it, since we are trying to make this connection coding simple.

E. The Command object is initialized with Connection, CommandType, and CommandText
properties.

F. The initialized Command object is assigned to the SelectCommand property of the
DataAdapter, and the DataSet is fi lled with the Fill() method. The point is that only a
single table, Faculty , is fi lled in this operation.

G. A single DataTable object, Faculty , is created, and a DataRow object fRow is built based
on the Faculty table with a casting (Of DataRow).

H. The query is created and executed with the Field() method to pick up a single column,
faculty_id , which is the fi rst column in the Faculty table. The fi rst prototype of the Field()
method is used for this query. You can use any one of the six prototypes if you like to

c04.indd 193c04.indd 193 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

194 Chapter 4 Introduction to Language Integrated Query (LINQ)

replace this one. The Standard Query Operator method Single() is also used in this query
to indicate that we only need to retrieve a single column ’ s value from this row.

I. The obtained faculty_id is displayed by using the Console.WriteLine() method.

J. The database connection is closed after this query is done.

K. These two coding lines enable this console project to be run in the Debugging mode.

 Now you can build and run this project to test the functionality of querying a single
column from a DataRow object. Click the Debug|Start Debugging menu item to run the
project. The desired faculty_id will be obtained and displayed in this console window.

 A complete Visual Basic.NET Console project DataRowFieldLINQ can be found in
the folder DBProjects\Chapter 4 that is located at the Wiley ftp site (refer to Fig. 1.2 in
Chapter 1).

 Before we can fi nished this section, we want to show users another example to illus-
trate how to modify a column ’ s value by using the SetField() method via the DataRow
object.

 Open Visual Studio.NET 2010 and create a new Visual Basic.NET Console project
and name it as DataRowSetFieldLINQ . Change the File Name property to

Figure 4.38. The codes for the example project DataRowFieldLINQ.

Imports System.Data
Imports System.Data.OleDb
Imports System.Linq

Module DataRowFieldLINQ

Sub Main()

Dim cmdString As String = "SELECT * FROM Faculty"
Dim dataAdapter As New OleDbDataAdapter
Dim accConnection = New OleDbConnection
Dim accDataTable As New DataTable
Dim accCommand As New OleDbCommand
Dim ds = New DataSet
Dim connString As String = "Provider=Microsoft.ACE.OLEDB.12.0;" &

"Data Source=C:\\database\\Access\\CSE_DEPT.accdb;"
accConnection = New OleDbConnection(connString)
accConnection.Open()
accCommand.Connection = accConnection
accCommand.CommandType = CommandType.Text
accCommand.CommandText = cmdString
dataAdapter.SelectCommand = accCommand
dataAdapter.Fill(ds, "Faculty")
Dim dt As DataTable = ds.Tables("Faculty")

Dim fRow As IEnumerable(Of DataRow) = dt.AsEnumerable

Dim FacultyID As String = (From fi In fRow
Where fi.Field(Of String)("faculty_name").Equals("Ying Bai")
Select fi.Field(Of String)(dt.Columns(0))).Single()

Console.WriteLine("The Selected FacultyID is: " & FacultyID)
accConnection.Close()

Console.WriteLine("Press any key to continue...")
Console.ReadKey()

End Sub

End Module

A

B

C

D

E

F

G

H

I
J

K

DataRowFieldLINQ Main

c04.indd 194c04.indd 194 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

4.5 LINQ to DataSet 195

DataRowSetFieldLINQ.vb . Open the code window of this project and enter the codes
that are shown in Figure 4.39 into this window.

 The codes between steps A and B are identical with those we developed for our last
project DataRwoFieldLINQ. Refer to that project to get more details for these codes and
their functionalities.

 Let ’ s take a closer look at this piece of codes to see how it works.

A. Two namespaces, System.Data and System.Data.OleDb , must be added into the
namespace declaration section of this project, since we need to use some OleDb data
components, such as DataAdapter, Command, and Connection.

B. A LINQ to DataSet query is created with the Field() method via DataRow object. This
query should return a complete data row from the Faculty table.

C. The AcceptChanges() method is executed to allow the DataRow object to accept the
current value of each DataColumn object in the Faculty table as the original version of

Figure 4.39. The codes for the example project DataRowSetFieldLINQ.

Imports System.Data
Imports System.Data.OleDb
Imports System.Linq

Module DataRowSetFieldLINQ

Sub Main()

Dim cmdString As String = "SELECT * FROM Faculty"
Dim dataAdapter As New OleDbDataAdapter
Dim accConnection = New OleDbConnection
Dim accCommand As New OleDbCommand
Dim ds = New DataSet
Dim connString As String = "Provider=Microsoft.ACE.OLEDB.12.0;" &

"Data Source=C:\\database\\Access\\CSE_DEPT.accdb;"
accConnection = New OleDbConnection(connString)
accConnection.Open()

accCommand.Connection = accConnection
accCommand.CommandType = CommandType.Text
accCommand.CommandText = cmdString
dataAdapter.SelectCommand = accCommand
dataAdapter.Fill(ds, "Faculty")
Dim dt As DataTable = ds.Tables("Faculty")

Dim facultyRow As IEnumerable(Of DataRow) = dt.AsEnumerable()

Dim frow As DataRow = (From fi In facultyRow
Where fi.Field(Of String)("faculty_name").Equals("Ying Bai")
Select fi).Single()

frow.AcceptChanges()
frow.SetField("faculty_name", "Susan Bai")

Console.WriteLine("Original Faculty Name = {0}" & vbNewLine & "Current Faculty Name = {1}",
frow.Field(Of String)("faculty_name", DataRowVersion.Original),
frow.Field(Of String)("faculty_name", DataRowVersion.Current))

accConnection.Close()
Console.WriteLine("Press any key to continue...")
Console.ReadKey()

End Sub

End Module

A

B

C
D

E

F

DataRowSetFieldLINQ Main

c04.indd 195c04.indd 195 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

196 Chapter 4 Introduction to Language Integrated Query (LINQ)

the value for that column. This method is very important, and there would be no original
version of the DataColumn object ’ s values without this method.

D. Now we call SetField() method to set up a new value to the column faculty_name in the
Faculty table. This new name will work as the current version of this DataColumn object ’ s
value. The second prototype of this method is used here, and you can try to use any one
of other two prototypes if you like.

E. The Console.WriteLine() method is executed to display both original and the current
values of the DataColumn object faculty_name in the Faculty table.

F. The database connection is closed after this query is done.

 Now you can build and run the project to test the functionality of the method
SetField(). Click the Debug|Start Debugging menu item to run the project. You can fi nd
that both the original and the current version of the DataColumn object faculty_name
is retrieved and displayed in the console window.

 A complete Visual Basic.NET Console project DataRowSetFieldLINQ can be found
in the folder DBProjects\Chapter 4 that is located at the Wiley ftp site (refer to Fig. 1.2
in Chapter 1).

4.5.3 Operations to DataTable Objects

 Besides the DataRow operators defi ned in the DataRowExtensions class, there are some
other extension methods that can be used to work for the DataTable class defi ned in the
DataTableExtensions class.

 Extension methods enable you to “ add ” methods to existing types without creating
a new derived type, recompiling, or otherwise modifying the original type. Extension
methods are a special kind of static method, but they are called as if they were instance
methods on the extended type. For client code written in Visual Basic, there is no appar-
ent difference between calling an extension method and the methods that are actually
defi ned in a type.

 The most common extension methods are the LINQ Standard Query Operators that
add query functionality to the existing IEnumerable and IEnumerable(Of T) types. To
use the standard query operators, fi rst bring them into scope with an Imports System.
Linq directive. Then any type that implements IEnumerable(Of T) appears to have
instance methods. You can see these additional methods in IntelliSense statement comple-
tion when you type a dot operator after an instance of an IEnumerable(Of T) type, such
as List(Of T) or Array.

 Two extension methods defi ned in the DataTableExtensions class, AsEnumerable(),
and CopyToDataTable(), are widely implemented in most data - driven applications.
Because of the space limitation, we only give a brief discussion about the fi rst method in
this section.

 The functionality of the extension method AsEnumerable() is to convert and return
a sequence of type IEnumerable(Of DataRow) from a DataTable object. Some readers
may have already noticed that we have used this method in quite a few example projects
in the previous sections. For example, in the example projects DataRowFieldLINQ and
DataRowSetFieldLINQ we discussed in the last section, you can fi nd this method and its

c04.indd 196c04.indd 196 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

4.6 LINQ to SQL 197

functionality. Refer to Figures 4.38 and 4.39 to get a clear picture about how to use this
method to return a DataRow object.

 Next, let ’ s have our discussion about the LINQ to SQL query.

4.6 LINQ TO SQL

 As we mentioned in the previous section, LINQ to SQL belongs to LINQ to ADO.NET,
and it is a subcomponent of LINQ to ADO.NET. LINQ to SQL is absolutely implemented
to the SQL Server database. Different databases need to use different LINQ models to
perform the associated queries, such as LINQ to MySQL, LINQ to DB2, or LINQ to
Oracle.

 LINQ to SQL query is performed on classes that implement the IQueryable(Of T)
interface. Since the IQueryable(Of T) interface is inherited from the IEnumerable(Of T)
with additional components, therefore, besides the Standard Query Operator (SQO), the
LINQ to SQL queries have additional query operators, since it uses the IQueryable(Of
T) interface.

 LINQ to SQL is an application programming interface (API) that allows users to
easily and conveniently access the SQL Server database from the Standard Query
Operators (SQOs) related to the LINQ. To use this API, you must fi rst convert your data
tables in the relational database that is built based on a relational logic model to the
related entity classes that are built based on the objects model, and then set up a mapping
relationship between your relational database and a group of objects that are instantiated
from entity classes. The LINQ to SQL or the Standard Query Operators will interface to
these entity classes to perform the real database operations. In other words, each entity
class can be mapped or is equivalent to a physical data table in the database, and each
entity class ’ s property can be mapped or is equivalent to a data column in that table. Only
after this mapping relationship has been setup, one can use the LINQ to SQL to access
and manipulate data against the databases.

 After entity classes are created and the mapping relationships between each physical
table and each entity class has been built, the conversion for data operations between the
entity class and the real data table is needed. The class DataContext is the guy who will
work in this role. Basically, the DataContext is a connection class that is used to establish
a connection between your project and your database. In addition to this connection role,
the DataContext also provide the conversion function to convert or interpret operations
of the Standard Query Operators for the entity classes to the SQL statements that can
be run in real databases.

 Two tools provided by LINQ to SQL are SQLMetal and the Object Relational
Designer. With the help of these tools, users can easily build all required entity classes,
set the mapping relationships between the relational database and the objects model used
in LINQ to SQL and create our DataContext object.

 The difference between the SQLMetal and the Object Relational Designer is that
the former is a console - based application, but the latter is a window - based application.
This means that the SQLMetal provides a DOS - like template, and the operations are
performed by entering single command into a black - and - white window. The Object
Relational Designer provides a GUI and allows users to drag - place tables represented

c04.indd 197c04.indd 197 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

198 Chapter 4 Introduction to Language Integrated Query (LINQ)

by graphic icons into the GUI. Obviously, the second method or tool is more convenient
and easier compared with the fi rst one.

 We will process this section with the following three parts:

1. LINQ to SQL Entity Classes and DataContext Class

2. LINQ to SQL Database Operations

3. LINQ to SQL Implementations

 Let ’ s start from the fi rst part and provide an introduction to entity classes and
DataContext object.

4.6.1 LINQ to SQL Entity Classes and DataContext Class

 As we discussed in the last section, to use LINQ to SQL to perform data queries, we must
convert our relational database to the associated entity classes using either SQLMetal or
Object Relational Designer tools. Also, we need to set up a connection between our
project and the database using the DataContext object. In this section, we discuss how
to create entity classes and add the DataContext object to connect to our sample SQL
Server database CSE_DEPT.mdf using a real project SQLSelectRTObjectLINQ , which
is a blank project with fi ve form windows and located at the folder DBProjects\
Chapter 5 in the Wiley ftp site (refer to Fig. 1.2 in Chapter 1), and paste it into your
folder to use it.

 The procedure to use LINQ to SQL to perform data actions against the SQL Server
database can be described as a sequence listed below:

1. Add the System.Data.Linq.dll assembly into the project that will use LINQ to SQL by
adding the reference System.Data.Linq

2. Create an entity class for each data table by using one of two popular tools: SQLMetal or
Object Relational Designer

3. Add a connection to the selected database using the DataContext class or the derived class
from the DataContext class

4. Use LINQ to SQL to access the database to perform desired data actions

 Open the blank project SQLSelectRTObjectLINQ and the LogIn form window by
clicking on it from the Solution Explorer window. We need to develop this form based
on the steps listed above. First, we need to add the System.Data.Linq.dll assembly into
the project by adding the reference System.Data.Linq . We need to do this in two steps:

1. Add a reference to our project

2. Add a namespace to the code window of the related form

 Let ’ s start from the fi rst step. Right - click on our project SQLSelectRTObjectLINQ
from the Solution Explorer window, and select the Add Reference item from the pop - up
menu to open the Add Reference dialog. Keep the default tab .NET selected and scroll
down the list until you fi nd the item System.Data.Linq , select it by clicking on it, and
click the OK button to add this reference to our project.

 Now open the code window of the LogIn form and add the Imports System.Data.
Linq to the namespace declaration section in this code window.

c04.indd 198c04.indd 198 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

4.6 LINQ to SQL 199

Figure 4.40. The Add New item dialog.

 Next, we need to create entity classes to setup mapping relationships between each
physical data table and the related entity class. We prefer to use the Object Relational
Designer in this project, since it provides a graphic user interface and is easy to use.

 To open the Object Relational Designer, right - click our project SQLSelectRTO
bjectLINQ from the Solution Explorer window, and select the item Add|New Item from
the popup menu to open the Add New Item dialog. On the opened dialog, select the item
LINQ to SQL Classes by clicking it, and enter CSE_DEPT.dbml into the Name box as
the name for this intermediate DBML fi le, which is shown in Figure 4.40 . Then click on
the Add button to open this Object Relational Designer.

 The intermediate DBML fi le is an optional fi le when you create the entity classes,
and this fi le allows you to control and modify the names of those created entity classes
and properties, and it gives you fl exibility or controllability on entity classes. You can use
any meaningful name for this DBML fi le, but regularly, the name should be identical with
the database ’ s name. Therefore, we used CSE_DEPT, which is our database ’ s name, as
the name for this fi le.

 The opened Object Relational Designer is shown in Figure 4.41 .
 You can fi nd that a CSE_DEPT.dbml folder has been added into our project in the

Solution Explorer window, which is shown in Figure 4.41 . Two related fi les, CSE_DEPT.
dbml.layout and CSE_DEPT.designer.vb , are attached under that folder. The fi rst fi le
is exactly the designer that is shown as a blank window in Figure 4.41 , and the second
fi le is auto - generated by the Object Relational Designer, and it contains the codes to
create a child class CSE_DEPTDataContext that is derived from the DataContext class.
Four overloaded constructors of the child class CSE_DEPTDataContext are declared in
this fi le.

c04.indd 199c04.indd 199 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

200 Chapter 4 Introduction to Language Integrated Query (LINQ)

Figure 4.41. The opened Object Relational Designer.

 Now we need to connect our sample SQL Server database CSE_DEPT to this project
using the DataContext object. You can open our sample database fi le CSE_DEPT.mdf
from the Server Explorer window if you connected this database to our project before.
Otherwise, you must add a new connection to our sample database. To do that, open the
Server Explorer if it is not opened by going to View|Server Explorer menu item. Right -
 click on the Data Connections node and choose the Add Connection menu item to
open the Add Connection dialog, which is shown in Figure 4.42 .

 Click on the Change button and select the Microsoft SQL Server Database File
item from the Data source box, and click on the OK button to select this data source.
Click on the Browse button to scan and fi nd our sample database fi le CSE_DEPT.mdf
from your computer, select this fi le, and click the Open button to add this database fi le
into our connection object. You can test this connection by clicking on the Test Connection
button, and a successful connection message will be displayed if this connection is fi ne.
The following three points should be noted when you perform this database
connection:

1. Change the User Instance property to False if you reinstall the Microsoft SQL Server 2008
after removing an old version of Microsoft SQL Server database by using the Advanced
setup function (click the Advanced button). Otherwise, you do not need to do this
modifi cation.

2. Confi rm that a SQL Server 2008 Express database fi le is being used for this connection by
clicking on the Advanced button, and then going to the Data Source item to check this.

c04.indd 200c04.indd 200 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

4.6 LINQ to SQL 201

Figure 4.42. The Add Connection dialog box.

3. You can fi nd our sample database CSE_DEPT.mdf in the folder Database\SQLServer that
is located at the Wiley ftp site (refer to Fig. 1.2 in Chapter 1). You can copy this database
fi le and save it to any folder at your computer.

 Click on the OK button to close this dialog. Your fi nished Add Connection dialog box
should match the one that is shown in Figure 4.42 .

 Now you can fi nd that a node named CSE_DEPT.mdf under the Data Connections
node has been added into the Server Explorer window. Expand this database fi le under
the Tables node and you can fi nd all of our fi ve data tables.

 To create an entity class for each table, just perform a drag - place operation for each
table between the Server Explorer window and the blank Design window. Starting from
the LogIn table, drag it from the Server Explorer window and place it to the Design
window. Click on the Yes button for the fi rst message box to copy the database fi le to
our project, and click on the No to the second message box to avoid the duplication of
our database. By dragging the LogIn table to the designer canvas, the source code for the
LogIn entity class is created and added into the CSE_DEPT.designer.vb fi le. Then you
can use this entity class to access and manipulate data from this project to the LogIn table
in our sample database CSE_DEPT.

 Perform the similar drag - place operations to all other tables, and your fi nished
designer should match the one that is shown in Figure 4.43 . The arrow between tables is
an association that is a new terminology used in the LINQ to SQL and it represents the
relationship between tables.

 Now we can start to use these entity classes and the DataContext object to perform
the data actions against our sample database using the LINQ to SQL technique.

c04.indd 201c04.indd 201 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

202 Chapter 4 Introduction to Language Integrated Query (LINQ)

4.6.2 LINQ to SQL Database Operations

 In this section, we provide a fundamental end - to - end LINQ to SQL scenario for adding,
modifying, and deleting data in a database. As you know, LINQ to SQL queries can
perform not only the data selections, but also the data insertion, updating, and deletion.
The standard LINQ to SQL queries include

 • Select

 • Insert

 • Update

 • Delete

 To perform any of these operations or queries, we need to use entity classes and
DataContext we discussed in the last section to do LINQ to SQL actions against our
sample database. Because the blank project SQLSelectRTObjectLINQ will be used in
Chapter 5 , we had better create another Visual Basic.NET console sample project to
illustrate how to use LINQ to SQL to perform data queries against our sample database
CSE_DEPT.mdf .

 Create a new Visual Basic.NET console project QueryLINQSQL . On the opened new
project, change the File Name property to QueryLINQSQL.vb . Then perform the follow-
ing operations to prepare our LINQ to SQL queries:

1. Add the System.Data.Linq reference to this new project by right - clicking on our new
project QueryLINQSQL from the Solution Explorer window, and click on the Add

Figure 4.43. The fi nished Designer.

c04.indd 202c04.indd 202 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

4.6 LINQ to SQL 203

Reference item from the popup menu to open the Add Reference wizard. Make sure that
the .NET tab is selected, scroll down the list, and select the item System.Data.Linq from
the list and click on the OK button.

2. Add the following directives at the top of the fi le QueryLINQSQL.vb :

 • Imports System.Data.Linq
 • Imports System.Data.Linq.Mapping

3. Follow steps listed in Section 4.6.1 to create entity classes using the Object Relational
Designer. The database used in this project is CSE_DEPT.mdf , and it is located at the folder:
C:\database\SQLServer . Open the Server Explorer window and add this database by right -
 clicking the Data Connections item, and select Add Connection.

4. We need to create fi ve entity classes, and each of them is associated with a data table in our
sample database. Drag each table from the Server Explorer window and place it on the
Object Relational Designer canvas. The mapping fi le ’ s name is CSE_DEPT.dbml . Make sure
that you enter this name into the Name box in the Object Relational Designer.

5. Right - click on the mapping fi le CSE_DEPT.dbml from the Solution Explorer window and
select View Code item to create a Visual Basic code fi le for our database, CSE_DEPT.vb .

 Now open the code window and enter the codes shown in Figure 4.44 into this
window.

 Let ’ s take a closer look at this piece of codes to see how it works.

A. Two namespaces, System.Data.Linq and System.Data.Linq.Mapping , are added into the
namespace declaration part of this project, since we need to use some data components
defi ned in LINQ to SQL namespaces.

B. A new object of the DataContext class is created since we need to use this object to connect
to our sample database to perform data queries. Because we have connected this
DataContext class to our sample database CSE_DEPT.mdf in step 3 in this section, and
the connection string has been added into our app.confi g fi le when step 3 is done.
Therefore, we do not need to indicate the special connection string when we create this
object.

C. A customer running menu is displayed to allow users to select an item to perform the
desired query or data action.

D. The users ’ answer is received by running a system method Console.ReadLine().

E. A Select Case structure is used to identify the user ’ s selection and direct the program to
the associated method to perform the desired query or action.

F. The purpose of these two lines is to allow users to run this project in the Debugging mode
and keep the console window open as the project runs.

 Now we have fi nished all prerequisite jobs to make a desired LINQ to SQL query,
let ’ s start our coding from the fi rst query, data selection.

4.6.2.1 Data Selection Query

 Create a new subroutine LINQSelect() under the Main() subroutine in this console
project and enter the codes that are shown in Figure 4.45 into this subroutine.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The newly created DataContext object is passed into this subroutine since we need to use
this object to access our sample database to perform the selection query. The accessing

c04.indd 203c04.indd 203 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

204 Chapter 4 Introduction to Language Integrated Query (LINQ)

Figure 4.45. The codes for the LINQSelect subroutine.

Private Sub LINQSelect(ByRef db As CSE_DEPTDataContext)

Dim faculty = From fi In db.Faculties
Where fi.faculty_id = "B78880"
Select fi

For Each f In faculty
Console.WriteLine("{0}, {1}, {2}, {3}, {4}, {5}", f.faculty_name, f.title, f.office, f.phone, f.college, f.email)

Next

End Sub

A

B

C

QueryLINQSQL LINQSelect

Figure 4.44. The codes for the console Main method.

Imports System.Linq
Imports System.Collections.Generic
Imports System.Data.Linq
Imports System.Data.Linq.Mapping

Module QueryLINQSQL

Sub Main()

Dim cse_dept As New CSE_DEPTDataContext()

Console.WriteLine("Make your selection: " & vbNewLine)
Console.WriteLine("1: LINQ to SQL Select query")
Console.WriteLine("2: LINQ to SQL Insert query")
Console.WriteLine("3: LINQ to SQL Update query")
Console.WriteLine("4: LINQ to SQL Delete query")
Console.WriteLine("5: Exit the project" & vbNewLine)

Dim input As String = Console.ReadLine()

Select Case (input)
Case "1"

LINQSelect(cse_dept)
Case "2"

LINQInsert(cse_dept)
Case "3"

LINQUpdate(cse_dept)
Case "4"

LINQDelete(cse_dept)
Case "5"

Exit Sub
Case Else

Console.WriteLine("Invalid input value ")
End Select

Console.WriteLine(vbNewLine & "Press Enter key to continue")
Console.ReadLine()

End Sub

End Module

A

B

C

D

E

F

QueryLINQSQL Main

c04.indd 204c04.indd 204 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

4.6 LINQ to SQL 205

mode of this subroutine should be Private if it will be called by any other procedures in
the current Main subroutine in this console project.

B. The query is created and initialized with three clauses. The Faculties is an instance of our
entity class, and the faculty_id works as the query criterion for this query.

C. The query is executed by running a For Each loop, and the queried result is displayed by
calling the Console.WriteLine() method.

 It can be found that the coding is very simple after the prerequisite codes have been
done. Next, we need to take care of the data insertion query.

4.6.2.2 Data Insertion Query

 Two options can be used to insert a record into the database: (1) insert a new record into
the database, and (2) insert some new columns to an existing record in the database. The
option 2 is similar to the data updating query; therefore, we concentrate on the fi rst option
in this section only.

 Create a new subroutine LINQInsert() in this project, and enter the codes that are
shown in Figure 4.46 into this method.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The new created DataContext object is passed into this subroutine since we need to use
this object to access our sample database to perform the data insertion action.

B. A new Faculty entity object is created, and it is equivalent to a DataRow object.

C. The newly created Faculty entity object is initialized with all new columns ’ values.

Figure 4.46. The codes for the LINQInsert subroutine.

Private Sub LINQInsert(ByRef db As CSE_DEPTDataContext)

'Create the new Faculty object.
Dim newFaculty As New Faculty()
newFaculty.faculty_id = "D19886"
newFaculty.faculty_name = "David Winner"
newFaculty.title = "Department Chair"
newFaculty.office = "MTC-333"
newFaculty.phone = "750-330-1255"
newFaculty.college = "University of Hawaii"
newFaculty.email = "dwinner@college.edu"

'Add the faculty to the Faculty table.
db.Faculties.InsertOnSubmit(newFaculty)
db.SubmitChanges()
'Query back the new inserted faculty member
Dim fi = db.Faculties.Where(Function(f) f.faculty_id = "D19886").First()
Console.WriteLine("{0}, {1}, {2}, {3}, {4}, {5}", fi.faculty_name, fi.title, fi.office, fi.phone, fi.college, fi.email)
'Reset the database by deleting the new inserted faculty
db.Faculties.DeleteOnSubmit(newFaculty)
db.SubmitChanges()

End Sub

A

B
C

D
E

F

G
H

QueryLINQSQL LINQInsert

c04.indd 205c04.indd 205 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

206 Chapter 4 Introduction to Language Integrated Query (LINQ)

D. The InsertOnSubmit() method is executed to add this new object into the Faculty entity
object (Faculty data table). One point to be noticed is that this new record can be added
into the Faculty table only after the next method SubmitChanges() is executed.

E. The method SubmitChanges() is executed to insert this new record into the database.

F. These two lines of codes are used to retrieve and display the newly inserted record to
confi rm our data insertion operation. Two Standard Query Operator methods, Where()
and First(), are used in this query.

G. To make our database clean, we need to delete this newly inserted record from our data-
base after this insertion is successful.

H. The newly inserted record is deleted after the method SubmitChanges() is executed.

 Next, let ’ s take care of the data updating query.

4.6.2.3 Data Updating Query

 To perform a data updating operation, the following operation sequence should be fol-
lowed regularly:

1. Child table: delete records.

2. Parent table: insert, update, and delete records.

3. Child table: insert and update records.

 For our sample database CSE_DEPT, all fi ve tables are related with different primary
keys and foreign keys. For example, among the LogIn, Faculty, and Course tables, the
faculty_id is a primary key in the Faculty table, but a foreign key in both LogIn and the
Course tables. In order to update or delete data from any of those tables, one needs to
follow the sequence above. As a case of updating or deleting a record against the database,
the following data operations need to be performed:

1. Update or delete those records that are foreign keys but are related to the primary
key in the parent table from the child tables, such as LogIn and Course tables,
respectively

2. Update or delete those records that are primary key from the parent table, such as Faculty
table

3. Finally, that updated record can be inserted into the child tables, such as LogIn and Course
tables, for the data updating operation. There are no data actions for the data deleting
operations for the child tables

 It would be terribly complicated if we try to update or delete a completed record
(including update or delete the primary key) for an existing data in our sample database
because of the relationships between the parent and child tables. We will provide a
detailed discussion about the data updating and deleting queries against a relational
database in Chapter 7 . In this section, to make it simple, we only show users how to update
a single entity class ’ s property (a single column in a data table).

 The following example codes show how to update the faculty_name column from
the Faculty table.

 Create a new subroutine LINQUpdate() in this project and enter the codes that are
shown in Figure 4.47 into this subroutine.

c04.indd 206c04.indd 206 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

4.6 LINQ to SQL 207

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A selection query is executed using the Standard Query Operator methods with the
faculty_id as the query criterion. The First() method is used to return only the fi rst matched
record. It does not matter for our application, since we have only one record that is associ-
ated with this specifi ed faculty_id .

B. Before the data updating query can be performed, the original record with the faculty_
name is displayed.

C. Update the faculty_name column to New Faculty .

D. This updating is offi cially effective after this SubmitChanges() method is executed.

E. The updated record is displayed again to compare with the original record.

F. This coding line is used to recover the faculty_name to its original value.

G. This recovery will be offi cially effective after the SubmitChanges() method is executed.

 Finally, let ’ s take care of the data deleting query.

4.6.2.4 Data Deletion Query

 Because of the data integrity in a relational database, deleting a record from a parent
table is very complicated, since all related records in the child tables must be deleted fi rst,
and then the record in the parent table can be deleted. Fortunately we can make this
deleting quite simple by using the Cascaded Deleting property we set up in our sample
database CSE_DEPT. Recall that in Sections 2.10.4.1 and 2.10.4.3 in Chapter 2 , we set
the Delete Rule as Cascade when we built the relationships between the LogIn and the
Faculty tables and between the Faculty and the Course tables in our sample database.
The purpose of this setup is to allow all related records in the child tables to be cascade
removed if an associated record in the parent table is deleted.

 To delete a record from a database using LINQ to SQL, one must delete the entity
object (equivalent to DataRow object) from the Table(Of T) of which it is a member with
the Table(Of T) object ’ s DeleteOnSubmit() method.

Figure 4.47. The codes for the LINQUpdate subroutine.

Private Sub LINQUpdate(ByRef db As CSE_DEPTDataContext)

Dim fi = db.Faculties.Where(Function(f) f.faculty_id = "B78880").First()

'Display the existing faculty information
Console.WriteLine("Before the Faculty table is updated...." & vbNewLine)
Console.WriteLine("{0}, {1}, {2}, {3}, {4}, {5}", fi.faculty_name, fi.title, fi.office, fi.phone, fi.college, fi.email)

'Update the faculty name.
fi.faculty_name = "New Faculty"
db.SubmitChanges()
Console.WriteLine(vbNewLine & "After the Faculty table is updated...." & vbNewLine)
Console.WriteLine("{0}, {1}, {2}, {3}, {4}, {5}", fi.faculty_name, fi.title, fi.office, fi.phone, fi.college, fi.email)

'Recover the original column for the Faculty table
fi.faculty_name = "Ying Bai"
db.SubmitChanges()

End Sub

A

B

C
D
E

F
G

QueryLINQSQL LINQUpdate

c04.indd 207c04.indd 207 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

208 Chapter 4 Introduction to Language Integrated Query (LINQ)

 The example codes in Figure 4.48 show how to delete a record from the Faculty table
that is a parent table and delete all related records from the child tables (LogIn and
Course) using the cascade property.

 Create a new subroutine LINQDelete() in this project, and enter the codes shown in
Figure 4.48 into this subroutine.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. First, a Select query is created and performed to retrieve a record from the Faculty table.
The query criterion is a specifi c faculty_id , B78880. The Standard Query Operator method
Single() is used to retrieve only a single row.

B. The queried row faculty is placed into the deleting pool with the DeleteOnSubmit()
method.

C. The selected record from the Faculty table as well as the related records from the child
tables, LogIn and Course , are deleted by executing the SubmitChanges() method.

D. To verify this deleting query, a similar Select query is performed again to try to pick up
the deleted record from the Faculty table. The Standard Query Operator method
SingleOrDefault() is used to make sure that either a matched single row or a default row
can be retrieved and returned from this query.

E. The returned result is displayed by executing the method Console.WriteLine().

 Now you can build and run this project to test all LINQ to SQL queries developed
in this project. A complete Visual Basic.NET Console project QueryLINQSQL can be
found in the folder DBProjects\Chapter 4 that is located at the Wiley ftp site (refer to
Fig. 1.2 in Chapter 1).

 One point to be noticed is that this deletion is a permanent deletion, which means
that if this query is performed, both the matched record in the parent (Faculty) table and
all related records in the child (LogIn and Course) tables will also be deleted perma-
nently. It is highly recommended that you recover these three tables by adding those
deleted records back to those tables as soon as you fi nished this deletion operation in
this project.

 As we mentioned, if you performed a deleting action from this project, you need to
recover those deleted records for the three tables. Now let ’ s fi rst open those three tables
to check what and how many records have been deleted after running this deletion query.

Figure 4.48. The codes for the LINQDelete subroutine.

Private Sub LINQDelete(ByRef db As CSE_DEPTDataContext)

Dim faculty As Faculty = (From fi In db.Faculties
Where fi.faculty_id = "B78880"
Select fi).Single()

db.Faculties.DeleteOnSubmit(faculty)
db.SubmitChanges()

'Try to retrieve back and display the deleted faculty information
Dim delfaculty As Faculty = (From fi In db.Faculties Where fi.faculty_id = "B78880" Select fi).SingleOrDefault()

Console.WriteLine("Faculty {0} found.", delfaculty)

End Sub

A

B
C

D

E

QueryLINQSQL LINQDelete

c04.indd 208c04.indd 208 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

4.6 LINQ to SQL 209

 Depending on how you use this sample database in this project, different databases
should be opened. If you integrate this database with your project, the database fi le
CSE_DEPT.mdf should be located at the folder: C:\Chapter 4\QueryLINQSQL\
QueryLINQSQL\bin\Debug . If you did not integrate this database with your project, the
database fi le may be located at the folder C:\database\SQLServer . You need to go to
the folder in which you stored this sample database fi le if you save it in any other
location.

 Open the Microsoft SQL Server Management Studio Express and expand the
Databases folder to fi nd our database. Then expand the database to locate all data tables
by expanding the Tables folder. Right - click a data table and select the Edit Top 200
Rows item to open that table. We need to open the following three tables, Faculty , LogIn ,
and Course .

 On the opened Faculty table, you can fi nd that one record whose faculty_id is
B78880 has been deleted from this table. The deleted record is shown in Table 4.3 . On
the opened LogIn table, you can fi nd that one record whose user_name is ybai has also
been removed from this table, and the removed record is shown in Table 4.4 . On the
opened Course table, you can fi nd that the following courses whose faculty_id is B78880
have been deleted from this table. Those deleted course records are shown in Table 4.5 .

 Recover those deleted records for these three tables by adding each record shown
in Tables 4.3 – 4.5 into the associated table in Microsoft SQL Server Management Studio
Express. The recovery order is:

1. Recover deleted data in the primary table Faculty fi rst

2. Recover deleted data in the child tables, such as LogIn and Course

 Close the Microsoft SQL Server Management Studio Express when this recovery job
is done.

Table 4.3. Deleted record from the Faculty table

faculty_id faculty_name office phone college title email

B78880 Ying Bai MTC-211 750-378-1148 Florida Atlantic University Associate Professor ybai@college.edu

Table 4.4. Deleted record from the LogIn table

user_name pass_word faculty_id student_id

ybai reback B78880

Table 4.5. Deleted records from the Course table

course_id course credit classroom schedule enrollment faculty_id

CSC-132B Introduction to Programming 3 TC-302 T-H: 1:00-2:25 PM 21 B78880

CSC-234A Data Structure & Algorithms 3 TC-302 M-W-F: 9:00-9:55 AM 25 B78880

CSE-434 Advanced Electronics Systems 3 TC-213 M-W-F: 1:00-1:55 PM 26 B78880

CSE-438 Advd Logic & Microprocessor 3 TC-213 M-W-F: 11:00-11:55 AM 35 B78880

c04.indd 209c04.indd 209 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

210 Chapter 4 Introduction to Language Integrated Query (LINQ)

4.6.3 LINQ to SQL Implementations

 Quite a few real projects that use LINQ to SQL queries will be developed in the follow-
ing chapters in this book, and those projects are categorized based on the following
chapters:

 LINQ to SQL Select query projects: Chapters 5 , 8 , and 9

 LINQ to SQL Insert query projects: Chapters 6 , 8 , and 9

 LINQ to SQL Update query projects: Chapters 7 , 8 , and 9

 LINQ to SQL Delete query projects: Chapters 7 , 8 , and 9

 Refer to those chapters to get more detailed information and related coding develop-
ments for those projects.

4.7 LINQ TO ENTITIES

 As we mentioned in the introduction to LINQ section, LINQ to Entities belongs to LINQ
to ADO.NET, and it is a subcomponent of LINQ to ADO.NET.

 LINQ to Entities queries are performed under the control of the ADO.NET 4.0
Entity Framework (ADO.NET 4.0 EF) and ADO.NET 4.0 Entity Framework Tools
(ADO.NET 4.0 EFT). ADO.NET 4.0 EF enables developers to work with data in the
form of domain - specifi c objects and properties, such as customers and customer addresses,
without having to think about the underlying database tables and columns where this
data is stored. To access and implement ADO.NET 4.0 EF and ADO.NET 4.0 EFT,
developers need to understand the EDM that is a core of ADO.NET 4.0 EF. LINQ allows
developers to formulate set - based queries in their application code without having to use
a separate query language. Through the Object Services infrastructure of Entity
Framework, ADO.NET exposes a common conceptual view of data, including relational
data, as objects in the .NET environment. This makes the object layer an ideal target for
LINQ support.

 This LINQ technology, LINQ to Entities, allows developers to create fl exible, strongly
typed queries against the Entity Framework object context by using LINQ expressions
and the LINQ standard query operators directly from the development environment. The
queries are expressed in the programming language itself and not as string literals embed-
ded in the application code, as is usually the case in applications written on Microsoft .
NET Framework 4.0. Syntax errors, as well as errors in member names and data types,
will be caught by the compiler and reported at compile time, reducing the potential for
type problems between the EDM and the application.

 LINQ to Entities queries use the Object Services infrastructure. The ObjectContext
class is the primary class for interacting with an EDM as CLR objects. The developer
constructs a generic ObjectQuery instance through the ObjectContext. The ObjectQuery
generic class represents a query that returns an instance or collection of typed
entities. The returned entity objects are updatable and are located in the object
context. This is also true for entity objects that are returned as members of anony-
mous types.

c04.indd 210c04.indd 210 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

4.7 LINQ to Entities 211

4.7.1 The Object Services Component

 Object Services is a component of the Entity Framework that enables you to query, insert,
update, and delete data, expressed as strongly typed CLR objects that are instances of
entity types. Object Services supports both LINQ and Entity SQL queries against types
defi ned in an EDM. Object Services materializes returned data as objects, and propagates
object changes back to the persisted data store. It also provides facilities for tracking
changes, binding objects to controls, and handling concurrency. Object Services is imple-
mented by classes in the System.Data.Objects and System.Data.Objects.DataClasses
namespaces.

4.7.2 The ObjectContext Component

 The ObjectContext class encapsulates a connection between the .NET Framework and
the database. This class serves as a gateway for Create, Read, Update, and Delete opera-
tions, and it is the primary class for interacting with data in the form of objects that are
instances of entity types defi ned in an EDM. An instance of the ObjectContext class
encapsulates the following:

 • A connection to the database, in the form of an EntityConnection object.

 • Metadata that describes the model, in the form of a MetadataWorkspace object.

 • An ObjectStateManager object that manages objects that persist in the cache.

 The Entity Framework tools consume a conceptual schema defi nition language
(CSDL) fi le from a relational database and generate the object - layer code. This code is
used to work with entity data as objects and to take advantage of Object Services func-
tionality. This generated code includes the following data classes:

 • A class that represents the EntityContainer for the model and is derived from ObjectContext,

 • Classes that represent entities and inherit from EntityObject.

4.7.3 The ObjectQuery Component

 The ObjectQuery generic class represents a query that returns a collection of zero or
more typed entities. An object query always belongs to an existing object context. This
context provides the connection and metadata information that is required to compose
and execute the query.

4.7.4 LINQ to Entities Flow of Execution

 Queries against the Entity Framework are represented by command tree queries, which
execute against the object context. LINQ to Entities converts LINQ queries to command
tree queries, executes the queries against the Entity Framework, and returns objects that
can be used by both the Entity Framework and LINQ. The following is the process for
creating and executing a LINQ to Entities query:

c04.indd 211c04.indd 211 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

212 Chapter 4 Introduction to Language Integrated Query (LINQ)

1. Construct an ObjectQuery instance from ObjectContext.

2. Compose a LINQ to Entities query in Visual Basic by using the ObjectQuery instance.

3. LINQ Standard Query Operators and expressions in query are converted to command trees.

4. The query, in command tree representation, is executed against the data store. Any excep-
tions thrown on the data store during execution are passed directly up to the client.

5. Query results are materialized back to the client.

 Let ’ s have a little detailed discussion for each of these steps.

4.7.4.1 Construct an ObjectQuery Instance

 The ObjectQuery generic class represents a query that returns a collection of zero or
more typed entities. An object query is typically constructed from an existing object
context, instead of being manually constructed, and always belongs to that object context.
This context provides the connection and metadata information that is required to
compose and execute the query. The ObjectQuery generic class implements the IQueryable
generic interface, whose builder methods enable LINQ queries to be incrementally built.

4.7.4.2 Compose a LINQ to Entities Query

 Instances of the ObjectQuery generic class, which implements the generic IQueryable
interface, serve as the data source for LINQ to Entities queries. In a query, you specify
exactly the information that you want to retrieve from the data source. A query can also
specify how that information should be sorted, grouped, and shaped before it is returned.
In LINQ, a query is stored in a variable. This query variable takes no action and returns
no data; it only stores the query information. After you create a query, you must execute
that query to retrieve any data.

 LINQ to Entities queries can be composed in two different syntaxes: query expres-
sion syntax and method - based query syntax. We have provided a very detailed discussion
about the query expression syntax and method - based query syntax with real example
codes in Sections 4.5.1.1 and 4.5.1.2 in this chapter. Refer to those sections to get a clearer
picture for these two syntaxes.

4.7.4.3 Convert the Query to Command Trees

 To execute a LINQ to Entities query against the Entity Framework, the LINQ query
must be converted to a command tree representation that can be executed against the
Entity Framework.

 LINQ to Entities queries are comprised of LINQ Standard Query Operators (such
as Select, Where, and Order By) and expressions. LINQ Standard Query Operators are
not defi ned by a class, but rather are static methods on a class. In LINQ, expressions can
contain anything allowed by types within the System.Expressions namespace, and, by
extension, anything that can be represented in a lambda function. This is a superset of
the expressions that are allowed by the Entity Framework, which are by defi nition
restricted to operations allowed on the database and supported by ObjectQuery.

 In the Entity Framework, both operators and expressions are represented by a single
type hierarchy, which are then placed in a command tree. The command tree is used by

c04.indd 212c04.indd 212 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

4.7 LINQ to Entities 213

the Entity Framework to execute the query. If the LINQ query cannot be expressed as a
command tree, an exception will be thrown when the query is being converted. The con-
version of LINQ to Entities queries involves two subconversions: the conversion of the
Standard Query Operators and the conversion of the expressions. In general, expressions
in LINQ to Entities are evaluated on the server, so the behavior of the expression should
not be expected to follow CLR semantics.

 An example of an expression used in LINQ to Entities is shown in Figure 4.49 .

4.7.4.4 Execute the Query

 After the LINQ query is created by the user, it is converted to a representation that is
compatible with the Entity Framework (in the form of command trees), which is then
executed against the store. At query execution time, all query expressions (or components
of the query) are evaluated on the client or on the server. This includes expressions that
are used in result materialization or entity projections.

 A query expression can be executed in two ways. LINQ queries are executed each
time the query variable is iterated over, not when the query variable is created; this is
referred to as deferred execution. The query can also be forced to execute immediately,
which is useful for caching query results. The example shown in Figure 4.50 uses Select
to return all the rows from Faculty and display the faculty names. Iterating over the query
variable in the For Each loop causes the query to execute.

 When a LINQ to Entities query is executed, some expressions in the query might be
executed on the server, and some parts might be executed locally on the client. Client - side
evaluation of an expression takes place before the query is executed on the server. If an
expression is evaluated on the client, the result of that evaluation is substituted for the
expression in the query, and the query is then executed on the server. Because queries
are executed on the data store, the data store confi guration overrides the behavior speci-
fi ed in the client. Null value handling and numerical precision are examples of this.
Any exceptions thrown during query execution on the server are passed directly up to
the client.

Figure 4.49. An example of expression used in LINQ to Entities.

Dim FacultyInfo As IQueryable(Of String) = From fi In Faculties
Where fi.faculty_id = "B78880"
Select fi.faculty_name

Figure 4.50. An example of executing the query.

Dim faculties As ObjectQuery(Of Faculty) = cse_dept.Faculty

Dim FacultyNames As IQueryable(Of String) = From f In faculties
Select f.faculty_name

Console.WriteLine("Faculty Names:")
For Each fName In FacultyNames

Console.WriteLine(fName)
Next

c04.indd 213c04.indd 213 4/25/2012 1:57:16 PM4/25/2012 1:57:16 PM

214 Chapter 4 Introduction to Language Integrated Query (LINQ)

4.7.4.5 Materialize the Query

 Materialization is the process of returning query results back to the client as CLR types.
In LINQ to Entities, query results of data records are never returned; there is always a
backing CLR type, defi ned by the user or by the Entity Framework, or generated by the
compiler (anonymous types). All object materialization is performed by the Entity
Framework. Any errors that result from an inability to map between the Entity Framework
and the CLR will cause exceptions to be thrown during object materialization.

 Query results are usually returned as one of the following:

 • A collection of zero or more typed entity objects or a projection of complex types in the
EDM.

 • CLR types supported by the EDM.

 • Inline collections.

 • Anonymous types.

 • IGrouping instances.

 • IQueryable instances.

 A simplifi ed structure of LINQ to Entities is shown in Figure 4.51 .
 We have provided a very detailed discussion about the structure and components

used in LINQ to Entities query; next, we need to illustrate these by using some
examples.

4.7.5 Implementation of LINQ to Entities

 In order to use LINQ to Entities query to perform data actions against databases, one
needs to have a clear picture about the infrastructure and fully understanding about
components used in LINQ to Entities. In Section 3.4.8 in Chapter 3 , we have provided a
very detailed discussion about the ADO.NET Entity Framework 4.1 and ADO.NET 4.0
EDM, including the EDM Wizard, EDM Designer, and Entity Model Browser with a real
example project EDModle . Review that section to get more details for the implementa-
tion of LINQ to Entities. A complete example project EDModel that uses LINQ to
Entities query can be found in the folder DBProjects\Chapter 5 located at the Wiley ftp
site (refer to Fig. 1.2 in Chapter 1).

Figure 4.51. A simplifi ed structure of LINQ to Entities.

ObjectQuery ObjectContext

Entity
Data

Model

Standard
Query

Operators

Object Services

Compiling time

Database

c04.indd 214c04.indd 214 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

4.8 LINQ to XML 215

4.8 LINQ TO XML

 LINQ to XML was developed with LINQ over XML in mind and takes advantage of
standard query operators and adds query extensions specifi c to XML. LINQ to XML is
a modernized in - memory XML programming API designed to take advantage of the
latest .NET Framework language innovations. It provides both DOM and XQuery/XPath
like functionality in a consistent programming experience across the different LINQ -
 enabled data access technologies.

 There are two major perspectives for thinking about and understanding LINQ to
XML. From one perspective, you can think of LINQ to XML as a member of the LINQ
Project family of technologies, with LINQ to XML providing an XML LINQ capability
along with a consistent query experience for objects, relational database (LINQ to SQL,
LINQ to DataSet, LINQ to Entities), and other data access technologies as they become
LINQ - enabled. From another perspective, you can think of LINQ to XML as a full -
 feature in - memory XML programming API comparable with a modernized, redesigned
Document Object Model (DOM) XML Programming API, plus a few key features from
XPath and XSLT.

 LINQ to XML is designed to be a lightweight XML programming API. This is true
from both a conceptual perspective, emphasizing a straightforward, easy - to - use program-
ming model, and from a memory and performance perspective. Its public data model is
aligned as much as possible with the W3C XML Information Set.

4.8.1 LINQ to XML Class Hierarchy

 First, let ’ s have a global picture about the LINQ to XML Class Hierarchy that is shown
in Figure 4.52 .

 The following important points should be noticed when studying this class
hierarchy:

1. Although XElement is low in the class hierarchy, it is the fundamental class in LINQ to
XML. XML trees are generally made up of a tree of XElements. XAttributes are name/

Figure 4.52. The LINQ to XML class hierarchy.

XObject XDeclaration XName XNamespace

XNode XAttribute

XCData XText XComment XContainer XDocumentType XProcessingInstruction

XDocument XElement

c04.indd 215c04.indd 215 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

216 Chapter 4 Introduction to Language Integrated Query (LINQ)

value pairs associated with an XElement. XDocuments are created only if necessary, such
as to hold a DTD or top - level XML processing instruction (XProcessingInstruction). All
other XNodes can only be leaf nodes under an XElement, or possibly an XDocument (if
they exist at the root level).

2. XAttribute and XNode are peers derived from a common base class XObject. XAttributes
are not XNodes because XML attributes are really name value pairs associated with an
XML element, not nodes in the XML tree. Contrast this with W3C DOM.

3. XText and XCData are exposed in this version of LINQ to XML, but as discussed above,
it is best to think of them as a semi - hidden implementation detail except when exposing
text nodes is necessary. As a user, you can get back the value of the text within an element
or attribute as a string or other simple value.

4. The only XNode that can have children is an XContainer, meaning either an XDocument
or XElement. An XDocument can contain an XElement (the root element), an XDeclaration,
an XDocumentType, or an XProcessingInstruction. An XElement can contain another
XElement, an XComment, an XProcessingInstruction, and text (which can be passed in a
variety of formats, but will be represented in the XML tree as text).

 In addition to this class hierarchy, some other important components applied in XML
also play key roles in LINQ to XML. One of them is the XML names.

 XML names, often a complex subject in XML programming APIs, are represented
simply in LINQ to XML. An XML name is represented by an XNamespace object (which
encapsulates the XML namespace URI) and a local name. An XML namespace serves
the same purpose that a namespace does in your .NET Framework - based programs,
allowing you to uniquely qualify the names of your classes. This helps ensure that you
don ’ t run into a name confl ict with other users or built - in names. When you have identi-
fi ed an XML namespace, you can choose a local name that needs to be unique only within
your identifi ed namespace.

4.8.2 Manipulate XML Elements

 LINQ to XML provides a full set of methods for manipulating XML. You can insert,
delete, copy, and update XML content. Before we can continue to discuss these data
actions, fi rst, we need to illustrate how to create a sample XML element fi le using LINQ
to XML.

4.8.2.1 Creating XML from Scratch

 LINQ to XML provides a powerful approach to creating XML elements. This is referred
to as functional construction. Functional construction lets you create all or part of your
XML tree in a single statement. For example, to create a faculties XElement , you could
use the code shown in Figure 4.53 .

 By indenting, the XElement constructor resembles the structure of the underlying
XML. Functional construction is enabled by an XElement constructor that takes a
params object. An example of the Functional construction is shown below.

 public XElement(XName faculty_name, params object[] contents)

c04.indd 216c04.indd 216 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

4.8 LINQ to XML 217

Figure 4.53. A sample XML fi le created using LINQ to XML.

Dim faculties As XElement = New XElement("faculties",
New XElement("faculty",
New XElement("faculty_name", "Patrick Tones"),
New XElement("phone", "750-378-0144"),
New XElement("title", "Associate Professor"),
New XElement("office", "MTC-387"),
New XElement("college", "Main University"),
New XElement("email", "ptones@college.edu"),
New XElement("faculty_id", "P68042")))

 The contents parameter is extremely fl exible, supporting any type of object that is
a legitimate child of an XElement. Parameters can be any of the following:

 • A string, which is added as text content. This is the recommended pattern to add a string as
the value of an element; the LINQ to XML implementation will create the internal XText
node.

 • An XText, which can have either a string or CData value, added as child content. This is
mainly useful for CData values; using a string is simpler for ordinary string values.

 • An XElement, added as a child element.

 • An XAttribute, added as an attribute.

 • An XProcessingInstruction or XComment, which is added as child content.

 • An IEnumerable, which is enumerated, and these rules are applied recursively.

 • Anything else, ToString() is called, and the result is added as text content.

 • null , which is ignored.

 The term CDATA, meaning character data , is used for distinct, but related purposes
in the markup languages SGML and XML. The term indicates that a certain portion of
the document is general character data , rather than noncharacter data or character data
with a more specifi c, limited structure.

 In the above example showing functional construction, a string (“ Patrick Tones ”) is
passed into the faculty_name XElement constructor. This could have been a variable
(e.g., new XElement(“ faculty_name ” , facultyName)), it could have been a different type
besides string (for example, new XElement(“ quantity ” , 55)), and it could have been the
result of a function call like one shown in Figure 4.54 .

 It could also have even been an IEnumerable (Of XElement) . For example, a common
scenario is to use a query within a constructor to create the inner XML. The code shown
in Figure 4.55 reads faculties from an array of Person objects into a new XML element
faculties .

 Notice how the inner body of the XML, the repeating faculty element, and, for each
faculty , the repeating phone , were generated by queries that return an IEnumerable.

 When an objective of your program is to create an XML output, functional construc-
tion lets you begin with the end in mind. You can use functional construction to shape
your goal output document and either create the subtree of XML items inline, or call out
to functions to do the work.

c04.indd 217c04.indd 217 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

218 Chapter 4 Introduction to Language Integrated Query (LINQ)

 Functional construction is instrumental in transforms , which belongs to XML
Transformation. Transformation is a key usage scenario in XML, and functional construc-
tion is well - suited for this task.

 Now, let ’ s use this sample XML fi le to discuss the data manipulations using LINQ
to XML.

4.8.2.2 Insert XML

 You can easily add content to an existing XML tree. To add another phone XElement,
one can use the Add() method that is shown in section A in Figure 4.56 .

 This code fragment will add the mobilePhone XElement as the last child of faculty.
If you want to add to the beginning of the children, you can use AddFirst() . If you want
to add the child in a specifi c location, you can navigate to a child before or after your
target location by using AddBeforeSelf() or AddAfterSelf() . For example, if you wanted
mobilePhone to be the second phone , you could do the coding that is shown in section
B in Figure 4.56 .

 Let ’ s take a look a little deeper at what is happening behind the scenes when adding
an element child to a parent element. When you fi rst create an XElement, it is unparented .
If you check its Parent property, you will get back null , which is shown in section C in
Figure 4.56 .

 When you use the Add() method to add this child element to the parent, LINQ to
XML checks to see if the child element is unparented; if so, LINQ to XML parents the

Figure 4.55. A sample query using LINQ to XML.

Class Person

Public faculty_name As String
Public PhoneNumbers As String()

End Class

Sub Main()

Dim persons As Person() = {New Person With {.faculty_name = "Patrick Tones", .PhoneNumbers = {"750-555-0144",
"750-555-0145"}}, New Person With {.faculty_name = "Gretchen Rivas", .PhoneNumbers =
{"750-555-0163"}}}

Dim faculties As XElement = New XElement("faculties", From f In persons
Select New XElement("faculty",
New XElement("fname", f.faculty_name),
From p In f.PhoneNumbers
Select New XElement("phone", p)))

Console.WriteLine(faculties)
End Sub

Figure 4.54. A sample functional construction.

……
Dim qty As XElement = New XElement("quantity", GetQuantity())

……
Public Function GetQuantity() As Integer

Return 55
End Function

c04.indd 218c04.indd 218 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

4.8 LINQ to XML 219

Figure 4.56. Some sample codes of using LINQ to XML to insert XML.

Dim mobilePhone As XElement = New XElement("phone", "750-555-0168")
faculty.Add(mobilePhone)

Dim mobilePhone As XElement = New XElement("phone", "750-555-0168")
Dim firstPhone As XElement = faculty.Element("phone")
firstPhone.AddAfterSelf(mobilePhone)

Dim mobilePhone As XElement = New XElement("phone", "750-555-0168")
Console.WriteLine(mobilePhone.Parent) 'will print out null

faculty.Add(mobilePhone)
Console.WriteLine(mobilePhone.Parent) 'will print out faculty

faculty2.Add(mobilePhone)

faculty2.Add(New XElement(mobilePhone))

A

B

C

D

E

F

child element by setting the child ’ s Parent property to the XElement that Add() was
called on. Section D in Figure 4.56 shows this situation.

 This is a very effi cient technique that is extremely important, since this is the most
common scenario for constructing XML trees.

 To add mobilePhone to another faculty, such as faculty2 , refer to the codes shown
in section E in Figure 4.56 .

 Again, LINQ to XML checks to see if the child element is parented. In this case, the
child is already parented. If the child is already parented, LINQ to XML clones the child
element under subsequent parents. This situation can be illustrated by the codes that are
shown in section F in Figure 4.56 .

4.8.2.3 Update XML

 To update XML, you can navigate to the XElement whose contents you want to replace,
and then use the ReplaceNodes() method. For example, if you wanted to change the
phone number of the fi rst phone XElement of a faculty , you could do the codes that are
shown in section A in Figure 4.57 .

 The method SetElement() is designed to work on simple content. With the
SetElement(), you can operate on the parent. For example, we could have performed the
same update we demonstrated above on the fi rst phone number by using the code that
is shown in section B in Figure 4.57 .

Figure 4.57. Some sample codes of using LINQ to XML to update XML.

faculty.Element("phone").ReplaceNodes("750-555-0155")

faculty.SetElement("phone", "750-555-0155")

faculty.SetElement("office", "MTC-119")

faculty.SetElement("office", null)

A

B

C

D

c04.indd 219c04.indd 219 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

220 Chapter 4 Introduction to Language Integrated Query (LINQ)

 The results would be identical. If there had been no phone numbers, an XElement
named “ phone ” would have been added under faculty . For example, you might want to
add an offi ce to the faculty . If an offi ce is already there, you can update it. If it does not
exist, you can insert it. This situation is shown in section C in Figure 4.57 .

 Also, if you use SetElement() with a value of null , the selected XElement will be
deleted. You can remove the offi ce element completely by using the code that is shown
in section D in Figure 4.57 . Attributes have a symmetric method called SetAttribute(),
which has similar functionality as SetElement().

4.8.2.4 Delete XML

 To delete XML elements, navigate to the content you want to delete and call the Remove()
method. For example, if you want to delete the fi rst phone number for a faculty , enter
the following code that is shown in section A in Figure 4.58 .

 The Remove() method also works over an IEnumerable, so you could delete all of
the phone numbers for a faculty in one call that is shown in section B in Figure 4.58 .

 You can also remove all of the content from an XElement by using the RemoveNodes()
method. For example, you could remove the content of the fi rst faculty ’ s fi rst offi ce with
the statement that is shown in section C in Figure 4.58 .

 Another way to remove an element is to set it to null using the SetElement() method,
which we talked about in the last section, Update XML. An example code is shown in
section D in Figure 4.58 .

4.8.3 Manipulate XML Attributes

 There is substantial symmetry between working with XElement and XAttribute classes.
However, in the LINQ to XML class hierarchy, XElement and XAttribute are quite
distinct and do not derive from a common base class. This is because XML attributes are
not nodes in the XML tree; they are unordered name/value pairs associated with an XML
element. LINQ to XML makes this distinction, but in practice, working with XAttribute
is quite similar to working with XElement. Considering the nature of an XML attribute,
where they diverge is understandable.

4.8.3.1 Add XML Attributes

 Adding an XAttribute is very similar to adding a simple XElement. In the sample XML
that is shown in Figure 4.59 , notice that each phone number has a type attribute that states
whether this is a home, work, or mobile phone number.

Figure 4.58. Some sample codes of using LINQ to XML to delete XML.

faculty.Element("phone").Remove()

faculty.Elements("phone").Remove()

faculties.Element("faculty").Element("office").RemoveNodes()

faculty.SetElement("phone", null)

A

B

C

D

c04.indd 220c04.indd 220 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

4.8 LINQ to XML 221

 You create an XAttribute by using functional construction the same way you would
create an XElement with a simple type. To create a faculty using functional construction,
enter the codes that are shown in Figure 4.60 .

 Just as you use the SetElement() method to update, add, or delete elements with
simple types, you can do the same using the SetAttribute(XName, object) method on
XElement. If the attribute exists, it will be updated. If the attribute does not exist, it will
be added. If the value of the object is null , the attribute will be deleted.

4.8.3.2 Get XML Attributes

 The primary method for accessing an XAttribute is by using the Attribute(XName)
method on XElement. For example, to use the type attribute to obtain the contact ’ s home
phone number, one can use the piece of codes that are shown in section A in Figure 4.61 .

 Notice that how the Attribute(XName) works similarly to the Element(XName)
method. Also, notice that there are some differences between the Attribute() and the
SetAttributeValue() methods.

Figure 4.59. A sample XML attributes.

Dim Faculty = <faculties>
<faculty>

<faculty_name>Patrick Tones</faculty_name>
<phone type="home">750-555-0144</phone>
<phone type="work">750-555-0145</phone>

</faculty>

Figure 4.60. A sample code to create an XAttribut.

Dim faculty As XElement = New XElement("faculty",
New XElement("faculty_name", "Patrick Tones"),
New XElement("phone",
New XAttribute("type", "home"), "750-555-0144"),
New XElement("phone", New XAttribute("type", "work"), "750-555-0145"))

Figure 4.61. A sample code to get and delete an XAttribut.

For Each p In faculty.Elements("phone")
If p.Attribute("type") = "home" Then

Console.Write("Home phone is: " & p.ToString)
End If

Next

faculty.Elements("phone").First().Attribute("type").Remove()

faculty.Elements("phone").First().SetAttributeValue("type", DBNull.Value)

A

B

C

c04.indd 221c04.indd 221 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

222 Chapter 4 Introduction to Language Integrated Query (LINQ)

4.8.3.3 Delete XML Attributes

 If you want to delete an attribute, you can use the Remove() or SetAttributeValue(XName,
Object.Value) method passing null as the value of object. For example, to delete the type
attribute from the fi rst phone using the Remove() method, use the code that is shown in
section B in Figure 4.61 .

 Alternatively, you can use the SetAttributeValue() method with a DBNull.Value
argument to perform this deleting operation. An example code is shown in section C in
Figure 4.61 .

 We have provided a very detailed discussion about the basic components on manipu-
lating XML elements and attributes, now let ’ s go a little deep on the query XML with
LINQ to XML.

4.8.4 Query XML with LINQ to XML

 The major differentiator for LINQ to XML and other in - memory XML programming
APIs is LINQ. LINQ provides a consistent query experience across different data models,
as well as the ability to mix and match data models within a single query. This section
describes how to use LINQ with XML. The following section contains a few examples of
using LINQ across data models.

 Standard query operators form a complete query language for IEnumerable(Of T).
Standard query operators show up as extension methods on any object that implements
IEnumerable(Of T) and can be invoked like any other method. This approach, calling
query methods directly, can be referred to as explicit dot notation. In addition to standard
query operators are query expressions for fi ve common query operators:

 • Where

 • Select

 • SelectMany

 • OrderBy

 • GroupBy

 Query expressions provide an ease - of - use layer on top of the underlying explicit dot
notation similar to the way that foreach is an ease - of - use mechanism that consists of a
call to GetEnumerator() and a While loop. When working with XML, you will probably
fi nd both approaches useful. An orientation of the explicit dot notation will give you the
underlying principles behind XML LINQ, and help you to understand how query expres-
sions simplify things.

 The LINQ to XML integration with Language - Integrated Query is apparent in
three ways:

1. Leveraging standard query operators

2. Using XML query extensions

3. Using XML transformation

 The fi rst is common with any other LINQ enabled data access technology and con-
tributes to a consistent query experience. The last two provide XML - specifi c query and
transform features.

c04.indd 222c04.indd 222 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

4.8 LINQ to XML 223

4.8.4.1 Standard Query Operators and XML

 LINQ to XML fully leverages standard query operators in a consistent manner exposing
collections that implement the IEnumerable interface. We have provided a very detailed
discussion about the Standard Query Operators in Sections 4.1.2 , 4.1.3 , and 4.1.4 in this
chapter.

 Review those sections for details on how to use standard query operators. In this
section, we will cover two scenarios that occasionally arise when using standard query
operators.

 First, let ’ s create a XElement with multiple elements that can be queried by using a
single Select Standard Query Operator. Enter the codes that are shown in Figure 4.62
to create this sample XElement.

 In this XElement, the faculty information is directly created under the root < facul-
ties> element rather than under each separate < faculty > elements. In this way, we fl atten
out our faculty list and make it simple to be queried.

 To use the Standard Query Operator Select to perform the LINQ to XML query,
you can use a piece of sample codes that are shown in Figure 4.63 . Notice that we used

Figure 4.62. A sample code to create an XElement.

Dim faculties = <Faculties>
<!-- contact -->
<faculty_name>Patrick Tones</faculty_name>
<phone type="home">750-555-0144</phone>
<phone type="work">750-555-0145</phone>
<office>MTC-319</office>
<title>Associate Professor</title>
<email>ptones@college.edu</email>
<!-- contact -->
<faculty_name>Greg River</faculty_name>
<office>MTC-330</office>
<title>Assistant Professor</title>
<email>griver@college.edu</email>
<!-- contact -->
<faculty_name>Scott Money</faculty_name>
<phone type="home">750-555-0134</phone>
<phone type="mobile">750-555-0177</phone>
<office>MTC-335</office>
<title>Professor</title>
<email>smoney@college.edu</email>

</Faculties>

Figure 4.63. A sample code to perform the query to an XElement.

Dim f As New XElement("Faculties",
From c In faculties.Elements("faculty")
Select New Object() _
{

New XComment("faculty"),
New XElement("faculty_name", c.Element("faculty_name")), c.Elements("phone"),
New XElement("office", c.Element("office"))

})

c04.indd 223c04.indd 223 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

224 Chapter 4 Introduction to Language Integrated Query (LINQ)

an array initializer to create the sequence of children that will be placed directly under
the faculty element.

4.8.4.2 XML Query Extensions

 XML - specifi c query extensions provide you with the query operations you would expect
when working in an XML tree data structure. These XML - specifi c query extensions are
analogous to the XPath axes. For example, the Elements() method is equivalent to the
XPath * (star) operator. The following sections describe each of the XML - specifi c query
extensions in turn.

 The Elements query operator returns the child elements for each XElement in a
sequence of XElements (IEnumerable[Of XElement]). For example, to get the child ele-
ments for every faculty in the faculty list, you could do the following:

 For Each fi As XElement In faculties.Elements(″ Faculties ″).Elements()
 Console.WriteLine(fi)
 Next

 Note that the two Elements() methods used in this example are different, although
they do identical things. The fi rst Elements is calling the XElement method Elements(),
which returns an IEnumerable(Of XObject) containing the child elements in the single
XElement faculties. The second Elements() method is defi ned as an extension method
on IEnumerable(Of XObject). It returns a sequence containing the child elements of
every XElement in the list.

 If you want all of the children with a particular name, you can use the Elements(XName)
overload. A piece of sample codes is shown below:

 For Each pi As XElement In faculties.Elements(″ Faculties ″).Elements(″ phone ″)
 Console.WriteLine(pi)
 Next

 This would return all phone numbers related to all children.

4.8.4.3 Using Query Expressions with XML

 There is nothing unique in the way that LINQ to XML works with query expressions, so
we will not repeat information in here. The following shows a few simple examples of
using query expressions with LINQ to XML.

 The query shown in section A in Figure 4.64 retrieves all of the offi ces from the
faculties , orders them by faculty_name , and then returns them as String (the result of
this query is IEnumerable(Of string)).

 The query shown in section B in Figure 4.64 retrieves all faculty members from faculty
that have the faculty_id that starts from B and have an area code of 750 ordered by the
faculty_name . The result of this query is IEnumerable(Of XElement).

 Another example shown in section C in Figure 4.64 retrieving the students that have
a gpa that is greater than the average gpa.

c04.indd 224c04.indd 224 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

4.8 LINQ to XML 225

4.8.4.4 Using XPath and XSLT with LINQ to XML

 LINQ to XML supports a set of “ bridge classes ” that allow it to work with existing capa-
bilities in the System.Xml namespace, including XPath and XSLT. A point to be noticed
is that System.Xml supports only the 1.0 version of these specifi cations in “ Orcas. ”

 Extension methods supporting XPath are enabled by referencing the System.Xml.
XPath namespace by adding this namespace typing: Imports System.Xml.XPath in the
namespace declaration section on the code window of each project.

 This brings into scope CreateNavigator overloads to create XpathNavigator objects,
XPathEvaluate overloads to evaluate an XPath expression, and XPathSelectElement[s]
overloads that work much like SelectSingleNode and XPatheXelectNodes methods in
the System.Xml DOM API. To use namespace - qualifi ed XPath expressions, it is neces-
sary to pass in a NamespaceResolver object, just as with DOM.

 For example, to display all elements with the name “ phone ” , the following codes can
be developed:

 For Each phone In faculties.XPathSelectElements(″ //phone ″)

 Console.WriteLine(phone)

 Next

 Likewise, XSLT is enabled by referencing the System.Xml.Xsl namespace by
typing: Imports System.Xml.Xsl in the namespace declaration section on the code
window of each project. That allows you to create an XPathNavigator using the
XDocumentCreateNavigator() method and pass it to the Transform() method.

4.8.4.5 Mixing XML and Other Data Models

 LINQ provides a consistent query experience across different data models via standard
query operators and the use of Lambda Expressions that will be discussed in the next
section. It also provides the ability to mix and match LINQ enabled data models/APIs
within a single query. This section provides a simple example of two common scenarios
that mix relational data with XML, using our CSE_DEPT sample database.

Figure 4.64. A sample code to perform the query using query expressions with XML.

Dim query = From fi In faculties.Elements("faculty")
Where fi.Element("office") = "MTC-3.*"
Order By f.Element("faculty_name")
Select fi.Element("faculty_name")

Dim query = From fi In faculties.Elements("faculty"), p In fi.Elements("phone")
Where fi.Element("faculty_id") = "B.*" & p.Value.StartsWith("750")
Order By fi.Element("faculty_name")
Select fi

Dim query = From s In students.Elements("student"), average In students.Elements("student").
Average(Function(x As Integer) x.Element("gpa"))
Where (s.Element("gpa") > average)
Select s

A

B

C

c04.indd 225c04.indd 225 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

226 Chapter 4 Introduction to Language Integrated Query (LINQ)

4.8.4.5.1 Reading from a Database to XML Figure 4.65 shows a simple example of
reading from the CSE_DEPT database (using LINQ to SQL) to retrieve the faculties
from the Faculty table, and then transforming them into XML.

4.8.4.5.2 Reading XML and Updating a Database You can also read XML and put
that information into a database. For this example, assume that you are getting a set of
faculty members updates in XML format. For simplicity, the update records contain only
the phone number changes.

 First, let ’ s create a sample XML, which is shown in Figure 4.66 .
 To accomplish this update, you query for each facultyUpdate element and call the

database to get the corresponding Faculty record. Then, you update the Faculty column
with the new phone number. A piece of sample cods to fulfi ll this functionality is shown
in Figure 4.67 .

Figure 4.65. A sample code to perform the query using mixing XML.

Dim faculties = New XElement("Faculties",
From f In db.Faculties
Where f.faculty_id = "B*"
Select New XElement("Faculty",
New XAttribute("facultyName", f.faculty_name),
New XElement("Office", f.office),
New XElement("Title", f.title),
New XElement("Phone", f.phone),
New XElement("Email", f.email)))

Console.WriteLine(faculties)

Figure 4.66. A sample XML.

<facultyUpdates>
<facultyUpdate>

<faculty_id>D55990</faculty_id>
<phone>750-555-0103</phone>

</facultyUpdate>
<facultyUpdate>

<faculty_id>E23456</faculty_id>
<phone>750-555-0143</phone>

</facultyUpdate>
</facultyUpdates>

Figure 4.67. A piece of sample codes to read and update database.

For Each fi In facultyUpdates.Elements("facultyUpdate")
Dim faculty As Faculty = db.Faculties.
First(Function(f) f.faculty_id = fi.Element("faculty_id"))
faculty.Phone = fi.Element("phone")

Next

db.SubmitChanges()

c04.indd 226c04.indd 226 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

4.9 Visual Basic.NET Language Enhancement for LINQ 227

 At this point, we have fi nished the discussion about the LINQ to XML. Next, we will
have a closer look at the Visual Basic.NET language enhancement for LINQ.

4.9 VISUAL BASIC.NET LANGUAGE ENHANCEMENT FOR LINQ

 Visual Basic.NET introduces several language extensions to support the creation and use
of higher order, functional - style class libraries. The extensions enable construction of
compositional APIs that have equal expressive power of query languages in domains,
such as relational databases and XML.

 Starting from Visual Basic.NET 2008, signifi cant enhancements have been added into
Visual Basic.NET, and these enhancements are mainly developed to support LINQ.
LINQ is a series of language extensions that supports data querying in a type - safe way;
it was released with the Visual Studio.NET 2008. The data to be queried, which we have
discussed in the previous sections in this chapter, can take the form of objects (LINQ to
Objects), databases (LINQ - enabled ADO.NET, which includes LINQ to SQL, LINQ to
DataSet, and LINQ to Entities), XML (LINQ to XML), and so on.

 In addition to those general LINQ topics, special improvements on LINQ are made
for Visual Basic.NET. The main components of these improvements include:

 • Lambda expressions

 • Extension methods

 • Implicitly typed local variables

 • Query expressions

 Let ’ s have a detailed discussion for these topics one by one.

4.9.1 Lambda Expressions

 Lambda expressions are a language feature that is similar in many ways to anonymous
methods. If lambda expressions had been developed and implemented into the language
fi rst, there would have been no need for anonymous methods. The basic idea of using
lambda expressions is that you can treat code as data. In fact, a lambda expression is a
function or subroutine without a name that can be used wherever a delegate is valid.
Lambda expressions can be functions or subroutines and can be single - line or multiline.
You create lambda expressions by using the Function or Sub keyword, just as you create
a standard function or subroutine. However, lambda expressions are included in a
statement.

 You can pass values from the current scope to a lambda expression. Unlike named
functions, a lambda expression can be defi ned and executed at the same time. Anonymous
methods and lambda expressions extend the range of the values to include code blocks.
This concept is common in functional programming.

 The syntax of Lambda expressions in Visual Basic.NET can be expressed as a func-
tion or a subroutine declaration, followed by an expression that can be considered as the
function or subroutine body. For more complicated lambda expressions, a statement block

c04.indd 227c04.indd 227 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

228 Chapter 4 Introduction to Language Integrated Query (LINQ)

can be followed and embedded. A simple example of lambda expression used in Visual
Basic.NET looks like:

 Dim var = Fucntion(Argument list …) function body or expression

where var on the left side of the function is the returned running result of the function.
The Argument list contains all inputs to the function. The function body is a simple
expression in most situations. This lambda expression can be read as input Argument and
output var .

 For more complicated lambda expressions, a statement block should be adopted.
 The syntax of a lambda expression resembles that of a standard function or subrou-

tine. The differences are:

 • A lambda expression does not have a name.

 • Lambda expressions cannot have modifi ers, such as Overloads or Overrides.

 • Single - line lambda functions do not use an As clause to designate the return type. Instead,
the type is inferred from the value that the body of the lambda expression evaluates to. For
example, if the body of the lambda expression is f.offi ce = “MTC-332” , its return type is
Boolean.

 • In multiline lambda functions, you can either specify a return type by using an As clause, or
omit the As clause so that the return type is inferred. When the As clause is omitted for a
multi - line lambda function, the return type is inferred to be the dominant type from all the
Return statements in the multi - line lambda function. The dominant type is a unique type
that all other types supplied to the Return statement can widen to. If this unique type cannot
be determined, the dominant type is the unique type that all other types supplied to the
Return statement can narrow to. If neither of these unique types can be determined, the
dominant type is Object. For example, if the expressions supplied to the Return statement
contain values of type Integer, Long, and Double, the resulting type is Double. Both Integer
and Long widen to Double and only Double. Therefore, Double is the dominant type.

 • The body of a single - line function must be an expression that returns a value, not a state-
ment. There is no Return statement for single - line functions. The value returned by the
single - line function is the value of the expression in the body of the function.

 • The body of a single - line subroutine must be a single - line statement.

 • Single - line functions and subroutines do not include an End Function or End Sub
statement.

 • You can specify the data type of a lambda expression parameter by using the As keyword,
or the data type of the parameter can be inferred. Either all parameters must have specifi ed
data types or all must be inferred.

 • Optional and Paramarray parameters are not permitted.

 • Generic parameters are not permitted.

 Another example of using lambda expressions is shown in Figure 4.68 .
 For the fi rst two lambda expressions, both are expressed by using Function, followed

by the function body. The difference is that the fi rst is a single - line expression, but
the second is a multi - line expression with the Return and End Function statements
involved.

 The second two lambda expressions are expressed by using two subroutines, with one
in a single - line and another one is multi - line expressions.

c04.indd 228c04.indd 228 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

4.9 Visual Basic.NET Language Enhancement for LINQ 229

 In some situations, the lambda expressions are combined with LINQ to simplify the
query operations. One example is:

Figure 4.68. A piece of sample codes for lambda expressions.

Dim increment1 = Function(x) x + 1
Dim increment2 = Function(x)

Return x + 2
End Function

Dim writeline1 = Sub(x) Console.WriteLine(x)
Dim writeline2 = Sub(x)

Console.WriteLine(x)
End Sub

 Dim faculty As Enumerable = IEnumerable(Of Faculty).Where(faculties, Function(f)
f.faculty_name = ″ Ying Bai ″)

 Here, the Standard Query Operator method Where() is used as a fi lter in this query.
The input is an object with a type of faculties , and the output is a string variable. The
compiler is able to infer that “ f ” refers to a faculty because the fi rst parameter of the
Where() method is IEnumerable(Of Faculty), such that T must, in fact, be Faculty. Using
this knowledge, the compiler also verifi es that Faculty has a faculty_name member.
Finally, there is no return keyword specifi ed. In the syntactic form, the return member is
omitted, but this is merely syntactic convenience. The result of the expression is still con-
sidered to be the return value.

 Lambda expressions also support a more verbose syntax that allows you to specify
the types explicitly, as well as execute multiple statements. An example of this kind of
syntax is:

 Return IEnumerable(Of Faculty).Where(faculties, (Function(Faculty f) {id = faculty_
id Return f.faculty_id = id})

 Here, the IEnumerable(Of Faculty) class is used to allow us to access and use the
static method Where() since all Standard Query Operator methods are static methods
defi ned in either Enumerable or Queryable classes.

 As you know, a static method is defi ned as a class method and can be accessed and
used by each class in which that method is defi ned. Is that possible for us to access a static
method from an instance of that class? Generally, this will be considered as a stupid ques-
tion, since that is impossible. Is there any way to make it possible? The answer is maybe.
To get that question answered correctly, let ’ s go to the next topic.

4.9.2 Extension Methods

 Extension methods enable developers to add custom functionality to data types that are
already defi ned without creating a new derived type. Extension methods make it possible
to write a method that can be called as if it were an instance method of the existing type.

 Regularly, static methods can only be accessed and used by classes in which those
static methods are defi ned. For example, all Standard Query Operator methods, as we

c04.indd 229c04.indd 229 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

230 Chapter 4 Introduction to Language Integrated Query (LINQ)

discussed in Sections 4.1.3 and 4.1.4 , are static methods defi ned in either Enumerable or
Queryable classes and can be accessed by those classes directly. But those static methods
cannot be accessed by any instance of those classes.

 When building and using extension methods, the following points should be noted:

1. An extension method can be only a Sub procedure or a Function procedure. You cannot
defi ne an extension property, fi eld, or event. All extension methods must be marked with
the extension attribute <Extension()> from the System.Runtime.CompilerServices
namespace.

2. The fi rst parameter in an extension method defi nition specifi es which data type the method
extends. When the method is run, the fi rst parameter is bound to the instance of the data
type that invokes the method.

3. Extension methods can be declared only within modules. Typically, the module in which an
extension method is defi ned is not the same module as the one in which it is called. Instead,
the module that contains the extension method is imported, if it needs to be, to bring it into
scope. After the module that contains the extension method is in scope, the method can be
called as if it were an ordinary instance method.

4. When an in - scope instance method has a signature that is compatible with the arguments
of a calling statement, the instance method is chosen in preference to any extension method.
The instance method has precedence even if the extension method is a better match.

 Let ’ s use an example to illustrate these important points and properties. Figure 4.69
shows a piece of codes that defi nes an instance and an extension method in the module
Conversion .

 In this example, both methods have the same name but different signatures. Let ’ s
have a closer look at this piece of codes to see how it works.

A. The namespace System.Runtime.CompilerServices is imported fi rst since we need to
use some extension attributes defi ned in that namespace.

B. First, a class ExampleClass is created with an instance method ConvertToUpper() . The
fi rst argument of this instance method is an integer. To call and execute this instance
method, one must fi rst create a new instance based on the class ExampleClass , and then

Figure 4.69. An example of defi ning class and instance method.

Imports System.Runtime.CompilerServices

Module Conversion

Class ExampleClass
'Define an instance method named ConvertToUpper.
Public Function ConvertToUpper(ByVal m As Integer, ByVal aString As String) As String

Console.WriteLine(vbNewLine & "Instance Method is called ")
Return aString.ToUpper

End Function
End Class

<Extension()>
Function ConvertToUpper(ByVal ec As ExampleClass, ByVal n As Long, ByVal aString As String) As String

Console.WriteLine(vbNewLine & "Extension Method is called ")
Return aString.ToUpper

End Function

End Module

A

B

C

c04.indd 230c04.indd 230 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

4.9 Visual Basic.NET Language Enhancement for LINQ 231

call that method. The second argument is a string to be returned with the uppercase when
this instance method is done.

C. The extension method is declared with the different signature. The type of the fi rst argu-
ment of this class method is Long, and the second argument is also a string to be returned
as the uppercase when this class method is executed. To call and execute this class method,
one can directly call it with the class name prefi xed in front of this method.

 Figure 4.70 shows a piece of codes to illustrate how to distinguish these two methods
when calling them with different signatures.

 As we mentioned, to call the extension methods defi ned in a module, a different
module should be created; here, the module VBExtensions is used for this purpose.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Since the extension method is defi ned in another module, VB_Extensions.Conversion
(VB_Extensions is the name of a VB project in which the Conversion module is located),
we need to import that module fi rst to enable the codes developed in the current module
VBExtensions to recognize it.

B. An instance of the class ExampleClass, exClass , is created, since we need to call the
instance method ConvertToUpper() defi ned in that class in another module named VB_
Extensions.Conversion . Also, some local variables are declared here.

C. First, we try to call the extension method with the type of the fi rst argument as a Long.

D. Then we try to call the instance method with the fi rst argument as an integer.

 The running result is shown in Figure 4.71 .
 In some situations, the query would become very complicated if one wants to call

those static methods from any instance of those classes. To solve this complex issue, exten-
sion methods are developed to simplify the query structures and syntax.

 To declare an extension method from an existing static method, just redefi ne that
existing static method with the < Extension() > keyword. For example, to make the class

Figure 4.70. An example of calling class and instance method.

Imports VB_Extensions.Conversion

Module VBExtensions

Sub Main()

Dim exClass As New ExampleClass
Dim input As String = "Hello"
Dim index_ext As Long = 5
Dim index_ins As Integer = 1

'The following statement calls the extension method.
Console.WriteLine(exClass.ConvertToUpper(index_ext, input))

'The following statement calls the instance method.
Console.WriteLine(exClass.ConvertToUpper(index_ins, input))

Console.WriteLine(vbNewLine & "Press any key to exit ")
Console.ReadKey()

End Sub

End Module

A

B

C

D

c04.indd 231c04.indd 231 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

232 Chapter 4 Introduction to Language Integrated Query (LINQ)

method ToUpper() an extension method, redefi ne that method with the < Extension() >
keyword in a module, as shown by the codes that have been highlighted in bold in
Figure 4.72 .

 Now the class method ToUpper() has been converted to an extension method and
can be accessed by any instance of the class ExampleClass .

 A complete project, VB Extensions , can be found in the folder DBProjects\Chapter
4 that is located at the Wiley ftp site (refer to Fig. 1.2 in Chapter 1).

4.9.3 Implicitly Typed Local Variables

 In LINQ query, there is another language feature known as implicitly typed local vari-
ables that instructs the compiler to infer the type of a local variable. Instead of explicitly
specifying a type when you declare and initialize a variable, you can now enable the
compiler to infer and assign the type. This is referred to as local type inference. Local
type inference works only when you are defi ning a local variable inside a method body,
with Option Infer set to On . On is the default for new projects in LINQ.

Figure 4.71. The running result of the execution of the extension method.

Figure 4.72. Declare the class method ToUpper() to extension method.

Imports System.Runtime.CompilerServices

Module Conversion

Class ExampleClass
'Define an instance method named ConvertToUpper.
Public Function ConvertToUpper(ByVal m As Integer, ByVal aString As String) As String

Console.WriteLine(vbNewLine & "Instance Method is called ")
Return aString.ToUpper

End Function
End Class

<Extension()>
Function ConvertToUpper(ByVal ec As ExampleClass, ByVal n As Long, ByVal aString As String) As String

Console.WriteLine(vbNewLine & "Extension Method is called ")
Return aString.ToUpper

End Function

<Extension()>
Function ToUpper(ByVal ec As ExampleClass, ByVal aString As String) As String

Console.WriteLine(vbNewLine & "Extension ToUpper() Method is called ")
Return aString.ToUpper

End Function

End Module

A

B

c04.indd 232c04.indd 232 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

4.9 Visual Basic.NET Language Enhancement for LINQ 233

 As you know, with the addition of anonymous types to Visual Basic.NET, a new
problem becomes a main concern, which is that if a variable being instantiated is an
unnamed type, as in an anonymous type, of what type variable would you assign it to?
LINQ queries belong to strongly typed queries with two popular types: IEnumerable(Of
T) and IQueryable(Of T), as we discussed at the beginning of this chapter. Figure 4.73
shows an example of this kind of variable with an anonymous type.

 A compiling error will be encountered when this piece of codes is compiled since the
data type of the variable faculty is not indicated. In Visual Basic.NET language enhance-
ment for LINQ, a new terminology, implicitly typed local variable, is developed to solve
this kind of anonymous type problem. Refereeing to Figure 4.74 , the codes written in
Figure 4.73 can be rewritten as shown in the fi gure.

 This time there would be no error if you compile this piece of codes since the keyword
Dim informs the compiler to implicitly infer the variable type from the variable ’ s initial-
izer. In this example, the initializer for this implicitly typed variable faculty is a string
collection. This means that all implicitly typed local variables are statically type checked
at the compile time, therefore an initializer is required to allow compiler to implicitly
infer the type from it.

 The implicitly typed local variables mean that those variables are just local within a
method, for example, the faculty is valid only inside the Main() method in the previous
example. It is impossible for them to escape the boundaries of a method, property, indexer,

Figure 4.73. Declare an anonymous type variable.

Module ImpLocal

Class faculty
Public faculty_id As String
Public faculty_name As String

End Class

Sub Main()

faculty = New With {.faculty_id = "B78880", .faculty_name = "Ying Bai"}
Console.WriteLine("faculty information {0}, {1}", faculty.faculty_id & ". " & faculty.faculty_name)

End Sub

End Module

Figure 4.74. Declare an anonymous type variable using implicitly typed local variable.

Module ImpLocal

Class faculty
Public faculty_id As String
Public faculty_name As String

End Class

Sub Main()

Dim faculty = New With {.faculty_id = "B78880", .faculty_name = "Ying Bai"}
Console.WriteLine("faculty information {0}, {1}", faculty.faculty_id & ". " & faculty.faculty_name)

End Sub

End Module

c04.indd 233c04.indd 233 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

234 Chapter 4 Introduction to Language Integrated Query (LINQ)

or other blocks because the type cannot be explicitly stated, and Dim is not legal for fi elds
or parameter types.

 Another important terminology applied in Visual Basic.NET language enhancement
for LINQ is the object initializers. Object initializers are used in query expressions when
you have to create an anonymous type to hold the results of a query. They also can be
used to initialize objects of named types outside of queries. By using an object initializer,
you can initialize an object in a single line without explicitly calling a constructor.

 Object initializers basically allow the assignment of multiple properties or fi elds in
a single expression. For example, a common pattern for object creation is shown in
Figure 4.75 .

 In this example, there is no constructor of faculty that takes a faculty id and name;
however, there are two properties, faculty_id and faculty_name , which can be set once
an instance fi is created. Object initializers allow creating a new instance with all neces-
sary initializations being performed at the same time as the instantiation process.

4.9.4 Query Expressions

 To perform any kind of LINQ query, such as LINQ to Objects, LINQ to ADO.NET, and
LINQ to XML, a valid query expression is needed. The query expressions implemented
in Visual Basic.NET have a syntax that is closer to SQL statements and are composed of
some clauses. Regularly, a query expression can be expressed in a declarative syntax
similar to that of SQL or XQuery. At compile time, query syntax is converted into method
calls to a LINQ provider ’ s implementation of the standard query operator extension
methods. Applications control which standard query operators are in scope by specifying
the appropriate namespace with an Imports statement.

 One of the most popular query expressions is the For Each statement. As this For
Each is executed, the compiler converts it into a loop with calls to methods such as
GetEnumerator() and MoveNext(). The main advantage of using the For Each loop to
perform the query is that it provides a signifi cant simplicity in enumerating through
arrays, sequences, and collections, and return the terminal results in an easy way. A typical
syntax of query expression is shown in Figure 4.76 .

 Generally, a query expression is composed of two blocks. The top block in Figure 4.76
is the from - clause block, and the bottom block is the query - body block. The from- clause
block only takes charge of the data query information (no query results), but the query -
 body block performs the real query and contains the real query results.

Figure 4.75. An example of using the object initializer.

Imports VB_Extensions.ImpLocal

Module ObjInitializer

Sub Main()

Dim fi = New faculty With {.faculty_id = "B78880",
.faculty_name = "Ying Bai"}

End Sub

End Module

c04.indd 234c04.indd 234 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

4.9 Visual Basic.NET Language Enhancement for LINQ 235

 Referring to syntax represented in Figure 4.76 , the following components should be
included in a query expression:

 • A query variable must be defi ned fi rst in either explicitly (IEnumerable(Of T)) or implicitly
(Dim) type

 • A query expression can be represented in either query syntax or method syntax

 • A query expression must start with a From clause, and must end with a Select or Group
clause. Between the fi rst From clause and the last Select or Group clause, it can contain one
or more of these optional clauses: Where , Order By , Join , Let , and even additional From
clauses

 In all LINQ queries (including LINQ to DataSet), all of clauses will be converted to
the associated Standard Query Operator methods, such as From(), Where(), OrderBy(),
Join(), Let(), and Select(), as the queries are compiled. Refer to Table 4.1 in this chapter
to get the most often used Standard Query Operators and their defi nitions.

 In LINQ, a query variable is always strongly typed, and it can be any variable that
stores a query instead of the results of a query. More specifi cally, a query variable is always
an enumerable type that will produce a sequence of elements when it is iterated over in
a For Each loop or a direct call to its method IEnumerator.MoveNext().

 A very detailed discussion about the query expression has been provided in Sections
 4.5.1.1 and 4.5.1.2 in this chapter. Refer to those sections to get more details for this topic.

 Before we can fi nish this chapter, a real query example implemented in our project
is shown in Figure 4.77 .

Figure 4.76. A typical syntax of query expression.

Dim query_variable = From [identifier] In [data source]
Let [expression]
Where [boolean expression]
Order By [[expression](ascending/descending)], [optionally repeat]
Select [expression]
Group [expression] By [expression] Into [expression]

For Each range_variable In query_variable

‘pick up or retrieve back each element from the range_variable….

Next

Figure 4.77. A real example of query expression.

Sub Main()

Dim faculty As IEnumerable(Of Faculty) = From f In Faculty
Let f.college <> "U.*"
Where f.title = "Professor"
Order By f.faculty_name Ascending
Select f.phone, f.email

'Execute the query to produce the results
For Each fi In faculty

Console.WriteLine("{0}, {1}, {2}, {3}", fi.faculty_name, fi.title, fi.phone, fi.email)
Next

End Sub

c04.indd 235c04.indd 235 4/25/2012 1:57:17 PM4/25/2012 1:57:17 PM

236 Chapter 4 Introduction to Language Integrated Query (LINQ)

 In fact, the Let clause is not necessary in this query block, and it can be combined
with the Where clause. Generally, the Let clause is used to perform some non - Boolean
operations, but the Where clause is used to perform Boolean operations.

 So far, we have provided a detailed discussion about LINQ queries in Visual
Basic.NET with the most popular techniques and implementations. All sample projects
involved in this chapter have been debugged and tested, and can be used directly in real
applications.

4.10 CHAPTER SUMMARY

 LINQ, which is built on .NET Frameworks 3.5, is a new technology released with Visual
Studio.NET 2008 by Microsoft in 2008. LINQ is designed to query general data sources
represented in different formats, such as Objects, DataSet, SQL Server database, Entities,
and XML. The innovation of LINQ bridges the gap between the world of objects and the
world of data.

 An introduction to LINQ general programming guide is provided at the fi rst part in
this chapter. Some popular interfaces widely used in LINQ, such as IEnumerable,
IEnumerable(Of T), IQueryable and IQueryable(Of T), and Standard Query Operators
(SQO), including the deferred and nondeferred SQO, are discussed in that part.

 An introduction to LINQ Query is given in the second section in this chapter.
Following this introduction, a detailed discussion and analysis about the LINQ that
is implemented for different data sources is provided based on a sequence listed
below.

1. Architecture and Components of LINQ

2. LINQ to Objects

3. LINQ to DataSet

4. LINQ to SQL

5. LINQ to Entities

6. LINQ to XML

7. Visual Basic.NET Language Enhancement for LINQ

 Both literal introductions and actual examples are provided for each part listed above
to give readers not only a general and global picture about LINQ techniques applied for
different data, but also practical and real feeling about the program codes developed to
realize the desired functionalities.

 Fifteen real projects are provided in this chapter to help readers to understand and
follow up all techniques discussed in this chapter.

 After fi nishing this chapter, readers should be able to

 • Understand the basic architecture and components implemented in LINQ

 • Understand the functionalities of Standard Query Operators

 • Understand general interfaces implemented in LINQ, such as LINQ to Objects, LINQ to
DataSet, LINQ to SQL, LINQ to Entities, and LINQ to XML.

 • Understand the Visual Basic.NET language enhancement for LINQ

c04.indd 236c04.indd 236 4/25/2012 1:57:18 PM4/25/2012 1:57:18 PM

Homework 237

 • Design and build real applications to apply LINQ queries to perform data actions to all
different data sources

 • Develop and build applications to apply Visual Basic.NET language enhancement for LINQ
to perform all different queries to data sources

 Starting from the next chapter, we will concentrate on the database programming
with Visual Basic.NET using the real projects.

HOMEWORK

I. True/False Selections

 _____ 1. LINQ queries are built based on .NET Frameworks 3.5.

 _____ 2. Most popular interfaces used for LINQ queries are: IEnumerable, IEnumerable(Of T),
IQueryable and IQueryable(Of T).

 _____ 3. IEnumerable interface is used to convert the data type of the data source to IEnumerable(Of
T) that can be implemented by LINQ queries.

 _____ 4. IEnumerable interface is inherited from the class IQueryable.

 _____ 5. All Standard Query Operator methods are static methods defi ned in the IEnumerable
class.

 _____ 6. IEnumerable and IQueryable interfaces are mainly used for the nongeneric collections
supported by the earlier versions of Visual Basic.NET.

 _____ 7. All LINQ query expressions can only be represented as query syntax.

 _____ 8. All LINQ query expressions will be converted to the Standard Query Operator methods
during the compile time by CLR.

 _____ 9. The query variable used in LINQ queries contains both the query information and the
returned query results.

 ____ 10. LINQ to SQL, LINQ to DataSet, and LINQ to Entities belong to LINQ to ADO.NET.

II. Multiple Choices

1. The difference between the interfaces IEnumerable and IEnumerable(Of T) is that the former
is mainly used for ______, but the latter is used for _______

a. Nongeneric collections, generic collections
b. Generic collections, nongeneric collections
c. All collections, partial collections
d. .NET Frameworks 2.0, .NET Frameworks 3.5

2. The query variable used in LINQ queries contains ________

a. Query information and query results
b. Query information
c. Query results
d. Standard Query Operator

3. All Standard Query Operator (SQO) methods are defi ned as _______; this means that these
methods can be called either as class methods or as instance methods

a. Class methods
b. Instance method

c04.indd 237c04.indd 237 4/25/2012 1:57:18 PM4/25/2012 1:57:18 PM

238 Chapter 4 Introduction to Language Integrated Query (LINQ)

c. Variable methods
d. Extension methods

4. One of the SQO methods, AsEnumerable() operator method, is used to convert the data type
of the input object from _______ to _______

a. IQuerable(Of T), IEnumrable(Of T)
b. IEnumerable(Of T), IEnumerable(Of T)
c. Any, IEnumerable(Of T)
d. All of them

5. LINQ to Objects is used to query any sequences or collections that are either explicitly or
implicitly compatible with _________ sequences or ________ collections

a. IQuerable, IQuerable(Of T)
b. IEnumerable, IEnumerable(Of T)
c. Deferred SQO, nondeferred SQO
d. Generic, nongeneric

6. LINQ to DataSet is built on the _________ architecture, the codes developed by using that
version of ADO.NET will continue to function in a LINQ to DataSet application without
modifi cations

a. ADO.NET 2.0
b. ADO.NET 3.0
c. ADO.NET 3.5
d. ADO.NET 4.0

7. Two popular LINQ to SQL Tools, ________ and _______, are widely used in developing applica-
tions of using LINQ to SQL

a. Entity Data Model, Entity Data Model Designer
b. IEnumerable, IEnumerable(Of T)
c. SQLMetal, Object Relational Designer
d. IQueryable, IQueryable(Of T)

8. LINQ to SQL query is performed on classes that implement the _________ interface. Since the
________ interface is inherited from the ________ with additional components, therefore, the
LINQ to SQL queries have additional query operators

a. IEnumerable(Of T), IEnumerable(Of T), IQueryable(Of T)
b. IEnumerable(Of T), IQueryable(Of T), IEnumerable(Of T)
c. IQueryable(Of T), IEnumerable(Of T), IQueryable(Of T)
d. IQueryable(Of T), IQueryable(Of T), IEnumerable(Of T)

9. LINQ to Entities queries are performed under the control of the ___________ and the

a. .NET Frameworks 3.5, ADO.NET 3.5
b. ADO.NET 4.0 Entity Framework, ADO.NET 4.0 Entity Framework Tools
c. IEnumerable(Of T), IQueryable(Of T)
d. Entity Data Model, Entity Data Model Designer

10. To access and implement ADO.NET 4.0 EF and ADO.NET 4.0 EFT, developers need to under-
stand the ____________ that is a core of ADO.NET 4.0 EF

a. SQLMetal
b. Object Relational Designer

c04.indd 238c04.indd 238 4/25/2012 1:57:18 PM4/25/2012 1:57:18 PM

Homework 239

c. Generic collections
d. Entity Data Model

11. Lambda expressions are a language feature that is similar in many ways to _________ methods

a. Standard Query Operator
b. anonymous
c. Generic collection
d. IQuerable

12. Extension methods are defi ned as those methods that can be called as either ________ methods
or ___________ methods

a. Class, instance
b. IEnumerable(Of T), IQueryable(Of T)
c. Generic, nongeneric
d. Static, dynamic

13. In LINQ queries, the data type var is used to defi ne a(n) ____________, and the real data type
of that variable can be inferred by the __________ during the compiling time.

a. Generic variable, debugger
b. Implicitly typed local variable, compiler
c. Nongeneric variable, builder
d. IEnumerable(Of T) variable, loader

14. In LINQ queries, the query expression must start with a ________ clause, and must end with a
___________ or _________ clause

a. Begin, Select, End
b. Select, Where, Order By
c. From, Select, Group
d. query variable, range variable, For Each loop

15. The DataContext is a class that is used to establish a ________ between your project and your
database. In addition to this role, the DataContext also provide the function to _______ opera-
tions of the Standard Query Operators to the SQL statements that can be run in real
databases

a. Relationship, perform
b. Reference, translate
c. Generic collections, transform
d. Connection, convert

III. Exercises

1. Explain the architecture and components of LINQ, and illustrate the functionality of these
using a block diagram.

2. Explain the execution process of a LINQ query using the For Each statement.

3. Explain the defi nitions and functionalities of the Standard Query Operator methods.

4. Explain the relationship between LINQ query expressions and Standard Query Operator
methods

5. Explain the defi nitions and functionalities of IEnumerable, IEnumerable(Of T), IQueryable,
and IQueryable(Of T) interfaces.

6. Explain the components and procedure used to perform LINQ to SQL queries.

c04.indd 239c04.indd 239 4/25/2012 1:57:18 PM4/25/2012 1:57:18 PM

240 Chapter 4 Introduction to Language Integrated Query (LINQ)

7. A query used for LINQ to Objects, which is represented by a query syntax, is shown in Figure
 4.78 . Try to convert this query expression to a method ’ s syntax.

8. Illustrate the procedure of creating each entity class for each data table in our sample database
CSE_DEPT.mdf by using the Object Relational Designer, and adding a connection to the
selected database using the DataContext class or the derived class from the DataContext class.

9. Explain the difference between the class method and the instance method, and try to illustrate
the functionality of an extension method and how to build an extension method by using an
example.

10. List three steps of performing the LINQ to DataSet queries.

Figure 4.78. A LINQ to Object query.

Module Example4_78

Sub Main()

Dim fruits As New List(Of String)(New String() {"apple", "passionfruit", "banana", "mango", _
"orange", "blueberry", "grape", "strawberry"})

Dim query = From fruit In fruits
Where fruit.Length < 6
Select fruit

For Each f In query
Console.WriteLine(f)

Next

End Sub

End Module

c04.indd 240c04.indd 240 4/25/2012 1:57:18 PM4/25/2012 1:57:18 PM

 Chapter 5

Data Selection Query with
Visual Basic. NET

Practical Database Programming with Visual Basic.NET, Second Edition. Ying Bai.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.

241

 Starting from Visual Studio 2005, Visual Basic.NET added some new components and
wizards to simplify the data access, inserting, and updating functionalities for database
development and applications. Compared with Visual Studio 2005, Visual Studio 2008
added more new components to simplify the data accessing, inserting, and updating func-
tionalities. Quite a number of new features, such as Windows Communication Foundation
(WCF), Windows Presentation Foundation (WPF), and Language Integrated Query
(LINQ), had been added into Visual Studio.NET 2008.

 The transition from the Visual Studio.NET 2008 to the Visual Studio.NET 2010 is
more about extending the language to cope with new Windows 7 features than a radical
of the language itself. Visual Basic.NET 2010 describes the new features in the Visual
Basic language and Code Editor. The features include implicit line continuation, auto -
 implemented properties, collection initializers, and more. One of the signifi cant differ-
ences between the Visual Studio.NET 2008 and Visual Studio.NET 2010 is that the former
is built based on the .NET Framework 3.5, and the latter is built based on .NET Framework
4.0.

 Starting from Visual Studio.NET 2005, Microsoft provides a quite few design tools
and wizards to help users to build and develop database programming easily and effi -
ciently. The most popular design tools and wizards are

 • Data Components in the Toolbox Window

 • Wizards in the Data Source Window

 The Toolbox window in Visual Studio.NET 2010 contains data components that
enable you to quickly and easily build simple database applications without needing to
touch very complicated coding issues. Combining these data components with wizards,
which are located in the Data Source wizard and related to ADO.NET, one can easily
develop binding relationships between the data source and controls on the Visual Basic
windows form object, furthermore one can build simple Visual Basic project to navigate,
scan, retrieve and manipulate data stored in the data source with a few of lines of codes.

 This chapter is divided to two parts. Part I provides a detailed description and discus-
sion on how to use Visual Studio.NET 2010 tools and wizards to build simple but effi cient
database applications without touching complicated coding. In Part II , a deeper digging

c05.indd 241c05.indd 241 4/25/2012 1:57:33 PM4/25/2012 1:57:33 PM

242 Chapter 5 Data Selection Query with Visual Basic.NET

in how to develop advanced database applications by using runtime objects is presented.
More complicated coding technology is provided in this part. Some real examples are
provided in detail with these two parts to enable readers to have a clear picture about
the development of professional database applications in simple and effi cient ways. This
chapter concentrates only on the data query applications.

 In this chapter, you will:

 • Learn and understand the most useful tools and wizards used in developing data query
applications

 • Learn and understand how to connect a database with different components provided in
data providers, and confi gure this connection with wizards

 • Learn and understand how to use BindingSource object to display database tables ’ contents
using DataGridView

 • Learn and understand how to bind a DataSet (data source) to various controls in the
windows form object

 • Learn and understand how to confi gure and edit TableAdapter to build special queries

 • Learn and understand how to retrieve data using the LINQ technology from the data source
to simplify and improve the effi ciency of the data query

 • Build and execute simple dynamic data query commands to retrieve desired data

 To successfully complete this chapter, you need to understand topics such as
Fundamentals of Databases, which is introduced in Chapter 2 , ADO.NET, which is dis-
cussed in Chapter 3 , and LINQ to SQL, which is discussed in Chapter 4 . Also, a sample
database developed in Chapter 2 will be used through this Chapter.

PART I DATA QUERY WITH VISUAL STUDIO.NET
DESIGN TOOLS AND WIZARDS

 Before we can start the next section, a preview of a completed sample database applica-
tion is necessary, and this preview can give readers a feeling about how a database appli-
cation works and what it can do. The database used for this project is Access.

5.1 A COMPLETED SAMPLE DATABASE
APPLICATION EXAMPLE

 This sample application is composed of fi ve forms, named LogIn, Selection, Faculty,
Student , and Course forms. This example is designed to map a Computer Science and
Engineering Department in a university, and allow users to scan and browse all informa-
tion about the department, including faculty, courses taught by selected faculty, student,
and courses taken by the associated student.

 Each form, except the Selection form, is associated with one or two data tables in a
sample database CSE_DEPT , which was developed in Chapter 2 . The relationship between
the form and tables is shown in Table 5.1 .

 Controls on each form are bound to the associated fi elds in certain data table located
in the CSE_DEPT database. As the project runs, a data query will be executed via a

c05.indd 242c05.indd 242 4/25/2012 1:57:33 PM4/25/2012 1:57:33 PM

5.1 A Completed Sample Database Application Example 243

dynamic SQL statement that is built during the confi guration of each TableAdapter in
the Data Source wizard. The retrieved data will be refl ected on the associated controls
that have been bound to those data fi elds.

 Go to the folder DBProjects\Chapter 5 located at the Wiley ftp site (refer to Fig. 1.2
in Chapter 1), and fi nd an executable fi le SampleWizards Project.exe that is located
under the project folder SampleWizards Solution\SampleWizards Project . Double
click on this fi le to run it.

 As the project runs, a login form will be displayed to ask users to enter the username
and password, which is shown in Figure 5.1 . Enter jhenry and test as user name and
password. Then click on the LogIn button to call the LogIn TableAdapter to execute a
query to pick up a record that matches the username and password entered by the user
from the LogIn table located in the CSE_DEPT database.

 If a matched record is found based on the username and password, this means that
the login is successful and the next window form, Selection will be displayed to allow
user to continue to select and check the desired information related to faculty, course, or
student, which is shown in Figure 5.2 .

 Select the default information — Faculty Information by clicking the OK button, and
the Faculty form appears as shown in Figure 5.3 .

 All faculty names in the CSE department are listed in a comboBox control on the
form. Select the desired faculty name from the comboBox control by clicking on the
drop - down arrow, and click on the desired faculty name. To query all information for this

Table 5.1. Relationship between the Form and Data Table

 VB Form Tables in Sample Database

 LogIn LogIn
 Faculty Faculty
 Course Course
 Student Student, StudentCourse

Figure 5.1. The LogIn form.

c05.indd 243c05.indd 243 4/25/2012 1:57:33 PM4/25/2012 1:57:33 PM

244 Chapter 5 Data Selection Query with Visual Basic.NET

faculty, click on the Select button to execute a prebuilt dynamic SQL statement. All
information related to the selected faculty will be fetched from the faculty table in our
sample database and refl ected on fi ve label controls in the Faculty form, as shown in
Figure 5.3 . A faculty photo will also be displayed in a PictureBox control in the form.

 The Back button is used to return to the Selection form to enable users to make other
selections to obtain the associated information.

 Click on the Back button to return to the Selection form, and then select the Course
Information item to open the Course form. Select the desired faculty name from the
comboBox control, and click the Select button to retrieve courses taught by this faculty,
which will be displayed in the Course ListBox, as shown in Figure 5.4 .

 An interesting thing is that when you select the specifi ed course by clicking on it from
the Course list, all information related to that course, such as the course title, course
schedule, classroom, credits, and course enrollment will be refl ected on each associated
textbox control under the Course Information frame control.

Figure 5.2. The Selection form.

Figure 5.3. The Faculty form.

c05.indd 244c05.indd 244 4/25/2012 1:57:33 PM4/25/2012 1:57:33 PM

5.2 Visual Studio.NET Design Tools and Wizards 245

 Click on the Back button to return to the Selection form and select the Student
Information to open the Student form. You can continue to work on this form to see
what will happen to this form.

 In the following sections, we will discuss how to design and build this demo project
step by step by using SQL Server 2008. It is very easy to develop a similar project as this
one using the different database such as the Microsoft Access and Oracle. The only thing
you need to do is to select the different Data Source when you connect your project to
the database you desired.

5.2 VISUAL STUDIO.NET DESIGN TOOLS AND WIZARDS

 When developing and building Windows application that needs to interface to database,
a powerful and simple way is to use the design tools and wizards provided by Visual
Studio.NET. By using this technique, the length of coding process can be signifi cantly
reduced, and the developing procedures can also be greatly simplifi ed. Now, let ’ s fi rst take
a look at those components resided in the Toolbox window.

5.2.1 Data Components in the Toolbox Window

 Each database - related Windows application contains three components that can be used
to develop a database application by using the data controls in the Toolbox: DataSet,
BindingSource , and TableAdapter . Two other useful components are the DataGridView
and the BindingNavigator . All of these components are located in the Toolbox window,
as shown in Figure 5.5 .

Figure 5.4. The Course form.

c05.indd 245c05.indd 245 4/25/2012 1:57:33 PM4/25/2012 1:57:33 PM

246 Chapter 5 Data Selection Query with Visual Basic.NET

5.2.1.1 The DataSet

 A DataSet object can be considered as a container, and it is used to hold data from one
or more data tables. It maintains the data as a group of data tables with optional relation-
ships defi ned between those tables. The defi nition of the DataSet class is a generic idea,
which means that it is not tied to any specifi c type of database. Data can be loaded into
a DataSet by using a TableAdapter from many different databases, such as Microsoft
Access, Microsoft SQL Server, Oracle, Microsoft Exchange, Microsoft Active Directory,
or any OLE DB - or ODBC - compliant database when your application begins to run, or
the Form_Load() event procedure is called if one used an DataGridView object.

 Although not tied to any specifi c database, the DataSet class is designed to contain
relational tabular data as one would fi nd in a relational database. Each table included in
the DataSet is represented in the DataSet as a DataTable. The DataTable can be consid-
ered as a direct mapping to the real table in the database. For example, the LogIn data
table, LogInDataTable, is a data table component or DataTable that can be mapped to
the real table LogIn in the CSE_DEPT database. The relationship between any table is
realized in the DataSet as a DataRelation object. The DataRelation object provides the
information that relates a child table to a parent table via a foreign key. A DataSet can
hold any number of tables with any number of relationships defi ned between tables. From
this point of view, a DataSet can be considered as a mini - database engine, so it can contain
all information of tables it holds, such as the column name and data type, all relationships
between tables, and more important, it contains most management functionalities of the
tables, such as browse, select, insert, update, and delete data from tables.

 With the Visual Basic.NET 2010, one can easily edit the structure of a DataSet and
make any changes to the structure of that DataSet by using the Dataset Designer in the
Data Source window. More important, one can graphically manipulate the tables and
queries in a manner more directly tied to the DataSet rather than having to deal with an
XML Schema (XSD).

Figure 5.5. The Data components in Toolbox window.

c05.indd 246c05.indd 246 4/25/2012 1:57:33 PM4/25/2012 1:57:33 PM

5.2 Visual Studio.NET Design Tools and Wizards 247

 In summary, the DataSet object is a very powerful component that can contain mul-
tiple data tables with all information related to those tables. By using this object, one can
easily browse, access, and manipulate data stored in it. We will explore this component in
more detail in the following sections when a real project is built.

 When you build a data - driven project and set up a connection between your project
and a database using ADO.NET, the DataTables in the DataSet can be populated with
data of your database by using data query methods or the Fill method. From this point
of view, you can consider the DataSet as a data source , and it contains all mapped data
from the database you connected to your project.

 Refer to Figure 5.6 for a global picture of the DataSet and other components in the
Toolbox window to obtain more detailed ideas for this issue.

5.2.1.2 DataGridView

 The next useful data component defi ned in the Toolbox window is the DataGridView .
 Like its name, you can consider the DataGridView as a view container, and it can be

used to bind data from your database and display the data in a tabular or a grid format.
You can use the DataGridView control to show read - only views of a small amount of
data, or you can scale it to show editable views of very large sets of data. The DataGridView
control provides many properties that enable you to customize the appearance of the
view and properties that allow you to modify the column headers and the data displayed
in the grid format. You can also easily customize the appearance of the DataGridView
control by choosing among different properties. Many types of data stores can be used
as a database, or the DataGridView control can operate with no data source bound to it.

 By default, a DataGridView control has the following properties:

 • Automatically displays column headers and row headers that remain visible as users scroll
the table vertically.

 • Has a row header that contains a selection indicator for the current row.

 • Has a selection rectangle in the fi rst cell.

 • Has columns that can be automatically resized when the user double - clicks the column
dividers.

 • Automatically supports visual styles on Windows XP and the Windows Server 2003 family
when the EnableVisualStyles method is called from the application ’ s Main method.

Figure 5.6. The relationship between data components.

DataT

DataSet

DataTDataT
DataTable

TableAdapter

Database

DataT

BindingSource

...

TableAdapter

BindingNavigator

...

DataT
DataGridView

VB Form Window

c05.indd 247c05.indd 247 4/25/2012 1:57:33 PM4/25/2012 1:57:33 PM

248 Chapter 5 Data Selection Query with Visual Basic.NET

 Refer to Figure 5.6 to get a relationship between the DataGridView and other data
components. A more detailed description in how to use the DataGridView control to bind
and display data in Visual Basic.NET 2010 will be provided in Section 5.5 in this chapter.

5.2.1.3 BindingSource

 The BindingSource component has two functionalities. First, it provides a layer of indi-
rection when binding the controls on a form to data in the data source. This is accom-
plished by binding the BindingSource component to your data source, and then binding
the controls on your form to the BindingSource component. All further interactions with
the data, including navigating, sorting, fi ltering, and updating, are accomplished with calls
to the BindingSource component.

 Second, the BindingSource component can act as a strongly typed data source.
Adding a type to the BindingSource component with the Add method creates a list of
that type.

 The BindingSource control works as a bridge to connect the data bound controls on
your Visual Basic forms with your data source (DataSet). The BindingSource control can
also be considered as a container object, and it holds all mapped data from the data
source. As a data - driven project runs, the DataSet will be fi lled with data from the data-
base by using a TableAdapter. Also, the BindingSource control will create a set of data
that are mapped to those fi lled data in the DataSet. The BindingSource control can hold
this set of mapped data and create a one - to - one connection between the DataSet and the
BindingSource. This connection is very useful when you perform data binding between
controls on the Visual Basic form and data in the DataSet, that is, you set up a connection
between your controls on the Visual Basic form and those mapped data in the
BindingSource object. As your project runs and the data are needed to be refl ected on
the associated controls, a request to the BindingSource is issued, and the BindingSource
control will control the data accessing to the data source (DataSet) and data updating in
those controls. For instance, the DataGridView control will send a request to the
BindingSource control when a column sorting action is performed, and the latter will
communicate with the data source to complete this sorting.

 When performing a data binding in Visual Basic.NET 2010, you need to bind the data
referenced by the BindingSource control to the DataSource property of your controls on
the forms.

5.2.1.4 BindingNavigator

 The BindingNavigator control allows users to scan and browse all records stored in the
data source (DataSet) one by one in a sequence. The BindingNavigator component pro-
vides a standard UI with buttons and arrows to enable users to navigate to the fi rst and
the previous records as well, as the next and the last records in the data source. It also
provides textbox controls to display how many records exist in the current data table and
the current displayed record ’ s index.

 As shown in Figure 5.6 , the BindingNavigator is also bound to the BindingSource
component as other component did. When the user clicks either the Previous or the Next
button on the BindingNavigator UI, a request is sent to the BindingSource for the previ-

c05.indd 248c05.indd 248 4/25/2012 1:57:33 PM4/25/2012 1:57:33 PM

5.2 Visual Studio.NET Design Tools and Wizards 249

ous or the next record, and in turn, this request is sent to the data source for picking up
the desired data.

5.2.1.5 TableAdapter

 From Figure 5.6 , one can fi nd that a TableAdapter is equivalent to an adapter, and it just
works as a connection media between the database and DataSet, and between the
BindingSource and the DataSet. This means that the TableAdapter has double function-
alities when it works as different roles for the different purposes. For example, as you
develop your data - driven applications using the design tools, the data in the database will
be populated to the mapped tables in the DataSet using the TableAdapter ’ s Fill() method.
The TableAdapter also works as an adapter to coordinate the data operations between
the BindingSource and the DataSet when the data bound controls in Visual Basic form
need to be fi lled or updated.

 Prior to Visual Basic.NET 2005, the Data Adapter was the only link between the
DataSet and the database. If a change is needed to the data in the DataSet, you need to
use a different Data Adapter for each table in the DataSet and had to call the Update
method of each Data Adapter.

 The TableAdapter belongs to designer - generated component, and you cannot fi nd
this component from the Toolbox window. The function of a TableAdapter is to connect
your DataSet objects with their underlying databases, and it will be created automatically
when you add and confi gure new data sources via design tools, such as Data Source
Confi guration Wizard, when you build your applications.

 The TableAdapter is similar to DataAdapter in that both components can handle the
data operations between DataSet and the database, but the TableAdapter can contain
multiple queries to support multiple tables from the database, allowing one TableAdapter
to perform multiple queries to your DataSet. Another important difference between the
TableAdapter and the Data Adapter is that each TableAdapter is a unique class that is
automatically generated by Visual Studio.NET 2010 to work with only the fi elds you have
selected for a specifi c database object.

 The TableAdapter class contains queries used to select data from your database. Also,
it contains different methods to allow users to fi ll the DataSet with some dynamic param-
eters in your project with data from the database. You can also use the TableAdapter to
build different SQL statements, such as Insert, Update, and Delete, based on the different
data operations. A more detailed exploration and implementation of TableAdapter with
a real example will be provided in the following sections.

5.2.2 Data Source Window

 Two Integrated Development Environment (IDE) features included in the Visual Studio.
NET, the Data Sources Window and the Data Source Confi guration Wizard , are used
to assist you to set up data access by using the new classes, such as DataConnector and
TableAdapter.

 The Data Sources window is used to display the data sources or available databases
in your project. You can use the Data Sources window to directly create a user interface
(consisting of data - bound controls) by dragging items from the Data Sources window

c05.indd 249c05.indd 249 4/25/2012 1:57:33 PM4/25/2012 1:57:33 PM

250 Chapter 5 Data Selection Query with Visual Basic.NET

onto Visual Basic forms in your project. Each item inside the Data Sources window has
a drop - down control list where you can select the type of control to create prior to drag-
ging it onto a form. You can also customize the control list with additional controls, such
as controls that you have created.

 A more detailed description on how to use the Data Sources window to develop a
data - driven project is provided in Section 5.4 .

5.2.2.1 Add New Data Sources

 The fi rst time you create a new data - driven project in Visual Basic.NET 2010 environ-
ment, no data source that has been connected to your project, and, therefore, the Data
Source window is a blank window with no data source in there. For example, you can
create a new Visual Basic.NET 2010 Windows application by selecting File|New Project
menu items and selecting the DataSource as the project name. After this new project is
created and opened, you can fi nd the Data Sources window by clicking the Data menu
item from the menu bar, which is shown in Figure 5.7 .

 To open the Data Sources window, click Data|Show Data Sources item. Because
you have no previous database connected to this new project, the opened Data Sources
window is a blank one. To add a new data source or database to this new project, you can
click on the item Add New Data Source from the Data menu.

 Once you click on the Add New Data Source link from the Data Sources window
to add a new data source, the Data Source Confi guration Wizard will be displayed. You
need to use this wizard to select your desired database to be connected with your new
project.

Figure 5.7. The Data Sources window.

c05.indd 250c05.indd 250 4/25/2012 1:57:33 PM4/25/2012 1:57:33 PM

5.2 Visual Studio.NET Design Tools and Wizards 251

5.2.2.2 Data Source Confi guration Wizard

 The opened Data Source Confi guration Wizard is shown in Figure 5.8 .
 By using the Data Source Confi guration Wizard , you can select your desired data

source or database that will be connected to your new project. The Data Source
Confi guration Wizard supports four types of data sources.

1. The fi rst option, Database , allows you to select a data source for a database server on your
local computer or on a remote server. The examples for this kind of data sources are SQL
Server 2008 Express, Microsoft Data Engine (MSDE) 2000, or SQL Server 2008. This option
also allows you to choose either an . mdf SQL Server database fi le or a Microsoft Access
.accdb fi le. The difference between an SQL Server database and an SQL Server database
fi le is that the former is a complete database that integrates the database management
system with data tables to form a body or a package, but the latter is only a database fi le.

2. The second option, Web Service, enable you to select a data source that is located at a Web
service.

3. The third option, Object, allows you to bind your user interface to one of your own database
classes.

4. The SharePoint allows users to connect to a SharePoint site and choose the SharePoint
objects for the applications.

 The next step in the Data Source Confi guration Wizard allows you to either select
an existing data connection or create a new connection for your data source, which is
shown in Figure 5.9 .

 The fi rst time you run this wizard, there is no preexisting connections available, but
on subsequent uses of the wizard you can reuse previously created connections. To make
a new connection, click on the New Connection button, and the Add Connection wizard
is displayed, which is shown in Figure 5.10 a.

Figure 5.8. The Data Source Confi guration Wizard.

c05.indd 251c05.indd 251 4/25/2012 1:57:33 PM4/25/2012 1:57:33 PM

252 Chapter 5 Data Selection Query with Visual Basic.NET

 You can select different types of data source by clicking on the Change button. The
Change Data Source wizard is displayed as you do that, which is shown in Figure 5.10 b.

 Six (6) popular data sources can be chosen based on your application;

1. Microsoft Access Database File

2. Microsoft ODBC Data Source

Figure 5.9. Choose a Database Model in the Data Source Confi guration Wizard.

Figure 5.10. The Add Connection and Change Data Source Wizards.

(a) (b)

c05.indd 252c05.indd 252 4/25/2012 1:57:33 PM4/25/2012 1:57:33 PM

5.2 Visual Studio.NET Design Tools and Wizards 253

3. Microsoft SQL Server

4. Microsoft SQL Server Compact 3.5

5. Microsoft SQL Server Database File

6. Oracle Database

 The second option is to allow users to select any kind data source that is compatible
with a Microsoft ODBC data source. The fi fth option is for users who select an SQL
Server 2008 Express data source. For example, if you want to connect your new project
with a Microsoft Access database named CSE_DEPT.accdb . You need to select the
default Data Source as Microsoft Access Database File, and click the Browse button to
locate and select that fi le. You can click on the Test Connection button to test your con-
nection. A Test connection succeeded message will be displayed if your connection is
correct, which is shown in Figure 5.11 .

 The next step in this wizard allows you to save the connection string to the applica-
tion confi guration fi le named app.confi g in your new Visual Basic.NET 2010 project. You
can save this connection string for your further use if you want to use the same connec-
tion again for your application later.

 When you click on the Next button to continue to the next step, a message box will
be displayed to ask you if you want to save this data source into your new project, which
is shown in Figure 5.12 .

 The advantage of saving the data source into your project is that you can combine
your project with the data source to make a complete application. In this way, you are
free from worrying about any connection problem between your project and your data
source, and they are of one body and easy to be portable. The disadvantage is that the
size of your project will be increased and more memory space is needed to save your
application.

Figure 5.11. The Add Connection Wizard and Testing messagebox.

c05.indd 253c05.indd 253 4/25/2012 1:57:33 PM4/25/2012 1:57:33 PM

254 Chapter 5 Data Selection Query with Visual Basic.NET

 The next confi guration step, which is shown in Figure 5.13 , is to allow you to select
the database objects for this data source. Although you can select any number of tables,
views, and functions, it is highly recommended to select all tables and views. In this way,
you can access any table and view any data in all tables.

 When you fi nish selecting your database objects, all selected objects should have been
added into your new instance of your DataSet class; in this example, it is CSE_
DEPTDataSet , which is located at the DataSet name box shown in Figure 5.13 . The data
in all tables in your database (CSE_DEPT.accdb) should have been copied to those
mapped tables in your DataSet object (CSE_DEPTDataSet), and you can use Preview
Data to view data in each table in the DataSet. The wizard will build your SELECT
statements for you automatically.

 An important issue is that as you fi nish this Data Source Confi guration and close this
Wizard, the connection you set between your application and your database is closed.
You need to use data query, data manipulation methods, or the Fill() method to reopen
this connection if you want to perform any data action between your application and your
database later.

 After the Data Source Confi guration is fi nished, a new data source is added into your
project; basically, it is added into the Data Source window, which is shown in Figure 5.14 .

Figure 5.12. A message to ask you to save the data source.

Figure 5.13. Select database objects in the confi guration wizard.

c05.indd 254c05.indd 254 4/25/2012 1:57:33 PM4/25/2012 1:57:33 PM

5.2 Visual Studio.NET Design Tools and Wizards 255

 The data source added into your project is exactly a DataSet object that contains all
data tables that are mappings to those tables in your real database. As shown in Figure
 5.14 , the data source window displays the data source or tables as a tree view, and each
table is connected to this tree via a node. If you click on the plus node “ + ” prefi xed in
each table, all columns of the selected table will be displayed.

 Even after the data source is added into your project, the story has not been fi nished
and you still have some controllability over this data source. This means that you can still
make some modifi cations to the data source, that is, make modifi cations to the tables and
data source - related methods. To do this job, you need to know something about another
component, DataSet Designer, which is also located in the Data Source window.

5.2.2.3 DataSet Designer

 The DataSet Designer is a group of visual tools used to create and edit a typed DataSet
and the individual items that make up that DataSet.

 The DataSet Designer provides visual representations of the objects contained in the
DataSet. By using the DataSet Designer, you can create and modify TableAdapters,
TableAdapter Queries, DataTables, DataColumns, and DataRelations.

 To open the DataSet Designer, right - click on any place inside the Data Source
window, then select the Edit DataSet with Designer . A sample DataSet Designer is
shown in Figure 5.15 .

 In this sample database, we have fi ve tables: LogIn, Faculty, Course, Student , and
StudentCourse . To edit any item, just right - click on the associated component that you
want to modify. For example, if you want to edit the LogIn table, right - click on that table
and a pop - up window will be displayed with multiple editing selections. You can add new
queries, new relationships, new keys, even new columns to the LogIn table. Also, you can
modify or edit any built - in method of the TableAdapter (the LogInTableAdapter in this
example).

 In addition to multiple editing abilities mentioned above, you can perform the fol-
lowing popular data operations using the DataSet Designer:

Figure 5.14. The added data source.

c05.indd 255c05.indd 255 4/25/2012 1:57:34 PM4/25/2012 1:57:34 PM

256 Chapter 5 Data Selection Query with Visual Basic.NET

Figure 5.15. A sample DataSet Designer.

 • Confi gure: confi gure and build data operations, such as building a data query by modifying
the default methods of the TableAdapter, such as Fill() and GetData()

 • Delete: delete the whole table

 • Rename: rename the table

 • Preview Data: view the contents of the table in a grid format

 The Preview Data is a very powerful tool, and it allows users to preview the contents
of a data table. Figure 5.16 shows an example of data table, Faculty table.

 Based on the above discussions, it can be seen that the DataSet Designer is a power-
ful tool to help users to design and manipulate the data source or DataSet, even the data
source has been added into your project. But it has one more important function, which
is to allow users to add any missing table to your project. In some cases, if you have for-
gotten to add a data table, or you add the wrong table (according to my experience, this
has happened a lot for students who selected the wrong data source), you need to use
this function to add that missed table, or fi rst delete the wrong table and add the correct
one.

 To perform adding a missed table, just right - click a blank area of the designer surface
and choose Add|DataTable . You can also use this functionality to add a TableAdapter,
Query, or a Relation to this DataSet. A more detailed exploration of DataSet Designer
will be provided in Section 5.6 .

c05.indd 256c05.indd 256 4/25/2012 1:57:34 PM4/25/2012 1:57:34 PM

5.3 Query Data from SQL Server Database Using Design Tools and Wizards 257

5.3 QUERY DATA FROM SQL SERVER DATABASE USING
DESIGN TOOLS AND WIZARDS

 So far, we have introduced and discussed most design tools located at both Visual Studio.
NET 2010 Toolbox and Data Source window. In the following sections, we will illustrate
how to utilize those tools and wizards to build a data - driven application by using a real
example. First, let ’ s build a Visual Basic.NET 2010 Windows - based project named
SelectWizard , which means that we want to build a project with design tools and wizards
provided by the Toolbox window and Data Source window.

 First, let ’ s take care of all graphic user interface s (GUI s) in this project.

5.3.1 Application User Interface

 We made a similar demo for this sample data - driven application in Section 5.1 . This
project is composed of fi ve forms, named LogIn, Selection, Faculty, Student , and
Course . The project is designed to map a Computer Science and Engineering Department
in a university, and allow users to scan and browse all information about the department,

Figure 5.16. An example of the Preview Data for Faculty Table.

c05.indd 257c05.indd 257 4/25/2012 1:57:34 PM4/25/2012 1:57:34 PM

258 Chapter 5 Data Selection Query with Visual Basic.NET

including faculty, courses taught by selected faculty, student, and courses taken by the
associated students.

 Each form, except the Selection form, is associated with one or two data tables in
our sample database CSE_DEPT , which was developed in Chapter 2 . The relationship
between each form and tables is shown in Table 5.2 .

 Controls on each form are bound to the associated fi elds in certain data table located
in the CSE_DEPT database. As the project runs, a data query will be executed via a
dynamic SQL statement that is built during the confi guration of each TableAdapter in
the Data Source wizard. The retrieved data will be refl ected on the associated controls
that have been bound to those data fi elds.

 The database used in this sample project, which was developed in Chapter 2 , is SQL
Server 2008 R2 Express database, since it is compatible with SQL Server 2008 database,
and more important, it is free and can be easily downloaded from the Microsoft Knowledge
Base site. Refer to Appendix A to get details in how to download and install SQL Server
R2 2008 Express database. You can use other databases, such as Microsoft Access or
Oracle, for this project. The only thing you need to do is to select the desired data source
when you add and connect that data source to your project.

 All of these fi ve forms are available from the folder VB Forms located at the Wiley
ftp site (refer to Fig. 1.2 in Chapter 1). You can directly copy those forms and paste them
into your project if you want to save time. However, here we want to provide a detailed
discussion about how to build those forms.

 Let ’ s begin to develop this sample project with fi ve forms.

5.3.1.1 The LogIn Form

 First, let ’ s create a new Visual Basic.NET 2010 Windows - based project with the name
SelectWizard . You can fi rst create a new solution named SelectWizard Solution and
add this new project into that solution, or you can directly create this new project.

 Open Visual Studio 2010 and go to the File|New Project item to open a New Project
window. First create a new solution SelectWizard Solution , then right - click on the newly
created solution and select the Add|New Project item. Make sure that the Windows
Forms Application icon is selected from the Installed Templates window, enter
SelectWizard into the Name textbox as the project ’ s name, and click on the OK button
to continue.

 As the new project is created and the default windows form is opened, which is shown
in Figure 5.17 , perform the following modifi cations to this opened form:

Table 5.2. Relationship between each form and
data table

 VB Form Tables in Sample Database

 LogIn LogIn
 Faculty Faculty
 Course Course
 Student Student, StudentCourse

c05.indd 258c05.indd 258 4/25/2012 1:57:34 PM4/25/2012 1:57:34 PM

5.3 Query Data from SQL Server Database Using Design Tools and Wizards 259

 • Change the File Name from Form1.vb to LogIn Form.vb .

 • Change the windows form object ’ s Name property from Form1 to LogInForm .

 • Change the Text property of the windows form to CSE DEPT LogIn Form .

 Add the following controls shown in Table 5.3 into the LogIn form.
 The fi nished LogIn form should match the one that is shown in Figure 5.18 .
 You should select the LogIn button, cmdLogIn , as the default button by choosing

this button from the AcceptButton propertyof the form window. Also, you need to select
the CenterScreen from the StartPosition property of the form.

5.3.1.2 The Selection Form

 This form allows users to select the different windows forms to connect to the different
data tables, and, furthermore, to browse data from the associated table. No data table is
connected to this form.

Figure 5.17. Create a new project window.

Table 5.3. Controls for the LogIn form
Type Name Text TabIndex
Label Label1 Welcome to CSE Department 0

Label Label2 User Name 1

Textbox txtUserName 2
Label Label3 Pass Word 3

Textbox txtPassWord 4

Button cmdLogIn LogIn 5

Button cmdCancel Cancel 6

c05.indd 259c05.indd 259 4/25/2012 1:57:34 PM4/25/2012 1:57:34 PM

260 Chapter 5 Data Selection Query with Visual Basic.NET

Figure 5.18. The LogIn form.

Table 5.4. Objects for the Selection form
Type Name Text TabIndex DropDownStyle
Label Label1 Make Your Selection 0

ComboBox ComboSelection Faculty Information 1 Simple

Button cmdOK OK 2

Button cmdExit Exit 3

Form SelectionForm Selection Form

 Go to the Project|Add Windows Form menu item to add a new form with a
fi le name of Selection Form.vb . The following objects need to be added into this form
(Table 5.4).

 You should select the OK button, cmdOK , as the default button by choosing this
button from the AcceptButton property of the form. Also you need to select the
CenterScreen from the StartPosition property of the form.

 The completed Selection form should match the one that is shown in Figure 5.19 .

5.3.1.3 The Faculty Form

 The Faculty form contains controls that are related to faculty information stored in the
Faculty table in our sample database CSE_DEPT , which is built in Chapter 2 .

 Go to Project|Add Windows Form menu item to add a new form with a fi le name
of Faculty Form.vb . The fi nished Faculty form should match the one that is shown in
Figure 5.20 .

 You should choose the Select button, cmdSelect , as the default button by choosing
this button from the AcceptButton property of the form. Also, you need to select the
CenterScreen from the StartPosition property of the form.

 The following objects need to be added into this form (Table 5.5).
 In this chapter, we only use the Select button to make a data query to the data source.

Other buttons will be used for the following chapters.

5.3.1.4 The Course Form

 This form is used to interface to the Course table in your data source to retrieve course
information associated with a specifi c faculty member selected by the user. Recall that in

c05.indd 260c05.indd 260 4/25/2012 1:57:34 PM4/25/2012 1:57:34 PM

5.3 Query Data from SQL Server Database Using Design Tools and Wizards 261

Chapter 2 , we developed a sample database CSE_DEPT, and the Course table is one of
fi ve tables built in that database. A one - to - many relationship exists between the Faculty
and the Course table, which is connected by using a primary key faculty_id in the Faculty
table and a foreign key faculty_id in the Course table. We will use this relationship to
retrieve data from the Course table based on the faculty_id in both tables.

 Go to the Project|Add Windows Form menu item to add a new form with a fi le
name of Course Form.vb .

 Add the objects shown in Table 5.6 into this Course form window.
 The fi nished Course form should match the one that is shown in Figure 5.21 .

Figure 5.19. The completed Selection form.

Figure 5.20. The fi nished Faculty form.

c05.indd 261c05.indd 261 4/25/2012 1:57:34 PM4/25/2012 1:57:34 PM

262 Chapter 5 Data Selection Query with Visual Basic.NET

Table 5.5. Objects on the Faculty form

Label Label1 Faculty Image 0
TextBox txtImage 1

PictureBox PhotoBox
GroupBox FacultyBox Faculty Name & Query Method 2

Label Label2 Faculty Name 2.0

ComboBox ComboName 2.1 DropDownList
Label Label3 Query Method 2.2

ComboBox ComboMethod 2.3 DropDownList
GroupBox FacultyInfoBox Faculty Information 3

Label Label4 Faculty ID 3.0

TextBox txtID 3.1

Label Label5 Name 3.2

TextBox txtName 3.3

Label Label6 Title 3.4
TextBox txtTitle 3.5

Label Label7 Office 3.6

TextBox txtOffice 3.7

Label Label8 Phone 3.8

TextBox txtPhone 3.9
Label Label9 College 3.10

TextBox txtCollege 3.11
Label Label10 Email 3.12

TextBox txtEmail 3.13
Button cmdSelect Select 4

Button cmdInsert Insert 5

Button cmdUpdate Update 6
Button cmdDelete Delete 7

Button cmdBack Back 8
Form FacultyForm CSE DEPT Faculty Form

Table 5.6. Objects on the Course form
Type Name Text TabIndex DropDownStyle

GroupBox NameBox Faculty Name & Query Method 0

Label Label1 Faculty Name 0.0

ComboBox ComboName 0.1 DropDownList

Label Label2 Query Method 0.2

ComboBox ComboMethod 0.3 DropDownList

GroupBox CourseBox Course List 1

ListBox CourseList 1.0

GroupBox CourseInfoBox Course Information 2

Label CourseIDLabel Course ID 2.0

TextBox txtID 2.1

Label CourseLabel Course 2.2

TextBox txtCourse 2.3

Label ScheduleLabel Schedule 2.4

TextBox txtSchedule 2.5

Label ClassRoomLabel Classroom 2.6

TextBox txtClassRoom 2.7

Label CreditsLabel Credits 2.8

TextBox txtCredits 2.9

Label EnrollLabel Enrollment 2.10

TextBox txtEnroll 2.11

Button cmdSelect Select 3

Button cmdInsert Insert 4

Button cmdUpdate Update 5

Button cmdDelete Delete 6

Button cmdBack Back 7

Form CourseForm CSE DEPT Course Form

c05.indd 262c05.indd 262 4/25/2012 1:57:34 PM4/25/2012 1:57:34 PM

5.3 Query Data from SQL Server Database Using Design Tools and Wizards 263

 In this chapter, we only use the Select button to make a data query to the data source.
The Insert and other buttons will be used in Chapters 6 and 7 for other data actions, such
as data insertion, data updating, and deleting operations against our sample database
CSE_DEPT.

5.3.1.5 The Student Form

 The Student form is used to collect and display student information, including the courses
taken by the student. As we mentioned in Section 5.1 , the Student form needs two data
tables in the database; one is the Student table, and the other one is the StudentCourse
table. This is a typical example of using two data tables for one GUI (form).

 Go to the Project|Add Windows Form menu item to add a new window form with
a fi le name of Student Form.vb . Add the objects shown in Table 5.7 into this Student
form window. Your fi nished Student form is shown in Figure 5.22 .

 Make sure that you set up the following properties for controls and objects:

 • Make the Select button as the default button by selecting this button from the AcceptButton
property of the form

 • Select the CenterScreen from the StartPosition property of the form

 • Set the BorderStyle property of the ListBox control, CourseList, to FixedSingle

 Also in this Student form, we use TextBoxes to bind and display the student ’ s infor-
mation. All courses, which are represented by the course_id , taken by the student, are
refl ected and displayed in a ListBox control, CourseList.

Figure 5.21. The completed Course form.

c05.indd 263c05.indd 263 4/25/2012 1:57:34 PM4/25/2012 1:57:34 PM

264 Chapter 5 Data Selection Query with Visual Basic.NET

Table 5.7. Objects for the Student form
Type Name Text TabIndex DropDownStyle

PictureBox PhotoBox

GroupBox StudentNameBox Student Name & Method 0

Label Label1 Student Name 0.0
ComboBox ComboName 0.1 DropDownList

Label Label2 Query method 0.2
ComboBox ComboMethod 0.3 DropDownList

GroupBox CourseSelectedBox Course Selected 1

ListBox CourseList 1.0

GroupBox StudentInfoBox Student Information 2

Label Label3 Student ID 2.0
TextBox txtID 2.1

Label Label4 Student Name 2.2
TextBox txtName 2.3

Label Label5 School Year 2.4

TextBox txtSchoolYear 2.5

Label Label6 GPA 2.6

TextBox txtGPA 2.7

Label Label7 Major 2.8
TextBox txtStatus 2.9

Label Label8 Credits 2.10
TextBox txtCredits 2.11

Label Label9 Email 2.12

TextBox txtEmail 2.13
Button cmdSelect Select 3

Button cmdInsert Insert 4
Button cmdBack Back 5

Form StudentForm CSE DEPT Student Form

Figure 5.22. The completed Student form.

c05.indd 264c05.indd 264 4/25/2012 1:57:34 PM4/25/2012 1:57:34 PM

5.4 Add and Utilize Visual Studio Wizards and Design Tools 265

5.4 ADD AND UTILIZE VISUAL STUDIO WIZARDS
AND DESIGN TOOLS

 After the GUIs are completed, next, we need to add a data source to this new project
and set up a connection between our project and our sample database CSE_DEPT. In
Section 5.2.2 , we have provided a detailed discussion about how to add a new data source
and how to confi gure a new added data source in a data - driven application. Now, we will
illustrate these steps with a real Visual Basic.NET 2010 project, SelectWizard , we created
in this section.

5.4.1 Add and Confi gure a New Data Source

 Open the project SelectWizard and select the LogIn form window.
 Go to Data|Show Data Sources menu item to open the Data Source window.

Currently, this window is a blank one since we have not added any data source to this
project. Click on the link Add New Data Source to add a new data source to our project.

 Perform the following operations to set up this data source connection:

1. On the opened Data Source Confi guration Wizard, keep the default selection Database
and click on the Next button.

2. On the next wizard, keep the default DataSet selection unchanged and click on the Next
button to open the next wizard, which is shown in Figure 5.23 a.

3. Click on the New Connection button to open the Add Connection dialog. This dialog
allows us to select the database type and database name, which are determined by the
actual database. We want to use an SQL Server 2008 Express database for this project, so
fi rst we need to change the default database type from the Microsoft Access Database File

Figure 5.23. The Change Data Source wizard.

(a) (b)

c05.indd 265c05.indd 265 4/25/2012 1:57:35 PM4/25/2012 1:57:35 PM

266 Chapter 5 Data Selection Query with Visual Basic.NET

to the Microsoft SQL Server Database File by clicking on the Change button that is
located next to the Data source box.

4. On the opened Change Data Source dialog, select the Microsoft SQL Server Database
File , which is shown in Figure 5.23 b.

5. Click on the OK button to select this database type.

6. Click on the Browse button to locate our desired database fi le. You should have developed
your database using Microsoft SQL Server 2008 Express in Chapter 2 . This database fi le
is located at: C:\Programm Files\Microsoft SQL Server\ MSSQL10.SQL2008EXPRESS\
MSSQL\DATA in your computer. In this example, the database name is CSE_DEPT.mdf
with fi ve data tables. You can fi nd this database fi le from the folder Database\SQLServer
from the Wiley ftp site (refer to Fig. 1.2 in Chapter 1). Select this database fi le and click
on the Open button to add it into your project. A completed Add Connection dialog is
shown in Figure 5.24 a.

7. Before we can continue, we need to confi rm that we are connecting to our target database.
To confi rm this, click on the Advanced button to open the Advanced Properties wizard.
Go to the Data Source item to make sure that our target database .\SQL2008EXPRESS
is selected in there. Otherwise, you need to change this to select our desired database.

8. Now you can test this Add Connection by clicking the Test Connection button. For
the logon security, we use the default Windows Authentication mode. You can use the
SQL - specifi c Username and Password if you like by selecting the checkbox: Use SQL
Server Authentication.

9. Click the OK button to return to the Data Source Configuration Wizard , which
is shown in Figure 5.24 b. Click the Next button to go to the next wizard.

Figure 5.24. The Add Connection and Data Source Confi guration Wizards.

(a) (b)

c05.indd 266c05.indd 266 4/25/2012 1:57:35 PM4/25/2012 1:57:35 PM

5.4 Add and Utilize Visual Studio Wizards and Design Tools 267

10. A message box will pop up to ask if you like to add this data source into your project. As
we discussed in Section 5.2.2.2 , click on the Yes button to save the data source into your
project.

11. The next window shows a message to ask if you like to save this connection string for
future use; select the check box to save it and click on the Next button to continue.

12. The nest step allows you to select different database objects. Generally, all data tables are
necessary to be selected because we need to use those data to perform data operations
between your Visual Basic.NET 2010 project and those tables in the connected database.
The View object provides users with a view of tables, and it allows users to open and scan
all data using the Preview Data functionality. Stored Procedures are used to combine a
sequence of queries to form a procedure to speed up the data query operations. The
Functions objects provide some special functions to facilitate the building of data - driven
applications. It would be no damage to our project if we select all of them. So just check
all checkboxes to select all of them, as shown in Figure 5.25 .

 You may already fi nd that a new DataSet with the name of CSE_DEPTDataSet has
been created, and it is located in the DataSet name box. Click on the Finish button to
complete this confi guration.

 After you fi nish this Data Source Confi guration, a new instance of the DataSet with
a name of CSE_DEPTDataSet is added into your project, which is shown in Figure 5.26 .
Five data tables: LogIn, Faculty, Course, Student, and StudentCourse are included in this
DataSet instance. These fi ve data tables are only mappings or copies of those real tables
in the database. The connection you set up between your project and your database is
closed as this Wizard is fi nished. You need to call some data query or manipulation
methods to reopen this connection as you perform some data queries or actions later in
your application.

Figure 5.25. Select the database objects.

c05.indd 267c05.indd 267 4/25/2012 1:57:35 PM4/25/2012 1:57:35 PM

268 Chapter 5 Data Selection Query with Visual Basic.NET

5.5 QUERY AND DISPLAY DATA USING
THE DATAGRIDVIEW CONTROL

 Now we have added a data source into your Visual Basic.NET 2010 project. Before we
can develop this data - driven project, we want to show a popular but important functional-
ity provided by the Toolbox window: DataGridView. As we discussed this issue in Section
 5.2.1.2 , the DataGridView is a view container, and it can be used to bind data from your
database and display the data in a tabular or a grid format in your Visual Basic form
windows.

 To use this tool, you can add a new blank form to the project SelectWizard, and
name this new form as Grid Form . Go to Project|Add Windows Form to open the
Add New Item dialog, enter Grid Form.vb into the Name box, and click on the Add
button.

 Select the newly added form Grid_Form , and open the Data Source window by click-
ing on the Data menu item from the menu bar. You can view data of any table in your
data source window. The two popular views are Full Table view and Detail view for
specifi ed columns.

 Here, we use the Faculty table as an example to illustrate how to use these two
views.

5.5.1 View the Entire Table

 To view the full Faculty table, click the Faculty table from the Data Source window, click
on the drop - down arrow, and select the DataGridView item. Then drag the Faculty table
to the Grid Form window, which is shown in Figure 5.27 .

 As soon as you drag the Faculty table to the Grid Form, a set of graphical components
is created and added into your form automatically, which include the browsing arrows,
Addition, Delete, and Save buttons. This set of components helps you to view data from

Figure 5.26. The new data source CSE_DEPTDataSet.

c05.indd 268c05.indd 268 4/25/2012 1:57:35 PM4/25/2012 1:57:35 PM

5.5 Query and Display Data using the DataGridView Control 269

the selected table. To make a full table view, make sure to set two properties of the
DataGridView, AutoSizeColumnsMode and AutoSizeRowsMode , to AllCells . In this
way, you can display all data on this grid view tool.

 Now you can run your project by clicking on the Start button. But wait a moment!
One more thing before running the project is to check whether you have selected your
Grid Form as the startup object from the project property menu item. To do that, go to
Project|SelectWizard Properties ; on the opened window, select Grid_Form from the
Startup form box. Now run the project and you can fi nd that the entire Faculty table is
shown in this grid view tool, as shown in Figure 5.28 .

 By using this grid view tool, you can not only view data from the Faculty table, but
also you can add new data into and delete data from the table by clicking the Add (+) or
Delete (x) button to do that. Just type the new data in the new line after you click the
Add button if you want to add new data, or move to the data you want to delete by click-
ing the browsing arrow on the top of the form window and then click the Delete button.
One thing you need to know is that these modifi cations only take effect on data in your
data tables in the DataSet; it has nothing to do with data in your database yet.

 When you drag the Faculty table from the data source window to the Grid Form,
what happened behind this dragging? Let ’ s take a little deeper look at this issue.

 First, you may already fi nd that three components, FacultyBindingSource,
FacultyTableAdapter, and FacultyBindingNavigator, have been added into this form as
you perform this dragging. As we mentioned in Sections 5.2.1.1 – 5.2.1.5 , those components
are objects or instances that are created based on their associated classes, such as the
BindingSource, BindingNavigator, and TableAdapter as you drag the Faculty table into
your form window.

Figure 5.27. The DataGridView tool.

c05.indd 269c05.indd 269 4/25/2012 1:57:35 PM4/25/2012 1:57:35 PM

270 Chapter 5 Data Selection Query with Visual Basic.NET

 Second, let ’ s look at the situation that occured to the program codes, which are
related to those objects and created automatically by the system when those new objects
or instances are created as your dragging occurs. Open the Solution Explorer window
and select the Grid Form.vb , then click on the View Code button to open the code
window. Browse to the Grid_Form_Load() event procedure and you can fi nd that a line
of code is in there:

Me.FacultyTableAdapter.Fill(Me.CSE_DEPTDataSet.Faculty)

 It looks like that the Fill() method, which belongs to the FacultyTableAdapter, is
called to load data from the database into your DataGridView tool. The Fill() method is
a very powerful method, and it performs an equivalent operation as an SQL SELECT
statement did. To make it clearer, open the data source window, and right - click on any
place inside that window. Select the Edit the DataSet with Designer item to open the
DataSet Designer Wizard. Right - click on the bottom line, in which the Fill() and the
GetData() methods are shown, on the Faculty table, and then select the Confi gure item
to open the TableAdapter Confi guration Wizard. You will fi nd that a complete SQL
SELECT statement is already in there:

SELECT faculty_id, faculty_name, title, office, college, phone, email FROM dbo.Faculty

 This statement will be executed when the Fill() method is called by the FacultyTable -
 Adapter as the Grid_Form_Load() event procedure runs when you start your project.
The data returned from executing this statement will be fi lled to the grid view tool in the
Faculty form.

5.5.2 View Each Record or the Specifi ed Columns

 To view each record from the Faculty table, fi rst delete the grid view tool from the Faculty
form. Then go to the data source window and click on the Faculty table. Click on the
drop - down arrow and select the Detail item. Drag the Faculty table from the data source
window to the Faculty form window.

 Immediately, you can fi nd that three new objects, FacultyBindingSource ,
FacultyTableAdapter , and FacultyBindingNavigator , are added into the project. All
column headers in the Faculty table are displayed, which is shown in Figure 5.29 .

 Now click on the Start button to run your project, and the fi rst record in the Faculty
table is displayed in this grid tool, which is shown in Figure 5.30 .

Figure 5.28. The entire table view for the Faculty table.

c05.indd 270c05.indd 270 4/25/2012 1:57:35 PM4/25/2012 1:57:35 PM

5.5 Query and Display Data using the DataGridView Control 271

Figure 5.29. The grid view for specifi ed columns.

Figure 5.30. The running status of the grid view for each record.

c05.indd 271c05.indd 271 4/25/2012 1:57:35 PM4/25/2012 1:57:35 PM

272 Chapter 5 Data Selection Query with Visual Basic.NET

 To view each record, you can click on the forward arrow on the top of the form to
scan all records from the top to the bottom of the Faculty table.

 If you only want to display some specifi ed columns from the Faculty table, go to the
Data Source window and select the Faculty table. Expand the table to display the indi-
vidual columns, and drag the desired column from the data source window onto the Grid
Form window. For each column you drag, an individual data - bound control is created on
the Grid Form, accompanied by an appropriately titled label control. When you run your
project, the fi rst record with the specifi ed columns will be retrieved and displayed on the
form, and you can scan all records by clicking the forward arrow.

 Well, the DataGridView is a powerful tool and allow users to view all data from a
table. But generally, we do not want to perform that data view like an inline SQL state-
ment did. The so - called inline SQL statement means that the SQL statement must be
already defi ned in full before your project runs. In other words, you cannot add any
parameter into this statement after your project runs, which we called dynamic or runtime
SQL statements, and all parameters must be predefi ned before your project runs. But
running SQL statements dynamically is a very popular style for today ’ s database opera-
tions, and in the following sections, we will concentrate on this technique.

5.6 USE DATASET DESIGNER TO EDIT THE STRUCTURE
OF THE DATASET

 After a new data source is added into your new project, your next step is to edit the
DataSet structure based on your applications if you want to develop a dynamic SQL
statement. The following DataSet Structures can be edited by using the DataSet Designer:

 • Build a user - defi ned query in an SQL statement format

 • Modify the method of the TableAdapter to match the users ’ preference

 Now let ’ s begin to develop a dynamic SQL statement or a user - defi ned query with
a real example. We still use the sample project SelectWizard and start from the LogIn
table.

 Open the data source window and right - click any place inside the window, and select
Edit DataSet with Designer to open the DataSet Design Wizard. Locate the LogIn table
and right - click on the last box, in which two methods — Fill() and GetData() are displayed,
and select the Add|Query item from the pop - up menu. Of course, you can select other
items, such as Confi gure , to modify an existing built - in query, such as Fill(). But right
now we want to add a new query to perform our specifi ed data query.

 On the opened TableAdapter Confi guration Wizard, perform the following opera-
tions to build this customer query:

1. On the opened Choose a Command Type wizard, keep the default radio button selection
Use SQL statements checked, and click on the Next button.

2. On the opened Choose a Query Type wizard, keep the default radio button selection
SELECT which returns rows checked, and click on the Next button.

3. In the next wizard, click on the Query Builder button to open the Query Builder window
to build our desired dynamic query. The opened Query Build wizard is shown in Figure 5.31 .

c05.indd 272c05.indd 272 4/25/2012 1:57:35 PM4/25/2012 1:57:35 PM

5.6 Use DataSet Designer to Edit the Structure of the DataSet 273

4. Move the cursor to the intersection cell of the user_name row and the Filter column,
type =? , and press the Enter key from the keyboard. Perform the same operation to the
intersection cell of the pass_word row and the Filter column.

5. Your fi nished query is displayed in the bottom text pane, as shown in Figure 5.31 .

 Query Builder provides a graphical user interface (GUI) for creating SQL queries,
and it is composed of graphical panes and text panes. The top two panes are graphical
panes and the third pane is the text pane. You can select desired columns from the top
graphical pane, and each column you selected will be added into the second graphical
pane. By using the second graphical pane, you can install desired criteria to build user -
 defi ned queries. The query you built will be translated and presented by a real SQL
statement in the text pane.

 By default, all columns in the LogIn table are selected in the top graphical pane. You
can decide which column you want to query by checking the associated checkbox in front
of each column. In this application, we prefer to select all columns from the top graphical
pane. The selected columns will be displayed in the second graphical pane, which is also
shown in Figure 5.31 .

 Since we try to build a dynamic SQL query for the LogIn table, what we want to
do is: when the project runs, the username and password are entered by the user, and
those two items will be embedded into an SQL SELECT statement that is sent to the
data source, that is, to the LogIn table, to check if the username and password entered
by the user can be found in the LogIn table. If a match is found, that matched record
will be read back from the DataSet to the BindingSource via the TableAdapter, and
furthermore refl ected on the bound control on the Visual Basic.NET 2010 LogIn form
window.

Figure 5.31. The Query Build window.

c05.indd 273c05.indd 273 4/25/2012 1:57:35 PM4/25/2012 1:57:35 PM

274 Chapter 5 Data Selection Query with Visual Basic.NET

 The problem is that when we build this query, we do not know the values of the
username and password, which will be entered by the user as the project runs. In other
words, these two parameters are dynamic parameters. In order to build a dynamic query
with two dynamic parameters, we need to use two question marks “ ? ” to temporarily
replace those two parameters in the SQL SELECT statement. We do this by typing an
equal symbol followed by a question mark in the Filter column for user_name and
pass_word rows in the second graphical pane, which is shown in Figure 5.31 . The two
question marks will become two dynamic parameters represented by =@Param1 and
=@Param2 , respectively, after you press the Enter key from the keyboard. This is the
typical representation method for the dynamic parameters used in the SQL Server data-
base query.

 Now let ’ s go to the text pane, and you can fi nd that a WHERE clause is attached at
the end of the SELECT statement, which is shown in Figure 5.31 . The clause

WHERE (user_name = @Param1) AND (pass_word = @Param2)

 is used to set up a dynamic criterion for this SELECT statement. Two dynamic parameters
Param1 and Param2 will be replaced later by the username and password entered by
the user as the project runs. You can consider the @ symbol as a * in C ++ , which works
as an address. So we leave two addresses that will be fi lled later by two dynamic param-
eters, username and password, as the project runs.

 Click on the OK button to continue to the next wizard. The next wizard shows the
complete query we built from the last step in the text format to ask your confi rmation,
and you can make any modifi cation if you want. Click on the Next button to go to the
next step.

 The next wizard provides you with three options: (1) allows you to modify the
Fill() method to meet your specifi ed query for your application; (2) allows you to modify
the GetData() method that returns a new data table fi lled with the results of the SQL
statement; and (3) allows you to add other SQL statements such as Insert, Update, and
Delete.

 For this application, we need to modify the name of the Fill() method by attaching
ByUserNamePassWord to the end of the Fill method, which is shown in Figure 5.32 .
We will use this method in our project to run this dynamic SQL statement. Click on the
Next button to go to the next wizard.

 The next wizard shows the result of your TableAdapter confi guration. If everything
is going smoothly, all statements and methods should be created and modifi ed successfully,
as shown in Figure 5.33 . Click on the Finish button to complete this confi guration.

 Before we can begin to do our coding job, we need to bind data to controls on the
LogIn form to set up the connection or binding relationship between each control on the
LogIn form and each data item on the data source.

5.7 BIND DATA TO THE ASSOCIATED CONTROLS
IN LOGIN FORM

 Open the Solution Explorer window and select the LogIn Form, then click on the View
Designer button to open its GUI. Now we want to use the BindingSource to bind controls
in the LogIn form, that is, the User Name and Pass Word TextBoxes, to the associated
data fi elds in the LogIn table in the data source.

c05.indd 274c05.indd 274 4/25/2012 1:57:35 PM4/25/2012 1:57:35 PM

5.7 Bind Data to the Associated Controls in LogIn Form 275

Figure 5.32. The Choose Methods to Generate window.

Figure 5.33. The result of the TableAdapter Confi guration Wizard.

 Click on the User Name TextBox, and then go to the DataBindings property that is
located in the top section of the property window. Expand the property to display the
individual items, and then select the Text item. Click on the drop - down arrow to expand
the following items:

 • Other Data Sources

 • Project Data Sources

c05.indd 275c05.indd 275 4/25/2012 1:57:35 PM4/25/2012 1:57:35 PM

276 Chapter 5 Data Selection Query with Visual Basic.NET

 • CSE_DEPTDataSet

 • LogIn

 The expansion result is shown in Figure 5.34 .
 Then select the user_name column by clicking on it. In this way, we fi nished the data

binding and set up a connection between the User Name TextBox control on the LogIn
form and the user_name column in the LogIn table in our sample database.

Figure 5.34. The DataBindings property.

 When you perform the fi rst data binding, there is no BindingSource available, since you
have not performed any binding before. You can browse to the desired data column and select
it to fi nish this binding. Once you fi nish the fi rst binding, a new BindingSource object is created,
and all the following data bindings should use that newly created BindingSource to perform
all data bindings.

 You can fi nd that three objects, CSE_DEPTDataSet , LogInBindingSource , and
LogInTableAdapter , have been added into the project and displayed at the bottom of
the window after you fi nish this binding operation.

 Well, is that easy? Yes. Perform the similar operations for the Pass Word TextBox to
bind it with the pass_word column in the LogIn table in the data source. But one point
you need to note is: when we perform the data binding for the User name TextBox, there
is no BindingSource object available because you have not performed any data binding
before, and the User Name is the fi rst control you want to bind. You need to perform
those steps as we did above, which is illustrated in Figure 5.34 . However, after you fi nish
that binding, a new BindingSource object, LogInBindingSource , is created. You need to

c05.indd 276c05.indd 276 4/25/2012 1:57:35 PM4/25/2012 1:57:35 PM

5.7 Bind Data to the Associated Controls in LogIn Form 277

use this created BindingSource object to handle all other data binding jobs for all other
controls on the LogIn form.

 Let ’ s perform the data binding for the Pass Word TextBox now.
 Click that TextBox to select it, and then go to the DataBindings property, select the

Text item, and then click on the drop - down arrow. This time, you will fi nd that a new
BindingSource object, LogInBindingSource , has shown up (Fig. 5.35).

 Expand this new binding source object and select the pass_word column by clicking
on it. The data binding for pass_word is done.

 Some readers may have noted that when we call the Fill() method, that is, the
FillByUserNamePassWord() , from the LogInTableAdapter, we fi ll the LogIn form with
four columns: user_name, pass_word, faculty_id , and student_id from the LogIn table.
In fact, we only fi ll two textbox controls on the form: txtUserName and txtPassWord ,
with two associated columns in the LogIn table: user_name and pass_word , because
we only need to know if we can fi nd the matched username and password entered by the
user from the LogIn table. If both matched items can be found in the LogIn table, that
means that the log in is successful and we can continue for the next step. Two bound -
 control on the form, txtUserName and txtPassWord , will be fi lled with the identical
values stored in the LogIn table. It looks like that this does not make sense. In fact, we
do not want to retrieve any column from the LogIn table, but instead, we only want to
fi nd the matched items of the username and password, which are entered by the user, for
two columns from the LogIn table: user_name and pass_word. If we can fi nd the matched
user name and pass word, we do not care whether we fi ll the faculty_id and student_
id or not. If no matched items can be found, this means that the login has failed and a
warning message should be given.

 Before we can go ahead to our coding, one thing we need to point out is the display-
ing style of the password in the textbox control txtPassWord . Generally, the password
letters will be represented by a sequence of stars * when users enter them as the project

Figure 5.35. The created BindingSource object LogInBindingSource.

c05.indd 277c05.indd 277 4/25/2012 1:57:36 PM4/25/2012 1:57:36 PM

278 Chapter 5 Data Selection Query with Visual Basic.NET

runs. To make this happen to our project, you need to set the PasswordChar property
of the textbox control txtPassWord to a star * .

 Now it is the time for us to develop codes that are related to those objects we created
in the previous steps, such as the BindingSource and TableAdapter to complete the
dynamic query. The operation sequences of the LogIn form are shown below:

1. When the project runs, the user needs to enter the username and password to two textbox
controls, txtUserName and txtPassWord .

2. Then the user will click on the LogIn button on the form to execute the LogIn event
procedure.

3. The LogIn event procedure will fi rst create some local variables or objects that will be used
for the data query and displaying of the next form, SelectionForm.

4. Then the procedure will call the FillByUserNamePassWord() query method to fi ll the
LogIn form.

5. If this Fill is successful, which means that a pair of matched data items for username and
password has been found in the LogIn table, the next window form, SelectionForm, will be
displayed for the next step.

6. Otherwise, a warning message is displayed.

 The new objects created in step 3 include a new object of the LogInTableAdapter
class, a new object of the next window form class, SelectionForm, since we need to use
the LogInTableAdapter object to call the FillByUserNamePassWord() method and to
use a new object to show the next window form SelectionForm.

 Keep those points in mind, and now let ’ s begin to do the coding for the LogIn button
event procedure.

5.8 DEVELOP CODES TO QUERY DATA USING
THE FILL() METHOD

 Select the LogIn Form from the Solution Explorer window and click on the View
Designer button to open its GUI. Double - click on the LogIn button to open its event
procedure.

 Based on step 3 in the above operation sequence, fi rst we need to create two local
objects: the LogInTableApt is an object of the LogInTableAdapter class, and the selForm
is an object of the SelectionForm class. The newly created objects are shown in the top
two lines (A) in Figure 5.36 .

 You need to note that all TableAdapters in this project are located in the namespace
CSE_DEPTDataSetTableAdapters . You need to use this namespace to access the desired
TableAdapter.

 Let ’ s have a closer look at this piece of codes to see how it works.

B. Before fi lling the LogIn table, clean up that table in the DataSet. As we mentioned in
Section 5.2.1.1 , the DataSet is a table holder, and it contains multiple data tables. But these
data tables are only mappings to those real data tables in the database. All data can be
loaded into these tables in the DataSet by using the TableAdapter when your project runs.

c05.indd 278c05.indd 278 4/25/2012 1:57:36 PM4/25/2012 1:57:36 PM

5.8 Develop Codes to Query Data Using the Fill() Method 279

Here, a property ClearBeforeFill , which belongs to the TableAdapter, is set to True to
perform this cleaning job for that mapped LogIn data table in the DataSet.

C. Now we need to call the Fill() method we modifi ed in Section 5.6 , that is, the
FillByUserNamePassWord() , to fi ll the LogIn data table in the DataSet. Because we have
already bound two textbox controls on the LogIn form, txtUserName and txtPassWord ,
with two columns in the LogIn data table in the DataSet, user_name and pass_word , by
using the LogInBindingSource, these two fi lled columns in the LogIn data table will also
be refl ected in those two bound textbox controls, txtUserName and txtPassWord , when
this Fill() method is executed.

 This Fill() method has three arguments: the fi rst one is the data table, in this case it is the
LogIn table that is held by the DataSet, CSE_DEPTDataSet. The following two parame-
ters are dynamic parameters that were temporarily replaced by two question marks “ ? ”
when we modify this Fill() method in Section 5.6 . Now we can use two real parameters,
txtUserName.Text and txtPassWord.Text , to replace those two question marks to com-
plete this dynamic query.

D. If a matched username and password is found in the LogIn table in the database, the Fill()
method will fi ll the LogIn table in the DataSet, and at the same time, these two fi lled
columns will be refl ected on two bound textbox controls on the LogIn form, txtUserName
and txtPassWord . The Count property of the LogIn table in the DataSet will be set.
Otherwise, this property will be reset to 0. By checking this property, we will know if this
Fill is successful or not, or if a matched username and password is found in the database.

 If this property is 0, which means that no matched item is found in the database, and
therefore no column is fi lled for the LogIn data table in the DataSet, the login has failed.

E. Then a warning message is displayed to ask users to handle it.

F. An Exit Sub is executed to exit the event procedure. You need to note that to exit the
event procedure does not mean to exit the project, and your project is still running and
waiting for the next login process.

G. If the login process is successful, the next window form, SelectionForm, will be shown to
allow us to continue to the next step.

Figure 5.36. The codes of the LogIn button event procedure.

Private Sub cmdLogIn_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdLogIn.Click
Dim LogInTableApt As New CSE_DEPTDataSetTableAdapters.LogInTableAdapter
Dim selForm As New SelectionForm

LogInTableApt.ClearBeforeFill = True
LogInTableApt.FillByUserNamePassWord(CSE_DEPTDataSet.LogIn, txtUserName.Text, txtPassWord.Text)

If CSE_DEPTDataSet.LogIn.Count = 0 Then
MessageBox.Show("No matched username/password found!")
Exit Sub

End If
selForm.Show()
Me.Hide()

End Sub

Private Sub cmdCancel_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdCancel.Click
Me.Close()

End Sub

A

B
C

D
E
F

G
H

cmdLogIn Click

c05.indd 279c05.indd 279 4/25/2012 1:57:36 PM4/25/2012 1:57:36 PM

280 Chapter 5 Data Selection Query with Visual Basic.NET

H. After displaying the next form, the current form, LogIn form, should be hidden by calling
the Hide() method. The keyword Me represent the current window form.

 The code for the Cancel button event procedure is very simple. The Close() method
should be called to terminate your project if this button is clicked by the user.

 Before we can test this piece of codes by running the project, perform the following
two operations:

1. Make sure that the LogIn form has been selected as the Start form from the project property
window. To confi rm this, go to Project|SelectWizard Properties to open the Application
window, and select the LogInForm from the Start form box.

2. Remove all codes inside the LogInForm_Load() event procedure since those codes are
generated by the system automatically and we do not need those codes.

 Now click on the Start button to run the project. Your running project should match
the one that is shown in Figure 5.37 .

 Enter a valid username, such as jhenry , to the User Name textbox and a valid pass-
word, such as test , to the Pass Word textbox, and then click on the LogIn button. The
FillByUserNamePassWord() method will be called to fi ll the LogIn table in the data
source. Because we entered the correct username and password, this fi ll will be successful
and the next form, SelectionForm, will be shown up.

 Now, try to enter a wrong username or password, then click on the LogIn button; a
Messagebox will be displayed, which is shown in Figure 5.38 , to ask user to handle this
situation.

Figure 5.37. The running status of the LogIn form.

Figure 5.38. The warning message.

c05.indd 280c05.indd 280 4/25/2012 1:57:36 PM4/25/2012 1:57:36 PM

5.9 Use Return a Single Value to Query Data for LogIn Form 281

 In this section, we used the LogIn form and LogIn table to show readers how to
perform a dynamic data query and fi ll a mapped data table in the DataSet from those
columns in a data table in the database by using the Visual Studio.NET tools and data
wizards. The coding is relatively simple and easy to follow. In the next section, we try to
discuss how to use another method provided by the TableAdapter to pick up a single
value from the database.

5.9 USE RETURN A SINGLE VALUE TO QUERY DATA FOR
LOGIN FORM

 Many people may have experienced forgetting either the username or the password when
they try to log on to a specifi ed Web site to purchase, order, or try to obtain some infor-
mation. In this section, we will show users how to use a method to retrieve a single data
value from the database. This method belongs to the TableAdapter.

 We still use the LogIn form and LogIn table as an example. Suppose you forget
your password, but you want to log in to this project by using the LogIn form with
your username. By using this example, you can retrieve your password by using your
username.

 The DataSet Designer allows us to edit the structure of the DataSet. As we discussed
in Section 5.6 , by using this Designer, you can confi gure an existing query, and add a new
query, a new column, and even a new key. The Add Query method allows us to add a new
data query with an SQL SELECT statement that returns a single value.

 Open the LogIn form window from the Solution Explorer window and open the Data
Source window by clicking the Data menu item from the menu bar. Right - click on any
place inside that window and select the Edit DataSet with Designer, then locate the LogIn
table and right - click on the last line of that table, which contains our modifi ed method
FillByUserNamePassWord() . Then select Add Query to open the TableAdapter Query
Confi guration Wizard. Perform the following operation to build this query:

1. On the opened wizard, keep the default selection Use SQL statements , which means that
we want to build a query with SQL Statements, then click on the Next button and choose
the SELECT which returns a single value radio button. Click on the Next button to go
to the next wizard and click on the Query Builder button to build our query.

2. Delete the default query from the third pane by right - clicking on that query, and select
Delete .

3. Then right - click on the top pane and select the Add Table item from the pop - up menu to
open the Add Table dialog, select the LogIn table and click on the Add button, and then
click on the Close button to close this Add Table dialog.

4. Select the pass_word and user_name columns from the LogIn table by checking those
two checkboxes.

5. Right - click on the Group By column in the middle graphical pane and select Delete to
remove any group choice if the Group By tab is displayed.

6. Uncheck the Output checkbox from the user_name column since we do not want to use
it as the output; instead, we need to use it as a criterion for this query.

7. Type =? on the Filter fi eld from the user_name column and press the Enter key from your
keyboard. Your fi nished Query Builder is shown in Figure 5.39 .

c05.indd 281c05.indd 281 4/25/2012 1:57:36 PM4/25/2012 1:57:36 PM

282 Chapter 5 Data Selection Query with Visual Basic.NET

 The SQL statement
 SELECT pass_word FROM LogIn WHERE (user_name = @Param1)

 indicates that we want to select a password from the LogIn table based on the username
that is a dynamic parameter, and this parameter will be entered by the user when the
project runs. Click on the OK button to go to the next wizard.

 The next wizard is used to confi rm your terminal SQL statement. Click on the Next
button to go to the next wizard.

 This wizard asks you to choose a function name for your query. Change the default
name to a meaningful name, such as PassWordQuery , then click on the Next button. A
successful Wizard Result will be displayed if everything is fi ne. Click on the Finish button
to complete this confi guration.

 Now let ’ s do our coding for the LogIn form. For the testing purpose, fi rst we need to
add a temporary button to the LogIn form to perform this password checking function.
Go to the ToolBox window and drag a button control to the LogIn form, and set up the
following properties to this button:

 Name = cmdPW and Text = PassWord

 Then open the Solution Explorer window, select and open the LogIn form, double -
 click on the new added Password button to open its event procedure, and enter the codes
shown in Figure 5.40 into this event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Create two String local variables. The passWord is used to hold the returning queried
single value of the pass_word , and it is a text string. The Result is used to compose a
resulting string that contains the returned password from the query.

B. Call the query we just built in this section, PassWordQuery() , with a dynamic parameter
username that is entered by the user as the project runs. If this query found a valid pass-
word from the LogIn table based on the username entered by the user, that the password
will be returned and assigned to the local string variable passWord .

Figure 5.39. The fi nished Query Builder.

c05.indd 282c05.indd 282 4/25/2012 1:57:36 PM4/25/2012 1:57:36 PM

5.9 Use Return a Single Value to Query Data for LogIn Form 283

C. If this query cannot fi nd any matched password, a blank string will be returned and
assigned to the variable passWord . A Messagebox with a warning message will be
displayed if this situation did happen. The program will be directed to exit this
subroutine.

D. If the query calling is successful, then a valid password is returned and assigned to the
variable passWord . A composed string combined with the returned password is made and
assigned to the String variable Result .

E. A Messagebox is used to display this found password.

 Click on the Start button to run the project, and your running project should match
the one that is shown in Figure 5.41 .

 Enter a username, such as jking , to the User Name box and click on the PassWord
button. The returned password is displayed in a message box, which is shown in Figure
 5.42 .

 Well, it looks like fun! Is not it?
 Now you can remove the temporary button PassWord and its event procedure from

this LogIn form if you like since we need to continue to develop our project.

Figure 5.40. The codes for the cmdPW button event procedure.

Private Sub cmdPW_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdPW.Click

Dim LogInTableApt As New CSE_DEPTDataSetTableAdapters.LogInTableAdapter
Dim passWord, Result As String

LogInTableApt.ClearBeforeFill = True
passWord = LogInTableApt.PassWordQuery(txtUserName.Text)

If passWord = String.Empty Then
MessageBox.Show("No matched username/password found!")
Exit Sub

End If

Result = "The password is " & " " & passWord
MessageBox.Show(Result)

End Sub

A

B

C

D
E

cmdPW Click

Figure 5.41. The running status of the LogIn form.

c05.indd 283c05.indd 283 4/25/2012 1:57:36 PM4/25/2012 1:57:36 PM

284 Chapter 5 Data Selection Query with Visual Basic.NET

 In the following sections, we will discuss how to develop more professional data -
 driven projects by using more controls and methods. We still use the SelectWizard example
project and continue with the Selection Form.

5.10 DEVELOP THE CODES FOR THE SELECTION FORM

 As we discussed in Section 5.8 , if the login process is successful, the SelectionForm
window should be displayed to allow users to continue to the next step. Figure 5.43 shows
an opened SelectionForm window.

 Each piece of information in the ComboBox control is associated with a form window
and is also associated with a group of data stored in a data table in the database.

 The operation steps for this form are summarized as below:

1. When this form is opened, three pieces of information will be displayed in a ComboBox
control to allow users to make a selection to browse the information related to that
selection.

2. When the user clicks on the OK button, the selected form should be displayed to enable
the user to browse the related information.

 Based on the operation step 1, the coding to display three pieces of information
should be located in the Form_Load() event procedure since this event procedure should
be called fi rst as the project runs.

Figure 5.42. The returned password.

Figure 5.43. The Selection Form.

c05.indd 284c05.indd 284 4/25/2012 1:57:36 PM4/25/2012 1:57:36 PM

5.10 Develop the Codes for the Selection Form 285

 Open the Selection Form window and click on the View Code button to open its code
window. Select the SelectionForm Events item from the Class Name combo box and
choose the Load item from the Method Name combo box to open its SelectionForm_
Load() event procedure, and enter the codes shown in Figure 5.44 into this event
procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The Add method of the ComboBox control is called to add all three pieces of information.
The argument of this method must be a String variable and have to be enclosed by double
quotation marks.

B. The SelectedIndex of this ComboBox control is reset to 0, which means that the fi rst item,
Faculty Information, is selected as the default information.

 According to step 2 described above, when users click on the OK button, the form
related to the information selected by the user should be displayed to allow users to
browse information from that form. Click on the View Designer button to open the GUI
of the SelectionForm object. Then double - click on the OK button to open its event pro-
cedure and enter the codes shown in Figure 5.45 into this procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. First, we need to create three new objects based on three classes. You need to note that
when you add any new Window Form into your project, the new item is a class, not an
object. You need to create a new object or new instance based on that class to use it.

Figure 5.44. The coddes for the Selection Form_Load event procedure.

Private Sub SelectForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles MyBase.Load

 ComboSelection.Items.Add("Faculty Information")
 ComboSelection.Items.Add("Courses Information")
 ComboSelection.Items.Add("Students Information")
 ComboSelection.SelectedIndex = 0

 End Sub

A

B

(SelectionForm Events) Load

Figure 5.45. The codes for the OK button event procedure.

Private Sub OKButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdOK.Click

Dim facultyform As New FacultyForm
Dim studentform As New StudentForm
Dim courseform As New CourseForm

If ComboSelection.Text = "Faculty Information" Then
facultyform.Show()

ElseIf ComboSelection.Text = "Students Information" Then
studentform.Show()

ElseIf ComboSelection.Text = "Courses Information" Then
courseform.Show()

End If

End Sub

A

B

C

D

cmdOK Click

c05.indd 285c05.indd 285 4/25/2012 1:57:36 PM4/25/2012 1:57:36 PM

286 Chapter 5 Data Selection Query with Visual Basic.NET

B. Open the FacultyForm window if the user selected the Faculty Information .

C. Open the StudentForm window if the user selected the Student Information .

D. Open the CourseForm window if the user selected the Course Information .

 The last coding for this form is the Exit button. Open the GUI of the SelectionForm,
and double - click on the Exit button to open its event procedure. Enter the codes shown
in Figure 5.46 into this procedure.

 This piece of codes is very simple. As the user clicks on the Exit button, the project
is exited and terminated by calling the Exit() method.

 Suppose the user selected the fi rst item — Faculty Information. A Faculty form window
will be displayed, and it is supposed to be connected to a Faculty table in the database.
If the user selected a faculty name from the ComboBox control and clicked on the Select
button on that form (refer to Fig. 5.20), all pieces of information related to that faculty
should be displayed on seven textboxes and a picturebox on that form.

 Now let ’ s fi rst to see how to perform the data - binding to bind controls on the Faculty
form to the associated columns in the database.

5.11 QUERY DATA FROM THE FACULTY TABLE FOR THE
FACULTY FORM

 First, let ’ s open the Faculty form window from the Solution Explorer window and perform
the following data bindings.

1. Select the Faculty ID textbox txtID by clicking on it, then go to the Properties Window and
select the DataBindings property, select the Text item, and click on the drop - down arrow.
Expand the following items (Fig. 5.47):

 • Other Data Sources
 • Project Data Sources
 • CSE_DEPTDataSet
 • Faculty

 Then select the faculty_id column from the Faculty table by clicking on it. In this way, you
fi nish the binding between the textbox control txtID on the Faculty form and the faculty_id
column in the Faculty table. As soon as you fi nish this data binding, immediately. you can
fi nd that three components are displayed under your form; CSE_DEPTDataSet,
FacultyBindingSource, and FacultyTableAdapter.

2. Perform a similar operation for the next textbox txtName in the Faculty form to bind the
Name and the faculty_name column in the Faculty table. Go to the DataBindings prop-
erty and then select the Text item, then click on the drop - down arrow. This time, you will

Figure 5.46. The codes for the Exit button event procedure.

Private Sub ExitButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdExit.Click

Application.Exit()

End Sub

cmdExit Click

c05.indd 286c05.indd 286 4/25/2012 1:57:36 PM4/25/2012 1:57:36 PM

5.11 Query Data from the Faculty Table for the Faculty Form 287

fi nd that a new object FacuktyBindingSource has been created. As we discussed in Section
 5.7 , as soon as you fi nish the fi rst data binding, a new binding object related to the data -
 binding source will be created and served for the form in which the binding source is located.
We need to use this binding source to bind our Name control. Expand this binding source
until you fi nd the Faculty table, then click on the faculty_name column to fi nish this binding.
An example of this expansion is shown in Figure 5.48 .

3. In the similar way, you can fi nish the data binding for the rest of the textbox controls; txt-
Title, txtOffi ce, txtPhone, txtCollege, and txtEmail. The binding relationship is: txtTi-
tle → title column, txtOffi ce → offi ce column, txtPhone → phone column, txtCollege →
college, and txtEmail → email column in the Faculty table.

Figure 5.47. The expansion for data binding.

Figure 5.48. An example of the expansion for faculty_name column.

c05.indd 287c05.indd 287 4/25/2012 1:57:36 PM4/25/2012 1:57:36 PM

288 Chapter 5 Data Selection Query with Visual Basic.NET

 Next, we need to use the DataSet Designer to build our data query with the SQL
SELECT statement involved and modify the name of the FillBy() method for the
FacultyTable - Adapter. Perform the following operations to complete this query building
process:

1. Open the Data Source window by clicking the Data|Show Data Sources menu item from
the menu bar.

2. Right - click on any place inside that window and select Edit DataSet with Designer item to
open the DataSet Designer Wizard.

3. Locate the Faculty table, then right - click on the last line of the Faculty table and select the
Ad Query item from the pop - up menu to open the TableAdapter Confi guration Wizard.

4. On the opened Wizard, click on the Next button to keep the default command type — Use
SQL statements and click on the Next button to keep the default query type — SELECT
which returns rows for the next wizard. Then click on the Query Builder button to open
the Query Builder wizard.

5. In the middle graphical pane, move your cursor to the Filter column along the faculty_
name row, then type a question mark ? and press the Enter key from your keyboard. In
this way, a WHERE clause with a dynamic parameter represented by LIKE @Param1 is
added into the SQL Server database. Note that the keyword LIKE is similar to an equal
symbol used in the assignment operator in Microsoft Access query. In SQL Server data
query, LIKE is used to replace the equal symbol.

6. Your fi nished Query Builder should match the one that is shown in Figure 5.49 .

7. Click on the OK and Next buttons to modify the name of the FillBy() method to
FillByFacultyName . Click on the Next button and then the Finish button to complete this
confi guration.

Figure 5.49. An example of the Query Builder.

c05.indd 288c05.indd 288 4/25/2012 1:57:36 PM4/25/2012 1:57:36 PM

5.12 Develop Codes to Query Data from the Faculty Table 289

 Now let ’ s develop the codes for querying the faculty information using this Faculty
form with the Faculty data table in the database.

5.12 DEVELOP CODES TO QUERY DATA FROM
THE FACULTY TABLE

 In this section, we divide the coding job into two parts. Querying data from the Faculty
table using the SQL Select method is discussed in Part 1, and retrieving data using the
LINQ method is provided in Part 2. Furthermore, we only take care of the coding for the
Select and the Back buttons ’ click event procedures, and the coding for all other buttons
will be discussed and coded in the later sections.

5.12.1 Develop Codes to Query Data Using
the TableAdapter Method

 As we mentioned above, the pseudo - code or the operation sequence of this data query
can be described as:

 • After the project runs, the user has completed the login process and selected the Faculty
Information item from the Selection Form.

 • The Faculty form will be displayed to allow users to select the desired faculty name from
the Faculty Name ComboBox control.

 • Then the user can click on the Select button to make a query to the Faculty data table to
get all pieces of information related to that desired faculty.

 The main coding job is performed within the Select button event procedure. But
before we can do that coding, fi rst, we need to add all default faculty names into the
Faculty Name ComboBox control. In this way, as the project runs the user can select a
desired faculty from that box. Since these faculty names should be displayed fi rst as the
project runs, we need to do this coding in the Form_Load event procedure.

 Select the Faculty Form.vb from the Solution Explorer window and click on the
View Code button to open the code window. Go to the Class Name combo box and click
on the drop - down arrow to select the FacultyForm Events item. Go to the Method Name
combo box and click on the drop - down arrow and select the Load button. This will open
the FacultyForm_Load event procedure. Remove all original codes and enter the codes
shown in Figure 5.50 into this event procedure.

 Now we need to do the coding for the Select button event procedure.
 Click on the View Designer button to open the Faculty form window. On the opened

Faculty form, double - click on the Select button to open its event procedure, and then
enter the codes shown in Figure 5.51 into this event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. First, create a new FacuktyTableAdapter object, FacultyTableApt . In Visual Basic.NET
2010, you have to create a new instance or object based on the data component class if
you want to use any method or property that belongs to that class.

c05.indd 289c05.indd 289 4/25/2012 1:57:36 PM4/25/2012 1:57:36 PM

290 Chapter 5 Data Selection Query with Visual Basic.NET

B. If the user selected the LINQ & DataSet Method, a user - defi ned subroutine LINQtoDataSet()
that will be built later is called to perform a LINQ to DataSet query.

C. Otherwise, the SQL SELECT query method has been selected. First, we need to clean up
the Faculty table before it can be fi lled by setting the ClearBeforeFill property to True .

D. Call the method FillByFacultyName() to fi ll the Faculty table with a dynamic parameter,
Faculty Name, which is selected by the user from the Faculty Name ComboBox control as
the project runs.

E. By checking on the Count property of the Faculty table that is involved in our DataSet,
we can confi rm whether this fi ll is successful or not. If this property is equal to 0, which
means that no matched record has been found in the Faculty table in the database, and
therefore no record or data has been fi lled into the Faculty table in our DataSet, a warning
message is given for this situation to require users to handle this problem. The user can
either continue to select correct faculty name or exit the project. If this property is non -

Figure 5.50. The codes for the FacultyForm_Load event procedure.

Private Sub FacultyForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboName.SelectedIndex = 0
ComboMethod.Items.Add("TableAdapter Method")
ComboMethod.Items.Add("LINQ & DataSet Method")
ComboMethod.SelectedIndex = 0

End Sub

(FacultyForm Events) Load

A

B

Figure 5.51. The codes for the Select button event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim FacultyTableApt As New CSE_DEPTDataSetTableAdapters.FacultyTableAdapter

If ComboMethod.Text = "LINQ & DataSet Method" Then
 LINQtoDataSet()

Else
 FacultyTableApt.ClearBeforeFill = True
 FacultyTableApt.FillByFacultyName(CSE_DEPTDataSet.Faculty, ComboName.Text)

 If CSE_DEPTDataSet.Faculty.Count = 0 Then
 MessageBox.Show("No matched faculty found!")
 Exit Sub
 End If

End If

End Sub

A

B

C
D

E

cmdSelect Click

c05.indd 290c05.indd 290 4/25/2012 1:57:36 PM4/25/2012 1:57:36 PM

5.12 Develop Codes to Query Data from the Faculty Table 291

 zero, which indicates that this fi ll is successful and a matched faculty name is found and
the Faculty table in our DataSet has been fi lled. All information related to the matched
faculty will be displayed in 7 textboxes and a picturebox.

 As we mentioned, in this section, we only perform the coding for the Select and the
Back buttons. The coding for all other buttons will be provided in the later sections.

 The coding for the Back button is very simple. The Faculty form will be removed
from the screen and from the project or from the memory when this button is clicked. A
Close() method is used for this purpose, which is shown in Figure 5.52 .

 Next, we need to develop the codes to use LINQ to DataSet method to perform this
faculty data query.

5.12.2 Develop Codes to Query Data Using the LINQ
to DataSet Method

 The faculty data query can be signifi cantly integrated and improved by using the LINQ
to DataSet technology. We have already provided a very detailed discussion about this
technology in Chapter 4 . Refer to that chapter to get a clear picture of this issue. In this
part, we will concentrate on the coding for this subroutine.

 Open the Code Window of the FacultyForm if it is not opened, create a user - defi ned
subroutine, and enter the codes, which are shown in Figure 5.53 , into this window.

Figure 5.52. The codes for the Back button.

Private Sub cmdBack_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdBack.Click
Me.Close()

End Sub

cmdBack Click

Figure 5.53. The codes for the LINQ to DataSet subroutine.

A
B

C
D

Private Sub LINQtoDataSet()

FacultyTableAdapter.Fill(CSE_DEPTDataSet.Faculty)
Dim facultyinfo = From fi In CSE_DEPTDataSet.Faculty

Where fi.Field(Of String)("faculty_name").Equals(ComboName.Text)
Select fi

For Each fRow In facultyinfo
txtID.Text = fRow.faculty_id
txtName.Text = fRow.faculty_name
txtTitle.Text = fRow.title
txtOffice.Text = fRow.office
txtPhone.Text = fRow.phone
txtCollege.Text = fRow.college
txtEmail.Text = fRow.email

Next

End Sub

FacultyForm LINQtoDataSet

c05.indd 291c05.indd 291 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

292 Chapter 5 Data Selection Query with Visual Basic.NET

 Let ’ s have a closer look at this piece of codes to see how it works.

A. First, the default Fill() method of the FacultyTableAdapter is executed to load data from
the Faculty table in the database into the Faculty table in our DataSet. This step is neces-
sary since the LINQ technique is applied with the DataSet, and the DataSet must contain
the valid data in all tables before this technique can be implemented.

B. A typical LINQ query structure is created and executed to retrieve all related information
for the selected faculty member. The facultyinfo is an implicitly typed local variable. The
Visual Basic.NET 2010 will be able to automatically convert this variable to a suitable data
type — in this case, it is a DataSet — when it sees it. An iteration variable fi is used to iterate
over the result of this query from the Faculty table. Then an SQL SELECT statement is
executed with the WHERE clause.

C. A For Each loop is utilized to pick up each column from the selected data row fRow , which
is obtained from the facultyinfo we get from the LINQ query.

D. Assign each column to the associated textbox to display it in the FacultyForm window.

 One issue you may have found is that when you test this project, the related faculty
picture is not displayed with those pieces of faculty information together. We try to solve
this problem in the next section.

5.13 DISPLAY A PICTURE FOR THE SELECTED FACULTY

 To store images in the database is not an easy job. In this section, to simplify this process,
we just save the faculty images in a special folder in the project. We can load this picture
into your project to show it as your project runs.

 To display a correct faculty photo from the correct location, we need to perform the
following steps to confi gure this operation:

 • In order to make this project portable, which means that the project can be executed as an
integrated body without any other additional confi gurations, the best place to save these
faculty images is a folder in which your Visual Basic.NET 2010 executable fi le is stored. The
actual folder is dependent on your output fi le type. The folder should be your_project_
folder\bin\Debug if your output fi le is a debug fi le, otherwise you should save those faculty
images in the folder your_project_folder\bin\Release if your output fi le is a release fi le. In
this application, our output fi le is a debug fi le, therefore, we can save those faculty images
into the folder SelectWizard\bin\Debug . You do not need to specify the full path for those
images ’ location if you save images in this way as you load them when the project runs.

 • In order to select a correct faculty image based on the Faculty Name selected by the user,
a function should be developed to complete this job.

 • To display the image, a system method, System.Drawing.Image.FromFile() , is used.

 First, let ’ s take a look at the codes that need to be added into the Select button event
procedure to select and display a matched faculty image.

5.13.1 Modify the Codes for the Select Button Event Procedure

 Open the Faculty form window and double - click on the Select button to open its event
procedure. Add the highlighted codes shown in Figure 5.54 into this event procedure.

c05.indd 292c05.indd 292 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

5.13 Display a Picture for the Selected Faculty 293

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A local String variable strName is created to hold the name of the returned faculty image.

B. Call the function FindName() that will be developed later to identify and return the
matched faculty image based on the input that is a selected faculty name.

C. If the function returns a No Match string, which means that no matched faculty image
is found, a warning message will be given, and the program is directed to exit the
application.

D. By setting the Picture ’ s property SizeMode to the StretchImage , we allow the image to
be enlarged enough to fi ll the whole PictureBox. Then the system method is called to load
and display the image based on the selected image.

5.13.2 Create a Function to Select the Matched Faculty Image

 Now let ’ s develop a function to select the matched image for the faculty selected by the
user. The input parameter should be a faculty name, and the output should be an image
fi le ’ name, which is matched to the input faculty name.

 Keep the Faculty form selected, and click on the View Code button from the Solution
Explorer window to open its code window. Create a new function FindName() by enter-
ing the codes shown in Figure 5.55 into this code window.

 This coding is straightforward. A local String variable strName is created to hold the
selected image fi le name. The Select Case structure is used to choose the matched faculty
image fi le. A string No Match is returned if no matched faculty image is found.

Figure 5.54. Add codes to select the faculty ’ s image.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim FacultyTableApt As New CSE_DEPTDataSetTableAdapters.FacultyTableAdapter
Dim strName As String

strName = FindName(ComboName.Text)
If strName = "No Match" Then

MessageBox.Show("No Matched Faculty Found!")
Exit Sub

End If

PhotoBox.SizeMode = PictureBoxSizeMode.StretchImage
PhotoBox.Image = System.Drawing.Image.FromFile(strName)

If ComboMethod.Text = "LINQ & DataSet Method" Then
LINQtoDataSet()

Else
FacultyTableApt.ClearBeforeFill = True
FacultyTableApt.FillByFacultyName(CSE_DEPTDataSet.Faculty, ComboName.Text)

If CSE_DEPTDataSet.Faculty.Count = 0 Then
MessageBox.Show("No matched faculty found!")
Exit Sub

End If
End If

End Sub

A

B
C

D

cmdSelect Click

c05.indd 293c05.indd 293 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

294 Chapter 5 Data Selection Query with Visual Basic.NET

 Before we can run the project to test the faculty data query functions, one key point
is that we must save all faculty image fi les into the folder in which our project executable
fi le is located in order to make our project work properly. In this application, this folder
is C:\SelectWizard\SelectWizard\bin\Debug . You can fi nd all faculty and student image
fi les from the folder Images located at the Wiley site (refer to Fig. 1.2 in Chapter 1). Copy
and paste those image fi les to this folder.

 Now we are ready to test our project. Click on the Start button to run the project.
Enter jhenry as the username and test as the password on the LogIn form. Click on the
LogIn button to open the Selection Form window, select the Faculty Information item,
and then click on the OK button to open the Faculty form.

 To perform this query using the TableAdapter Method, keep the default method in
the Query Method combo box and select Ying Bai from the Faculty Name ComboBox,
and click on the Select button. All information related to this faculty with a faculty
picture will be displayed, as shown in Figure 5.56 .

 To test querying the faculty data using the LINQ to DataSet method, select the LINQ
to DataSet Method from the Query Method combo box. Then select a desired faculty
name from the Faculty Name combo box and click on the Select button. You can fi nd
that the same query result can be retrieved and displayed in this form. Click on the Back
button and then the Exit button to exit our project.

 At this point, we complete the designing and building our Faculty form. Next we will
take acre of our Course form.

Figure 5.55. The codes for the function FindName.

Private Function FindName(ByVal fName As String) As String
Dim strName As String

Select Case fName
Case "Black Anderson"

strName = "Anderson.jpg"
Case "Ying Bai"

strName = "Bai.jpg"
Case "Satish Bhalla"

strName = "Satish.jpg"
Case Is = "Steve Johnson"

strName = "Johnson.jpg"
Case Is = "Jenney King"

strName = "King.jpg"
Case "Alice Brown"

strName = "Brown.jpg"
Case Is = "Debby Angles"

strName = "Angles.jpg"
Case Is = "Jeff Henry"

strName = "Henry.jpg"
Case Else

strName = "No Match"
End Select

Return strName

End Function

FacultyForm FindName

c05.indd 294c05.indd 294 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

5.14 Query Data from the Course Table for the Course Form 295

5.14 QUERY DATA FROM THE COURSE TABLE FOR THE
COURSE FORM

 The functions of this form are illustrated as the following steps:

1. This form allows users to fi nd the course taught by the selected faculty from the Faculty
Name ComboBox control when users click on the Select button. All courses, that is, all
course_id , are displayed in the Course ListBox.

Figure 5.56. The running status of the Faculty form window.

 In this example, we saved our faculty image fi le in the folder in which the project execut-
able fi le is stored. If you do not want to save your image fi le in this folder, you must provide
the full name for your image fi le, which includes the full path for the folder in which you saved
your image fi le and the image fi le name. For instance, one image fi le, “ Bai.jpg ” , is saved in the
folder C:\FacultyImage ” ; you must give the full name as the returned string as “ C:\FacultyImage\
Bai.jpg ” when you call the function FindName().

2. The detailed information for each course, such as the course title, course schedule, class-
room, credits, and enrollment, can be obtained by clicking on the desired course_id from
the Course ListBox, and displayed in fi ve TextBox controls.

3. The Back button allows users to return to the Selection form to make some other selections
to obtain desired information related to those selections.

 In this section, we only take care of two buttons; the Select and the Back , buttons,
and the coding for the other buttons will be discussed in the later chapters.

c05.indd 295c05.indd 295 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

296 Chapter 5 Data Selection Query with Visual Basic.NET

5.14.1 Build the Course Queries Using the Query Builder

 For step 1, in order to fi nd the courses taught by the selected faculty from the Course
table, we need fi rst to obtain the selected faculty ID that is associated with the selected
faculty from the Faculty Name combo box control when users click the Select button
because no faculty name is available from the Course table. The only available informa-
tion in the Course table is the faculty_id . So we need fi rst to create a query that returns
a single value (faculty_id) from the Faculty table, and then we can create another query
in the Course table to fi nd the courses (course_id) taught by the selected faculty based
on the faculty_id we obtained from the Faculty table.

 Now let ’ s do the fi rst job, to create a query to obtain the associated faculty_id from
the Faculty table based on the selected faculty from the Faculty Name combo box in the
Course form.

1. Open the DataSet Designer Wizard and right - click on the last line of the Faculty table and
select Add Query to open the TableAdapter Query Confi guration Wizard.

2. Keep the default selection Use SQL statements and click on the Next button to go to the
next wizard.

3. Check the radio button of SELECT which returns a single value to choose this query
type, and click on the Next button to go to the next wizard.

4. Click on the Query Builder to build our query.

5. On the opened Query Builder wizard, remove the default query from the text pane or the
third pane by highlighting it, right - clicking on it, and selecting the Delete button. Then
right - click on the top pane and select the Add Table item to open the Add Table wizard.
Select the Faculty table by clicking on it from the table list, and then click on the Add and
the Close buttons to add this table.

6. Select the faculty_id and the faculty_name from the Faculty table by checking them in the
top pane and unchecking the Output checkbox for the faculty_name row in the mid - pane
since we do not want to query the faculty_name but only use it as the criterion to fi nd the
faculty_id .

7. Then type a question mark on the Filter column for the faculty_name row and press the
Enter key from your keyboard. Your fi nished query should match the one that is shown in
Figure 5.57 .

8. The SQL statement shown in the text pane or the third pane is:

SELECT faculty_id FROM Faculty WHERE (faculty_name = @Param1)

9. Click on the OK buttons and the Next buttons to go to the next wizard. Enter the
FindFacultyIDByName into the box as our function name and then click on the Next and
the Finish buttons to complete this query building.

 Now, let ’ s continue to build our second query to fi nd the courses (course_id) taught
by the selected faculty from the Course table. Open the DataSet Designer to create our
desired query and modify the Fill() method for the CourseTableAdapter.

1. Open the Data Source window by clicking the Data|Show Data Sources menu item from
the menu bar. Then right - click on any place inside this window and select the Edit DataSet
with Designer item to open the DataSet Designer Wizard.

c05.indd 296c05.indd 296 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

5.14 Query Data from the Course Table for the Course Form 297

2. Right - click on the last line of the Course table and choose the Add Query item to open
the TableAdapter Confi guration Wizard.

3. Keep the default selection Use SQL statements and click on the Next button to go to the
next wizard. In the next wizard, keep the default selection SELECT which returns rows
unchanged, and click on the Next button.

4. Then click on the Query Builder to open the Query Builder window, which is shown in
Figure 5.58 .

5. Keep the default selections for the top graphical pane even if we only need the course_id
column, and we will show you why we need to keep these default items later. Go to the
Filer column along the faculty_id row, and type a question mark (?) and press the Enter
key from your keyboard. This is equivalent to set a dynamic parameter for this SQL
SELECT statement.

6. The completed SQL statement is displayed in the text pane, and the content of this state-
ment is:

SELECT course_id, course, credit, classroom, schedule, enrollment, faculty_id
 FROM Course
 WHERE (faculty_id = @Param1)

7. The dynamic parameter @Param1 is a temporary parameter, and it will be replaced by the
real parameter faculty_id as the project runs.

8. Click on the OK button and then the Next button to return to the TableAdapter Confi guration
Wizard to modify the Fill() method. Change the Fill() method to the FillByFacultyID() . Then
click on the Next and the Finish button to complete this confi guration.

 The next step is to bind the controls from the Course form to the associated
data column in the Course table in the DataSet. Select the Course Form.vb from
Solution Explorer window and click on the View Designer button to open the Course
form window.

Figure 5.57. The fi nished query for the faculty_id.

c05.indd 297c05.indd 297 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

298 Chapter 5 Data Selection Query with Visual Basic.NET

5.14.2 Bind Data Columns to the Associated Controls
in the Course Form

 First, we need to bind the CourseList to the course_id column in the Course table in the
DataSet. Recall that there are many course records with the same faculty_id in this
Course table when we build this sample database in Chapter 2 . Those multiple records
with the same faculty_id are distinguished by the different course_id taught by that
faculty. To bind a ListBox to those multiple course records with the same faculty_id , we
cannot continue to use the binding method we used before for textbox controls in the
previous sections. This is the specialty of binding a ListBox control. The special point is
that the relationship between the ListBox and the data items in a table is one - to - many,
which means that a ListBox can contain multiple items, in this case, the CourseList can
contain many course_id . So the binding of a ListBox control is to bind a ListBox to a
table in the DataSet, that is, to the Course table in this application.

 Perform the following operation to complete this binding:

1. Click on the CourseList control from the Course form, and go to the DataSource property.
Then click on the drop - down arrow to expand the data source until the Course table is
found. Select this table by clicking on it. Figure 5.59 a shows this expansion situation.

2. Go to the DisplayMember property and expand the Course table to fi nd the course_id
column, and select it by clicking on this item (Figure 5.59 b).

Figure 5.58. The Query Builder.

c05.indd 298c05.indd 298 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

5.14 Query Data from the Course Table for the Course Form 299

 In this way, we set up a binding relationship between the Course ListBox in the
Course form and the Course data table in the DataSet.

 Now, let ’ s do the second binding; bind six textbox controls in the Course form to six
columns in the Course data table in the DataSet. Perform the following operations to
complete this binding:

1. Keep the Course form opened and then select the Course ID textbox from the Course form.

2. Go to the DataBindings property and expand to the Text item. Click on the drop - down
arrow and you will fi nd that a CourseBindingSource object is already created there for this
project. Expand this CourseBindingSource until you fi nd the course_id column, which is
shown in Figure 5.59 c, and then choose it by clicking on the course_id column.

 In this way, a binding is set up between the Course ID textbox in the Course form
and the course_id column in the Course table in the DataSet.

 Set up all other four data bindings for the following fi ve textbox controls: Course,
Schedule, Classroom, Credits, and Enrollment in a similar way.

 One point you need to note is the order of performing these two bindings. You must
fi rst perform the binding for the CourseList control, and then perform the binding for six
Textboxes.

 Now we can answer the question why we need to keep the default selections at the
top graphical pane when we build our query in the Query Builder (refer to Fig. 5.58). The
reason for this is that we need those columns to perform data binding for our six textbox
controls here. In this way, each textbox control in the Course form is bound with the
associated data column in the Course table in the DataSet. After this kind of binding
relationship is set up, all data columns in the data table Course in the DataSet will be
updated by the data columns in the Course data table in our real database each time a
FillByFacultyID() method is executed. At the same time, all six textboxes ’ content will
also be updated since those textbox controls have been bound to those data columns in
the Course data table in the DataSet.

 Ok, now it is time for us to create coding for this form.

Figure 5.59. The expansion of the data source.

(a) (b) (c)

c05.indd 299c05.indd 299 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

300 Chapter 5 Data Selection Query with Visual Basic.NET

5.15 DEVELOP CODES TO QUERY DATA FOR
THE COURSE FORM

 Based on the analysis of the functionality of the Course form we did above, when the
user selected a faculty name and click on the Select button, all courses, that is, all
course_id taught by that faculty, should be listed in the Course ListBox. To check the
details for each course, click the course_id from the CourseList control, and all detailed
information related to the selected course_id will be displayed in six textbox controls.
The coding is divided into two parts. The fi rst part is to query data using the TableAdapter
method, and the second part is to perform the data query using the LINQ to DataSet
method.

5.15.1 Query Data from the Course Table Using the
TableAdapter Method

 Open the code window of the Course form window. Click on the drop - down arrow from
the Class Name combo box to select the (CourseForm Events) item, then click on the
drop - down arrow from the Method Name combo box to select the Load to open the
CourseForm_Load event procedure. Remove all original codes and enter the codes
shown in Figure 5.60 into this event procedure.

 The Add method is used to add all faculty names into the combo box. Reseting the
SelectedIndex property to 0 is to select the fi rst faculty and the fi rst method as the default
one from the combo box as the project runs.

 Open the Course form window by clicking on the View Designer button from the
Solution Explorer window, and then double - click on the Select button to open its event
procedure. Enter the codes shown in Figure 5.61 into this event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A new course table adapter object is created based on the CourseTableAdapter class that
is located at the namespace CSE_DEPTDataSetTableAdapters.

Figure 5.60. The codes for the CourseForm_Load event procedure.

Private Sub CourseForm_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboName.SelectedIndex = 0
ComboMethod.Items.Add("TableAdapter Method")
ComboMethod.Items.Add("LINQ & DataSet Method")
ComboMethod.SelectedIndex = 0

End Sub

(CourseForm Events) Load

c05.indd 300c05.indd 300 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

5.15 Develop Codes to Query Data for the Course Form 301

B. A new faculty table adapter object is also created based on the FacultyTable - Adapter class.
A local string variable strFacultyID is declared, and it is used to hold the returned faculty_
id when our built query FindFacultyIDByName() is executed later.

C. Before the query FindFacultyIDByName() is executed, the faculty table adapter is fi rst
cleaned up.

D. The query FindFacultyIDByName() is called with an argument that is the faculty name
selected by the user when the project runs. The returned faculty_id is assigned to the local
string variable strFacultyID .

E. If the returned value is an empty string, which means that no matched faculty_id can be
found and this calling has failed, an error message is displayed and the procedure is exited.

F. If the user selected the LINQ to DataSet Method , a user - defi ned subroutine
LINQtoDataSet() , which will be built later, is called to perform this data query using the
LINQ to DataSet method.

G. Otherwise, the TableAdapter method is selected by the user and the query we built in the
DataSet Designer, FillByFacultyID() , will be called to fi ll the Course table in our DataSet
using a dynamic parameter @Param1 that is replaced by our real parameter strFacultyID
now (refer to Fig. 5.58).

H. To check whether this fi ll is successful, the Count property of the Course table is detected.
If this property is reset to 0, which means that no data item is fi lled into our Course table
in our DataSet, the fi ll has failed, and a warning message will be displayed to require users
to handle this situation. Otherwise, the fi ll is successful, and all courses (course_id) taught
by the selected faculty will be fi lled into the Course table and loaded into the Course
ListBox control in our Course form, and furthermore, the detailed course information
including the course ID, course schedule, classroom, credits, and enrollment for the selected
course_id in the Course ListBox will be displayed in the six textbox controls since these
textbox controls have been bound to those related data columns in the Course table.

Figure 5.61. The codes for the Select button click event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim CourseTableApt As New CSE_DEPTDataSetTableAdapters.CourseTableAdapter
Dim FacultyTableApt As New CSE_DEPTDataSetTableAdapters.FacultyTableAdapter
Dim strFacultyID As String

FacultyTableApt.ClearBeforeFill = True
strFacultyID = FacultyTableApt.FindFacultyIDByName(ComboName.Text)

If strFacultyID = String.Empty Then
MessageBox.Show("No matched faculty_id found!")
Exit Sub

End If

CourseTableApt.ClearBeforeFill = True
If ComboMethod.Text = "LINQ & DataSet Method" Then

LINQtoDataSet(strFacultyID)
Else

CourseTableApt.FillByFacultyID(CSE_DEPTDataSet.Course, strFacultyID)
If CSE_DEPTDataSet.Course.Count = 0 Then

MessageBox.Show("No Matched Courses Found!")
Exit Sub

End If
End If

End Sub

A
B

C
D
E

F

G

H

cmdSelect Click

c05.indd 301c05.indd 301 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

302 Chapter 5 Data Selection Query with Visual Basic.NET

 Return to the Course form window by clicking on the View Designer button from
the Solution Explorer window, then double - click on the Back button to open its event
procedure and enter the code, Me.Close() , into this event procedure.

 Next, let ’ s handle the coding for the querying data using the LINQ to DataSet
method.

5.15.2 Query Data from the Course Table Using the LINQ to
DataSet Method

 In the last coding (refer to Fig. 5.61), the project will be directed to calling the
LINQtoDataSet() subroutine if the user selected the LINQ to DataSet method from the
Query Method combo box. Refer to Chapter 4 to get a detailed discussion about the data
query between LINQ to DataSet. In this part, we will develop the codes to use this sub-
routine to perform the data query from the Course table in our DataSet.

 Open the Code Window of the CourseForm if it is not opened, create a new sub-
routine LINQtoDataSet() , and enter the codes, which are shown in Figure 5.62 , into this
subroutine.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. First, the default Fill() method of the CourseTableAdapter is executed to load data from
the Course table in the database into the Course table in our DataSet. This step is neces-
sary since the LINQ technique is applied with the DataSet, and the DataSet must contain
the valid data in all tables before this technique can be implemented.

B. A typical LINQ query structure is created and executed to retrieve all related information
for the selected faculty_id . The courseinfo is an implicitly typed local variable. The Visual
Basic.NET 2010 will be able to automatically convert this variable to a suitable data type
(in this case, it is a DataSet) when it sees it. An iteration variable ci is used to iterate over
the result of this query from the Course table. Then an SQL SELECT statement is executed
with the WHERE clause.

Figure 5.62. The codes for the LINQ to DataSet subroutine.

A
B

C
D

Private Sub LINQtoDataSet(ByVal facultyID As String)

CourseTableAdapter.FillByFacultyID(CSE_DEPTDataSet.Course, facultyID)
Dim courseinfo = From ci In CSE_DEPTDataSet.Course.AsEnumerable()

Where ci.Field(Of String)("faculty_id") = facultyID
Select ci

For Each cRow In courseinfo
txtCourse.Text = cRow.course
txtSchedule.Text = cRow.schedule
txtClassRoom.Text = cRow.classroom
txtCredits.Text = cRow.credit.ToString()
txtEnroll.Text = cRow.enrollment.ToString()

Next

End Sub

CourseForm LINQtoDataSet

c05.indd 302c05.indd 302 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

5.15 Develop Codes to Query Data for the Course Form 303

C. A For Each loop is utilized to pick up each column from the selected data row cRow ,
which is obtained from the courseinfo we get from the LINQ query.

D. Assign each column to the associated textbox to display it in the CourseForm window.

 That ’ s it! All coding is done.
 Let ’ s test our project by running it. Click on the Start button to run our project.

Complete the login process and select the Course Information from the Selection form.
Then click on the OK button to open our Course form, which is shown in Figure 5.63 .

 On the opened Course form, select the default faculty name Ying Bai and keep the
default query method TableAdapter Method from the Query Method combo box, and
click on the Select button to test this data query using the TableAdapter method. The
fi lled course_id are displayed in the Course ListBox, as shown in Figure 5.63 .

 Now let ’ s go one more step forward by just clicking on a course_id from the Course
ListBox. Immediately, the detailed information about that selected course_id , including
the course, schedule, classroom, credits, and enrollment will be displayed in the six textbox
controls. This makes sense since those textbox controls have been bound to those six
associated columns in the Course table in our DataSet. As you click one course_id from
the Course ListBox, in effect, you selected and picked up one course record from the
Course table. Recall that the Course ListBox is bound to the Course table in our DataSet
by using the CourseBindingSource when we perform this data binding in section 5.14 .
For the selected course record, six columns of that record have been bound to the six
textbox controls in the form, so the data related to those columns will also be refl ected
on these six textbox controls. These relationships can be represented and illustrated by
connections shown in Figure 5.64 .

 It is very interesting, is not it?

Figure 5.63. The running status of the Course form.

c05.indd 303c05.indd 303 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

304 Chapter 5 Data Selection Query with Visual Basic.NET

 Yes! This is the power provided by Visual Basic.NET. By using those Tools and
Wizards in Visual Studio.NET, it is very easy to develop a professional database program-
ming in the Visual Basic.NET environment, and it becomes fun to develop a database
programming in Visual Basic.NET 2010.

 You can select the LINQ to DataSet Method from the Query Method combo box
to test the course data query using that method. The same query results can be obtained
and displayed in the CourseForm.

 We have the last form, which is the Student form, and we want to leave this as the
homework for students to allow them to fi nish the building and development of the data
connection and operation between the Student form and the Student table, as well as the
StudentCourse table. For your reference, a completed project named SampleWizards
Solution that contains the coding for Student form has been developed, and you can fi nd
this project from the folder DBProjects\Chapter 5 that is located at the Wiley ftp site
(refer to Fig. 1.2 in Chapter 1). The database used for that project is Microsoft Access
2007.

 A completed project SelectWizard , including the source codes, GUI designs, Data
Source, and Query Builders, can be found in the folder DBProjects\Chapter 5 that is
located at the Wiley ftp site (refer to Fig. 1.2 in Chapter 1).

5.16 QUERY DATA FROM ORACLE DATABASE
USING DESIGN TOOLS AND WIZARDS

 Basically, there is no signifi cant difference between building a Visual Basic.NET project
to query data from an SQL Server or from an Oracle database using the Design Tools
and Wizards provided by the earlier versions of .NET Framework and Visual Studio.NET,
such as .NET Framework 2.0 and 3.5, as well as Visual Studio.NET 2005 and 2008.
However, a signifi cant change occurred starting from .NET Framework 4.0 and Visual
Studio.NET 2010. Starting from .NET Framework 4.0 and Visual Studio.NET 2010,
Microsoft no longer supports the Data Provider for Oracle database. Therefore, we
cannot use those tools and wizards to build any data applications to access and manipulate
data against Oracle databases in Visual Studio.NET 2010.

 In order to solve this problem, in this section, we selected a third - party product,
dotConnect for Oracle 6.30 Express developed by Devart ™ Inc.

Figure 5.64. The relationships between Course ListBox, Course table and TextBox.

Course Table

DataSet

Course ListBox

Course Form

TextBoxes

Course Form

course_id

columns

c05.indd 304c05.indd 304 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

5.16 Query Data from Oracle Database Using Design Tools and Wizards 305

5.16.1 Introduction to dot Connect for Oracle 6.30 Express

 dotConnect for Oracle Express Edition, formerly known as OraDirect.NET, is an
enhanced ORM - enabled data provider for Oracle that builds on ADO.NET technology
to present a complete solution for developing Oracle - based database applications.

 dotConnect for Oracle 6.30 Express is a powerful tool that enables users to design
and build professional database applications to access Oracle databases in .NET
environment. This tool provides full support to the updated versions of Oracle Database
Express Editions, such as 11g XE, and sets up connections between the Oracle database
and .NET Framework, especially ADO.NET, which provides simple and convenient
ways to access and manipulate Oracle Database XE from the Visual Studio.NET
environment.

 Some important and useful properties of using dotConnect for Oracle 6.30 Express
to access Oracle Database 11g XE are:

 • Direct access from .NET to Oracle database server without Oracle client

 • 100% managed code

 • High performance and easy to deploy

 • Supports latest versions of Oracle server, including Personal and Express editions

 • All Oracle data types support and full Oracle Objects support Compatible with ADO.NET
Entity Framework v.1 and v.4

 In the following sections, we will use the tools and wizards provided by dotConnect
for Oracle 6.30 Express to build our database applications to access our sample Oracle
database CSE_DEPT.

 Appendix F provides a detailed discussion and introduction about downloading and
installing the dotConnect for Oracle 6.30 Express. Refer to that Appendix to complete
the downloading and installing this product.

 When using the tools and wizards provided by dotConnect for Oracle 6.30 Express
to build our Oracle database applications, the only small difference is the creation and
connection to the different data sources when you select the data source for your applica-
tions. All other staffs, including the codes, GUIs, and query building, are identical and can
be used mutually. For this reason, in this part, we want to use a sample project,
SelectWizardOracle , to illustrate how to perform data queries against an Oracle data-
base using the Design Tools and Wizards. We will mainly concentrate on the data source
selection and connection to an Oracle sample database CSE_DEPT, which was built in
Chapter 2 using the Oracle Database 11g XE.

5.16.2 Create a New Visual Basic.NET Project:
SelectWizardOracle

 Now let ’ s create a new Visual Basic.NET Windows project SelectWizardOracle and
connect it to our Oracle database CSE_DEPT we built in Chapter 2 .

c05.indd 305c05.indd 305 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

306 Chapter 5 Data Selection Query with Visual Basic.NET

 Perform the following operations to create this new project:

1. Open Visual Studio 2010 and go to the File|New Project menu item to open the New
Project wizard.

2. Expand the Other Project Types item under the Installed Templates and select the Visual
Studio Solutions

3. Enter SelectWizardOracle Solution into the Name box and click on the Browse button
to fi nd a desired folder to save this new solution. Then click on the OK button to create this
blank solution.

4. Right - click on the newly created solution SelectWizardOracle Solution from the Solution
Explorer window and select the Add|New Project item.

5. Select Visual Basic|Windows Form Application from the Templates pane. Enter
SelectWizardOracle into the Name box as the name for this project, and click on the OK
button to create this new project.

 Refer to Sections 5.3.1.1 – 5.3.1.5 to build fi ve GUIs: LogIn, Selection, Faculty, Course,
and Student. To save time, you can also copy and paste all of these fi ve forms from the
folder VB Forms\Window that is located at the Wiley site (refer to Fig. 1.2 in Chapter
 1). Following the operational procedure described below to complete this copy and paste
actions:

1. Open the Windows Explorer and create a new folder in your computer, such as
SelectWizardOracle Forms .

2. Go to the folder VB Forms\Window located at the Wiley site to copy all fi les from that
folder and paste them to your new folder SelectWizardOracle Forms .

3. On your opened Visual Basic.NET project, go to the Project|Add Existing Item .

4. Browse to your folder SelectWizardOracle Forms and select all fi ve form fi les, LogIn
Form.vb , Selection Form.vb , Faculty Form.vb , Course Form.vb , and Student Form.
vb , by using the Ctrl key on your keyboard.

5. Click on the Add button to add all fi ve forms to your project.

 You can also replace the default form Form1.vb with the LogIn Form.vb and use it
as your start up form. Perform the following operations to complete this replacement
action:

1. Delete the default Form, Form1.vb , from your project by right - clicking on this form from
the Solution Explorer window, and select the Delete from the pop - up menu.

2. Go to the Build|Rebuild SelectWizardOracle menu item to rebuild your project. The
purpose of this operation is to fi nd the mismatched default form, Form1.vb , from your
project and replace it with your LogIn Form.vb .

3. Go to the Error List in the Output window, double - click on the error line “Form1” is not
a member of “SelectWizardOracle” to open the Application.Designer.vb fi le.

4. On the opened fi le, locate the Form1 , and replace it with the LogInForm . Your fi nished
modifi cation should look like:

Me.MainForm = Global.SelectWizardOracle.LogInForm

5. Rebuild and run your project, and you can fi nd that now, the LogIn Form works as the start
up form in your project.

 Now we need to select the desired Oracle data source and connect it to our project.

c05.indd 306c05.indd 306 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

5.16 Query Data from Oracle Database Using Design Tools and Wizards 307

Figure 5.65. The Change Data Source wizard.

5.16.3 Select and Add Oracle Database 11 g XE
as the Data Source

 Perform the following operations to add our Oracle sample database CSE_DEPT into
our current Visual Basic.NET project:

1. In the opened SelectWizardOracle project, open the Data Source window by selecting
the Data|Show Data Sources menu item.

2. Click on the Add New Data Source link to open the Data Source Confi guration Wizard.

3. Keep the default Database selection in the Choose a Data Source Type wizard and the
Dataset selection in the Choose a Database Model wizard unchanged, and click on the
Next button to open the Choose Your Data Connection wizard.

4. Click on the New Connection button since we need to create a new connection between
our project and the Oracle database.

5. Click on the Change button for the Data Source box to open the Change Data Source
wizard, which is shown in Figure 5.65 , and then select the Oracle Database from the Data
source listbox and dotConnect for Oracle from the Data provider combo box, as shown
in Figure 5.65 , as our new data source. Click on the OK button to return to the Add
Connection wizard.

6. Enter the following items into the associated boxes for our Oracle database:

 • Server name: XE

 • User Id: CSE_DEPT

 • Password: reback

 Recall that in Chapter 2 , we built an Oracle customer database named CSE_DEPT with
the password reback using Oracle Database 11g XE. Refer to Section 2.11 in Chapter 2
to get more detailed information for the defi nitions of these items. Your fi nished Add
Connection dialog should match the one that is shown in Figure 5.66 .

7. Click on the Test Connection button to confi rm this database connection. A Connection
succeeded message should be displayed if the connection is fi ne. Click on the OK button
to go to the next wizard.

c05.indd 307c05.indd 307 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

308 Chapter 5 Data Selection Query with Visual Basic.NET

8. The next wizard allows you to check and confi rm the connection string. Click on the Yes
radio button will allow us to add the username and password into this connection string
to make this connection as an integrated body (Fig. 5.67).

9. Click on the Next button to open the next wizard. Change the name of this connection
string to ConnOracle and click on the Next button.

10. The next wizard allows us to select the database objects. Generally, we always use
data tables to save our data. So click on the small plus icon before the Table object to
expand it. By default, quite a few built - in data tables may be selected, as our data table
objects and most of them are built by the database vendors. For our application, we only
need fi ve tables we created in Section 2.11 in Chapter 2 , such as the LogIn , Faculty ,
Course , Student , and StudentCourse . Select all of these fi ve tables by checking them
one by one.

11. Another issue is the name of the DataSet. In order to match and use codes we developed
in the project SelectWizard , change this DataSet name to CSE_DEPTDataSet by modify-
ing the content of the DataSet name box. Your fi nished wizard should match the one that
is shown in Figure 5.68 .

12. Click on the Finish button to complete this database connection. Immediately, you can
fi nd that fi ve tables have been added into our Data Source window, which is shown in
Figure 5.69 .

Figure 5.66. The Add Connection wizard.

c05.indd 308c05.indd 308 4/25/2012 1:57:37 PM4/25/2012 1:57:37 PM

5.16 Query Data from Oracle Database Using Design Tools and Wizards 309

Figure 5.67. The data source confi guration wizard.

Figure 5.68. The database object selection wizard.

c05.indd 309c05.indd 309 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

310 Chapter 5 Data Selection Query with Visual Basic.NET

 Next, let ’ s take care of the small differences that exist in the coding parts between
the SQL Server and the Oracle databases.

5.16.4 Modify the Codes to Access the Oracle Database

 After this data source connection is complete, you can use all codes we developed in
the project SelectWizard in this project. The following issues must be paid special atten-
tion in order to successfully develop this project by using the codes from the project
SelectWizard:

 • When you perform the copy and paste operations for those codes located inside different
event procedures, you need fi rst to open those event procedures from each form in our
current project, SelectWizardOracle , by double - clicking on the associated button, and then
you can copy the related codes from the associated event procedure in the project
SelectWizard and paste them into the event procedure in our current project
SelectWizardOracle . In other words, you cannot copy and paste the whole body of those
event procedures, including the event procedure ’ s header and ender, but you can copy and
paste only the contents of each event procedure.

 • You need to build each query method using the Query Builder one by one in order to
perform the data query. These methods include the following:

 • PassWordQuery() and FillByUserNamePassWord() for LogIn form
 • FillByFacultyName() and FindFacultyIDByName() for the Faculty form, and
 • FillByFacultyID() for the Course form

 • You need to change all the data tables ’ names and all the data columns ’ names in fi ve tables
(LogIn, Faculty, Course, Student, and StudentCourse) to the uppercase in your program
codes since the Oracle database engine changed all of those names to uppercase when this
new database is generated. Otherwise, you may encounter some debug errors when you
build your project.

 • Copy all faculty and student image fi les and paste them into your desired folder in order to
display each faculty and student picture. All image fi les are located at the folder Images
that is located at the Wiley ftp site (refer to Fig. 1.2 in Chapter 1). The general folder used

Figure 5.69. The added fi ve data tables.

c05.indd 310c05.indd 310 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

5.16 Query Data from Oracle Database Using Design Tools and Wizards 311

to save those image fi les is the folder in which your executable Visual Basic.NET project fi le
is located, such as C:\Chapter 5\SelectWizardOracle\ bin\Debug .

 • Remove all default codes, not the codes created by us, from each Form_Load event
procedure, such as LogInForm_Load() , FacultyForm_Load() , CourseForm_Load() , and
StudentForm_Load() , since those codes are created by the system, and we do not need
those codes in our applications.

 In addition to points listed above, you also need to perform the following operations
to make your project work properly:

 For LogIn form:

1. Bind two textbox controls, txtUserName and txtPassWord , to two columns, user_name
and pass_word , in the LogIn table in the DataSet using the LOGINBindingSource .

2. Build the query methods FillByUserNamePassWord() and PassWordQuery() using the
Query Builder.

3. Remove the LogInForm_Load() method and its content.

 For Faculty form:

1. Bind seven textbox controls, txtID , txtName , txtTitle , txtOffi ce , txtPhone , txtCollege ,
and txtEmail , to the corresponding seven columns in the Faculty table using the
FACULTYBindingSource .

2. Build the query methods FillByFacultyName() and FindFacultyIDByName() using the
Query Builder.

 For Course form:

1. Bind six textbox controls, txtID , txtCourse , txtSchedule , txtClassRoom , txtCredits ,
and txtEnroll , to the corresponding six columns in the Course table using the
COURSEBindingSource .

2. Bind the listbox control CourseList to the Course table in the DataSet using the
COURSEBindingSource .

3. Build the query method FillByFacultyID() using the Query Builder.

 If you want to perform any query for the Student form, you need to build the associ-
ated query methods using the Query Builder and bind the target controls with the cor-
responding columns in the Student and StudentCourse tables.

 A complete project that uses Oracle database, SelectWizardOracle , can be found in
the folder DBProjects\Chapter 5 that is located at the Wiley ftp site (refer to Fig. 1.2 in
Chapter 1). This project contains query methods, binding objects, and full codes develop-
ment for the StudentForm, as well as the connections to the Student and StudentCourse
data tables.

PART II DATA QUERY WITH RUNTIME OBJECTS

 Unlike the sample data - driven application programs we developed in Part I , in which a
quite of few design tools and wizards provided by Visual Studio.NET are utilized to help
us to fi nish those developments such as the DataSet, BindingSource, BindingNavigator
and TableAdapter, the sample project developed in this part has nothing to do with those

c05.indd 311c05.indd 311 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

312 Chapter 5 Data Selection Query with Visual Basic.NET

tools and wizards. This means that we create those ADO.NET 4.0 objects by directly
writing Visual Basic.NET 2010 codes without the aid of Visual Studio.NET design - time
wizards and tools, as well as the auto - generated codes. All data - driven objects are created
and implemented during the period of the project runs. In other words, all those objects
are created dynamically.

 The shortcoming of using those Visual Visual.NET tools and wizards to create
data connections is that the auto - generated connection codes related to tools and wizards
are embedded into your programs, and those connection codes are machine - dependent.
Once that piece of connection information in your programs is complied, it cannot be
modifi ed. In other words, your programs cannot be distributed to and run in other
platforms.

 Compared with tools and wizards, there are some advantages of using the runtime
objects to make the data operations for your Visual Basic.NET 2010 project. One of the
most important advantages is that it provides programmers more fl exibility in creating
and implementing connection objects and data operation objects related to ADO.NET
and allows you to use different methods to access and manipulate data from the data
source and the database. But anything has both a good and bad side, and it is true here.
The fl exibility also brings some complex staff. For example, you have to create and use
different data providers and different commands to access the different databases by
using the different codes. Unlike the sample project we developed in the last part, in
which you can use tools and wizards to select any data source you want and produce the
same coding for the different data sources, in this part, you must specify the data provider
and command type based on your real data source to access the data in your project. But
before we can continue to do that, a detailed understanding of the connection and data
operations classes is very important, and those classes are directly related to ADO.NET.
Although some discussions have been provided in Chapter 3 , we will make a more
detailed discussion for this topic in this section in order to make readers have a clear
picture about this issue.

5.17 INTRODUCTION TO RUNTIME OBJECTS

 The defi nition of runtime objects can be described as: objects or instances used for data
connections and operations in a data - driven application are created and implemented
during the period your project runs; in other words, those objects are created and utilized
dynamically. To understand what kind of objects are most popularly used in an applica-
tion, let ’ s fi rst have a detailed discussion about the most useful classes provided by ADO.
NET.

 According to Chapter 3 , ADO.NET architecture can be divided into three compo-
nents: Data Provider, DataSet, and a DataTable. These three components are directly
related to different associated classes, which are shown in Figure 5.70 .

 Data Provider contains four components

1. Data Connection

2. Data Command

3. DataReader

4. TableAdapter

c05.indd 312c05.indd 312 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

5.17 Introduction to Runtime Objects 313

Figure 5.70. Classes provided by ADO.NET.

Connection

Data Provider

Command

SELECT INSERT UPDATE DELETE

TableAdapter

DataReader

DataTable

DataSet

OLE DB SQL Server ODBC ORACLE

OleDb
Connection

Sql
Connection

Odbc
Connection

Oracle
Connection

OleDb
Command

Sql
Command

Odbc
Command

Oracle
Command

Parameter

Command

ExecuteReader ExecuteNonQuery

SELECT

INSERT UPDATE DELETE

Ole Db Sql Odbc Oracle

 All components inside the Data Provider are Data Provider - dependent components,
which means that all components, including the Connection, Command, TableAdapter
(DataAdapter), and DataReader, are identifi ed and named based on the real data pro-
vider, or database the user used. For example, the Data Provider used for SQL Server
database must be identifi ed and named by a prefi x such as the Sql , such as

 • Data Connection component: Sql Connection

 • Data Command component: Sql Command

 • DataAdapter (TableAdapter): Sql DataAdapter (Sql TableAdapter)

 • DataReader components: Sql DataReader

 The same defi nition is needed for the other three Data Providers. All classes, methods,
properties, and constants of these four types of Data Provider are located at four different
namespaces: System.Data.OleDb , System.Data.SqlClient , System.Data.Odbc , and
System.Data.OracleClient .

 As shown in Figure 5.70 , four data providers are popularly used in database program-
ming in Visual Basic.NET 2010. You must create the correct connection object based on
your real database by using the specifi c prefi x.

 But two components in ADO.NET are Data Provider - independent, DataSet and
DataTable. These two components are located at the System.Data namespace. You do
not need to use any prefi x when you use these two components in your applications. Both
DataSet and the DataTable can be fi lled by using the DataAdapter or the TableAdapter
components.

 ADO.NET provides different classes to allow users to develop a professional data -
 driven application by using different methods. Among those methods, two popular
methods will be discussed in this part in detail.

 The fi rst method is to use the so - called DataSet - DataAdapter method to build a
data - driven application. DataSet and DataTable classes can have different roles when
they are implemented in a real application. Multiple DataTables can be embedded into

c05.indd 313c05.indd 313 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

314 Chapter 5 Data Selection Query with Visual Basic.NET

a DataSet, and each table can be fi lled, inserted, updated, and deleted by using the dif-
ferent query method of a DataAdapter, such as the SelectCommand, InsertCommand,
Update - Command, or DeleteCommand, when one develops a data - driven application
using this method. As shown in Figure 5.70 , when you use this method, the Command
and Parameter objects are embedded or attached to the TableAdapter object (repre-
sented by a shaded block), and the DataTable object is embedded into the DataSet object
(represented by another shaded block). This method is relatively simple since you do not
need to call some specifi c objects, such as the DataReader, with a specifi c method, such
as the ExecuteReader or ExecuteNonQuery, to complete this data query. You just call
the associated command of the TableAdapter to fi nish this data operation. But this sim-
plicity brings some limitations for your applications. For instance, you cannot access dif-
ferent data tables separately to perform multiple specifi c data operations.

 The second method is to allow you to use each object individually, which means that
you do not have to use the DataAdapter to access the Command object, or use the
DataTable with DataSet together. This provides more fl exibility. In this method, no
DataAdapter or DataSet is needed, and you can only create a new Command object with
a new Connection object, and then build a query statement and attach some useful
parameter into that query for the newly created Command object. You can fi ll any
DataTable by calling the ExecuteReader() method to a DataReader object; also, you can
perform any data manipulation by calling the ExecuteNonQuery() method to the desired
DataTable.

 In this section, we provide three sample projects to cover two methods:
AccessSelectRTObject , SQLSelectRTObject , and OracleSelectRTObject , which are
associated with Microsoft Access 2007, Microsoft SQL Server 2008, and Oracle 11g XE
databases.

 To understand better for these two methods, we need to have a clear picture of how
to develop a data - driven application using the related classes and methods provided by
ADO.NET.

5.17.1 Procedure of Building a Data -Driven Application
Using Runtime Object

 Recall that we discussed the architecture and important classes of the ADO.NET in
Chapter 3 . To connect and implement a database with your Visual Basic project, you need
follow the sequence listed below:

1. Create a new Connection String with correct parameters.

2. Create a new Connection object by using the suitable Connection String built in step 1.

3. Call the Open() method to open this database connection with the correct block, such as
the Try . . . Catch block.

4. Create a new TableAdapter (DataAdapter) object.

5. Create a new DataTable object that is used to be fi lled with data.

6. Call the suitable command/object, such as the SelectCommand (or the Fill()), or the
DataReader, to make data query.

7. Fill the data to the bound - controls on the Visual Basic.NET 2010 form.

c05.indd 314c05.indd 314 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 315

8. Release the TableAdapter, Command, DataTable, and the DataReader used.

9. Close the database Connection object if no more database operation is needed.

 Now, let ’ s fi rst develop a sample project to access the data using the runtime object
for Microsoft Access 2007 database.

5.18 QUERY DATA FROM MICROSOFT ACCESS DATABASE
USING RUNTIME OBJECT

 The Microsoft Access 2007 database fi le used in this sample project is CSE_DEPT.accdb ,
and it is located at the Database\Access folder in the Wiley ftp site (refer to Fig. 1.2 in
Chapter 1).

 First, we need to create a Visual Basic.NET 2010 Windows - based project named
AccessSelectRTObject with fi ve form windows: LogIn , Selection , Faculty , Course , and
Student . Refer to Section 5.3.1 to build these form windows if you like. But in order to
save your time, you can also copy and paste all of these fi ve forms from the folder VB
Forms\Window that is located at the Wiley site (refer to Fig. 1.2 in Chapter 1). Follow
the operational procedure described in Section 5.16.2 to complete this copy and paste
actions.

 Open this project and let ’ s begin to develop a data - driven application starting from
the LogIn form.

5.18.1 Query Data Using Runtime Objects for the LogIn Form

 In this application, we want to use two methods to perform the data query from our LogIn
table: the DataSet - TableAdapter method and the DataReader method. Therefore, we
need to modify the LogIn Form by replacing the cmdLogIn button with two new buttons,
TabLogIn and the ReadLogIn . Add these two new buttons with the Name and Text
properties equaling to TabLogIn and ReadLogIn . Your modifi ed LogIn form should
match the one that is shown in Figure 5.71 .

 Now click on the View Code button to open its Code Window to begin our coding
for these two event procedures to perform data query from the LogIn table with two

Figure 5.71. The modifi ed LogIn form window.

c05.indd 315c05.indd 315 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

316 Chapter 5 Data Selection Query with Visual Basic.NET

different methods. But fi rst, we need to create and declare some global variables and
runtime objects.

5.18.1.1 Declare Global Variables and Runtime Objects

 Starting from Visual Basic.NET 2010, the Module class is resumed by Microsoft. By using
this class, we can declare some global variables used by the whole Visual Basic.NET
project. One candidate for this kind of global variables is the connection object, since it
will be used by our whole project.

 First, let create a new module connModule by performing the following
operations:

1. Go to the Project|Add Module menu item to open the Add New Item wizard.

2. Go to the Name box and change the module ’ s name to ConnModule.vb and click on the
Add button.

3. In the opened module code window, enter the codes shown in Figure 5.72 .

 As we mentioned in the last section, all components related to the OLE DB Data
Provider supplied by ADO.NET are located at the namespace System.Data.OleDb . To
access the Microsoft Access database fi le, you need to use this Data Provider. You must
fi rst declare this namespace at the top line of your code window to allow Visual Basic.
NET 2010 to know that you want to use this specifi ed Data Provider.

 The Imports System.Data is to provide a reference to the namespace that will be
used in this project. As we discussed in the last section and in Chapter 3 , both the DataSet
and the DataTable components are located at this namespace, and those components will
be used in this project later, so you must fi rst provide the reference to that namespace to
allow the Visual Basic.NET 2010 to access it.

 The single code line is used to declare a new global instance of the OleDbConnection
classes.

Public accConnection as OleDbConnection

 The accessing mode Public makes this connection instance accConnection a global
object, and it can be accessed by all event procedures defi ned in all different forms from
this project.

 After a connection object is declared, the next job is to connect your project with the
database you selected.

Figure 5.72. The declaration of the namespace for the OleDb Data Provider.

Imports System.Data
Imports System.Data.OleDb

Module ConnModule

Public accConnection As OleDbConnection

End Module

ConnModule (Declarations)

c05.indd 316c05.indd 316 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 317

5.18.1.2 Connect to the Data Source with the Runtime Object

 Because the connection job is the fi rst thing you need to do before you can make any
data query, you need to code the connection job in the fi rst event procedure, the Form_
Load() event procedure, to allow the connection to be performed fi rst as your project
runs.

 In the code window, click on the drop - down arrow in the Class Name combo box and
select the item (LogInForm Events) . Then go to the Method Name combo box and click
on the drop - down arrow to select the Load method to open the LogInform_Load() event
procedure, and enter the codes shown in Figure 5.73 into this event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Two namespaces related OleDB data providers are imported fi rst since we need to use
some components involved in that provider.

B. A connection string should be created fi rst based on the procedure listed in Section 5.17.1 .
The connection string is used to indicate the connection information, including the name
of the data provider, the location, and the name of the database, username, and password
to access the selected database. In our case, no username and password are utilized for our
database, so those two items are missed from this connection string. You need to add those
two pieces of information if your database did utilize those two items. The database driver
for Microsoft Access 2007 is Microsoft ACE OLEDB 12.0, and our database fi le is named
CSE_DEPT.accdb that is located at C:\Database directory in our computer.

C. By using the keyword New , we initialize a new instance of the connection class
OleDbConnection with the connection string we built in step B .

D. A Try . . . Catch block is utilized here to try to catch up any mistake caused by opening a
connection between our project and the Access database fi le, and furthermore connecting
our project to the database we selected. The advantage of using this kind of strategy is to
avoid unnecessary system debug process and simplify this debug procedure.

Figure 5.73. The codes for the LogInForm_Load event procedure.

Imports System.Data
Imports System.Data.OleDb

Private Sub LogInForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
Dim strConnectionString As String = "Provider=Microsoft.ACE.OLEDB.12.0;" & _

"Data Source=C:\\Database\\Access\\CSE_DEPT.accdb;"

accConnection = New OleDbConnection(strConnectionString)

Try
accConnection.Open()

Catch OleDbExceptionErr As OleDbException
MessageBox.Show(OleDbExceptionErr.Message, "Access Error")

Catch InvalidOperationExceptionErr As InvalidOperationException
MessageBox.Show(InvalidOperationExceptionErr.Message, "Access Error")

End Try

If accConnection.State <> ConnectionState.Open Then
MessageBox.Show("Database Connection is Failed")
Exit Sub

End If
End Sub

A

B

C

D

E

F

G

(LogInForm Events) Load

c05.indd 317c05.indd 317 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

318 Chapter 5 Data Selection Query with Visual Basic.NET

E. An OleDbExceptionError message will be displayed if an error related to the OleDb
connection occurred.

F. An InvalidOperationExceptionError message should be displayed if an invalid operation
error were encountered.

G. This step is used to confi rm that our database connection is successful. If not, an error
message is displayed and the project is exited.

 After a database connection is successfully made, next, we need to use this connection
to access the database to perform our data query job.

5.18.1.3 Coding for Method 1: Using DataSet-TableAdapter to Query Data

 In this section, we discuss how to create and use the runtime objects to query data by
using the DataSet - TableAdapter method.

 Open the LogIn form window by clicking on the View Designer button, and then
double click on the TabLogIn button to open its event procedure. Enter the codes shown
in Figure 5.74 into this event procedure.

Figure 5.74. The codes for the TabLogIn button.

Private Sub TabLogIn_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles TabLogIn.Click
Dim cmdString1 As String = "SELECT user_name, pass_word, faculty_id, student_id FROM LogIn "
Dim cmdString2 As String = "WHERE (user_name=@Param1) AND (pass_word=@Param2)"
Dim cmdString As String = cmdString1 & cmdString2
Dim LogInTableAdapter As New OleDbDataAdapter
Dim accDataTable As New DataTable
Dim accCommand As New OleDbCommand
Dim selForm As New SelectionForm

accCommand.Connection = accConnection
accCommand.CommandType = CommandType.Text
accCommand.CommandText = cmdString
accCommand.Parameters.Add("@Param1", OleDbType.Char).Value = txtUserName.Text
accCommand.Parameters.Add("@Param2", OleDbType.Char, 8).Value = txtPassWord.Text
LogInTableAdapter.SelectCommand = accCommand
LogInTableAdapter.Fill(accDataTable)

If accDataTable.Rows.Count > 0 Then
MessageBox.Show("LogIn is successful")
‘SelForm.Show()
‘Me.Hide()

Else
MessageBox.Show("No matched username/password found!")

End If

accDataTable.Dispose()
accDataTable = Nothing
accCommand.Dispose()
accCommand = Nothing
 LogInTableAdapter.Dispose()

 LogInTableAdapter = Nothing
End Sub

A

B

C

D
E

F

G

H

TabLogIn Click

c05.indd 318c05.indd 318 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 319

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Since the query string applied in this application is relatively long, we break it into two
substrings: cmdString1 and cmdString2 . Then we combine these two substrings together
to form a complete query string. A trick issue is existed when you break a long query string
into multiple substrings in Visual Basic.NET, which is that you cannot break a long query
string into multiple substrings by using the line breaker symbol (space + underscore)
directly since Visual Basic cannot recognize a string that is broken into multiple lines. A
string variable must be represented by a single string line in the Visual Basic programming.
Another trick is that you must leave a space either at the end of the fi rst subquery string
or at the beginning of the second subquery string, since a space is required between the
 “ . . . FROM LogIn ” and the “ WHERE ” clause. Otherwise, a running error would be
encountered if you did not pay attention to this space, and this bug is not easy to fi nd and
correct.

B. The Command object accCommand is initialized by using three properties: connection
object, command type, and command string.

C. Note that there are two dynamic parameters, @Param1 and @Param2 , in the second
query string, and these two parameters need to be replaced by two real values that will be
entered by the user via two textboxes, txtUserName and txtPassWord , when the project
runs. To add these two parameters, the Add() method in the Parameters collection is called.
The Add() method can be overloaded, and it has four different constructors. In this code
fragment, two of them are used. The fi rst constructor contains two arguments: the param-
eter ’ s name and the parameter ’ s type, and the second one includes one more argument,
the parameter ’ s length in bytes. One can also assign the value to the parameter by using
the Value property. In this application, two values come from the users ’ input: txtUser-
Name.Text and txtPassWord.Text .

D. After two parameters are added into the Parameters collection that is the property of the
Command object, the command object is ready to be used. It is then assigned to the method
SelectCommand() of the TableAdapter.

E. The Fill() method of the TableAdapter is called to fi ll the LogIn table. Exactly when the
Fill() is called, the SelectCommand() is executed to perform the query we built in the
previous steps.

F. By checking the Count property, we can inspect whether this fi ll is successful or not. A
successful message is displayed if this property ’ s value is greater than 0, which means that
some data have been fi lled into the LogIn table. Note that the following two lines of codes
that have been commented out will be used later for our normal project. The purpose of
these two lines of codes is to display the next form window — Selection form — and hide
the current form window — LogIn form — if the login process is successful. But right now
in order to test our project, a message box is used. Later on, we need to use these two
green color codes to replace the message box as our fi nal codes.

G. An error message will be issued if this property is 0, which means that no row or record
is fi lled into the LogIn table, and the program is exited.

H. A cleaning job is necessary to release all objects we used for this data query. This cleaning
includes the DataTable, TableAdapter, and Command objects. A Dispose() method and a
Nothing property are used to fi nish this cleaning job.

 Now, let ’ s take a look at the codes for the second method.

c05.indd 319c05.indd 319 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

320 Chapter 5 Data Selection Query with Visual Basic.NET

5.18.1.4 Coding for Method 2: Using the DataReader to Query Data

 Open the LogIn form window by clicking the View Designer button from the Solution
Explorer window, and then double - click on the ReadLogIn button to open its event
procedure. Enter the codes shown in Figure 5.75 into this event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.
 Most codes in the top section are identical with those codes in the TabLogIn button ’ s

event procedure with two exceptions. First, a DataReader object is created to replace the
TableAdapter to perform the data query, and, second, the DataTable is removed from
this event procedure since we do not need it for our data query in this method.

A. Instead of calling the Fill() method, here, we call the ExecuteReader() method to run the
Command object with two dynamic parameters to perform a query. The acquired data
would be assigned to the DataReader object.

B. By checking the HasRows property of the DataReader object, we can inspect whether
the DataReader has received data or not. A success message will be displayed if this
property is True, which means that the DataReader has received the data from the LogIn
table. The codes that have been commented out will be used later to replace this message
box function for our normal project. But at this moment, we use this message box to test
our project.

C. An error message will be displayed to require the user to handle this situation if the
HasRows is False, which means that no data has been received by the DataReader , and
the login has failed.

D. A cleaning job is performed to release all objects we used for this data query.

Figure 5.75. The codes for the ReadLogIn button event procedure.

Private Sub ReadLogIn_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles ReadLogIn.Click

Dim cmdString1 As String = "SELECT user_name, pass_word, faculty_id, student_id FROM LogIn "
Dim cmdString2 As String = "WHERE (user_name=@Param1) AND (pass_word=@Param2)"
Dim cmdString As String = cmdString1 & cmdString2
Dim accCommand As New OleDbCommand
Dim accDataReader As OleDbDataReader
Dim selForm As New SelectionForm

accCommand.Connection = accConnection
accCommand.CommandType = CommandType.Text
accCommand.CommandText = cmdString
accCommand.Parameters.Add("@Param1", OleDbType.Char).Value = txtUserName.Text
accCommand.Parameters.Add("@Param2", OleDbType.Char, 8).Value = txtPassWord.Text
accDataReader = accCommand.ExecuteReader

If accDataReader.HasRows = True Then
MessageBox.Show("LogIn is successful")
‘SelForm.Show()
‘Me.Hide()

Else
MessageBox.Show("No matched username/password found!")

End If

accCommand.Dispose()
accCommand = Nothing
accDataReader.Close()
accDataReader = Nothing

End Sub

A

B

C

D

ReadLogIn Click

c05.indd 320c05.indd 320 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 321

5.18.1.5 Clean up the Objects and Terminate the Project

 Before we can test our project, we need to fi nish the coding for our last button, Cancel .
The purpose for this coding is to clean up the objects used in this form and terminate our
project. Return to the LogIn form window by clicking the View Designer button from
the Solution Explorer window, and then double - click on the Cancel button to open its
event procedure. Enter the codes shown in Figure 5.76 into this event procedure.

 To release the Connection object , which is a global variable, a Close() method is
called fi rst. Then the Dispose() method and the Nothing property is used to fi nish this
release. Finally, the system method Close() is called to close the whole project. The
keyword Me represent the current form window — the LogIn form. Please note that
the Connection instance would not be released if this Cancel button was not clicked. In
the normal case, we still need to use this Connection object for the following data queries
if the login process is successful.

 It is time for us to test our project. Click on the Start button to begin our project.
Enter jhenry and test as the username and the password into the two textboxes on the
LogIn form window, and then click on the TabLogIn button. A successful message is
displayed, and it means that our data query is successful, which is shown in Figure 5.77 a.

 Click on the OK button to the MessageBox, and then click on the ReadLogIn button
to test our data query by using the DataReader method. Similarly, a successful message
is displayed, which is shown in Figure 5.77 b. You can try to enter other correct usernames

Figure 5.76. The codes for the Cancel button event procedure.

Private Sub cmdCancel_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdCancel.Click
' clean up the objects used
accConnection.Close()
accConnection.Dispose()
accConnection = Nothing
Me.Close()

End Sub

cmdCancel Click

Figure 5.77. The running status of the project.

(a) (b)

c05.indd 321c05.indd 321 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

322 Chapter 5 Data Selection Query with Visual Basic.NET

and passwords to test the project, and even to enter some wrong usernames or passwords
to see what will be happened.

 Click on the Cancel button to terminate the project.
 Our project is successful! But before we can move on, we need to replace the suc-

cessful message with two lines of green - color coding: selForm.Show() and Me.Hide()
for both event procedure TabLogIn and ReadLogIn . By using these two lines, the next
form (Selection) will be displayed, and the current form (LogIn) will be disappeared from
the screen.

 Before we can move to the Faculty form, let ’ s fi rst handle the coding for the Selection
form.

5.18.2 Coding for the Selection Form

 This coding is very similar to those we did for the SelectionForm in the project
SelectWizard. The coding can be divided into three parts:

1. Coding for the SelectionForm_Load() event procedure

2. Coding for the OK button ’ s Click event procedure

3. Coding for the Exit button ’ s Click event procedure

 Let ’ s start from the fi rst coding. Open the code window of the SelectionForm and
the SelectionForm_Load() event procedure, and enter the codes, which are shown in
Figure 5.78 , into this event procedure.

 The codes for this event procedure are straightforward with no tricks. We add three
pieces of information related to the CSE_DEPT using the Add() method to the Selection
combo box in the SelectionForm window to allow users to select one of them to perform
the related data query.

 The coding for the second step is for the OK button ’ s Click event procedure. Open
this event procedure by double - clicking the OK button from the SelectionForm window,
and enter the codes, which are shown in Figure 5.79 , into this event procedure.

 When the OK button is clicked by the user, fi rst, we create three instances for three
form windows. Then we need to check which piece of information has been selected by
the user from the Selection combo box. Based on that selection, we direct the program
to the associated form window using the Show() method.

Figure 5.78. The codes for the SelectionForm_Load event procedure.

Private Sub SelectForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles MyBase.Load

ComboSelection.Items.Add("Faculty Information")
ComboSelection.Items.Add("Courses Information")
ComboSelection.Items.Add("Students Information")
ComboSelection.SelectedIndex = 0

End Sub

(SelectionForm Events) Load

c05.indd 322c05.indd 322 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 323

Figure 5.79. The codes for the OK Click button ’ s event procedure.

Private Sub cmdOK_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdOK.Click

Dim facultyform As New FacultyForm
Dim studentform As New StudentForm
Dim courseform As New CourseForm

If ComboSelection.Text = "Faculty Information" Then
facultyform.Show()

ElseIf ComboSelection.Text = "Students Information" Then
studentform.Show()

ElseIf ComboSelection.Text = "Courses Information" Then
courseform.Show()

End If

End Sub

cmdOK Click

 Finally, we come to the coding for the third step, coding for the Exit button ’ s Click
event procedure. Open the Exit button ’ s Click event procedure and enter the codes shown
in Figure 5.80 into this procedure.

 Before we can terminate our project, we need fi rst to close our database connection.
Then we call a system method Application.Exit() to terminate our project.

 Now we can move to the next form, Faculty form.

5.18.3 Query Data Using Runtime Objects for the Faculty Form

 In this section, we will develop three different query methods to perform data query from
the Faculty table in our sample database: DataAdapter, DataReader, and LINQ to
DataSet method.

 Now open the code window of the Faculty form by clicking on the View Code button
from the Solution Explorer window. First, let ’ s create some form - level variables and make
coding for the FacultyForm_Load() event procedure to put our initialization codes in
there. Click on the drop - down arrow from the Class Name combo box and choose the
(FacultyForm Events) item, and then click on the drop - down arrow from the Method
Name combo box and select the Load item to open this form load event procedure. Enter
the codes shown in Figure 5.81 into this code window.

Figure 5.80. The codes for the Exit Click button ’ s event procedure.

Private Sub cmdExit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdExit.Click

accConnection.Close()
Application.Exit()

End Sub

cmdExit Click

c05.indd 323c05.indd 323 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

324 Chapter 5 Data Selection Query with Visual Basic.NET

 Let ’ s have a closer look at this piece of codes to see how it works.

A. As we did before, we use the Imports keyword to indicate the reference for the namespace
that contains the protocols of the DataTable class (System.Data) and OleDb data com-
ponents (System.Data.OleDb).

B. In order to hold the retrieved data, an object array is declared as a form - level or module -
 level textbox array. Since the array index is 0 - based, and there are seven columns in our
faculty data table, so the array size is selected as six. A little trick for the size of this array
is that the fi rst index of this array is 0, not 1. So in total, we have seven textbox objects
defi ned with an index of six.

C. Before we can perform any data query, we must make sure that the connection from our
project to the database is still active, which means the connection is still open. An error
message will be displayed if the current Connection instance is not open and the project
is exited.

D. Eight faculty names are added into the Faculty Name combo box to allow the user to make
selection as the project runs. Resetting the SelectedIndex property to 0 means that the fi rst
faculty name from the combo box has been chosen as the default one.

E. Three query methods are added into the ComboMethod combo box to enable the user to
choose one method to perform the data query. The TableAdapter Method is selected as
the default one.

 Now let ’ s do the coding for the Select button ’ s Click event procedure.

Figure 5.81. The codes for the FacultyForm_Load event procedure.

Imports System.Data
Imports System.Data.OleDb

Public Class FacultyForm

Private FacultyTextBox(6) As TextBox 'Faculty table has 7 columns

Private Sub FacultyForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

If accConnection.State <> ConnectionState.Open Then
MessageBox.Show("Database has not been opened!")
Exit Sub

End If

ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboName.SelectedIndex = 0

ComboMethod.Items.Add("TableAdapter Method")
ComboMethod.Items.Add("DataReader Method")
ComboMethod.Items.Add("LINQ To DataSet Method")
ComboMethod.SelectedIndex = 0

End Sub

End Class

A

B

C

D

E

(FacultyForm Events) Load

c05.indd 324c05.indd 324 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 325

 As the project runs, the user can choose one method from the ComboMethod combo
box to perform the data query job. Then the user needs to click on the Select button to
begin the related data query.

 Open the form window of the FacultyForm and double - click on the Select button to
open the cmdSelect button click event procedure. Enter the codes shown in Figure 5.82
into this procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The necessary variables and objects to be used in this event procedure are declared
fi rst. The objects accDataTable and FacultyTableAdapter are used for the fi rst method,
the TableAdapter method, and accDataReader is used for the second method, the
DataReader method, and the DataSet ds is used for the third method, the LINQ to
DataSet method. The object accCommand will be used for all three methods in this event
procedure.

B. The Command instance is initialized with the connection object, the command type, and
the connection string.

C. The Add() method is called to add the content of the Faculty Name combo box control,
which will be entered by the user as the project runs, to the Parameters collection that is
a property of the Command object. In this way, we completed the building of the Command
object with our desired data query statement. One point one needs to note is that the fi rst
argument of this Add() method must be identical with the column name in the Faculty
table, also it must be identical with the dynamic parameter we defi ned in the query string
cmdString2 .

D. A user - defi ned subroutine procedure ShowFaculty() that will be developed later is exe-
cuted to display the selected faculty photo in the PhotoBox control on the Faculty form
window. The argument of this subroutine is the faculty name.

E. Next, we need to check which data query method the user has selected. If the fi rst method,
TableAdapter, is chosen, we need to assign the completed Command object to the
SelectCommand property of the TableAdapter, and then call the Fill() method to execute
this Command to fi ll the Faculty table.

F. By checking the Rows.Count property of the Faculty table, we can determine whether the
Faculty table is fi lled successfully. If this table fi lling is fi ne, a user - defi ned subroutine pro-
cedure FillFacultyTable() is executed with the fi lled Faculty table as the argument to fi ll
the textbox controls on the Faculty form window.

G. Otherwise, an error message is displayed.

H. A cleaning job is performed to release the FacultyTableAdapter and the DataTable
objects.

I. If the user selected the second method or the DataReader method to perform this data
query, the method ExecuteReader() is called to run the completed command object with
our desired query statement. The returned data is assigned to the DataReader object.

J. By checking the HasRows property, we can determine whether this query is successful or
not. If this property is True, which means that the DataReader did receive the data from
this query, a user - defi ned subroutine procedure FillFacultyReader() is called with the
DataReader as an argument to fi ll the textbox controls on the Faculty form window.

K. Otherwise, an error message is displayed to show the user that no matched faculty has
been found from this query.

L. The DataReader object is released.

c05.indd 325c05.indd 325 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

326 Chapter 5 Data Selection Query with Visual Basic.NET

Figure 5.82. The codes for the cmdSelect button Click event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click

Dim cmdString1 As String = "SELECT faculty_id, faculty_name, office, phone, college, title, email FROM Faculty "
Dim cmdString2 As String = "WHERE faculty_name=@Param1"
Dim cmdString As String = cmdString1 & cmdString2
Dim FacultyTableAdapter As New OleDbDataAdapter
Dim accCommand As New OleDbCommand
Dim accDataReader As OleDbDataReader
Dim accDataTable As New DataTable
Dim ds As New DataSet()

accCommand.Connection = accConnection
accCommand.CommandType = CommandType.Text
accCommand.CommandText = cmdString
accCommand.Parameters.Add("@Param1", OleDbType.Char).Value = ComboName.Text
Call ShowFaculty(ComboName.Text)

If ComboMethod.Text = "TableAdapter Method" Then
FacultyTableAdapter.SelectCommand = accCommand
FacultyTableAdapter.Fill(accDataTable)

If accDataTable.Rows.Count > 0 Then
Call FillFacultyTable(accDataTable)

Else
MessageBox.Show("No matched faculty found!")

End If

accDataTable.Dispose()
accDataTable = Nothing
FacultyTableAdapter.Dispose()
FacultyTableAdapter = Nothing

ElseIf ComboMethod.Text = "DataReader Method" Then
accDataReader = accCommand.ExecuteReader

If accDataReader.HasRows = True Then
Call FillFacultyReader(accDataReader)

Else
MessageBox.Show("No matched faculty found!")

End If
accDataReader.Close()
accDataReader = Nothing

Else ' --------------------------- LINQ To DataSet method is selected
FacultyTableAdapter.SelectCommand = accCommand
FacultyTableAdapter.Fill(ds, "Faculty")
Dim facultyinfo = From fi In ds.Tables("Faculty").AsEnumerable()

Where fi.Field(Of String)("faculty_name").Equals(ComboName.Text)
Select fi

For Each fRow In facultyinfo
txtID.Text = fRow.Field(Of String)("faculty_id")
txtName.Text = fRow.Field(Of String)("faculty_name")
txtTitle.Text = fRow.Field(Of String)("title")
txtOffice.Text = fRow.Field(Of String)("office")
txtPhone.Text = fRow.Field(Of String)("phone")
txtCollege.Text = fRow.Field(Of String)("college")
txtEmail.Text = fRow.Field(Of String)("email")

Next
End If

accCommand.Dispose()
accCommand = Nothing

End Sub

A

B

C
D

E

F

G

H

I

J

K

L

M

N

O

P

cmdSelect Click

c05.indd 326c05.indd 326 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 327

M. If the user selected the third method, LINQ To Object , the initialized command object is
assigned to the SelectCommand property, and the Fill() method is executed to fi ll the
DataSet object ds with the data queried from the Faculty table.

N. A LINQ to DataSet query is created with an implicit variable facultyinfo .

O. A For Each loop is executed to perform this LINQ To Object query, and the query results
are assigned to seven textbox controls in the Faculty form to display the query result.

P. Finally, the Command object is released.

 Now let ’ s take a look at the coding for four user - defi ned subroutine procedures used
in the above Select button Click event procedure. The fi rst one is the FillFacultyTable() ,
and its codes are shown in Figure 5.83 .

 Let ’ s have a closer look at this piece of codes to see how it works.

A. To access the DataTable object, one must use the suitable properties of the DataTable class.
The DataRow and the DataColumn are two important properties. By using these two
properties, we can scan the whole DataTable to get each data from each row. The integer
variable pos1 is used as a loop counter later to retrieve the data from the DataTable and
assign them to the associated bound textbox control on the Faculty form.

B. Next, we need to initialize the module - level object array FacultyTextBox by creating 7
instances of the TextBox control. Recall that we have seven columns in our Faculty table,
so the size of this textbox array is seven (from 0 to 6).

C. Then another user - defi ned subroutine procedure MapFacultyTable() , which will be built
later, is called to set a correct mapping relationship between each textbox object in the
TextBox array and the data retrieved from the DataTable.

D. Two For Each . . . Next loops are utilized to assign each data read out from the DataTable
to the mapped textbox control on the Faculty form window. In this application, we have
only one row (one record) selected from the Faculty table based on the faculty name, so
the outer loop is only executed one time, and the inner loop is executed seven times.
Because the distribution order of the textbox controls in the Faculty form and the column

Figure 5.83. The codes for the user - defi ned subroutine procedure FillFacultyTable.

Private Sub FillFacultyTable(ByVal FacultyTable As DataTable)

Dim pos1 As Integer
Dim column As New DataColumn
Dim row As DataRow

For pos2 As Integer = 0 To 6 'Initialize the object array
FacultyTextBox(pos2) = New TextBox()

Next pos2

Call MapFacultyTable(FacultyTextBox)

For Each row In FacultyTable.Rows
For Each column In FacultyTable.Columns

FacultyTextBox(pos1).Text = row(column)
pos1 = pos1 + 1

Next
Next

End Sub

A

B

C

D

FacultyForm FillFacultyTable

c05.indd 327c05.indd 327 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

328 Chapter 5 Data Selection Query with Visual Basic.NET

order in the query string (cmdString1) is not identical, we need this MapFacultyTable()
subroutine procedure to align them.

 A clear picture can be obtained about this MapFacultyTable() subroutine procedure
after we have a detailed analysis for this procedure. The detailed codes for this subroutine
procedure are shown in Figure 5.84 .

 The order of textboxes on the right - hand side of the equal symbol is the order of the
queried columns in the query string — cmdString1 , but the distribution order of seven
textbox controls on the Faculty form window is different. By performing this assignment,
the seven textbox controls on the Faculty form window have a one - to - one mapping rela-
tion with the queried columns in the Faculty table.

 Now let ’ s do the coding for another subroutine procedure FillFacultyReader() . This
subroutine is used to retrieve the queried data from the DataReader and distribute them
to the seven textbox controls on the Faculty form window. The detailed codes for this
subroutine procedure are shown in Figure 5.85 .

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A loop counter intIndex is declared.

B. Seven instances of the object array, textbox array, is created and initialized. These seven
objects are mapped to seven columns in the Faculty table in the database.

Figure 5.85. The codes for the subroutine procedure FillFacultyReader.

Private Sub FillFacultyReader(ByVal FacultyReader As OleDbDataReader)

Dim intIndex As Integer

For intIndex = 0 To 6 'Initialize the object array
FacultyTextBox(intIndex) = New TextBox()

Next intIndex

Call MapFacultyTable(FacultyTextBox)
While FacultyReader.Read()

For intIndex = 0 To FacultyReader.FieldCount - 1
FacultyTextBox(intIndex).Text = FacultyReader.Item(intIndex).ToString

Next intIndex

End While

End Sub

A

B

C
D

E

FacultyForm FillFacultyReader

Figure 5.84. The codes for the user - defi ned subroutine procedure MapFacultyTable.

Private Sub MapFacultyTable(ByRef ftxt As Object)

ftxt(0) = txtID
ftxt(1) = txtName
ftxt(2) = txtOffice 'The order must be identical with the order in the query string cmdString1
ftxt(3) = txtPhone
ftxt(4) = txtCollege
ftxt(5) = txtTitle
ftxt(6) = txtEmail

End Sub

FacultyForm MapFacultyTable

c05.indd 328c05.indd 328 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 329

C. The user - defi ned subroutine procedure MapFacultyTable() is called to set up the correct
mapping between the seven textbox controls on the Faculty form window and seven
columns in the Faculty table in our sample database.

D. A While loop is executed as long as the loop condition Read() method is True, which means
that a valid data is read out from the DataReader . This method will return a False if no
any valid data can be read out from the DataReader , which means that all data has been
read out. In this application, in fact, this While loop is only executed one time since we
have only one row (one record) read out from the DataReader .

E. A For . . . Next loop is utilized to pickup each data read out from the DataReader
object, and assign each of them to the associated textbox control on the Faculty form
window. The Item property with the index is used here to identify each data from the
DataReader .

 The last user - defi ned subroutine procedure we need to develop the coding of is the
ShowFaculty() .

 This subroutine is used to identify the faculty photo based on the faculty name, and
display the selected faculty photo in the PhotoBox control on the Faculty form window.
The codes for this part are very similar to those we made in Section 5.13.2 .

 A Select Case structure is utilized to select the correct faculty photo, and the system
drawing method System.Drawing.Image.FromFile() is called to display the faculty
photo. One point you need to note is the location where the faculty images should be
located. Generally, you can store those faculty image fi les in any folder on your computer
or in any server that is connected to a network with your computer. The point is that you
must provide the full name for those faculty image, including the drive and path, as well
as the faculty image name, to the system drawing method to perform this displaying. A
convenient way to do this is to save all faculty image fi les in a folder in which your Visual
Basic.NET executable fi le is located. In this way, you do not need to provide the full name
for those faculty image fi les, but only the name of each faculty image fi le.

 For example, in this application, our Visual Basic.NET 2010 project executable fi le,
AccessSelectRTObject.exe , is located at the folder Chapter 5\AccessSelectRTObject
Solution\ AccessSelectRTObject\bin\Debug . So all faculty image fi les should be saved
to this folder. The detailed codes for this user - defi ned subroutine procedure is shown in
Figure 5.86 .

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A local string variable FacultyImage is declared fi rst, and it is used to hold the selected
faculty image fi le.

B. The Select Case structure is used to choose the correct faculty image fi le, and save it into
the local string variable FacultyImage . Since these faculty image fi les are saved in the
folder in which our Visual Basic.NET project executable fi le is located, only the name of
the faculty image fi le is needed for the system drawing method to display the faculty image.

C. If no matched faculty image fi le were found, a default faculty image is assigned to the
FacultyImage variable and a mismatch message is displayed.

D. The system drawing method is executed to draw the faculty image based on the name of
the selected faculty image fi le.

 The last coding job we need to do is to make codes for the Back button Click event
procedure. This coding process is very easy. The current form window, the Faculty form,

c05.indd 329c05.indd 329 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

330 Chapter 5 Data Selection Query with Visual Basic.NET

should disappear from the project if this button is clicked. The method Close() is called
to close the FacultyForm window, as shown in Figure 5.87 .

 At this point, we have fi nished the coding process for our FacultyForm . However,
before we can run the project to test the function of this form, we need to confi rm
that our LogInForm is the startup form in this project. To do that, go to Project|
AccessSelectRTObject Properties menu item to open the Project Properties wizard.
Keep the Application tab selected, and make sure that the Startup form combo box
contained our LogInForm .

 Click on the Start button to run our project. Enter jhenry and test as the username
and password for the LogIn form window, and then click on the TabLogIn button to open
the Selection form window. Make the default selection Faculty Information unchanged
and click on the OK button to open the Faculty form window, which is shown in Figure
 5.88 .

Figure 5.87. The codes for the Back Button Click event procedure.

Private Sub cmdBack_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdBack.Click

Me.Close()

End Sub

cmdBack Click

Figure 5.86. The codes for the user - defi ned subroutine procedure ShowFaculty.

Private Sub ShowFaculty(ByVal fName As String)
Dim FacultyImage As String

Select Case fName
Case "Ying Bai"

FacultyImage = "Bai.jpg"
Case "Satish Bhalla"

FacultyImage = "Satish.jpg"
Case "Black Anderson"

FacultyImage = "Anderson.jpg"
Case "Steve Johnson"

FacultyImage = "Johnson.jpg"
Case "Jenney King"

FacultyImage = "King.jpg"
Case "Alice Brown"

FacultyImage = "Brown.jpg"
Case "Debby Angles"

FacultyImage = "Angles.jpg"
Case "Jeff Henry"

FacultyImage = "Henry.jpg"
Case Else

FacultyImage = "Default.jpg"
MessageBox.Show("No match faculty found!")

End Select
PhotoBox.Image = System.Drawing.Image.FromFile(FacultyImage)

End Sub

A

B

C

D

FacultyForm ShowFaculty

c05.indd 330c05.indd 330 4/25/2012 1:57:38 PM4/25/2012 1:57:38 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 331

Figure 5.88. The running status of the Faculty form.

 Select any method from the Query Method combo box, choose the desired faculty
member from the Faculty Name combo box, and click on the Select button to make the
information query for the selected faculty. Seven textbox controls that are bound to the
associated columns in the Faculty table are updated with the queried faculty information,
and the selected faculty image is also displayed in the PhotoBox control, which is shown
in Figure 5.88 . You can try to select the different method and different faculty member
to test the function of this Faculty form. Yes, the project works fi ne without problem at
all!

 Our next job is to develop the codes for the Course form to access the course infor-
mation stored in the Course table in our sample database.

5.18.4 Query Data Using Runtime Objects for the Course Form

 Similar to query data from the Faculty table, three data query methods can be used for
the course data query in this form: DataAdapter , DataReader , and LINQ to DataSet
method. However, because of the space limitation, we only discuss the fi rst two methods
in this section and leave the third method, LINQ To DataSet , as a homework to enable
the readers to develop this method.

 First, let ’ s develop the codes for the CourseForm_Load() event procedure. Open the
code window by clicking on the View Code button from the Solution Explorer window.
Click on the drop - down arrow from the Class Name combo box and select the
(CourseForm Events) , and then click on the drop - down arrow from the Method Name
combo box and select the Load item to open its Form_Load event procedure. Enter the
codes shown in Figure 5.89 into this event procedure.

c05.indd 331c05.indd 331 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

332 Chapter 5 Data Selection Query with Visual Basic.NET

Figure 5.89. The codes for the CourseForm_Load event procedure.

Imports System.Data
Imports System.Data.OleDb

Public Class CourseForm

Private CourseTextBox(5) As TextBox 'We only have 6 columns in Course table

Private Sub CourseForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

If accConnection.State <> ConnectionState.Open Then
MessageBox.Show("Database has not been opened!")
Exit Sub

End If

ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboName.SelectedIndex = 0

ComboMethod.Items.Add("TableAdapter Method")
ComboMethod.Items.Add("DataReader Method")
ComboMethod.Items.Add("LINQ To DataSet Method")
ComboMethod.SelectedIndex = 0

End Sub

End Class

A

B

C

D

(CourseForm Events) Load

 Let ’ s have a closer look at this piece of codes to see how it works.

A. This coding fragment is very similar to the one we did for the Faculty form. First, two
namespaces related to the OleDB Data Provider are imported since we need to use some
components related to that provider.

B. Similar to the FacultyTextBox array, here, a CourseTextBox() array is created. The only
difference is that the size of the textbox array has been reduced to 6 (0 ∼ 5) since we used
six textbox controls to display the detailed course information that is related to the selected
faculty from the Faculty Name combo box. The Course table has 7 columns, but we only
need 6 of them (refer to Fig. 5.21), so the size of this TextBox array is 6, and each element
or each TextBox control in this array is indexed from 0 to 5.

C. The functionality of this code segment is: before we can perform any data query, we need
to check whether a valid connection is still open. An error message would be displayed if
no valid database connection exist and the project will be exited.

D. The Faculty Name and the Query Method combo boxes are initialized with eight
faculty members and three query methods using the Add() method. The fi rst item in both
combo boxes have been selected as the default item and will be displayed as the project
runs.

 The next coding job is for the Select button Click event procedure. After the user
selected the desired data query method from the Query Method combo box and the
faculty member from the Faculty Name combo box, the Select button is used to trigger
its event procedure to retrieve all courses (course_id) taught by the selected faculty.

c05.indd 332c05.indd 332 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 333

 One point you need to note is that we need two queries to perform this data action
in this event procedure because there is no faculty_name column available in the Course
table, and the only available column in the Course table is faculty_id . Therefore, we must
fi rst make a query to the Faculty table to fi nd the faculty_id that is matched to the faculty
name selected by the user from the Faculty Name combo box in the Course form, and
then we can make the second query to the Course table to pick up all course_id based
on the faculty_id we obtained from the fi rst query. The queried course_id are displayed
in the CourseList box, and the detailed course information for each course can be dis-
played in six textboxes when the user clicks on the associated course_id from the
CourseList box.

 Now open the Select button Click event procedure and enter the codes shown in
Figure 5.90 into this procedure. The codes of this part are very similar to those we did for
the Select button event procedure in the Faculty form.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Two query strings are used for this data query. The fi rst is used to fi nd the faculty_id based
on the faculty name from the Faculty table. The second is used to retrieve all course_id
from the Course table. There are six query items related to six columns: course_id, course,
credit, classroom, schedule, and the enrollment. The queried course_id will be displayed
in the CourseList box, and the all queried six items will be displayed in six textboxes as
the detailed information for the selected course_id . The faculty_id is used as the criterion
to query the desired course information for the selected faculty. Other necessary instances
are also created at this part to aid the data query task. Two TableAdapters, two Command
and DataTable objects are declared to facilitate these two queries.

B. The fi rst Command object, accCmdFaculty , is initialized by assigning it with the connec-
tion instance, command type, and the query string. The dynamic parameter Param1 is
obtained from the Faculty Name combo box, in which the selected faculty name will be
entered by the user as the project runs. The completed Command object accCmdFaculty
is then assigned to the SelectCommand property of the FacultyTableAdapter , which is
ready to make a query by using the Fill() method. The fi rst query is used to fi nd the
faculty_id that is associated with the selected faculty name.

C. The Fill() method is called to fi ll the faculty data table named accFacultyTable . By check-
ing the Count property, we can inspect whether this Fill is successful or not. An error
message will be displayed if this Fill has failed. If the Fill is successful, which means that
at least one row is returned (exactly only one fi eld is returned since we only query for
faculty_id) based on the faculty name. The fi rst row, Rows.Item(0) , which is the only
returned row, is assigned to an object of the DataRow class, rawFaculty . Since we only
need the fi rst column from this queried row, which is rowFaculty(0) , and this column is
the faculty_id , and it is assigned to the local string variable strFacultyID that will be used
later.

D. Next, the Course Command object accCmdCourse is initialized, and the dynamic param-
eter faculty_id is replaced by the real faculty_id obtained above.

E. As we did for the Faculty form, the user can make a choice between three methods:
TableAdapter, DataReader, and LINQ to DataSet. If the user selected the TableAdapter
method, the built command object will be assigned to the SelectCommand property of
the CourseTableAdapter , and the Fill() method of the TableAdapter will be executed to
fi ll the Course table.

F. If this fi ll is successful, the Count property of the Course table should be greater than 0,
which means that the table is fi lled by at least one row. The user - defi ned subroutine

c05.indd 333c05.indd 333 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

334 Chapter 5 Data Selection Query with Visual Basic.NET

Figure 5.90. The codes for the Select button Click event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click

Dim strFaculty As String = "SELECT faculty_id FROM Faculty WHERE faculty_name=@Param1"
Dim strCourseA As String = "SELECT course_id, course, credit, classroom, schedule, enrollment, faculty_id FROM

Course "
Dim strCourseB As String = "WHERE faculty_id=@Param2"
Dim cmdString As String = strCourseA & strCourseB
Dim CourseTableAdapter As New OleDbDataAdapter
Dim FacultyTableAdapter As New OleDbDataAdapter
Dim accCmdFaculty, accCmdCourse As New OleDbCommand
Dim accCourseTable, accFacultyTable As New DataTable
Dim accDataReader As OleDbDataReader
Dim strFacultyID As String
Dim rowFaculty As DataRow
Dim ds As New DataSet()

accCmdFaculty.Connection = accConnection 'Initialize faculty Command object
accCmdFaculty.CommandType = CommandType.Text
accCmdFaculty.CommandText = strFaculty
accCmdFaculty.Parameters.Add("@Param1", OleDbType.Char).Value = ComboName.Text
FacultyTableAdapter.SelectCommand = accCmdFaculty
FacultyTableAdapter.Fill(accFacultyTable) 'Execute the first query

If accFacultyTable.Rows.Count = 0 Then
MessageBox.Show("No matched faculty_id found!")
Exit Sub

End If
rowFaculty = accFacultyTable.Rows.Item(0) 'Get faculty_id
strFacultyID = rowFaculty(0)

accCmdCourse.Connection = accConnection 'Initialize course Command object
accCmdCourse.CommandType = CommandType.Text
accCmdCourse.CommandText = cmdString
accCmdCourse.Parameters.Add("@Param2", OleDbType.Char).Value = strFacultyID

If ComboMethod.Text = "TableAdapter Method" Then
CourseTableAdapter.SelectCommand = accCmdCourse
CourseTableAdapter.Fill(accCourseTable) 'Execute the second query
If accCourseTable.Rows.Count > 0 Then

Call FillCourseTable(accCourseTable)
Else

MessageBox.Show("No matched course found!")
End If
CourseTableAdapter.Dispose()
CourseTableAdapter = Nothing

Else
accDataReader = accCmdCourse.ExecuteReader
If accDataReader.HasRows = True Then

Call FillCourseReader(accDataReader)
Else

MessageBox.Show("No matched course found!")
End If
accDataReader.Close()
accDataReader = Nothing

End If
accCmdFaculty.Dispose()
accCmdFaculty = Nothing
accCmdCourse.Dispose()
accCmdCourse = Nothing
CourseList.SelectedIndex = 0

End Sub

A

B

C

D

E

F

G

H
I

J

K

L

cmdSelect Click

c05.indd 334c05.indd 334 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 335

FillCourseTable() will be called with the fi lled table as the argument to fi ll the CourseList
box control with the course_id on the Course form. Otherwise, this Count is equal to 0,
which means that no row or record has been fi lled into the Course table. An error message
will be displayed for this situation.

G. Some necessary cleaning job is performed to release objects used for this query.

H. If the user selected the DataReader method, the ExecuteReader() method is called to
perform a reading - only operation to the database.

I. If the HasRows property of the DataReader is True, which means that the DataReader
did receive some data, the user - defi ned subroutine FillCourseReader() is executed with
the DataReader as the argument to fi ll the CourseList box control on the Course form
window. An error message will be displayed if the HasRows property is False.

J. Finally, the DataReader and the Command objects are released.

K. Other used components are also cleaned up and released.

L. This coding line is very important, and it is used to select the fi rst course_id as the default
one from the CourseList box, and this coding line can be used to trigger the CourseList_
SelectedIndex Changed() event procedure to display detailed information for the selected
course_id in the six textboxes. Without this default course_id selected, no detailed course
information can be displayed as the Course List_SelectedIndex Changed() event proce-
dure is executed for the fi rst time.

 Now let ’ s take a look at the codes for two user - defi ned subroutine procedures used
in this part, FillCourseTable() and FillCourseReader() . These two subroutines are used
to fi ll the CourseList box control on the Course form window by using the queried data.
Figure 5.91 shows the codes for these two user - defi ned subroutine procedures.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Before we can fi ll the CourseList box, a cleaning job is needed. This cleaning is very impor-
tant and necessary; otherwise multiple repeat courses (course_id) would be displayed in
this listbox if you forget to do this cleaning job.

Figure 5.91. The codes for two user - defi ned subroutine procedures.

Private Sub FillCourseTable(ByRef CourseTable As DataTable)

CourseList.Items.Clear()
For Each row In CourseTable.Rows

CourseList.Items.Add(row(0)) 'the 1st column is course_id - strCourse
Next

End Sub

Private Sub FillCourseReader(ByRef CourseReader As OleDbDataReader)

Dim strCourse As String = String.Empty

CourseList.Items.Clear()
While CourseReader.Read()

strCourse = CourseReader.GetString(0) 'the 1st column is course_id
CourseList.Items.Add(strCourse)

End While

End Sub

A
B

C

D

E

CourseForm FillCourseTable

c05.indd 335c05.indd 335 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

336 Chapter 5 Data Selection Query with Visual Basic.NET

B. A For Each loop is used to scan all rows of the fi lled Course table. Recall that we fi lled
seven columns from the Course table in the database to this Course table in the DataTable
object starting with the fi rst column course_id (refer to query string strCourseA defi ned
in Fig. 5.90). Now we need to pick up the fi rst column, course_id (column index = 0) for
each returned row of the Course table. Then the Add() method is used to add each
retrieved row(0) , which equals to course_id , into the CourseList Box control.

C. For the FillCourseReader() subroutine, a local string variable strCourse is created, and
this variable can be considered as an intermediate variable that is used to temporarily hold
the queried data from the Course table.

D. Similarly, we need to clean up the CourseList box before it can be fi lled.

E. A While loop is utilized to retrieve each fi rst column ’ s data (GetString(0)), whose column
index is 0, and the data value is the course_id . The queried data fi rst is assigned to the
intermediate variable strCourse , and then it is added into the CourseList box by using the
Add() method.

 Next, we need to take care of the coding for the CourseList_SelectedIndexChanged()
event procedure. The functionality of this procedure is to display the detailed information
related to the selected course_id from the CourseList box, which includes the course ID,
classroom, schedule, credit, and enrollment, and these pieces of information will be dis-
played in six textbox controls on the Course form window. This event procedure can be
triggered as the user clicked on a course_id from the CourseList box.

 Open the Course form window by clicking on the View Designer button from the
Solution Explorer window, and then double - click on the Courselist box to open its
CourseList_SelectedIndexChanged() event procedure. Enter the codes that are shown
in Figure 5.92 into this event procedure. The code segment in this part is very similar to
the one we did for the cmdSelect button event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The query string is defi ned with six data columns. Note that the fi rst column is the course_
id with a column index of 0, and the criterion for the WHERE clause is also course_id .
This is because we want to retrieve all information related to the selected course_id and
display those information in 6 textbox controls, and one of them is course_id . Also, some
necessary objects are created here, and the command object is initialized here. The dynamic
parameter is the course_id .

B. The dynamic parameter course_id now is replaced by the real course_id parameter
located in the CourseList by using the SelectedItem property.

C. If the user selected the TableAdapter method, the built command object is assigned to
the SelectCommand property of the CourseTableAdapter , and the Fill() method is
called with the Course table as the argument to fi ll the Course table.

D. If this fi ll is successful, which can be detected by checking the Count property of the
DataTable, the queried data should have been stored in the Course table. Next, a user -
 defi ned subroutine procedure FillCourseTextBox() that will be built later is executed with
the DataTable as the argument to fi ll six textbox controls in the Course form window. An
error message will be displayed if this fi ll has failed.

E. A cleaning job is performed to release used objects, which include the DataTable and the
TableAdapter.

c05.indd 336c05.indd 336 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 337

Figure 5.92. The codes for the CourseList SelectedIndexChanged event procedure.

Private Sub CourseList_SelectedIndexChanged(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles CourseList.SelectedIndexChanged

Dim cmdString1 As String = "SELECT course_id, course, credit, classroom, schedule, enrollment FROM Course "
Dim cmdString2 As String = "WHERE course_id=@Param1"
Dim cmdString As String = cmdString1 & cmdString2
Dim CourseTableAdapter As New OleDbDataAdapter
Dim accCommand As New OleDbCommand
Dim accDataReader As OleDbDataReader
Dim accDataTable As New DataTable

accCommand.Connection = LogInForm.accConnection
accCommand.CommandType = CommandType.Text
accCommand.CommandText = cmdString
accCommand.Parameters.Add("@Param1", OleDbType.Char).Value = CourseList.SelectedItem

If ComboMethod.Text = "TableAdapter Method" Then
CourseTableAdapter.SelectCommand = accCommand
CourseTableAdapter.Fill(accDataTable)
If accDataTable.Rows.Count > 0 Then

Call FillCourseTextBox(accDataTable)
Else

MessageBox.Show("No matched course information found!")
End If
accDataTable.Dispose()
accDataTable = Nothing
CourseTableAdapter.Dispose()
CourseTableAdapter = Nothing

Else
accDataReader = accCommand.ExecuteReader
If accDataReader.HasRows = True Then

Call FillCourseReaderTextBox(accDataReader)
Else

MessageBox.Show("No matched course information found!")
End If
accDataReader.Close()
accDataReader = Nothing

End If

accCommand.Dispose()
accCommand = Nothing

End Sub

A

B

C

D

E

F

G

H

CourseList SelectedIndexChanged

F. If the user selected the DataReader method, the ExecuteReader() method is executed to
perform a read - only operation to retrieve the detailed information related to the selected
course_id from the CourseList box.

G. If this read - only operation is successful, the HasRows property of the DataReader will
be True, another user - defi ned subroutine procedure FillCourseReaderTextBox() is called
to fi ll six textbox controls on the Course form window. An error message will be displayed
if this operation has failed.

H. A cleaning job is performed to release used objects for this data query.

 The codes for two user - defi ned subroutine procedures, FillCourseTextBox() and
FillCourseReaderTextBox() , are shown in Figure 5.93 .

c05.indd 337c05.indd 337 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

338 Chapter 5 Data Selection Query with Visual Basic.NET

 Let ’ s have a closer look at this piece of codes to see how it works.

A. As we mentioned in the coding process for the Faculty form window, the DataTable can
be scanned by using two important objects: DataRow and DataColumn . You must use
these two objects to access the DataTable to retrieve data stored in that DataTable.

B. The module - level object array, CourseTextBox() , are created and initialized here. For any
object or object array, it should be created by using the New operator. Six textbox objects
are created, and they can be mapped to six textbox controls in the Course form window.
We use these six textbox objects to display the detailed course information for the selected
course_id from the CourseList box later.

C. Another user - defi ned subroutine procedure MapCourseTable() is executed to set up a
one - to - one mapping relation between each textbox control on the Course form window
and each queried column in the queried row. This step is necessary since the distribution
order of six textbox controls on the Course form is different with the column order in the
query.

D. A double For Each loop is utilized to retrieve all columns and all rows from the DataTable.
The outer loop is only executed by once since we only query one record (one row) course ’ s
information based on the selected course_id from the Course data table. The inner loop
is exactly executed by six times to pick up six pieces of course - related information that
contains the course title, classroom, credit, schedule, and the enrollment. Then, the retrieved

Figure 5.93. The codes for two user - defi ned subroutine procedures.

Private Sub FillCourseTextBox(ByVal CourseTable As DataTable)

Dim pos1 As Integer
Dim row As DataRow
Dim column As DataColumn

For pos2 As Integer = 0 To 5 'Initialize the object array
CourseTextBox(pos2) = New TextBox

Next pos2

Call MapCourseTable(CourseTextBox)
For Each row In CourseTable.Rows

For Each column In CourseTable.Columns
CourseTextBox(pos1).Text = row(column)
pos1 = pos1 + 1

Next
Next

End Sub

Private Sub FillCourseReaderTextBox(ByVal CourseReader As OleDbDataReader)

Dim intIndex As Integer

For intIndex = 0 To 5 'Initialize the object array
CourseTextBox(intIndex) = New TextBox

Next intIndex

Call MapCourseTable(CourseTextBox)
While CourseReader.Read()

For intIndex = 0 To CourseReader.FieldCount - 1
CourseTextBox(intIndex).Text = CourseReader.Item(intIndex).ToString

Next intIndex
End While

End Sub

A

B

C
D

E

F

G
H

CourseForm FillCourseTextBox

c05.indd 338c05.indd 338 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 339

information is assigned to each textbox control in the textbox array, which will be displayed
in that textbox control.

E. For the subroutine FillCourseReaderTextBox() , a loop counter intIndex is fi rst created,
and it is used to create six textbox objects array and retrieve data from the DataReader
later.

F. This loop is used to create the textbox objects array and perform the initialization for those
objects.

G. Same functionality as described in step C.

H. A While and a For . . . Next loop are used to pick up all six pieces of course - related
information from the DataReader one by one. The Read() method is used as the While
loop ’ s condition. A returned True means that a valid data is read out from the DataReader ,
and a returned False means that no valid data has been read out from the DataReader ; in
other words, no more data is available and all data has been read out. The For . . . Next
loop uses the FieldCount — 1 as the termination condition since the index of the fi rst data
fi eld is 0, not 1, in the DataReader object. Each read - out data is converted to a string and
assigned to the associated textbox control in the textbox objects array.

 The detailed codes for the subroutine MapCourseTable() is shown in Figure 5.94 .
 This piece of codes is straightforward, with no tricks. The order of the textboxes on

the right - hand side of the equal operator is the column order of the query string, cmd-
String1 . By assigning each textbox control on the Course form window to each of its
partner, the textbox in the textbox objects array in this order, a one - to - one mapping
relationship is built, and the data retrieved from the DataReader can be exactly mapped
to and displayed in the associated textbox control.

 The last coding process is for the Back button Click event procedure. This coding is
very simple, and the codes are shown in Figure 5.95 .

 Now, let ’ s test our project by clicking on the Start button. Enter the username and
password as we did before, and select the Course Information from the Selection form
window to open the Course form window, which is shown in Figure 5.96 .

 Select any method you want by clicking on the drop - down arrow from the Query
Method combo box, and then select your desired faculty from the Faculty Name combo
box. Click on the Select button, and all courses, that is, all course_id , taught by the
selected faculty will be displayed in the CourseList box, which is shown in Figure 5.96 .
Then select any course_id by clicking on it from the CourseList box, and the detailed
course information related to that selected course will be displayed in six textbox controls,
as shown in Figure 5.96 .

 It is so funny!

5.18.5 Query Data Using Runtime Objects
for the Student Form

 Basically, the coding for this Student form is similar to the coding we did for the Course
form in the last section. The functionality of this Student form is to allow users to review
the detailed information for each student in the CSE DEPT, which includes the student
ID, major, GPA, school year, total credits the student earned, and courses the student
took. The courses taken by the student are displayed in a CourseList box, and all other
information is displayed in six textboxes as the Select button is clicked.

c05.indd 339c05.indd 339 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

340 Chapter 5 Data Selection Query with Visual Basic.NET

Figure 5.94. The codes for the subroutine MapCourseTable.

Private Sub MapCourseTable(ByRef fCourse As Object)

fCourse(0) = txtID 'The order must be identical with the column order in the query
fCourse(1) = txtCourse 'string – cmdString1 in CourseList_SelectedIndexChanged procedure
fCourse(2) = txtCredits
fCourse(3) = txtClassRoom
fCourse(4) = txtSchedule
fCourse(5) = txtEnroll

End Sub

CourseForm MapCourseTable

Figure 5.95. The codes for the Back button Click event procedure.

Private Sub cmdBack_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdBack.Click

Me.Close()

End Sub

cmdBack Click

Figure 5.96. The running status of the Course form window.

c05.indd 340c05.indd 340 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 341

 The coding for this form is a little special since two data tables are utilized for this
form: Student and StudentCourse . The fi rst table contains the student ’ s general infor-
mation, and the second one contains all courses taken by the student. Therefore, two
DataAdapters are needed for this application. Also, two different data queries are needed
to query data from two tables. The fi rst one is used to retrieve the student general infor-
mation from the Student table, and the second is to pick up all courses (course_id) taken
by the student from the StudentCourse table.

 In order to save space, only two query methods, DataAdapter and LINQ to DataSet
methods, are provided in this section. For the DataReader query method, we like to leave
it as homework to the students.

 The coding job is divided into two parts with two major methods: the Form_Load()
event procedure and the Select button Click event procedure. The fi rst one is used to
initialize the Student form and display all students ’ names on the combo box control,
which can be selected by the user to review the related information for the selected
student. The second one is to execute the data queries to pick up the selected student ’ s
general and course information and display them in the associated textbox controls and
the ListBox control.

5.18.5.1 Coding for the Student Form_Load Event Procedure

 The codes for this event procedure are shown in Figure 5.97 .
 Let ’ s have a closer look at this piece of codes to see how it works.

A. As we did before for the LogIn, Faculty, and Course forms, import the system related Data
and the OleDb related namespace, System.Data and System.Data.OleDb , into this code
window, since we need to use some data components involved in those namespaces.

B. A TextBox array StudentTextBox() is created in here, and this object array is used to set
up a bridge between the seven textboxes in the Student form and seven query columns in
the query string strStudent , which includes student_id , student_name , gpa , credits ,
major , schoolYear , and email .

Figure 5.97. The Student Form_Load event procedure.

Imports System.Data
Imports System.Data.OleDb

Public Class StudentForm
Private StudentTextBox(6) As TextBox 'We query 7 columns from the Student table

Private Sub StudentForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

ComboName.Items.Add("Erica Johnson")
ComboName.Items.Add("Ashly Jade")
ComboName.Items.Add("Holes Smith")
ComboName.Items.Add("Andrew Woods")
ComboName.Items.Add("Blue Valley")
ComboName.SelectedIndex = 0
ComboMethod.Items.Add("DataAdapter Method")
ComboMethod.Items.Add("LINQ To DataSet Method")
ComboMethod.SelectedIndex = 0

End Sub

End Class

A

B

C

D

(StudentForm Events) Load

c05.indd 341c05.indd 341 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

342 Chapter 5 Data Selection Query with Visual Basic.NET

C. Five default students ’ names are added into the Student combo box. As the project runs,
the user can select any student by clicking on the associated name to review the detailed
information for the selected student in six textboxes and all courses taken by that student
in the CourseList box. The fi rst student ’ s name is selected as the default name by setting
the SelectedIndex property value as 0.

D. Two query methods, DataAdapter and LINQ to DataSet , are added into the Query
Method combo box to enable users to select one of them to perform the related data query
from the Student and StudentCourse tables.

 Next, let ’ s handle the coding for the Select button Click event procedure.

5.18.5.2 Coding for the Select Button Click Event Procedure

 As the project runs, the user can select a student ’ s name from the Student Name combo
box and click on the Select button. The detailed information for the selected student is
queried from the Student table in our sample database CSE_DEPT and displayed in six
textboxes. Also, all courses that are represented by all course_id and taken by the
selected student are retrieved from the StudentCourse table and displayed in the
CourseList listbox. So this event procedure needs to perform two queries from two dif-
ferent tables.

 The coding for this event procedure is shown in Figure 5.98 . Let ’ s have a closer look
at this piece of codes to see how it works.

A. The query string for the Student table is declared, and the string contains seven columns
in the Student data table, which are: student_id , student_name , gpa , credits , major ,
schoolYear , and email . The criterion for this query is the student name stored in the
student combo box. Since the string is relatively long, two substrings are used, and an
ampersand operator “ & ” is used to concatenate them together to form a complete query
string.

B. The second string, or the query string for the StudentCourse table, is created, and two
columns are queried, which are course_id and student_id , and the query criterion is the
student_id . The reason we query the student_id is that the LINQ to DataSet method
needs to fi ll a DataSet with both columns later.

C. All data operation objects are created here, such as the Student and the StudentCourse
TableAdapters, Commands, and DataTables. The variable strName is used to hold the
returned student ’ s photo from calling the function FindName() .

D. The FindName() function, which will be built later, is called to get the appropriate stu-
dent ’ s photo based on the student name. If no matched photo is found, an error message
is displayed, and the procedure is exited.

E. The picture box is initialized and executed to display the selected student ’ s photo.

F. The user - defi ned subroutine BuildCommand() is called to build the Student Command
object with the Student Command object and the student query string as the arguments.
You will fi nd that the data type of the fi rst argument, accCmdStudent , is a reference
(ByRef), which is equivalent to a memory address or a pointer variable in C ++ , from the
subroutine BuildCommand() protocol later. When the subroutine is done, the built
command object is still stored in that reference, and we can use it without problem. The
dynamic parameter name is replaced by a real student name obtained from the student
name combo box, and the completed Command object is assigned to the SelectCommand
property of the TableAdapter.

c05.indd 342c05.indd 342 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 343

Figure 5.98. The codes for the Student Select button Click event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click

Dim strStudent1 As String = "SELECT student_id, student_name, gpa, credits, major, schoolYear, email FROM
Student "

Dim strStudent2 As String = "WHERE student_name=@Param1"
Dim strStudent As String = strStudent1 & strStudent2
Dim strStudentCourse As String = "SELECT course_id, student_id FROM StudentCourse WHERE

student_id=@Param2"
Dim StudentTableAdapter As New OleDbDataAdapter
Dim StudentCourseTableAdapter As New OleDbDataAdapter
Dim accCmdStudent, accCmdStudentCourse As New OleDbCommand
Dim accStudentTable, accStudentCourseTable As New DataTable
Dim ds As New DataSet()
Dim strName As String

strName = FindName(ComboName.Text)
If strName = "No Match" Then

MessageBox.Show("No Matched Student Found!")
Exit Sub

End If
PhotoBox.SizeMode = PictureBoxSizeMode.StretchImage
PhotoBox.Image = System.Drawing.Image.FromFile(strName)

Call BuildCommand(accCmdStudent, strStudent) 'Initialize the Student Command object
accCmdStudent.Parameters.Add("@Param1", OleDbType.Char).Value = ComboName.Text
StudentTableAdapter.SelectCommand = accCmdStudent

If ComboMethod.Text = "DataAdapter Method" Then
StudentTableAdapter.Fill(accStudentTable) 'Execute the first query
If accStudentTable.Rows.Count > 0 Then

Call FillStudentTextBox(accStudentTable)
Else

MessageBox.Show("No matched student found!")
End If

Call BuildCommand(accCmdStudentCourse, strStudentCourse) 'Initialize the StudentCourse Command object
accCmdStudentCourse.Parameters.Add("@Param2", OleDbType.Char).Value = txtID.Text
StudentCourseTableAdapter.SelectCommand = accCmdStudentCourse
StudentCourseTableAdapter.Fill(accStudentCourseTable) 'Execute the second query
If accStudentCourseTable.Rows.Count > 0 Then

Call FillCourseList(accStudentCourseTable)
Else

MessageBox.Show("No matched course_id found!")
End If

Else '-------------LINQ to DataSet Method Selected
StudentTableAdapter.Fill(ds, "Student")
LINQStudent(ds)
BuildCommand(accCmdStudentCourse, strStudentCourse)
accCmdStudentCourse.Parameters.Add("@Param2", OleDbType.Char).Value = txtID.Text
StudentCourseTableAdapter.SelectCommand = accCmdStudentCourse
StudentCourseTableAdapter.Fill(ds, "StudentCourse")
LINQStudentCourse(ds)
ds.Clear()

End If
StudentTableAdapter.Dispose()
StudentTableAdapter = Nothing
StudentCourseTableAdapter.Dispose()
StudentCourseTableAdapter = Nothing
accCmdStudent.Dispose()
accCmdStudent = Nothing
accCmdStudentCourse.Dispose()
accCmdStudentCourse = Nothing

End Sub

A

B

C

D

E

F

G

H

I

J
K
L
M
N

O
P

Q

cmdSelect Click

c05.indd 343c05.indd 343 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

344 Chapter 5 Data Selection Query with Visual Basic.NET

G. If the user selected the DataAdapter Method , the Fill() method is called to fi ll the Student
table. By checking the Count property, we can inspect whether this fi ll is successful or not.
If this property is greater than 0, which means that at least one row is fi lled into the Student
data table and the fi ll is successful, the subroutine FillStudentTextBox() is called with the
fi lled Student table as the argument to fi ll seven textboxes in the Student form with the
detailed student ’ s information, such as student_id , student_name , gpa , credits , major ,
schoolYear , and email , which are stored in the fi lled Student table. Otherwise, an error
message is displayed.

H. To enable the second query to the StudentCourse table to fi nd all courses taken by the
selected student, the subroutine BuildCommand() is called again to initialize the
StudentCourse Command object. The dynamic parameter student_id is replaced by
the real student_id that was obtained from the last query and stored in the textbox txtID .
The completed StudentCourse Command object is assigned to the SelectCommand
property of the StudentCourseTableAdapter .

I. The Fill() method is called to fi ll the StudentCourse data table. If the Count property is
greater than 0, which means that the fi ll is successful, the subroutine FillCourseList() is
executed to fi ll all courses (exactly course_id) stored in the fi lled StudentCourse table into
the CourseList box in the Student form. If the Count is equal to 0, which means that this
fi ll has failed, an error message is displayed.

J. If the user selected the LINQ to DataSet method, the Fill() method is executed to fi ll the
Student table in the DataSet ds.

K. A user - defi ned subroutine LINQStudent() is called to perform this LINQ to DataSet
method to query data from the Student table.

L. The BuildCommand() subroutine is executed to initialize the StudentCourse command
object accCmdStudentCourse .

M. The dynamic parameter student_id is replaced by the real student_id value stored in the
Student ID textbox.

N. The initialized StudentCourse command object is assigned to the SelectCommand object,
and the Fill() method is executed to run this command to fi ll the StudentCourse table in
our DataSet.

O. A user - defi ned subroutine procedure LINQStudentCourse() is called to perform a data
query from the StudentCourse table in our sample database.

P. The fi lled DataSet ds is cleaned up and released after this data query.

Q. A cleaning job is performed to release all used objects by this event procedure.

 Now let ’ s continue to fi nish the coding for all user - defi ned subroutine procedures
used in this event procedure, and these procedures are:

 • FindName()

 • BuildCommand()

 • FillStudentTextBox()

 • MapStudentTextBox()

 • FillCourseList()

 • LINQStudent()

 • LINQStudentCourse()

c05.indd 344c05.indd 344 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 345

 First, let ’ s handle the coding for the subroutine FindName(). This method is similar
to one that we developed in the Faculty form, and the codes for this method are shown
in Figure 5.99 .

 A Select Case structure is used to select the desired student ’ s photo based on the
input student ’ s name. One point you need to note is the location in which the student
photo fi les are located. You can save those photo fi les in any folder in your computer or
a server, but you must provide the full name for these photos and assign it to the strName
variable to be returned. The so - called full name includes the machine name, driver name,
and folder name, as well as the photo name. An easy way to save these photos is to save
them in the folder in which your Visual Basic.NET executable fi le is located. For instance,
in this application, our VB executable fi le AccessSelectRTObject.exe is located at the
folder C:\Chapter 5\AccessSelectRTObject\bin\Debug . When you save all the students ’
photos in this folder, you don ’ t need to provide the so - called full name for those photos,
and you only need to provide the photo name and assign it to the variable strName , as
we did in this piece of codes. That is much simpler and easier!

 The codes for the subroutine BuildCommand() are shown in Figure 5.100 .

Figure 5.99. The codes for the subroutine FindName.

Private Function FindName(ByVal sName As String) As String
Dim strName As String

Select Case sName
Case "Erica Johnson"

strName = "Erica.jpg"
Case "Ashly Jade"

strName = "Ashly.jpg"
Case "Holes Smith"

strName = "Holes.jpg"
Case Is = "Andrew Woods"

strName = "Andrew.jpg"
Case Is = "Blue Valley"

strName = "Blue.jpg"
Case Else

strName = "No Match"
End Select
Return strName

End Function

StudentForm FindName

Figure 5.100. The codes for the subroutine BuildCommand.

Private Sub BuildCommand(ByRef cmdObj As OleDbCommand, ByVal cmdString As String)

cmdObj.Connection = accConnection
cmdObj.CommandType = CommandType.Text
cmdObj.CommandText = cmdString

End Sub

StudentForm BuildCommand

c05.indd 345c05.indd 345 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

346 Chapter 5 Data Selection Query with Visual Basic.NET

 This coding is straightforward, with no tricks. The different properties of the Command
class, such as the Connection string, Command type, and Command text, are assigned to
the Command object. The only point one needs to note is the data type of the fi rst argu-
ment, cmdObj , which is a reference (ByRef) as we mentioned in illustration F in Figure
 5.98 . A reference in Visual Basic.NET is equivalent to a memory address or a pointer in
C++ , and the argument cmdObj is called a passing by reference. When the argument is
passing in this mode, the object cmdObj will work as both an input and an output argu-
ment, and they will be stored at the same address when this subroutine is completed. We
can use this built cmdObj as a returned object even it is an argument without needing
to return this cmdObj object from this subroutine.

 For some other user - defi ned subroutines used in this form, such as FillCourseList() ,
FillStudentTextBox() , and MapStudentTextBox() , the coding process for them are
similar to those we developed in the Course form. For your convenience, we list them
here again with some simple explanations.

 The codes for the subroutine FillCourseList() are shown in Figure 5.101 .
 The function of this subroutine is to fi ll the CourseList box with all courses (course_

id) taken by the selected student, and those queried courses are stored in the StudentCourse
table, which are obtained by executing the second query to the StudentCourse table based
on the student_id . In order to pick up each course_id from the StudentCourse table, a
DataRow object is created fi rst, and it can be used to hold each row or record queried
from the StudentCourse table. After the CourseList box is cleared, a For Each loop is
executed to pick up each row from the StudentCourse table. The fi rst column row(0) ,
which is the course_id , is added into the CourseList box by executing the Add() method.

 The next one is the subroutine FillStudentTextBox() , and the codes for this subrou-
tine are shown in Figure 5.102 .

 The function of this piece of codes is to fi ll seven textboxes in the Student form with
seven columns of data obtained from the Student table, such as student_id , student_
name , gpa , credits , major , schoolYear , and email , which is the fi rst query we discussed
above. The StudentTextBox array is initialized fi rst, and then the subroutine
MapStudentTextBox() is called to set up a one - to - one mapping relationship between
the StudentTextBox array and seven textboxes in the Student form. A nested For Each
loop is executed to pick up each column ’ s data from the queried row. Only one row data
that matches to the selected student name is obtained from the Student table; therefore,
the outer loop is only executed one time. The reason of using a double loop is that both
the DataRow and the DataColumn are classes, and in order to pick up data from any

Figure 5.101. The codes for the subroutine FillCourseList.

Private Sub FillCourseList(ByVal StudentCourseTable As DataTable)
Dim row As DataRow

CourseList.Items.Clear()
For Each row In StudentCourseTable.Rows

CourseList.Items.Add(row(0)) ' the 1st column is course_id - strStudentCourse
Next

End Sub

StudentForm FillCourseList

c05.indd 346c05.indd 346 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

5.18 Query Data from Microsoft Access Database Using Runtime Object 347

DataTable, one must use the objects row and column , which are instances of the DataRow
and DataColumn , as the index to access each row or column of the DataTable instead
of using an integer. The local integer variable pos1 works as an index for the
StudentTextBox array.

 The codes for the subroutine MapStudentTextBox() are shown in Figure 5.103 .
 The purpose of this piece of codes is to set up a one - to - one mapping relationship

between each textbox control in the StudentTextBox array and each column data in our
fi rst query string — strStudent . Each textbox control in the StudentTextBox array is
related to an associated textbox control in the Student form, such as student_id , student_
name , gpa , credits , major , schoolYear , and email . Since the distribution order of those
textboxes in the StudentTextBox array may be different with the order of those column
data in our fi rst query, a correct order relationship need to be set up after calling this
subroutine.

 Another important point one needs to note is the data type of the argument sText-
Box , which is a nominal reference variable of the StudentTextBox array. A reference
data type (ByRef) must be used for this argument in order for us to use the modifi ed
textbox controls in the StudentTextBox array when this subroutine returns to our main
procedure.

Figure 5.102. The codes for the subroutine FillStudentTextBox.

Private Sub FillStudentTextBox(ByVal StudentTable As DataTable)
Dim pos1 As Integer
Dim row As DataRow
Dim column As DataColumn

For pos2 As Integer = 0 To 6 'Initialize the textbox array
StudentTextBox(pos2) = New TextBox

Next pos2

Call MapStudentTextBox(StudentTextBox)
For Each row In StudentTable.Rows

For Each column In StudentTable.Columns
StudentTextBox(pos1).Text = row(column)
pos1 = pos1 + 1

Next
Next

End Sub

StudentForm FillStudentTextBox

Figure 5.103. The codes for the subroutine MapStudentTextBox.

Private Sub MapStudentTextBox(ByRef sTextBox As Object)

sTextBox(0) = txtID 'The order must be identical with the
sTextBox(1) = txtName 'order in the query string - strStudent
sTextBox(2) = txtGPA
sTextBox(3) = txtCredits
sTextBox(4) = txtMajor
sTextBox(5) = txtSchoolYear
sTextBox(6) = txtEmail

End Sub

StudentForm MapStudentTextBox

c05.indd 347c05.indd 347 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

348 Chapter 5 Data Selection Query with Visual Basic.NET

 Now, let ’ s handle the coding for two user - defi ned subroutine procedures related to
the LINQ to DataSet method. First, let ’ s take care of the subroutine LINQStudent() . The
codes for this subroutine are shown in Figure 5.104 .

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A typical LINQ query structure is created and executed to retrieve the detailed student
information related to the student_name . The studentinfo is an implicitly typed local
variable. The Visual Basic.NET 2010 can automatically convert this variable to any suitable
data type; in this case, it is a collection. An iteration variable si is used to iterate over the
result of this query from the Student table. Then, a similar SQL SELECT statement is
executed with the WHERE clause. The fi rst key point for this structure is the operator
AsEnumerable(). Since different database systems use different collections and query
operators, therefore, those collections must be converted to the the type of IEnumerable(Of
T) in order to use the LINQ technique, because all data operations in LINQ use a Standard
Query Operator methods that can perform complex data queries on an IEnumerable(Of
T) sequence. A compiling error would be encountered without this operator. The second
key point is that you have to use the explicit cast (Of String) to convert the data type for
each fi eld of queried collection.

B. The For Each loop is utilized to pick up each column from the selected data row sRow ,
which is obtained from the studentinfo collection we get from the LINQ query. Then,
assign each column to the associated textbox control in the StudentForm window to display
them. Since we are using a nontyped DataSet, therefore, we must indicate each column
clearly with the fi eld(Of string) and the column ’ s name as the position for each of them.

 The codes for the subroutine LINQStudentCourse() are shown in Figure 5.105 . Let ’ s
see how this piece of codes works.

A. As we did before, fi rst, we need to clean up the CourseList box by calling the Clear()
method to make it ready to be fi lled with new courses (course_id). This step is necessary
and important; without this step, multiple duplicated course_id will be added and dis-
played in this CourseList listbox control as the users click on the Select button and run
this subroutine to perform the student ’ s information query.

B. A typical LINQ query structure is created and executed to retrieve the course information
related to the student_id . The scinfo is an implicitly typed local variable, and the Visual

Figure 5.104. The codes for the subroutine LINQStudent.

Private Sub LINQStudent(ByRef dSet As DataSet)

Dim studentinfo = From si In dSet.Tables("Student").AsEnumerable()
Where si.Field(Of String)("student_name") = ComboName.Text
Select si

For Each sRow In studentinfo
txtID.Text = sRow.Field(Of String)("student_id")
txtName.Text = sRow.Field(Of String)("student_name")
txtSchoolYear.Text = sRow.Field(Of String)("schoolYear")
txtGPA.Text = sRow.Field(Of String)("gpa")
txtCredits.Text = sRow.Field(Of Integer)("credits").ToString()
txtMajor.Text = sRow.Field(Of String)("major")
txtEmail.Text = sRow.Field(Of String)("email")

Next

End Sub

A

B

StudentForm LINQStudent

c05.indd 348c05.indd 348 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

5.19 Query Data from SQL Server Database Using Runtime Object 349

Basic.NET can automatically convert it to any suitable data type; in this case, it is a col-
lection. An iteration variable sc is used to iterate over the result of this query from the
StudentCourse table. Then, a similar SQL SELECT statement is executed with the WHERE
clause.

C. The For Each loop is utilized to pick up each column from the selected data row sRow ,
which is obtained from the scinfo we get from the LINQ query. Then, add each column
to the CourseList listbox control in the StudentForm window to display them. Since we
are using a nontyped DataSet, therefore, we must indicate each column clearly with the
fi eld(Of String) and the column ’ s name as the position for each of them.

 The last coding job is for the Back button. Open the cmdBack_Click event procedure
and enter the code: Me.Close() into this procedure.

 Now it is the time for us to run and test our project for this Student form. One thing
you need to confi rm before you run this project is to make sure that all students ’ photo
fi les have been stored in the same folder as your Visual Basic.NET executable fi le
is located. Click on the Start Debugging button to run our project. Enter a suitable
username and password, such as jhenry and test , for the LogIn form, and click on the
Students Information item from the Selection form to open the Student form window,
which is shown in Figure 5.106 .

 Select a student name, such as Ashly Jade , from the Student Name combo box, and
then click on the Select button. All courses taken by this student is shown in the
CourseList box, and the detailed information about this student is displayed in seven
textboxes.

 A completed project, AccessSelectRTObject , which includes all GUIs, fi ve form
windows, and related codes, can be found in the folder DBProjects\Chapter 5 that is
located at the Wiley ftp site (refer to Fig. 1.2 in Chapter 1).

 Next, we want to discuss how to develop a professional data driven project using the
runtime object for SQL Server database.

5.19 QUERY DATA FROM SQL SERVER DATABASE USING
RUNTIME OBJECT

 In the previous section, you learned how to build a data - driven application using the
runtime objects for the Microsoft Access database. Microsoft Access is a very good can-

Figure 5.105. The codes for the subroutine LINQStudentCourse.

Private Sub LINQStudentCourse(ByRef dt As DataSet)

CourseList.Items.Clear()
Dim scinfo = From sc In dt.Tables("StudentCourse").AsEnumerable()

Where sc.Field(Of String)("student_id") = txtID.Text
Select sc

For Each sRow In scinfo
CourseList.Items.Add(sRow.Field(Of String)("course_id"))

Next

End Sub

A
B

C

StudentForm LINQStudentCourse

c05.indd 349c05.indd 349 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

350 Chapter 5 Data Selection Query with Visual Basic.NET

didate when a small group of users with small amounts of data are dealt with. However,
when you need to work with a large group of users and large amounts of data, you need
to use an enterprise relational database, such as SQL Server or Oracle.

 As we discussed in Chapter 3 , one needs to use the different data provider to access
the different database, and the ADO.NET provides different namespaces for three dif-
ferent data providers: System.Data.OleDb for OLEDB, System.Data.SqlClient for
SQL Server, and System.Data.OracleClient for Oracle database.

5.19.1 Migrating from Access to SQL Server and Oracle
Databases

 Basically, similar runtime objects and structures can be utilized to develop a data - driven
project that can access the different databases. For example, all three kinds of data pro-
viders need to use the Connection, Command, TableAdapter, and DataReader objects to
perform data queries to either a DataSet or a DataTable. The DataSet and the DataTable
components are data provider - independent, but the fi rst four objects are data provider -
 dependent. This means that one must use a different prefi x to specify what kind of data
provider is utilized for certain databases. A prefi x Sql would be used if an SQL Server
data provider is utilized, such as SqlConnection, SqlCommand, SqlTableAdapter, and
SqlDataReader. Same thing will be worked to the Oracle data provider.

 The differences between the data - driven applications that can access the different
databases are the data provider - dependent components. Among them, the Connection
String is a big issue. Different data provider needs to use the different connection string
to make the connection to the associated database.

 Regularly, a Connection String is composed of fi ve parts:

 • Provider

 • Data Source

Figure 5.106. The running status of the Student form.

c05.indd 350c05.indd 350 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

5.19 Query Data from SQL Server Database Using Runtime Object 351

 • Database

 • User ID

 • Password

 A typical data connection instance with a general connection string can be expressed
by the following codes:

 Connection = New xxxConnection(“ Provider = MyProvider; ” & _
 “ Data Source = MyServer; ” & _
 “ Database = MyDatabase; ” & _
 “ User ID = MyUserID; ” & _
 “ Password = MyPassWord; ”)

where xxx should be replaced by the selected data provider in your real application, such
as OleDb , Sql , or Oracle . You need to use the real parameter values implemented in your
applications to replace those nominal values, such as MyServer , MyDatabase , MyUserID ,
and MyPassWord in your application.

 The Provider parameter indicates the database driver you selected. If you installed
a local SQL server and client, such as the SQL Server 2008 Express, on your computer,
the provider should be localhost . If you are using a remote SQL Server instance, you need
to use that remote server ’ s network name . If you are using the default named instance of
SQLX on your computer, you need to use .\SQLEXPRESS as the value for your provider
parameter. Similar values can be used for the Oracle server database.

 The Data Source parameter indicates the name of the network computer on which
your SQL server or Oracle server is installed and running. The Database parameter
indicates your database name. The User ID and Password parameters are used for
the security issue for your database. In most cases, the default Windows NT Security
Authentication is utilized.

 You can also use the OLEDB as the SQL Server database provider. A sample con-
nection string to be connected to an SQL Server database using the OLEDB data pro-
vider can be expressed as:

 Connection = New OleDb Connection(“ Provider = SQLOLEDB; ” & _
 “ Data Source = MyServer; ” & _
 “ Database = CSE_DEPT; ” & _
 “ User ID = MyUserID; ” & _
 “ Password = MyPassWord; ”)

 You need to use the real parameter values implemented in your applications to
replace those nominal values, such as MyServer , MyUserID , and MyPassWord in your
application.

 When you want to connect the SQL Server database using SqlClient , the connection
string is a little different with those strings shown above. The Provider parameter should
be replaced by the Server parameter, and the User ID and the Password parameters
should be replaced by the Integrated Security parameter. A sample connection string to
be used to connect to an SQL Server database using the SqlClient is:

 Connection = New Sql Connection(“ Server = losthost; ” + _
 “ Data Source = Smart\SQL2008EXPRESS; ” + _
 “ Database = CSE_DEPT; ” + _
 “ Integrated Security = SSPI ”

c05.indd 351c05.indd 351 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

352 Chapter 5 Data Selection Query with Visual Basic.NET

where the value for the Data Source parameter is: Computer Name\SQL Server 2008
Express name , since we installed the Express version of the SQL 2008 Server in our local
computer. Also, we installed the SQL 2008 Client on the same computer to make it work
as both a server and a client.

 When you build a connection string to be used by an Oracle database using the
OLEDB provider, you can use the same parameters as those shown in the typical con-
nection string with three exceptions: The Provider , Database , and Data Source param-
eters. First, to connect to an Oracle database, an MSDAORA driver should be used for
the Provider parameter. Second, the Database parameter is not needed when connecting
to an Oracle database because the tnsnames.ora fi le contains this piece of information,
and this tnsnames.ora fi le is created as you install and confi gure the Oracle client on your
computer. Third, the Data Source will not be used to indicate the computer name on
which the Oracle is installed and running. This information is included in the tnsnames.
ora fi le, too.

 A sample connection string to be connected to an Oracle database using the OLEDB
provider can be expressed as:

 Connection = New OleDb Connection(“ Provider = MSDAORA; ” & _
 “ Data Source = MySID; ” & _
 “ User ID = MyUserID; ” & _
 “ Password = MyPassWord; ”)

 You need to use the real parameter values implemented in your applications to
replace those nominal values, such as MySID , MyUserID , and MyPassWord in your
application.

 To build a connection string to be used by the Oracle database using the OracleClient ,
you should know that most of parameters are included in the tnsnames.ora fi le, and an
Oracle connection string is inseparable from Oracle names resolution. Suppose we had
a database alias of OraDb defi ned in a tnsnames.ora fi le as follows:

 OraDb =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = OTNSRVR)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = ORCL)
)
)

 To use the OraDb alias defi ned in the tnsnames.ora fi le shown above, you can create
a very simple connection string. A sample connection string that is built using the
OracleClient and will be used by Oracle database is:

 OraDb = New Oracle Connection(“ Data Source = OraDb; ” + _
 “ User ID = MyUserID; ” + _
 “ Password = MyPassWord; ”)

 We have discussed the development of the data - driven application using the OLEDB
data provider in the last section. In the following sections, we will discuss how to develop

c05.indd 352c05.indd 352 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

5.19 Query Data from SQL Server Database Using Runtime Object 353

the professional data - driven applications connecting to the SQL Server or Oracle data-
bases using the different data providers. First, we discuss the data query for the SQL
Server database, and then the Oracle database.

 In this section, we use an SQL Server 2008 Express database and connect it with our
example project using the SQL Server data provider. The SQL Server database fi le used
in this sample project is CSE_DEPT.mdf , which was developed in Chapter 2 , and it is
located at the folder Database\SQLServer that can be found in the Wiley ftp site (refer
to Fig. 1.2 in Chapter 1). The advantages of using the Express version of SQL Server 2008
include, but are not limited to:

 • The SQL Server 2008 Express is fully compatible with SQL Server 2008 database and has
full functionalities of the latter

 • The SQL Server 2008 Express can be easily downloaded from the Microsoft site, free of
charge

 • The SQL Server Management Studio 2008 can also be downloaded and installed on your
local computer free of charge. You can use this tool to build your database easily and
conveniently

 • The SQL Client can be downloaded and installed on your local computer free of charge.
You can install both SQL Server and Client on your local computer to develop professional
data - driven applications to connect to your SQL Server database easily

 Now we need to create a Visual Basic.NET 2010 project named SQLSelectRTObject
with fi ve form windows: LogIn , Selection , Faculty , Course , and Student . Because of
the similarity between this project and the project AccessSelectRTObject we developed
in the last section, you do not need to redevelop all codes for this one. What you need
to do is to create a new project, named SQLSelectRTObject , and add all fi ve forms
from the last project to this one by using Project|Add Existing Item menu. The only
differences between these two projects are Data Provider - dependent objects, and the
most important part is the connection string. To save time, in this section, we only empha-
size the different codes that exist between this project and those that exist in the last one.

 Now, create a new Window - based project and name it SQLSelectRTObject .

5.19.2 Query Data Using Runtime Objects for the LogIn Form

 Open the default Form1 window by double - clicking on the Form1.vb from the Solution
Explorer window, and then right - click on this form and click on the Delete item, and OK
on the message box to remove this form from our project. This deletion will cause a
compiling error, and we will fi x this later.

 Now we need to add all fi ve form windows and the Module ConnModule from the
AccessSelectRTObject project to this project. Perform the following operations to com-
plete this adding action:

1. Click on the Project | Add Existing Item , and browse to the AccessSelectRTObject project
folder.

2. Press and hold the Ctrl key on your keyboard and click on fi ve forms one by one: LogIn
Form.vb , Selection Form.vb , Faculty Form.vb , Course Form.vb , and Student Form.vb ,
and ConnModule.vb . Click on the Add button to add these forms and module into our
current project.

c05.indd 353c05.indd 353 4/25/2012 1:57:39 PM4/25/2012 1:57:39 PM

354 Chapter 5 Data Selection Query with Visual Basic.NET

 Now let ’ s fi x the error caused by our deleting the default form window.

1. Click on the Show All Files button on the top of the Solution Explorer window to display
all fi les in the current project.

2. Expand My Project to Application.myapp and fi nally to the Application.Designer.vb .
Double - click on this fi le to open it. The codes in this fi le are auto - generated by the system
as you create a new project. Move to the bottom of this fi le and try to fi nd a line of codes
like:

Me.MainForm = Global.SQLSelectRTObject.Form1

3. The default main form is Form1 when you create a new Window - based project. A blue - line
appears under this Form1 now since we have deleted this guy. Replace this default Form1
with our LogIn form LogInForm .

 Then you need to confi rm that your startup form should be the LogIn form window.
To do that,

1. Go to the Project|SQLSelectRTObject Properties to open the project property window.

2. Keep the Application tab selected and make sure that the LogInForm is located in the
Startup form box. If not, select the LogInForm as the Startup form.

 An easy way to develop the codes for this project is to replace the prefi x acc that is
preceded in all Data Provider - dependent objects in the last project, such as accConnec-
tion , accCommand , accDataReader , and accDataAdapter , with the prefi x sql . Because
the major difference between this project and the last one is the connection string, and
most of the other codes are identical as long as the connection string is modifi ed and
matched to the selected database or the data provider.

 Now open our module class ConnModule.vb by clicking on it the from the Solution
Explorer window to begin our coding process.

5.19.2.1 Declare the Runtime Objects

 As we mentioned in Chapter 3 , all components related to the SQL Server Data Provider
supplied by ADO.NET are located at the namespace System.Data.SqlClient . To access
the SQL Server database fi le, you need to use this Data Provider. You must fi rst declare
this namespace at the top of each of your code window to allow Visual Basic.NET 2010
to know that you want to use this specifi c Data Provider. Enter the codes shown in Figure
 5.107 to the ConnModule code window.

 The namespace has been changed from the System.Data.OleDb to the System.
Data. SqlClient since we need to use data components provided by the SQL Server Data
Provider in this project. The connection instance has been changed to the sqlConnection
with the SqlConnection class since we need this connection object for our whole project.

 The fi rst job you need to do is to connect your project with the database you selected
after a new instance of the data connection object is declared.

5.19.2.2 Connect to the Data Source with the Runtime Object

 Since the connection job is the fi rst thing you need to do before you can make any data
query, you need to do the connection job in the fi rst event procedure, Form_Load() event
procedure, to allow the connection to be made fi rst as your project runs.

c05.indd 354c05.indd 354 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

5.19 Query Data from SQL Server Database Using Runtime Object 355

 Open the code window for the LogIn Form and click on the drop - down arrow in the
Class Name combo box and select the (LogInForm Events) . Then go to the Method
Name combo box and click on the drop - down arrow to select the Load method to open
the LogInform_Load() event procedure, which is shown in Figure 5.108 . Enter the codes
shown in Figure 5.108 into this event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The namespace System.Data.SqlClient is imported to the top of this code window since
we need to use some data components related to the SQL Server Data Provider to query
our sample SQL Server 2008 database.

B. An SqlConnection String is created fi rst, and the connection string is used to connect your
project with the SQL Server database selected. Please note that this connection string is
different with the one we created in the last section. The Server parameter is assigned by
a value localhost, which means that the SQL Server is installed in our local computer.
The Data Source parameter is used to indicate the server name. In this case, since we

Figure 5.107. The declaration of the namespace for the SQL Server Data Provider.

Imports System.Data
Imports System.Data.SqlClient

Module ConnModule

Public sqlConnection As SqlConnection

End Module

ConnModule (Declarations)

Figure 5.108. The codes for the database connection.

Imports System.Data
Imports System.Data.SqlClient

Public Class LogInForm

Private Sub LogInForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

Dim sqlString As String = "Server=localhost;" + _
"Data Source=Smart\SQL2008EXPRESS;Database=CSE_DEPT;" + _
"Integrated Security=SSPI"

sqlConnection = New SqlConnection(sqlString)
Try

sqlConnection.Open()
Catch OleDbExceptionErr As SqlException

MessageBox.Show(OleDbExceptionErr.Message, "Access Error")
Catch InvalidOperationExceptionErr As InvalidOperationException

MessageBox.Show(InvalidOperationExceptionErr.Message, "Access Error")
End Try

If sqlConnection.State <> ConnectionState.Open Then
MessageBox.Show("Database Connection is Failed")
Exit Sub

End If

End Sub

A

B

C
D

E

(LogInForm Events) Load

c05.indd 355c05.indd 355 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

356 Chapter 5 Data Selection Query with Visual Basic.NET

installed the server in our local computer, we need to use the local computer ’ s name
(Smart) followed by the server name (SQL2008EXPRESS). To identify your computer ’ s
name, right - click on the My Computer icon on your desktop screen, select and open the
System Properties window, then click on the Network Identifi cation tab, and you can fi nd
your computer ’ s full name. The Database we used for this project is an SQL sample data-
base we developed in Chapter 2 , CSE_DEPT. In this application, no username and pass-
word are utilized for our database; instead, the standard Integrated Security is used here.
You can add those two pieces of information if your database did utilize those two items.

C. A new instance of SqlConnection class is created with the connection string as an
argument.

D. A Try . . . Catch block is utilized here to try to catch up any mistake caused by opening
this connection. The advantage of using this kind of strategy is avoiding unnecessary system
debug process and simplifying this debug procedure.

E. This step is used to confi rm that our database connection is successful. If not, an error
message is displayed, and the project is exited.

 After a database connection is successfully made, next we need to use this connection
to access the SQL Server database to perform our data query job.

5.19.2.3 Coding for Method 1: Using the TableAdapter to Query Data

 In this section, we will discuss how to create and use the runtime objects to query the
data from the SQL Server database by using the TableAdapter method.

 Open the TabLogIn button ’ s Click event procedure by double clicking on the
TabLogIn button and enter the codes shown in Figure 5.109 into this procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Since the query string applied in this application is relatively long, we break it into two
substrings: cmdString1 and cmdString2 . Then we combine these two substrings to form
a complete query string cmdString . One point you need to know is the relational operator
applied in the SQL Server database, which is different with that used in the Microsoft
Access database. The criteria of the data query are represented by using an equal operator
that is located between the desired data column and a nominal parameter in Microsoft
Access. But in the SQL Server database, this equal operator is replaced by a comparison
operator LIKE . Another point is that another method is used to add the parameters into
the Parameters collection. Unlike the method we utilized in the last section, here, we fi rst
create two SqlParameter objects, and initialize these two objects with the parameter ’ s
name and dynamic data value separately.

B. The Command object sqlCommand is created based on the SqlCommand class and
initialized using a blank command constructor.

C. Two dynamic parameters are assigned to the SqlParameter objects, paramUser-Name
and paramPassWord , separately. The parameter ’ s name must be identical with the name
of dynamic parameter in the SQL statement string. The Values of two parameters should
be equal to the contents of two associated textbox controls, which will be entered by the
user as the project runs.

D. Two parameter objects are added into the Parameters collection that is the property of the
Command object using the Add() method, and the command object is ready to be used. It
is then assigned to the method SelectCommand() of the TableAdapter.

c05.indd 356c05.indd 356 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

5.19 Query Data from SQL Server Database Using Runtime Object 357

 The rest of the codes is identical with those we developed in the last section, and a
detailed explained has been given in the last section, too.

 Now let ’ s take a look at the codes for the second method.

5.19.2.4 Coding for Method 2: Using the DataReader to Query Data

 Open the LogIn form window by clicking on the View Designer button from the Solution
Explorer window, and then double click on the ReadLogIn button to open its event
procedure. Enter the codes shown in Figure 5.110 into this event procedure.

 Most codes in the top section are identical with those codes in the TabLogIn button ’ s
event procedure with two exceptions. First, a DataReader object is created to replace the
TableAdapter to perform the data query, and, second, the DataTable is removed from
this event procedure, since we do not need it for our data query in this method.

Figure 5.109. The codes for the TabLogIn button event procedure.

Private Sub TabLogIn_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles TabLogIn.Click

Dim cmdString1 As String = "SELECT user_name, pass_word, faculty_id, student_id FROM LogIn "
Dim cmdString2 As String = "WHERE (user_name LIKE @Param1) AND (pass_word LIKE @Param2)"
Dim cmdString As String = cmdString1 & cmdString2
Dim paramUserName As New SqlParameter
Dim paramPassWord As New SqlParameter
Dim LogInTableAdapter As New SqlDataAdapter
Dim sqlDataTable As New DataTable
Dim sqlCommand As New SqlCommand
Dim selForm As New SelectionForm

paramUserName.ParameterName = "@Param1"
paramUserName.Value = txtUserName.Text
paramPassWord.ParameterName = "@Param2"
paramPassWord.Value = txtPassWord.Text
sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add(paramUserName)
sqlCommand.Parameters.Add(paramPassWord)
LogInTableAdapter.SelectCommand = sqlCommand
LogInTableAdapter.Fill(sqlDataTable)

If sqlDataTable.Rows.Count > 0 Then
selForm.Show()
Me.Hide()

Else
MessageBox.Show("No matched username/password found!")

End If

sqlDataTable.Dispose()
sqlDataTable = Nothing
sqlCommand.Dispose()
sqlCommand = Nothing
LogInTableAdapter.Dispose()

 LogInTableAdapter = Nothing

End Sub

A

B

C

D

TabLogIn Click

c05.indd 357c05.indd 357 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

358 Chapter 5 Data Selection Query with Visual Basic.NET

 Let ’ s have a closer look at this piece of codes to see how it works.

A. As we did in the coding for method 1, the comparator LIKE is used to replace the equal
operator in the second query string, and this is the requirement of the data query format
for the SQL Server database.

B. Two SqlParameter objects are created, and they will be used to fi ll two dynamic param-
eters used in this application. The dynamic parameters will be entered by the user when
the project runs.

C. Tow Parameter objects are fi lled by two dynamic parameters; note that the ParameterName
property is used to hold the nominal value of the dynamic parameter, @name . The
nominal value must be identical with that defi ned in the SQL query statement. The same
situation is true for the value of the second nominal parameter @word .

D. The ExecuteReader() method is called to perform the data query, and the returned data
should be fi lled in the DataReader.

E. If the returned DataReader contains some queried data, its HasRows property should be
True, and then the project should go to the next step and the Selection form should be
displayed.

 The rest of the codes is identical with the codes we did in the last section.

Figure 5.110. The codes for the ReadLogIn button event procedure.

Private Sub ReadLogIn_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles ReadLogIn.Click

Dim cmdString1 As String = "SELECT user_name, pass_word, faculty_id, student_id FROM LogIn "
Dim cmdString2 As String = "WHERE (user_name LIKE @name) AND (pass_word LIKE @word)"
Dim cmdString As String = cmdString1 & cmdString2
Dim paramUserName As New SqlParameter
Dim paramPassWord As New SqlParameter
Dim sqlCommand As New SqlCommand
Dim sqlDataReader As SqlDataReader
Dim selForm As New SelectionForm

paramUserName.ParameterName = "@name"
paramUserName.Value = txtUserName.Text
paramPassWord.ParameterName = "@word"
paramPassWord.Value = txtPassWord.Text
sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add(paramUserName)
sqlCommand.Parameters.Add(paramPassWord)
sqlDataReader = sqlCommand.ExecuteReader

If sqlDataReader.HasRows = True Then
selForm.Show()
Me.Hide()

Else
MessageBox.Show("No matched username/password found!")

End If

sqlCommand.Dispose()
sqlCommand = Nothing
sqlDataReader.Close()
sqlDataReader = Nothing

End Sub

A

B

C

D

E

ReadLogIn Click

c05.indd 358c05.indd 358 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

5.19 Query Data from SQL Server Database Using Runtime Object 359

 The codes for the Cancel command button event procedure are similar with the
codes we did in the last section, and the only difference is the prefi x of the Connection
instance. Change the prefi x for each Connection instance from acc (accConnection) to
sql (sqlConnection) sincere we are using an SQL Data Provider, and the Connection is
a Data Provider - dependent component.

 Next, let ’ handle the coding process for the Selection Form window.

5.19.3 The Coding for the Selection Form

 Most codes in this form are identical with those of the Selection form in the last project.
The only difference is the coding for the Exit command button. In the last project, a
Microsoft Access database is used, and all Data Provider - dependent objects are preceded
with a prefi x acc , such as accConnection . In this project, we used an SQL Server database
so the connection object should be preceded by the prefi x sql . When the Exit button is
clicked, we need to check whether the connection object has been closed and released.
Since the connection object is created as a global variable in the ConnModule class, we
can directly use this connection object from this SelectionForm . The only modifi cation
is to change the prefi x acc to sql for the connection instance, which is highlighted in bold
and shown in Figure 5.111 .

5.19.4 Query Data Using Runtime Objects
For the Faculty Form

 First, let ’ s take a look at the codes for the Form_Load() event procedure. The differences
between this piece of codes with those in the last project are:

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The namespace of the Data Provider. The System.Data.OleDb was utilized for the last
project since an Access database is used. Since we use the SQL Server database in this
section, change that namespace to System.Data.SqlClient , which is shown in Figure 5.112 .

B. The prefi x of the connection object is changed to sql , since an SQL Server Data Provider
is utilized in the project.

 The next coding is for the Select button event procedure. Open the Faculty form
window by clicking on the View Designer button from the Solution Explorer window,

Figure 5.111. The modifi ed codes for the Exit button event procedure.

Private Sub cmdExit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdExit.Click

sqlConnection.Close()
Application.Exit()

End Sub

cmdExit Click

c05.indd 359c05.indd 359 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

360 Chapter 5 Data Selection Query with Visual Basic.NET

then double click on the Select button to open its event procedure. Make the modifi ca-
tions shown in Figure 5.113 for this event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The query string is modifi ed, especially for the query qualifi cation. LIKE is used to replace
the equal operator. Also, the name of the dynamic parameter is changed from @Param1
to @facultyName .

B. An SqlParameter object is created, and it is used to hold the dynamic parameter ’ s name
and value later.

C. Two Data Provider - dependent objects are created, and they are: sqlCommand and sql-
DataReader . The sqlDataTable is a Data Provider - independent object.

D. The DataSet instance is used for data query using the LINQ to DataSet method.

E. The SqlParameter object is initialized by assigning it with parameter ’ s name and param-
eter ’ s value.

F. The SqlCommand object is initialized by assigning it with three values.

G. Starting from step G until step Q , replace the prefi x acc for all Data Provider - dependent
objects with the prefi x sql , such as accCommand to sqlCommand , accDataTable to
sqlDataTable , and accDataReader to sqlDataReader , since we are using an SQL Server
Data Provider to perform the data query in this section.

 For three user - defi ned subroutine procedures, FillFacultyTable() , MapFacultyTable() ,
ShowFaculty() , and the Back button ’ s Click event procedure, there are no any modifi ca-
tions. The only modifi cation, which is for the user - defi ned subroutine FillFacultyReader() ,

Figure 5.112. The modifi ed codes for the FacultyForm_Load() event procedure.

Imports System.Data
Imports System.Data.SqlClient

Public Class FacultyForm
Private FacultyTextBox(6) As TextBox 'Faculty table has 7 columns

Private Sub FacultyForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

If sqlConnection.State <> ConnectionState.Open Then
MessageBox.Show("Database has not been opened!")
Exit Sub

End If

ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboName.SelectedIndex = 0
ComboMethod.Items.Add("TableAdapter Method")
ComboMethod.Items.Add("DataReader Method")
ComboMethod.Items.Add("LINQ To DataSet Method")
ComboMethod.SelectedIndex = 0

End Sub

A

B

(FacultyForm Events) Load

c05.indd 360c05.indd 360 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

5.19 Query Data from SQL Server Database Using Runtime Object 361

Figure 5.113. The modifi ed codes for the Select button event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim cmdString1 As String = "SELECT faculty_id, faculty_name, office, phone, college, title, email FROM Faculty "
Dim cmdString2 As String = "WHERE faculty_name LIKE @facultyName"
Dim cmdString As String = cmdString1 & cmdString2
Dim paramFacultyName As New SqlParameter
Dim FacultyTableAdapter As New SqlDataAdapter
Dim sqlCommand As New SqlCommand
Dim sqlDataReader As SqlDataReader
Dim sqlDataTable As New DataTable
Dim ds As New DataSet()

paramFacultyName.ParameterName = "@facultyName"
paramFacultyName.Value = ComboName.Text
sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add(paramFacultyName)
Call ShowFaculty(ComboName.Text)

If ComboMethod.Text = "TableAdapter Method" Then
FacultyTableAdapter.SelectCommand = sqlCommand
FacultyTableAdapter.Fill(sqlDataTable)

If sqlDataTable.Rows.Count > 0 Then
Call FillFacultyTable(sqlDataTable)

Else
MessageBox.Show("No matched faculty found!")

End If
sqlDataTable.Dispose()
sqlDataTable = Nothing
FacultyTableAdapter.Dispose()
FacultyTableAdapter = Nothing

ElseIf ComboMethod.Text = "DataReader Method" Then
sqlDataReader = sqlCommand.ExecuteReader

If sqlDataReader.HasRows = True Then
Call FillFacultyReader(sqlDataReader)

Else
MessageBox.Show("No matched faculty found!")

End If
sqlDataReader.Close()
sqlDataReader = Nothing

Else '---------------------- LINQ To DataSet method is selected
FacultyTableAdapter.SelectCommand = sqlCommand
FacultyTableAdapter.Fill(ds, "Faculty")
Dim facultyinfo = From fi In ds.Tables("Faculty").AsEnumerable()

Where fi.Field(Of String)("faculty_name").Equals(ComboName.Text) Select fi
For Each fRow In facultyinfo

txtID.Text = fRow.Field(Of String)("faculty_id")
txtName.Text = fRow.Field(Of String)("faculty_name")
txtTitle.Text = fRow.Field(Of String)("title")
txtOffice.Text = fRow.Field(Of String)("office")
txtPhone.Text = fRow.Field(Of String)("phone")
txtCollege.Text = fRow.Field(Of String)("college")
txtEmail.Text = fRow.Field(Of String)("email")

Next
End If

sqlCommand.Dispose()
sqlCommand = Nothing

End Sub

A

B

C

D

E

F

G

H

I
J

K

L

M
N

O

P
Q

cmdSelect Click

c05.indd 361c05.indd 361 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

362 Chapter 5 Data Selection Query with Visual Basic.NET

is to change the data type of the input argument FacultyReader from the OleDbDataReader
to SqlDataReader , as shown in step A in Figure 5.114 .

 Now we have fi nished the coding process for the Faculty Form, next, let ’ s develop
the codes for the Course Form.

5.19.5 Query Data Using Runtime Objects for the Course Form

 First, let ’ s do the coding for the CourseForm_Load() event procedure.
 Basically, the codes of this event procedure are similar to those we did for the same

event procedure in the last project. The only modifi cations are (refer to Fig. 5.115):

Figure 5.114. The modifi ed codes for the subroutine FillFacultyReader().

Private Sub FillFacultyReader(ByVal FacultyReader As SqlDataReader)

Dim intIndex As Integer

For intIndex = 0 To 6 'Initialize the object array
FacultyTextBox(intIndex) = New TextBox()

Next intIndex

Call MapFacultyTable(FacultyTextBox)

While FacultyReader.Read()

For intIndex = 0 To FacultyReader.FieldCount - 1
FacultyTextBox(intIndex).Text = FacultyReader.Item(intIndex).ToString

Next intIndex

End While

End Sub

A

FacultyForm FillFacultyReader

Figure 5.115. The modifi ed codes for the CourseForm_Load() event procedure.

Imports System.Data
Imports System.Data.SqlClient

Public Class CourseForm
Private CourseTextBox(5) As TextBox 'We only have 6 columns in Course table

Private Sub CourseForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

If sqlConnection.State <> ConnectionState.Open Then
MessageBox.Show("Database has not been opened!")
Exit Sub

End If

ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboName.SelectedIndex = 0
ComboMethod.Items.Add("TableAdapter Method")
ComboMethod.Items.Add("DataReader Method")
ComboMethod.SelectedIndex = 0

End Sub

A

B

(CourseForm Events) Load

c05.indd 362c05.indd 362 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

5.19 Query Data from SQL Server Database Using Runtime Object 363

A. Data Provider namespace modifi cation. The System.Data.SqlClient namespace is used
to replace the original System.Data.OleDb since we are using an SQL Server data pro-
vider in this section.

B. The original prefi x acc is replaced by sql for the connection object.

 The next coding job is for the Select button event procedure. This piece of codes is
similar to those we did in the same event procedure in the last project. However, one
important improvement made to this piece of codes is that an inner join query is utilized
to simplify the data query. Recall that in the last project, we used two queries to fi nish
the query for the courses taught by the selected faculty in the Course form. The reason
for that is because there is no faculty_name column available in the Course table, and
each course or course_id is related to a faculty_id in the Course table. In order to get
the faculty_id that is associated with the selected faculty name, one must fi rst go to the
Faculty table to perform a query to obtain it. In this situation, a join query is a desired
method to complete this functionality.

5.19.6 Retrieve Data from Multiple Tables Using Tables JOINS

 To have a clear picture why we need to use the Join query method for this data action,
let ’ s fi rst take a look at the data structure in our sample database. A part of Faculty and
Course data table in the CSE_DEPT database is shown in Table 5.8 .

 The faculty_id in the Faculty table is a primary key, but it is a foreign key in the
Course table. The relationship between the Faculty and the Course table is one - to - many.
What we want to do is to pick up all course_id from the Course table based on the
selected faculty name that is located in the Faculty table. The problem is that no faculty
name is available in the Course table, and we cannot directly get all course_id based on
the faculty name. An effi cient way to do this is to use a query with two joined tables,
which means that we need to perform a query by joining two different tables — Faculty
and Course to pick up those course_id records. To join these two tables, we need to use
the primary key and the foreign key, faculty_id , to set up this relationship. In other words,
we want to obtain all courses, that is, all course_id , from the Course table based on the
faculty name in the Faculty table. But in the Course table, we only have course name and
the associated faculty_id information available. Similarly, in the Faculty table, we only
have faculty name and the associated faculty_id information available. The result is: We

Table 5.8. A part of Faculty and Course data table

J33486 Steve Johnson MTC-118

K69880 Jenney King MTC-324

Faculty Table

ffaculty_id faculty_name office

A52990 Black Anderson MTC-218

A77587 Debby Angles MTC-320

B66750 Alice Brown MTC-257

B78880 Ying Bai MTC-211

H99118 Jeff Henry MTC-336

course faculty_id classroom

Computers in Society A52990 TC-109

Computers in Society A52990 TC-109

Introduction to Programming J33486 TC-303

Introduction to Programming B78880 TC-302

Algorithms & Structures A77587 TC-301

Programming I A77587 TC-303

Introduction to Algorithms H99118 TC-302

Course Table

c05.indd 363c05.indd 363 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

364 Chapter 5 Data Selection Query with Visual Basic.NET

cannot set up a direct relationship between the faculty name in the Faculty table and the
course_id in the Course table, but we can build an indirect relationship between them
via faculty_id since the faculty_id works as a bridge to connect two tables together using
the primary and foreign key.

 An SQL statement with two joined tables, Faculty and Course, can be represented as:

SELECT Course.course_id, Course.course FROM Course, Faculty

 WHERE (Course.faculty_id LIKE Faculty.faculty_id) AND (Faculty.faculty_name LIKE @name)

 The @name is a dynamic parameter, and it will be replaced by the real faculty name as
the project runs.

 One point to be noted is that the syntax of this SQL statement is defi ned in the ANSI
89 standard and is relatively out - of - date. Microsoft will not support this out - of - date syntax
in the future. So it is highly recommended to use a new syntax for this SQL statement,
which is defi ned in the ANSI 92 standard, and it looks like:

SELECT Course.course_id, Course.course FROM Course JOIN Faculty
 ON (Course.faculty_id LIKE Faculty.faculty_id) AND (Faculty.faculty_name LIKE @name)

 Now let ’ s use this inner join method to develop our query for this Course form. The
modifi ed codes are shown in Figure 5.116 .

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The joined table query string is declared at the beginning of this method. Here two columns
are queried. The fi rst one is the course_id and the second is the course name. The reason
for this is that we need to use the course_id , not course name, as the identifi er to pick up
each course ’ detailed information from the Course table when the user clicks and selects
the course_id from the CourseList box. We only need the course_id column for this query,
but it does not matter if other columns, such as the course column, is included in this query.
The assignment operator LIKE is used to replace the original equal symbol for the criteria
in the ON clause in the defi nition of the query string, and this is required by the SQL
Server database operation.

B. Some new SQL objects are created, such as the CourseTableAdapter , sqlCommand ,
sqlDataReader , and sqlDataTable . All of these objects should be prefi xed by the
keyword sql to indicate that all those components are related to the SQL Server Data
Provider.

C. The sqlCommand object is initialized with the connection string, command type, command
text, and command parameter. The parameter ’ s name must be identical with the dynamic
nominal name @name , which is defi ned in the query string and it is exactly located
after the LIKE comparator in the ON clause. The parameter ’ s value is the content of
the Faculty Name combo box, which should be entered by the user as the project
runs later.

D. The following codes are similar to those we developed in the last project. If the TableAdapter
method is selected by the user, the Fill() method of the TableAdapter is executed to fi ll
the Course table. The FillCourseTable() subroutine is called to fi ll the course_id into the
CourseList box.

E. Otherwise, the DataReader method is selected by the user and the Execute - Reader()
method is executed to read back all course_id , and the FillCourseReader() subroutine is
called to fi ll the course_id into the CourseList box.

F. Finally, some cleaning jobs are preformed to release objects used for this query.

c05.indd 364c05.indd 364 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

5.19 Query Data from SQL Server Database Using Runtime Object 365

 Three user - defi ned subroutine procedures FillCourseTable() , MapCourseTable() ,
FillCourseTextBox() and the Back button ’ s Click event procedure have nothing to
do with any object used in this project, so no coding modifi cation is needed.
However, two other user - defi ned subroutine procedures, FillCourseReader() and
FillCourseReaderTextBox() , need only one small modifi cation, which is to change the
data type of the argument CourseReader from the OleDbDataReader to SqlDataReader ,
since now we are using an SQL Server data provider. An example of this modifi cation is
shown in step A in Figure 5.117 .

 Next, we need to take care of the coding for the CourseList_SelectedIndexChanged()
event procedure.

 All detailed information related to the selected course_id from the CourseList box
should be displayed in six textbox controls when the user clicked and selected a course_
id from the CourseList box control. The codes for this event procedure are similar with
those we did in the same event procedure in the last project, with the modifi cations shown
in Figure 5.118 .

Figure 5.116. The modifi ed codes for the Select button event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click

Dim cString1 As String = "SELECT Course.course_id, Course.course FROM Course JOIN Faculty "
Dim cString2 As String = "ON (Course.faculty_id LIKE Faculty.faculty_id) AND (Faculty.faculty_name LIKE @name)"
Dim cmdString As String = cString1 & cString2
Dim CourseTableAdapter As New SqlDataAdapter
Dim sqlCommand As New SqlCommand
Dim sqlDataReader As SqlDataReader
Dim sqlDataTable As New DataTable

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add("@name", SqlDbType.Char).Value = ComboName.Text

If ComboMethod.Text = "TableAdapter Method" Then
CourseTableAdapter.SelectCommand = sqlCommand
CourseTableAdapter.Fill(sqlDataTable)
If sqlDataTable.Rows.Count > 0 Then

Call FillCourseTable(sqlDataTable)
Else

MessageBox.Show("No matched course found!")
End If
sqlDataTable.Dispose()
sqlDataTable = Nothing
CourseTableAdapter.Dispose()
CourseTableAdapter = Nothing

Else ' --------------- DataReader method is selected
sqlDataReader = sqlCommand.ExecuteReader
If sqlDataReader.HasRows = True Then

Call FillCourseReader(sqlDataReader)
Else

MessageBox.Show("No matched course found!")
End If
sqlDataReader.Close()
sqlDataReader = Nothing

End If
sqlCommand.Dispose()
sqlCommand = Nothing
CourseList.SelectedIndex = 0

End Sub

A

B

C

D

E

F

cmdSelect Click

c05.indd 365c05.indd 365 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

366 Chapter 5 Data Selection Query with Visual Basic.NET

Figure 5.117. The modifi ed codes for the user - defi ned subroutine FillCourseReader.

A Private Sub FillCourseReader(ByRef CourseReader As SqlDataReader)

Dim strCourse As String = String.Empty

CourseList.Items.Clear()
While CourseReader.Read()

strCourse = CourseReader.GetString(0) 'the 1st column is course_id
CourseList.Items.Add(strCourse)

End While

End Sub

CourseForm FillCourseReader

Figure 5.118. The modifi ed codes for the CourseList_SelectedIndexChanged procedure.

Private Sub CourseList_SelectedIndexChanged(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles CourseList.SelectedIndexChanged

Dim cmdString1 As String = "SELECT course_id, course, credit, classroom, schedule, enrollment FROM Course "
Dim cmdString2 As String = "WHERE course_id LIKE @courseid"
Dim cmdString As String = cmdString1 & cmdString2
Dim CourseTableAdapter As New SqlDataAdapter
Dim sqlCommand As New SqlCommand
Dim sqlDataReader As SqlDataReader
Dim sqlDataTable As New DataTable

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add("@courseid", SqlDbType.Char).Value = CourseList.SelectedItem

If ComboMethod.Text = "TableAdapter Method" Then
CourseTableAdapter.SelectCommand = sqlCommand
CourseTableAdapter.Fill(sqlDataTable)

If sqlDataTable.Rows.Count > 0 Then
Call FillCourseTextBox(sqlDataTable)

Else
MessageBox.Show("No matched course information found!")

End If
sqlDataTable.Dispose()
sqlDataTable = Nothing
CourseTableAdapter.Dispose()
CourseTableAdapter = Nothing

Else
sqlDataReader = sqlCommand.ExecuteReader
If sqlDataReader.HasRows = True Then

Call FillCourseReaderTextBox(sqlDataReader)
Else

MessageBox.Show("No matched course information found!")
End If
sqlDataReader.Close()
sqlDataReader = Nothing

End If
sqlCommand.Dispose()
sqlCommand = Nothing

End Sub

A

B

C

D

E

F

G

CourseList SelectedIndexChanged

c05.indd 366c05.indd 366 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

5.19 Query Data from SQL Server Database Using Runtime Object 367

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The query string is created with six queried columns, such as course_id , course , credit ,
classroom , schedule , and enrollment . The query criterion is course_id . The reason why
we query the course_id by using the course_id as a criterion is that we want to make this
query complete and neat. The comparator LIKE is used to replace the original equal symbol
for the criteria in the WHERE clause in the defi nition of the query string, and this is
required by SQL Server database operation. Also, the nominal name of the dynamic
parameter is changed to @courseid .

B. All data components related to SQL Server Data Provider are created, and these objects
are used to perform the data operations between the database and our project. All of these
classes should be prefi xed by the keyword Sql and all objects should be prefi xed by the
keyword sql since in this project, we used an SQL Server data provider.

C. The sqlCommand object is initialized with the connection string, command type, command
text, and command parameter.

D. The parameter ’ s name must be identical with the dynamic nominal name @courseid ,
which is defi ned in the query string, exactly after the LIKE comparator in the WHERE
clause. The parameter ’ s value is the course_id in the CourseList listbox control.

E. If the DataAdapter Method is selected by the user, the Fill() method is called to fi ll the
Course table, and the user - defi ned subroutine procedure FillCourseTextBox() is executed
to fi ll six textboxes to display the detailed course information for the selected course_id
from the CourseList box.

F. Otherwise, the DataReader Method is selected. The ExecuteReader() method is executed
to read back the detailed information for the selected course_id , and the user - defi ned
subroutine procedure FillCourseReaderTextBox() is called to fi ll those pieces of course
information into six textboxes.

G. Finally, a cleaning job is performed to release objects used for this query.

 Replace the prefi x acc with the prefi x sql for all Data Provider related components
in this piece of codes.

 You can test the codes we just developed for the CourseForm class by running the
project now. Do not forget to copy all faculty image fi les to the folder in which your Visual
Basic executable fi le is located before you can run this project. In this application, it is
the Debug folder of the project.

5.19.7 Query Data Using Runtime Objects
for the Student Form

 Now let ’ s fi nally come to the coding process for the Student form window. The Student
form window is shown in Figure 5.119 again for your convenience.

 The function for this form is to pick up all pieces of information related to the selected
student, such as the student id, student name, gpa, credits, major, school year, and email,
and display them in seven textboxes when the Select button is clicked by the user. Also,
the courses (course_id) taken by that student are displayed in the CourseList box.
Apparently, this function needs to make two queries to the two different tables, the
Student and the StudentCourse tables, respectively.

c05.indd 367c05.indd 367 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

368 Chapter 5 Data Selection Query with Visual Basic.NET

 The codes for this form are similar to those we did for the Faculty form with one
important difference, which is the query type. In order to improve the querying effi ciency
and make the codes simple, two stored procedures are developed and implemented in
this section. By using the stored procedures, the query can be signifi cantly simplifi ed and
integrated, and the effi ciency of the data query can also be improved.

 Let ’ s start from the Form_Load event procedure. The codes for this event procedure
are shown in Figure 5.120 .

Figure 5.119. The Student form window.

Figure 5.120. The codes for the Form_Load event procedure.

Next let’s take a look at the coding for the Select button event procedure. As we

Imports System.Data
Imports System.Data.SqlClient

Public Class StudentForm
Private StudentTextBox(6) As TextBox 'We query 7 columns from the Student table

Private Sub StudentForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
If sqlConnection.State <> ConnectionState.Open Then

MessageBox.Show("Database has not been opened!")
Exit Sub

End If
ComboName.Items.Add("Erica Johnson")
ComboName.Items.Add("Ashly Jade")
ComboName.Items.Add("Holes Smith")
ComboName.Items.Add("Andrew Woods")
ComboName.Items.Add("Blue Valley")
ComboName.SelectedIndex = 0
ComboMethod.Items.Add("DataAdapter Method")
ComboMethod.Items.Add("DataReader Method")
ComboMethod.SelectedIndex = 0

End Sub

A

B

C

D

(StudentForm Events) Load

c05.indd 368c05.indd 368 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

5.19 Query Data from SQL Server Database Using Runtime Object 369

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The namespaces of the SQL Server data class library are imported to provide the proto-
types of all data components to be created and used in this procedure.

B. A form - level textbox array StudentTextBox() is declared, and it is used to hold the
detailed student ’ s information as the project runs, and those pieces of information will be
displayed in seven textboxes in the Student form later.

C. The database connection is checked fi rst before we can perform any data operation
between the project and the database related.

D. All sampled students ’ names and query methods are added into the related combo box,
and the default item is the fi rst one in both combo boxes.

 Next, let ’ s take a look at the coding process for the Select button Click event pro-
cedure. As we mentioned at the beginning of this section, when this Select button is
clicked by the user, seven pieces of student information are displayed in seven related
textboxes, and the courses (course_id) taken by that student are displayed in the
CourseList box. Regularly, two queries are needed for this operation. However, in order
to save time and space, we want to use two stored procedures to replace two queries
to improve the query integrity and effi ciency. Let ’ s go a little deep for the stored
procedure.

5.19.8 Query Student Data Using Stored Procedures

 Stored Procedures are nothing more than functions or procedures applied in any project
developed in any programming language. This means that stored procedures can be con-
sidered as functions or subroutines, and they can be called easily with any arguments, and
they can also return any data with certain type. One can integrate multiple SQL state-
ments into a single stored procedure to perform multiple queries at a time, and those
statements will be precompiled by the SQL Server to form an integrated target body. In
this way, the precompiled body is insulated with your codes developed in the Visual Basic.
NET environment. You can easily call the stored procedure from your Visual Basic.NET
project as the project runs. The result of using the stored procedure is that the perfor-
mance of your data - driven application can be greatly improved, and the data query ’ s
speed can be signifi cantly higher. Also, when you develop a stored procedure, the database
server automatically creates an execution plan for that procedure, and the developed plan
can be updated automatically whenever a modifi cation is made to that procedure by the
database server.

 Regularly, there are three types of stored procedures: system stored procedures,
extended stored procedures, and custom stored procedures. The system stored procedures
are developed and implemented for administrating, managing, confi guring, and monitor-
ing the SQL server. The extended stored procedures are developed and applied in the
dynamic linked library (dll) format. This kind of stored procedures can improve the
running speed and save the running space since they can be dynamically linked to your
project. The custom stored procedures are developed and implemented by users for their
applications.

c05.indd 369c05.indd 369 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

370 Chapter 5 Data Selection Query with Visual Basic.NET

5.19.8.1 Create the Stored Procedure

 Six possible ways can be used to create a stored procedure.

1. Using SQL Server Enterprise Manager

2. Using Query Analyzer

3. Using ASP Code

4. Using Visual Studio.NET — Real Time Coding Method

5. Using Visual Studio.NET — Server Explorer

6. Using Enterprise Manager Wizard

 For Visual Basic.NET developers, I prefer to use the Server Explorer in Visual Studio.
NET. A more complicated but fl exible way to create the stored procedure is to use the
real time coding method from Visual Studio.NET. In this section, we will concentrate on
the fi fth method listed above.

 The prototype or syntax of creating a stored procedure is in Figure 5.121 .
 For the SQL Server database, the name of the stored procedure is always prefi xed

by the keyword dbo . A sample stored procedure StudentInfo is shown in Figure 5.122 .
 The parameters declared inside the braces are either input or output parameters used

for this stored procedure, and an @ symbol must be prefi xed before the parameter in the
SQL Server database. Any argument sent from the calling procedure to this stored pro-
cedure should be declared in here. All other variables, which are created by using the
keyword DECLARE located after the keyword AS , are local variables, and they can only
be used in this stored procedure. The keyword RETURN is used to return the queried
results.

Figure 5.121. The prototype of an SQL Server stored procedure.

CREATE PROCEDURE Stored Procedure’s name
{

@Param1’s name Param1’s data type Input/Output,
@Param2’s name Param2’s data type Input/Output
…….

}
AS

(DECLARE Your local variables…. If you have)
(Your SQL Statements)
RETURN

Figure 5.122. A sample SQL Server stored procedure.

CREATE PROCEDURE dbo.StudentInfo
{

@StudentName VARCHAR(50)
}
AS

SELECT student_id FROM Student
WHERE student_name LIKE @StudentName
RETURN

c05.indd 370c05.indd 370 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

5.19 Query Data from SQL Server Database Using Runtime Object 371

5.19.8.2 Call the Stored Procedure

 When the stored procedure is created, it is ready to be called by your project that was
developed in Visual Basic.NET. You can use any possible ways to fi nish this calling. For
example, you can use the Fill() method defi ned in the TableAdapter to fi ll a data table,
or you can use the ExecuteReader() method to return the queried result to a DataReader
object. Both methods are good for the single - table query, which means that a group of
SQL statements defi ned in that stored procedure are executed for only one data table. If
you want to develop a stored procedure that makes multiple queries with multiple data
tables, you need to use the ExecuteNonQuery() method.

 To call a developed stored procedure from Visual Basic.NET project, one needs to
follow the syntax described as below (Fill() method in TableAdapter):

1. Create a Connection object and open it

2. Create a Command object and initialize it

3. Create any Parameter object and add it into the Command object if you have

4. Execute the stored procedure by using the Fill() method in the TableAdapter class

 Figure 5.123 shows a piece of example codes that illustrate how to call a stored pro-
cedure named dbo.StudentInfo (assuming a Connection object has been created):

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Some useful data components are declared here, such as the TableAdapter, Command, and
DataTable.

B. The Command object CmdStudent is initialized by assigning the associated components
to it. The fi rst component is the Connection object.

C. In order to execute a stored procedure, the keyword StoredProcedure must be used here
and assigned to the CommandType property of the Command object to indicate that a
stored procedure will be called when this Command object is executed.

D. The name of the stored procedure must be assigned to the CommandText property of the
Command object. This name must be identical with the name you used when you create
the stored procedure.

Figure 5.123. An example of calling the stored procedure.

Dim StudentTableAdapter As New SqlDataAdapter
Dim sqlCmdStudent As New SqlCommand
Dim sqlStudentTable As New DataTable

sqlCmdStudent.Connection = LogInForm.sqlConnection
sqlCmdStudent.CommandType = CommandType.StoredProcedure
sqlCmdStudent.CommandText = "dbo.StudentInfo"
sqlCmdStudent.Parameters.Add("@StudentName", SqlDbType.Char).Value = ComboName.Text
StudentTableAdapter.SelectCommand = sqlCmdStudent

StudentTableAdapter.Fill(sqlStudentTable)

If sqlStudentTable.Rows.Count > 0 Then
Collect the retrieved data columns…..

Else
MessageBox.Show("No matched student found!")

End If

A

B
C
D
E

F

c05.indd 371c05.indd 371 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

372 Chapter 5 Data Selection Query with Visual Basic.NET

E. The stored procedure dbo.StudentInfo needs one input parameter StudentName , so a
real parameter that will be obtained from the Student Name combo box as the project
runs is added into the Parameters collection, which is a property of the Command object.
The initialized Command object is assigned to the Select - Command property of the
TableAdapter, and it will be used later.

F. The Fill() method is executed to call the stored procedure and fi ll the Student table. If
this calling is successful, the returned data columns will be available; otherwise, an error
message is displayed.

 In the next part, we will use our Student form to illustrate how to create two stored
procedures and how to call them from our Visual Basic.NET project.

5.19.8.3 Query Data Using Stored Procedures for Student Form

 First, let ’ s create two stored procedures for this Student form. The fi rst stored procedure
is used to get the student_id from the Student table based on the selected student name,
and the second one is used to obtain the courses taken by the selected student based on
the student_id . The reason why we need to use two queries is: we want to query all
courses (course_id s) taken by the selected student based on the student ’ s name, not the
student_id , from the StudentCourse table. But only the student_id column is available
in the StudentCourse table, and there is no student name available in that table. The
student name can only be obtained from the Student table. So we need fi rst to make a
query to the Student table to get the student_id based on the student ’ s name, and then
make the second query to the StudentCourse table to get all courses (exactly all course_
id) based on the student_id .

 The fi rst stored procedure is named dbo.StudentInfo and we will create this stored
procedure using the Server Explorer in the Visual Studio.NET environment.

 Open Visual Studio.NET 2010 and open the Server Explorer window by clicking on
the View|Server Explorer menu item. To open our database CSE_DEPT, right click on
the Data Connections from the Server Explorer window and select the Add Connection
item from the pop - up menu. On the opened Add Connection dialog box, perform the
following actions to connect to our database:

1. Click on the Change button that is next to the Data source box.

2. Select the Microsoft SQL Server Database File item and click on the OK button.

3. Click on the Browse button to go to our database fi le folder: C:\Program Files\ Microsoft
SQL Server\MSSQL10.SQL2008EXPRESS\MSSQL\DATA , and select our database fi le
CSE_DEPT.mdf by clicking on it, and then click on the Open button.

4. Click on the Test Connection button to confi rm this connection.

 Your fi nished Add Connection dialog box is shown in Figure 5.124 a.
 The Use Windows Authentication radio button is selected since we want to use

this security mode as our logon security checking method.
 On the opened Server Explorer window, you can fi nd that our database CSE_DEPT

has been connected to the server. Now let ’ s begin to create our fi rst stored procedure.
 Right - click on the Stored Procedures folder and select the Add New Stored

Procedure item to open a new stored procedure wizard, which is shown in Figure
 5.124 b.

c05.indd 372c05.indd 372 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

5.19 Query Data from SQL Server Database Using Runtime Object 373

 The default name for a new stored procedure is dbo.StoredProcedure1 , which is
located immediately after the keyword CREATE PROCEDURE . The top green - color
codes, which are commented out by the comment symbol (/ * * /), is used to create the
parameters or a parameter list. The bottom green - color code is used to create the SQL
statements. To create our fi rst stored procedure, remove the comment - out symbols and
enter the codes shown in Figure 5.125 into this procedure.

Figure 5.124. The Add Connection dialog box.

(a) (b)

Figure 5.125. The fi rst stored procedure — dbo.StudentInfo.

c05.indd 373c05.indd 373 4/25/2012 1:57:40 PM4/25/2012 1:57:40 PM

374 Chapter 5 Data Selection Query with Visual Basic.NET

 The @StudentName is our only input parameter to this stored procedure, and this
stored procedure will return seven pieces of information related to the selected student
based on the input student name parameter. Don ’ t forget to modify the stored proce-
dure ’ s name to dbo.StudentInfo . Now click on the File|Save StoredProcedure1 item
to save our fi rst stored procedure.

 Similarly, we can create our second stored procedure dbo.StudentCourseInfo , which
is shown in Figure 5.126 .

 The only input parameter to this stored procedure is @StudentID , and this stored
procedure will return all courses (exactly course_id) taken by the selected student based
on the input parameter student_id . Click on the File|Save StoredProcedure2 to save
our second stored procedure.

 Ok, now we fi nished creating our two stored procedures. Next we need to develop
the codes for our Select button Click event procedure in the Student form window to
call these two stored procedures.

 But wait for a moment. Before we can continue to develop our Visual Basic.NET
codes to call these two stored procedures, is there any way for us to check whether these
two stored procedures work fi ne or not? The answer is yes! The Server Explorer in Visual
Studio.NET allows us to debug and test custom - built stored procedure by using some
pop - up menu items, which is shown in Figure 5.127 a.

 Open the Visual Studio.NET 2010 if it is not opened and connect to our database
CSE_DEPT from the Server Explorer window. Expand the Stored Procedure folder
and right click on any of our stored procedure. A pop - up menu will be displayed, which
is shown in Figure 5.127 a. The function for each item is explained below:

1. Add New Stored Procedure : Create a new stored procedure. We have used this item to
create our two stored procedures before.

2. Open : Open an existing stored procedure to allow it to be edited or modifi ed. The name
of the modifi ed stored procedure will be prefi xed by ALTER .

3. Execute : Execute a stored procedure. One can debug and test a developed stored proce-
dure using this item in the Server Explorer environment to make sure that the developed
stored procedure works fi ne.

Figure 5.126. The second stored procedure — dbo.StudentCourseInfo.

c05.indd 374c05.indd 374 4/25/2012 1:57:41 PM4/25/2012 1:57:41 PM

5.19 Query Data from SQL Server Database Using Runtime Object 375

4. Step Into Stored Procedure : Allow users to debug and run the developed stored procedure
step by step.

5. Copy : Copy the stored procedure.

6. Delete : Remove the whole stored procedure.

7. Refresh : Update the content of the stored procedure.

8. Properties : All properties of the stored procedure are listed.

 Now, let ’ s run and test our two developed stored procedures. Right - click on our fi rst
stored procedure StudentInfo and select EXECUTE item from the pop - up menu. A Run
dialog box is displayed to allow you to enter any input parameter you have, which is
shown in Figure 5.127 b. Enter one of the sample students ’ names, Erica Johnson , into
the Value box, and then click on the OK button to run our stored procedure. The testing
result is displayed in the Output dialog box, which is shown in Figure 5.128 .

 In total, there is only one row with seven columns returned: student_id , student_
name , gpa , credits , major , schoolYear , and email . Click on the right - arrow bar to view
all columns.

 In a similar way, you can try to run our second stored procedure. You need to enter
a valid student_id as the input parameter to run it. Of course, you can use the student_id

Figure 5.127. The pop - up menu and EXECUTE dialog box.

(a) (b)

Add New Stored Procedure

Open

Execute

Step Into Stored Procedure

Copy

Delete

Refresh

Properties

Figure 5.128. The testing result of our fi rst stored procedure.

c05.indd 375c05.indd 375 4/25/2012 1:57:41 PM4/25/2012 1:57:41 PM

376 Chapter 5 Data Selection Query with Visual Basic.NET

we obtained from our fi rst stored procedure, which is J77896 . The testing result for our
second stored procedure is shown in Figure 5.129 .

 Now that our two stored procedures have been tested successfully, it is time for us
to develop our coding in Visual Basic.NET to call these two stored procedures.

Figure 5.129. The testing result for our second stored procedure.

 One point you need to note is that if you are using SQL Server Management Studio
Express to build your database, in some situations, you cannot connect to the server to open
the database if you performed some tasks with the Server Explorer, such as creating stored
procedures, because your server has been connected and the database is opening when you
create stored procedures. An error message would be displayed if you try to do that since this
Express version only allows one server instance to be connected at a time. You have to discon-
nect that connection fi rst by rebooting your computer.

 Open the GUI of the Student form and double - click on the Select button to open
its event procedure, and enter the codes shown in Figure 5.130 into this event
procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Two stored procedures ’ names are assigned to two string variables strStudent and strStu-
dentCourse , respectively. These two names must be identical to those we created in two
stored procedures: dbo.StudentInfo and dbo.StudentCourseInfo .

B. All data components are declared and created in this section, which include two
TableAdapters, two DataTables, two Command objects, and a local string variable strName .

C. The user - defi ned subroutine FindName() is executed to get the student ’ s photo fi le based
on the student ’ s name. The returned student ’ s image fi le is assigned to the local string
variable strName .

D. Two image properties, SizeMode and Image , are used to format and display the student ’ s
photo in the student ’ s picture box.

c05.indd 376c05.indd 376 4/25/2012 1:57:41 PM4/25/2012 1:57:41 PM

5.19 Query Data from SQL Server Database Using Runtime Object 377

E. The subroutine BuildCommand() is called to initialize the fi rst Command object with the
correct Connection, CommandType, and CommandText properties. In order to execute our
stored procedure, the properties should be initialized as follows:

 • CommandType = CommandType. StoredProcedure
 • CommandText = “ dbo.StudentInfo ”

 The content of the CommandText must be equal to the name of the stored procedure we
developed above.

Figure 5.130. The codes for the Select button Click event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim strStudent As String = "dbo.StudentInfo"
Dim strStudentCourse As String = "dbo.StudentCourseInfo"
Dim StudentTableAdapter As New SqlDataAdapter
Dim StudentCourseTableAdapter As New SqlDataAdapter
Dim sqlCmdStudent, sqlCmdStudentCourse As New SqlCommand
Dim sqlStudentTable, sqlStudentCourseTable As New DataTable
Dim strName As String

strName = FindName(ComboName.Text)
If strName = "No Match" Then

MessageBox.Show("No Matched Student Found!")
Exit Sub

End If

PhotoBox.SizeMode = PictureBoxSizeMode.StretchImage
PhotoBox.Image = System.Drawing.Image.FromFile(strName)

Call BuildCommand(sqlCmdStudent, strStudent)
sqlCmdStudent.Parameters.Add("@StudentName", SqlDbType.Char).Value = ComboName.Text
StudentTableAdapter.SelectCommand = sqlCmdStudent
StudentTableAdapter.Fill(sqlStudentTable)

If sqlStudentTable.Rows.Count > 0 Then
Call FillStudentTextBox(sqlStudentTable)

Else
MessageBox.Show("No matched student_id found!")

End If

Call BuildCommand(sqlCmdStudentCourse, strStudentCourse)
sqlCmdStudentCourse.Parameters.Add("@StudentID", SqlDbType.Char).Value = txtID.Text
StudentCourseTableAdapter.SelectCommand = sqlCmdStudentCourse
StudentCourseTableAdapter.Fill(sqlStudentCourseTable)

If sqlStudentCourseTable.Rows.Count > 0 Then
Call FillCourseList(sqlStudentCourseTable)

Else
MessageBox.Show("No matched course_id found!")

End If

sqlStudentTable.Dispose()
sqlStudentTable = Nothing
sqlStudentCourseTable.Dispose()
sqlStudentCourseTable = Nothing
StudentTableAdapter.Dispose()
StudentTableAdapter = Nothing
StudentCourseTableAdapter.Dispose()
StudentCourseTableAdapter = Nothing
sqlCmdStudent.Dispose()
sqlCmdStudent = Nothing
sqlCmdStudentCourse.Dispose()
sqlCmdStudentCourse = Nothing

End Sub

A

B

C

D

E
F

G

H
I

J

K

cmdSelect Click

c05.indd 377c05.indd 377 4/25/2012 1:57:41 PM4/25/2012 1:57:41 PM

378 Chapter 5 Data Selection Query with Visual Basic.NET

F. The unique input parameter to the stored procedure dbo.StudentInfo is the StudentName ,
which will be selected by the user from the student name combo box (ComboName.Text)
as the project runs. This dynamic parameter must be added into the Parameters collection
that is the property of the Command class by using the Add() method before the stored
procedure can be executed. The initialized Command object sqlCmdStudent is then
assigned to the SelectCommand property of the TableAdapter to make it ready to be used
in the next step.

G. The Fill() method of the TableAdapter is called to fi ll the Student table, which is to call
our fi rst stored procedure to fi ll the Student table. If this calling is successful, the Count
property should be greater than 0, which means that at least one row has been fi lled into
the Student table, and the other user - defi ned subroutine FillStudentTextBox() is called
to fi ll seven textboxes in the Student form with seven pieces of retrieved columns from the
stored procedure. Otherwise, an error message is displayed if this fi ll has failed.

H. The subroutine BuildCommand() is called again to initialize our second Command object
sqlCmdStudentCourse . The values to be assigned to the properties of the Command
object are:

 • CommandType = CommandType. StoredProcedure
 • CommandText = “ dbo.StudentCourseInfo ”

 The content of the CommandText must be equal to the name of the stored procedure we
developed above.

I. The unique input parameter to the stored procedure dbo.StudentCourseInfo is the
StudentID , which is obtained from the calling of the fi rst stored procedure and is stored
in the student ID textbox txtID . This dynamic parameter must be added into the Parameters
collection that is the property of the Command class by using the Add() method before
the stored procedure can be executed. The initialized Command object sqlCmdStudent-
Course is assigned to the SelectCommand property of the TableAdapter to make it ready
to be used in the next step.

J. The Fill() method of the TableAdapter is called to fi ll the StudentCourse table, which is
to call our second stored procedure to fi ll the StudentCourse table. If this calling is suc-
cessful, the Count property should be greater than 0, which means that at least one row
has been fi lled into the StudentCourse table, and the subroutine FillCourseList() is called
to fi ll the CourseList box in the Student form with all courses (course_id) retrieved from
the stored procedure. Otherwise, an error message is displayed if this fi ll has failed.

K. The cleaning jobs are performed to release all data objects used in this event procedure.

 The codes for the BuildCommand() subroutine are shown in Figure 5.131 . The
modifi cations to this user - defi ned subroutine procedure are:

Figure 5.131. The codes for the subroutine BuildCommand.

Private Sub BuildCommand(ByRef cmdObj As SqlCommand, ByVal cmdString As String)

cmdObj.Connection = sqlConnection
cmdObj.CommandType = CommandType.StoredProcedure
cmdObj.CommandText = cmdString

End Sub

StudentForm BuildCommand

c05.indd 378c05.indd 378 4/25/2012 1:57:41 PM4/25/2012 1:57:41 PM

5.19 Query Data from SQL Server Database Using Runtime Object 379

1. Change the data type of the fi rst passed argument cmdObj from the OleDbCommand to
SqlCommand since we are using data components related to the SQL Server Data Provider
to perform these queries.

2. Change the CommandType property to CommandType.StoredProcedure since we need
to call the stored procedure to perform the student data query in this procedure.

 The codes for all other four user - defi ned subroutine procedures, FindName() ,
FillStudentTextBox() , MapStudentTextBox() , and FillCourseList() , are identical with
those we developed in the last project AccessSelectRTObject .

 The codes for the Back button Click event procedure is simple; open that event
procedure and just enter Me.Close() into that procedure.

 One point to be noted is that in order to pick up the correct student ’ s image fi le from
the subroutine FindName() , you must store all the students ’ image fi les in the folder in
which your Visual Basic.NET project ’ s executable fi le is located. In our application, this
folder is C:\Chapter 5\SQLSelectRTObject\bin\Debug . If you place those students ’
image fi les in other folders, you must provide a full name, which includes the drive name,
path, and the image fi le name, for that student ’ s image fi le to be accessed, and assign it
to the returning string variable strName in this subroutine.

 Now we can begin to run this project to call those two stored procedures from our
Visual Basic.NET project. Click on the Start Debugging button to run our project, enter
the username and password, and select the Student Information item to open the
Student form window, which is shown in Figure 5.132 .

 Select a student, such as Ashly Jade , from the Student Name combo box and click
on the Select button. All information related to this student and the courses are displayed
in seven textboxes and the CourseList box, which is shown in Figure 5.132 .

 Our project to call two stored procedures is very successful!
 Some readers may fi nd that these two stored procedures are relatively simple, and

each procedure only contains one SQL statement. Ok, let ’ s dig a little deeper and develop

Figure 5.132. The running status of the Student form.

c05.indd 379c05.indd 379 4/25/2012 1:57:41 PM4/25/2012 1:57:41 PM

380 Chapter 5 Data Selection Query with Visual Basic.NET

some sophisticated stored procedures and try to call them from our Visual Basic.NET
project. Next, we will develop a stored procedure that contains more SQL statements.

5.19.8.4 Query Data Using More Complicated Stored Procedures

 In this section, we want to get all courses (exactly all course_id) taken by the selected
student based on the student name from the StudentCourse table. To do that, we must
fi rst go to the Student table to obtain the associated student_id based on the student
name since there is no student name column available in the StudentCourse table. Then
we can go to the StudentCourse table to pick up all course_id based on the selected
student_id . We need to regularly perform two queries to complete this data - retrieving
operation. Now, we try to combine these two queries into a single stored procedure to
simplify our data - querying operation. First, let ’ s create our stored procedure.

 Open Visual Studio.NET and open the Server Explorer window, and click the plus -
 symbol icon that is next to CSE_DEPT database folder to connect to our database if this
database was added into the Server Explorer before. Otherwise, you need to right click
on the Data Connections folder to add and connect to our sample database.

 Right - click on the Stored Procedures folder and select the Add New Stored
Procedure item to open the Add Procedure dialog box, and then enter the codes that
are shown in Figure 5.133 into this new procedure.

 Let ’ s give a detailed discussion about this piece of codes.

A. The stored procedure is named dbo.StudentCourseINTO .

B. The input parameter is the student name, @stdtName , which is a varying - char variable
with the maximum characters of 50. All parameters, no matter if they are input or output,
must be declared inside the braces.

Figure 5.133. The newly stored procedure — StudentCourseINTO.

A

B

C
D

E

F

c05.indd 380c05.indd 380 4/25/2012 1:57:41 PM4/25/2012 1:57:41 PM

5.19 Query Data from SQL Server Database Using Runtime Object 381

C. The local variable @stdtID is used to hold the returned query result from the fi rst SQL
statement that retrieves the student_id .

D. The fi rst SQL statement is executed to get the student_id from the Student table based
on the input parameter @stdtName . A SET command must be used to assign the returned
result from the fi rst SQL query to the local variable (or intermediate variable) @stdtID .
The fi rst SQL statement must be covered by the parenthesis to indicate that this whole
query will return a single data item.

E. The second SQL statement is executed and this query is used to retrieve all courses
(course_id) taken by the selected student from the StudentCourse table based on the
student_id (@stdtID) that is obtained from the fi rst query.

F. Finally, the queried result, all courses or course_id , are returned.

 Go to File|Save StoredProcedure1 to save this stored procedure.
 Now let ’ s test our stored procedure in the Server Explorer window. Right - click on

our newly created stored procedure StudentCourseINTO and select the Execute item
from the pop - up menu. On the opened dialog box, enter the student ’ s name: Erica
Johnson , then click on the OK button to run our procedure. The running result is shown
in Figure 5.134 .

 We need to develop a Visual Basic.NET project to call this stored procedure to test
the functionality of the stored procedure. To save time and space, we add a new form
window into this project and named it as SPForm . Perform the following operations to
create the codes for this new form:

1. Open our project SQLSelectRTObject and select Project|Add Windows Form item.

2. Enter SP Form.vb into the Name box and click on the Add button to add this new form
into our project.

3. Enter SPForm into the Name property as the name for this form.

4. Enlarge the size of this SP Form by dragging the border of the form window, and then open
the Student form window. We need to copy all controls on the Student form to this new SP
form. On the opened Student form, select Edit|Select All and Edit|Copy items, and then
open the SP form and select Edit|Paste to paste all controls we copied from the Student
form.

Figure 5.134. The running result of the stored procedure.

c05.indd 381c05.indd 381 4/25/2012 1:57:41 PM4/25/2012 1:57:41 PM

382 Chapter 5 Data Selection Query with Visual Basic.NET

5. To save time, we need to copy most codes from the Student code window to our new SP
form code window. The only exceptions are the codes for the Select button Click event
procedure, cmdSelect_Click() , and the codes for the subroutine BuildCommand() . Don ’ t
copy these two pieces of codes since we need to develop new codes to test our stored pro-
cedure later.

6. To copy all other codes, open the code window of the Student form, select those codes,
except the codes for the cmdSelect_Click() event procedure and subroutine
BuildCommand() , and then paste them to our new SP form code window.

7. Now let ’ s develop our codes for the Select button event procedure. Open the Select button
click event procedure and enter the codes that are shown in Figure 5.135 into this event
procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The name of our stored procedure, dbo.StudentCourseINTO , must be declared fi rst, and
this name must be identical with the name we used when we created our stored procedure
in the Server Explorer window.

B. A Command object and a DataReader object are declared here since we need to use them
for our data query operation.

C. The subroutine FindName() is called to get the matched student image fi le, and the
returned image fi le is stored in the local string variable strName .

Figure 5.135. The codes for the Select button event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim strStudentCourse As String = "dbo.StudentCourseINTO"
Dim sqlCmdStudentCourse As New SqlCommand
Dim sqlDataReader As SqlDataReader
Dim strName As String

strName = FindName(ComboName.Text)
If strName = "No Match" Then

MessageBox.Show("No Matched Student Found!")
Exit Sub

End If
PhotoBox.SizeMode = PictureBoxSizeMode.StretchImage
PhotoBox.Image = System.Drawing.Image.FromFile(strName)

sqlCmdStudentCourse.Connection = sqlConnection
sqlCmdStudentCourse.CommandType = CommandType.StoredProcedure
sqlCmdStudentCourse.CommandText = strStudentCourse
sqlCmdStudentCourse.Parameters.Add("@StdtName", SqlDbType.Char).Value = ComboName.Text
sqlDataReader = sqlCmdStudentCourse.ExecuteReader

If sqlDataReader.HasRows = True Then
Call FillCourseReader(sqlDataReader)

Else
MessageBox.Show("No matched course_id found!")

End If

sqlDataReader.Close()
sqlDataReader = Nothing
sqlCmdStudentCourse.Dispose()
sqlCmdStudentCourse = Nothing

End Sub

A
B

C

D

E

F
G
H

I

cmdSelect Click

c05.indd 382c05.indd 382 4/25/2012 1:57:41 PM4/25/2012 1:57:41 PM

5.19 Query Data from SQL Server Database Using Runtime Object 383

D. The Command object is initialized with suitable properties: The fi rst one is the Connection
object.

E. The CommandType property must be StoredProcedure to indicate that this query is to
execute a stored procedure.

F. The CommandText should be equal to the name of our stored procedure, dbo.
StudentCourseINTO , which is stored in a string variable strStudentCourse .

G. The input parameter is the student name, which is obtained from the student combo box,
and it should be added into the Parameters collection property of the Command object.
You need to note that the nominal name @StdtName must be identical with the param-
eter name we defi ned in the parameter braces in our stored procedure. The real parameter
is entered by the user as the project runs.

H. The ExecuteReader() method is executed to invoke the DataReader to call our stored
procedure. If this call is successful, the queried result should be stored in the DataReader
with returned rows. The user - defi ned subroutine FillCourseReader() is executed to fi ll the
returned course_id into the CourseList box in this form. Otherwise, an error message is
displayed if this call has failed.

I. A cleaning job is performed to release all objects used in this data query operation.

 For the detailed codes in the user - defi ned subroutine procedure FillCourseReader() ,
refer to Figure 5.117 in Section 5.19.6 . You can copy the entire subroutine and paste it
into this code window.

 All other codes are identical to those we developed for the Student form, including
all user - defi ned subroutines.

 Before you can test this piece of codes, you need to add one more item into the
Selection form code window to enable it to browse to our SP Form. Open the code
window of the Selection form and enter the following codes into the SelectForm_Load()
event procedure:

ComboSelection.Items.Add(“SP Information”)

 Then add the following codes into the OKButton_Click() event procedure:

Dim spform As New SPForm

 ElseIf ComboSelection.Text = “SP Information” Then spform.Show()

 Now run the project, enter the suitable username and password, and then select
the SP Information from the Selection form to open the SP Form window. Select
a student name from the student combo box and click on the Select button. All
courses taken by selected student will be displayed in the CourseList box, which is shown
in Figure 5.136 .

 In this project, we only used DataReader as the tool to call the stored procedure to
retrieve our desired data from the database. As an option, you can consider to use the
Fill() method of the TableAdapter class to fulfi ll the same functionality as the DataReader
did in this project. We prefer to leave this job for students as their homework for this
chapter.

 At this point, we fi nished developing data - driven projects using the real - time object
for the SQL Server database. Now, let ’ s go to the last part in this chapter — develop a
data - driven application using the real time object with the Oracle database.

c05.indd 383c05.indd 383 4/25/2012 1:57:41 PM4/25/2012 1:57:41 PM

384 Chapter 5 Data Selection Query with Visual Basic.NET

5.20 QUERY DATA FROM ORACLE DATABASE USING
RUNTIME OBJECT

 To make it simple, in this section, we only installed the Oracle Database 11g Express
Edition server in our local computer. It would be no difference whether the Oracle server
is installed in the local or a remote computer for this sample project. The Oracle database
used in this sample project is Oracle Database 11g Express Edition that was developed
in Chapter 2 .

5.20.1 Install and Confi gure the Oracle Database
11g Express Edition

 In this section, we use the Oracle Database 11g Express Edition for our database pro-
vider. Refer to Appendix B for the detailed procedures to download, install, and confi gure
this software on your computer.

 Oracle Database 11g Express Edition (Oracle Database XE) is an entry - level, small -
 footprint starter database with the following advantages:

 • Free to download and install on your local computer or remote computers

 • Free to develop and deploy data - driven applications

 • Free to distribute (including ISVs)

 Oracle Database XE is built using the same code base as Oracle Database 11 g
Release 2 product line — Standard Edition One, Standard Edition, and Enterprise Edition,
and is available on 32 - bit Windows and Linux platforms.

 Although there are limitations that exist for the Oracle Database 11g XE, such as up
to 4 GB upper bound of user data and the single instance only on any server, it is still an

Figure 5.136. The running status of calling stored procedure dbo.StudentCourseINTO.

c05.indd 384c05.indd 384 4/25/2012 1:57:41 PM4/25/2012 1:57:41 PM

5.20 Query Data from Oracle Database Using Runtime Object 385

ideal and convenient tool to develop professional and leading - edge data - driven applica-
tions with the following specifi c functionalities:

 • The Oracle Database 11g XE can be easily upgraded to Standard Edition One, Standard
Edition. and Enterprise Edition.

 • Any application developed for Oracle Database XE will run completely unchanged with
Oracle Database 11 g Standard Edition One, Standard Edition, or Enterprise Edition, and
the application development investment are guaranteed.

 • With Oracle Database XE, ISVs have the industry ’ s leading database technology to power
their applications. Distributing Oracle Database XE in their applications or products without
additional cost offers even greater value to their customers.

 • Oracle Database XE can be freely distributed as a standalone database or as part of a
third - party application or product.

 For most applications, you only need to download and install the Oracle Database
XE Server component, since it provides both an Oracle database and tools for managing
this database. It also includes the Client component of Oracle Database XE, so that you
can connect to the database from the same computer on which you installed the Server,
and then administer the database and develop Visual Studio.NET applications.

5.20.2 Confi gure the Oracle Database Connection String

 As we mentioned in Section 5.19.1 , there are different ways to build a connection string
for the Oracle database connection. One way is to use the database alias defi ned in the
tnsnames.ora fi le. This fi le is created automatically after you install the Oracle database
11g XE. During the installation process, you will be prompted to enter your username
and password. Normally, the username is SYSTEM or SYS , which is defi ned by the Oracle
system, and you need to select your password. Remember, you need these two pieces of
information to access your database each time as you want to create, edit, and manipulate
your database in the future.

 In order to use the database alias defi ned in the tnsnames.ora fi le, fi rst you need to
open this fi le to take a look at the content of this defi nition. This fi le should be located
at the folder C:\oraclexe\app\oracle\product\11.2.0\server\NETWORK\ADMIN after
the Oracle Database 11g XE is installed. A sample fi le is shown in Figure 5.137 . You can
open this fi le using any text editor, such as Notepad, WordPad, or MS Word.

 The database alias for our application is XE, and the top block of this fi le is the defi -
nition of the database alias (refer to Fig. 5.137).

 Close this fi le, and now, let ’ s create our connection string for the Oracle database 11g
XE using the database alias XE.

 The connection string can be defi ned as:

Dim oraString As String = “Data Source = XE;” + _
 “User ID = CSE_DEPT;” + _
 “Password = reback”

where the User ID CSE_DEPT is the name of our sample Oracle database, and the pass-
word reback is the password we used when we login to the APEX workspace for the
Oracle Database 11g XE in our computer.

c05.indd 385c05.indd 385 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

386 Chapter 5 Data Selection Query with Visual Basic.NET

 Another way to create the connection string is to copy the top block from the tns-
names.ora fi le and paste it as the value of the Data Source parameter, which is:

Dim oraString As String = “Data Source = (DESCRIPTION = ” + _
 “(ADDRESS = (PROTOCOL = TCP)(HOST = smart)(PORT = 1521))” + _
 “(CONNECT_DATA = (SERVER = DEDICATED)(SERVICE_NAME = XE);” + _
 “User ID = CSE_DEPT;Password = reback;”

 In the following sample project, we will use the fi rst way to create our connection
string. With the connection string ready, now we can start to develop our sample project.

5.20.3 Query Data Using Runtime Objects for the LogIn Form

 Open Visual Studio.NET 2010 and create a new Windows - based project named
OracleSelectRTObject . As we did for the last section, delete the default form Form1 ,
and perform the following operations to add fi ve form windows and ConnModule into
this project:

1. Go to the folder VB Forms\Window located at the Wiley ftp site (refer to Fig. 1.2 in Chapter
 1) to fi nd all fi ve form windows.

2. Click on the Project | Add Existing Item , and browse to the VB Forms\Window located at
the Wiley ftp site (you can download and temporarily save those forms in one of your local
folders, such as Temp).

3. Press and hold the Ctrl key on your keyboard and click on fi ve forms one by one: LogIn
Form.vb , Selection Form.vb , Faculty Form.vb , Course Form.vb , and Student Form.vb

Figure 5.137. The sample of the fi le tnsnames.ora.

c05.indd 386c05.indd 386 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

5.20 Query Data from Oracle Database Using Runtime Object 387

and ConnModule.vb . Click on the Add button to add these forms and module into our
current project.

 Refer to Section 5.19.2 to modify the codes for the fi le Application.Designer.vb .
Make sure that the LogIn form is the start form in this project by checking the
Project|OracleSelectRTObject Properties window.

 Now let ’ s add some Oracle Data Provider references to our project. Perform the
following operations to complete this addition operation:

1. Right - click on the OracleSelectRTObject from the Solution Explorer window and select
the Add Reference item from the pop - up menu to open the Add reference window.

2. With the .NET tab selected, scroll down the list until you fi nd the items Devart.Data and
Devart.Data.Oracle , click on both to select them, and click on the OK button to add these
two references to our project.

 Some readers may have found a problem, which is that we did not perform this
adding reference job for our previous projects, either AccessSelectRTObject or
SQLSelectRTObject . The reason for that is because

 • Starting from .NET Framework 4.0, Microsoft no longer support Oracle database related
operations. Therefore, we need to use an Oracle database driver provided by a third - party
vendor.

 • The namespaces for SQL Server and Microsoft Access Data Providers are default
namespaces, and all components related to those Data Providers have been added automati-
cally by the Visual Studio.NET 2010 as you open a new project.

5.20.3.1 Declare the Runtime Objects and Modify the ConnModule

 To access the Oracle database, you need to use an Oracle database driver provided by a
third - party vendor. You must fi rst declare the namespace for that driver at the top line
of your code window to allow Visual Basic.NET 2010 to know that you want to use this
specifi ed Data Provider. Open the Code Window by clicking on the View Code button
from the Solution Explorer window and enter the codes shown in Figure 5.138 to the top
of this code window.

 A new instance of the OracleConnection class is created with the Public access
mode, which means that we can use this connection object for our whole project.

 The fi rst job you need to do is to connect your project with the database you selected
after a new instance of the data connection object is declared.

Figure 5.138. The declaration of the namespace for the Oracle Data Provider.

Imports System.Data
Imports Devart.Data
Imports Devart.Data.Oracle

Module ConnModule
Public oraConnection As OracleConnection

End Module

(General) (Declarations)

c05.indd 387c05.indd 387 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

388 Chapter 5 Data Selection Query with Visual Basic.NET

5.20.3.2 Connect to the Data Source with the Runtime Object

 Since the connection job is the fi rst thing you need to do before you can make any data
query, you need to do the connection job in the LogInForm_Load() event procedure, to
allow the connection to be made fi rst as your project runs.

 In the code window, click on the drop - down arrow in the Class Name combo box and
select the (LogInForm Events) . Then go to the Method Name combo box and click the
drop - down arrow to select the Load method to open the LogInform_Load() event pro-
cedure. Enter the codes shown in Figure 5.139 into this event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. First, the namespaces for general data components and Oracle data provider are declared,
since we need to use some components related to Oracle data provider.

B. The Oracle database connection string is defi ned fi rst. Refer to Section 5.19.1 to get a
detailed description about this connection string. An addition operator “ + ” can be used
to concatenate multiple substrings to form a complete connection string for Oracle
database.

C. A new Oracle Connection instance is created with the name oraConnection . This connec-
tion object is a Public variable, which means that it can be accessed by all event procedures
in all forms defi ned in the current project.

D. A Try . . . Catch block is utilized here to try to catch up any mistake caused by opening
this connection. The advantage of using this kind of strategy is avoiding unnecessary system
debug process and simplifying this debug procedure.

E. This step is used to confi rm that our database connection is successful. If not, an error
message is displayed and the project is exited.

 After a database connection is successfully made, next, we need to use this connection
to access the Oracle database to perform our data query job. As we did for the previous

Figure 5.139. The codes for the LogInForm_Load() event procedure.

Imports System.Data
Imports Devart.Data.Oracle

Public Class LogInForm
Private Sub LogInForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

Dim oraString As String = "Data Source=XE;" + _
"User ID=CSE_DEPT;" + _
"Password=reback"

oraConnection = New OracleConnection(oraString)
Try

oraConnection.Open()
Catch oraExceptionErr As OracleException

MessageBox.Show(oraExceptionErr.Message, "Oracle Error")
Catch InvalidOperationExceptionErr As InvalidOperationException

MessageBox.Show(InvalidOperationExceptionErr.Message, "Oracle Error")
End Try
If oraConnection.State <> ConnectionState.Open Then

MessageBox.Show("Database connection is Failed")
Exit Sub

End If
End Sub

A

B

C
D

E

(LogInForm Events) Load

c05.indd 388c05.indd 388 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

5.20 Query Data from Oracle Database Using Runtime Object 389

projects, we will use two methods to perform the data query: TableAdapter method and
DataReader method.

5.20.3.3 Coding for Method 1: Using the TableAdapter to Query Data

 Open the LogIn form window by clicking on the View Designer button, and then double -
 click on the LogIn button to open its event procedure. Enter the codes shown in Figure
 5.140 into this event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The SELECT statement for Oracle is basically the same as for that used in the SQL Server
database, but little difference is exist between them. The difference is the format of assign-
ing the parameter in the WHERE clause. In both Microsoft Access and SQL Server, an
@ symbol is prefi xed before the parameter, and an equal symbol or a LIKE word is used
to assign a parameter to the column. In Oracle, an equal symbol is still used, but a colon
must be prefi xed before the parameter. In our case, two dynamic parameters, UserName

Figure 5.140. The codes for the LogIn button event procedure.

Private Sub cmdLogIn_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdLogIn.Click
Dim cmdString1 As String = "SELECT USER_NAME, PASS_WORD, FACULTY_ID, STUDENT_ID FROM LogIn "
Dim cmdString2 As String = "WHERE USER_NAME= :UserName AND PASS_WORD= :PassWord"
Dim cmdString As String = cmdString1 & cmdString2
Dim oraUserName As New OracleParameter
Dim oraPassWord As New OracleParameter
Dim LogInTableAdapter As New OracleDataAdapter
Dim oraDataTable As New System.Data.DataTable
Dim oraCommand As New OracleCommand
Dim selForm As New SelectionForm

oraUserName.ParameterName = "UserName"
oraUserName.OracleDbType = OracleDbType.VarChar ' Very important in some applications
oraUserName.Value = txtUserName.Text
oraPassWord.ParameterName = "PassWord"
oraPassWord.OracleDbType = OracleDbType.VarChar ' Very important in some applications
oraPassWord.Value = txtPassWord.Text
oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add(oraUserName)
oraCommand.Parameters.Add(oraPassWord)
LogInTableAdapter.SelectCommand = oraCommand
LogInTableAdapter.Fill(oraDataTable)

If oraDataTable.Rows.Count > 0 Then
selForm.Show()
Me.Hide()

Else
MessageBox.Show("No matched username/password found!")

End If

oraDataTable.Dispose()
oraDataTable = Nothing
oraCommand.Dispose()
oraCommand = Nothing
LogInTableAdapter.Dispose()

 LogInTableAdapter = Nothing
End Sub

A

B

C

D

E

F

G

cmdLogIn Click

c05.indd 389c05.indd 389 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

390 Chapter 5 Data Selection Query with Visual Basic.NET

and PassWord , are assigned to two columns, user_name and pass_word , in the form of
(user_name= :UserName) and (pass_word=:PassWord).

B. Two Oracle Parameter objects are created, and these two objects will be attached to the
Command object to construct a complete command object that can be used to perform
the data query later.

C. Two dynamic parameters are assigned to the OracleParameter objects, paramUserName
and paramPassWord , separately. The parameter ’ s name must be identical with the name
of dynamic parameter in the SQL statement string. The parameter ’ s type (OracleType.
VarChar) must be indicated clearly although it may work without this indication. The
Values of two parameters should be equal to the contents of two associated textbox con-
trols, which will be entered by the user as the project runs.

D. Two parameter objects are added into the Parameters collection that is the property of the
Command object using the Add() method, and the command object is ready to be used. It
is then assigned to the method SelectCommand of the TableAdapter.

E. The Fill() method is called with the oraDataTable as the argument to fi ll the LogIn
table.

 The SELECT statement used for the Oracle database is different from that used for SQL
Server and Microsoft Access. The difference is the format of assigning parameters to the
columns in the WHERE clause. A colon must be prefi xed before the parameter to be assigned
to the column.

F. By checking the Rows.Count property of the oraDataTable , we can determine whether
this fi ll is successful or not. If the value of this property is greater than 0, which means that
the LogIn table is fi lled by at least one row, the fi ll is successful, and the next form window,
Selection form, will be displayed to continue the project to the next step. Otherwise, an
error message will be displayed.

G. A cleaning job is performed to release all data objects used for this data query.

 Next, let ’ s handle the coding for the second method.

5.20.3.4 Coding for Method 2: Using the DataReader to Query Data

 To use this method, you need to add one more buttons named cmdReadLogIn with the
Text of ReadLogIn . Open the LogIn form window by clicking on the View Designer
button from the Solution Explorer window, and then double - click on the ReadLogIn
button to open its event procedure. Enter the codes shown in Figure 5.141 into this
procedure.

 Most codes in the top section are identical with those codes in the LogIn button ’ s
event procedure with two exceptions. First, a DataReader object is created to replace the
TableAdapter to perform the data query, and second, the DataTable is removed from this
event procedure since we do not need it for our data query in this method.

c05.indd 390c05.indd 390 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

5.20 Query Data from Oracle Database Using Runtime Object 391

 Let ’ s have a closer look at this piece of codes to see how it works.

A. As we did coding for method 1, the parameter must be preceded by a colon for the WHERE
clause in the second query string, and this is the requirement of the data query format for
the Oracle database.

B. Two OracleParameter objects are created and they will be used to fi ll two dynamic param-
eters used in this application. The dynamic parameters will be entered by the user when
the project runs.

C. Tow Parameter objects are fi lled by two dynamic parameters; note that the ParameterName
property is used to hold the nominal value of the dynamic parameter, UserName . The
nominal value must be identical with that defi ned in the SQL query statement. The same
situation is true for the second nominal parameter ’ s value.

D. The ExecuteReader() method is called to perform the data query, and the returned data
should be fi lled in the DataReader.

 The rest codes are identical with those we did in the last section. The only issue you
need to note is that all prefi xes of the objects used in this part should be replaced by ora ,
such as oraCommand , oraDataReader , and so on, since we are using an Oracle database
for this section.

Figure 5.141. The codes for the ReadLogIn button event procedure.

Private Sub cmdReadLogIn_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdReadLogIn.Click
Dim cmdString1 As String = "SELECT user_name, pass_word, faculty_id, student_id FROM LogIn "
Dim cmdString2 As String = "WHERE user_name= :UserName AND pass_word= :PassWord"
Dim cmdString As String = cmdString1 & cmdString2
Dim oraUserName As New OracleParameter
Dim oraPassWord As New OracleParameter
Dim oraCommand As New OracleCommand
Dim oraDataReader As OracleDataReader
Dim selForm As New SelectionForm

oraUserName.ParameterName = "UserName"
oraUserName.OracleDbType = OracleDbType.VarChar ' Very important in some applications
oraUserName.Value = txtUserName.Text
oraPassWord.ParameterName = "PassWord"
oraPassWord.OracleDbType = OracleDbType.VarChar ' Very important in some applications
oraPassWord.Value = txtPassWord.Text
oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add(oraUserName)
oraCommand.Parameters.Add(oraPassWord)
oraDataReader = oraCommand.ExecuteReader

If oraDataReader.HasRows = True Then
selForm.Show()
Me.Hide()

Else
MessageBox.Show("No matched username/password found!")

End If

oraCommand.Dispose()
oraCommand = Nothing
oraDataReader.Close()
oraDataReader = Nothing

End Sub

A

B

C

D

ReadLogIn Click

c05.indd 391c05.indd 391 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

392 Chapter 5 Data Selection Query with Visual Basic.NET

 The codes for the Cancel command button event procedure is basically identical with
the codes we did in the last section, and the only modifi cation is to change the prefi x of
the connection object from acc to ora, as shown in Figure 5.142 .

 If the login process is successful, the next form will be the Selection form that allows
users to select different information to view.

5.20.4 The Coding for the Selection Form

 Most coding in this form is identical with the coding of the Selection form in the last
project. The only difference is the coding for the Exit command button. In the last project,
an SQL Server database is used, and all Data Provider - dependent objects are preceded
by the prefi x sql , such as sqlConnection . In this project, we used an Oracle database so
the connection object should be preceded by a prefi x ora . When the Exit button is clicked,
we need to check whether a valid connection is still exist in this project. If it is, we need
to close this connection before we can exit the project. Open this event procedure and
enter the codes shown in Figure 5.143 into this event procedure.

 Next, let ’ s handle the coding for the Faculty form to perform the data query from the
Faculty table in our sample database.

5.20.5 Query Data Using Runtime Objects for the Faculty Form

 In this section, we will develop three different query methods to perform the data query
from the Faculty table in our sample database: DataAdapter , DataReader , and LINQ to

Figure 5.142. The codes for the Cancel button Click event procedure.

Private Sub cmdCancel_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdCancel.Click
' clean up the objects used
oraConnection.Close()
oraConnection.Dispose()
oraConnection = Nothing
Me.Close()

End Sub

cmdCancel Click

Figure 5.143. The codes for the Exit button event procedure.

Private Sub ExitButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdExit.Click

If oraConnection.State = ConnectionState.Open Then
oraConnection.Close()
oraConnection.Dispose()
oraConnection = Nothing

End If
Application.Exit()

End Sub

cmdExit Click

c05.indd 392c05.indd 392 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

5.20 Query Data from Oracle Database Using Runtime Object 393

DataSet method. First, let ’ s take a look at the codes for the FacultyForm_Load() event
procedure, which are shown in Figure 5.144 .

 The differences between this coding with the coding in the last project are:

A. The namespace of the Data Provider. The Devart.Data.Oracle is utilized for the namespace
since we are using the Oracle database in this section; therefore, we need to declare this
namespace in which all Oracle data components related to the Oracle Data Provider are
included.

B. The FacultyTextBox object array used in this project is the same as that used in the last
project.

C. The prefi x of the connection object is changed to ora since an Oracle Data Provider is
utilized in the project.

 The next coding is for the Select button event procedure. Open the Faculty form
window and the Select button Click event procedure. Enter the codes shown in Figure
 5.145 into this event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The query string is declared fi rst since we need query all seven columns from the Faculty
table. The dynamic parameter must be prefi xed by a colon for the WHERE clause, such as
WHERE faculty_name =:FacultyName , since this is the requirement of the data query in
the Oracle database.

B. An OracleParameter object is created, and it is used to hold the dynamic parameter ’ s
name and value later.

Figure 5.144. The codes for the FacultyForm_Load() event procedure.

Imports System.Data
Imports Devart.Data.Oracle

Public Class FacultyForm
Private FacultyTextBox(6) As TextBox 'Faculty table has 7 columns

Private Sub FacultyForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
If oraConnection.State <> ConnectionState.Open Then

MessageBox.Show("Database has not been opened!")
Exit Sub

End If
ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboName.SelectedIndex = 0
ComboMethod.Items.Add("TableAdapter Method")
ComboMethod.Items.Add("DataReader Method")
ComboMethod.Items.Add("LINQ To DataSet Method")
ComboMethod.SelectedIndex = 0

End Sub

A

B

C

(FacultyForm Events) Load

c05.indd 393c05.indd 393 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

394 Chapter 5 Data Selection Query with Visual Basic.NET

Figure 5.145. The codes for the Select button event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click

Dim cString1 As String = "SELECT faculty_id, faculty_name, office, phone, college, title, email FROM Faculty "
Dim cString2 As String = "WHERE faculty_name=:FacultyName"
Dim cmdString As String = cString1 & cString2
Dim paramFacultyName As New OracleParameter
Dim FacultyTableAdapter As New OracleDataAdapter
Dim oraCommand As New OracleCommand
Dim oraDataReader As OracleDataReader
Dim oraDataTable As New DataTable
Dim ds As New DataSet()

paramFacultyName.ParameterName = "FacultyName"
paramFacultyName.OracleDbType = OracleDbType.Char ' Very important for some applications
paramFacultyName.Value = ComboName.Text
oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add(paramFacultyName)
Call ShowFaculty(ComboName.Text)

If ComboMethod.Text = "TableAdapter Method" Then
FacultyTableAdapter.SelectCommand = oraCommand
FacultyTableAdapter.Fill(oraDataTable)
If oraDataTable.Rows.Count > 0 Then

Call FillFacultyTable(oraDataTable)
Else

MessageBox.Show("No matched faculty found!")
End If
oraDataTable.Dispose()
oraDataTable = Nothing
FacultyTableAdapter.Dispose()
FacultyTableAdapter = Nothing

ElseIf ComboMethod.Text = "DataReader Method" Then
oraDataReader = oraCommand.ExecuteReader
If oraDataReader.HasRows = True Then

Call FillFacultyReader(oraDataReader)
Else

MessageBox.Show("No matched faculty found!")
End If
oraDataReader.Close()
oraDataReader = Nothing

Else ' --------------------------- LINQ To DataSet method is selected
FacultyTableAdapter.SelectCommand = oraCommand
FacultyTableAdapter.Fill(ds, "Faculty")
Dim facultyinfo = From fi In ds.Tables("Faculty").AsEnumerable()

Where fi.Field(Of String)("faculty_name").Equals(ComboName.Text)
Select fi

For Each fRow In facultyinfo
txtID.Text = fRow.Field(Of String)("faculty_id")
txtName.Text = fRow.Field(Of String)("faculty_name")
txtTitle.Text = fRow.Field(Of String)("title")
txtOffice.Text = fRow.Field(Of String)("office")
txtPhone.Text = fRow.Field(Of String)("phone")
txtCollege.Text = fRow.Field(Of String)("college")
txtEmail.Text = fRow.Field(Of String)("email")

Next
End If
oraCommand.Dispose()
oraCommand = Nothing

End Sub

A

B

C

D

E

F

G

H

I

cmdSelect Click

c05.indd 394c05.indd 394 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

5.20 Query Data from Oracle Database Using Runtime Object 395

C. Two Data Provider - dependent objects are created, and they are: oraCommand and ora-
DataReader . The oraDataTable is a Data Provider - independent object.

D. The OracleParameter object is initialized by assigning it with the parameter ’ s name, type,
and parameter ’ s value.

E. The OracleCommand object is initialized by assigning it with three values.

F. The initialized dynamic parameter paramFacultyName is assigned to the Parameters
property of the Command object by using the Add() method.

G. If the TableAdapter Method is selected by the users, the Fill() method is executed to fi ll
the Faculty table.

H. If the DataReader Method is selected, the ExecuteReader() method is called to read the
Faculty data.

I. If the LINQ to DataSet Method is selected, the Faculty table in the DataSet is fi lled by
using the Fill() method. A For Each loop is used to fi ll the seven textbox controls in the
Faculty form window with the queried seven data columns.

 The rest of the codes are similar to those codes we developed in the same event
procedure for the last project. You can copy those codes and paste them into this proce-
dure. The only difference between this piece of codes and those in the last project is: the
prefi x sql preceded in front of each data object has been replaced by ora , such as sql-
Command by oraCommand , sqlDataTable by oraDataTable , and sqlDataReader by
oraDataReader .

 For three user - defi ned subroutine procedures, FillFacultyTable() , ShowFaculty() ,
and MapFaculty Table() , there is no modifi cation at all, and you can copy them and paste
them into this project. However, for the user - defi ned subroutine procedure,
FillFacultyReader() , a small modifi cation is needed, which is to change the data type of
the passed argument FacultyReader from OleDbDataReader to OracleDataReader .
Figure 5.146 (A) shows this modifi cation.

 The codes for the Back button Click event procedure is identical to those codes we
did for the project AccessSelectRTObject , with no modifi cation. Just insert Me.Close()
into this event procedure — yes, that is easy!

Figure 5.146. The modifi ed codes for the subroutine FillFacultyReader().

Private Sub FillFacultyReader(ByVal FacultyReader As OracleDataReader)

Dim intIndex As Integer

For intIndex = 0 To 6 'Initialize the object array
FacultyTextBox(intIndex) = New TextBox()

Next intIndex

Call MapFacultyTable(FacultyTextBox)
While FacultyReader.Read()

For intIndex = 0 To FacultyReader.FieldCount - 1
FacultyTextBox(intIndex).Text = FacultyReader.Item(intIndex).ToString

Next intIndex
End While

End Sub

A

FacultyForm FillFacultyReader

c05.indd 395c05.indd 395 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

396 Chapter 5 Data Selection Query with Visual Basic.NET

5.20.6 Query Data Using Runtime Objects and LINQ to DataSet
for the Course Form

 In this section, we try to use three query methods to perform the query for the course
information, DataAdapter , DataReader , and LINQ to DataSet . We will use the stored
procedures developed in the Oracle Database 11g XE environment to replace the general
data query commands to simplify the query structure and improve the query effi ciency.

 First, let ’ s develop the codes for the CourseForm_Load() event procedure.
 Basically, the codes of this event procedure are similar to those we did for the same

event procedure in the last project. The only differences are (refer to Fig. 5.147):

A. Data Provider namespace modifi cation. The Devart.Data.Oracle namespace is used to
replace the original System.Data.SqlClient since we are using an Oracle data provider in
this section.

B. The prefi x of the Connection object has been changed from sql to ora since an Oracle
Connection object is used in this project.

C. The third query method, LINQ to DataSet, has been added into this form to enable users
to select this method to perform course data query.

 The next coding job is for the Select button Click event procedure. After the user
selected the desired data query method from the Method combo box and the faculty
member from the Faculty Name combo box, the Select button is used to trigger its event
procedure to retrieve all courses (course_id) taught by the selected faculty.

Figure 5.147. The modifi ed codes for the CourseForm_Load() event procedure.

Imports System.Data
Imports Devart.Data.Oracle

Public Class CourseForm
Private CourseTextBox(5) As TextBox 'We only have 6 columns in Course table

Private Sub CourseForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

If oraConnection.State <> ConnectionState.Open Then
MessageBox.Show("Database has not been opened!")
Exit Sub

End If
ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboName.SelectedIndex = 0
ComboMethod.Items.Add("TableAdapter Method")
ComboMethod.Items.Add("DataReader Method")
ComboMethod.Items.Add("LINQ To DataSet Method")
ComboMethod.SelectedIndex = 0

End Sub

A

B

C

(CourseForm Events) Load

c05.indd 396c05.indd 396 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

5.20 Query Data from Oracle Database Using Runtime Object 397

 One point you need to note is that two queries are needed in this event procedure
because there is no faculty name column available in the Course table, so we must fi rst
make a query to the Faculty table to fi nd the faculty_id that is related to the faculty name
selected by the user from the Faculty Name combo box in the Course form. Then we need
to make the second query to fi nd all courses (course_id) taught by the selected faculty
from the Course table. The queried course_id are displayed in the CourseList box, and
the detailed course information for each course can be displayed in six textboxes when
the user clicks the associated course_id from the CourseList box.

 In order to save time and space, we have two ways to simplify these queries: one way
is to use the joined table query as we discussed in Section 5.19.6 , and the second way is
to combine these two queries into one stored procedure and call that stored procedure
to perform these two queries. We have already discussed how to use the stored procedures
in the SQL Server database environment in Section 5.19.8 for the data query operations
with the Student table. In this section, we will use the stored procedure built in the Oracle
database environment to perform these queries. You need to note that the stored proce-
dures defi ned in the SQL Server database and the Oracle database are different, there-
fore, in the following section, we need fi rst to provide a discussion about these two
different kinds of stored procedures in two database environments.

5.20.7 The Stored Procedures in Oracle Database Environment

 Different database vendors provide different tools to support the developments and
implementations of stored procedures. For the SQL Server 2008, Microsoft provides the
SQL Server Management Studio and the SQL Server Management Studio Express. For
the Oracle database, Oracle provides Oracle Database 11g and Oracle Database 11g
Express Edition. Different methods can be used to create stored procedures, for example,
six methods are shown in Section 5.19.8.1 to create stored procedures for SQL Server
database. Similarly, Oracle also provides many methods to create stored procedures. For
example, one can use the Object Browser page or SQL Commands page in the SQL
Workshop under the APEX Workspace in the Oracle Database 11g Express Edition to
create stored procedures.

 In Section 5.19.8.1 , we discussed how to use the Server Explorer provided by the
Visual Studio 2010 to create stored procedures. Similarly, Visual Studio 2010 also enables
users to use Server Explorer to manage stored procedures built in the Oracle database,
although Oracle has provided the Oracle development tools for the .NET.

 Another important point one needs to understand is that the stored procedures are
categorized based on the query type or SQL statement type used by the stored procedure
in the Oracle database. In SQL Server 2008, there is no difference between stored pro-
cedures using either an SELECT, INSERT, UPDATE, or DELETE statement, and all of
these statements can be used by SQL Server stored procedures. However, in Oracle
database, if a stored procedure needs to return data such that a stored procedure needs
to execute an SELECT statement, that stored procedure must be embedded into a
package. The package in Oracle is a class, and it can contain variables, functions, and
procedures. Therefore, the stored procedures in the Oracle must be divided into two parts:
stored procedures and packages. The stored procedures that don ’ t need to return any data
(by executing the INSERT, UPDATE, and DELETE statements) can be considered as a

c05.indd 397c05.indd 397 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

398 Chapter 5 Data Selection Query with Visual Basic.NET

pure stored procedures, but the stored procedures that need to return data (by executing
the SELECT statement) must be embedded into the package and therefore a package
should be used.

5.20.7.1 The Syntax of Creating a Stored Procedure in the Oracle

 The syntax of creating a stored procedure in the Oracle is shown in Figure 5.148 .
 The keyword REPLACE is used for the modifi ed stored procedures. Recall that in the

SQL Server 2008, the keyword ALTER is used for any stored procedure that has been
modifi ed since it was created. In Oracle, the keyword CREATE OR REPLACE is used to
represent any procedure that is either newly created or modifi ed.

 Following the procedure ’ s name, all input or output parameters are declared inside
the braces. After the keyword AS , the stored procedure ’ s body is displayed. The body
begins with the keyword BEGIN and ends with the keyword END . You need to note that
a semicolon must be followed after each SQL statement and the keyword END .

 An example of creating a stored procedure in Oracle is shown in Figure 5.149 .
 The length of data type for each parameter is not necessary since this allows those

parameters to have a varying - length value.

5.20.7.2 The Syntax of Creating a Package in the Oracle

 To create a stored procedure that returns data, one needs to embed the stored procedure
into a package. The syntax of creating a package is shown in Figure 5.150 .

Figure 5.148. The syntax of creating a stored procedure in Oracle.

CREATE OR REPLACE PROCEDURE Procedure’s name
{

Param1’s name Param1’s data type,
Param2’s name Param2’s data type,
…….

}
AS

BEGIN
(Your SQL Statements, such as INSERT, UPDATE or DELETE);
END;

Figure 5.149. The syntax of creating a package in Oracle.

CREATE OR REPLACE PROCEDURE InsertProcedure
{

studentId VARCHAR2,
name CHAR,
credit NUMBER

}
AS

BEGIN
INSERT INTO Student(student_id, s_name, s_credit)
VALUES(studentId, name, credit);
END;

c05.indd 398c05.indd 398 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

5.20 Query Data from Oracle Database Using Runtime Object 399

 The syntax of creating a package contains two parts: The package defi nition part and
the package body part. The returned data type, cursor , is fi rst defi ned since the cursor
can be used to return a group of data. Following the defi nition of the cursor, the stored
procedure, that is, the protocol of the stored procedure, is declared with the input and the
output parameters (cursor works as the output argument).

 Following the package defi nition part is the body part. The protocol of the stored
procedure is redeclared at the beginning, and then the body begins with the opening of
the cursor and assigns the returning result of the following SELECT statement to the
cursor. Similarly, each statement must be ended with a semicolon, including the command
END .

 An example of creating a FacultyPackage in the Oracle is shown in Figure 5.151 .
 The stored procedure is named SelectFacultyID with two parameters: the input

parameter FacultyName and the output parameter FacultyID . The keywords IN and
OUT that followed the associated parameter are used to indicate the input/output direc-
tion of the parameter. The length of the stored procedure name is limited to 30 letters in

Figure 5.150. The syntax of creating a package in Oracle.

CREATE OR REPLACE PACKAGE Package’s name
AS

Definition for the returned Cursor;
Definition for the stored procedure

END;
CREATE OR REPLACE PACKAGE BODY Package’s name
AS

Stored procedure prototype
AS
BEGIN

OPEN Returned cursor FOR
(Your SQL SELECT Statements);

END;
END;

Figure 5.151. An example of creating a Faculty Package in Oracle.

CREATE OR REPLACE PACKAGE FacultyPackage
AS

TYPE CURSOR_TYPE IS REF CURSOR;
PROCEDURE SelectFacultyID (FacultyName IN CHAR,

FacultyID OUT CURSOR_TYPE);
END;
CREATE OR REPLACE PACKAGE BODY FacultyPackage
AS

PROCEDURE SelectFacultyID (FacultyName IN CHAR,
FacultyID OUT CURSOR_TYPE)

AS
BEGIN

OPEN FacultyID FOR
SELECT faculty_id, title, office, email FROM Faculty
WHERE name = FacultyName;

END;
END;

c05.indd 399c05.indd 399 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

400 Chapter 5 Data Selection Query with Visual Basic.NET

the Oracle. Unlike the stored procedure name created in the SQL Server 2008, there is
no prefi x applied for each procedure ’ s name.

 Ok, we have discussed and understood the syntax and structure of stored procedures
and packages developed in the Oracle environment, now let ’ s return to our project — our
Course form. As we mentioned, we want to combine two queries into a stored procedure
or package to get all courses (course_id) taught by the selected faculty: the fi rst query
is used to get the faculty_id from the Faculty table based on the selected faculty name,
and the second query is to get all course_id taught by the selected faculty based on the
faculty_id from the Course table. Since there is no faculty name available in the Course
table, we have to perform two queries. Many different ways can be used to create pack-
ages, such as using the Object Browser page or the SQL Commands page in the Oracle
Database 11g Express Edition (XE). In this application, we prefer to use the Object
Browser page to do this job since it provides a GUI.

 Unlike the SQL Server database, Visual Studio.NET 2010 does not provide a GUI
to help users to directly create, edit, and manipulate the Oracle database components,
such as tables, views, and stored procedures inside the Visual Studio.NET environment.
The Oracle Database 11g Express Edition did provide Oracle Development Tools (ODT)
for .NET to allow users to create and manipulate database components, such as tables,
views, indexes, stored procedures, and packages directly inside the Visual Studio.NET
environment by using an Oracle Explorer that is similar to the Server Explorer for the
SQL Server database. To use this tool, one needs to install the Oracle Developer Tools
for Visual Studio.NET.

 In this section, we will use the Object Browser page provided by Oracle Database
11g XE to create our packages without installing and using the ODT.

5.20.8 Create the Faculty_Course Package for the Course Form

 Open the Oracle Database 11g XE home page by going to the start|All Programs|Oracle
Database 11g Express Edition|Get Started items. Perform the following operations to
create this package:

1. Click on the APEX button to open the Login to APEX page.

2. Enter SYSTEM and reback into the Username and Password box to complete the login
process for the APEX.

3. Since we have already created our sample database CSE_DEPT in Chapter 2 , click on the
Already have an account? Login Here button.

4. Enter reback into the Password box and click on the Login button.

5. Click on the SQL Workshop icon to open this workshop window.

6. Click on the Object Browser icon and click on the drop - down arrow on the Create button,
and select the Package item to open the Create Package wizard, which is shown in Figure
 5.152 .

 Each package has two parts: the defi nition or specifi cation part and the body part.
First, let ’ s create the specifi cation part by checking the Specifi cation radio button and
click on the Next button to open the Name page, which is shown in Figure 5.153 .

c05.indd 400c05.indd 400 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

5.20 Query Data from Oracle Database Using Runtime Object 401

Figure 5.152. The opened Create Package wizard.

Figure 5.153. The Name page of the Package wizard.

c05.indd 401c05.indd 401 4/25/2012 1:57:42 PM4/25/2012 1:57:42 PM

402 Chapter 5 Data Selection Query with Visual Basic.NET

 Enter the package name Faculty_Course into the name box and click on the Next
button to go to the specifi cation page, which is shown in Figure 5.154 .

 A default package specifi cation prototype, which includes a procedure and a function,
is provided in this page, and you need to use your real specifi cations to replace those
default items. Since we don ’ t need any function for our application, remove the default
function prototype, and change the default procedure name from the test to our proce-
dure name — SelectFacultyCourse . Your fi nished codes for the specifi cation page should
match the one that is shown in Figure 5.155 .

Figure 5.155. The codes for the Specifi cation page.

Figure 5.154. The opened Specifi cation page.

c05.indd 402c05.indd 402 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

5.20 Query Data from Oracle Database Using Runtime Object 403

 The coding language we used in this section is called Procedural Language Extension
for SQL or PL - SQL, which is a popular language and widely used in the Oracle database
programming.

 In line 2, we defi ned the returned data type as a CURSOR_TYPE by using:

TYPE CURSOR_TYPE IS REF CURSOR;

since you must use a cursor to return a group of data and the IS operator is equivalent
to an equal operator.

 The prototype of the procedure SelectFacultyCourse() is declared in line 3. Two
arguments are used for this procedure: input parameter FacultyName , which is indicated
as an input by using the keyword IN followed by the data type of VARCHAR2 . The output
parameter is a cursor named FacultyCourse followed by a keyword OUT . Each PL - SQL
statement must be ended by a semi - colon, and this rule is also applied to the END
statement.

 Click on the Finish button to complete this step. To confi rm this specifi cation, you
can click on the Save & Compile button to compile this specifi cation block. A successful
compiling page, as shown in Figure 5.156 , should be displayed if this coding is fi ne.

 Next, we need to create the body block of this package. Click on the Body tab that
is next to the Specifi cation tab located on the fi rst row to open the Body page, which is
shown in Figure 5.157 .

 Enter the PL - SQL codes shown in Figure 5.158 into this body.
 The procedure prototype is redeclared in line 2. But an IS operator is attached at the

end of this prototype, and it is used to replace the AS operator to indicate that this pro-
cedure needs to use a local variable facultyId , and this variable will work as an intermedi-
ate variable to hold the returned faculty_id from the fi rst query that is located at line 6.

Figure 5.156. The successful compiling page.

c05.indd 403c05.indd 403 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

404 Chapter 5 Data Selection Query with Visual Basic.NET

Figure 5.158. The codes for the Body part of the package.

Figure 5.157. The opened Body page of the package.

 Starting from BEGIN , our real SQL statements are placed in lines 6 and 7. The fi rst
query is to get the faculty_id from the Faculty table based on the input parameter
FacultyName , which is the fi rst argument of this procedure. An SELECT . . . INTO state-
ment is utilized to temporarily store the returned faculty_id into the intermediate vari-
able facultyId .

c05.indd 404c05.indd 404 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

5.20 Query Data from Oracle Database Using Runtime Object 405

Figure 5.159. The compiled codes for the body part of the package.

 The OPEN FacultyCourse FOR command is used to assign the returned data columns
from the following query to the cursor variable FacultyCourse . Recall that we used a
SET command to perform this assignment functionality in the SQL Server stored proce-
dure in Section 5.19.8.4 . Starting from lines 9 and 10, the second query is declared, and
it is to get all course_id and courses taught by the selected faculty from the Course table
based on the intermediate variable ’ s value, faculty_id , which is obtained from the fi rst
query above. The queried results are assigned to the cursor variable FacultyCourse .

 Ok, now let ’ s compile our package by clicking on the Save & Compile button. A
successful compiling message in green color

PL/SQL code successfully compiled (18:00:52)

will be displayed if this package is bug - free, which is shown in Figure 5.159 .
 The development of our Oracle package is complete, and now let ’ s go to the Visual

Studio.NET to call this package to perform our course query for our Course form.

5.20.9 Query Data Using the Oracle Package
For the Course Form

 Open the Course form window and double - click on the Select button to open its event
procedure and enter the codes that are shown in Figure 5.160 into this event
procedure.

 Let ’ s take a look at this piece of codes to see how it works.

A. The package query string is declared fi rst, and this string contains both the package ’ s name
(Faculty_Course) and the stored procedure ’ s name (Select FacultyCourse). All query

c05.indd 405c05.indd 405 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

406 Chapter 5 Data Selection Query with Visual Basic.NET

Figure 5.160. The codes for the Select button Click event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click

Dim cmdString As String = "Faculty_Course.SelectFacultyCourse"
Dim paramFacultyName As New OracleParameter
Dim paramFacultyCourse As New OracleParameter
Dim CourseTableAdapter As New OracleDataAdapter
Dim oraCommand As New OracleCommand
Dim oraDataReader As OracleDataReader
Dim oraDataTable As New DataTable
Dim ds As New DataSet()

paramFacultyName.ParameterName = "FacultyName"
paramFacultyName.OracleDbType = OracleDbType.VarChar
paramFacultyName.Value = ComboName.Text
paramFacultyCourse.ParameterName = "FacultyCourse"
paramFacultyCourse.OracleDbType = OracleDbType.Cursor
paramFacultyCourse.Direction = ParameterDirection.Output 'this is very important
oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.StoredProcedure
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add(paramFacultyName)
oraCommand.Parameters.Add(paramFacultyCourse)

If ComboMethod.Text = "TableAdapter Method" Then
CourseTableAdapter.SelectCommand = oraCommand
CourseTableAdapter.Fill(oraDataTable)
If oraDataTable.Rows.Count > 0 Then

Call FillCourseTable(oraDataTable)
Else

MessageBox.Show("No matched course found!")
End If
oraDataTable.Dispose()
oraDataTable = Nothing
CourseTableAdapter.Dispose()
CourseTableAdapter = Nothing

ElseIf ComboMethod.Text = "DataReader Method" Then
oraDataReader = oraCommand.ExecuteReader

If oraDataReader.HasRows = True Then
Call FillCourseReader(oraDataReader)

Else
MessageBox.Show("No matched course found!")

End If
oraDataReader.Close()
oraDataReader = Nothing

Else '------------- LINQ to DataSet Method is selected
CourseTableAdapter.SelectCommand = oraCommand
CourseTableAdapter.Fill(ds, "Course")
Dim courseinfo = From ci In ds.Tables("Course").AsEnumerable()

Select ci
CourseList.Items.Clear()
For Each cRow In courseinfo

CourseList.Items.Add(cRow.Field(Of String)("course_id"))
Next
ds.Clear()

End If
oraCommand.Dispose()
oraCommand = Nothing
CourseList.SelectedIndex = 0

End Sub

A
B

C

D

E

F

G

H

I

J

K

L

M
N

O

P

cmdSelect Click

c05.indd 406c05.indd 406 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

5.20 Query Data from Oracle Database Using Runtime Object 407

strings for the Oracle database package must follow this style. The package ’ s name and the
procedure ’ s name defi ned in this string must be identical with those names we used when
we created this package in the Object Browser in the Oracle Database 11g XE. Otherwise,
your calling to this package would be failed.

B. All data components used to perform this query are declared and created here. First, two
Oracle parameter objects are created, paramFacultyName and paramFacultyCourse ,
and these two parameter objects will be passed into the calling package, and they work as
the input and the output parameter, respectively. Some other components, such as the
TableAdapter, Command, DataTable and Data Reader, are also created here.

C. The fi rst parameter object is initialized fi rst. Both parameter name, FacultyName , and the
data type, VARCHAR , must be identical with the name and the data type we used when
we created this procedure in Oracle Database 11g XE. The parameter ’ s value should be
equal to the selected name from the faculty name combo box (ComboName.Text) in the
Course form window in Visual Basic.NET.

D. The second parameter is also initialized with the associated parameter name and data type.
One important point is that the second parameter is an output parameter and its data
type is cursor, and the transmission direction of this parameter is output. So the Direction
property of this parameter object must be clearly indicated by assigning an Output to
it. Otherwise, the procedure calling may encounter some error and this error is hard to
debug.

E. The Command object is initialized by assigning the associated property, such as the
Connection, CommandType, and CommandText. The CommandType should be
StoredProcedure and the CommandText should be the query string we declared at the
beginning of this event procedure (A).

F. Two initialized parameter objects are added into the Command object, that is, are added
into the Parameters collection property of the Command class.

G. If the user selected the TableAdapter method, the initialized Command object is assigned
to the SelectCommand property of the TableAdapter, and the Fill() method is executed to
fi ll the Course table. Exactly, only at this moment, the Oracle package is called, and two
queries are executed. The returned columns should be stored in the Course data table if
this fi ll is successful.

H. If the Count property of the Course table is greater than 0, which means that at least one
row is fi lled into the table, the user - defi ned subroutine FillCourseTable() is called to fi ll
the queried courses into the CourseList box in the Course form window. Otherwise, an
error message is displayed to indicate that this fi ll has failed.

I. Some cleaning jobs are performed to release some data objects used for this query.

J. If the user selected the DataReader method, the ExecuteReader() method is executed to
invoke the DataReader to retrieve required columns and store the returned results into
the DataReader. If the property HasRow is true, which means that the DataReader did
read back some rows, the subroutine FillCourseReader() is called to fi ll the CourseList
box in the Course form window with the read rows. Otherwise, an error message is
displayed.

K. Finally, another cleaning job is performed to release all components used for this query.

L. If the user selected the LINQ to DataSet method, the Fill() method is executed to fi ll the
Course table in the created DataSet ds .

M. The CourseList box is cleaned up before it can be fi lled with queried course_id .

c05.indd 407c05.indd 407 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

408 Chapter 5 Data Selection Query with Visual Basic.NET

N. The For Each loop is executed to pick up each queried column and add them into the
CourseList one by one using the Add() method.

O. The Command object is released after its function is done.

P. This statement is very important, and it is used to select the fi rst course_id in the CourseList
box as the default one as the Course form is opened. More important, this command can
work as a trigger event to trigger the CourseList box ’ s SelectedIndexChanged event
procedure to display the detailed information related to that default course_id in the seven
textbox controls in the Course form window. The codes for this event procedure are our
next job.

 The user - defi ned subroutine procedure FillCourseTable() and the Back button Click
event procedure have nothing to do with any object used in this project, so no coding
modifi cation is needed. The user - defi ned subroutine FillCourseReader() needs only a
small modifi cation, which is to change the data type of the nominal argument
CourseReader from OleDbDataReader to OracleDataReader (refer to step A in Fig.
 5.161) since now we are using an Oracle data provider. The codes for subroutines
FillCourseTable() and FillCourseReader() are similar to the codes we did in Figure 5.91
in Section 5.18.4 . For your convenience, we list this piece of codes again, which is shown
in Figure 5.161 .

 Next, we need to take care of the coding for the CourseList_SelectedIndexChanged()
event procedure.

 The functionality of this event procedure is to display the detailed course information,
such as the course id, course title, credit, classroom, course schedule, and enrollment for
the selected course_id by the user when the user clicks on a course_id from the
CourseList box. Six textbox controls in the Course form are used to store and display six
pieces of detailed course information.

 Now let ’ begin to do our coding for this event procedure. Open the Course form
window and double - click on the CourseList box (any place inside that list box) to open

Figure 5.161. The codes for two user - defi ned subroutine procedures.

Private Sub FillCourseTable(ByRef CourseTable As DataTable)

CourseList.Items.Clear()
For Each row In CourseTable.Rows

CourseList.Items.Add(row(0)) 'the 1st column is course_id - strCourse
Next

End Sub

Private Sub FillCourseReader(ByRef CourseReader As OracleDataReader)

Dim strCourse As String = String.Empty

CourseList.Items.Clear()
While CourseReader.Read()

strCourse = CourseReader.GetString(0) 'the 1st column is course_id
CourseList.Items.Add(strCourse)

End While

End Sub

A

CourseForm FillCourseTable

c05.indd 408c05.indd 408 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

5.20 Query Data from Oracle Database Using Runtime Object 409

this event procedure. Enter the codes that are shown in Figure 5.162 into this event
procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The query string is fi rst declared, and we need to retrieve six columns from the Course
table. In fact, we have already gotten the course_id from the last query in the Select
button event procedure. But in here, in order to keep the code neat, we still retrieve this
column from this query. A nominal parameter courseid that works as a dynamic parameter
is assigned to the course_id column as our query criterion. You need to note that the
assignment operator for the dynamic parameter in Oracle is an equal operator plus a colon.

B. All data components used to perform this query are declared here, such as the TableAdapter,
Command object, DataReader, and the DataTable objects. The keyword Oracle needs to

Figure 5.162. The codes for the SelectedIndexChanged event procedure.

Private Sub CourseList_SelectedIndexChanged(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles CourseList.SelectedIndexChanged

Dim cmdString1 As String = "SELECT course_id, course, credit, classroom, schedule, enrollment FROM Course "
Dim cmdString2 As String = "WHERE course_id =:courseid"
Dim cmdString As String = cmdString1 & cmdString2
Dim CourseTableAdapter As New OracleDataAdapter
Dim oraCommand As New OracleCommand
Dim oraDataReader As OracleDataReader
Dim oraDataTable As New DataTable

oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add("courseid", OracleDbType.Char).Value = CourseList.SelectedItem

If ComboMethod.Text = "TableAdapter Method" Then
CourseTableAdapter.SelectCommand = oraCommand
CourseTableAdapter.Fill(oraDataTable)
If oraDataTable.Rows.Count > 0 Then

Call FillCourseTextBox(oraDataTable)
Else

MessageBox.Show("No matched course information found!")
End If
oraDataTable.Dispose()
oraDataTable = Nothing
CourseTableAdapter.Dispose()
CourseTableAdapter = Nothing

Else
oraDataReader = oraCommand.ExecuteReader
If oraDataReader.HasRows = True Then

Call FillCourseReaderTextBox(oraDataReader)
Else

MessageBox.Show("No matched course information found!")
End If

oraDataReader.Close()
oraDataReader = Nothing

End If
oraCommand.Dispose()
oraCommand = Nothing

End Sub

A

B

C

D

E

F

G

H

I

J

CourseList SelectedIndexChanged

c05.indd 409c05.indd 409 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

410 Chapter 5 Data Selection Query with Visual Basic.NET

be prefi xed before all classes related to the Oracle Data Reader, since we are using the
Oracle data components to perform this query.

C. The Command object is initialized here by assigning it with associated property, such as
the Connection, Command Type, and CommandText.

D. The dynamic parameter courseid is added into the Parameters collection that is a property
of the Command object using the Add() method. The real value of this parameter is the
course_id that is selected by the user from the CourseList box.

E. If the TableAdapter method is selected by the user, the SelectCommand property of the
TableAdapter is assigned with the initialized command object, and the Fill() method is
executed to fi ll the course table.

F. If the Count property of the returned data table is greater than 0, which means that at
least one row is fi lled into the Course table, the user - defi ned subroutine procedure
FillCourseTextBox() is called to fi ll six textbox controls with retrieved six columns.
Otherwise, an error message is displayed to indicate that this fi ll has failed.

G. Some cleaning job is performed here to release some data objects used for this fi ll table
operation.

H. If the DataReader method is selected by the user, the ExecuteReader() method is executed
to invoke the DataReader to retrieve six data columns.

I. If the HasRows property of the DataReader is true, which means that at least one row is
collected, the subroutine FillCourseReader() is called to fi ll six textbox controls with
retrieved columns. Otherwise, an error message is displayed to indicate that this reading
has failed.

J. Some other cleaning jobs are performed to release all objects used for this query.

 The two subroutines: FillCourseTextBox() and MapCourseTable() have no rela-
tionship with any object used in this project; therefore, no coding modifi cation is needed
for them. The subroutine FillCourseReaderTextBox() needs a small modifi cation, which
is to change the data type of nominal argument CourseReader from OleDbDataReader
to OracleDataReader since an Oracle data provider is utilized in this project. For the
detailed line - by - line explanations of the subroutines FillCourseTextBox() ,
FillCourseReaderTextBox() , and MapCourseTable() , refer to Figures 5.93 and 5.94 in
Sections 5.18.4 and 5.18.5 .

 Now let ’ s start this project to test the codes we built for the Course form. Click on
the Debug| Start Debugging button to run the project. Enter the suitable username and
password, such as jhenry and test for the LogIn form, and then select the Course
Information item from the Selection form window to open the Course form. Select the
desired faculty name from the Faculty Name combo box and click on the Select button
to list all course_id taught by the selected faculty in the CourseList box. Then click on
each course_id item from the CourseList box, and the detailed course information
related to the selected course_id is displayed in six textbox controls in this form, which
is shown in Figure 5.163 .

 At this point we fi nished all coding process for this project. As for the coding process
for the Student form, we prefer to leave this job to students as their homework.

 But do not forget to copy all faculty image fi les to the folder in which your Visual
Basic executable fi le is located before you can run this project. In this application, it is
the Debug folder of the project. In our case, this folder is located at: C:\Chapter 5\Oracle -
SelectRTObject\bin\Debug .

c05.indd 410c05.indd 410 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

5.21 Chapter Summary 411

5.21 CHAPTER SUMMARY

 The main topic of this chapter is to develop professional data - driven applications in Visual
Basic.NET 2010 environment with three methods. The data query is the main task of this
chapter.

 The fi rst method is to utilize the Wizards and Tools provided by Visual Studio.NET
2010 and ADO.NET to build simple but powerful data query projects, and the second is
to use the runtime object method to build the potable projects. The LINQ to DataSet is
introduced as the third method to query data from the different data tables.

 Comparably, the fi rst method is simple, and it is easy to be understood and learned
by students who are beginner to Visual Basic.NET and databases. This method utilizes a
lot of powerful tools and wizards provided by Visual Studio.NET and ADO.NET to
simplify the coding process, and most codes are auto - generated by the .NET Framework
and Visual Studio.NET 2010 as the user uses these tools and wizards to perform data
operations, such as adding new a data source, making data binding, and connecting to the
selected data source. The shortcoming of this method is that a lot of coding jobs are per-
formed by the system behind the screen, so it is hard to enable users to have a clear
picture about what is really happened behind those tools and wizards. The most codes
are generated by the system automatically in the specifi c locations, so it is not easy to
translate and execute those codes in other platforms.

 The runtime objects are utilized in the second method. This method allows users to
dynamically create all data - related objects and perform the associated data operations
after the project runs. Because all objects are generated by the codes, it is very easy to
translate and execute this kind of projects in other platforms. This method provides a
clear view for the users and enables them to have a global and detail picture in how to
control the direction of the project with the codes based on the users ’ idea and feeling.

Figure 5.163. The running status of the Course form.

c05.indd 411c05.indd 411 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

412 Chapter 5 Data Selection Query with Visual Basic.NET

The shortcoming of this method is that a lot of codes make the project complicated and
hard to be accepted by the beginners.

 The LINQ to DataSet method is an updated method provided by .NET Framework.
With this method, a general query object can be produced and executed in higher effi -
ciency to disregard what kind of language the user is using. In other words, this method
is a language - or query - independent method, and this makes this method simple and more
effi cient compared with another two methods discussed above.

 Three kinds of databases are discussed in this chapter: Microsoft Access, SQL Server,
and Oracle. Each database is explained in detail with a real sample project. Each project
uses two or three different data query methods: TableAdapter method, runtime object
method, and LINQ to DataSet method. A line - by - line illustration is provided for each
sample project. The readers can obtain the solid knowledge and practical experience in
how to develop a professional data query application after they fi nish this chapter.

 By fi nishing Part I in this chapter, you should be able to:

 • Use the tools and wizards provided by Visual Studio.NET 2010 and ADO.NET to develop
the simple but powerful data - driven applications to perform data query to Microsoft Access,
SQL Server 2008, and Oracle 11g XE databases.

 • Use the OleDbConnection, SqlConnection, or OracleConnection class to connect to
Microsoft Access, SQL Server 2008 Express, and Oracle 11g XE databases.

 • Perform data binding to a DataGridView using two methods.

 • Use the OleDbCommand, SqlCommand, and OracleCommand class to execute the data
query with dynamic parameters to three kinds of databases.

 • Use the OleDbDataAdapter to fi ll a DataSet and a DataTable object with three kinds of
databases.

 • Use the OleDbDataReader class to query and process data with three kinds of databases.

 • Set properties for the OleDbCommand objects to construct a desired query string for three
kinds of databases.

 By fi nishing Part II in this chapter, you should be able to:

 • Use the Runtime objects to develop the professional data - driven applications to perform
data query to Microsoft Access, SQL Server 2008, and Oracle 11g XE databases.

 • Use the OleDbConnection, SqlConnection, and OracleConnection class to dynamically
connect to Microsoft Access, SQL Server 2008 Express, and Oracle 11g XE databases.

 • Use the OleDbCommand, SqlCommand, and OracleCommand class to dynamically execute
the data query with dynamic parameters to three kinds of databases.

 • Use the OleDbDataAdapter, SqlDataAdapter, and OracleDataAdapter to dynamically fi ll
a DataSet and a DataTable object with three kinds of databases.

 • Use the OleDbDataReader, SqlDataReader, and OracleDataReader class to dynamically
query and process data with three kinds of databases.

 • Set properties for the OleDbCommand, SqlCommand, and OracleCommand objects dynam-
ically to construct a desired query string for three kinds of databases.

 • Use LINQ to DataSet method to perform data query for three kinds of databases.

 • Use the Server Explorer to create, debug, and test stored procedures in Visual Studio.NET
environment.

c05.indd 412c05.indd 412 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

Homework 413

 • Use SQL stored procedure to perform the data query from Visual Basic.NET.

 • Use Object Browser in Oracle Database 11g XE to create, debug, and test stored procedures
and packages.

 • Use the Oracle stored procedures and packages to perform the data query from Visual Basic.
NET.

 In Chapter 6 , we will discuss the data inserting technique with three kinds of data-
bases. Both methods are introduced in two parts: Part I : Using the tools and wizards
provided by Visual Studio.NET 2010 to develop data inserting query, and Part II : Using
the Runtime objects and LINQ to DataSet to perform the data inserting job for three
databases.

HOMEWORK

I. True/False Selections

 ____ 1. Data Provider - dependent objects are Connection, Command, TableAdapter, and
DataReader.

 ____ 2. The Fill() method belongs to the TableAdapter class.

 ____ 3. To move data between the bound controls on a form window and the associated columns
in the data source, a BindingSource is needed.

 ____ 4. To set up the connection between the bound controls on a form window and the associated
columns in the data source, a TableAdapter is needed.

 ____ 5. All TableAdapter classes are located in the namespace DataSetTableAdapters.

 ____ 6. Running the Fill() method is equivalent to executing the ExecuteReader() method.

 ____ 7. The DataSet can be considered as a container that contains multiple data tables, but those
tables are only a mapping of the real data tables in the database.

 ____ 8. To run the Fill() method to fi ll a table is exactly to fi ll a data table that is located in the
DataSet, not a real data table in the database.

 ____ 9. By checking the Count property of a data table, one can determine whether a fi ll - table -
 operation is successful or not.

 ___ 10. The DataTable object is a Data Provider - independent object.

 ___ 11. If one needs to include the SELECT statements in an Oracle stored procedure, one can
directly create a stored procedure and call it from Visual Basic.NET.

 ___ 12. The Cursor must be used as an output variable if one wants to return multiple columns from
a query developed in a Package in Oracle database.

 ___ 13. You can directly create, edit, manipulate and test stored procedures for the SQL Server
database inside the Visual Studio.NET environment.

 ___ 14. To call an SQL Server stored procedure, one must set the CommandType property of the
Command object to Procedure.

 ___ 15. To set up a dynamic parameter in an SELECT statement in the SQL Server database, a @
symbol must be prefi xed before the nominal variable.

 ___ 16. The name of the dynamic parameter in an SELECT statement in the SQL Server database
may be different with the name of the nominal parameter that is assigned to the Parameters
collection of the Command object.

c05.indd 413c05.indd 413 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

414 Chapter 5 Data Selection Query with Visual Basic.NET

 ___ 17. To assign a dynamic parameter in an SELECT statement in the SQL Server database, the
keyword LIKE must be used as the assignment operator.

 ___ 18. Two popular tools to create Oracle Packages are: Object Browser page and SQL Command
page in Oracle Database 11g XE.

 ___ 19. Two popular ways to query data from any database are: using Fill() method that belongs to
the TableAdapter class, or calling ExecuteReader method that belongs to the Command
class.

 ___ 20. A DataTable can be considered as a collection of DataRowCollection and
DataColumnCollection, and the latter contain DataRow and DataColumn objects.

II. Multiple Choices

1. To connect a database dynamically, one needs to use the _____

a. Data Source
b. TableAdapter
c. Runtime object
d. Tools and Wizards

2. Four popular data providers are ________

a. ODBC, DB2, JDBC and SQL
b. SQL, ODBC, DB2 and Oracle
c. ODBC, OLEDB, SQL and Oracle
d. Oracle, OLEDB, SQL and DB2

3. To modify the DataSet, one needs to use the ______ Wizard.

a. DataSet confi guration
b. DataSet edit
c. TableAdapter confi guration
d. Query Builder

4. To bind a label control with the associated column in a data table, one needs to use ______

a. BindingNavigator
b. TableAdapter
c. DataSet
d. BindingSource

5. The _______ keyword should be used as an assignment operator for the WHERE clause with
a dynamic parameter for a data query in SQL Server database.

a. =
b. LIKE
c. : =
d. @ =

6. The ______ data provider can be used to execute the data query for ______ data providers.

a. SQL Server, OleDb and Oracle
b. OleDb, SQL Server and Oracle
c. Oracle, SQL Server and OleDb
d. SQL Server, Odbc and Oracle

7. To perform a Fill() method to fi ll a data table, exactly it executes ______ object with suitable
parameters.

c05.indd 414c05.indd 414 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

Homework 415

a. DataAdapter
b. Connection
c. DataReader
d. Command

8. To fi ll a list box or combo box control, one must ____ by using the ____ method.

a. Remove all old items, Remove()
b. Remove all old items, ClearBeforeFill()
c. Clean up all old items, CleanAll()
d. Clear all old items, ClearAll()

9. A _____ accessing mode should be used to defi ne a connection object if one wants to use that
connection object _______ for the whole project.

a. Private, locally
b. Protected, globally
c. Public, locally
d. Public, globally

10. To ____ data between the DataSet and the database, the ___ object should be used

a. Bind, BindingSource
b. Add, TableAdapter
c. Move, TableAdapter
d. Remove, DataReader

11. The keyword _______ will be displayed before the procedure ’ s name if one modifi ed an SQL
Server stored procedure.

a. CREATE
b. CREATE OR REPLACE
c. REPLACE
d. ALTER

12. To perform a run - time data query to Oracle database, one needs to use ________

a. OleDb Data Provider
b. Oracle Data Provider
c. Both (a) and (b)
d. None of them

13. To query data from any database using the run time object method, two popular methods are
______ and ________

a. DataSet, TableAdapter
b. TableAdapter, Fill
c. DataReader, ExecuteReader
d. TableAdapter, DataReader

14. To use a stored procedure to retrieve data columns from an Oracle database, one needs to
create a(n) _________

a. Oracle Package
b. Oracle stored procedure
c. Oracle Trigger
d. Oracle Index

c05.indd 415c05.indd 415 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

416 Chapter 5 Data Selection Query with Visual Basic.NET

15. Two parts are existed in an Oracle Package and they are ______ and ______

a. Specifi cation, body
b. Defi nition, specifi cations
c. Body, specifi cation
d. Specifi cation, execution

III. Exercises

1. Using the tools and wizards provided by Visual Studio.NET and ADO.NET to complete the
data query for the Student form in the SelectWizard project. The project is located at the folder
DBProjects\Chapter 5 at the Wiley ftp site (refer to Fig. 1.2 in Chapter 1).

2. Using LINQ to DataSet method to build the data query for the Select button Click event
procedure in the Course form in the AccessSelectRTObject project. The project is located at
the folder DBProjects\Chapter 5 at the Wiley ftp site (refer to Fig. 1.2 in Chapter 1).

3. Develop a method by adding some codes into the cmdLogIn_Click() event procedure of the
project OracleSelectRTObject to allow users to try the login process only 3 times. A warning
message should be displayed and the project should be exited after 3 times of trying to login
but all of them are failed.

4. Using PL - SQL to create a Package in the Object Browser page of Oracle Database 11g XE.
The Package contains two stored procedures; one is used for query the student_id from the
Student table based on the input student name, and the second is to query all course_id taken
by the selected student from the StudentCourse table based on the student_id retrieved from
the fi rst stored procedure. Compile this package after it is created to confi rm that it works.

5. Try to use the OleDb data provider to replace either SQL Server or Oracle data provider for
the SQLSelectRTObject or the OracleSelectRTObject project to perform the similar data
query jobs for the Faculty form.

6. Using the TableAdapter method (Fill()) to perform the data query to Student and StudentCourse
tables for the Student form in SQLSelectRTObject project. For your reference, a sample
project can be found at the folder DBProjects\Chapter 5 located at the Wiley ftp site (refer
to Fig. 1.2 in Chapter 1). In that project, the DataReader method is used to perform the data
query for the Student form.

7. Develop the data query for the Student form to retrieve data from both Student and
StudentCourse tables using Oracle Database 11g XE. Either TableAdapter or DataReader
method can be used for this query. The desired way is to use an Oracle Package to build this
query.

c05.indd 416c05.indd 416 4/25/2012 1:57:43 PM4/25/2012 1:57:43 PM

 Chapter 6

Data Inserting with Visual
Basic.NET

Practical Database Programming with Visual Basic.NET, Second Edition. Ying Bai.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.

417

 We spent a lot of time in discussion and explanation of data query in the last chapter by
using two different methods. In this chapter, we will concentrate on inserting data into
the DataSet and the database. Inserting data into the DataSet or inserting data into the
data tables embedded in the DataSet is totally different from inserting data into the
database or inserting data into the data tables in the database. The former is only to insert
data into the mapping of the data table in the DataSet, and this insertion has nothing to
do with the real data tables in the database. In other words, the data inserted into the
mapped data tables in the DataSet are not inserted into the data tables in the real data-
base. The latter is to insert the data into the data tables in the real database.

 As you know, ADO.NET provided a disconnected working mode for the database
access applications. The so - called disconnected mode means that your data - driven appli-
cations will not always keep the connection with your database, and this connection may
be disconnected after you set up your DataSet and load all data from the data tables in
your database into those data table mappings in your DataSet, and most of the time you
are just working on the data between your applications and your data table mappings in
your DataSet. The main reason of using this mode is to reduce the overhead of a large
number of connections to the database and improve the effi ciency of data transferring
and implementations between the users ’ applications and the data sources.

 In this chapter, we will provide two parts to show readers how to insert data into the
database: inserting data into the database using the Visual Studio.NET design tools and
wizards is discussed in the fi rst part, and inserting data to the database using the run - time
object method is shown in the second part.

 When you fi nish this chapter, you will:

 • Understand the working principle and structure on inserting data to the database using the
Visual Studio.NET design tools and wizards

 • Understand the procedures in how to confi gure the TableAdapter object by using the
TableAdapter Query Confi guration Wizard and build the query to insert data into the
database

 • Design and develop special procedures to validate data before and after accessing the
database

c06.indd 417c06.indd 417 4/25/2012 1:57:56 PM4/25/2012 1:57:56 PM

418 Chapter 6 Data Inserting with Visual Basic.NET

 • Understand the working principle and structure on inserting data to the database using the
run - time object method

 • Insert data into the DataSet using LINQ to DataSet and insert data into the database using
LINQ to SQL queries

 • Design and build stored procedures to perform the data insertion

 To successfully complete this chapter, you need to understand topics such as the
Fundamentals of Databases, which was introduced in Chapter 2 , and ADO.NET, which
was discussed in Chapter 3 . Also a sample database, CSE_DEPT, that was developed in
Chapter 2 will be used throughout this chapter.

 In order to save time and avoid the repeatability, we will use the project SelectWizard
we developed in the last chapter. Recall that some command buttons on the different
form windows in that project have not been coded, such as Insert, Update, and Delete,
and those buttons, or the event procedures related to those buttons, will be developed
and built in this chapter. We only concentrate on the coding for the Insert button in this
chapter.

PART I DATA INSERTING WITH VISUAL STUDIO. NET
DESIGN TOOLS AND WIZARDS

 In this part, we discuss inserting data into the database using the Visual Studio.NET
design tools and wizards. We develop two methods to perform this data insertion: fi rst,
we use the TableAdapter DBDirect method, TableAdapter.Insert() , to directly insert
data into the database. Second, we discuss how to insert data into the database by fi rst
adding new records into the DataSet, and then updating those new records from the
DataSet to the database using the TableAdapter.Update() method. Both methods utilize
the TableAdapter ’ s direct and indirect methods to complete the data insertion. The data-
base we use is the SQL Server 2008 Express database, CSE_DEPT.mdf , which was devel-
oped in Chapter 2 and located in the folder Database\SQLServer at the Wiley ftp site
(refer to Figure 1.2 in Chapter 1). You can try to use any other databases, such as
Microsoft Access 2007 or Oracle Database 11g XE. The only issue is that you need to
select and connect to the correct database when you use the Data Source window to set
up your data source for your Visual Basic.NET data - driven applications.

6.1 INSERT DATA INTO A DATABASE

 Generally, there are many different ways to insert data into the database in Visual Studio.
NET. Regularly, three methods are widely utilized:

1. Using the TableAdapter ’ s DBDirect methods, specifi cally such as the TableAdapter.
Insert() method

2. Using the TableAdapter ’ s Update() method to insert new records that have already been
added into the DataTable in the DataSet

3. Using the Command object combined with the ExecuteNonQuery() method

c06.indd 418c06.indd 418 4/25/2012 1:57:56 PM4/25/2012 1:57:56 PM

6.1 Insert Data into a Database 419

 When using method 1, one can directly access the database and execute commands,
such as the TableAdapter.Insert() , TableAdapter.Update() , and TableAdapter.Delete()
to manipulate data in the database without requiring DataSet or DataTable objects to
reconcile changes in order to send updates to a database. As we mentioned at the begin-
ning of this chapter, inserting data into a table in the DataSet is different with inserting
data into a table in the database. If you are using the DataSet to store data in your appli-
cations, you need to use the TableAdapter.Update() method since the Update() method
can trigger and send all changes (updates, inserts, and deletes) to the database.

 A good choice is to try to use the TableAdapter.Insert() method when your applica-
tion uses objects to store data (e.g., you are using textboxes to store your data), or when
you want fi ner control over creating new records in the database.

 In addition to inserting data into the database, method 2 can be used for other data
operations, such as updating and deleting data from the database. You can build associ-
ated command objects and assign them to the appropriate TableAdapter ’ s properties,
such as UpdateCommand and DeleteCommand. The point is that when these properties
are executed, the data manipulations only occur in the data table in the DataSet, not in
the database. In order to make those data modifi cations occur in the real database, the
TableAdapter ’ s Update() method is needed to update those modifi cations in the
database.

 The terminal execution of inserting, updating, and deleting data of both methods 1
and 2 is performed by method 3. In other words, both methods 1 and 2 need method 3
to complete those data manipulations, which means that both methods need to execute
the Command object, more precisely, the ExecuteNonQuery() method of the Command
object to fi nish those data operations again the database.

 Because methods 1 and 2 are relatively simple, in this part, we will concentrate on
inserting data into the database using the TableAdapter methods. First, we discuss how
to insert new records directly into the database using the TableAdapter.Insert() method,
and then we discuss how to insert new records into the DataSet and then into a database
using the TableAdapter.Update() method. Method 3 will be discussed in part II since it
contains more completed coding related to the runtime objects.

6.1.1 Insert New Records into a Database Using
the TableAdapter.Insert Method

 When you use this TableAdapter DBDirect method to perform data manipulations to a
database, the main query must provide enough information in order for the DBDirect
methods to be created correctly. The so - called main query is the default or original query
methods, such as Fill() and GetData(), when you open for the fi rst time any TableAdapter
by using the TableAdapter Confi guration Wizard. Enough information means that the
data table must contain completed defi nitions. For example, if a TableAdapter is confi g-
ured to query data from a table that does not have a primary key column defi ned, it does
not generate DBDirect methods.

 Table 6.1 lists three TableAdapter DBDirect methods.
 It can be found in Table 6.1 that the TableAdapter.Update() method has two func-

tionalities: one is to directly make all changes in the database based on the parameters
contained in the Update() method, and another job is to update all changes made in the

c06.indd 419c06.indd 419 4/25/2012 1:57:56 PM4/25/2012 1:57:56 PM

420 Chapter 6 Data Inserting with Visual Basic.NET

DataSet to the database based on the associated properties of the TableAdapter, such as
the InsertCommand, UpdateCommand, and DeleteCommand.

 In this chapter, we only take care of the inserting data, so only the top two methods
are discussed in this chapter. The third method will be discussed in Chapter 7 .

6.1.2 Insert New Records into a Database Using the
TableAdapter.Update Method

 To use this method to insert data into the database, one needs to perform the following
two steps:

1. Add new records to the desired DataTable by creating a new DataRow and adding it to
the Rows collection.

2. After the new rows are added to the DataTable, call the TableAdapter.Update() method.
You can control the amount of data to be updated by passing an entire DataSet, a DataTable,
an array of DataRows, or a single DataRow.

 In order to provide a detailed discussion and explanation how to use these two
methods to insert new records into the database, a real example will be very helpful. Let ’ s
fi rst create a new Visual Basic.NET project to handle these issues.

6.2 INSERT DATA INTO THE SQL SERVER DATABASE
USING A SAMPLE PROJECT INSERTWIZARD

 We have provided a very detailed introduction about the design tools and wizards in
Visual Studio.NET in Section 5.2 in the last chapter, such as DataSet, BindingSource,
TableAdapter, Data Source window, Data Source Confi guration window, and DataSet
Designer. We need to use those staff to develop our data - inserting sample project based
on the SelectWizard project developed in the last chapter. First, let ’ s copy that project
and do some modifi cations on that project to get our new project. The advantage of creat-

Table 6.1. TableAdapter DBD irect methods

 TableAdapter DBDirect Method Description

 TableAdapter.Insert Adds new records into a database allowing you to pass
in individual column values as method parameters.

 TableAdapter.Update Updates existing records in a database. The Update
method takes original and new column values as
method parameters. The original values are used to
locate the original record, and the new values are used
to update that record. The TableAdapter.Update
method is also used to reconcile changes in a dataset
back to the database by taking a DataSet, DataTable,
DataRow, or array of DataRows as method parameters.

 TableAdapter.Delete Deletes existing records from the database based on the
original column values passed in as method parameters.

c06.indd 420c06.indd 420 4/25/2012 1:57:56 PM4/25/2012 1:57:56 PM

6.2 Insert Data into the SQL Server Database Using a Sample Project InsertWizard 421

ing our new project in this way is that you don ’ t need to redo the data source connection
and confi guration since those jobs have been performed in the last chapter.

6.2.1 Create New Project Based on the SelectWizard Project

 Open the Windows Explorer and create a new folder such as Chapter 6 , and then browse
to our project SelectWizard Solution , which was developed in the last chapter and is
located at the folder DBProjects\Chapter 5 at the Wiley ftp site (refer to Figure 1.2
in Chapter 1). Copy this solution with the project to our new folder Chapter 6 . Change
the folder name of the solution and the project from SelectWizard Solution to
InsertWizard Solution , from SelectWizard project to InsertWizard project, respec-
tively. Also, change the names of the fi le SelectWizard.vbproj to InsertWizard.vbproj ,
and SelectWizard.vbproj.user to InsertWizard.vbproj.user . Then, double - click on the
InsertWizard.vbproj to open this project.

 On the opened project, perform the following modifi cations to get our desired project:

 • Select one form window, such as the LogIn Form.vb , by clicking on it from the Solution
Explorer window. Then go to the Project|InsertWizard Properties menu item to open the
project ’ s property window. Change the Assembly name from SelectWizard to InsertWizard ,
and the Root namespace from SelectWizard to InsertWizard , respectively.

 • Click on the Assembly Information button to open the Assembly Information dialog box,
and change the Title and the Product to InsertWizard . Click on the OK button to close this
dialog box.

 Go to File|Save All to save those modifi cations. Now we are ready to develop our
graphic user interfaces based on the SampleWizards Project we developed in the last
chapter.

6.2.2 Application User Interfaces

 As you know from the last chapter, fi ve form windows work as the user interfaces for the
SelectWizard project: LogIn, Selection, Faculty, Course, and Student. Of all these fi ve
form windows, only three of them contain the Insert command button, and they are:
Faculty, Course, and Student. Therefore, we only need to work on these three forms to
perform the data insertion to our database. In fact, we do not need to build any other
new form to perform this data insertion operation; instead, we can use the Insert button
defi ned in those three forms to do this function. First, let ’ s concentrate on the Faculty
form to perform the data insertion into our Faculty table in the database.

 First, let ’ s concentrate on the data validation before the data can be inserted into the
database.

6.2.3 Validate Data Before the Data Insertion

 It is important to validate data before they can be inserted into the database since we
want to make sure that the data inserted into the database are correct. The most popular

c06.indd 421c06.indd 421 4/25/2012 1:57:56 PM4/25/2012 1:57:56 PM

422 Chapter 6 Data Inserting with Visual Basic.NET

validation is to make sure that each datum is not NULL, and it contains a certain value.
Of course, one can insert some NULL values into the database, but here we want to make
sure that each piece of data has a value, either a real value or a NULL value, before they
can be inserted into the database.

 In this application, we try to validate that each piece of faculty information, which is
stored in the associated textbox, is not an empty string unless the user intends to leave it
as an empty datum. In that case, an NULL must be entered. To make this validation
simple, we develop a control collection and add all of those textboxes into this collection.
This way, we don ’ t need to check each textbox, but instead, we can use the For
Each . . . Next loop to scan the whole collection to fi nd the empty textbox.

6.2.3.1 Visual Basic Collection and . NET Framework Collection Classes

 There are two kinds of collection classes available for the Visual Basic.NET applications:
one is Visual Basic collection class, and the other is the .NET Framework collection class.
One of the most important differences between these two collection classes is the starting
value of the index. The index of the Visual Basic collection class is 1 - based, which means
that the index starts from 1. The index value in the .NET Framework collection class is
0 - based, which means that the index starts from 0. The namespace for the Visual Basic
collection class is Microsoft.VisualBasic , and the namespace for the .NET Framework
collection class is System.Collections.Generic . A generic collection is useful when every
item in the collection has the same data type.

 To create a Microsoft Visual Basic collection object newVBCollection , one can use
the following declarations:

Dim newVBCollection As New Microsoft.VisualBasic.Collection()

 or
Dim newVBCollection As New Collection()

 The fi rst declaration uses the full name of the collection class, which means that both
the class name and the namespace are included. The second declaration uses only the
collection class name with the default namespace.

 To create a .NET Framework collection object newNETCollection , the following
declaration can be used:

Dim newNETCollection As New System.Collections.Generic.Dictionary(Of String, String)

 or

Dim newNETCollection As New Dictionary(Of String, String)

 The fi rst declaration uses the full class name and the second one only uses the class
name with the default namespace. Both declarations work well for the Visual Basic.NET
applications. The newly created collection object contains two arguments, the item key
and the item content, and both are in the string format.

 Now, let ’ s begin to develop the codes for this data validation using this collection
component for our application.

6.2.3.2 Validate Data Using the Generic Collection

 First, we need to create the generic collection object for our Faculty form. Since this col-
lection will be used by the different procedures in this form, a form - level or a model - level

c06.indd 422c06.indd 422 4/25/2012 1:57:56 PM4/25/2012 1:57:56 PM

6.2 Insert Data into the SQL Server Database Using a Sample Project InsertWizard 423

object should be created. Open the Code Window of the Faculty form by clicking on the
View Code button from the Solution Explorer window, and enter the codes that are
shown in Figure 6.1 into the form ’ s declaration section.

 The so - called form ’ s declaration section, which is located just under the class header,
is used to create all form - level variables or objects. First, we create a form - level string
variable FacultyName , and this variable will be used to temporarily store the faculty
name entered by the user in the txtName textbox, and this faculty name will be used
later by the Select button event procedure to validate the newly inserted faculty data.
Second, the generic collection object, FacultyCollection , is created with two arguments:
item key and the item content. The code in bold, in which the default namespace is uti-
lized, also works fi ne. Here, we comment it out to illustrate that we prefer to use the full
class name to create this collection object.

 In order to use the collection object to check all textboxes, one needs to add all
textboxes into the collection object after the collection object FacultyCollection is
created by using the Add() method. The following two points should be noted:

1. First, we need to emphasize the order to perform this validation check. As the project starts,
all textboxes are blank. The user needs to enter all pieces of faculty information into the
appropriate textbox. Then, the user clicks on the Insert button to perform this data inser-
tion. The time to add all textboxes into the collection object should be after the user fi nished
entering all pieces of information into all textboxes, not before. Also, each time when you
fi nish data validation by checking all textboxes, all textboxes should be removed from that
collection since the collection only allows those textboxes to be added by one time.

2. Another point to be noted is that in order to simplify this data validation, in this application,
we need all textboxes to be fi lled with certain information or a NULL needs to be entered
if no information will be entered. In other words, we don ’ t allow any textbox to be empty.
The data insertion will not be performed until all textboxes are nonempty in this
application.

 Based on these descriptions, we need to create two user - defi ned subroutines to
perform this adding and removing textboxes from the collection object, respectively.

 Open the graphical user interface window of the Faculty form and then double - click
on the Insert button to open its event procedure. Enter the codes that are shown in Figure
 6.2 into this event procedure.

 Let ’ s take a closer look at this piece of codes to see how it works.

A. First, we need to create an instance of the KeyValuePair structure, and this structure
instance contains two arguments, the Key and the Value, which are related to a collection
component. In B , it can be found that both a key and the content of the associated textbox
are added into the collection FacultyCollection when the user - defi ned subroutine
CreateFacultyCollection() is called. We need both the key and the value of a textbox to

Figure 6.1. The form - level collection object.

Public Class FacultyForm
Private FacultyName As String
'Private FacultyCollection As New Dictionary(Of String, String) 'it works fine
Private FacultyCollection As New System.Collections.Generic.Dictionary(Of String, String)

FacultyForm (Declarations)

c06.indd 423c06.indd 423 4/25/2012 1:57:56 PM4/25/2012 1:57:56 PM

424 Chapter 6 Data Inserting with Visual Basic.NET

validate the data for each textbox, which is to check whether a textbox is empty. The
Value of that textbox is used to identify the emptied textbox and the Key of the textbox
is used to display the emptied textbox.

B. Next, we need to call the subroutine CreateFacultyCollection() to add all textboxes into
the collection FacultyCollection . Refer to Figure 6.3 for the detailed codes for this sub-
routine later.

C. A For Each loop is utilized to scan all textboxes to check and identify if any textbox is
empty from the FacultyCollection . If any textbox is empty by checking its Value,
that textbox will be identifi ed by its Key, and a message box is used to ask users to fi ll
some information into it. Then, the subroutine RemoveFacultyCollection() is called to
remove all textboxes that have been added into the collection in the subroutine
CreateFacultyCollection() since the collection only allows those textboxes to be added
only once. The project will exit if this situation happens. The detailed codes for the user -
 defi ned subroutine RemoveFacultyCollection() are shown in Figure 6.4 .

 Now let ’ s take care of the codes for the subroutine CreateFacultyCollection() , which
are shown in Figure 6.3 .

 The codes are very simple and straightforward. Each textbox is added into the col-
lection by using the Add() method with two parameters: the fi rst one is the so - called Key
parameter represented in a string format, and the second is the content of each textbox,
which is considered as the Value parameter. In this way, each textbox can be identifi ed

Figure 6.2. The codes for the Insert button event procedure.

Private Sub cmdInsert_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdInsert.Click
Dim strCheck As KeyValuePair(Of String, String)

Call CreateFacultyCollection()

For Each strCheck In FacultyCollection

If strCheck.Value = String.Empty Then
MessageBox.Show(strCheck.Key & " is empty, continue?")
RemoveFacultyCollection()
Exit Sub

End If

Next strCheck

End Sub

A

B

C

cmdInsert Click

Figure 6.3. The codes for the subroutine CreateFacultyCollection.

Private Sub CreateFacultyCollection()

FacultyCollection.Add("Faculty ID", txtID.Text)
FacultyCollection.Add("Faculty Name", txtName.Text)
FacultyCollection.Add("Faculty Title", txtTitle.Text)
FacultyCollection.Add("Faculty Office", txtOffice.Text)
FacultyCollection.Add("Faculty Phone", txtPhone.Text)
FacultyCollection.Add("Faculty College", txtCollege.Text)
FacultyCollection.Add("Faculty Email", txtEmail.Text)

End Sub

InsertFacultyForm CreateFacultyCollection

c06.indd 424c06.indd 424 4/25/2012 1:57:56 PM4/25/2012 1:57:56 PM

6.2 Insert Data into the SQL Server Database Using a Sample Project InsertWizard 425

by its Key. Of course, each textbox can also be identifi ed by the index, but remember that
the index starts from 0, not 1 since it is a .NET Framework collection instead of a Visual
Basic collection.

 To remove all textboxes from the collection, another user - defi ned subroutine proce-
dure RemoveFacultyCollection() should be called, and the codes for this subroutine are
shown in Figure 6.4 .

 The Key parameter of each textbox is used as the identifi er for each textbox, and the
Remove() method is called to remove all textboxes from the collection object.

 At this point, we have completed the coding process for the data validation. Next, we
need to handle some initialization coding jobs for the data insertion.

6.2.4 Initialization Coding for the Data Insertion

 In this section, we need to handle the coding for the following event procedure:

 • Coding for the Form_Load event procedure to add two more insertion methods,
TableAdapter.Insert() and TableAdapter.Update() , into the combo box comboMethod
to display two data insertion methods.

 This coding process is for the combo box comboMethod . As the project runs and
the Faculty form window is shown up, two more different methods should be displayed
in this box to allow users to select one to perform the data insertion, either the
TableAdapter DBDirect method, TableAdapter.Insert() , or the TableAdapter.Update()
method. Open the Faculty form and its Form_Load event procedure, and add the codes
that are in bold and shown in Figure 6.5 into this event procedure.

 The codes are straightforward and easy to be understood. Two methods are added
into the combo box by using the Add() method, and the fi rst method is selected as the
default one by setting up the SelectedIndex property to zero.

 Now we need to take care of the coding process for the data insertion. Because
we are using the design tools to perform this job, fi rst, we need to confi gure the
TableAdapter and build the insert query using the TableAdapter Query Confi guration
Wizard.

Figure 6.4. The codes for the subroutine RemoveFacultyCollection.

Private Sub RemoveFacultyCollection()

 FacultyCollection.Remove("Faculty ID")
 FacultyCollection.Remove("Faculty Name")
 FacultyCollection.Remove("Faculty Title")
 FacultyCollection.Remove("Faculty Office")
 FacultyCollection.Remove("Faculty Phone")
 FacultyCollection.Remove("Faculty College")
 FacultyCollection.Remove("Faculty Email")
End Sub

InsertFacultyForm RemoveFacultyCollection

c06.indd 425c06.indd 425 4/25/2012 1:57:56 PM4/25/2012 1:57:56 PM

426 Chapter 6 Data Inserting with Visual Basic.NET

6.2.5 Build the Insert Query

 As we mentioned, two methods will be discussed in this part; one is to insert new records
using the TableAdapter DBDirect method TableAdapter.Insert() to insert data into the
database, and the other one is to use the TableAdapter.Update() method to insert new
records into the database. Let ’ s concentrate on the fi rst method.

6.2.5.1 Confi gure the TableAdapter and Build the Data Inserting Query

 In order to use the TableAdapter.Insert() DBDirect method to access the database, we
need fi rst to confi gure the TableAdapter and build the Insert query. Perform the following
operations to build this data insertion query:

1. Open the Data Source window by going to the Data|Show Data Sources menu item.

2. On the opened window, click on the Edit the DataSet with Designer button that is located
at the second left on the toolbar in the Data Source window to open this Designer.

3. Then right - click on the bottom item from the Faculty table and select the Add Query
item from the pop - up menu to open the TableAdapter Query Confi guration Wizard.

4. Keep the default selection Use SQL statements unchanged and click on the Next button
to go to the next wizard.

5. Select and check the INSERT item from this wizard since we need to perform an inserting
new records query, and then click on the Next button again to continue.

6. Click on the Query Builder button since we want to build our insert query. The opened
Query Builder wizard is shown in Figure 6.6 .

7. The default Insert query statement is matched to our requirement since we want to add a
new faculty record that contains all new information about that inserted faculty, which
includes the faculty_id , faculty_name , offi ce , phone , college , title , and email . Click on
the OK button to go to the next wizard.

8. Click on the Next button to confi rm this query and continue to the next step.

Figure 6.5. The modifi ed codes for the Form_Load event procedure.

Private Sub FacultyForm_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboName.SelectedIndex = 0
ComboMethod.Items.Add("TableAdapter Method")
ComboMethod.Items.Add("LINQ & DataSet Method")
ComboMethod.Items.Add("TableAdapter Insert")
ComboMethod.Items.Add("TableAdapter Update")
ComboMethod.SelectedIndex = 0

End Sub

(FacultyForm Events) Load

c06.indd 426c06.indd 426 4/25/2012 1:57:56 PM4/25/2012 1:57:56 PM

6.2 Insert Data into the SQL Server Database Using a Sample Project InsertWizard 427

9. Modify the query function name from the default one to the InsertFaculty and click on
the Next button to go to the last wizard.

10. Click on the Finish button to complete this query building and close the wizard.

 Immediately, you can fi nd that a new query function has been added into the Faculty
TableAdapter as the last item.

 Now that we have fi nished the confi guration of the TableAdapter and building of the
insert query, it is time for us to develop the codes to run the TableAdapter to complete
this data insertion query. We need to develop the codes for the fi rst method — using the
TableAdapter DBDirect method, TableAdapter.Insert() .

6.2.6 Develop Codes to Insert Data Using
the TableAdapter.Insert Method

 Open the graphical user interface of the Faculty Form by clicking on the View Designer
button from the Solution Explorer window, and then double - click the Insert button to
open its Click event procedure. Then add the codes that are shown in Figure 6.7 into this
event procedure.

 Recall that we have created some codes for this event procedure in Section
 6.2.3.2 to perform the data validation, so the old codes are highlighted with a gray
background.

Figure 6.6. The opened Query Builder wizard.

c06.indd 427c06.indd 427 4/25/2012 1:57:56 PM4/25/2012 1:57:56 PM

428 Chapter 6 Data Inserting with Visual Basic.NET

 Let ’ s have a closer look at this piece of codes to see how it works.

A. First, we need to create a TableAdapter object for the FacultyTableAdapter class since
we need this object to perform inserting data directly into the database. As we know,
all TableAdapters in this application are located at the namespace CSE_
DEPTDataSetTableAdapters , so this namespace must be prefi xed before the desired
TableAdapter class.

B. A local integer variable intInsert is declared here, and it is used to hold the returned value
from execution of the TableAdapter.Insert() method. The value of this returned integer,
which indicates how many records have been successfully inserted or affected to the data-
base, can be used to determine whether this data insertion is successful or not. A returned
value of zero means that no record has been added or affected to the database; in other
words, this insertion has failed.

C. The form - level variable FacultyName is used to temporarily hold the faculty name entered
by the user from the textbox txtName since we need this name to validate this insertion
later.

D. If the user selected the TableAdapter Insert method to perform this data insertion, the
query function InsertFaculty() , which we built in the last section by using the TableAdapter
Query Confi guration Wizard, will be called to complete this data insertion job. Seven pieces

Figure 6.7. The modifi ed codes for the Insert button event procedure.

Private Sub cmdInsert_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdInsert.Click

Dim FacultyTableApt As New CSE_DEPTDataSetTableAdapters.FacultyTableAdapter
Dim strCheck As KeyValuePair(Of String, String)
Dim intInsert As Integer

Call CreateFacultyCollection()

For Each strCheck In FacultyCollection
If strCheck.Value = String.Empty Then

MessageBox.Show(strCheck.Key & " is empty, continue?")
RemoveFacultyCollection()
Exit Sub

End If
Next strCheck

If chkPhoto.Checked = True And (txtPhotoName.Text = "" Or txtPhotoLocation.Text = "") Then
MessageBox.Show("Photo Name/Photo Location is empty")

End If

FacultyName = txtName.Text 'reserve the faculty name for validation

If comboMethod.Text = "TableAdapter Insert" Then
intInsert = FacultyTableApt.InsertFaculty(txtID.Text, txtName.Text, txtOffice.Text, _

txtPhone.Text, txtCollege.Text, txtTitle.Text, txtEmail.Text)
Else

'coding to use the TableAdapter.Update() method later.....
End If
If intInsert = 0 Then

MessageBox.Show("The data insertion is failed")
cmdInsert.Enabled = True ‘insert is failed, enable the Insert button
Exit Sub

End If
ComboName.Items.Add(FacultyName) 'add the faculty name into the comboName for validation
cmdInsert.Enabled = False 'disable the Insert button, the same data can only be inserted by 1 time

End Sub

A

B

C

D

E

F

G
H

cmdInsert Click

c06.indd 428c06.indd 428 4/25/2012 1:57:56 PM4/25/2012 1:57:56 PM

6.2 Insert Data into the SQL Server Database Using a Sample Project InsertWizard 429

of new information, which is about the newly inserted faculty and entered by the user into
seven textboxes, will be inserted to the Faculty table in the database.

E. If the user selected the TableAdapter.Update() method to perform this data insertion,
the data insertion should be performed by calling that method. The coding for this method
will be discussed in the next section.

F. If this data insertion is successful, the returned integer will refl ect the number of records
that have been inserted into the database correctly. As we mentioned in B , a returned value
of zero indicates that this insertion is failed. A message box will be displayed with a warning
message, and the program will be exited. One point we need to emphasize is that when
performing a data insertion, the same data can only be inserted into the database by one
time, and the database does not allow multiple insertions of the same data item. To avoid
multiple insertions, in this application (generally in most popular applications), we will
disable the Insert button after one record is inserted successfully (refer to step H below).
If the insertion has failed, we need to recover or reenable the Insert button to allow the
user to try another insertion later.

 Most databases, including Microsoft Access, SQL Server, and Oracle, do not allow mul-
tiple data insertions of the same data item into the databases. Each data item or record can
only be added or inserted into the database only once. In other words, no duplicated record
can be added or can exist in the database. Each record in the database must be unique. The
popular way to avoid this situation from happening is to disable the Insert button after one
insertion is done.

G. As we mentioned before, when we perform the data validation to validate this data inser-
tion, an SELECT statement will be executed to retrieve the newly inserted record from
the database. The faculty name will work as the dynamic parameter for the WHERE clause
in that SELECT statement, so we need to add this faculty name into the combo box com-
boName for the validation to be performed later.

H. As we mentioned in E , the database does not allow the multiple insertions of the same
data item into the database. So after the data insertion is successful, we need to disable
the Insert button to protect it from being clicked again.

 From the above explanations, we know that it is a good way to avoid the multiple
insertions of the same data item into the database by disabling the Insert button after
that insertion has been successfully completed. A question arises: When and how can this
button be enabled again to allow us to insert new, different records if we want to do that
later? The solution to this question is to develop another event procedure to handle this
issue. Try to think about it, the time when we want to insert a new, different data item
into the database; fi rst, we must enter each piece of new information into each associated
textbox, such as txtID , txtName , txtOffi ce , txtPhone , txtTitle , txtCollege , and txtEmail .
In other words, any time as long as the content of a textbox is changed, which means that
a new, different record will be inserted, we should enable the Insert button at that
moment to allow users to perform this new insertion. Visual Basic.NET did provide an
event called TextChanged and an associated event procedure for the textbox control.
So we need to use this event procedure to enable the Insert button as long as a

c06.indd 429c06.indd 429 4/25/2012 1:57:56 PM4/25/2012 1:57:56 PM

430 Chapter 6 Data Inserting with Visual Basic.NET

TextChanged event occurs. Another question arises: with which textbox ’ s TextChanged
event occurring, we should trigger the associated event procedure to enable the Insert
button to allow users to insert a new record? Is any textbox ’ s TextChanged event? To
answer these questions, we need to review the data issue in the database. As you know,
in our sampling database CSE_DEPT (i.e., in our Faculty data table), it identifi es a record
based on its primary key. In other words, only those records with different primary keys
can be considered as different records. So the solution to our questions is: only the content
of the textbox that stores the primary key — in our case, it is the txtID that equals to the
faculty_id — is changed; it means that a new record will be inserted, and as this happened,
that textbox ’ s TextChanged event procedure should be triggered to enable the Insert
button.

 To open the TextChanged event procedure for the textbox txtID , open the graphical
user interface of the Faculty form window by clicking on the View Designer button from
the Solution Explorer window, and then double - click on the Faculty ID textbox to open
its TextChanged event procedure. Change the event procedure ’ s name from the txtID_
TextChanged to FacultyInfoChanged and enter the codes shown in Figure 6.8 into this
event procedure.

 The codes for this event procedure are simple: enable the Insert button by setting
the Enabled property of that button to True as the txtID TextChanged event occurs.

 Now that we have fi nished the codes for the fi rst data insertion method, let ’ s continue
to do our coding process for the second method.

6.2.7 Develop Codes to Insert Data Using
the TableAdapter.Update Method

 When a data - driven application uses DataSet to store data, as we did for this application
by using the CSE_DEPTDataSet , one can use the TableAdapter.Update() method to
insert or add a new record into the database.

 To insert a new record into the database using this method, two steps are needed:

1. First, add new records to the desired data table in the DataSet. For example, in this applica-
tion, the Faculty table in the DataSet CSE_DEPTDataSet .

2. Then call the TableAdapter.Update() method to update new added records from the data
table in the DataSet to the data table in the database. The amount of data to be updated
can be controlled by passing the different argument in the Update() method, either an entire
DataSet, a DataTable, an array of DataRow, or a single DataRow.

Figure 6.8. The codes for the txtID TextChanged event procedure.

Private Sub FacultyInfoChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles _
txtID.TextChanged

cmdInsert.Enabled = True

End Sub

txtID TextChanged

c06.indd 430c06.indd 430 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

6.2 Insert Data into the SQL Server Database Using a Sample Project InsertWizard 431

 Now let ’ s develop our codes based on the above two steps to insert data using this
method.

 Open the graphical user interface of the Faculty form window and double - click on
the Insert button to open its event procedure. We have already developed most codes for
this procedure in the last section, and now we need to add the codes to perform the second
data insertion method. Browse to the Else block (step E in Figure 6.7), and enter the
codes that are shown in Figure 6.9 into this block.

 In order to distinguish between the newly added codes and the old codes that have
been developed before, all old codes are highlighted with a gray background.

 Let ’ s take a closer look at this piece of newly inserted codes to see how it works.

A. First, we need to declare a new object of the DataRow class. Each DataRow object can be
mapped to a real row in a data table. Since we are using the DataSet to manage all data
tables in this project, the DataSet must be prefi xed before the DataRow object. Also, as
we need to create a row in the Faculty data table, the FacultyRow is selected as the
DataRow class.

Figure 6.9. The codes for the second data insertion method.

Private Sub cmdInsert_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdInsert.Click

Dim FacultyTableApt As New CSE_DEPTDataSetTableAdapters.FacultyTableAdapter
Dim newFacultyRow As CSE_DEPTDataSet.FacultyRow
Dim strCheck As KeyValuePair(Of String, String)
Dim intInsert As Integer

Call CreateFacultyCollection()

For Each strCheck In FacultyCollection
If strCheck.Value = String.Empty Then

MessageBox.Show(strCheck.Key & " is empty, continue?")
RemoveFacultyCollection()
Exit Sub

End If
Next strCheck

If chkPhoto.Checked = True And (txtPhotoName.Text = "" Or txtPhotoLocation.Text = "") Then
MessageBox.Show("Photo Name/Photo Location is empty")

End If

FacultyName = txtName.Text 'reserve the faculty name for validation

If comboMethod.Text = "TableAdapter Insert" Then
intInsert = FacultyTableApt.InsertFaculty(txtID.Text, txtName.Text, txtOffice.Text, _

txtPhone.Text, txtCollege.Text, txtTitle.Text, txtEmail.Text)
Else

newFacultyRow = Me.CSE_DEPTDataSet.Faculty.NewFacultyRow()
newFacultyRow = InsertFacultyRow(newFacultyRow)
CSE_DEPTDataSet.Faculty.Rows.Add(newFacultyRow)
intInsert = FacultyTableApt.Update(CSE_DEPTDataSet.Faculty)

End If
If intInsert = 0 Then

MessageBox.Show("The data insertion is failed")
cmdInsert.Enabled = True ‘insert is failed, enable the Insert button
Exit Sub

End If
cmdCancel.PerformClick() 'clean up all faculty information
txtName.Text = FacultyName 'recover the faculty name
cmdInsert.Enabled = False 'disable the Insert button, the same data can only be inserted by 1 time

End Sub

A

B
C
D
E

cmdInsert Click

c06.indd 431c06.indd 431 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

432 Chapter 6 Data Inserting with Visual Basic.NET

B. Next, we need to create a new object of the NewFacultyRow class.

C. A user - defi ned function InsertFacultyRow() is called to add all pieces of information
about the newly inserted faculty, which is stored in seven textboxes, into this newly created
DataRow object. The detailed codes and the function of this user - defi ned function will be
explained below. This function returns a completed DataRow in which all pieces of infor-
mation about the new record has been added.

D. The completed DataRow is added into the Faculty table in our DataSet object. One point
to be noted is that adding a new record into the data table in the DataSet has nothing to
do with adding a new record into the data table in the database. The data tables in the
DataSet are only mappings of those real data tables in the database. To add this new record
into the database, one needs to perform the next step.

E. The TableAdapter ’ s method Update() is executed to add this new record into the real
database. As we mentioned before, you can control the amount of data to be added into
the database by passing the different arguments. Here, we only want to add one new record
into the Faculty table, so a data table is passed as the argument. This Update() method
supposes to return an integer value to indicate whether this update is successful or not.
The value of this returned integer is equal to the number of rows that have been success-
fully inserted into the database. A returned value of zero means that this update has failed,
since no new row has been added into the database.

 Now, let ’ s develop the codes for the user - defi ned function InsertFacultyRow() . Open
the code window and enter the codes that are shown in Figure 6.10 into this function.

 Let ’ s have a closer look at this piece of codes to see how this function works.

A. In Visual Basic.NET, unlike C/C ++ or Java, the subroutines and functions are different. A
procedure that returns data is called a function, but a procedure that does not return any
data is called a subroutine. The function InsertFacultyRow() needs to return a completed
DataRow object, and the returned data type is indicated at the end of the function header
after the keyword As . The argument is also a DataRow object, but it is a newly created
blank DataRow object. The data type of the argument is very important. Here, we used a
reference mode for this argument. The advantage of using this mode is that the passed
variable is an address of the DataRow object. Any modifi cation to this object, such as
adding new elements to this DataRow, is permanent, and the modifi ed object can be com-
pletely returned to the calling procedure.

Figure 6.10. The codes for the user - defi ned function InsertFacultyRow.

Private Function InsertFacultyRow(ByRef facultyRow As CSE_DEPTDataSet.FacultyRow) As _
CSE_DEPTDataSet.FacultyRow

facultyRow.faculty_id = txtID.Text
facultyRow.faculty_name = txtName.Text
facultyRow.office = txtOffice.Text
facultyRow.phone = txtPhone.Text
facultyRow.college = txtCollege.Text
facultyRow.title = txtTitle.Text
facultyRow.email = txtEmail.Text
Return facultyRow

End Function

A

B

C

FacultyForm InsertFacultyRow

c06.indd 432c06.indd 432 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

6.2 Insert Data into the SQL Server Database Using a Sample Project InsertWizard 433

B. Seven pieces of new information stored in the associated textboxes are added into this new
DataRow object, that is, added into a new row of the faculty table in the DataSet.

C. Finally, this completed DataRow object is returned to the calling procedure. Another
advantage of using this reference mode is that we do not need to create another local
variable as the returned variable; instead, we can directly use this passed argument as the
returned data.

 At this point, we have completed the coding process for our data insertion by using
two methods. Before we can run the project to test the function of the codes we devel-
oped, we need to fi nd a way to confi rm this data insertion. To confi rm this data insertion,
we can use the Select button Click event procedure to do this job. However, we need to
do some modifi cations to the codes inside the Select button Click event procedure, since
we may insert a new photo for the inserted faculty member.

 Open the Select button Click event procedure and modify the codes just below the
function FindName() , as shown in Figure 6.11 . The modifi ed codes have been highlighted
in bold.

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. If no matched faculty image can be found, there are two possibilities: (1) no matched
faculty image fi le or no inserted faculty image exist, or (2) the image is a new faculty image
to be inserted, and its name is located at the Faculty Image textbox. If the fi rst situation
happened, a default faculty image fi le is assigned and used.

B. If the second case occurred, the image fi le name stored in the Faculty Image textbox,
txtImage , is assigned and used.

Figure 6.11. The modifi ed codes for the Select button Click event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim FacultyTableApt As New CSE_DEPTDataSetTableAdapters.FacultyTableAdapter
Dim strName As String

strName = FindName(ComboName.Text)
If strName = "No Match" Then

If txtImage.Text = "" Then
strName = "Default.jpg"

Else
strName = txtImage.Text

End If
End If

PhotoBox.SizeMode = PictureBoxSizeMode.StretchImage
PhotoBox.Image = System.Drawing.Image.FromFile(strName)

If ComboMethod.Text = "LINQ & DataSet Method" Then
LINQtoDataSet()

Else
FacultyTableApt.ClearBeforeFill = True
FacultyTableApt.FillByFacultyName(CSE_DEPTDataSet.Faculty, ComboName.Text)

If CSE_DEPTDataSet.Faculty.Count = 0 Then
MessageBox.Show("No matched faculty found!")
Exit Sub

End If
End If

End Sub

A

B

cmdSelect Click

c06.indd 433c06.indd 433 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

434 Chapter 6 Data Inserting with Visual Basic.NET

 Now let ’ s test our codes by running our project. You have two ways to test the project.
One way is to run the project in a formal way, which means that you run the project
starting from the LogIn form, Selection form. and then the Faculty form. The second way,
which is more fl exible, is to directly starting from the Faculty form.

 To run the project in the second way, one must confi rm that the Startup form in the
Project Properties window is the Faculty form window. To do that, go to the
Project|InsertWizard Properties menu item to open the Project property window. Keep
the default tab Application selected, and make sure that the content of the Startup form
box is the FacultyForm . Of course, if you want to run the project in the fi rst way, you
need to confi rm that the Startup form is the LogInForm .

 Now you can run the project in either way. We prefer to run it in the fi rst way. Make
sure that the Startup form is LogInForm , and then click on the Start Debugging button
to run the project. Enter the correct username and password to the LogIn form, and select
the Faculty Information from the Selection form window to open the Faculty form.

 First, we want to test the fi rst method, TableAdapter.Insert() , to add a new faculty
record into the database, so select this method from the combo box. Enter seven pieces
of new information for this newly inserted faculty member into the associated textbox,
as shown in Figure 6.12 .

Figure 6.12. The running status of inserting a new faculty.

 Faculty ID: A56789

 Name: Williams Tom

 Title: Associate Professor

 Offi ce: MTC-222

 Phone: 750-330-1660

 College: University of Miami

 Email: wtom@college.edu

c06.indd 434c06.indd 434 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

6.2 Insert Data into the SQL Server Database Using a Sample Project InsertWizard 435

 After all pieces of new information have been entered into all associated textboxes,
click on the Insert button to execute this data insertion using the fi rst method. If this
insertion is successful, there will be no message box with a warning message to be dis-
played, and the Insert button is disabled to avoid the same data to be added into the
database more than one time.

 Now let ’ s confi rm this data insertion by retrieving this inserted faculty from our
database using the Select button Click event procedure. Go to the Faculty Name combo
box and scroll down this box, and you can fi nd that the newly inserted faculty member
Williams Tom has been added into this box. Select this member and click on the Select
button. All inserted seven pieces of information related to this faculty member Williams
Tom are retrieved and displayed in seven textboxes, as shown in Figure 6.13 . A default
faculty image is used since we did not enter any image name into the Faculty Image
textbox.

 Click on the Back and the Exit buttons to terminate the project.
 You can try to use the second method, TableAdapter.Update() , to insert a new

faculty record into our sample database.
 Next, we want to discuss how to insert a new record using the stored procedure.

6.2.8 Insert Data into the Database
Using the Stored Procedures

 In this section, we want to discuss how to insert new records into the database using the
stored procedures. To make it simple, we will use the Course Form window to discuss how
to insert a new course record into the Course table in the database using the stored pro-
cedure. To do that, fi rst, we need to create a stored procedure named InsertCourseSP
under the Course table using the TableAdapter Query Confi guration Wizard, and then
we need to modify the codes for the Form_Load event procedure of the Course Form

Figure 6.13. The confi rmation result of the newly inserted faculty member.

c06.indd 435c06.indd 435 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

436 Chapter 6 Data Inserting with Visual Basic.NET

and develop the codes for the Insert button ’ s Click event procedure. The code modifi ca-
tions and code developments include:

1. Add one more item Stored Procedure Insert into the combo box ComboMethod in the
Form_Load event procedure to allow users to select this method to perform the data inser-
tion using this method.

2. Add one If block in the Insert button Click event procedure to allow users to select the
method, Stored Procedure Insert , to perform the data insertion.

3. Add the associated codes in the If block in the Insert button Click event procedure to call
the built stored procedure to perform the data insertion.

 Let ’ s fi rst to create a stored procedure under the Course table using the TableAdapter
Query Confi guration Wizard.

6.2.8.1 Create the Stored Procedure Using the TableAdapter Query

Confi guration Wizard

 Perform the following operations to create this stored procedure:

1. Open the Data Source window by clicking on the Data|Show Data Sources menu item,
and then right - click on any location inside the Data Source window and select the Edit the
DataSet with Designer item from the popup menu to open this wizard.

2. Right - click on the last item from the Course table and select the Add|Query item from the
pop - up menu to open the TableAdapter Query Confi guration Wizard.

3. Check the Create new stored procedure radio button since we want to create a new stored
procedure to do the data insertion. Then click on the Next button to go to the next wizard.

4. Check the INSERT radio button and click on the Next button to continue.

5. Click on the Query Builder button on the opened wizard since we need to build a new
query. The Query Builder wizard is opened and shown in Figure 6.14 .

 Make sure that the order of the inserted columns in the INSERT INTO statement is
identical with the order shown in Figure 6.14 , since this order is very important and it
must be identical with the order of the columns in the query stored procedure that will
be called from the Insert button ’ s Click event procedure later. Click on the OK button
to go to the next wizard to confi rm our built query function, which is shown in Figure
 6.15 .

 Since we only need to insert a record into the database, highlight the second SELECT
statement and delete it by pressing the Delete key from your keyboard. Click on the Next
button again, and enter InsertCourseSP as the name of this query ’ s stored procedure
into the name box. Click on the Next and the Finish buttons to close this process.

6.2.8.2 Modify the Codes to Perform the Data Insertion

Using the Stored Procedure

 The fi rst modifi cation is to add one more item Stored Procedure Insert into the combo
box ComboMethod in the Form_Load event procedure to allow users to select it to
perform the data insertion. Open the Form_Load event procedure by fi rst selecting the
item (CourseForm Events) from the Class Name combo box, and then selecting the item

c06.indd 436c06.indd 436 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

6.2 Insert Data into the SQL Server Database Using a Sample Project InsertWizard 437

Load from the Method Name combo box in the code window of the Course Form window.
Add one more line of the code, which is highlighted in bold and shown in Figure 6.16 ,
into this event procedure. The codes we developed before are highlighted with a gray
background.

 Now, let ’ s perform the second and the third code developments and modifi cations.
Both code developments and modifi cations are performed inside the Insert button ’ s Click
event procedure. Open the Insert button ’ s Click event procedure and enter the codes
that are shown in Figure 6.17 into this event procedure.

 To make this piece of codes simple, we did not develop any code to perform the
checking or validation of input data before the data insertion. In fact, this checking and
validation is necessary in most actual applications. We leave this coding process as a
homework to the readers, and one can refer to Section 6.2.3 to build this data validation
function.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Some data action components, such as TableAdapters and local variables used for this
procedure, are declared and created fi rst. The string variable strFacultyID is used to store
the queried faculty_id from the execution of the fi rst query, and the integer variable intIn-
sert is used to hold and check the running result of the data insertion operation.

B. Since there is no faculty_name column available in the Course table, and the only avail-
able column in that table is the faculty_id , therefore, two queries are needed for inserting
a new course record into the Course table: (1) query to the Faculty table to get the matched
faculty_id based on the faculty name selected by the user, and (2) query to the Course

Figure 6.14. The opened Query Builder wizard.

c06.indd 437c06.indd 437 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

438 Chapter 6 Data Inserting with Visual Basic.NET

Figure 6.16. The code modifi cation to the Form_Load event procedure.

Private Sub CourseForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboName.SelectedIndex = 0
ComboMethod.Items.Add("TableAdapter Method")
ComboMethod.Items.Add("LINQ & DataSet Method")
ComboMethod.Items.Add("Stored Procedure Insert")
ComboMethod.SelectedIndex = 0

End Sub

(CourseForm Events) Load

Figure 6.15. The confi rmation wizard.

c06.indd 438c06.indd 438 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

6.2 Insert Data into the SQL Server Database Using a Sample Project InsertWizard 439

table to insert a new course based on the faculty_id obtained from the fi rst query. Prior
to performing the fi rst query, the Faculty TableAdapter is cleaned up fi rst.

C. The fi rst query is executed by calling the query function FindFacultyIDByName() we built
in Section 5.14.1 in Chapter 5 to get the matched faculty_id based on the faculty name
selected by the user from the ComboName box.

D. If the user selected the Stored Procedure Insert method to perform this course data
insertion, the stored procedure InsertCourseSP() we built in the last section is called to
perform this new course record insertion operation. One point to be noted is that the order
of the inserting columns in this calling stored procedure must be identical with that order
in the stored procedure we built in the last section. Otherwise, you may encounter a mis-
matching error during the project runs.

E. By checking the returned value that stored in the local integer variable intInsert , we can
determine whether this data insertion is successful or not. If this stored procedure returns
a zero, which means that no any record has been inserted into the Course table, a warning
message is displayed to indicate this situation, and the project is exited.

F. Otherwise, the data insertion is successful. A user - defi ned subroutine procedure
CleanInsert() is executed to clean up all six pieces of new course information from six
textboxes in this form window.

G. To avoid multiple insertions for the same record, the Insert button is disabled after this
successful data insertion.

 The detailed codes for the user - defi ned subroutine CleanInsert() is shown in Figure
 6.18 . The codes are used to clean up all six textboxes in the Course Form window.

 From the codes shown in Figure 6.17 , it can be found that there is no difference
between calling a query function and calling a stored procedure to perform this data
insertion. Yes, that is true for this data action. Because the stored procedure is exactly
a function or a collection of functions to perform some special functionality or

Figure 6.17. The code developments for the Insert button ’ s Click event procedure.

Private Sub cmdInsert_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdInsert.Click

Dim FacultyTableApt As New CSE_DEPTDataSetTableAdapters.FacultyTableAdapter
Dim CourseTableApt As New CSE_DEPTDataSetTableAdapters.CourseTableAdapter
Dim strFacultyID As String
Dim intInsert As Integer

FacultyTableApt.ClearBeforeFill = True
strFacultyID = FacultyTableApt.FindFacultyIDByName(ComboName.Text)

If ComboMethod.Text = "Stored Procedure Insert" Then
intInsert = CourseTableApt.InsertCourseSP(txtID.Text, txtCourse.Text, _
txtCredits.Text, txtClassRoom.Text, txtSchedule.Text, txtEnroll.Text, strFacultyID)

End If

If intInsert = 0 Then
MessageBox.Show("The data insertion is failed")
cmdInsert.Enabled = True
Exit Sub

End If

Call CleanInsert() 'clean up all course information
cmdInsert.Enabled = False 'disable the Insert button

End Sub

A

B
C
D

E

F
G

cmdInsert Click

c06.indd 439c06.indd 439 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

440 Chapter 6 Data Inserting with Visual Basic.NET

functionalities. One point we need to note is that by using the TableAdapter Query
Confi guration Wizard, we cannot create a stored procedure that can perform multiple
data actions to the multiple different data tables since each TableAdapter can only access
the associated data table. However, by using the runtime object method to insert data
into the database, which we will discuss in Part II , one stored procedure can access mul-
tiple different data tables and fulfi ll multiple different data manipulation operations.

 At this point, we have fi nished developing our sample project to insert data into the
SQL Server database. Now we can run our project to test inserting new course records
using the stored procedure method. Click on the Start Debugging button to run the
project. Complete the login process and select the Course Information from the Selection
Form to open the Course Form window.

 Keep the default faculty member Ying Bai in the Faculty Name combo box unchanged,
and select the Stored Procedure Insert method from the Query Method combo box.
Then enter the following six pieces of new course information into the associated textbox:

Figure 6.18. The codes for the subroutine CleanInsert().

Private Sub CleanInsert()

txtID.Text = String.Empty
txtCourse.Text = String.Empty
txtSchedule.Text = String.Empty
txtClassRoom.Text = String.Empty
txtCredits.Text = String.Empty
txtEnroll.Text = String.Empty

End Sub

CourseForm CleanInsert

 • Course ID: CSE-566

 • Course: Introduction to Fuzzy Logic

 • Schedule: TH: 1:30 –2:45 PM

 • Classroom: TC-309

 • Credits: 3

 • Enrollment: 20

 Click on the Insert button to try to insert this new course into the Course table in
our sample database. Immediately, you can fi nd that all six textboxes are cleaned up after
this data insertion and the Insert button is disabled.

 To confi rm and validate this data insertion, just keep the default faculty member Ying
Bai selected from the Faculty Name box, and click on the Select button to try to retrieve
all courses taught by this faculty. You can fi nd that the newly inserted course CSE-566
has been added into the CourseList box. To get the details of that course, just click on
that course_id (CSE-566) from the CourseList box, and you can fi nd the detailed infor-
mation for that course is displayed in six textboxes, as shown in Figure 6.19 .

 Click on the Back and Exit buttons to terminate our project.
 A completed project InsertWizard can be found in a folder DBProjects\Chapter 6

that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

c06.indd 440c06.indd 440 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

6.3 Insert Data into the Oracle Database Using a Sample Project InsertWizardOracle 441

 Next, we will discuss how to insert data into the Oracle database using the Visual
Studio.NET design tools and wizards.

6.3 INSERT DATA INTO THE ORACLE DATABASE USING
A SAMPLE PROJECT INSERTWIZARDORACLE

 Because of the similarity between the SQL Server database and the Oracle database, all
of codes we developed in the last section can be used to access the Oracle database to
perform data insertion functionality. The only difference between these two databases is
the connection string when the Oracle database is connected to the Visual Basic.NET
applications. In order to save the space and the time, we will not duplicate those codes
in this section. Refer to Section 5.16.3 in Chapter 5 for more detailed information in how
to add and connect the Oracle database with your Visual Basic.NET applications using
the Design Tools and Wizards. Refer to Appendix C to get a clear picture in how to use
the sample Oracle 11g XE database CSE_DEPT. As long as this connection is set up, all
coding jobs are identical with those we did for the SQL Server database in the last section,
and you can directly use those codes to access the Oracle database to perform the differ-
ent data actions.

 A simple way to do this job is to copy a project SelectWizardOracle we built in
Chapter 5 and paste it into our new folder Chapter 6 . Refer to Section 6.2.1 to change
this project ’ s name from SelectWizardOracle to InsertWizardOracle .

 You need to consider and perform the following modifi cations to make this project
works:

1. Modify the codes inside the Select button Click event procedure in the Faculty Form
window. Refer to steps A and B in Figure 6.11 in Section 6.2.7 to complete this
modifi cation.

Figure 6.19. The running result of calling the stored procedure.

c06.indd 441c06.indd 441 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

442 Chapter 6 Data Inserting with Visual Basic.NET

2. Refer to Section 6.2.8.2 to complete the following developments:
 • Add one more item Stored Procedure Insert into the combo box ComboMethod in

the Form_Load event procedure in the Course Form window.
 • Develop the codes for the Insert button Click event procedure in the Course Form

window.
 • Build the codes for the user - defi ned subroutine procedure CleanInsert() .
 • Add cmdInsert.Enabled=True into the Course ID TextChanged() event procedure.

3. Build the Oracle 11g XE stored procedure InsertCourseSP() for the Course Form. One
point is that after you created this Oracle stored procedure, you need to add it into our
project InsertWizardOracle using the DataSet Confi guration Wizard. Refer to Appendix
E for this addition operation.

 A complete data insertion project named OracleInsertWizard can be found
in a folder DBProjects\Chapter 6 located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1).

PART II DATA INSERTION WITH RUNTIME OBJECTS

 Inserting data into the database using the runtime objects method is a fl exible and profes-
sional way to perform the data insertion job in Visual Basic.NET environment. Compared
with the method we discussed in Part I , in which Visual Studio.NET design tools and
wizards are utilized to insert data into the database, the runtime objects method provides
more sophisticated techniques to do this job effi ciently and conveniently even if a more
complicated coding job is needed. Relatively speaking, the methods we discussed in the
fi rst part are easy to learn and code, but some limitations exist for those methods. First,
each TableAdapter can only access the associated data table to perform data actions such
as Inserting Data to that table only. Second, each query function built by using the
TableAdapter Query Confi guration Wizard can only perform a single query such as Data
Insertion. Third, after the query function is built, no modifi cations can be made to that
function dynamically, which means that the only times that you can modify that query
function is either before the project runs or after the project runs. In other words, you
cannot modify that query function during the project runs.

 To overcome those shortcomings, we will discuss how to insert data using the runtime
object method in this part. Three sections are covered in this part: inserting data using
the general runtime object method is discussed fi rst. Inserting data into the database using
the LINQ to DataSet and LINQ to SQL queries is introduced in the second section.
Inserting data using the stored procedures is presented in the third section.

 Generally, you need to use the TableAdapter to perform data actions again the data-
base if you developed your applications using the Visual Studio.NET design tools and
wizards in the design time. However, you should use the DataAdapter to make those data
manipulations if you developed your projects using the runtime objects method.

6.4 THE GENERAL RUNTIME OBJECTS METHOD

 We have provided a very detailed introduction and discussion about the runtime objects
method in Section 5.17 in chapter 5 . Refer to that section for more detailed information

c06.indd 442c06.indd 442 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

6.4 The General Runtime Objects Method 443

about this method. For your convenience, we highlight some important points and general
methodology of this method, as well as some keynotes in using this method to perform
the data actions again the databases.

 As you know, ADO.NET provides different classes to help users to develop profes-
sional data - driven applications by using different methods to perform specifi c data actions,
such as inserting data, updating data, and deleting data. For the data insertion, two
popular methods are widely applied:

1. Add new records into the desired data table in the DataSet, and then call the DataAdapter.
Update() method to update the new added records from the table in the DataSet to the
table in the database.

2. Build the insert command using the Command object, and then call the command ’ s method
ExecuteNonQuery() to insert new records into the database. Or you can assign the built
command object to the InsertCommand property of the DataAdapter and call the
ExecuteNonQuery() method from the InsertCommand property.

 The fi rst method is to use the so - called DataSet - DataAdapter method to build a
data - driven application. DataSet and DataTable classes can have different roles when
they are implemented in a real application. Multiple DataTables can be embedded into
a DataSet, and each table can be fi lled, inserted, updated, and deleted by using the dif-
ferent properties of a DataAdapter, such as the SelectCommand, InsertCommand,
UpdateCommand, or DeleteCommand when the DataAdapter ’ s Update() method is
executed. The DataAdapter will perform the associated operations based on the modifi ca-
tions you made for each table in the DataSet. For example, if you add new rows into a
table in the DataSet, and then you call this DataAdapter ’ s Update() method. This method
will perform an InsertCommand based on your modifi cations. The DeleteCommand will
be executed if you delete rows from the table in the DataSet and call this Update()
method. This method is relative simple since you do not need to call some specifi c
methods, such as the ExecuteNonQuery to complete these data queries. But this simplic-
ity brings some limitations for your applications. For instance, you cannot access different
data tables individually to perform multiple specifi c data operations. This method is very
similar to the second method we discussed in Part I , so we will not continue to provide
any discussion for this method in this part.

 The second method allows you to use each object individually, which means that you
do not have to use the DataAdapter to access the Command object, or use the DataTable
with DataSet together. This provides more fl exibility. In this method, no DataAdapter or
DataSet is needed, and you only need to create a new Command object with a new
Connection object, and then build a query statement and attach some useful parameter
into that query for the newly created Command object. You can insert data into any data
table by calling the ExecuteNonQuery() method that belongs to the Command class. We
will concentrate on this method in this part.

 In this section, we provide three sample projects named SQLInsertRTObject ,
AccInsertRTObject , and OracleInsertRTObject to illustrate how to insert new records
into three different databases using the runtime object method. Because of the coding
similarity between these three databases, we will concentrate on inserting data to the SQL
Server database using the SQLInsertRTObject project fi rst, and then illustrate the coding
differences between these databases by using the real codes for the rest of two sample
projects.

c06.indd 443c06.indd 443 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

444 Chapter 6 Data Inserting with Visual Basic.NET

 Now let ’ s fi rst develop the sample project SQLInsertRTObject to insert data into the
SQL Server database using the runtime object method. Recall that in Sections 5.18.3 –
 5.18.5 in Chapter 5 , we discussed how to select data for the Faculty, Course, and Student
Form windows using the runtime object method. For the Faculty Form, a regular runtime
selecting query is performed, and for the Course Form, a runtime joined - table selecting
query is developed. For the Student table, the stored procedures are used to perform the
runtime data query.

 We will concentrate on inserting data to the Faculty table from the Faculty Form
window using the runtime object method in this part.

 In order to avoid the duplication on the coding process, we will modify an existing
project named SQLSelectRTObject we developed in Chapter 5 to create our new project
SQLInsertRTObject used in this section.

6.5 INSERT DATA INTO THE SQL SERVER DATABASE USING
THE RUNTIME OBJECT METHOD

 Open the Windows Explorer and create a new folder such as Chapter 6 , and then browse
to the folder DBProjects\Chapter 5 that is located at the Wiley ftp site (refer to Figure
 1.2 in Chapter 1). Copy the project SQLSelectRTObject to the new folder, such as C:\
Chapter 6 . Change the name of the project folder from SQLSelectRTObject to
SQLInsertRTObject , and change the name of the project SQLSelectRTObject.vbproj
to SQLInsertRTObject.vbproj . Then double - click on the SQLInsertRTObject.vbproj to
open this project. On the opened project, perform the following modifi cations to get our
desired project:

 • Go to Project|SQLInsertRTObject Properties menu item to open the project ’ s property
window. Change the Assembly name and the Root namespace from SQLSelectRTObject
to SQLInsertRTObject , respectively.

 • Click on the Assembly Information button to open the Assembly Information wizard.
Change the Title and the Product to SQLInsertRTObject . Click on the OK button to close
this wizard.

 Go to File|Save All and Build|Rebuild SQLInsertRTObject to save those modifi ca-
tions and rebuild the project. Now we are ready to develop our graphic user interfaces
based on our new project SQLInsertRTObject .

6.5.1 Insert Data into the Faculty Table
for the SQL Server Database

 Let ’ s fi rst discuss inserting data into the Faculty table for the SQL Server database. To
insert data into the Faculty data table, we can use the Faculty Form window we built in
the last section.

6.5.1.1 Develop the Codes to Insert Data into the Faculty Table

 The codes for this data insertion are divided into three steps the data validation before
the data insertion, the data insertion using the runtime object method, and the data vali-

c06.indd 444c06.indd 444 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

6.5 Insert Data into the SQL Server Database Using the Runtime Object Method 445

dation after the data insertion. The purpose of the fi rst step is to confi rm that all inserted
data stored in each associated textbox should be complete and valid. In other words, all
textboxes should be nonempty. The third step is used to confi rm that the data insertion
is successful; in other words, the newly inserted data should be in the desired table in the
database and can be read back and displayed in the Faculty form window. Let ’ s begin
with the coding process for the fi rst step now.

6.5.1.1.1 Validate Data Before the Data Insertion First, let ’ s handle the coding
development for the data validation before the data insertion.

 This data validation can be performed by calling one user - defi ned subroutine and
one user - defi ned function. The subroutine is named InitFacultyInfo() , and it is used to set
up a mapping relationship between each item in the string array FacultyTextBox() and
each textbox. The function is named CheckFacultyInfo() and it is used to scan and check
all textboxes to make sure that no one of them is empty.

 Open the code window of the Faculty Form window, and enter the codes shown in
Figure 6.20 into this window to create a user - defi ned subroutine InitFacultyInfo() .

 The FacultyTextBox() is a zero - based string array, and it starts its index from 0. All
seven textboxes related to faculty information are assigned to this array. In this way, it is
easier for us to scan and check each of textbox to make sure that none of them is empty
later.

 Open the code window of the Faculty Form window and enter the codes shown in
Figure 6.21 into this window to create a user - defi ned function CheckFacultyInfo() .

 The functionality of this function is:

A. A For loop is used to scan each textbox in the FacultyTextBox() string array to check
whether any of them is empty. A message will be displayed if this situation happens, and
the function exists to allow user to fi ll all textboxes.

B. If the Faculty Image box is empty, which means that the user wants to use a default faculty
photo with this new data insertion, then we need to display a message to indicate this situ-
ation, and a default faculty image will be used. The function returns a zero to indicate that
this validation is successful.

Figure 6.20. The codes for the user - defi ned subroutine InitFacultyInfo().

Private Sub InitFacultyInfo()

Dim intIndex As Integer

For intIndex = 0 To 6 'Initialize the object array
FacultyTextBox(intIndex) = New TextBox()

Next intIndex

FacultyTextBox(0).Text = txtID.Text
FacultyTextBox(1).Text = txtName.Text
FacultyTextBox(2).Text = txtTitle.Text
FacultyTextBox(3).Text = txtOffice.Text
FacultyTextBox(4).Text = txtPhone.Text
FacultyTextBox(5).Text = txtCollege.Text
FacultyTextBox(6).Text = txtEmail.Text

End Sub

FacultyForm InitFacultyInfo

c06.indd 445c06.indd 445 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

446 Chapter 6 Data Inserting with Visual Basic.NET

 Now let ’ s develop the code for the Insert button ’ s Click event procedure to call the
subroutine and the function we built above to perform the data validation before the data
insertion. Open the Insert button ’ s Click event procedure, and enter the codes that are
shown in Figure 6.22 into this event procedure.

 The function of this piece of codes is straightforward and easy to be understood. First,
the user - defi ned subroutine InitFacultyInfo() is called to set up the mapping relationship
between each item in the string array FacultyTextBox() and each textbox. Then the user -
 defi ned function CheckFacultyInfo() is executed to check and make sure that no textbox
is empty. If any of textboxes is empty, the function returns a nonzero value, and the pro-
cedure is exited to allow users to reenter information to the associated textboxes until
all of them are fi lled with the desired information.

 At this point, we completed the coding process for the data validation before the data
insertion. Now let ’ s do our coding process for the data insertion.

6.5.1.1.2 Insert Data into the Faculty Table The main coding job is performed
inside the Insert button ’ s Click event procedure. We have already developed some codes
at the beginning of this procedure in the last section. Now let ’ s continue to complete this
coding process.

Figure 6.21. The codes for the function CheckFacultyInfo().

Private Function CheckFacultyInfo() As Integer
Dim pos As Integer

For pos = 0 To 6
If FacultyTextBox(pos).Text = String.Empty Then

MessageBox.Show("Fill all Faculty Information box, enter a NULL for blank column")
Return 1
Exit Function

End If
Next
If txtImage.Text = "" Then

MessageBox.Show("Faculty Image box is empty, a default image will be used")
End If
Return 0

End Function

FacultyForm CheckFacultyInfo

A

B

Figure 6.22. The fi rst piece of codes for the Insert button ’ s Click event procedure.

Private Sub cmdInsert_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdInsert.Click

Dim pos As Integer

InitFacultyInfo()
pos = CheckFacultyInfo()
If pos <> 0 Then

Exit Sub
End If

cmdInsert Click

c06.indd 446c06.indd 446 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

6.5 Insert Data into the SQL Server Database Using the Runtime Object Method 447

 Open the Insert button Click event procedure and enter the codes that are shown in
Figure 6.23 into this event procedure. The codes we developed before for this event pro-
cedure are indicated with a gray background.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The SQL INSERT statement is declared fi rst, and it contains seven parameters followed
by the command VALUES . Each parameter is prefi xed by an @ symbol since this is the
requirement for the SQL Server database.

B. The data components used to perform the data insertion are declared here, which include
the SqlDataAdapter and SqlCommand. Two local integer variables, pos and intInsert , are
also declared at this part. The pos is used to hold the returned value of the calling the
function CheckFacultyInfo() , and the intInsert is used to hold the returned value of
executing the ExecuteNonQuery() method of the Command class.

C. The Command instance is initialized with the Connection, CommandType, and
CommandText properties of the Command class.

D. Another user - defi ned subroutine InsertParameters() is called to fi ll parameters to the
Parameters collection of the Command instance. Figure 6.24 shows the detailed codes
for this subroutine later. Another way to execute this insert action, which has been com-
mented out, is to call the FacultyDataAdapter with its property of the InsertCommand.

E. After the Command instance is initialized, the ExecuteNonQuery() method of the
Command class is called to insert the new record into the Faculty table in the database.

Figure 6.23. The second piece of codes for the Insert button ’ s event procedure.

Private Sub cmdInsert_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdInsert.Click
Dim cmdString As String = "INSERT INTO Faculty (faculty_id,faculty_name,office,phone,college,title,email) " & _

"VALUES (@faculty_id,@faculty_name,@office,@phone,@college,@title,@email)"
Dim FacultyDataAdapter As New SqlDataAdapter
Dim sqlCommand As New SqlCommand
Dim pos, intInsert As Integer

InitFacultyInfo()
pos = CheckFacultyInfo()

If pos <> 0 Then
Exit Sub

End If

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
InsertParameters(sqlCommand)
'FacultyDataAdapter.InsertCommand = sqlCommand
'intInsert = FacultyDataAdapter.InsertCommand.ExecuteNonQuery()
intInsert = sqlCommand.ExecuteNonQuery()

If intInsert = 0 Then
MessageBox.Show("The data insertion is failed")
Exit Sub

End If
ComboName.Items.Add(txtName.Text) 'reserve faculty name for validation
Call CleanInsert() 'clean up all faculty information
cmdInsert.Enabled = False 'disable the Insert button

End Sub

cmdInsert Click

A

B

C

D

E

F

G
H
I

c06.indd 447c06.indd 447 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

448 Chapter 6 Data Inserting with Visual Basic.NET

F. The ExecuteNonQuery() method returns an integer as the feedback to indicate whether
this insertion is successful or not. The value of this returned integer equals the number of
newly inserted records into the Faculty data table. A returned zero means that no new
record has been inserted into the Faculty table and this insertion has failed. A warning
message would be displayed, and the procedure is exited if this situation happened.

G. The newly inserted faculty name is added into the Faculty Name combo box for the valida-
tion purpose after this data insertion.

H. A cleaning job is performed to clean up the contents of all textboxes that contain the newly
inserted faculty information, except the Faculty ID.

I. The Insert button is disabled after this data insertion to avoid the multiple insertions of
the same data. This button will be enabled again when the content of the Faculty ID textbox
is changed, which means that a new, different record is ready to be inserted into the Faculty
table.

 The detailed codes for the user - defi ned subroutine InsertParameters() are shown in
Figure 6.24 .

 This piece of codes is easy; each piece of faculty - related information stored on the
associated textbox is assigned to each matched parameter by using the Add() method.
One point to be noted is that the @ symbol must be prefi xed before each parameter since
this is the requirement of the SQL Server database operations.

 The codes for the user - defi ned subroutine CleanInsert() are shown in Figure 6.25 .
The function of this piece of codes is simple; just clean up the contents of all textboxes

Figure 6.24. The codes for the user - defi ned subroutine InsertParameters().

Private Sub InsertParameters(ByRef cmd As SqlCommand)

cmd.Parameters.Add("@faculty_id", SqlDbType.Char).Value = txtID.Text
cmd.Parameters.Add("@faculty_name", SqlDbType.Char).Value = txtName.Text
cmd.Parameters.Add("@office", SqlDbType.Char).Value = txtOffice.Text
cmd.Parameters.Add("@phone", SqlDbType.Char).Value = txtPhone.Text
cmd.Parameters.Add("@college", SqlDbType.Char).Value = txtCollege.Text
cmd.Parameters.Add("@title", SqlDbType.Char).Value = txtTitle.Text
cmd.Parameters.Add("@email", SqlDbType.Char).Value = txtEmail.Text

End Sub

FacultyForm InsertParameters

Figure 6.25. The codes for the user - defi ned subroutine CleanInsert().

Private Sub CleanInsert()

txtName.Text = String.Empty
txtOffice.Text = String.Empty
txtPhone.Text = String.Empty
txtCollege.Text = String.Empty
txtTitle.Text = String.Empty
txtEmail.Text = String.Empty

End Sub

FacultyForm CleanInsert

c06.indd 448c06.indd 448 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

6.5 Insert Data into the SQL Server Database Using the Runtime Object Method 449

that stored seven pieces of the newly inserted faculty information, except the textbox
FacultyID.

 Another coding job is for the Faculty ID textbox, exactly for the TextChanged event
procedure of the Faculty ID textbox. As we mentioned, in order to avoid multiple inser-
tions of the same data, the Insert button should be disabled after one data is inserted
into the database. This Insert button will be enabled again when the content of the Faculty
ID textbox is changed, which means that a different new record is ready to be inserted
into the database. The codes for that event procedure are shown in Figure 6.26 .

 At this point, we have fi nished all coding development for this data insertion action
for the Faculty Form window. Before we can run the project to test the function of this
data insertion, we need fi rst to develop the codes to perform the validation for this data
insertion.

6.5.1.1.3 Validate Data After the Data Insertion To validate the newly inserted
faculty record, the same Faculty form window is used and the function of this validation
is to read back the inserted data from the database and display it on the Faculty form to
confi rm that the data insertion is successful. We need to use the codes we developed for
the Select button ’ s Click event procedure in Chapter 5 to perform this data query, and,
also, we need to make a little modifi cation to the user - defi ned subroutine ShowFaculty()
to complete this data validation.

 Open the user - defi ned subroutine procedure ShowFaculty() and add the codes
shown in steps A and B in Figure 6.27 into this subroutine.

 The codes we developed before are indicated with a gray background. Let ’ s have a
closer look at this piece of attached codes to see how it works.

A. If no matched faculty image can be found, three possibilities exist: fi rst, a faculty data query
is being executed and no matched faculty image can be found. Second, a new faculty record
is being inserted into the Faculty table and the user does not want to use any faculty image
for that inserted faculty record. Third, a new faculty record is being inserted into the Faculty
table and the user wants to use a new faculty image for that inserted faculty record, and
the name of that new faculty image fi le has been entered into the Faculty Image textbox.
For both the fi rst and the second situations, a default faculty image Default.jpg is used.

B. For the third case, the name of new faculty image fi le is assigned to the FacultyImage
variable, which will be displayed later.

 Now we have fi nished all coding process for both data insertion and the data valida-
tion after the data insertion. Let ’ s run the project to test the functionalities of the codes
we developed above. Since we want to add a faculty photo for this data insertion, make
sure that your desired faculty photo fi le has been already saved into the desired location.

Figure 6.26. The codes for the Faculty ID TextChanged event procedure.

Private Sub txtID_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles _
txtID.TextChanged

cmdInsert.Enabled = True
End Sub

txtID TextChanged

c06.indd 449c06.indd 449 4/25/2012 1:57:57 PM4/25/2012 1:57:57 PM

450 Chapter 6 Data Inserting with Visual Basic.NET

Figure 6.27. The added codes for the subroutine ShowFaculty().

Private Sub ShowFaculty(ByVal fName As String)
Dim FacultyImage As String

Select Case fName
Case "Ying Bai"

FacultyImage = "Bai.jpg"
Case "Satish Bhalla"

FacultyImage = "Satish.jpg"
Case "Black Anderson"

FacultyImage = "Anderson.jpg"
Case "Steve Johnson"

FacultyImage = "Johnson.jpg"
Case "Jenney King"

FacultyImage = "Angles.jpg"
Case "Alice Brown"

FacultyImage = "Brown.jpg"
Case "Debby Angles"

FacultyImage = "Angles.jpg"
Case "Jeff Henry"

FacultyImage = "Henry.jpg"
Case Else

If txtImage.Text = "" Then
FacultyImage = "Default.jpg"

Else
FacultyImage = txtImage.Text

End If
End Select
PhotoBox.Image = System.Drawing.Image.FromFile(FacultyImage)

End Sub

FacultyForm ShowFaculty

A

B

For this test, we want to display a faculty photo named Mhamed.jpg , and we have stored
this fi le in our default folder, which is C:\Chapter 6\SQLInsertRTObject\bin\Debug .

 Now starts the project. After the project begins to run, enter the suitable username
and password, such as jhenry and test , to the LogIn form, and then select the Faculty
Information item from the Selection Form to open the Faculty Form window. Then enter
the following data into this form as a new faculty record:

 • M99875 Faculty ID textbox

 • Mhamed Jones Faculty Name textbox

 • Professor Title textbox

 • MTC-225 Offi ce textbox

 • 750-330-5587 Phone textbox

 • University of Chicago College textbox

 • mjones@college.edu Email textbox

 Then enter Mhamed.jpg into the Faculty Image textbox as the photo fi le name. Your
fi nished new faculty information is shown in Figure 6.28 .

 Now click on the Insert button to insert this new faculty record into the database.
Immediately, all textboxes, except the Faculty ID, are cleaned up, and the Insert button
is disabled after this insertion.

c06.indd 450c06.indd 450 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

6.5 Insert Data into the SQL Server Database Using the Runtime Object Method 451

 To check and validate this faculty record insertion, click on the drop - down arrow of
the Faculty Name combo box, and you can fi nd that the newly inserted faculty name
Mhamed Jones is in there. Click that name to select it, and then click on the Select
button to try to read back that newly inserted record from the database and display it in
this Faculty form window.

 Immediately, you can fi nd that all pieces of information about that newly inserted
faculty record, including the faculty image, are displayed in the associated textboxes,
which is shown in Figure 6.29 . Our data insertion is successful.

Figure 6.28. The newly inserted faculty record in the Faculty Form window.

Figure 6.29. An example of the data validation result.

c06.indd 451c06.indd 451 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

452 Chapter 6 Data Inserting with Visual Basic.NET

 One potential bug that exists in this data validation is that each time when you enter
a new piece of faculty information into the database, the faculty name must not be identi-
cal. Some readers may argue with me for this: the different faculty member is identifi ed
by the faculty ID, not by name, and the faculty ID is the primary key in the Faculty table.
Yes, that is true. But the issue is that in this application, we use the faculty name, not
faculty ID, as the criterion to perform this SELECT query. This means that the query
criterion is based on the faculty name, not faculty ID. Multiple records will be returned
if many faculty members who have the same name even they have the different faculty
IDs in this application.

 Click on the Back and then Exit buttons to terminate our project.
 Another way to confi rm this faculty record insertion is to open our SQL Server 2008

Express sample database using the Microsoft SQL Server Management Studio. To do
that, go to start|All Programs|Microsoft SQL Server 2008|SQL Server Management
Studio . On the opened sample database CSE_DEPT , expand to the Tables folder and
the dbo.Faculty table. Right - click on this table and select Edit Top 200 Rows item to
open this table. You can fi nd that a new faculty member Mhamed Jones has been
inserted into this table, as shown in Figure 6.30 .

 A completed project SQLInsertRTObject can be found in the folder DBProjects\
Chapter 6 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

 Basically, there is no signifi cant difference between inserting data into the SQL
Server, Microsoft Access, or the Oracle databases. The only differences are

 • The query strings, including the Connection string and the SELECT query string used in the
LogIn form.

 • SELECT query string, INSERT query string, and Parameter strings used in the Faculty form.

Figure 6.30. The newly inserted faculty member Mhamed Jones.

c06.indd 452c06.indd 452 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

6.6 Insert Data into the Microsoft Access Database Using the Runtime Objects 453

 All other codes are identical. We will show those differences and discuss how to insert
data into the Microsoft Access and Oracle database in Sections 6.6 and 6.7 .

 One possible problem when you test your project by inserting more data into the Faculty
table is that too many records are added into the database. To remove those unused records,
you can open the Faculty table from the SQL Server Management Studio Express and then
delete those records from the Faculty table

6.6 INSERT DATA INTO THE MICROSOFT ACCESS DATABASE
USING THE RUNTIME OBJECTS

 There is no big difference for data insertion between the different databases, and just as
we mentioned at the end of the last section, the only differences are query strings used
in the different form windows. All other coding parts are identical without modifi cations.
So we can use all codes in the project SQLInsertRTObject we developed in the last
section with small modifi cations for those query strings to make it work for the Microsoft
Access database.

 First, let ’ s modify the project SQLInsertRTObject . Open the Windows Explorer to
create a new folder, such as Chapter 6 , and then copy the project SQLInsertRTObject
from the folder DBProjects\Chapter 6 that is located at the Wiley ftp site (refer to Figure
 1.2 in Chapter 1) to our new folder Chapter 6 . Change the name of the solution and the
project folders to AccessInsertRTObject . Also, change the name for the following fi les:

1. AccessInsertRTObject.sln

2. AccessInsertRTObject.vbproj

3. AccessInsertRTObject.vbproj.user

 Refer to Section 6.2.1 to complete this rename operation.
 In this section, we will use the Faculty form as an example to illustrate how to insert

a new faculty record into the Faculty table in the Microsoft Access 2007 database. We can
modify the project SQLInsertRTObject to get a new project AccessInsertRTObject to
perform our data insertion job using the runtime object method. Basically, we need to
perform the following modifi cations:

1. Imports the OleDb namespace — all OleDb data components are defi ned here.

2. Database Connection string — make it connect to the Microsoft Access database.

3. LogIn username and password query strings — complete the login process.

4. Faculty table query strings — select and insert the correct faculty information.

5. Modifi cations to other forms — change the connection object.

 Modifi cations 2 and 3 are included in the LogIn form window with the LogIn data
table. Modifi cation 4 is performed in the Faculty form with the Faculty data table in the
Microsoft Access database. Let ’ s do these modifi cations one by one now.

c06.indd 453c06.indd 453 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

454 Chapter 6 Data Inserting with Visual Basic.NET

6.6.1 Modify the Imports Commands and the ConnModule

 First, let ’ s open the code window of the LogIn form by clicking on the View Code button
from the Solution Explorer window. On the opened code window, move your cursor to
the top and modify two Imports commands to:

 Imports System.Data

 Imports System.Data.OleDb

 In this way, we fi nished the modifi cation for the Imports commands in the LogIn form
window. Make same modifi cations to the rest of form windows:

 • ConnModule

 • Faculty Form

 • Course Form

 Since we will not use the Student form in this application, therefore, it does not matter
for this modifi cation. Now let ’ s modify the Connection string for the LogIn form.

 Now open the code window of the ConnModule and change the global connection
object from the sqlConnection to accConnection , class from SqlConnection to
OleDbConnection , respectively, as shown in Figure 6.31 .

6.6.2 Modify the Database Connection String

 The Database Connection string is used to connect to the desired database based on the
correct syntax and format related to the associated database. To make this modifi cation,
fi rst we need to open the Form_Load event procedure of the LogIn form since the con-
nection string is defi ned in there.

 Open the Form_Load event procedure of the LogIn form window. Change the name
and the content of the Connection string, as shown in Figure 6.32 .

 Let ’ s have a closer look at these modifi cations to see how they work.

A. The modifi cations to the Imports commands are shown here.

B. Change the prefi x of the Connection object from sql to acc , and change the prefi x of the
Connection class from Sql to OleDb since we need to use the Access database and OleDb
data provider in this project.

C. Change the name and the content of the connection string as shown in step C .

Figure 6.31. The modifi ed codes for the ConnModule.

Imports System.Data
Imports System.Data.OleDb

Module ConnModule

Public accConnection As OleDbConnection

End Module

ConnModule (Declarations)

c06.indd 454c06.indd 454 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

6.6 Insert Data into the Microsoft Access Database Using the Runtime Objects 455

 Make the modifi cations to the following items, which are shown in Figure 6.32 , from
steps D to G ; all modifi cations have been highlighted in bold.

 Go to the File|Save All to save those modifi cations. Next, let ’ s continue to modify
the login query strings in the LogIn form.

6.6.3 Modify the LogIn Query Strings

 In this application, two LogIn buttons are used for this form since two login methods are
utilized. To save time and space, we only modify one method: TableAdapter Method.
Open this event procedure by double - clicking on the TabLogIn button from the LogIn
form window, and do the modifi cations that are shown in Figure 6.33 for this event
procedure.

 Let ’ s take a closer look at these modifi cations to see how they work.

A. Most parts of this query string are working fi ne with the Microsoft Access database, and
the only modifi cation is the LIKE operator used in the WHERE clause. Change these two
LIKE operators to the comparison operator = before two parameters @Param1 and @
Param2 , respectively. This is the syntax used in the Microsoft Access database.

B. Starting from step B , change the prefi x for all Data Provider classes used in this event
procedure from Sql to OleDb . All modifi cations have been highlighted in bold. Steps
involved in these modifi cations are from B to D .

E. Starting from step E , change the prefi x for all Data Provider objects used in this event
procedure from sql to acc . All modifi cations have been highlighted in bold. Steps involved
in these modifi cations are E , and from steps G to R .

F. Change the prefi x for both Data Provider classes and objects from sql to acc , and from
Sql to OleDb , respectively. The step involved in this modifi cation is F only.

Figure 6.32. The modifi ed codes to the Connection String.

Imports System.Data
Imports System.Data.OleDb

Public Class LogInForm

Private Sub LogInForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

Dim strConnectionString As String = "Provider=Microsoft.ACE.OLEDB.12.0;" & _
"Data Source=C:\\Database\\Access\\CSE_DEPT.accdb;"

accConnection = New OleDbConnection(strConnectionString)
Try

accConnection.Open()
Catch OleDbExceptionErr As OleDbException

MessageBox.Show(OleDbExceptionErr.Message, "Access Error")
Catch InvalidOperationExceptionErr As InvalidOperationException

MessageBox.Show(InvalidOperationExceptionErr.Message, "Access Error")
End Try

If accConnection.State <> ConnectionState.Open Then
MessageBox.Show("Database Connection is Failed")
Exit Sub

End If

End Sub

A

B

C

D
E

F

G

(LogInForm Events) Load

c06.indd 455c06.indd 455 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

456 Chapter 6 Data Inserting with Visual Basic.NET

 You can perform similar modifi cations to the codes in the ReadLogIn button Click
event procedure and the Cancel button ’ s Click event procedures.

 Now let ’ s go to the Faculty form to modify the Faculty table query string.

6.6.4 Modify the Faculty Query String

 First, make sure that the Imports commands that are located at the top of this form are
modifi ed as we did in Section 6.6.1 . Then open the Form_Load event procedure and
change the Connection object, which is located at the fi rst line, from the sqlConnection
to the accConnection , as shown below:

If accConnection.State < > ConnectionState.Open Then

 Now open the Select button ’ s Click event procedure by double - clicking on this
button from the Faculty form window, and perform the modifi cations that are shown in
Figure 6.34 to this event procedure.

 Let ’ s have a closer look at these modifi cations to see how they work.

A. The fi rst modifi cation is to the query string. As we did in the last section, most parts of this
query string work for the Microsoft Access database and the only modifi cation is to change

Figure 6.33. The modifi cations to the LogIn query string.

Private Sub TabLogIn_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles TabLogIn.Click
Dim cmdString1 As String = "SELECT user_name, pass_word, faculty_id, student_id FROM LogIn "
Dim cmdString2 As String = "WHERE (user_name=@Param1) AND (pass_word=@Param2)"
Dim cmdString As String = cmdString1 & cmdString2
Dim paramUserName As New OleDbParameter
Dim paramPassWord As New OleDbParameter
Dim LogInTableAdapter As New OleDbDataAdapter
Dim accDataTable As New DataTable
Dim accCommand As New OleDbCommand
Dim selForm As New SelectionForm

paramUserName.ParameterName = "@Param1"
paramUserName.Value = txtUserName.Text
paramPassWord.ParameterName = "@Param2"
paramPassWord.Value = txtPassWord.Text
accCommand.Connection = accConnection
accCommand.CommandType = CommandType.Text
accCommand.CommandText = cmdString
accCommand.Parameters.Add(paramUserName)
accCommand.Parameters.Add(paramPassWord)
LogInTableAdapter.SelectCommand = accCommand
LogInTableAdapter.Fill(accDataTable)
If accDataTable.Rows.Count > 0 Then

selForm.Show()
Me.Hide()

Else
MessageBox.Show("No matched username/password found!")

End If
accDataTable.Dispose()
accDataTable = Nothing
accCommand.Dispose()
accCommand = Nothing
LogInTableAdapter.Dispose()

 LogInTableAdapter = Nothing
End Sub

A

B
C
D
E
F

G
H
I
J
K
L
M
N

O
P
Q
R

TabLogIn Click

c06.indd 456c06.indd 456 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

6.6 Insert Data into the Microsoft Access Database Using the Runtime Objects 457

Figure 6.34. Modifi cations to the Faculty query string.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim cmdString1 As String = "SELECT faculty_id, faculty_name, office, phone, college, title, email FROM Faculty "
Dim cmdString2 As String = "WHERE faculty_name=@facultyName"
Dim cmdString As String = cmdString1 & cmdString2
Dim paramFacultyName As New OleDbParameter
Dim FacultyTableAdapter As New OleDbDataAdapter
Dim accCommand As New OleDbCommand
Dim accDataReader As OleDbDataReader
Dim accDataTable As New DataTable
Dim ds As New DataSet()

paramFacultyName.ParameterName = "@facultyName"
paramFacultyName.Value = ComboName.Text
accCommand.Connection = accConnection
accCommand.CommandType = CommandType.Text
accCommand.CommandText = cmdString
accCommand.Parameters.Add(paramFacultyName)
Call ShowFaculty(ComboName.Text)

If ComboMethod.Text = "TableAdapter Method" Then
FacultyTableAdapter.SelectCommand = accCommand
FacultyTableAdapter.Fill(accDataTable)
If accDataTable.Rows.Count > 0 Then

Call FillFacultyTable(accDataTable)
Else

MessageBox.Show("No matched faculty found!")
End If

accDataTable.Dispose()
accDataTable = Nothing
FacultyTableAdapter.Dispose()
FacultyTableAdapter = Nothing

ElseIf ComboMethod.Text = "DataReader Method" Then
accDataReader = accCommand.ExecuteReader
If accDataReader.HasRows = True Then

Call FillFacultyReader(accDataReader)
Else

MessageBox.Show("No matched faculty found!")
End If
accDataReader.Close()
accDataReader = Nothing

Else '---------------------- LINQ To DataSet method is selected
FacultyTableAdapter.SelectCommand = accCommand
FacultyTableAdapter.Fill(ds, "Faculty")
Dim facultyinfo = From fi In ds.Tables("Faculty").AsEnumerable()

Where fi.Field(Of String)("faculty_name").Equals(ComboName.Text) Select fi
For Each fRow In facultyinfo

txtID.Text = fRow.Field(Of String)("faculty_id")
txtName.Text = fRow.Field(Of String)("faculty_name")
txtTitle.Text = fRow.Field(Of String)("title")
txtOffice.Text = fRow.Field(Of String)("office")
txtPhone.Text = fRow.Field(Of String)("phone")
txtCollege.Text = fRow.Field(Of String)("college")
txtEmail.Text = fRow.Field(Of String)("email")

Next
End If
accCommand.Dispose()
accCommand = Nothing

End Sub

A

B
C
D
E
F

G
H
I
J

K
L
M
N

O
P

Q
R
S

T
U

V

W

cmdSelect Click

c06.indd 457c06.indd 457 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

458 Chapter 6 Data Inserting with Visual Basic.NET

the LIKE operator, which is inside the cmdString2 and located before the dynamic param-
eter @facultyName , to the comparison operator = since this is the requirement of the
Microsoft Access database.

B. Change the prefi x of all Data Provider - related classes from the Sql to the OleDb . Steps
involved in these modifi cations are B and C . All modifi cations have been highlighted in
bold.

D. Change the prefi x of all Data Provider related classes and objects from the Sql to the
OleDb , and from the sql to the acc . Steps involved in these modifi cations are D and E .
All modifi cations have been highlighted in bold.

F. Change the prefi x of all Data Provider related objects from the sql to the acc . Steps
involved in these modifi cations are from F to W .

 Another modifi cation is for the user - defi ned subroutine FillFacultyReader() . The
data type of the argument FacultyReader should be changed from SqlDataReader to
OleDbDataReader .

6.6.5 Modify the Faculty Insert String

 Open the Insert button Click event procedure and perform the modifi cations shown in
Figure 6.35 to the codes in this event procedure.

Figure 6.35. Modifi ed codes for the Insert button Click event procedure.

Private Sub cmdInsert_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdInsert.Click
Dim cmdString As String = "INSERT INTO Faculty (faculty_id,faculty_name,office,phone,college,title,email) " & _

"VALUES (@faculty_id,@faculty_name,@office,@phone,@college,@title,@email)"
Dim FacultyDataAdapter As New OleDbDataAdapter
Dim accCommand As New OleDbCommand
Dim pos, intInsert As Integer

InitFacultyInfo()
pos = CheckFacultyInfo()
If pos <> 0 Then

Exit Sub
End If
accCommand.Connection = accConnection
accCommand.CommandType = CommandType.Text
accCommand.CommandText = cmdString
InsertParameters(accCommand)
'FacultyDataAdapter.InsertCommand = sqlCommand
'intInsert = FacultyDataAdapter.InsertCommand.ExecuteNonQuery()
intInsert = accCommand.ExecuteNonQuery()

If intInsert = 0 Then
MessageBox.Show("The data insertion is failed")
Exit Sub

End If

ComboName.Items.Add(txtName.Text) 'reserve faculty name for validation
Call CleanInsert() 'clean up all faculty information
cmdInsert.Enabled = False 'disable the Insert button

End Sub

A

B

C
D
E
F

G

cmdInsert Click

c06.indd 458c06.indd 458 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

6.6 Insert Data into the Microsoft Access Database Using the Runtime Objects 459

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. Change the prefi x for all Data Provider - related classes from Sql to OleDb . Steps involved
in this modifi cation are A and B .

C. Change the prefi x for Data Provider - related objects from sql to acc . Steps involved in this
modifi cation are C through G .

 Another modifi cation is to the user - defi ned subroutine procedure InsertParameters() .
The fi rst modifi cation is to change the data type of the passed command object cmd from
SqlCommand to OleDbCommand . The second modifi cation is to change the data type
of all seven columns passed into the Faculty table from SqlDbType to OleDbType .

 Before we can run the project to insert data into the database, we need to fi nish the
rest of modifi cations to other forms. Basically, this modifi cation is to change the connec-
tion object for all other forms to match to the Microsoft Access database connection.

6.6.6 Modifi cations to Other Forms

 The following four forms contain this connection object: Selection, Course, SP, and
Student. In this project, we only need to use the Selection and Course Form, so we only
need to modify the connection object for those two forms.

 Perform the following operations to complete these modifi cations:

1. Open the code window of the Course Form, and then open the Form_Load event procedure
of that form, and change the connection object name from the sqlConnection to the
accConnection .

2. Open the Exit button ’ s Click event procedure of the Selection form to change the connec-
tion object, too. Your fi nished modifi cation for this connection object should match the one
that is shown below:

If accConnection.State < > ConnectionState.Open Then
 accConnection.Close()

 End If

 Besides the connection object, perform the following operations to complete the
modifi cations to the Data Provider - related classes and objects in the Course form:

1. Open the Select button Click event procedure, and change the LIKE operator to the com-
parison operator = in the query string cString2 .

2. Change the data type of the argument CourseReader , which is located in the user - defi ned
subroutine FillCourseReader() , from SqlDataReader to OleDbDataReader .

3. Change the data type of the argument CourseReader , which is located in the user - defi ned
subroutine FillCourseReaderTextBox() , from SqlDataReader to OleDbDataReader .

4. Change the prefi x of all Data Provider - related classes from Sql to OleDb , and the prefi x of
all Data Provider - related objects from sql to acc , for the codes in the Select button Click
event procedure and the CourseList SelectedIndexChanged event procedure.

 Since we will not use the Student form for this project, but you can modify the
connection object from sqlConnection to accConnection in the Form_Load event

c06.indd 459c06.indd 459 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

460 Chapter 6 Data Inserting with Visual Basic.NET

Figure 6.36. The running status of the Faculty Form window.

procedure in the Student and the SP Forms, and comment out the sqlConnection object
in the subroutine BuildCommand() in the Student form and in the Select button Click
event procedure in the SP Form to enable us to build and run this project.

 Now let ’ s run the project to test our data insertion functionality. Click on the Start
Debugging button to run the project, and enter the suitable username and password, such
as jhenry and test to the LogIn form window, and then select the Faculty Information
item from the Selection form to open the Faculty form, which is shown in Figure 6.36 .

 Enter the following data into the associated textboxes as a new faculty record:

 • M99558 Faculty ID textbox

 • Mattin Kims Faculty Name textbox

 • Associate Professor Title textbox

 • MTC-118 Offi ce textbox

 • 750-330-7788 Phone textbox

 • University of Miami College textbox

 • mkims@college.edu Email textbox

 Keep the Faculty Image textbox empty since we do not want to include a photo for
this faculty record. Your fi nished new faculty information window should match the one
that is shown in Figure 6.36 .

 Click on the Insert button to insert this new faculty record into the Faculty table in
the database. Immediately, the Insert button is disabled after this new data is inserted
into the database and all textboxes, except the Faculty ID, becomes empty.

 To confi rm this data insertion, click on the drop - down arrow of the Faculty Name
combo box from the Faculty form, and you can fi nd that the name of the newly inserted
faculty Mattin Kims has been in this box. Click on it to select this faculty and then click
on the Select button to try to retrieve this newly inserted record from the database and

c06.indd 460c06.indd 460 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

6.7 Insert Data into the Oracle Database Using the Runtime Objects 461

display it in this form. Immediately, you can fi nd that all seven pieces of information about
this new faculty is shown in this form, which is shown in Figure 6.37 .

 Another way to confi rm this data insertion is to open the Faculty table in our sample
database CSE_DEPT.accdb , which is located at C:\Database in your computer, and you
can fi nd that a new faculty record has been inserted into this table.

 This is the evidence that our data insertion into the Microsoft Access database is
successful! Click on the Back and then the Exit buttons to close the project.

 You can remove some newly added records from this database to keep your table
neat if you like. To do that, open the database and the associated data table, and you can
do whatever you want.

 A completed project AccessInsertRTObject can be found in a folder DBProjects\
Chapter 6 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

6.7 INSERT DATA INTO THE ORACLE DATABASE USING
THE RUNTIME OBJECTS

 Similarly, as we did in the last section for the Microsoft Access database, we can modify
the SQLInsertRTObject project and make it work for the Oracle database.

 Open the Windows Explorer to create a new folder such as Chapter 6 , and then copy
the project SQLInsertRTObject from the folder DBProjects\Chapter 6 that is located
at the Wiley ftp site (refer to Figure 1.2 in Chapter 1). Refer to Section 6.2.1 to rename
this project to OracleInsertRTObject .

 In this section, we will use the Faculty form as an example to illustrate how to insert
a new faculty record into the Faculty table to the Oracle database. Basically, we need to
perform the following modifi cations:

Figure 6.37. The insert data validation process.

c06.indd 461c06.indd 461 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

462 Chapter 6 Data Inserting with Visual Basic.NET

1. Imports the Oracle namespace — all Oracle data components are defi ned here.

2. Database Connection string — make it connect to the Oracle database.

3. LogIn username and password query strings — complete the login process.

4. Faculty table query string — select the correct faculty information.

5. Modifi cations to other forms — change the connection object and Data Provider - related
classes and objects for all forms.

 Modifi cation items 2 and 3 are included in the LogIn form window with the LogIn
data table, and modifi cation item 4 is performed in the Faculty form with the Faculty data
table in the Oracle database. Let ’ s do these modifi cations one by one.

6.7.1 Add the Oracle Driver Reference and Modify the Imports
Commands

 Unlike Microsoft Access and SQL Server databases, Visual Studio.NET does not set the
Oracle namespace as a default data namespace for the database programming. Also start-
ing from .NET Frameworks 4.0, Microsoft is no longer to support any driver for the
Oracle database. Therefore, we need to use a third - party Oracle driver (dotConnect
6.30) to handle all data actions for the Oracle database in this application. Refer to
Appendix F to get more detailed information about how to download and install this
driver, and how to add references related to this Oracle driver.

 Now let ’ s fi rst add these driver - related references to our new project. Perform the
following operations to complete this addition:

1. Go to the Solution Explorer window, right - click on our project OracleInsertRTObject and
select Add Reference item from the pop - up menu to open the Add Reference wizard,
which is shown in Figure 6.38 .

2. Keep the .NET tab selected and browse down the list until you fi nd two Oracle - related
libraries, Devart.Data and Devart.Data.Oracle . Then select both of them and click on the
OK button to add these references into our project.

3. To confi rm this addition, click on the Show All Files button from the Solution Explorer
window, and then expand the Reference item, and you can fi nd that both references have
been added into the project.

 Next, let ’ s open the code window of the LogIn form by clicking on the View Code
button from the Solution Explorer window. On the opened code window, move your
cursor to the top and modify two Imports commands to:

Imports Devart.Data
 Imports Devart.Data.Oracle

 In this way, we fi nished the modifi cation for the Imports commands in the LogIn form
window. Make the same modifi cations to the rest of form windows:

 • Faculty Form

 • Course Form

 • ConnModule

c06.indd 462c06.indd 462 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

6.7 Insert Data into the Oracle Database Using the Runtime Objects 463

 Since we will not use the Student and the SP forms for our data insertion, no
modifi cation should be made to them. Now let ’ s modify the Connection string for the
LogIn form.

6.7.2 Modify the Database Connection String

 The Database Connection string is used to connect to the desired database based on the
correct syntax and format related to the associated database. To make this modifi cation,
fi rst, we need to open the code window of the ConnModule to modify the global connec-
tion object.

 Change the connection object from sqlConnection to oraConnection and connec-
tion class from SqlConnection to OracleConnection , as shown in Figure 6.39 . The
modifi ed codes have been highlighted in bold.

 Now open the Form_Load event procedure of the LogIn form since the connection
string is defi ned in there. Change the name and the content of the Connection string, as
shown in Figure 6.40 .

 Let ’ s have a closer look at these modifi cations to see how they work.

A. The modifi cations to the Imports commands are shown here.

B. Change the name and the content of the connection string as shown in step B .

Figure 6.38. The newly added reference libraries.

c06.indd 463c06.indd 463 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

464 Chapter 6 Data Inserting with Visual Basic.NET

C. Change the prefi x of the Connection object from sql to ora , and change the prefi x of the
Connection class from Sql to Oracle since we need to use the Oracle database and Oracle
data provider in this project. Steps involved in these modifi cations are steps C through I .

 Go to File|Save All to save those modifi cations. Next, let ’ s continue to modify the
login query strings in the LogIn form.

6.7.3 Modify the LogIn Query Strings

 In this application, two LogIn buttons are used for this form since two login methods are
developed. To save time and space, we only modify one method, the TableAdapter
method. Open this event procedure by double - clicking on the TabLogIn button from the

Figure 6.40. Modifi cations to the Connection string in LogIn form.

Imports Devart.Data
Imports Devart.Data.Oracle

Public Class LogInForm

Private Sub LogInForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

Dim oraString As String = "Data Source=XE;" + _
"User ID=CSE_DEPT;" + "Password=reback"

oraConnection = New OracleConnection(oraString)
If oraConnection.State = ConnectionState.Open Then

oraConnection.Close()
End If
Try

oraConnection.Open()
Catch OracleExceptionErr As OracleException

MessageBox.Show(OracleExceptionErr.Message, "Oracle Error")
Catch InvalidOperationExceptionErr As InvalidOperationException

MessageBox.Show(InvalidOperationExceptionErr.Message, "Oracle Error")
End Try

If oraConnection.State <> ConnectionState.Open Then
MessageBox.Show("Database connection is Failed")
Exit Sub

End If

End Sub

A

B

C
D
E

F
G
H

I

(LogInForm Events) Load

Figure 6.39. The modifi ed codes for the ConnModule.

Imports Devart.Data
Imports Devart.Data.Oracle

Module ConnModule

Public oraConnection As OracleConnection

End Module

ConnModule (Declarations)

c06.indd 464c06.indd 464 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

6.7 Insert Data into the Oracle Database Using the Runtime Objects 465

LogIn form window, and perform the following modifi cations that are shown in Figure
 6.41 for this event procedure.

 Let ’ s take a closer look at these modifi cations to see how they work.

A. Most parts of this query string are working with the Oracle database, and the only modi-
fi cation is the LIKE operator used in the WHERE clause. Change these two LIKE operators
to the comparison operator = : before two parameters name and word , respectively. This
is the syntax used in the Oracle database.

B. Starting from B , change the prefi x for all Oracle classes used in this event procedure from
Sql to Oracle . All modifi cations have been highlighted in bold. Steps involved in these
modifi cations are steps B through D .

E. Starting from E , change the prefi x for all Oracle objects used in this event procedure from
sql to ora . All modifi cations have been highlighted in bold. Steps involved in these modi-
fi cations are step E and steps G through R .

F. Change the prefi x for both Oracle classes and objects from sql to ora , and from Sql to
Oracle , respectively. Step involved in this modifi cation is step F only.

Figure 6.41. Modifi cations to the login query string in LogIn form.

Private Sub TabLogIn_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles TabLogIn.Click
Dim cmdString1 As String = "SELECT user_name, pass_word, faculty_id, student_id FROM LogIn "
Dim cmdString2 As String = "WHERE user_name=:name AND pass_word=:word"
Dim cmdString As String = cmdString1 & cmdString2
Dim paramUserName As New OracleParameter
Dim paramPassWord As New OracleParameter
Dim LogInTableAdapter As New OracleDataAdapter
Dim oraDataTable As New DataTable
Dim oraCommand As New OracleCommand
Dim selForm As New SelectionForm

paramUserName.ParameterName = "name"
paramUserName.Value = txtUserName.Text
paramPassWord.ParameterName = "word"
paramPassWord.Value = txtPassWord.Text
oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add(paramUserName)
oraCommand.Parameters.Add(paramPassWord)
LogInTableAdapter.SelectCommand = oraCommand
LogInTableAdapter.Fill(oraDataTable)

If oraDataTable.Rows.Count > 0 Then
selForm.Show()
Me.Hide()

Else
MessageBox.Show("No matched username/password found!")

End If
oraDataTable.Dispose()
oraDataTable = Nothing
oraCommand.Dispose()
oraCommand = Nothing
LogInTableAdapter.Dispose()

 LogInTableAdapter = Nothing
End Sub

A

B
C
D
E
F

G
H
I
J
K
L
M
N

O
P
Q
R

TabLogIn Click

c06.indd 465c06.indd 465 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

466 Chapter 6 Data Inserting with Visual Basic.NET

 You can perform the similar modifi cations to the codes in the ReadLogIn and the
Cancel button ’ s event procedures.

 Now, let ’ s go to the Faculty form to modify the Faculty table query string.

6.7.4 Modify the Faculty Query String and Query
Related Codes

 First, make sure that the Imports commands that are located at the top of this form are
modifi ed as we did in Section 6.7.1 . Then, open the Form_Load event procedure and
change the Connection object, which is located at the fi rst line, from the sqlConnection
to the oraConnection , as shown below:

If oraConnection.State < > ConnectionState.Open Then

 Now, open the Select button ’ s Click event procedure and perform the modifi cations
that are shown in Figure 6.42 to this event procedure.

 Let ’ s have a closer look at these modifi cations to see how they work.

A. The fi rst modifi cation is to the query string. As we did in the last section, most parts of this
query string work for the Oracle database, and the only modifi cation is to change the LIKE
operator, which is in the cmdString2 and located before the dynamic parameter faculty-
Name , to the Oracle comparison operator = : since this is the requirement of the Oracle
database. Also, remove the @ symbol before the parameter facultyName .

B. Change the prefi x of all Oracle data classes from the Sql to the Oracle . Steps involved in
these modifi cations are B and C . All modifi cations have been indicated in bold.

D. Change the prefi x of all Oracle data classes and objects from Sql to Oracle , and from sql
to ora . Steps involved in these modifi cations are D and E . All modifi cations have been
highlighted in bold.

F. Change the prefi x of all Oracle objects from the sql to the ora . Steps involved in these
modifi cations are F through X .

 The modifi cation in step Y is to remove the @ symbol before the dynamic parameter
facultyName , and this is the syntax of the Oracle database operations.

 Another modifi cation is for the user - defi ned subroutine FillFacultyReader() . The
data type of the argument FacultyReader should be changed from SqlDataReader to
OracleDataReader .

 The next modifi cation is for the codes inside the Insert button Click event procedure
in the Faculty Form window.

6.7.5 Modify the Faculty Insert String
and Insertion Related Codes

 Open the Insert button Click event procedure and perform the modifi cations that are
shown in Figure 6.43 to this procedure.

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. The insert query string is modifi ed based on the requirement of the Oracle database opera-
tions. The major changes are for the VALUE clause, which is to use the colon operator : to
replace the @ symbol before each input parameter.

c06.indd 466c06.indd 466 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

6.7 Insert Data into the Oracle Database Using the Runtime Objects 467

Figure 6.42. Modifi cations to the query codes in the Faculty form.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim cmdString1 As String = "SELECT faculty_id, faculty_name, office, phone, college, title, email FROM Faculty "
Dim cmdString2 As String = "WHERE faculty_name =: facultyName"
Dim cmdString As String = cmdString1 & cmdString2
Dim paramFacultyName As New OracleParameter
Dim FacultyTableAdapter As New OracleDataAdapter
Dim oraCommand As New OracleCommand
Dim oraDataReader As OracleDataReader
Dim oraDataTable As New DataTable
Dim ds As New DataSet()

paramFacultyName.ParameterName = "facultyName"
paramFacultyName.Value = ComboName.Text
oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add(paramFacultyName)
Call ShowFaculty(ComboName.Text)

If ComboMethod.Text = "TableAdapter Method" Then
FacultyTableAdapter.SelectCommand = oraCommand
FacultyTableAdapter.Fill(oraDataTable)

If oraDataTable.Rows.Count > 0 Then
Call FillFacultyTable(oraDataTable)

Else
MessageBox.Show("No matched faculty found!")

End If

oraDataTable.Dispose()
oraDataTable = Nothing
FacultyTableAdapter.Dispose()
FacultyTableAdapter = Nothing

ElseIf ComboMethod.Text = "DataReader Method" Then
oraDataReader = oraCommand.ExecuteReader

If oraDataReader.HasRows = True Then
Call FillFacultyReader(oraDataReader)

Else
MessageBox.Show("No matched faculty found!")

End If
oraDataReader.Close()
oraDataReader = Nothing

Else '---------------------- LINQ To DataSet method is selected
FacultyTableAdapter.SelectCommand = oraCommand
FacultyTableAdapter.Fill(ds, "Faculty")
Dim facultyinfo = From fi In ds.Tables("Faculty").AsEnumerable()

Where fi.Field(Of String)("faculty_name").Equals(ComboName.Text) Select fi
For Each fRow In facultyinfo

txtID.Text = fRow.Field(Of String)("faculty_id")
txtName.Text = fRow.Field(Of String)("faculty_name")
txtTitle.Text = fRow.Field(Of String)("title")
txtOffice.Text = fRow.Field(Of String)("office")
txtPhone.Text = fRow.Field(Of String)("phone")
txtCollege.Text = fRow.Field(Of String)("college")
txtEmail.Text = fRow.Field(Of String)("email")

Next
End If
oraCommand.Dispose()
oraCommand = Nothing

End Sub

cmdSelect Click

A

B
C
D
E
F

Y

G
H
I
J

K
L

M
N

O
P

Q

R
S

T
U

V

W
X

c06.indd 467c06.indd 467 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

468 Chapter 6 Data Inserting with Visual Basic.NET

B. Change the prefi x of all data provider classes from Sql to Oracle , and the prefi x of all data
provider objects from sql to ora , respectively. Steps involved in these modifi cations are B
and C .

D. Change the prefi x of all data provider objects from sql to ora . Steps involved in these
modifi cations are D through H .

 Another modifi cation is for the user - defi ned subroutine procedure InsertParameters() .
Perform the following modifi cations to this subroutine procedure:

A. Change the data type of argument cmd from SqlCommand to OracleCommand .

B. Change the data type of seven input parameters in the Add() method from SqlDbType
to OracleDbType . Also remove the @ symbol before each input parameter

 Your modifi ed subroutine InsertParameters() should match the one that is shown
in Figure 6.44 . All modifi ed codes have been highlighted in bold.

 Before we can run the project to insert data into the database, we need to fi nish the
modifi cations to other forms. Basically, this modifi cation is to change the connection
object, data provider - related classes and objects for all other forms to match to the Oracle
database operations.

6.7.6 Modifi cations to Other Forms

 The following four forms contain the connection object, data provider - related classes, and
objects: Selection, Course, Student, and SP Form. In order to make our project compliable,

Figure 6.43. Modifi cations to the Insertion Codes in the Faculty form.

Private Sub cmdInsert_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdInsert.Click

Dim cmdString As String = "INSERT INTO Faculty (faculty_id,faculty_name,office,phone,college,title,email) " & _
"VALUES (:faculty_id,:faculty_name,:office,:phone,:college,:title,:email)"

Dim FacultyDataAdapter As New OracleDataAdapter
Dim oraCommand As New OracleCommand
Dim pos, intInsert As Integer

InitFacultyInfo()
pos = CheckFacultyInfo()
If pos <> 0 Then

Exit Sub
End If

oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString

InsertParameters(oraCommand)
'FacultyDataAdapter.InsertCommand = oraCommand
'intInsert = FacultyDataAdapter.InsertCommand.ExecuteNonQuery()
intInsert = oraCommand.ExecuteNonQuery()

If intInsert = 0 Then
MessageBox.Show("The data insertion is failed")
Exit Sub

End If

ComboName.Items.Add(txtName.Text) 'reserve faculty name for validation
Call CleanInsert() 'clean up all faculty information
cmdInsert.Enabled = False 'disable the Insert button

End Sub

A

B
C

D
E
F

G

H

cmdInsert Click

c06.indd 468c06.indd 468 4/25/2012 1:57:58 PM4/25/2012 1:57:58 PM

6.7 Insert Data into the Oracle Database Using the Runtime Objects 469

we can modify the related codes in those forms one by one. The codes involved in these
modifi cations are included in the following event procedures:

 • Selection Form

 • The Exit button Click event procedure

 • Course Form

 • The Form_Load() event procedure
 • The Select button Click event procedure
 • The user - defi ned subroutine FillCourseReader()
 • The CourseList SelectedIndexChanged() event procedure
 • The user - defi ned subroutine FillCourseReaderTextBox()

 • Student Form

 • Imports namespaces
 • The Form_Load() event procedure
 • The user - defi ned subroutine BuildCommand()

 • SP Form

 • The Form_Load() event procedure
 • The Select button Click event procedure

 Let ’ s do the modifi cations one by one starting from the Selection Form.

6.7.6.1 Modify the Codes in the Selection Form

 Open the Exit button Click event procedure in the Selection Form, and change the code
line sqlConnection.Close() to oraConnection.Close() .

6.7.6.2 Modify the Codes in the Course Form

 Open the Form_Load event procedure of the Course Form. Change the connection object
name from the sqlConnection to the oraConnection . Your fi nished modifi cation for this
connection object should match the one that is shown below:

If oraConnection.State < > ConnectionState.Open Then

 Modifi cation to the Select button ’ s Click event procedure in the Course form is to
change the joined table query string. Change the joint query ON clause from

Figure 6.44. The modifi ed codes for the subroutine InsertParameters().

Private Sub InsertParameters(ByRef cmd As OracleCommand)

cmd.Parameters.Add("faculty_id", OracleDbType.Char).Value = txtID.Text
cmd.Parameters.Add("faculty_name", OracleDbType.Char).Value = txtName.Text
cmd.Parameters.Add("office", OracleDbType.Char).Value = txtOffice.Text
cmd.Parameters.Add("phone", OracleDbType.Char).Value = txtPhone.Text
cmd.Parameters.Add("college", OracleDbType.Char).Value = txtCollege.Text
cmd.Parameters.Add("title", OracleDbType.Char).Value = txtTitle.Text
cmd.Parameters.Add("email", OracleDbType.Char).Value = txtEmail.Text

End Sub

FacultyForm InsertParameters

c06.indd 469c06.indd 469 4/25/2012 1:57:59 PM4/25/2012 1:57:59 PM

470 Chapter 6 Data Inserting with Visual Basic.NET

ON (Course.faculty_id LIKE Faculty.faculty_id) AND (Faculty.faculty_name LIKE @name)

 to

ON (Course.faculty_id = Faculty.faculty_id) AND (Faculty.faculty_name = : name)

 Change the prefi x of all data provider - related classes from Sql to Oracle , and the
prefi x of all data provider related objects from sql to ora in this event procedure. Change
the data type of the dynamic parameter @name in the Add() method from SqlDbType
to OracleDbType , and remove the @ operator before the name .

 Modifi cation to the user - defi ned subroutine FillCourseReader() is to change the data
type of argument CourseReader from the SqlDataReader to OracleDataReader .

 Modifi cations to the CouseList SelectedIndexChanged() event procedure include the
following items:

 • Replace the LIKE @courseid in the query string cmdString2 with = : courseid .

 • Change the data type of the dynamic parameter @courseid in the Add() method from
SqlDbType to OracleDbType , and remove the @ operator before the courseid .

 • Change the prefi x for all data classes and objects from Sql to Oracle , and from sql to ora ,
respectively.

 • Change data type of the argument CourseReader in the user - defi ned subroutine
FillCourseReaderTextBox() from SqlDataReader to OracleDataReader .

6.7.6.3 Modify the Codes in the Student Form

 Modifi cations to this form include the following items:

 • Change the connection object from sqlConnection to oraConnection in the Form_Load
event procedure.

 • Comment out the code line cmdObj.Connection=sqlConnection in the user - defi ned sub-
routine BuildCommand() .

6.7.6.4 Modify the Codes in the SP Form

 Modifi cations to this form include the following items:

 • Change the connection object from sqlConnection to oraConnection in the Form_Load
event procedure.

 • Comment out the code line sqlCmdStudentCourse.Connection=sqlConnection in the
Select button Click event procedure.

 Now we have fi nished all modifi cations to our project OracleInsertRTObject , nd now
we can run the project to test the data insertion to the Oracle database. A completed
project OracleInsertRTObject can be found in the folder DBProjects\Chapter 6 that is
located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

 Next, let ’ s discuss how to insert data into the different databases using the stored
procedure method. We will use two typical databases, SQL Server and Oracle databases,
to illustrate how to insert records into these two kinds of databases.

c06.indd 470c06.indd 470 4/25/2012 1:57:59 PM4/25/2012 1:57:59 PM

6.8 Insert Data into the Database Using Stored Procedures 471

6.8 INSERT DATA INTO THE DATABASE USING
STORED PROCEDURES

 In this section, we discuss how to insert data into the database using the stored procedures.
We provided a very detailed introduction to the stored procedures and illustrated how
to use this method to perform the data query for the Student form and Student table in
Section 5.19.8 in Chapter 5 . Refer to that part to get more detailed descriptions about
the stored procedures.

 We try to use the Course form and Course table to illustrate how to insert a new
course record based on the selected faculty into the Course data table in this part. First,
we discuss how to insert a new record into the Course table in the SQL Server database,
and then we try to perform the similar function for the Oracle database. Some readers
may have noted that we spent a lot of time to modify the codes in the Course form in
the last project OracleInsertRTObject , but we did not use that form in that project. The
reason for this is that we will use that Course form to illustrate inserting data into the
Oracle database in the next section.

6.8.1 Insert Data into the SQL Server Database
Using Stored Procedures

 To save time and space, we can modify the project SQLInsertRTObject to create a new
project named SQLInsertRTObjectSP and use the Course form window to perform the
data insertion using the stored procedures. Recall that when we developed that project,
an Insert button is added into the Course form window. We can use this button to trigger
the data insertion function using the stored procedures. Copy and paste the existing
project SQLInsertRTObject to the folder C:\Chapter 6 and rename it to our new project
SQLInsertRTObjectSP . Refer to Section 6.2.1 to perform renaming and modifi cations to
the project namespaces and related project fi les.

 The operational procedure of this course data insertion is: as the project runs, after
the user has fi nished the correct login process and selected the item Course Information
from the Selection form, the Course form window will be displayed. The form allows users
to enter one new course record represented by seven pieces of course information into
the appropriate textboxes. By clicking on the Insert button, a new course record related
to the selected faculty member is inserted into the database.

 Let ’ s fi rst develop the codes for our SQL Server stored procedures.

6.8.1.1 Develop Stored Procedures of SQL Server Database

 Recall that when we built our sample database CSE_DEPT in Chapter 2 , there is no
faculty name column in the Course table, and the only relationship that exists between
the Faculty and the Course tables is the faculty_id , which is a primary key in the Faculty
table but a foreign key in the Course table. As the project runs and the Course form
window is shown up, the user needs to insert new course data based on the faculty name,
not the faculty ID. So for this new course data insertion, we need to perform two queries
with two tables: fi rst, we need to make a query to the Faculty table to get the faculty_id
based on the faculty name selected by the user, and, second, we can insert a new course

c06.indd 471c06.indd 471 4/25/2012 1:57:59 PM4/25/2012 1:57:59 PM

472 Chapter 6 Data Inserting with Visual Basic.NET

record based on the faculty_id we obtained from our fi rst query. These two queries can
be combined into a single stored procedure.

 Compared with the stored procedure, another solution to avoid performing two
queries is to use a joined table query to combine these two queries together to complete
a course query, as we did for the Course form in Section 5.19.6 in Chapter 5 . However,
it is more fl exible and convenient to use stored procedures to perform multiple queries,
especially when the queries are for multiple different data tables.

 Now let ’ s develop our stored procedures to combine these two queries to complete
this data insertion. The stored procedure is named dbo.InsertFacultyCourse .

 Open Visual Studio.NET and open the Server Explorer window, and click on the
plus - symbol icon that is next to CSE_DEPT database folder to connect to our database
if this database was added into the Server Explorer before. Otherwise, you need to right -
 click on the Data Connections folder to add and connect to our database. Refer to
Section 5.4.1 in Chapter 5 for the detailed information about adding and connecting the
database.

 Right - click on the Stored Procedures folder and select the Add New Stored
Procedure item to open the Add Procedure wizard, and then enter the codes that are
shown in Figure 6.45 into this new procedure.

 The function of this stored procedure is:

A. All input parameters are listed in this part. The @FcaultyName is selected by the user
from the Faculty Name combo box, and all other input parameters should be entered by
the user to the associated textbox in the Course form window.

B. A local variable @FacultyID is declared, and it is used to hold the returned query result,
faculty_id , from the execution of the fi rst query to the Faculty table in C .

C. The fi rst query is executed to pick up the matched faculty_id from the Faculty table based
on the fi rst input parameter, @FacultyName .

D. The second query is to insert a new course record into the Course table. The last parameter
in the VALUES parameter list is the @FacultyID , which is obtained from the fi rst query.

Figure 6.45. The codes for the stored procedure dbo.InsertFacultyCourse.

A

B
C

D

c06.indd 472c06.indd 472 4/25/2012 1:57:59 PM4/25/2012 1:57:59 PM

6.8 Insert Data into the Database Using Stored Procedures 473

 The coding process for this stored procedure is simple and easy to be understood.
One point you should know is the order of parameters in the VALUES parameter list.
This order must be identical with the column order in the Course table. Otherwise, an
error may be encountered when this stored procedure is executed.

 Go to the File|Save StoredProcedure1 menu item to save this stored procedure.
Now let ’ s test this stored procedure in the Server Explorer environment to make sure
that it works fi ne.

 Right - click on our newly stored procedure dbo.InsertFacultyCourse from the
Server Explorer window, and click on the Execute item from the pop - up menu to open
the Run Stored Procedure wizard. Enter the input parameters into the associated box for
a new course record, and your fi nished parameters wizard is shown in Figure 6.46 .

 Click on the OK button to run this stored procedure. The running result is displayed
in the Output window at the bottom, which is shown in Figure 6.47 .

 To confi rm this data insertion, open the Course table by fi rst expanding the Tables
folder in the Server Explorer window and then right - clicking on the Course folder, and
select the item Show Table Data . Browse this table to the last row, and you can fi nd that
a new course, CSE-538: Advanced Robotics , has been inserted into this table. OK , our
stored procedure is successful!

Figure 6.46. The Run Stored Procedure wizard.

Figure 6.47. The running result of the stored procedure.

c06.indd 473c06.indd 473 4/25/2012 1:57:59 PM4/25/2012 1:57:59 PM

474 Chapter 6 Data Inserting with Visual Basic.NET

 Next, we need to develop the codes in Visual Basic.NET environment to call this
stored procedure to insert a new course record into the database from our user
interface.

6.8.1.2 Develop Codes to Call Stored Procedures to Insert

Data into the Course Table

 The coding process for this data insertion is divided into three steps: the data validation
before the data insertion, data insertion using the stored procedure, and the data valida-
tion after the data insertion. The purpose of the fi rst step is to confi rm that all inserted
data stored in each associated textbox should be complete and valid. In other words, all
textboxes should be nonempty. The third step is used to confi rm that the data insertion
is successful; in other words, the newly inserted data should be in the desired table in the
database and can be read back and displayed in the form window. Let ’ s begin with the
coding process for the fi rst step now.

6.8.1.2.1 Validate Data Before the Data Insertion Two user - defi ned procedures,
InitCourseInfo() and CheckCourseInfo() , are developed in this part to perform the data
validation before the data insertion action. Open the code window of the Course form
and enter the codes shown in Figure 6.48 into this window to create a user - defi ned sub-
routine procedure InitCourseInfo() and a user - defi ned function CheckCourseInfo() .

 Let ’ s take a look at the following pieces of codes to see how they work.

A. A For loop is used to create a new textbox array.

B. The content of each textbox is assigned to the Text property of the associated textbox in
that textbox array initialized in step A .

Figure 6.48. The codes for user - defi ned subroutine and function.

Private Sub InitCourseInfo()

For pos As Integer = 0 To 5 'Initialize the object array
CourseTextBox(pos) = New TextBox

Next pos

CourseTextBox(0).Text = txtID.Text
CourseTextBox(1).Text = txtCourse.Text
CourseTextBox(2).Text = txtSchedule.Text
CourseTextBox(3).Text = txtClassRoom.Text
CourseTextBox(4).Text = txtCredits.Text
CourseTextBox(5).Text = txtEnroll.Text

End Sub

Private Function CheckCourseInfo() As Integer
Dim pos As Integer

For pos = 1 To 5
If CourseTextBox(pos).Text = String.Empty Then

MessageBox.Show("Fill all Course Information box, enter a NULL for blank column")
Return 1
Exit Function

End If
Next
Return 0

End Function

A

B

C

D

CourseForm InitCourseInfo

c06.indd 474c06.indd 474 4/25/2012 1:57:59 PM4/25/2012 1:57:59 PM

6.8 Insert Data into the Database Using Stored Procedures 475

C. To check each textbox, a For loop is utilized to scan the CourseTextBox array. A warning
message would be displayed, and the function returns a nonzero value to the calling pro-
cedure to indicate that this checking is failed if any textbox is empty.

D. Otherwise, a zero is returned to indicate that this checking is successful.

 Now let ’ s do our coding process for the data validation before the data insertion.
 This data validation can be performed by calling one subroutine InitCourseInfo()

and one function CheckCourseInfo() , which we have discussed above, in the Insert but-
ton ’ s Click event procedure. Open the Insert button ’ s Click event procedure and enter
the codes that are shown in Figure 6.49 into this event procedure.

 The function of this piece of codes is straightforward and easy to be understood. First,
the subroutine InitCourseInfo() is called to set up one - to - one relationship between each
item in the CourseTextBox() array and each associated textbox that stores a piece of
course information. Next, the function CheckCourseInfo() is executed to make sure that
the new course information is completed and valid; in other words, no textbox is empty.

 Now let ’ s develop and complete the codes to call the stored procedure to perform
the new course data insertion.

6.8.1.2.2 Develop Codes to Call Stored Procedures Open the Insert button ’ s Click
event procedure and add the codes that are shown in Figure 6.50 into this event
procedure.

 The codes we developed in the last section have been highlighted with a gray back-
ground. Let ’ s take a look at those new added codes to see how they work.

A. The query string is assigned with the name of the stored procedure we developed in Section
 6.8.1.1 in this chapter. One of the most important points to call stored procedures is that
the query string must be exactly identical with the name of the stored procedure to be
called. The Visual Basic.NET project could not fi nd the stored procedures, and a timeout
error would be encountered if the query string does not match the name of the stored
procedure.

B. Some other components and variables used in this procedure are declared here. The local
integer variable intInsert is used to hold the returned value of execution of the
ExecuteNonQuery() method. The SQL Command object sqlCommand is created here,
too.

C. The Command object is initialized with the suitable components. Two important points to
be noted are CommandType and CommandText. The former must be assigned with the

Figure 6.49. The fi rst coding part for the Insert button ’ s event procedure.

Private Sub cmdInsert_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdInsert.Click
Dim pos As Integer

InitCourseInfo()
pos = CheckCourseInfo()

If pos <> 0 Then
Exit Sub

End If

cmdInsert Click

c06.indd 475c06.indd 475 4/25/2012 1:57:59 PM4/25/2012 1:57:59 PM

476 Chapter 6 Data Inserting with Visual Basic.NET

property of StoredProcedure to indicate that the command type of this Command object
is stored procedures, and a stored procedure will be called when this Command is executed.
The name of the stored procedure must be assigned to the CommandText property of the
Command object to provide the direction for the Visual Basic.NET project.

D. The user - defi ned subroutine InsertParameters() , whose detailed codes are shown in
Figure 6.51 , is executed to fi ll all input parameters into the Parameters collection of the
Command object to fi nish the initialization of the Command object.

E. The ExecuteNonQuery() method of the Command class is executed to call the stored
procedure to perform this new course data insertion.

F. The Command object is cleaned up and released after this data insertion.

G. The ExecuteNonQuery() method will return an integer to indicate whether this calling is
successful or not. The returned value equals to the number of rows or records that have
been successfully added into the database. A zero means that no row or record has been
inserted into the database, and this data insertion has failed. In that case, a warning message
is displayed, and the procedure is exited.

H. After a record has been successfully inserted into the Course table, all six pieces of infor-
mation stored in all textboxes, except the Course ID, are cleaned up to make it ready for
the next data insertion.

I. Also, the Insert button is disabled to avoid multiple insertions of the same data into the
database.

 The detailed codes for the user - defi ned subroutine InsertParameters() are shown in
Figure 6.51 .

Figure 6.50. The modifi cations to the Insert button ’ s Click event procedure.

Private Sub cmdInsert_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdInsert.Click

Dim cmdString As String = "dbo.InsertFacultyCourse"
Dim pos, intInsert As Integer
Dim sqlCommand As New SqlCommand

InitCourseInfo()
pos = CheckCourseInfo()
If pos <> 0 Then

Exit Sub
End If

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.StoredProcedure
sqlCommand.CommandText = cmdString
InsertParameters(sqlCommand)
intInsert = sqlCommand.ExecuteNonQuery()
sqlCommand.Dispose()
sqlCommand = Nothing

If intInsert = 0 Then
MessageBox.Show("The data insertion is failed")
Exit Sub

End If
CleanInsert() 'clean up all course information
cmdInsert.Enabled = False 'disable the Insert button

End Sub

A
B

C

D
E
F

G

H
I

cmdInsert Click

c06.indd 476c06.indd 476 4/25/2012 1:57:59 PM4/25/2012 1:57:59 PM

6.8 Insert Data into the Database Using Stored Procedures 477

Figure 6.51. The codes for the user - defi ned subroutine InsertParameters().

Private Sub InsertParameters(ByRef cmd As SqlCommand)

cmd.Parameters.Add("@FacultyName", SqlDbType.Char).Value = ComboName.Text
cmd.Parameters.Add("@CourseID", SqlDbType.Char).Value = txtID.Text
cmd.Parameters.Add("@Course", SqlDbType.Char).Value = txtCourse.Text
cmd.Parameters.Add("@Schedule", SqlDbType.Char).Value = txtSchedule.Text
cmd.Parameters.Add("@Classroom", SqlDbType.Char).Value = txtClassRoom.Text
cmd.Parameters.Add("@Credit", SqlDbType.Char).Value = txtCredits.Text
cmd.Parameters.Add("@Enroll", SqlDbType.Char).Value = txtEnroll.Text

End Sub

CourseForm InsertParameters

 The function of this subroutine is to assign each piece of information stored in each
textbox to the associated input parameter we defi ned in the stored procedure dbo.
InsertFacultyCourse . One key point of this piece of codes is that the name of each
parameter, which is represented as a string and located at the fi rst argument ’ s position,
must be identical with each input parameter ’ s name we defi ned in the stored procedure.
For example, the name of the parameter @FacultyName used in here must be identical
with the input parameter ’ s name @FacultyName that exist in the input parameter ’ s list
we defi ned at the beginning of the stored procedure dbo.InsertFacultyCourse . A runtime
error would be encountered if a name of parameter is not matched with the associated
parameter ’ s name in the stored procedure as the project runs. Refer to Figure 6.45 for a
detailed list of all parameters ’ names defi ned in the stored procedure.

 Now we have fi nished the coding process for this data insertion operation. Let ’ s run
the project to test the new data insertion using the stored procedures. Click on the Start
Debugging button to start the project, enter the suitable username and password, such
as jhenry and test , to the LogIn form, and select the Course Information item from the
Selection form to open the Course form window.

 Select the default faculty member Ying Bai from the Faculty Name combobox and
enter the following data into the associated textbox as the information for a new course:

 • CSE-668 Course ID textbox

 • Modern Controls Course Title textbox

 • M-W-F: 9:00 –9:55 AM Schedule textbox

 • TC-309 Classroom textbox

 • 3 Credits textbox

 • 32 Enrollment textbox

 Your fi nished information window should match the one that is shown in Figure 6.52 .
 Click on the Insert button to call the stored procedure to insert this new course

record into the database. Immediately, all textboxes, except the Course ID, are cleaned
up, and the Insert button is disabled after this data insertion. Is our data insertion suc-
cessful? To answer this question, we need to perform the data validation in the next
section.

c06.indd 477c06.indd 477 4/25/2012 1:57:59 PM4/25/2012 1:57:59 PM

478 Chapter 6 Data Inserting with Visual Basic.NET

6.8.1.2.3 Validate Data After the Data Insertion To confi rm and validate this new
course record insertion, we can use the Select button ’ s Click event procedure to retrieve
this new course record from the database and display it in this Course form.

 Select the default faculty member Ying Bai from the Faculty Name combo box and
click on the Select button. All courses taught by this faculty are displayed in the CourseList
box. The last item, CSE-668 , is the course we just added into the Course table in the last
section. Click on that course_id , and all pieces of related course information are dis-
played in six textboxes, which is shown in Figure 6.53 . This is the evidence that our data
insertion using the stored procedure is successful!

 A completed project SQLInsertRTObjectSP that includes the data insertion using
the stored procedure can be found in the folder DBProjects\Chapter 6 located at the
Wiley ftp site (refer to Figure 1.2 in Chapter 1).

6.8.2 Insert Data into the Oracle Database Using Stored
Procedures

 There is no signifi cant difference between inserting data into the SQL Server database
and Oracle database using the stored procedures. One of the most important differences
is the structure of the stored procedure. An Oracle package must be used to contain the
stored procedures in the Oracle database if the stored returned needs to return any data.
A typical example of using an Oracle package is that a stored procedure contains a
SELECT statement and needs to return the query result. A normal Oracle stored proce-
dure is needed if the query does not need to return any data, such as the Insert, Update,
and Delete queries.

Figure 6.52. The running status of the Course Form window.

c06.indd 478c06.indd 478 4/25/2012 1:57:59 PM4/25/2012 1:57:59 PM

6.8 Insert Data into the Database Using Stored Procedures 479

 In this section, we try to use the Course form and Course table to discuss how to
insert a new course record into the Course table using the stored procedure in Oracle
database environment. Because the Insert query does not need to return any data, a
normal Oracle stored procedure is good enough for this application.

 To illustrate how to insert data into the Oracle database using stored procedures, we
will utilize the following three steps:

1. Develop an Oracle stored procedure to perform inserting data into the Oracle database

2. Develop the codes to call the stored procedure developed in step 1 to complete the data
insertion function

3. Validate the data insertion using the Course form window

 To save time and space, we modify the project OracleInsertRTObject we developed
in Section 6.7 in this chapter and create a new project named OracleInsertRTObjectSP .
Refer to Section 6.2.1 to get more detailed information about how to rename a current
project to create a new project.

 Now let ’ s start from step 1 to develop an Oracle stored procedure.

6.8.2.1 Develop Stored Procedures in Oracle Database

 A very detailed discussion about creating and manipulating Oracle packages and stored
procedures is provided in Section 5.20.7 in Chapter 5 . Refer to that section to get more
detailed information for creating Oracle ’ s stored procedures.

 The topic we are discussing in this section is to insert data into the database, so no
returned data is needed for this section. Therefore, we only need to create stored proce-
dures in Oracle database, not package, to perform the data insertion functionality.

Figure 6.53. The data validation process.

c06.indd 479c06.indd 479 4/25/2012 1:57:59 PM4/25/2012 1:57:59 PM

480 Chapter 6 Data Inserting with Visual Basic.NET

 As discussed in Section 5.20.7 in Chapter 5 , different methods can be used to create
Oracle ’ s stored procedures. In this section, we will use the Object Browser page provided
by Oracle Database 11g XE to create our stored procedures.

 Open the Oracle Database 11g XE home page by going to start|All Programs
|Oracle Database 11g Express Edition|Get Started items. Finish the APEX login
process by entering the correct username and password (in our case, it is SYSTEM and
reback). Log in to the APEX Workspace using the CSE_DEPT as the names for both
Workspace and Username, and reback as the Password. Click on the SQL Workshop
and then the Object Browser icon to open the Object Browser page. Select the
Procedures from the list and click on the Create button to open the Create Database
Object wizard. Click on the Procedure to open the Create Procedure wizard. The opened
wizard is shown in Figure 6.54 .

 Enter InsertFacultyCourse into the Procedure Name box and keep the Include
Argument checkbox checked, and click on the Next button to go to the next wizard.

 The next wizard allows us to enter all input parameters. For this stored procedure,
we need to perform two queries, so we have seven input parameters. The fi rst query is to
get the faculty_id from the Faculty table based on the faculty name that is an input and
selected by the user from the Faculty Name combo box control from the Course form
window. The second query is to insert a new course record that contains six pieces of
information related to a new course into the Course table based on the faculty_id that
is obtained from the fi rst query. The seven input parameters are: Course ID, Course Title,
Credit, Classroom, Schedule, Enrollment, and Faculty Name. The last input parameter

Figure 6.54. The opened Create Procedure wizard.

c06.indd 480c06.indd 480 4/25/2012 1:57:59 PM4/25/2012 1:57:59 PM

6.8 Insert Data into the Database Using Stored Procedures 481

Faculty Name is used by the fi rst query, and the fi rst six input parameters are used by the
second query.

 Enter those input parameters one by one into the argument box. The point is that
the data type of each input parameter must be identical with the data type of each data
column used in the Course table. Refer to Section 2.11.5 in Chapter 2 to get a detailed
list of data types used for those data columns in the Course data table.

 For the Input/Output selection of the parameters, select IN for all seven parameters
since no output is needed for this data insertion query.

 Your fi nished argument list should match the one that is shown in Figure 6.55 .
 Click on the Next button to go to the procedure defi nition page. Enter the codes,

which are shown in Figure 6.56 , into this new procedure as the body of the procedure
using the language called Procedural Language Extension for SQL or PL - SQL. Then click
on the Next and the Finish buttons to confi rm creating this procedure. Your fi nished
stored procedure should match the one that is shown in Figure 6.57 .

 Seven input parameters are listed at the beginning of this procedure with the keyword
IN to indicate that these parameters are inputs to the procedure. The intermediate param-
eter faculty_id is obtained from the fi rst query in this procedure from the Faculty table.
The data type of each parameter is indicated after the keyword IN , and it must be identi-
cal with the data type of the associated data column in the Course table. An IS command
is attached after the procedure header to indicate that an intermediate query result,
faculty_id , will be held by a local variable facultyID declared later.

Figure 6.55. The fi nished argument list.

c06.indd 481c06.indd 481 4/25/2012 1:57:59 PM4/25/2012 1:57:59 PM

482 Chapter 6 Data Inserting with Visual Basic.NET

Figure 6.56. The stored procedure body.

Figure 6.57. The completed stored procedure.

c06.indd 482c06.indd 482 4/25/2012 1:57:59 PM4/25/2012 1:57:59 PM

6.8 Insert Data into the Database Using Stored Procedures 483

 Two queries are included in this procedure. The fi rst query is used to get the faculty_
id from the Faculty table based on the input parameter FacultyName , and the second
query is to insert seven input parameters into the Course table based on the faculty_id
obtained from the fi rst query. A semicolon must be attached after each PL - SQL statement
and after the command end .

 One important issue is that you need to create one local variable facultyID and attach
it after the IS command as shown in Figure 6.57 . This coding line has been highlighted
with the black color. This local variable is used to hold the returned faculty_id from the
execution of the fi rst query.

 Another important issue is for the input parameters or arguments in an INSERT
VALUES command, which is the order of those parameters or arguments. This order must
be identical with the order of the columns in the associated data table. For example, in
the Course table, the order of the data columns is: course_id , course , credit , classroom ,
schedule , enrollment , and faculty_id . Accordingly, the order of input parameters placed
in the INSERT VALUES argument list must be identical with the data columns ’ order
displayed above.

 To make sure that this procedure works properly, we need to compile it fi rst. Click
on the Save & Compile button to compile and check our procedure. A successful com-
pilation message should be displayed if our procedure is a bug - free stored procedure.

 Close the Oracle Database 11g Express Edition by clicking on the Close button.
Next, we need to develop our codes in Visual Basic.NET project to call this stored pro-
cedure to perform the data insertion function.

6.8.2.2 Develop Codes to Call Stored Procedures to Insert Data

into the Course Table

 Basically, the codes to be developed in this section are very similar to those we developed
in Section 6.8.1.2 . The function of this piece of codes is to allow users to enter seven pieces
of information related to a new course into the Course table. In the following sections,
we only emphasize and highlight the important and different parts of the codes for the
Oracle database.

6.8.2.2.1 Validate Data Before the Data Insertion The codes to be developed in
this section are identical with those we did in Section 6.8.1.2.1 . You can copy the
codes in Figures 6.48 and 6.49 and paste them to the code window of the Course form
and the Insert button Click event procedure in our current project. In Section 6.8.2 ,
we have modifi ed the project OracleInsertRTObject and created a new project
OracleInsertRTObjectSP . Now open this new project and the code window of the Course
Form. Double - check the following two Imports commands at the top of this code window:

Imports Devart.Data
 Imports Devart.Data.Oracle

 Next, let ’ s fi nish the codes for the Insert button Click event procedure to call the
stored procedure to perform the course record insertion.

6.8.2.2.2 Develop Codes to Call Stored Procedures The main coding job to call
the stored procedure is made inside the Insert button ’ s Click event procedure in the

c06.indd 483c06.indd 483 4/25/2012 1:58:00 PM4/25/2012 1:58:00 PM

484 Chapter 6 Data Inserting with Visual Basic.NET

Course Form window. The codes for this event procedure are very similar to those we
did for the same event procedure in the last project SQLInsertRTObjectSP . Open that
project and that event procedure, and copy the codes from that procedure and paste them
into our Insert button ’ s Click event procedure. Also, copy the user - defi ned subroutine
procedures InsertParameters() and CleanInsert() , and paste them into our current
Course code window.

 Some code modifi cations are made for the Insert button Click event procedure and
two user - defi ned subroutine procedures to make them work for the Oracle database. The
modifi ed codes in the Insert button Click event procedure have been highlighted in bold
and shown in Figure 6.58 . Let ’ s give a detailed discussion for those modifi cations one - by -
 one based on the steps defi ned in Figure 6.58 .

 First, let ’ s concentrate on the modifi cations for the Insert button ’ s event procedure.

A. Change the content of the query string, which is the name of the stored procedure, to the
procedure ’ s name that we defi ned when we created this stored procedure using the Object
Browser page in Oracle Database 11g XE in Section 6.8.2.1 .

B. Change the prefi x before the Oracle classes and objects to Oracle and ora .

C. Change the prefi x before all Oracle objects from sql to ora . Steps involved in this change
are from C to I .

 Now, let ’ s take care of the modifi cations to the fi rst user - defi ned subroutine procedure
InsertParameters() . All modifi cations have been highlighted in bold and shown in Figure
 6.59 .

Figure 6.58. Modifi ed codes for the Insert button ’ s event procedure.

Private Sub cmdInsert_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdInsert.Click

Dim cmdString As String = "InsertFacultyCourse"
Dim pos, intInsert As Integer
Dim oraCommand As New OracleCommand

InitCourseInfo()
pos = CheckCourseInfo()

If pos <> 0 Then
Exit Sub

End If

oraCommand.Connection = LogInForm. oraConnection
oraCommand.CommandType = CommandType.StoredProcedure
oraCommand.CommandText = cmdString
InsertParameters(oraCommand)
intInsert = oraCommand.ExecuteNonQuery()
oraCommand.Dispose()
oraCommand = Nothing

If intInsert = 0 Then
MessageBox.Show("The data insertion is failed")
Exit Sub

End If

cmdCancel.PerformClick() 'clean up all course information
cmdInsert.Enabled = False 'disable the Insert button

End Sub

A

B

C
D
E
F
G
H
I

cmdInsert Click

c06.indd 484c06.indd 484 4/25/2012 1:58:00 PM4/25/2012 1:58:00 PM

6.8 Insert Data into the Database Using Stored Procedures 485

Figure 6.59. Modifi cations to the subroutine InsertParameters().

Private Sub InsertParameters(ByRef cmd As OracleCommand)

cmd.Parameters.Add("CourseID", OracleDbType.VarChar).Value = txtID.Text
cmd.Parameters.Add("Course", OracleDbType.VarChar).Value = txtCourse.Text
cmd.Parameters.Add("Credit", OracleDbType.Number).Value = Convert.ToInt16(txtCredits.Text)
cmd.Parameters.Add("Classroom", OracleDbType.Char).Value = txtClassRoom.Text
cmd.Parameters.Add("Schedule", OracleDbType.VarChar).Value = txtSchedule.Text
cmd.Parameters.Add("Enroll", OracleDbType.Number).Value = Convert.ToInt32(txtEnroll.Text)
cmd.Parameters.Add("FacultyName", OracleDbType.VarChar).Value = ComboName.Text

End Sub

CourseForm InsertParameters

 The function of this subroutine is to assign each piece of information stored in each
textbox to the associated input parameter we defi ned in the Oracle ’ s stored procedure
InsertFacultyCourse . One key point is that the order of these seven input parameters,
which is represented from the top to the bottom, must be identical with the order of the
input parameters we defi ned in the stored procedure. For example, the order of the input
parameters in the stored procedure is: CourseID , Course , Credit , Classroom , Schedule ,
Enroll , and FacultyName . The order to assign those parameters in the user - defi ned sub-
routine procedure InsertParameters() (refer to Figure 6.59) must be identical with the
order listed above. A runtime error would be encountered if the order of those param-
eters is not matched with the order of those input parameters defi ned in the stored pro-
cedure as the project runs. Refer to Figure 6.55 for the order of the seven input parameters
defi ned in the stored procedure.

 The codes in the user - defi ned subroutine CleanInsert() does not need any
modifi cation.

 Now, we have fi nished the coding process for this data insertion operation. Let ’ s run
the project to test the new data insertion using the stored procedures. Click on the Start
Debugging button to start the project, enter the suitable username and password, such
as jhenry and test to the LogIn form, and select the Course Information item from the
Selection form to open the Course form window.

 Keep the default faculty member Ying Bai selected from the Faculty Name combo
box and enter the following data into the associated textbox as the information for a new
course:

 • CSE-668 Course ID textbox

 • Modern Controls Course Title textbox

 • M-W-F: 9:00 –9:55 AM Schedule textbox

 • TC-309 Classroom textbox

 • 3 Credits textbox

 • 30 Enrollment textbox

 Your fi nished information window should match the one that is shown in Figure 6.60 .
 Click on the Insert button to call the stored procedure to insert this new course

record into the database. Immediately, all six textboxes become empty, and the Insert

c06.indd 485c06.indd 485 4/25/2012 1:58:00 PM4/25/2012 1:58:00 PM

486 Chapter 6 Data Inserting with Visual Basic.NET

button is disabled after this data insertion. Is our data insertion successful? To answer
this question, we need to perform the data validation in the next section.

6.8.2.2.3 Validate Data After the Data Insertion To confi rm and validate this data
insertion, we can use the Select button Click event procedure to retrieve this newly
inserted course record and display it in the Course form window.

 Keep the faculty member Ying Bai selected from the Faculty Name combo box and
click on the Select button to try to retrieve the newly inserted course record and display
it in this Course form window. All courses taught by the selected faculty are displayed in
the CourseList box. The last item is the course we just added into the Course table in the
last section. Click on that course_id , and all six pieces of information related to that new
course_id are displayed in this form, as shown in Figure 6.61 . This is the evidence that
our data insertion using the stored procedure is successful!

 Another way to confi rm this data insertion is to open our sample Oracle database
CSE_DEPT and the Course table. A completed project OracleInsertRTObjectSP that
includes the data insertion using the Oracle stored procedure can be found in the folder
DBProjects\Chapter 6 located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

6.9 INSERT DATA INTO THE DATABASE USING THE LINQ
TO DATASET METHOD

 As we discussed in Chapter 4 , Language Integrated Query (LINQ) is a powerful method
provided by Visual Studio.NET and the .NET Framework that bridges the gap between
the world of objects and the world of the data. In Visual Studio.NET, you can write LINQ
queries in Visual Basic.NET with SQL Server databases, XML documents, ADO.NET

Figure 6.60. The running status of the Course Form window.

c06.indd 486c06.indd 486 4/25/2012 1:58:00 PM4/25/2012 1:58:00 PM

6.9 Insert Data into the Database Using the LINQ to DataSet Method 487

DataSets, and any collection of objects that supports IEnumerable or the generic
IEnumerable(Of T) interface.

 LINQ can be considered as a pattern or model that is supported by a collection of
so - called Standard Query Operator methods we discussed in Section 4.1 in Chapter 4 ,
and all those Standard Query Operator methods are static methods defi ned in either
IEnumerable or IQueryable classes in the namespace System.Linq . The data operated
in LINQ query are object sequences with the data type of either IEnumerable(Of T) or
IQueryable(Of T), where T is the actual data type of the objects stored in the sequence.

 LINQ is composed of three major components: LINQ to Objects, LINQ to ADO.
NET, and LINQ to XML, where LINQ to ADO.NET contains LINQ to DataSet, LINQ
to SQL, and LINQ to Entities. Because there is no LINQ to Oracle model available,
therefore, we will concentrate our discussion on inserting data into the SQL Server data-
base using the LINQ to SQL model.

 Generally, the popular method of inserting a new record into the database using the
LINQ query follows three steps listed below:

1. Create a new object that includes the column data to be submitted.

2. Add the new row object to the LINQ to SQL Table collection associated with the target
table in the database.

3. Submit the change to the database.

 Two ways can be used to add a new row object into the table: (1) using the Add()
method and (2) using the InsertOnSubmit() method. However, both methods must be
followed with the SubmitChanges() method to complete this new record insertion. In
the following section, let ’ s start with the data insertion using the LINQ to SQL queries
to illustrate the second method.

Figure 6.61. The data validation process.

c06.indd 487c06.indd 487 4/25/2012 1:58:00 PM4/25/2012 1:58:00 PM

488 Chapter 6 Data Inserting with Visual Basic.NET

6.9.1 Insert Data Into the SQL Server Database
Using the LINQ to SQL Queries

 As we discussed in Section 4.6 in Chapter 4 , to use LINQ to SQL to perform data queries,
we must convert our relational database to the associated entity classes using either
SQLMetal or Object Relational Designer tools. Also, we need to set up a connection
between our project and the database using the DataContext object. Refer to Section
 4.6.1 in Chapter 4 to get a clear picture in how to create entity classes and add the
DataContext object to connect to our sample database CSE_DEPT.mdf . To perform data
insertion using LINQ to SQL model, refer to Sections 4.6.2 and 4.6.2.2 in Chapter 4 to
get a detailed description and the coding process of a real project QueryLINQSQL , which
is a Console Application, to insert a new record into the Faculty table in our sample
database CSE_DEPT.

6.10 CHAPTER SUMMARY

 Five popular data insertion methods are discussed and analyzed with three different
databases — Microsoft Access, SQL Server, and Oracle in this chapter:

1. Using TableAdapter ’ s DBDirect methods TableAdapter.Insert() method

2. Using the TableAdapter’s Update() method to insert new records that have already been
added into the DataTable in the DataSet

3. Using the Command object ’ s ExecuteNonQuery() method

4. Using LINQ to SQL query method

5. Using stored procedures method

 Method 1 is developed using the Visual Studio.NET design tools and wizards, and it
allows users to directly access the database and execute the TableAdapter ’ s methods, such
as TableAdapter.Insert() and TableAdapter.Update() to manipulate data in the data-
base without requiring DataSet or DataTable objects to reconcile changes in order to
send updates to a database. As we mentioned at the beginning of this chapter, inserting
data into a table in the DataSet is different with inserting data into a table in the database.
If you are using the DataSet to store data in your applications, you need to use the
TableAdapter.Update() method since the Update() method can trigger and send all
changes (updates, inserts, and deletes) to the database.

 A good habit is to try to use the TableAdapter.Insert() method when your applica-
tion uses objects to store data (e.g., you are using textboxes to store your data), or when
you want fi ner control over creating new records in the database.

 Method 2 allows users to insert new data into a database with two steps. First, the
new record can be added into the data table that is located in the DataSet, and second,
the TableAdapter.Update() method can be executed to update the whole table in the
DataSet to the associated table in the database.

 Method 3 is a runtime object method, and this method is more fl exible and conve-
nient, and it allows users to insert data into multiple data tables with the different
functionalities.

c06.indd 488c06.indd 488 4/25/2012 1:58:00 PM4/25/2012 1:58:00 PM

Homework 489

 Method 4 is a powerful technique coming with .NET Framework, Visual Studio.NET,
and LINQ that were released by Microsoft in 2008.

 Method 5 uses stored procedures to replace the general query functions, and this
method promises users with more powerful controllability and fl exibility on data inser-
tions, especially for data insertions with multiple queries to multiple tables.

 This chapter is divided into two parts. Part I provides a detailed discussion and analy-
sis of inserting data into three different databases using the Visual Studio.NET design
tools and wizards. It is simple and easy to develop data insertion project with these tools
and wizards. The disadvantage of using these tools and wizards is that the data can only
be inserted to limited destinations, for example, a certain data table. Part II presents the
runtime object method to improve the effi ciency of the data insertion and provides more
fl exibility in data insertion.

 Seven real projects are provided in this chapter to give readers a clear and direct
picture in developing professional data insertion applications in Visual Basic.NET
environment.

HOMEWORK

I. True/False Selections

 ____ 1. Three popular data insertion methods are: the TableAdapter.Insert(), TableAdapter.
Update(), and ExecuteNonQuery() method of the Command class.

 ____ 2. Unlike the Fill() method, a valid database connection must be set before a new data can be
inserted in the database.

 ____ 3. One can directly insert new data or new records into the database using the TableAdapter.
Update() method.

 ____ 4. When executing an INSERT query, the order of the input parameters in the VALUES list
can be different with the order of the data columns in the database.

 ____ 5. To insert data into the Oracle database using stored procedures, an Oracle Package must
be developed to include stored procedures.

 ____ 6. The difference between the Visual Basic collection class and the .NET Framework collection
class is that the two collections start with different indexes: the former starts from 1, but the
latter starts from 0.

 ____ 7. When performing the data insertion, the same data can be inserted into the database mul-
tiple times.

 ____ 8. To insert data into the database using the TableAdapter.Update() method, the new data
should be fi rst inserted into the table in the DataSet, and then the Update() method is
executed to update that new data into the table in the database.

 ____ 9. To insert data into the SQL Server database using the stored procedures, one can create
and test the new stored procedure in the Server Explorer window.

 ___ 10. To call stored procedures to insert data into a database, the parameters ’ names must be
identical with those names of the input parameters defi ned in the stored procedures.

II. Multiple Choices

1. To insert data into the database using the TableAdapter.Insert() method, one needs to use the
________ to build the _________.

c06.indd 489c06.indd 489 4/25/2012 1:58:00 PM4/25/2012 1:58:00 PM

490 Chapter 6 Data Inserting with Visual Basic.NET

 a. Data Source, Query Builder
 b. TableAdapter Query Confi guration Wizard, Insert query
 c. Runtime object, Insert query
 d. Server Explorer, Data Source

2. To insert data into the database using the TableAdapter.Update() method, one needs fi rst to
add new data into the _______, and then update that data into the database.

 a. Data table
 b. Data table in the database
 c. DataSet
 d. Data table in the DataSet

3. To insert data into the database using the TableAdapter.Update() method, one can update
____________.

 a. One data row only
 b. Multiple data rows
 c. The whole data table
 d. Either of above

4. Because ADO.NET provides a disconnected mode to the database, to insert a new record into
the database, a valid ________ must be established.

 a. DataSet
 b. TableAdapter
 c. Connection
 d. Command

5. The _______ operator should be used as an assignment operator for the WHERE clause with
a dynamic parameter for a data query in Oracle database.

 a. = :
 b. LIKE
 c. =
 d. @

6. To confi rm the stored procedure built in the Object Browser page in Oracle database, one can
_______ the stored procedure to make sure it works.

 a. Build
 b. Test
 c. Debug
 d. Compile

7. To confi rm the stored procedure built in the Server Explorer window for the SQL Server
database, one can _______ the stored procedure to make sure it works.

 a. Build
 b. Execute
 c. Debug
 d. Compile

8. To insert data into an Oracle database using the INSERT query, the parameters ’ data type must
be ________.

 a. OleDbType
 b. SqlDbType

c06.indd 490c06.indd 490 4/25/2012 1:58:00 PM4/25/2012 1:58:00 PM

Homework 491

 c. OracleDbType
 d. OracleType

9. To insert data using stored procedures, the CommandType property of the Command object
must be equal to ___________.

 a. CommandType.InsertCommand
 b. CommandType.StoredProcedure
 c. CommandType.Text
 d. CommandType.Insert

10. To insert data using stored procedures, the CommandText property of the Command object
must be equal to ___________.

 a. The content of the CommandType.InsetCommand
 b. The content of the CommandType.Text
 c. The name of the Insert command
 d. The name of the stored procedure

III. Exercises

1. Figure 6.62 shows a stored procedure developed in the SQL Server database. Please develop
a piece of codes in Visual Basic.NET to call this stored procedure to insert a new data into the
database.

Figure 6.62. The SQL Server stored procedure.

CREATE OR REPLACE PROCEUDRE dbo.InsertStudent
(@Name IN VARCHAR(20),

@Major IN text,
@SchoolYear IN int,
@Credits IN float,
@Email IN text)

AS
INSERT INTO Student VALUES (@Name, @Major, @SchoolYear, @Credits, @Email)
RETURN

Figure 6.63. The codes to call the SQL Server stored procedure.

Dim cmdString As String = "InsertCourse"
Dim intInsert As Integer
Dim oraCommand As New OracleCommand

oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.StoredProcedure
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add("Name", OracleType.Char).Value = ComboName.Text
oraCommand.Parameters.Add("CourseID", OracleType.Char).Value = txtCourseID.Text
oraCommand.Parameters.Add("Course", OracleType.Char).Value = txtCourse.Text
oraCommand.Parameters.Add("Schedule", OracleType.Char).Value = txtSchedule.Text
oraCommand.Parameters.Add("Classroom", OracleType.Char).Value = txtClassRoom.Text
oraCommand.Parameters.Add("Credit", OracleType.Char).Value = txtCredits.Text

intInsert = oraCommand.ExecuteNonQuery()

c06.indd 491c06.indd 491 4/25/2012 1:58:00 PM4/25/2012 1:58:00 PM

492 Chapter 6 Data Inserting with Visual Basic.NET

2. Figure 6.63 shows a piece of codes developed in Visual Basic.NET, and this coding is used to
call a stored procedure in Oracle database to insert a new record into the database. Please
create the associated stored procedure in Oracle database using the PL - SQL language.

3. Using the tools and wizards provided by Visual Basic.NET and ADO.NET to perform the data
insertion for the Student form in the InsertWizard project. The project fi le can be found in the
folder DBProjects\Chapter 6 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter
 1).

4. Using the Runtime objects to complete the insert data query for the Student form by using the
project AccessInsertRTObject . The project fi le can be found in the folder DBProjects\Chapter
6 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

5. Using the stored procedure to complete the insert data query for the Student form to the
Student table by using the project OracleInsertRTObjectSP . The project fi le can be found in
the folder DBProjects\Chapter 6 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1).

c06.indd 492c06.indd 492 4/25/2012 1:58:00 PM4/25/2012 1:58:00 PM

 Chapter 7

Data Updating and Deleting with
Visual Basic. NET

 In this chapter, we will discuss how to update and delete data against the databases.
Basically, many different methods are provided and supported by Visual Basic.NET and
.NET Framework to help users to perform the data updating and deleting against the
database. Among them, three popular methods are widely implemented:

1. Using TableAdapter DBDirect methods, such as TableAdapter.Update() and TableAdapter.
Delete() , to update and delete data directly against the databases.

2. Using TableAdapter.Update() method to update and execute the associated TableAdapter ’ s
properties, such as UpdateCommand or DeleteCommand, to save changes made for the
table in the DataSet to the table in the database.

3. Using the runtime object method to develop and execute the Command ’ s method
ExecuteNonQuery() to update or delete data against the database directly.

 Both methods 1 and 2 need to use Visual Studio.NET design tools and wizards to
create and confi gure suitable TableAdapters, build the associated queries using the Query
Builder, and call those queries from Visual Basic.NET applications. The difference
between method 1 and 2 is that method 1 can be used to directly access the database to
perform the data updating and deleting in a single step, but method 2 needs two steps to
perform the data updating or deleting. First, the data updating or deleting is performed
to the associated tables in the DataSet, and then the updated or deleted data are updated
to the tables in the database by executing the TableAdapter.Update() method.

 This chapter is divided into two parts: Part I provides discussions on data updating
and deleting using methods 1 and 2, or in other words, using the TableAdapter.Update()
and TableAdapter.Delete() methods provided by the Visual Studio.NET design
tools and wizards. Part II presents the data updating and deleting using the runtime object
method to develop command objects to execute the ExecuteNonQuery() method dynam-
ically. Updating and deleting data using the stored procedures and the LINQ to SQL
query are also discussed in that part.

Practical Database Programming with Visual Basic.NET, Second Edition. Ying Bai.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.

493

c07.indd 493c07.indd 493 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

494 Chapter 7 Data Updating and Deleting with Visual Basic.NET

 When fi nished this chapter, you will

 • Understand the working principle and structure on updating and deleting data against the
database using the Visual Studio.NET Design Tools and Wizards

 • Understand the procedures in how to confi gure the TableAdapter object by using the
TableAdapter Query Confi guration Wizard and build the query to update and delete data
against the database

 • Design and develop special procedures to validate data before and after the data updating
and deleting

 • Understand the working principle and structure on updating and deleting data against the
database using the runtime object method

 • Design and build LINQ to SQL query to update and delete data

 • Design and build stored procedures to perform the data updating and deleting

 To successfully complete this chapter, you need to understand topics such as the
Fundamentals of Databases, which was introduced in Chapter 2 , and ADO.NET, which
was discussed in Chapter 3 , and LINQ techniques discussed in Chapter 4 . Also, a sample
database, CSE_DEPT, that was developed in Chapter 2 will be used throughout this
Chapter.

 Two kinds of databases will be used in the example projects to illustrate how to
perform the data updating and deleting in this chapter. They are: SQL Server 2008 and
Oracle Database 11g XE databases.

 In order to save time and avoid repeatability, we will use some sample projects, such
as InsertWizard , InsertWizardOracle , SQLInsertRTObject , and OracleInsertRTObject ,
we developed in the last chapter and modify them to create new associated projects to
be used in this chapter. Recall that some command buttons on the different form windows
in those projects have not been coded, such as Update and Delete , and those buttons or
those event procedures related to those buttons will be developed and built in this
chapter. We only concentrate on the coding for the Update and Delete buttons in this
chapter.

PART I DATA UPDATING AND DELETING WITH VISUAL
STUDIO.NET DESIGN TOOLS AND WIZARDS

 In this part, we discuss updating and deleting data against the database using the Visual
Studio.NET design tools and wizards. We will develop two methods to perform these data
actions: First, we use the TableAdapter DBDirect methods, TableAdapter.Update() and
TableAdapter.Delete() , to directly update or delete data in the database. Second, we
discuss how to update or delete data in the database by fi rst updating or deleting records
in the DataSet, and then updating those records ’ changes from the DataSet to the data-
base using the TableAdapter.Update() method. Both methods utilize the so - called
TableAdapter ’ s direct and indirect methods to complete the data updating or deleting.
The database we try to use is the Microsoft SQL Server 2008 database, CSE_DEPT.mdf ,
which was developed in Chapter 2 , and it can be found in the folder Database\SQLServer
located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1). You can try to use any
other databases, such as Microsoft Access 2007 or Oracle Database 11g XE. The only

c07.indd 494c07.indd 494 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

7.1 Update or Delete Data Against Databases 495

issue is that you need to select and connect to the correct database with your applications
when you use the Data Source to set up your data source for your Visual Basic.NET
data - driven applications.

7.1 UPDATE OR DELETE DATA AGAINST DATABASES

 We have already provided a very detailed discussion about the TableAdapter DBDirect
methods in Section 6.1.1 in Chapter 6 . To use these methods to directly access the data-
base to make the desired manipulations to the data stored in the database, one needs to
use Visual Studio.NET design tools and wizards to create and confi gure the associated
TableAdapter. There are some limitations that exist when these DBDirect methods are
utilized. For example, each TableAdapter is associated with a unique data table in the
DataSet; therefore, the data updating or deleting can only be executed for that data table
by using the associated TableAdapter. In other words, the specifi ed TableAdapter cannot
update or delete data from any other data tables except the data table that is related to
the created TableAdapter.

7.1.1 Updating and Deleting Data from Related Tables
in a DataSet

 When updating or deleting data against related tables in a DataSet, it is important to
update or delete data in the proper sequence in order to reduce the chance of violating
referential integrity constraints. The order of command execution will also follow the
indices of the DataRowCollection in the DataSet. To prevent data integrity errors from
being raised, the best practice is to update or delete data against the database in the fol-
lowing sequence:

1. Child table: delete records.

2. Parent table: insert, update, and delete records.

3. Child table: insert and update records.

 For our sample database CSE_DEPT, all fi ve tables are related, with different primary
keys and foreign keys. For example, among the LogIn, Faculty, and Course tables, the
faculty_id works as a key to relate these three tables together. The faculty_id is a primary
key in the Faculty table, but a foreign key in both LogIn and the Course tables. In order
to update or delete data from any of those tables, one needs to follow the sequence above.
As a case of updating or deleting a record against the database, the following data opera-
tions need to be performed:

1. First, that record should be removed or deleted from the child tables, LogIn and Course
tables, respectively

2. Then that record can be updated or deleted from the parent table, Faculty table

3. Finally, that updated record can be inserted into the child tables, such as LogIn and Course
tables, for the data updating operation. There is no data actions for the data deleting opera-
tions for the child tables

c07.indd 495c07.indd 495 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

496 Chapter 7 Data Updating and Deleting with Visual Basic.NET

 It would be terribly complicated if we try to update a completed record (includes
updating the primary key) for an existing data in our sample database, and in practice it
is unnecessary to update a primary key for any record since the primary key has the same
lifetime as a database. A better and popular way to do this updating is to remove those
undesired records and then insert new records with new primary keys. Therefore, in this
chapter, we will concentrate on updating existing data in our sample database without
touching the primary key. For data deleting, we can delete a full record with the primary
key involved, and all related records in the child tables will also be deleted since all tables
have been set in a Cascade Delete mode when we built these data tables for our sample
database CSE_DEPT.mdf in Section 2.10.4 in Chapter 2 .

7.1.2 Update or Delete Data Against Database Using
TableAdapter DBDirect Methods: TableAdapter.Update
and TableAdapter.Delete

 Three typical TableAdapter ’ s DBDirect methods are listed in Table 6.1 in Chapter 6 .
For your convenience, we redraw that table in this section again, which is shown in
Table 7.1 .

 Both DBDirect methods, TableAdapter.Update() and TableAdapter.Delete(), need
the original column values as the parameters when these methods are executed. The
TableAdapter.Update() method needs both the original and the new column values to
perform the data updating. Another point to be noted is that when the application uses
the object to store the data, for instance, in our sample project, we use textbox objects to
store our data, you should use this DBDirect method to perform the data manipulations
against the database.

Table 7.1. TableAdapter DBD irect methods

 TableAdapter DBDirect Method Description

 TableAdapter.Insert Adds new records into a database, allowing you to pass
in individual column values as method parameters.

 TableAdapter.Update Updates existing records in a database. The Update
method takes original and new column values as
method parameters. The original values are used to
locate the original record, and the new values are used
to update that record. The TableAdapter.Update
method is also used to reconcile changes in a dataset
back to the database by taking a DataSet, DataTable,
DataRow, or array of DataRows as method
parameters.

 TableAdapter.Delete Deletes existing records from the database based on
the original column values passed in as method
parameters.

c07.indd 496c07.indd 496 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

7.1 Update or Delete Data Against Databases 497

7.1.3 Update or Delete Data Against Database
Using TableAdapter.Update Method

 You can use the TableAdapter.Update() method to update or edit records in a database.
The TableAdapter.Update() method provides several overloads that perform different
operations depending on the parameters passed in. It is important to understand the
results of calling these different method signatures.

 To use this method to update or delete data against the database, one needs to
perform the following two steps:

1. Change or delete records from the desired DataTable based on the selected data rows from
the table in the DataSet

2. After the rows have been modifi ed or deleted from the DataTable, call the TableAdapter.
Update() method to refl ect those modifi cations to the database. You can control the amount
of data to be updated by passing an entire DataSet, a DataTable, an array of DataRows, or
a single DataRow.

 Table 7.2 describes the behavior of the various TableAdapter.Update() methods:
 Different parameters or arguments can be passed into these fi ve variations of this

method. The parameter DataTable, which is located in a DataSet, is a data table mapping
to a real data table in the database. When a whole DataTable is passed, any modifi cation
to that table will be updated and refl ected in the associated table in the database. Similarly,
if a DataSet is passed, all DataTables in that DataSet will be updated and refl ected to
those tables in the database.

Table 7.2. Variations of Tabledapter.Update() method

 Update Method Description

 TableAdapter.Update(DataTable) Attempt to save all changes in the DataTable to
the database. (This includes removing any rows
deleted from the table, adding rows inserted to
the table, and updating any rows in the table
that have changed)

 TableAdapter.Update(DataSet) Although the parameter takes a dataset, the
TableAdapter attempts to save all changes in
the TableAdapter ’ s associated DataTable to the
database. (This includes removing any rows
deleted from the table, adding rows inserted in
the table, and updating any rows in the table
that have changed.)

 TableAdapter.Update(DataRow) Attempt to save changes in the indicated
DataRow to the database.

 TableAdapter.Update(DataRows()) Attempt to save changes in any row in the array
of DataRows to the database.

 TableAdapter.Update(“new column values”,
“original column values”)

 Attempts to save changes in a single row that is
identifi ed by the original column values.

c07.indd 497c07.indd 497 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

498 Chapter 7 Data Updating and Deleting with Visual Basic.NET

 The last variation of this method is to pass the original columns and the new columns
of a data table to perform this updating. In fact, this method can be used as a DBDirect
method to access the database to manipulate data.

 In order to provide a detailed discussion and explanation how to use these two
methods to update or delete records against the database, a real example will be very
helpful. Let ’ s fi rst create a new Visual Basic.NET project to handle these issues.

7.2 UPDATE AND DELETE DATA FOR MICROSOFT
SQL SERVER DATABASE

 We have provided a very detailed introduction about the design tools and wizards in
Visual Studio.NET in Section 5.2 in Chapter 5 . The popular design tools and wizards
include the DataSet, BindingSource, TableAdapter, Data Source window, Data Source
Confi guration window, and DataSet Designer. We need to use those staff to develop our
data - updating and deleting sample project based on the InsertWizard project developed
in the last chapter. First, let ’ s copy that project and do some modifi cations on that project
to get our new project. The advantage of creating our new project in this way is that you
don ’ t need to redo the data source connection and confi guration since those jobs have
been performed in the previous chapter.

7.2.1 Create a New Project Based on the InsertWizard Project

 Open the Windows Explorer and create a new folder, such as Chapter 7 , and then browse
to our project InsertWizard that was developed in the last chapter and can be found in
the folder DBProjects\Chapter 6 that is located at the Wiley ftp site (refer to Figure 1.2
in Chapter 1). Copy this project to our new folder Chapter 7 . Change the name of the
solution and the project folder from InsertWizard to SQLUpdateDeleteWizard . Also,
change the project ’ s name from InsertWizard.vbproj to SQLUpdateDeleteWizard.
vbproj . Then double - click on the SQLUpdateDeleteWizard.vbproj to open this
project.

 On the opened project, perform the following modifi cations to get our desired
project:

 • Select any form window, such as LogIn Form.vb , from the Solution Explorer window.
Then go to the Project|SQLUpdateDeleteWizard Properties menu item to open the
project ’ s property window. Change the Assembly name from InsertWizard to SQLU-
pdateDeleteWizard and the Root namespace from InsertWizard to SQLUpdate-
DeleteWizard , respectively.

 • Click on the Assembly Information button to open the Assembly Information wizard.
Change the Title and the Product to SQLUpdateDeleteWizard . Click on the OK button to
close this wizard.

 Go to File|Save All to save those modifi cations. Now we are ready to develop our
graphic user interfaces based on this new project.

c07.indd 498c07.indd 498 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

7.2 Update and Delete Data for Microsoft SQL Server Database 499

7.2.2 Application User Interfaces

 Recall that when we developed the project InsertWizard , there are fi ve command buttons
located in the Faculty form window: Select , Insert , Update , Delete , and Back . In this
section, we need to use both Update and Delete buttons, exactly these two buttons ’ event
procedures, to perform the data updating and deleting actions against the database.
Unlike adding a new record into the database, for the update and delete operations, we
don ’ t need to develop any new form window as the user interfaces to collect the new
records to perform those updating and deleting operations. Instead, we can use the
Faculty form with some codes modifi cations to perform these two data actions.

7.2.3 Validate Data before the Data Updating and Deleting

 This data validation can be neglected because when we performed a data query by click-
ing on the Select button, the retrieved data should be a complete set of data and can be
displayed in the Faculty form window. This means that all textboxes have been fi lled by
the related faculty information and no one is empty, no matter if we do some modifi ca-
tions or not, all textboxes are full. So this data validation before the data updating or
deleting can be avoided.

7.2.4 Build the Update and Delete Queries

 As we mentioned, two methods will be discussed in this part: one is to update or delete
records using the TableAdapter DBDirect method, and the other one is to use the
TableAdapter.Update() method to update modifi ed records from the DataSet into the
database. First, let ’ s concentrate on the fi rst method.

 Now let ’ s build our data updating and deleting queries using the TableAdapter Query
Confi guration Wizard and Query Builder.

7.2.4.1 Confi gure the TableAdapter and Build the Data Updating Query

 Open the Data Source window by going to the Data|Show Data Sources menu item.
Perform the following operations to build the data updating query:

1. On the opened wizard, click on the Edit the DataSet with Designer button that is located
at the second left on the toolbar in the Data Source window to open this Designer.

2. Then right - click on the bottom item from the Faculty table and select the Add Query item
from the pop - up menu to open the TableAdapter Query Confi guration Wizard.

3. Keep the default selection Use SQL statements unchanged and click on the Next button
to go to the next wizard.

4. Select and check the UPDATE item from this wizard since we need to perform a data
updating query, and then click on the Next button again to continue.

5. Click on the Query Builder button since we want to build our updating query. The opened
Query Builder wizard is shown in Figure 7.1 .

c07.indd 499c07.indd 499 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

500 Chapter 7 Data Updating and Deleting with Visual Basic.NET

6. Remove all contents from the faculty_id row under the Filter and Or columns. Uncheck
the Set checkbox from the faculty_id row under the column Set , and enter a question
mark (?) to the faculty_id row under the column Filter , and press the Enter key from the
keyboard. Change the name of the dynamic parameter @Param1 to @fi d for the Filer
column in the faculty_id row.

7. Remove all rows under the last row — email — and your fi nished query builder wizard
should match the one that is shown in Figure 7.1 .

8. Click on the OK button to go to the next wizard. Remove the SELECT statement under
the WHERE clause since we do not need this function. Click on the Next to confi rm this
query and continue to the next step.

9. Modify the query function name from the default one to the UpdateFaculty and click on
the Next button to go to the last wizard.

10. Click on the Finish button to complete this query building and close the wizard.
Immediately, you can fi nd that a new query function UpdateFaculty has been added into
the Faculty TableAdapter as the last item.

 Now let ’ s continue to build our Delete query function using the Query Builder.

7.2.4.2 Build the Data Deleting Query

 Reopen the Edit DataSet with Designer wizard and right - click on the last item from
the Faculty table and select the Add Query item to open the TableAdapter Query

Figure 7.1. The Query Builder for the Update query.

c07.indd 500c07.indd 500 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

7.2 Update and Delete Data for Microsoft SQL Server Database 501

Confi guration Wizard if it is not opened. Perform the following operations to build the
data - deleting query:

1. On the opened wizard, keep the default selection Use SQL statements unchanged and
click on the Next button to go to the next wizard.

2. Select and check the DELETE item from this wizard since we need to perform a data delet-
ing query. Then click on the Next button again to continue.

3. Click on the Query Builder button since we want to build our deleting query. The opened
Query Builder wizard is shown in Figure 7.2 .

4. Delete the whole line of the row faculty_id and the row @IsNull_faculty_name . Remove
the contents of the columns Filter and Or for the faculty_name row.

5. Enter a question mark (?) into to the Filter column along the faculty_name row and press
the Enter key on the keyboard.

6. Change the name of the dynamic parameter @Param1 to @fname , and press the Enter
key from the keyboard.

7. Your fi nished query builder should match the one that is shown in Figure 7.2 . Click on the
OK button to go to the next wizard.

8. Click on the Next button to confi rm this query and continue to the next step.

9. Modify the query function name to DeleteFaculty and click on the Next button to go to
the last wizard.

10. Click on the Finish button to complete this query building and close the wizard.
Immediately, you can fi nd that a new query function DeleteFaculty has been added into
the Faculty TableAdapter as the last item.

 Next, let ’ s develop the codes to call these built query methods to perform the related
data actions.

Figure 7.2. The Query Builder for the Delete query.

c07.indd 501c07.indd 501 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

502 Chapter 7 Data Updating and Deleting with Visual Basic.NET

7.2.5 Develop Codes to Update Data Using the
TableAdapter DBDirect Method

 To perform the data updating using the built query method, some modifi cations to the
original codes in the Faculty form are necessary. We divided these modifi cations into two
subsections: codes modifi cations and codes creations.

7.2.5.1 Modifi cations of the Codes

 The fi rst modifi cation is to modify the codes inside the Form_Load() event procedure in
the Faculty Form class, that is, to add two new updating methods into the Query Method
combo box:

1. TableAdapter DBDirect Method

2. TableAdapter.Update Method

 To do that, open this method and add these two methods into the Form_Load() event
procedure using the Add() method. Your modifi ed codes for this procedure are shown in
steps A and B in Figure 7.3 . The newly added codes have been highlighted in bold.

7.2.5.2 Creations of the Codes

 The main coding process to perform this data updating is developed inside the Update
button ’ s Click event procedure. Open this event procedure and enter the codes that are
shown in Figure 7.4 into this event procedure.

 Let ’ s have a closer look at this piece of new added codes to see how it works.

A. All objects and variables used in this event procedure are declared here fi rst. An instance
of the FacultyTableAdapter class is created fi rst since we need to use it to perform the data

Figure 7.3. The modifi ed codes for the Form_Load event procedure.

 Private Sub FacultyForm_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 ComboName.Items.Add("Ying Bai")
 ComboName.Items.Add("Satish Bhalla")
 ComboName.Items.Add("Black Anderson")
 ComboName.Items.Add("Steve Johnson")
 ComboName.Items.Add("Jenney King")
 ComboName.Items.Add("Alice Brown")
 ComboName.Items.Add("Debby Angles")
 ComboName.Items.Add("Jeff Henry")
 ComboName.SelectedIndex = 0
 ComboMethod.Items.Add("TableAdapter Method")
 ComboMethod.Items.Add("LINQ & DataSet Method")
 ComboMethod.Items.Add("TableAdapter Insert")
 ComboMethod.Items.Add("TableAdapter Update")

ComboMethod.Items.Add("TableAdapter DBDirect Method")
 ComboMethod.Items.Add("TableAdapter.Update Method")
 ComboMethod.SelectedIndex = 0

End Sub

A
B

(FacultyForm Events) Load

c07.indd 502c07.indd 502 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

7.2 Update and Delete Data for Microsoft SQL Server Database 503

updating. A new row object of FacultyRow class is also created since we need this object
to update the data in the DataSet to the table in the database later when we use another
method, TableAdapter.Update() , to perform the data updating. The local integer variable
intUpdate is used to hold the returned value of calling the TableAdapter DBDirect
method to update the database. The local String variable strFacultyID is used to hold the
returned faculty_id value when executing the second method, TableAdapter.Update() ,
to update the database in the next step.

B. If the user selected the fi rst method, TableAdapter DBDirect method, to perform this data
updating, the updating function we built in Section 7.2.4.1 is called to update the selected
faculty. This function will return an integer to indicate whether this function calling is suc-
cessful or not. The value returned is equal to the number of rows that have been success-
fully updated in the database.

C. If the user selected the second method, TableAdapter.Update() , to update this record, the
related codes that will be developed later are executed to fi rst update that record in the
DataSet, and then update it to the database.

D. For the validation purpose, we need to reserve this updated faculty name and save it into
the Faculty Name combo box.

E. If the returned value of executing the updating function is equal to zero, which means that
no row or record has been updated after calling that query function, a warning message is
displayed and the procedure is exited.

 Now let ’ s continue to develop the codes for the second data updating method.

7.2.6 Develop Codes to Update Data Using the
TableAdapter.Update Method

 Open the Update button ’ s Click event procedure if it is not opened and add the codes
that are shown in Figure 7.5 into this event procedure. Let ’ s take a closer look at this

Figure 7.4. The codes for the Update command button ’ s Click event procedure.

 Private Sub cmdUpdate_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdUpdate.Click
Dim FacultyTableApt As New CSE_DEPTDataSetTableAdapters.FacultyTableAdapter
Dim FacultyRow As CSE_DEPTDataSet.FacultyRow
Dim strFacultyID As String
Dim intUpdate As Integer

If ComboMethod.Text = "TableAdapter DBDirect Method" Then
 intUpdate = FacultyTableApt.UpdateFaculty(txtName.Text, txtOffice.Text, txtPhone.Text, _
 txtCollege.Text, txtTitle.Text, txtEmail.Text, txtID.Text)

Else 'TableAdapter Update method selected

End If

 ComboName.Items.Add(txtName.Text) 'reserve the updated faculty name
 If intUpdate = 0 Then

MessageBox.Show("Faculty Table Updating is failed!")
Exit Sub

End If

End Sub

A

B

C

D
E

cmdUpdate Click

c07.indd 503c07.indd 503 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

504 Chapter 7 Data Updating and Deleting with Visual Basic.NET

piece of newly added codes to see how it works. The codes we developed in the previous
steps are highlighted with a gray background.

A. In order to update a selected row from the Faculty table in the DataSet, we need fi rst to
identify that row. Visual Studio.NET provides a default method, which is defi ned as
FindBy() , to do that. However, that method needs a primary key as a criterion to perform
a query to locate the desired row from the table. In our case, the primary key for our
Faculty table is the faculty_id . To fi nd the faculty_id , we can use a query function
FindFacultyIDByName() we built in Section 5.14.1 in Chapter 5 with the Faculty Name
as a query criterion. One point to be noted to run this function is that the parameter Faculty
Name must be an old faculty name because in order to update a faculty row, we must fi rst
fi nd the old faculty row based on the old name. So the content in the combo box Faculty
Name, ComboName.Text , is used as the old faculty name.

B. After the faculty_id is found, the default method FindByfaculty_id() is executed to locate
the desired row from the Faculty table, and the desired data row is returned and assigned
to the local variable FacultyRow .

C. A user - defi ned function UPFacultyRow() is called to assign all pieces of updated faculty
information to the desired rows. In this way, the faculty information, that is, a row in the
Faculty table in the DataSet, is updated.

D. The Validate() command closes out the editing of a control — in our case, closes any editing
for textbox control in the Faculty form.

E. The EndEdit() method of the binding source writes any edited data in the controls back
to the record in the DataSet. In our case, any updated data entered into the textbox controls
will be refl ected to the associated column in the DataSet.

F. Finally, the Update() method of the TableAdapter sends updated data back to the data-
base. The argument of this method can be a whole DataSet, a DataTable in the DataSet

Figure 7.5. The codes for the second data updating method.

 Private Sub cmdUpdate_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdUpdate.Click

Dim FacultyTableApt As New CSE_DEPTDataSetTableAdapters.FacultyTableAdapter
Dim FacultyRow As CSE_DEPTDataSet.FacultyRow
Dim strFacultyID As String
Dim intUpdate As Integer

If ComboMethod.Text = "TableAdapter DBDirect Method" Then
 intUpdate = FacultyTableApt.UpdateFaculty(txtName.Text, txtOffice.Text, txtPhone.Text, _
 txtCollege.Text, txtTitle.Text, txtEmail.Text, txtID.Text)

Else 'TableAdapter Update method selected
 strFacultyID = FacultyTableApt.FindFacultyIDByName(ComboName.Text)
 FacultyRow = CSE_DEPTDataSet.Faculty.FindByfaculty_id(strFacultyID)
 FacultyRow = UPFacultyRow(FacultyRow)

Me.Validate()
 FacultyBindingSource.EndEdit()
 intUpdate = FacultyTableApt.Update(CSE_DEPTDataSet.Faculty)

End If

 ComboName.Items.Add(txtName.Text) 'reserve the updated faculty name
If intUpdate = 0 Then

MessageBox.Show("Faculty Table Updating is failed!")
Exit Sub

End If

End Sub

A
B
C
D
E
F

cmdUpdate Click

c07.indd 504c07.indd 504 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

7.2 Update and Delete Data for Microsoft SQL Server Database 505

or a DataRow in a DataTable. In our case, we used the Faculty DataTable as the argument
for this method.

 The detailed codes for the user - defi ned function UPFacultyRow() are shown in
Figure 7.6 . The functionality of this function is straightforward and easy understand.

 The argument of this function is a DataRow object, and it is passed by a reference
to the function. The advantage of passing an argument in this way is that any modifi ca-
tions performed to DataRow object inside the function can be returned to the calling
procedure without needing another returned variable to be created. The updated faculty
information stored in the associated textbox is assigned to the associated column of the
DataRow in the Faculty table in the DataSet. In this way, the selected DataRow in the
Faculty table is updated.

 At this point, we fi nished the coding development for two methods to update the
data in a database. Next, we discuss how to delete data from the database.

7.2.7 Develop Codes to Delete Data Using the TableAdapter
DBDirect Method

 To delete data from a database, you can use either the TableAdapter DBDirect method
TableAdapter.Delete() or the TableAdapter.Update() method. Or, if your applica-
tion does not use TableAdapters, you can use the runtime object method, such as
ExecuteNonQuery to create command object to delete data from a database.

 The TableAdapter.Update() method is typically used when your application uses
DataSets to store data, whereas the TableAdapter.Delete() method is typically used
when your application uses objects, for example, in our case, we used textboxes, to
store data.

 Open the Faculty form window and double - click on the Delete button to open its
event procedure. Enter the codes that are shown in Figure 7.7 into this event
procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. All data components and objects, as well as variables used in this event procedure, are
declared and created here. The object of the FacultyTableAdapter class is created fi rst since
we need to use its Update() and Delete() methods to delete data later. A button object of

Figure 7.6. The codes for the user - defi ned function UPFacultyRow().

Private Function UPFacultyRow(ByRef fRow As CSE_DEPTDataSet.FacultyRow) As CSE_DEPTDataSet.FacultyRow

 fRow.faculty_name = txtName.Text
 fRow.office = txtOffice.Text
 fRow.phone = txtPhone.Text
 fRow.title = txtTitle.Text
 fRow.college = txtCollege.Text
 fRow.email = txtEmail.Text

Return fRow

End Function

FacultyForm UPFacultyRow

c07.indd 505c07.indd 505 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

506 Chapter 7 Data Updating and Deleting with Visual Basic.NET

the MessageboxButtons class is created, and we need to use these two buttons to confi rm
the data deleting later. The FacultyRow is used to locate the DataRow in the Faculty
DataTable, and it is also used for the second deleting method. The local variable Answer
is an instance of DialogResult class, and it is used to hold the returned value of calling the
MessageBox function. This variable can be replaced by an integer variable if you like.

B. First, a MessageBox function is called to confi rm that a data deleting will be performed
from the Faculty data table.

C. If the returned value of calling this MessageBox function is Yes , which means that the user
has confi rmed that this data deleting is fi ne, the data deleting will be performed in the
next step.

D. If the user selected the fi rst method, the TableAdapter DBDirect method, the query func-
tion we built in Section 7.2.4.2 will be called to perform the data deleting from the Faculty
table in the database.

E. The execution result of the fi rst method is stored in the local variable intDelete.

F. If the user selected the second method, TableAdapter.Update() , the associated codes that
will be developed in the next step will be executed to delete data fi rst from the DataTable
in the DataSet, and then from the data table in the database by executing the Update()
method.

G. The returned value of calling either the TableAdapter.Delete() method or the
TableAdapter.Update() method is an integer, and it is stored in the variable intDelete .
The value of this returned data is equal to the number of deleted data rows in the database
or deleted DataRows in the DataSet. A returned zero means that no data row has been
deleted, and this data deleting has failed. In that case, a warning message is displayed and
the procedure is exited.

 Now let ’ s develop the codes for the data deleting using the second method.

Figure 7.7. The codes for the Delete button ’ s Click event procedure.

 Private Sub cmdDelete_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdDelete.Click
Dim FacultyTableApt As New CSE_DEPTDataSetTableAdapters.FacultyTableAdapter
Dim vbButton As MessageBoxButtons = MessageBoxButtons.YesNo
Dim FacultyRow As CSE_DEPTDataSet.FacultyRow
Dim Answer As DialogResult
Dim strFacultyID As String
Dim intDelete As Integer

 Answer = MessageBox.Show("You sure you want to delete this record?", "Delete", vbButton)
If Answer = System.Windows.Forms.DialogResult.Yes Then

If ComboMethod.Text = "TableAdapter DBDirect" Then
 intDelete = FacultyTableApt.DeleteFaculty(ComboName.Text)

Else
'TableAdapter Update() method is selected…..

End If
End If
If intDelete = 0 Then

MessageBox.Show("Faculty Table Deleting is failed!")
Exit Sub

End If
End Sub

A

B
C
D
E
F

G

cmdDelete Click

c07.indd 506c07.indd 506 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

7.2 Update and Delete Data for Microsoft SQL Server Database 507

7.2.8 Develop Codes to Delete Data Using the
TableAdapter.Update Method

 Add the codes that are shown in Figure 7.8 into the Delete button ’ s Click event proce-
dure, exactly into the Else block for the second deleting method. The codes we developed
in the previous steps have been highlighted with a gray background. Let ’ s have a close
look at this piece of newly added codes to see how it works.

A. To identify the DataRow to be deleted from the DataTable, the user - built query method
FindFacultyIDByName() is utilized. Since that method needs to use the faculty_id as the
query qualifi cation, therefore, we need fi rst retrieve the faculty_id from the Faculty table
based on the faculty name selected by the user.

B. After the faculty_id is found, the default method FindByfaculty_id() is executed to locate
the desired DataRow from the Faculty table, and the desired DataRow is returned and
assigned to the local variable FacultyRow .

C. The Delete() method of the FacultyRow is executed to delete the selected DataRow from
the Faculty DataTable in the DataSet.

D. The TableAdapter.Update() method is executed to update that deleted DataRow to the
data row in the database.

 Before we can run the project to test our codes for the data updating and deleting,
let ’ s fi rst complete the codes for the data validations for those data actions.

Figure 7.8. The codes for the second data deleting method.

 Private Sub cmdDelete_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdDelete.Click
Dim FacultyTableApt As New CSE_DEPTDataSetTableAdapters.FacultyTableAdapter
Dim vbButton As MessageBoxButtons = MessageBoxButtons.YesNo
Dim FacultyRow As CSE_DEPTDataSet.FacultyRow
Dim Answer As DialogResult
Dim strFacultyID As String
Dim intDelete As Integer

 Answer = MessageBox.Show("You sure you want to delete this record?", "Delete", vbButton)
If Answer = System.Windows.Forms.DialogResult.Yes Then

If ComboMethod.Text = "TableAdapter DBDirect" Then
 intDelete = FacultyTableApt.DeleteFaculty(ComboName.Text)

Else 'TableAdapter Update() method is selected…..
strFacultyID = FacultyTableApt.FindFacultyIDByName(ComboName.Text)

 FacultyRow = CSE_DEPTDataSet.Faculty.FindByfaculty_id(strFacultyID)
 FacultyRow.Delete() 'delete data from the DataTable in DataSet
 intDelete = FacultyTableApt.Update(CSE_DEPTDataSet.Faculty)
 End If
 End If

If intDelete = 0 Then
 MessageBox.Show("Faculty Table Deleting is failed!")

Exit Sub
End If

 End Sub

A
B
C
D

cmdDelete Click

c07.indd 507c07.indd 507 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

508 Chapter 7 Data Updating and Deleting with Visual Basic.NET

7.2.9 Validate the Data after the Data Updating and Deleting

 As we mentioned in the previous section, we do not need to develop any code for these
data validations since we can use the codes we developed for the Select button ’ s Click
event procedure to perform these validations.

 Now let ’ s run the project to test our codes for the data updating and data deleting.
Make sure that the default faculty photo fi le Default.jpg has been stored in the default
location — in our case, it is in the folder in which our Visual Basic.NET executable fi le
is located (C:\Chapter 7\SQLUpdateDeleteWizard\bin\Debug). Click on the Start
Debugging button to run the project, and enter the suitable username and password, such
as jhenry and test , to the LogIn form, and then select the Faculty Information item from
the Selection form window to open the Faculty form. Keep the default faculty member
Ying Bai in the Faculty Name combo box selected and click on the Select button to
query the detailed information for this faculty.

 To update this faculty record, you can use either the TableAdapter DBDirect or the
TableAdapter.Update method as you like by selecting it from the Query Method combo
box. Keep the Faculty ID unchanged and then enter the following information to the
associated textboxes as an updated Faculty record:

 • Susan Bai Faculty Name textbox

 • Professor Title textbox

 • MTC-255 Offi ce textbox

 • 750-378-1155 Phone textbox

 • Duke University College textbox

 • sbai@college.edu Email textbox

 • Default.jpg Faculty Image textbox

 Your fi nished new faculty information window should match the one that is shown
in Figure 7.9 .

 Click on the Update button to try to update this faculty record in the Faculty table.
To confi rm this data updating action, click on the drop - down arrow of the Faculty Name
combo box, and you will fi nd that the updated faculty name Susan Bai is in there. Select
this name and click on the Select button to retrieve this updated faculty record and
display it in the associated textboxes in this form.

 You can fi nd that the original faculty record is indeed updated, which is shown in
Figure 7.10 .

 To delete this faculty record, select either the TableAdapter DBDirect or the
TableAdapter.Update method from the Query Method combo box. Then click on the
Delete button. A MessageBox is displayed to ask you to confi rm this deletion. Click on
Yes if you want to delete it. Then you can validate that deletion by clicking on the Select
button to try to retrieve that deleted record. What happened after you clicked on the
Select button? A message “ No matched faculty found ” is displayed to indicate that
that faculty record has been deleted from the database.

c07.indd 508c07.indd 508 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

7.2 Update and Delete Data for Microsoft SQL Server Database 509

Figure 7.9. The running status of the Updated Faculty Form window.

Figure 7.10. The updated faculty record.

 One point to be noted is that after you update the faculty name by changing the
content of the Faculty Name textbox, be sure that you go to the Faculty Name combo
box to select the modifi ed faculty name to perform the data validation. You need to
perform the same operations if you want to delete that record from the database. The
key is that the content of the faculty name textbox may different with the content of the
Faculty Name combo box, and the former is an updated faculty name and the latter is an
old faculty name if the faculty name is updated.

 Our project is very successful!

c07.indd 509c07.indd 509 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

510 Chapter 7 Data Updating and Deleting with Visual Basic.NET

 It is highly recommended to recover the deleted faculty member since we want to
keep our database neat and complete.

 An import issue for this data recovery is the order of recovering these deleted records.
Figure 7.11 shows the relationships between the Faculty table and other tables in our
sample database CSE_DEPT. Based on this relationship, you should

 • First recover the records in the parent table (Faculty and Course tables),

 • Then recover the records in the child tables (LogIn and StudentCourse tables).

 Follow the table order in Figure 7.11 and refer to Tables 7.3 – 7.6 to complete these
records ’ recovery.

Table 7.3. The data to be recovered in the Faculty table

faculty_id faculty_name office phone college title email

B78880 Ying Bai MTC-211 750-378-1148 Florida Atlantic University Associate Professor ybai@college.edu

Table 7.4. The data to be recovered in the LogIn table

user_name pass_word faculty_id student_id

ybai reback B78880 NULL

Table 7.5. The data to be recovered in the Course table

course_id course credit classroom schedule enrollment faculty_id

CSC-132B Introduction to Programming 3 TC-302 T-H: 1:00-2:25 PM 21 B78880

CSC-234A Data Structure & Algorithms 3 TC-302 M-W-F: 9:00-9:55 AM 25 B78880

CSE-434 Advanced Electronics Systems 3 TC-213 M-W-F: 1:00-1:55 PM 26 B78880

CSE-438 Advd Logic & Microprocessor 3 TC-213 M-W-F: 11:00-11:55 AM 35 B78880

Figure 7.11. The relationships among tables.

Course Table

faculty_id

StudentCourse Table

course_id

course_id=CSC-132B

course_id=CSC-234A

course_id=CSE-434

course_id=CSE-438

Primary Key Foreign key

Faculty Table

faculty_id

LogIn Table

faculty_id
B78880

Course Table

faculty_id
B78880

user_name
ybai

pass_word
reback

course_id=CSC-132B

course_id=CSC-234A

course_id=CSE-434

course_id=CSE-438

c07.indd 510c07.indd 510 4/25/2012 1:58:10 PM4/25/2012 1:58:10 PM

7.3 Update and Delete Data for Oracle Database 511

 You can access the sample database via the Server Explorer window to perform this
recovery process.

 A complete project SQLUpdateDeleteWizard can be found in the folder DBProjects\
Chapter 7 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

 Next, let ’ s discuss how to update and delete data using the Visual Studio.NET tools
and wizards for Oracle database.

7.3 UPDATE AND DELETE DATA FOR ORACLE DATABASE

 It is very similar to develop a Visual Basic.NET project to modify data against the Oracle
database using the Update and Delete button ’ s Click event procedures, and the only dif-
ference is the Data Source to be connected to your applications. Refer to Section 5.16.3
in Chapter 5 and Appendix C to get detailed information in how to use and set up our
Oracle sample database CSE_DEPT as a data source for Visual Basic.NET projects. All
user interfaces and codes are identical with those codes in the last project.

 Rename the project SQLUpdateDeleteWizard to OracleUpdateDeleteWizard and
perform the following modifi cations to a new project OracleUpdateDeleteWizard using
the DataSet Confi guration Wizard:

 • Remove the SQL Server database CSE_DEPT.mdf and CSE_DEPTDataSet.xsd from the
project.

 • Add our sample Oracle database as a new data source to this project (refer to Section 5.16.3
in Chapter 5 to add this new data source).

 You also need to build the following query functions and stored procedures for the
project OracleUpdateDeleteWizard using the DataSet Confi guration Wizard:

 • LogIn Form :

1. Query function — FillByUserNamePassWord() .
2. Query function — PassWordQuery() .

 • Faculty Form :

1. Query function — FillByFacultyName() .
2. Query function — FindFacultyIDByName() .
3. Query function — InsertFaculty() .

Table 7.6. The data to be recovered in the StudentCourse table

s_course_id student_id course_id credit major

1005 J77896 CSC-234A 3 CS/IS

1009 A78835 CSE-434 3 CE

1014 A78835 CSE-438 3 CE

1016 A97850 CSC-132B 3 ISE

1017 A97850 CSC-234A 3 ISE

c07.indd 511c07.indd 511 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

512 Chapter 7 Data Updating and Deleting with Visual Basic.NET

4. Query function — UpdateFaculty() .
5. Query function — DeleteFaculty() .

 • Course Form :

1. Query function — FillByFacultyID() .
2. Stored procedure — InsertCourseSP() .

 A completed project OracleUpdateDeleteWizard can be found in the folder
DBProjects\Chapter 7 located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

 Finally, let ’ s discuss how to build a data driven application to update and delete data
against the Microsoft Access 2007 database.

7.4 UPDATE AND DELETE DATA FOR MICROSOFT
ACCESS DATABASE

 It is very similar to develop a Visual Basic.NET project to modify data against the
Microsoft Access database using the Update and Delete commands, and the only differ-
ence is the Data Source to be connected to your applications. Refer to Appendix C to
add and connect the sample Microsoft Access 2007 database CSE_DEPT.accdb with the
Visual Basic.NET application using the Design Tools and Wizards.

 Also add the query functions and stored procedures as we did for the Oracle data-
base. A completed project AccessUpdateDelete can be found in the folder DBProjects\
Chapter 7 located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

PART II DATA UPDATING AND DELETING
WITH RUNTIME OBJECTS

 Updating or deleting data against the database using the runtime objects method is a
fl exible and professional way to perform the data modifi cation jobs in Visual Basic.NET
environment. Compared with the method we discussed in Part I , in which Visual Studio.
NET design tools and wizards are utilized to update or delete data against the database,
the runtime objects method provides more sophisticated techniques to do this job effi -
ciently and conveniently even if a more complicated coding job is needed. Relatively
speaking, the methods we discussed in the fi rst part are easy to learn and code, but some
limitations exist for those methods. First, each TableAdapter can only access the associ-
ated data table to perform data actions, such as updating or deleting data against that
table only. Second, each query function built by using the TableAdapter Query
Confi guration Wizard can only perform a single query such as data updating or deleting.
Third, after the query function is built, no modifi cations can be made to that function
dynamically, which means that the only times that you can modify that query function
either before the project runs or after the project runs. In other words, you cannot modify
that query function during the project runs.

 To overcome those shortcomings, we will discuss how to update or delete data using
the runtime object method in this part.

 Basically, you need to use the TableAdapter to perform data actions again the data-
base if you develop your applications using the Visual Studio.NET design tools and

c07.indd 512c07.indd 512 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

7.5 The Runtime Objects Method 513

wizards in the design time. But you should use the DataAdapter to make those data
manipulations if you develop your project using the runtime objects method.

7.5 THE RUNTIME OBJECTS METHOD

 We have provided a very detailed introduction and discussion about the runtime objects
method in Section 5.17 in Chapter 5 . Refer to that section for more detailed information
about this method. For your convenience, we highlight some important points and general
methodology of this method, as well as some keynotes in using this method to perform
the data updating and deleting again the databases.

 As you know, ADO.NET provides different classes to help users to develop profes-
sional data - driven applications by using different methods to perform specifi c data actions,
such as updating data and deleting data. Among them, two popular methods are widely
applied:

1. Update or delete records from the desired data table in the DataSet, and then call the
DataAdapter.Update() method to update the updated or deleted records from the table
in the DataSet to the table in the database.

2. Build the update or delete command using the Command object, and then call the com-
mand ’ s method ExecuteNonQuery() to update or delete records against the database. Or
you can assign the built command object to the UpdateCommand or DeleteCommand
properties of the DataAdapter and call the ExecuteNonQuery() method from the
UpdateCommand or DeleteCommand property.

 The fi rst method is to use the so - called DataSet - DataAdapter method to build a
data - driven application. DataSet and DataTable classes can have different roles when
they are implemented in a real application. Multiple DataTables can be embedded into
a DataSet, and each table can be fi lled, inserted, updated, and deleted by using the dif-
ferent properties of a DataAdapter, such as the SelectCommand, InsertCommand,
UpdateCommand, or DeleteCommand when the DataAdapter ’ s Update() method is
executed. The DataAdapter will perform the associated operations based on the modifi ca-
tions you made for each table in the DataSet. For example, if you deleted rows from a
table in the DataSet, and then you call this DataAdapter ’ s Update() method. This method
will perform a DeleteCommand based on your modifi cations. This method is relatively
simple since you do not need to call some specifi c methods, such as the ExecuteNonQuery(),
to complete these data queries. But this simplicity brings some limitations for your appli-
cations. For instance, you cannot access different data tables individually to perform
multiple specifi c data operations. This method is very similar to the second method we
discussed in Part I , so we will not continue to provide any discussion for this method in
this part.

 The second method is to allow you to use each object individually, which means that
you do not have to use the DataAdapter to access the Command object, or use the
DataTable with DataSet together. This provides more fl exibility. In this method, no
DataAdapter or DataSet is needed, and you only need to create a new Command object
with a new Connection object, and then build a query statement and attach some useful
parameter into that query for the newly created Command object. You can update or

c07.indd 513c07.indd 513 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

514 Chapter 7 Data Updating and Deleting with Visual Basic.NET

delete data against any data table by calling the ExecuteNonQuery() method that belongs
to the Command class. We will concentrate on this method in this part.

 In this section, we provide three sample projects named SQLUpdataDeleteRTObject ,
AccUpdataDeleteRTObject , and OracleUpdataDeleteRTObject to illustrate how to
update or delete records against three different databases using the runtime object
method. Because of the coding similarity between these three databases, we will concen-
trate on updating and deleting data against the SQL Server database using the sample
project SQLUpdataDeleteRTObject fi rst, and then illustrate the coding differences
between these databases by using the real codes for the rest of two sample projects.

 In addition to those three sample projects, we will also discuss the data updating and
deleting against our sample databases using the LINQ to SQL query method. A sample
project LINQSQLUpdateDelete will be developed in this chapter to discuss how to build
an actual data - driven project to update and delete data against our sample databases
using the LINQ to SQL query method.

7.6 UPDATE AND DELETE DATA FOR SQL SERVER
DATABASE USING THE RUNTIME OBJECTS

 Now, let ’ s fi rst develop the sample project SQLUpdataDeleteRTObject to update and
delete data against the SQL Server database using the runtime object method. Recall
that in Sections 5.18.3 – 5.18.5 in Chapter 5 , we discussed how to select data for the Faculty,
Course, and Student Form windows using the runtime object method. For the Faculty
Form, a regular runtime selecting query is performed, and for the Course Form, a runtime
joined - table selecting query is developed. For the Student table, the stored procedures
are used to perform the runtime data query.

 Similarly in this part, we divide this discussion into two sections:

1. Update and delete data against the Faculty table from the Faculty form window using the
runtime object method.

2. Update and delete data against the Faculty table from the Faculty form using the runtime
stored procedure method.

 In order to avoid the duplication on the coding process, we will modify an existing
project SQLInsertRTObject we developed in Chapter 6 to create our new project
SQLUpdataDeleteRTObject used in this section.

 Open the Windows Explorer and create a new folder such as Chapter 7 if you have
not, and then browse to the folder DBProjects\Chapter 6 that is located at the Wiley ftp
site (refer to Figure 1.2 in Chapter 1). Copy the project SQLInsertRTObject to the new
folder C:\Chapter 7 we just created. Change the name of the solution and project folder
from SQLInsertRTObject to SQLUpdataDeleteRTObject . Also change the project
name from SQLInsertRTObject.vbproj to SQLUpdateDeleteRTObject.vbproj . Then
double - click on the SQLUpdataDeleteRTObject.vbproj to open this project.

 On the opened project, perform the following modifi cations to get our desired project:

 • Go to the Project| SQLUpdataDeleteRTObject Properties menu item to open the pro-
ject ’ s property window. Change the Assembly name and the Root namespace from
SQLInsertRTObject to SQLUpdataDeleteRTObject , respectively.

c07.indd 514c07.indd 514 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

7.6 Update and Delete Data for SQL Server Database Using the Runtime Objects 515

 • Click on the Assembly Information button to open the Assembly Information wizard.
Change the Title and the Product to SQLUpdataDeleteRTObject . Click on the OK button
to close this wizard.

 Go to the File|Save All to save those modifi cations. Now we are ready to develop
our graphic user interfaces based on our new project SQLUpdataDeleteRTObject .

7.6.1 Update Data Against the Faculty Table
for the SQL Server Database

 Let ’ s fi rst discuss updating data against the Faculty table for the SQL Server database.
To update data against the Faculty data table, we do not need to add any new Windows
form and we can use the Faculty form as the user interface. We need to perform the fol-
lowing two steps to complete this data updating action:

1. Develop codes to update the faculty data

2. Validate the data updating

 First, let ’ s develop the codes for our data updating action.

7.6.1.1 Develop Codes to Update the Faculty Data

 Open the Update button ’ s Click event procedure on the Faculty form window by double -
 clicking on the Update button from the Faculty form window and enter the codes that
are shown in the top of Figure 7.12 into this event procedure.

 Let ’ s take a closer look at this piece of codes to see how it works.

A. The Update query string is defi ned fi rst at the beginning of this procedure. Six columns
(except the column faculty_id) in the Faculty table are input parameters. The dynamic
parameter @fi d represents the faculty_id , which works as the query qualifi cation and
should not be updated.

B. Some data components and local variables are declared here, such as the Command object
and intUpdate . The intUpdate is used to hold the returned data value from calling of the
ExecuteNonQuery() method.

C. The Command object is initialized and built using the connection object and the parameter
object.

D. A user - defi ned subroutine UpdateParameters() is called to add all updated parameters
into the Command object.

E. Then the ExecuteNonQuery() method of the Command class is executed to update the
faculty table. The running result of this method is returned and stored in the local variable
intUpdate .

F. The Command object is released after this data updating.

G. The updated faculty name is added into the Faculty Name combo box, and this name is
used for the validation purpose later.

H. The returned value from calling the ExecuteNonQuery() method is equal to the
number of rows that have been updated in the Faculty table. A zero means that no row

c07.indd 515c07.indd 515 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

516 Chapter 7 Data Updating and Deleting with Visual Basic.NET

has been updated, an error message is displayed, and the procedure is exited if this situa-
tion occurred.

I. The detailed codes for the user defi ned subroutine procedure UpdateParameters()
are shown in the lower part in Figure 7.12 . Six pieces of updated faculty information
and the query qualifi cation faculty_id are assigned to the associated columns in the
Faculty table.

 At this point, we fi nished the coding process for the data updating operation for the
Faculty table. Next, let ’ s take care of the data validation after this data updating to confi rm
that our data updating is successful.

7.6.1.2 Validate the Data Updating

 We do not need to add any new form window to perform this data validation; instead,
we can use the Faculty form to perform this job. By clicking on the Select button on the
Faculty form window, we can perform the selection query to retrieve the updated faculty
record from the database and display it on the Faculty form.

 Before we can run the project to test the data updating function, we want to complete
the coding process for the data deleting operation.

Figure 7.12. The codes for the data updating operation.

Private Sub cmdUpdate_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdUpdate.Click
Dim cmdString As String = "UPDATE Faculty SET faculty_name = @facultyname, office = @office, " & _

"phone = @phone, college = @college, title = @title, email = @email " & _
"WHERE (faculty_id LIKE @fid)"

Dim sqlCommand As New SqlCommand
Dim intUpdate As Integer

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
UpdateParameters(sqlCommand)
intUpdate = sqlCommand.ExecuteNonQuery()
sqlCommand.Dispose()
sqlCommand = Nothing
ComboName.Items.Add(txtName.Text) 'reserve the updated faculty name

If intUpdate = 0 Then
MessageBox.Show("The data updating is failed")
Exit Sub

End If

End Sub

Private Sub UpdateParameters(ByRef cmd As SqlCommand)

cmd.Parameters.Add("@facultyname", SqlDbType.Char).Value = txtName.Text
cmd.Parameters.Add("@office", SqlDbType.Char).Value = txtOffice.Text
cmd.Parameters.Add("@phone", SqlDbType.Char).Value = txtPhone.Text
cmd.Parameters.Add("@college", SqlDbType.Char).Value = txtCollege.Text
cmd.Parameters.Add("@title", SqlDbType.Char).Value = txtTitle.Text
cmd.Parameters.Add("@email", SqlDbType.Char).Value = txtEmail.Text
cmd.Parameters.Add("@fid", SqlDbType.Char).Value = txtID.Text

End Sub

A

B

C

D
E
F

G

H

I

cmdUpdate Click

c07.indd 516c07.indd 516 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

7.6 Update and Delete Data for SQL Server Database Using the Runtime Objects 517

7.6.2 Delete Data from the Faculty Table
for the SQL Server Database

 As we mentioned in the previous section, to delete a faculty record from our database,
we have to follow two steps listed below:

1. First, delete records from the child tables (LogIn and Course tables)

2. Second, delete record from the parent table (Faculty table)

 The data deleting function can be performed by using the Delete button ’ s Click event
procedure in the Faculty Form window. Therefore, the main coding job for this function
is performed inside that procedure.

7.6.2.1 Develop Codes to Delete Data

 Open the Delete button ’ s Click event procedure by double - clicking on the Delete button
from the Faculty form window, and enter the codes that are shown in Figure 7.13 into this
event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The deleting query string is declared fi rst at the beginning of this procedure. The only
parameter is the faculty name. Although the primary key of the Faculty table is faculty_id ,
but in order to make it convenient to the user, the faculty name is used as the criterion for
this data - deleting query. A potential problem of using the name as criterion in this query
is that no duplicated faculty name can be used in the Faculty table for this application. In

Figure 7.13. The codes for the data - deleting query.

Private Sub cmdDelete_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdDelete.Click
Dim cmdString As String = "DELETE FROM Faculty WHERE (faculty_name LIKE @fname)"
Dim vbButton As MessageBoxButtons = MessageBoxButtons.YesNo
Dim sqlCommand As New SqlCommand
Dim Answer As DialogResult
Dim intDelete As Integer

Answer = MessageBox.Show("You sure you want to delete this record?", "Delete", vbButton)

If Answer = System.Windows.Forms.DialogResult.Yes Then
sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add("@fname", SqlDbType.Char).Value = ComboName.Text
intDelete = sqlCommand.ExecuteNonQuery()
sqlCommand.Dispose()
sqlCommand = Nothing

If intDelete = 0 Then
MessageBox.Show("The data Deleting is failed")
Exit Sub

End If

For intDelete = 0 To 6 'Clean up the Faculty textbox array
FacultyTextBox(intDelete).Text = String.Empty

Next intDelete
End If

End Sub

A
B
C

D

E

F
G
H

I

J

cmdDelete Click

c07.indd 517c07.indd 517 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

518 Chapter 7 Data Updating and Deleting with Visual Basic.NET

other words, each faculty name must be unique in the Faculty table. A solution to this
problem is that we can use the faculty_id as the query criterion in the future.

B. A MessageBoxs button ’ s object is created, and this object is used to display both buttons
in the MessageBox, Yes and No , when the project runs.

C. Some useful components and local variables are declared here. The data type of the vari-
able Answer is DialogResult, but one can use an integer to replace it.

D. As the Delete button is clicked when the project runs, fi rst, a MessageBox is displayed to
confi rm that the user wants to delete the selected data from the Faculty table.

E. If the user ’ s answer to the MessageBox is Yes , then the deleting operation begins to be
processed. The Command object is initialized and built by using the Connection object and
the command string we defi ned at the beginning of this procedure.

F. The dynamic parameter @fname is replaced by the real parameter, the faculty name
stored in the Faculty Name combo box. A key point to be noted is that you must use the
faculty name stored in the combo box control, which is an old faculty name, and you cannot
use the faculty name stored in the Faculty Name textbox since that is an updated faculty
name.

G. The ExecuteNonQuery() method of the Command class is called to execute the data delet-
ing query to the Faculty table. The running result of calling this method is stored in the
local variable intDelete .

H. The Command object is released after this data deleting action.

I. The returned value from calling of the ExecuteNonQuery() method is equal to the number
of rows that have been successfully deleted from the Faculty table. If a zero returns, which
means that no row has been deleted from the Faculty table and this data deleting has failed.
An error message is displayed, and the procedure is exited if that situation occurred.

J. After the data deleting is done, all pieces of faculty information stored in seven textboxes
should be cleaned up. A For loop is used to fi nish this cleaning job.

 Finally, let ’ s take care of the coding process to validate the data deleting query.

7.6.2.2 Validate the Data Deleting

 As we did for the validation for the data updating in the last section, we do not need to
create any new form window to do this validation; instead, we can use the Faculty form
to perform this data validation.

 Now let ’ s run the project to test both data updating and deleting operations. Before
we can run the project, make sure that a default faculty photo fi le named Default.jpg has
been stored in the default folder in our project. In this application, this default folder is
the folder in which the executable fi le of our Visual Basic.NET project is located, which
is C:\Chapter 7\SQLUpdateDeleteRTObject\bin\Debug .

 Click on the Start Debugging button to start our project, enter the suitable username
and password to the LogIn form, and select the item Faculty Information from the
Selection form to open the Faculty form window. First, let ’ s perform a query to get a
faculty record and display it in this form.

 On the opened Faculty form window, keep the default faculty member Ying Bai in
the Faculty Name combo box selected. Then update this faculty record by entering the
following data to the associated textbox as an updated faculty record:

c07.indd 518c07.indd 518 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

7.6 Update and Delete Data for SQL Server Database Using the Runtime Objects 519

 Then click on the Update button to update this record in the Faculty table.
 To confi rm this data updating, go to the Faculty Name combo box control and try to

fi nd the updated faculty name from this combo box in terms of the name. Immediately,
you can fi nd this updated faculty name. However, in order to test this data updating, fi rst,
let ’ s select another faculty name from this box and click on the Select button to show all
pieces of information for that faculty. Then select our updated faculty name from the box,
and click on the Select button to retrieve that updated faculty record. Immediately, you
can fi nd that all pieces of updated information related to that faculty are displayed in this
form. This means that our data updating is successful. Your updated faculty information
window should match the one that is shown in Figure 7.14 .

 Now let ’ s test the data deleting functionality by clicking on the Delete button to try
to delete this updated faculty record from the Faculty table. Click on the Yes button to
the message box, and all pieces of updated faculty information stored in seven textboxes
are gone. Is our data deleting successful? To answer this question, click on the Select
button again to try to retrieve that deleted faculty record from the Faculty table. What
happened after you click on the Select button? A message “No matched faculty found ”
is shown up, and this means that the faculty record has been successfully deleted from

 • Susan Bai Faculty Name textbox

 • Professor Title textbox

 • MTC-358 Offi ce textbox

 • 750-378-5577 Phone textbox

 • Duke University College textbox

 • sbai@college.edu Email textbox

 • Default.jpg Faculty Image textbox

Figure 7.14. The updated faculty information window.

c07.indd 519c07.indd 519 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

520 Chapter 7 Data Updating and Deleting with Visual Basic.NET

the Faculty table. Yes, our data deleting is successful. Click on the Back and the Exit
button to exit the project.

 It is highly recommended to recover the deleted faculty record for our sample data-
base. To do that recovery, you need to follow the operational order listed below:

 • First, recover the deleted faculty record from the parent table (Faculty and Course tables).

 • Then, recover the deleted faculty record in the child tables (LogIn and the StudentCourse
tables).

 Refer to Figure 7.11 and Tables 7.3 – 7.6 in this chapter to complete this data recovery
job. You can access and recover each table in our sample database via the Server Explorer
window to perform this recovery process.

 A completed project SQLUpdateDeleteRTObject can be found in the folder
DBProjects\Chapter 7 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1).

 Next, let ’ s discuss how to update and delete data using the runtime object method
for Oracle database.

7.7 UPDATE AND DELETE DATA FOR ORACLE DATABASE
USING THE RUNTIME OBJECTS

 Because of the similar codes in the SQL Server and Oracle databases for the data updat-
ing and deleting, we only show the codes that are different with those for the SQL Server
database. The main differences between the SQL Server and Oracle databases are the
query strings for data deleting and updating. In this section, we concentrate on these
query strings.

 First, let ’ s modify an existing project to create our new project. We want to modify
the project SQLUpdateDeleteRTObject we developed in the last section to create our
new project OracleUpdateDeleteRTObject used in this section.

 Open the Windows Explorer and create a new folder such as Chapter 7 if you have
not, and then browse to the folder DBProjects\Chapter 7 that is located at the Wiley ftp
site (refer to Figure 1.2 in Chapter 1). Copy the project SQLUpdateDeleteRTObject
to the new folder C:\Chapter 7 . Change the name of the solution and the project folders
from SQLUpdateDeleteRTObject to OracleUpdataDeleteRTObject . Also, change
the project fi le SQLUpdateDeleteRTObject.vbproj to OracleUpdataDeleteRTObject.
vbproj . Then, double - click on the OracleUpdataDeleteRTObject.vbproj to open this
project.

 On the opened project, perform the following modifi cations to get our desired
project:

 • Select one form window, such as the LogIn Form.vb , from the Solution Explorer window.
Then go to Project|OracleUpdataDeleteRTObject Properties menu item to open the
project ’ s property window. Change the Assembly name and the Root namespace from
SQLUpdateDeleteRTObject to OracleUpdataDeleteRTObject .

 • Click on the Assembly Information button to open the Assembly Information wizard,
change the Title and the Product to OracleUpdataDeleteRTObject . Click on the OK button
to close this wizard.

c07.indd 520c07.indd 520 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

7.7 Update and Delete Data for Oracle Database Using the Runtime Objects 521

 Go to the File|Save All to save those modifi cations. Now we are ready to develop
our codes based on our new project OracleUpdataDeleteRTObject .

 We can use all graphical user interfaces from this modifi ed project, and the only
modifi cations we need to do are the coding parts for each form window. Basically, we
need to perform the following modifi cations to the related codes:

1. Add the Oracle namespace reference to the project and modify the Imports commands.

2. Modify the connection string in the ConnModule and the LogIn form.

3. Modify the SELECT query string for the LogIn button ’ s Click event procedure in the
LogIn form.

4. Modify the SELECT query string for the Select button ’ s Click event procedure in the
Faculty form.

5. Modify the INSERT query string for the Insert button ’ s Click event procedure in the
Faculty Form window.

6. Modify the parameters ’ names for the INSERT command object in the Faculty Form
window.

7. Modify the UPDATE query string for the Update button ’ s Click event procedure in the
Faculty form.

8. Modify the DELETE query string for the Delete button ’ s Click event procedure in the
Faculty form.

9. Modify the parameters ’ names for the UPDATE and the DELETE command objects in
the Faculty form.

10. Modify two SELECT query strings for the Select button ’ s Click event procedure, and the
SelectedIndexChanged event procedure of the Course listbox in the Course form.

11. Modify the user - defi ned subroutine BuildCommand() and the SELECT query string for
the Select button ’ s Click event procedure in the Student form.

12. Delete SP Form.vb since we will not use this form in this project.

 Well, it looks like that there are too many modifi cations we need to do for this project.
But exactly it is easy to handle those modifi cations. Let ’ s begin our fi rst modifi cation.

7.7.1 Add the Oracle Namespace Reference and Modify the
Imports Command

 Perform the following operations to complete this reference addition operation:

1. Right - click on our project OracleUpdataDeleteRTObject from the Solution Explorer
window and select the Add Reference item from the pop - up menu to open the Add refer-
ence wizard.

2. With the .NET tab selected, scroll down the list until you fi nd the items Devart.Data and
Devart.Data.Oracle . Click on both to select them and click on the OK button to add these
two references to our project.

 Open the code windows of the following forms from the current project:

 • ConnModule.vb

 • LogIn Form.vb

c07.indd 521c07.indd 521 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

522 Chapter 7 Data Updating and Deleting with Visual Basic.NET

 • Faculty Form.vb

 • Course Form.vb

 • Student Form.vb

 Perform the following operations to modify these Imports commands:

 • Change Imports System.Data to Imports Devart.Data .

 • Change Imports System.Data.SqlClient to Imports Devart.Data.Oracle .

 On the ConnModule code window, change the connection class and object from:

Public sqlConnection As SqlConnection

To: Public oraConnection As OracleConnection

7.7.2 Modify the Connection String and Query String
for the LogIn Form

 The modifi cations to the LogIn form can be divided into three parts: modifi cations to the
connection string in the Form_Load event procedure, modifi cations to the SELECT
query string in the TableAdapter LogIn button ’ s Click event procedure, and modifi ca-
tions to the SELECT query string in the DataReader LogIn button ’ s Click event
procedure.

 Let ’ s start from the fi rst part.

7.7.2.1 Modify the Connection String in the Form Load Event Procedure

 Open the Form_Load event procedure of the LogIn form and change the connection
string to:

 Dim oraString As String = “ Data Source = XE; ” + _
 “ User ID = CSE_DEPT; ” + “ Password = reback ”

 Also, change the prefi xes of all data classes from Sql to Oracle , the prefi xes of all
data objects from sql to ora , respectively.

7.7.2.2 Modify the SELECT Query String

in the TabLogIn Button Event Procedure

 Open the TabLogIn button ’ s Click event procedure and change the SELECT query
string to:

 Dim cmdString1 As String = “ SELECT user_name, pass_word, faculty_id, student_id FROM LogIn ”
 Dim cmdString2 As String = “ WHERE user_name = :Param1 AND pass_word = :Param2 ”

 Also, change the prefi xes of all data classes from Sql to Oracle , the prefi xes of all
data objects from sql to ora . Change two dynamic parameters ’ names from @Param1
to Param1 , and from @Param2 to Param2 , respectively.

c07.indd 522c07.indd 522 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

7.7 Update and Delete Data for Oracle Database Using the Runtime Objects 523

7.7.2.3 Modify the SELECT Query String in the ReadLogIn

Button Event Procedure

 Open the ReadLogIn button ’ s Click event procedure and change the SELECT query
string to:

 Dim cmdString1 As String = “ SELECT user_name, pass_word, faculty_id, student_id FROM LogIn ”
 Dim cmdString2 As String = “ WHERE user_name = :name AND pass_word = :word ”

 Also, change the prefi xes of all data classes from Sql to Oracle , the prefi xes of all
data objects from sql to ora . Change two dynamic parameters ’ names from @name to
name , and from @word to word , respectively.

7.7.3 Modify the Query Strings for the Faculty Form

 This modifi cation can also be divided into three parts: Modifi cations to the query string
for the Select button ’ s Click event procedure, modifi cations to the query string for the
Update button ’ s Click event procedure, and modifi cations to the query string for the
Delete button ’ s Click event procedure in the Faculty form.

7.7.3.1 Modify the SELECT Query String for the Select Button Event

Procedure

 Open the Select button ’ s Click event procedure and change the query string to:

 Dim cmdString1 As String = “ SELECT faculty_id, faculty_name, office, phone, college, title, ” & _
 “ email FROM Faculty ”
 Dim cmdString2 As String = “ WHERE faculty_name = :facultyName ”

 Also, change the prefi xes of all data classes from Sql to Oracle , the prefi xes of all
data objects from sql to ora for all event procedures in this form. Change the dynamic
parameter ’ s name from @facultyName to facultyName .

7.7.3.2 Modify the INSERT Query String for the Insert Button Event

Procedure

 Open the Insert button ’ s Click event procedure and change the query string to:

 Dim cmdString As String = “ INSERT INTO Faculty (faculty_id, faculty_name, office, phone, college, ” & _
 “ title, email) VALUES (:faculty_id,:faculty_name,:office,:phone,:college,:title,:email) ”

 Change the prefi xes of all data classes from Sql to Oracle , the prefi xes of all data
objects from sql to ora . Also, modify the data types and the names of the dynamic param-
eters inside the user - defi ned subroutine InsertParameters() as below:

c07.indd 523c07.indd 523 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

524 Chapter 7 Data Updating and Deleting with Visual Basic.NET

 • Change the data type of the passed argument command object from SqlCommand to
OracleCommand .

 • Change the data type for all parameters from SqlDbType to OracleDbType .

 • Remove the @ symbol before all parameters ’ names.

 Next, let ’ s handle the modifi cations to the Update button Click event procedure.

7.7.3.3 Modify the UPDATE Query String for the Update

Button Event Procedure

 Open the Update button ’ s Click event procedure and change the query string to:

 Dim cmdString As String = “ UPDATE Faculty SET faculty_name = :facultyname, office = :office, ” & _
 “ phone = :phone, college = :college, title = :title, email = :email ” & _
 “ WHERE (faculty_id = : fid) ”

 Change the prefi xes of all data classes from Sql to Oracle , and the prefi xes of all data
objects from sql to ora . Also, modify the data types and the names of the dynamic param-
eters inside the UpdateParameters() subroutine as below:

 • Change the data type of the argument cmd to OracleCommand .

 • Change the data type for all parameters from SqlDbType to OracleDbType

 • Remove the @ symbol before all parameters ’ names

 Next, let ’ s handle the modifi cations to the Delete button Click event procedure.

7.7.3.4 Modify the DELETE Query String for the Delete

Button Event Procedure

 Open the Delete button ’ s Click event procedure and change the query string to:

 Dim cmdString As String = “ DELETE FROM Faculty WHERE (faculty_name = : fname) ”

 Change the prefi xes of all data classes from Sql to Oracle , and the prefi xes of all data
objects from sql to ora . Also, change the dynamic parameter ’ s name from @fname to
fname , then its data type from SqlDbType to OracleDbType .

 At this point, we have fi nished all code modifi cations to the LogIn and the Faculty
forms. Next, let ’ s handle the codes modifi cations to the Course form.

7.7.4 Modify the Query Strings for the Course Form

 The modifi cation to this form can be divided into two parts: modifi cations to the query
string for the Select button ’ s Click event procedure and modifi cations to the query string
for the Course Listbox ’ s SelectedIndexChanged event procedure.

c07.indd 524c07.indd 524 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

7.7 Update and Delete Data for Oracle Database Using the Runtime Objects 525

7.7.4.1 Modify the SELECT Query String for the Select

Button Event Procedure

 Open the Select button ’ s Click event procedure and change the query string to:

 Dim cString1 As String = “ SELECT Course.course_id, Course.course FROM Course JOIN Faculty ”
 Dim cString2 As String = “ ON (Course.faculty_id = Faculty.faculty_id) AND (Faculty.faculty_name = :name) ”

 Change the prefi xes of all data classes from Sql to Oracle , the prefi xes of all data
objects from sql to ora . Also, change the dynamic parameter ’ s name from @name to
name , its data type from SqlDbType to OracleDbType .

 Another modifi cation is to change the data type of the argument CourseReader to
the OracleDataReader in the user - defi ned subroutine FillCourseReader() .

7.7.4.2 Modify the SELECT Query String for the CourseList Event

Procedure

 Open the Course Listbox ’ s SelectedIndexChanged event procedure and change the query
string to:

 Dim cmdString1 As String = “ SELECT course_id, course, credit, classroom, schedule, ” & _
 “ enrollment FROM Course ”
 Dim cmdString2 As String = “ WHERE course_id = : courseid ”

 Change the prefi xes of all data classes from Sql to Oracle , the prefi xes of all data
objects from sql to ora . Also, change the dynamic parameter ’ s name from @courseid to
courseid , and its data type from SqlDbType to OracleDbType .

 Also, change the data type of the argument CourseReader in the user - defi ned sub-
routine FillCourseReaderTextBox() from SqlDataReader to OracleDataReader .

7.7.5 Modify the Query Strings for the Student Form

 Two modifi cations are involved in this form: modifi cations to the Select button click event
procedure and modifi cations to the user - defi ned subroutine BuildCommand() .

 Open the Select button click event procedure and change the prefi xes of all data
classes from Sql to Oracle , the prefi xes of all data objects from sql to ora . Change the
data type of the argument cmdObj in the user defi ned subroutine BuildCommand()
from SqlCommand to OracleCommand .

7.7.6 Other Modifi cations

 Change the prefi xes of all data classes from Sql to Oracle , the prefi xes of all data objects
from sql to ora . These modifi cations include the following procedures:

 • Cancel button ’ s Click event procedure in the LogIn form.

 • Form_Load event procedure in the Faculty form

c07.indd 525c07.indd 525 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

526 Chapter 7 Data Updating and Deleting with Visual Basic.NET

 • Form_Load event procedure in the Course form

 • Form_Load event procedure in the Student Form

 • Exit button ’ s Click event procedure in the Selection form

 Remove the coding lines that contains the SP Form class SPForm and object spform
from the OK button Click event procedure in the Selection Form code window.

 At this point, we have fi nished all modifi cations to the project and now we can run
the project to test the data updating and deleting functions.

 Click on the Start Debugging button to run the project. Enter the suitable username
and password, such as jhenry and test to the LogIn form, and select the item Faculty
Information from the Selection form to open the Faculty form window. Enter the fol-
lowing eight pieces of information into the associated textbox in this form as a new faculty
record:

Figure 7.15. The running status of the Faculty form.

 • P33431 Faculty ID textbox

 • Peter Steff Faculty Name textbox

 • Associate Professor Title textbox

 • MTC-235 Offi ce textbox

 • 750-378-1130 Phone textbox

 • University of Hawaii College textbox

 • psteff@college.edu Email textbox

 • Default.jpg Faculty Image textbox

 Then click on the Insert button to try to insert this new faculty record into the Faculty
table in the database. To confi rm this data insertion, click on the drop - down arrow from
the Faculty Name combo box, and you can fi nd that the newly inserted faculty ’ s name is
in there. Click it to select it, and click on the Select button to retrieve this new record
and display it in this form, which is shown in Figure 7.15 .

c07.indd 526c07.indd 526 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

7.7 Update and Delete Data for Oracle Database Using the Runtime Objects 527

 To update this faculty record, change the faculty information as follows:

 • Peter Jones Faculty Name textbox
 • Professor Title textbox
 • MTC-555 Offi ce textbox
 • 750-330-3355 Phone textbox
 • University of Florida College textbox
 • pjones@college.edu Email textbox

Figure 7.16. The confi rmation of the data updating operation.

 Click on the Update button to update this record in the Faculty table in the
database.

 To confi rm this data updating, click on the drop - down arrow from the Faculty Name
combo box. First, we may select any other faculty from the list, and click on the Select
button to show the information for that faculty. Then select the updated faculty Peter
Jones from the Faculty Name combo box and click on the Select button to try to retrieve
this updated faculty record and display it in this form. Immediately, you can fi nd that the
faculty record has been updated and displayed, which is shown in Figure 7.16 . Our data
updating is successful.

 Now, let ’ s test our data deleting function. Keep the updated faculty name Peter
Jones selected in the Faculty Name combo box and click on the Delete button to try to
delete it from the Faculty table in the database. Click Yes on the confi rmation message
box, and you can fi nd that all pieces of information related to that faculty are removed
from all textboxes. To confi rm that data deleting, click on the Select button to try to
retrieve that deleted record from the Faculty table, a message “ No matched faculty
found! ” is displayed to indicate that the querying faculty record has been deleted from
the database. Yes, our data deleting is also successful.

c07.indd 527c07.indd 527 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

528 Chapter 7 Data Updating and Deleting with Visual Basic.NET

 A complete project OracleUpdateDeleteRTObject can be found in the folder
DBProjects\Chapter 7 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1).

7.8 UPDATE AND DELETE DATA AGAINST DATABASE USING
STORED PROCEDURES

 As we mentioned in the previous sections, performing the data updating among related
tables is a very challenging topic. But the good news is that in most time, it is unnecessary
to update the primary key, or the faculty_id , in our Faculty table if we want to update
any faculty information from the Faculty table in the database. Basically, it is much better
to insert a new faculty record with a new faculty_id into the Faculty table than updating
that record, including the primary key, because the primary key faculty_id is good for
the lifetime of the database in actual applications. Therefore, based on this fact, we will
perform the data updating for all columns in the Faculty table except the faculty_id in
this section.

 To delete records from related tables, we need to perform two steps: First, we need
to delete records from the child tables, and then we can delete those records from the
parent table. For example, if we want to delete a record from the Faculty table, fi rst we
need to delete those records that are related to the record to be deleted from the Faculty
table from the LogIn and the Course tables (child tables), and then we can delete the
record from the Faculty table (parent table).

 We divide this discussion into two parts based on two types of databases we used in
this book: using stored procedures to update and delete data against (1) the SQL Server
2008 database and (2) the Oracle 11g XE database.

 To save time and space, we will not duplicate any project, and we want to modify
some existing projects to create our desired projects.

7.8.1 Update and Delete Data Against SQL Server Database
Using Stored Procedures

 Updating and deleting data using stored procedures developed in the SQL Server data-
base are very similar to the data updating and deleting we performed in the last section.
With a small modifi cation to the existing project SQLUpdateDeleteRTObject , we can
easily create our new project SQLUpdateDeleteSP to perform the data updating and
deleting by calling stored procedures developed in the SQL Server database.

 To develop our new project in this section, we divide it into three sections:

1. Modify the existing project SQLUpdateDeleteRTObject to create our new project
SQLUpdateDeleteSP .

2. Develop the data updating and deleting stored procedures in the SQL Server database.

3. Call the stored procedures to perform the data updating and deleting for the faculty infor-
mation using the Faculty Form window.

 Now, let ’ s start with the fi rst step.

c07.indd 528c07.indd 528 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

7.8 Update and Delete Data Against Database Using Stored Procedures 529

7.8.1.1 Modify the Existing Project to Create Our New Project

 Open the Windows Explorer and create a new folder Chapter 7 if you have not, and
then browse to the folder DBProjects\Chapter 7 that is located at the Wiley ftp site (refer
to Figure 1.2 in Chapter 1). Copy the project SQLUpdateDeleteRTObject to the
new folder C:\Chapter 7 . Change the names of the solution and the project folders
from SQLUpdateDeleteRTObject to SQLUpdateDeleteSP . Also, change the name
of the project fi le SQLUpdateDeleteRTObject.vbproj to SQLUpdateDeleteSP
.vbproj . Then double - click on the project SQLUpdateDeleteSP.vbproj to open this new
project.

 On the opened project, perform the following modifi cations to get our desired
project:

 • Select a form window, such as the LogIn Form.vb , from the Solution Explorer window.
Then go to the Project|SQLUpdataRTObjectSP Properties menu item to open the proj-
ect ’ s property wizard. Change the Assembly name and the Root namespace from
SQLUpdateDeleteRTObject to SQLUpdateDeleteSP .

 • Click on the Assembly Information button to open the Assembly Information wizard.
Change the Title and the Product to SQLUpdateDeleteSP . Click on the OK button to close
this dialog box.

 Go to the File|Save All to save those modifi cations. Now we are ready to modify the
codes based on our new project SQLUpdateDeleteSP .

7.8.1.2 Modify the Codes to Update and Delete Data from the Faculty Table

 The code modifi cations include the following parts:

1. Replace the query string in the Update button ’ s Click event procedure in the Faculty Form
with the name of the data updating stored procedure that will be developed in the next
section to allow the procedure to call the related stored procedure to perform the data
updating action.

2. Replace the query string in the Delete button ’ s Click event procedure in the Faculty Form
with the name of the data deleting stored procedure that will be developed in the next
section to allow the procedure to call the related stored procedure to perform the data
deleting action.

 Regularly, these two modifi cations should be performed after the stored procedure
has been created in the SQL Server database since we need some information from the
created stored procedure to execute these modifi cations, such as the name of the stored
procedure and the names of the input parameters to the stored procedure. Because of
the similarity between this project and the last one, we assumed that we have known
those pieces of information and we can put those pieces of information into these two
event procedures in advance. The assumed information includes:

A. For the Faculty Data Updating:

1. The name of the data updating stored procedure — dbo.UpdateFacultySP .
2. The names of the input updating parameters — identical with the columns ’ names in the

Faculty table in our sample database.
3. The name of the input dynamic parameter — @FacultyName .

c07.indd 529c07.indd 529 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

530 Chapter 7 Data Updating and Deleting with Visual Basic.NET

B. For the Faculty Data Deleting:
1. The name of the data deleting stored procedure — dbo.DeleteFacultySP .
2. The names of the deleting input parameters — identical with the columns ’ names in the

Faculty table in our sample database.
3. The name of the input dynamic parameter — @FacultyName .

 Based on these assumptions, we can fi rst modify our codes in the Update button ’ s
Click event procedure. The key point is that we need to remember the names of these
parameters and the name of the stored procedure and put them into our stored procedure
later when we developed it in the next section.

 Open the Update button ’ Click event procedure and perform the appropriate modi-
fi cations. Your fi nished modifi cations to this event procedure should match those codes
that are shown in Figure 7.17 . The modifi ed codes have been highlighted in bold.

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. The content of the query string now should be equal to the name of the stored procedure,
dbo.UpdateFacultySP , which will be built later.

B. The CommandType property of the Command object should be set to StoredProcedure
to tell the project that a stored procedure should be called as the project runs to perform
the data updating job.

 There is no modifi cations to the user - defi ned subroutine UpdateParameters() .
 Next, let ’ s modify the codes in the Delete button ’ s Click event procedure. Open this

event procedure and perform the modifi cations shown in Figure 7.18 to this procedure.
 The modifi ed codes have been highlighted in bold.
 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. The content of the query string now should be equal to the name of the stored procedure,
dbo.DeleteFacultySP , which will be built later.

Figure 7.17. The modifi ed codes for the Update button ’ s event procedure.

Private Sub cmdUpdate_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdUpdate.Click
Dim cmdString As String = "dbo.UpdateFacultySP"
Dim sqlCommand As New SqlCommand
Dim intUpdate As Integer

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.StoredProcedure
sqlCommand.CommandText = cmdString
UpdateParameters(sqlCommand)
intUpdate = sqlCommand.ExecuteNonQuery()
sqlCommand.Dispose()
sqlCommand = Nothing
ComboName.Items.Add(txtName.Text) 'reserve the updated faculty name

If intUpdate = 0 Then
MessageBox.Show("The data updating is failed")
Exit Sub

End If

End Sub

A

B

cmdUpdate Click

c07.indd 530c07.indd 530 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

7.8 Update and Delete Data Against Database Using Stored Procedures 531

B. The CommandType property of the Command object should be set to StoredProcedure
to tell the project that a stored procedure should be called as the project runs to perform
the data updating job.

C. The input dynamic parameter to the stored procedure is @FacultyName , and this will
work as a query qualifi cation for this action.

 Now we have fi nished all codes modifi cations in Visual Basic.NET environment. Let ’ s
start to create our stored procedures in the SQL Server database. There are two ways
you can create the stored procedure: (1) create it in the SQL Server Management Studio
Express, and (2) create it in the Server Explorer in the Visual Studio.NET environment.
Since we are working for the Visual Basic.NET project, we prefer to use the second way
to create our stored procedures.

7.8.1.3 Develop Two Stored Procedures in the SQL Server Database

 Open the Server Explorer in the Visual Studio.NET environment, and click on the small
plus icon before our sample database CSE_DEPT.mdf to expand it. Then right - click on
the Stored Procedures folder and select the item Add New Stored Procedure to open
the default procedure window.

 Change the name of the default stored procedure to dbo.UpdateFacultySP , which
should be identical with the name of the stored procedure we used in our codes in the
last section. Then add the codes that are shown in Figure 7.19 into this stored procedure
as the body of our new stored procedure.

Figure 7.18. The modifi ed codes to call the stored procedure.

Private Sub cmdDelete_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdDelete.Click
Dim cmdString As String = "dbo.DeleteFacultySP"
Dim vbButton As MessageBoxButtons = MessageBoxButtons.YesNo
Dim sqlCommand As New SqlCommand
Dim Answer As DialogResult
Dim intDelete As Integer

Answer = MessageBox.Show("You sure you want to delete this record?", "Delete", vbButton)

If Answer = System.Windows.Forms.DialogResult.Yes Then
sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.StoredProcedure
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add("@FacultyName", SqlDbType.Char).Value = ComboName.Text
intDelete = sqlCommand.ExecuteNonQuery()
sqlCommand.Dispose()
sqlCommand = Nothing

If intDelete = 0 Then
MessageBox.Show("The data Deleting is failed")
Exit Sub

End If

For intDelete = 0 To 6 'Clean up the Faculty textbox array
FacultyTextBox(intDelete).Text = String.Empty

Next intDelete
End If

End Sub

A

B

C

cmdDelete Click

c07.indd 531c07.indd 531 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

532 Chapter 7 Data Updating and Deleting with Visual Basic.NET

 Refer to Section 2.10.2 in Chapter 2 for the data types of those input parameters, and
the data types of those input parameters should be identical with those data types of the
associated columns defi ned in the Faculty table. Here, we used the text to replace the
nvarchar() since they are similar in this procedure.

 Go to the menu item File|Save StoredProcedure1 to save our stored procedure.
 To test our stored procedure, right - click on our newly created stored procedure dbo.

UpdateFacultySP , which is located under the Stored Procedure folder, and select the
item Execute from the pop - up menu to open the Run Stored Procedure wizard. Enter
the following updated information into each fi eld on the Value column of this wizard:

 • Susan Bai Name Value

 • MTC-228 Offi ce Value

 • 750-378-1220 Phone Value

 • Duke University College Value

 • Associate Professor Title Value

 • sbai@college.edu Email Value

 • B78880 faculty_id Value

Figure 7.19. The created stored procedure dbo.UpdateFacultySP.

 Your fi nished information wizard should match the one that is shown in Figure 7.20 .
 Click on the OK button to run this stored procedure. The running result of execution

of this stored procedure is shown in the Output wizard, as shown in Figure 7.21 .
 To confi rm this data updating action, you can open the Faculty table to check it. Go

to the Server Explorer window and right - click on the Faculty table, select Show Table
Data to open the Faculty table. You can fi nd that our updated record is in there, which is

c07.indd 532c07.indd 532 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

7.8 Update and Delete Data Against Database Using Stored Procedures 533

shown as a highlighted row in Figure 7.22 . Sometimes, you may need to close and restart
the Visual Studio.NET and your project to see this result.

 Our stored procedure is successful.
 In order to keep our database neat, we prefer to recover this updated faculty record

with the original data. To do that, enter the following information into this updated row
to recover it:

Figure 7.20. The fi nished information wizard.

Figure 7.21. The running result of the stored procedure dbo.UpdateFacultysp.

 • Ying Bai faculty_name column
 • MTC-211 offi ce column
 • 750-378-1148 phone column
 • Florida Atlantic University college column
 • Associate Professor title column
 • ybai@college.edu email column

 Save and close the database. Next, let ’ s create our data deleting stored procedure
dbo.DeleteFacultySP in the SQL Server database.

 In the opened Server Explorer window, right - click the Stored Procedures folder
and select the item Add New Stored Procedure to open the default procedure wizard.

c07.indd 533c07.indd 533 4/25/2012 1:58:11 PM4/25/2012 1:58:11 PM

534 Chapter 7 Data Updating and Deleting with Visual Basic.NET

Figure 7.23. The created data deleting stored procedure.

Figure 7.22. The updated Faculty table.

Change the name of the default stored procedure to dbo.DeleteFacultySP , which is
identical with the name of the stored procedure we used in our codes in the last section.
Then add the codes that are shown in Figure 7.23 into this stored procedure as the body
of our new data deleting stored procedure.

 Go to the menu item File|Save StoredProcedure2 to save our new stored
procedure.

 To test this stored procedure, right - click on our newly created stored procedure
DeleteFacultySP that is located under the Stored Procedure folder in the Server

c07.indd 534c07.indd 534 4/25/2012 1:58:12 PM4/25/2012 1:58:12 PM

7.8 Update and Delete Data Against Database Using Stored Procedures 535

Figure 7.24. The fi nished Run Stored Procedure wizard.

Figure 7.25. The running result of the stored procedure dbo.DeleteFacultysp.

Explorer window, and select the item Execute to open the Run Stored Procedure
wizard. Enter the faculty name Ying Bai into the Value column of this wizard, which is
shown in Figure 7.24 , to try to delete this faculty record from the Faculty table in our
sample database.

 Click on the OK button to run this stored procedure.
 The running result is displayed in the Output window, which is shown in Figure 7.25 .
 To confi rm the execution of this stored procedure, you can open the Faculty table

from the Server Explorer window to check it. On the opened Faculty table, you can fi nd
that the faculty member Ying Bai with a faculty_id of B78880 has been deleted from
this table in our sample SQL Server database.

 When checking this data deleting action against the Faculty table in our sample
database, one point is that you need fi rst close the Visual Studio.NET to disconnect the
connection between our project and our sample database, and then reopen our project
and the Server Explorer to confi rm that data deleting action. Otherwise, the deleted data
cannot be refl ected in our sample database.

 Our stored procedure is successful.
 In order to keep our database neat, we prefer to recover this deleted faculty record

with the original data. Recall in Figure 7.11 and related discussions in Section 7.2.9 , when

c07.indd 535c07.indd 535 4/25/2012 1:58:12 PM4/25/2012 1:58:12 PM

536 Chapter 7 Data Updating and Deleting with Visual Basic.NET

a faculty member is deleted from the Faculty table (parent table), all records related to
that faculty member in the Course and LogIn tables (child tables) will also be deleted.
Similarly, as a course is deleted from the Course table (parent table), all records related
that course in the StudentCourse table (child table) will be deleted, too. Therefore, in
total, 11 records in our sample database are deleted from four tables:

 • One faculty record from the Faculty table (parent table)

 • One login record from the LogIn table (child table)

 • Four course records from the Course table (child table)

 • Five student course records from the StudentCourse table (child table)

 Open those tables in the Server Explorer window and add those deleted records to
each associated table one by one. In Section 7.2.9 , we listed all those deleted data for
those four tables in our sample database. For your convenience, we list these data again
in Tables 7.7 – 7.10 . You can use the copy/paste functions to fi rst copy all rows from each
table, and then paste them at the end of each table in our sample database.

Table 7.7. The data to be recovered in the Faculty table

faculty_id faculty_name office phone college title email

B78880 Ying Bai MTC-211 750-378-1148 Florida Atlantic University Associate Professor ybai@college.edu

Table 7.8. The data to be recovered in the LogIn table

user_name pass_word faculty_id student_id

ybai reback B78880 NULL

Table 7.9. The data to be recovered in the Course table

course_id course credit classroom schedule enrollment faculty_id

CSC-132B Introduction to Programming 3 TC-302 T-H: 1:00-2:25 PM 21 B78880

CSC-234A Data Structure & Algorithms 3 TC-302 M-W-F: 9:00-9:55 AM 25 B78880

CSE-434 Advanced Electronics Systems 3 TC-213 M-W-F: 1:00-1:55 PM 26 B78880

CSE-438 Advd Logic & Microprocessor 3 TC-213 M-W-F: 11:00-11:55 AM 35 B78880

Table 7.10. The data to be recovered in the StudentCourse table

s_course_id student_id course_id credit major

1005 J77896 CSC-234A 3 CS/IS

1009 A78835 CSE-434 3 CE

1014 A78835 CSE-438 3 CE

1016 A97850 CSC-132B 3 ISE

1017 A97850 CSC-234A 3 ISE

c07.indd 536c07.indd 536 4/25/2012 1:58:12 PM4/25/2012 1:58:12 PM

7.8 Update and Delete Data Against Database Using Stored Procedures 537

 Another important point in recovering these deleted records is the order in which
you performed that copy/paste actions. You must fi rst recover the faculty member deleted
from the parent table, Faculty table, and then you can recover all other related records
in all other child tables. The reason for this is that as the Faculty is a parent table with
the faculty_id as a primary key, you cannot recover any other record without fi rst recov-
ering the deleted record from the parent table. Click on the File|Save All menu item
when you fi nished these recoveries to save those recovered records.

 Now that we have built our stored procedures, let ’ s call these stored procedures from
our Visual Basic.NET project to test the data updating and deleting functions.

7.8.1.4 Call the Stored Procedures to Perform the Data Updating and Deleting

 Start our project by clicking on the Start Debugging button, enter the suitable username
and password to the LogIn form, and then select the Faculty Information item from the
Selection form to open the Faculty form window. Keep the default faculty member Ying
Bai selected from the Faculty Name combo box, click on the Select button to query, and
display the information for the selected faculty.

 To update this faculty information, enter the following data into the associated text-
boxes as an updated faculty record:

 • Peter Bai Faculty Name textbox

 • Distinguished Professor Title textbox

 • MTC-228 Offi ce textbox

 • 750-378-1220 Phone textbox

 • University of Main College textbox

 • pbai@college.edu Email textbox

 • Default.jpg Faculty Image textbox

 Click on the Update button to call the stored procedure to update this faculty record
in the Faculty table in the database.

 To confi rm this updating, fi rst, let ’ s select any other faculty member from the Faculty
Name combo box, click on the Select button to query, and display the information related
to that selected faculty. Then select our newly updated faculty name Peter Bai from the
Faculty Name combobox. Click on the Select button to retrieve that updated faculty
record from the database and display it in this form. Immediately, you can fi nd that the
updated faculty record is returned and display in this form, as shown in Figure 7.26 .

 Now let ’ s test the data deleting action by clicking on the Delete button to try to delete
this updated faculty record. Click on Yes button on the MessageBox to perform this data
deleting. Immediately, all pieces of information stored in textboxes are removed. To
confi rm this data deleting, click on the Select button to try to retrieve the deleted faculty
record. A warning message “No matched faculty found! ” is displayed, which means
that the selected faculty member has been deleted from our database.

 Our data updating and deleting actions using the stored procedures in SQL Server
database is very successful.

c07.indd 537c07.indd 537 4/25/2012 1:58:12 PM4/25/2012 1:58:12 PM

538 Chapter 7 Data Updating and Deleting with Visual Basic.NET

 In order to keep our database neat and complete, refer to the last section and Tables
 7.7 – 7.10 to recover those deleted records at four tables in our sample database via the
Server Explorer window.

 A complete project SQLUpdateDeleteSP can be found in the folder DBProjects\
Chapter 7 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

7.8.2 Update and Delete Data Against Oracle Database Using
Stored Procedures

 Updating and deleting data using stored procedures developed in the Oracle data-
base are very similar to the data updating and deleting actions we developed in the
SQL Server database in the last section. With a small modifi cation to an existing
project OracleUpdateDeleteRTObject , we can easily create our new project Oracle-
UpdateDeleteSP to perform the data updating and deleting by calling stored pro-
cedures developed in the Oracle database.

 To develop our new project in this section, we need to:

1. Modify the existing project OracleUpdateDeleteRTObject to create our new project
OracleUpdateDeleteSP .

2. Develop two stored procedures in the Oracle database.

3. Call the stored procedures to perform the data updating and deleting using the Faculty
Form window.

 Now let ’ s start with the fi rst step.

7.8.2.1 Modify the Existing Project to Create Our New Project

 Open the Windows Explorer and create a new folder Chapter 7 if you have not, and then
browse to the folder DBProjects\Chapter 7 that is located at the Wiley ftp site (refer to

Figure 7.26. The confi rmation of the Faculty data updating.

c07.indd 538c07.indd 538 4/25/2012 1:58:12 PM4/25/2012 1:58:12 PM

7.8 Update and Delete Data Against Database Using Stored Procedures 539

Figure 1.2 in Chapter 1). Copy the project OracleUpdateDeleteRTObject to the new
folder C:\Chapter 7 . Change the names of the solution and the project folders from
OracleUpdateDeleteRTObject to OracleUpdateDeleteSP . Also, change the name
of the project fi le OracleUpdateDeleteRTObject.vbproj to OracleUpdateDeleteSP.
vbproj . Then double - click on the project OracleUpdateDeleteSP.vbproj to open this
project.

 On the opened project, perform the following modifi cations to get our desired project:

 • Select one form window, such as the LogIn Form.vb , from the Solution Explorer window.
Then go to the Project|OracleUpdateDeleteSP Properties menu item to open the pro-
ject ’ s property window. Change the Assembly name and the Root namespace from
OracleUpdateDeleteRTObject to OracleUpdateDeleteSP .

 • Click on the Assembly Information button to open the Assembly Information wizard.
Change the Title and the Product to OracleUpdateDeleteSP . Click on the OK button to
close this wizard.

 • Go to the File|Save All to save those modifi cations. Now we are ready to modify our codes
based on our new project OracleUpdateDeleteSP .

7.8.2.2 Modify the Codes to Update and Delete Data from the Faculty Table

 The code modifi cations include the following parts:

1. Replace the query string in the Update button ’ s Click event procedure in the Faculty Form
with the name of the data updating stored procedure that will be developed in the next
section to allow the event procedure to call the related stored procedure to perform the
data updating action.

2. Replace the query string in the Delete button ’ s Click event procedure in the Faculty Form
with the name of the data deleting stored procedure that will be developed in the next
section to allow the event procedure to call the related stored procedure to perform the
data deleting action.

 Regularly, these modifi cations should be performed after stored procedures have
been created in the Oracle database since we need some pieces of information from those
created stored procedures, such as the name of the stored procedure and the names of
the input parameters to the stored procedure. Because of the similarity between this
project and the last one, we assumed that we have known those pieces of information,
and we can put them into our event procedures in advance when we perform the codes
modifi cations.

 The assumed information includes:

A. For the Faculty Data Updating:
1. The name of the data updating stored procedure — UpdateFacultySP .
2. The names of the input updating parameters — prefi x an in before each parameter ’ s

name that is equal to the name of each column in the Faculty table in our sample
database.

3. The name of the input dynamic parameter — FacultyName .

B. For the Faculty Data Deleting:
1. The name of the data deleting stored procedure — DeleteFacultySP .
2. The name of the input dynamic parameter — FacultyName .

c07.indd 539c07.indd 539 4/25/2012 1:58:12 PM4/25/2012 1:58:12 PM

540 Chapter 7 Data Updating and Deleting with Visual Basic.NET

 Based on these assumptions, we can fi rst modify our codes in the Update button ’ s
Click event procedure. The key point is that we need to remember the names of these
parameters and the names of the stored procedures and put them into our stored proce-
dures when we developed them in the next section.

 Open the Update button ’ Click event procedure and modify its codes. Your fi nished
modifi cations to this event procedure should match those codes that are shown in Figure
 7.27 . The modifi ed codes have been highlighted in bold.

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. The content of the query string now should be equal to the name of the stored procedure
UpdateFacultySP .

B. The CommandType property of the Command object is set to StoredProcedure to tell
the project that a stored procedure should be called as the project runs to perform the
data updating job.

 The code modifi cations to the user defi ned subroutine procedure UpdateParameters()
are shown in Figure 7.28 .

Figure 7.27. The modifi ed codes for the Update button ’ s event procedure.

Private Sub cmdUpdate_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdUpdate.Click

Dim cmdString As String = "UpdateFacultySP"
Dim oraCommand As New OracleCommand
Dim intUpdate As Integer

oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.StoredProcedure
oraCommand.CommandText = cmdString
UpdateParameters(oraCommand)
intUpdate = oraCommand.ExecuteNonQuery()
oraCommand.Dispose()
oraCommand = Nothing
ComboName.Items.Add(txtName.Text) 'reserve the updated faculty name

If intUpdate = 0 Then
MessageBox.Show("The data updating is failed")
Exit Sub

End If

End Sub

A

B

cmdUpdate Click

Figure 7.28. The modifi ed codes for the subroutine UpdateParameters().

Private Sub UpdateParameters(ByRef cmd As OracleCommand)

cmd.Parameters.Add("inFacultyName", OracleDbType.Char).Value = txtName.Text
cmd.Parameters.Add("inOffice", OracleDbType.Char).Value = txtOffice.Text
cmd.Parameters.Add("inPhone", OracleDbType.Char).Value = txtPhone.Text
cmd.Parameters.Add("inCollege", OracleDbType.Char).Value = txtCollege.Text
cmd.Parameters.Add("inTitle", OracleDbType.Char).Value = txtTitle.Text
cmd.Parameters.Add("inEmail", OracleDbType.Char).Value = txtEmail.Text
cmd.Parameters.Add("fid", OracleDbType.Char).Value = txtID.Text

End Sub

FacultyForm UpdateParameters

c07.indd 540c07.indd 540 4/25/2012 1:58:12 PM4/25/2012 1:58:12 PM

7.8 Update and Delete Data Against Database Using Stored Procedures 541

 Only one modifi cation is performed for this subroutine, which is to add a prefi x in
before each input updating parameter. The reason for that is: our Oracle stored procedure
is written in the PL - SQL language, and it is a case - insensitive language. In order to dis-
tinguish between the columns ’ names of the Faculty table and the input updating param-
eters ’ names, we need to add these prefi xes.

 Next, let ’ s perform the code modifi cation to the Delete button ’ s Click event proce-
dure. Open that event procedure and make the code modifi cations shown in Figure 7.29
to this event procedure.

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. The content of the query string now should be equal to the name of the stored procedure
DeleteFacultySP .

B. The CommandType property of the Command object is set to StoredProcedure to tell
the project that a stored procedure should be called as the project runs to perform the
data deleting action.

 Now we have fi nished all code modifi cations in Visual Basic.NET environment. Let ’ s
start to create our stored procedures in the Oracle database. Refer to Sections 5.20.7.1
and 5.20.7.2 in Chapter 5 to get a detailed discussion about the stored procedure and the
package in the Oracle database.

 In this section, since we want to perform the data updating and deleting functions,
therefore, we do not need any query to return any data from the database. The stored
procedure is good enough for our applications. There are many ways to create the stored
procedure in the Oracle database; one way is to create it using the Object Browser wizard

Figure 7.29. The modifi ed codes for the Delete Button ’ s Click event procedure.

Private Sub cmdDelete_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdDelete.Click

Dim cmdString As String = "DeleteFacultySP"
Dim vbButton As MessageBoxButtons = MessageBoxButtons.YesNo
Dim oraCommand As New OracleCommand
Dim Answer As DialogResult
Dim intDelete As Integer

Answer = MessageBox.Show("You sure you want to delete this record?", "Delete", vbButton)

If Answer = System.Windows.Forms.DialogResult.Yes Then
oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.StoredProcedure
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add("fname", OracleDbType.Char).Value = ComboName.Text
intDelete = oraCommand.ExecuteNonQuery()
oraCommand.Dispose()
oraCommand = Nothing

If intDelete = 0 Then
MessageBox.Show("The data Deleting is failed")
Exit Sub

End If

For intDelete = 0 To 6 'Clean up the Faculty textbox array
FacultyTextBox(intDelete).Text = String.Empty

Next intDelete
End If

End Sub

A

B

cmdDelete Click

c07.indd 541c07.indd 541 4/25/2012 1:58:12 PM4/25/2012 1:58:12 PM

542 Chapter 7 Data Updating and Deleting with Visual Basic.NET

in Oracle Database 11g XE, and the second way is to create it using the SQL Commands
wizard. Since we used the Object Browser to create our sample database in Chapter 2 ,
therefore, we prefer to use the second way to create our stored procedures in this section.

7.8.2.3 Develop Stored Procedures in the Oracle Database

 Open the Oracle Database 11g XE home page by going to start|All Programs|Oracle
Database 11g Express Edition|Get Started items. This time, we want to use the SQL
Command wizard to create our stored procedures. An advantage of using this tool is that
you can run and test your stored procedure directly in the Oracle Database 11g XE
environment as soon as the stored procedure is done, and that is very convenient for us,
and we do not need to wait to test it by calling the fi nished stored procedure later from
the Visual Basic.NET project.

 Perform the following operations to open the SQL Commands wizard:

1. Click on the APEX button to open the login wizard.

2. Enter the Username and Password to complete this APEX login process. In our case, just
enter SYSTEM and reback into these two boxes.

3. Click on the Already have an account? Login Here button since we have created our
sample database CSE_DEPT in Chapter 2 .

4. Keep the Workspace and the Username ’ s content CSE_DEPT unchanged, and enter reback
into the Password box to complete the login process for the workspace.

5. Click on the SQL Workshop icon and then SQL Commands icon to open the SQL
Commands wizard.

 Enter the codes that are shown in Figure 7.30 into this page as the body of our stored
procedure UpdateFacultySP .

 Your fi nished stored procedure should match the one that is shown in Figure 7.31 .
 Now highlight all codes of this stored procedure and click on the Run button to create

our stored procedure. Immediately, you can fi nd a message is displayed in the bottom

Figure 7.30. The code body of the stored procedure UpdateFacultySP.

Create or replace PROCEDURE UpdateFacultySP
(inFacultyName IN VARCHAR2,
inOffice IN VARCHAR2,
inPhone IN VARCHAR2,
inCollege IN VARCHAR2,
inTitle IN VARCHAR2,
inEmail IN VARCHAR2,
fid IN VARCHAR2) AS

begin
UPDATE Faculty
SET faculty_name = inFacultyName, office = inOffice, phone = inPhone, college = inCollege,

title = inTitle, email = inEmail
WHERE faculty_id = fid;

end;

c07.indd 542c07.indd 542 4/25/2012 1:58:12 PM4/25/2012 1:58:12 PM

7.8 Update and Delete Data Against Database Using Stored Procedures 543

pane in the Results tab to indicate that the stored procedure is created, which is shown
below:

Procedure created.
 0.79 seconds

 To run and test this stored procedure, type the codes that are shown in Figure 7.32
under the codes of stored procedure. Then highlight those codes and click on the Run
button to run the stored procedure.

 If the stored procedure is correctly created and executed, the running result, which
is shown in Figure 7.33 , is displayed in the bottom pane under the Results tab.

Figure 7.31. The fi nished code body of the stored procedure UpdateFacultySP.

Figure 7.32. The codes to run the stored procedure UpdateFacultySP.

begin
UpdateFacultySP(‘Susan Bai’, ‘MTC-355’, ‘750-378-2355’, ‘Duke University’, ‘Professor’,

‘sbai@college.edu’, ‘B78880’);
end;

c07.indd 543c07.indd 543 4/25/2012 1:58:12 PM4/25/2012 1:58:12 PM

544 Chapter 7 Data Updating and Deleting with Visual Basic.NET

Figure 7.33. The running result of the stored procedure UpdateFacultySP.

Statement processed.
0.05 seconds

 Click on the Save button to save this stored procedure. Enter UpdateFacultySP into
the Name box and click on the Save button to complete this saving action.

 Now let ’ s open our Faculty table to confi rm that the selected row has been updated
after the stored procedure UpdateFacultySP is executed. Click on the SQL Workshop
button that is located at the third button in the top row. Then click on the Object Browser
icon to open the Object Browser wizard. Keep the Tables item selected in the top and
double - click on the Faculty item, and then click on the Data tab to open this table.

 The opened Faculty table is shown in Figure 7.34 .
 It can be found that the fi rst row, which is pointed by the arrow, of the Faculty table

has been updated. This confi rmed that our stored procedure works fi ne.
 Next, let ’ s create our data deleting stored procedure using the SQL Commands

wizard. Click on the SQL Workshop button that is located at the third button in the top
row. Then click on the SQL Commands icon to open the SQL Commands wizard. Enter
the codes that are shown in Figure 7.35 into this page as the body of our data deleting
stored procedure.

 Now highlight the whole code body of this stored procedure and click on the Run
button to create our stored procedure. Immediately, you can fi nd that a message is dis-
played in the bottom pane in the Results tab to indicate that the stored procedure is
created, which is shown below:

c07.indd 544c07.indd 544 4/25/2012 1:58:12 PM4/25/2012 1:58:12 PM

7.8 Update and Delete Data Against Database Using Stored Procedures 545

Figure 7.34. The updated Faculty table.

Figure 7.35. The code body of the data deleting stored procedure.

create or replace PROCEDURE DeleteFacultySP
(fame IN VARCHAR2) AS

begin
DELETE FROM Faculty WHERE faculty_name = fame;

end;

Procedure created.
 0.74 seconds

 Click on the Save button to save this stored procedure. Enter DeleteFacultySP into
the Name box and click on the Save button to complete this saving action. Because of
the complexity in recovering this faculty record, we would not test this stored procedure
in this SQL Commands wizard.

 Before we can close the Oracle Database 11g XE wizard, it is highly recommended
to recover the Faculty table to its original value. To do that, click on the SQL Workshop
button that is located at the third button in the top row. Then click on the Object Browser
icon to open the Object Browser wizard. Keep the Tables item selected in the top and
double - click on the Faculty item, and then click on the Data tab to open this table.

 Click on the Edit icon before the fi rst row to open the Edit Row wizard. Then enter
the original faculty data into the associated box to recover this row:

 • Ying Bai Faculty Name box

 • MTC-211 Offi ce box

 • 750-378-1148 Phone box

c07.indd 545c07.indd 545 4/25/2012 1:58:13 PM4/25/2012 1:58:13 PM

546 Chapter 7 Data Updating and Deleting with Visual Basic.NET

Figure 7.36. The recovered faculty record.

 Your recovered faculty record for Ying Bai is shown in Figure 7.36 . Click on the
Apply Changes button to save this recovered record into the Faculty table.

 Now Close the Oracle Database 11g XE after these stored procedures are created.
Next, we need to call these stored procedures from the Visual Basic.NET project to
perform the data updating and deleting functions.

7.8.2.4 Call the Stored Procedure to Perform

the Data Updating and Deleting

 Since we have fi nished the modifi cations to our new project in Section 7.8.2.2 , now let ’ s
run our project to test the data updating and deleting functions by calling the stored
procedures we developed in the last section.

 Click on the Start Debugging button to run our project OracleUpdateDeleteSP ,
enter the suitable username and password to the LogIn form, and then select the Faculty
Information item from the Selection form to open the Faculty form window. Keep the
default faculty name Ying Bai selected from the Faculty Name combo box. Then click on
the Select button to query and display all pieces of information for the selected faculty.

 To update this faculty record, enter each piece of updating information into the
associated textbox to perform this data updating:

 • Florida Atlantic University College box

 • Associate Professor Title box

 • ybai@college.edu Email box

c07.indd 546c07.indd 546 4/25/2012 1:58:13 PM4/25/2012 1:58:13 PM

7.8 Update and Delete Data Against Database Using Stored Procedures 547

 Click on the Update button to call the stored procedure UpdateFacultySP to update
this faculty record in the Faculty table in our sample database.

 To confi rm this data updating, fi rst, let ’ s select any other faculty from the Faculty
Name combo box and click on the Select button to query and display each piece of
information for the selected faculty. Then select our newly updated faculty Tailor Bai
from the Faculty Name combo box. Click on the Select button to retrieve that updated
faculty record from the database, and display it in this form. Immediately, you can fi nd
that the updated faculty record is returned and displayed, which is shown in Figure 7.37 .

 Next, let ’ s test the data deleting action by clicking on the Delete button to try to
delete this updated record. Click on Yes button on the MessageBox to confi rm this faculty
record deleting. Immediately, all pieces of information stored in seven textboxes are
removed. To confi rm this data deleting, click on the Select button to try to retrieve the
deleted faculty record. A warning message “No matched faculty found! ” is displayed,
which means that the selected faculty member has been deleted from our database.

 Our data updating and deleting actions using the stored procedures in Oracle data-
base are very successful.

 • Tailor Bai Name textbox

 • Distinguished Professor Title textbox

 • MTC-228 Offi ce textbox

 • 750-378-1222 Phone textbox

 • University of Miami College textbox

 • tbai@college.edu Email textbox

 • Default.jpg Faculty image textbox

Figure 7.37. The confi rmation of the updated faculty record.

c07.indd 547c07.indd 547 4/25/2012 1:58:13 PM4/25/2012 1:58:13 PM

548 Chapter 7 Data Updating and Deleting with Visual Basic.NET

 In order to keep our database neat and complete, refer to Tables 7.7 – 7.10 in Section
 7.8.1.3 to recover those deleted records one by one using the Insert Row button in the
Object Browser wizard. The point is the order to recover these deleted records and the
value for NULL columns. The correct order and NULL values are:

1. Recover the deleted faculty record from the Faculty table since it is a parent table.

2. Recover all other deleted records for all other related child tables, such as the Course, the
LogIn, and the StudentCourse tables.

3. Leave a blank for any NULL column, such as the student_id in the LogIn table.

 A complete project OracleUpdateDeleteSP can be found in the folder DBProjects\
Chapter 7 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

7.8.3 Update and Delete Data Against Databases Using the
LINQ to SQL Query

 As we discussed in Chapter 4 , LINQ to SQL queries can perform not only the data selec-
tions, but also the data insertion, updating, and deletion. The standard LINQ to SQL
queries include:

 • Select

 • Insert

 • Update

 • Delete

 To perform any of these operations or queries, we need to use entity classes and
DataContext we discussed in Section 4.6.1 in Chapter 4 to do LINQ to SQL actions
against our sample database. We have already created a Console project QueryLINQSQL
in that section to illustrate how to use LINQ to SQL to perform data queries, such as
data selection, insertion, updating, and deleting, against our sample database CSE_DEPT.
mdf . However, in this section, we want to create a Windows - based project LINQSQLQuery
by adding a graphic user interface to perform the data selection, updating, and deleting
actions against our sample database CSE_DEPT.mdf using the LINQ to SQL query. We
leave the data insertion coding process as a homework for the readers. Refer to Section
 4.6.2.2 in Chapter 4 to complete the codes for this Insert button ’ s Click event procedure.
Now let ’ s perform the following steps to create our new project LINQSQLQuery :

1. Create a new Visual Basic.NET Windows - based project and name it as LINQSQLQuery .

2. Change the File Name to Faculty Form.vb.

3. Rename the Name and the Text of the default form window to FacultyForm and CSE
DEPT Faculty Form , respectively.

4. Copy all controls from the Faculty Form in the project SQLUpdateDeleteSP we developed
in this Chapter and paste them into this new form.

5. Add the Imports System.Data.Linq reference to this new project by right - clicking on our
new project from the Solution Explorer window, selecting the Add Reference item, and
scrolling down the .NET list. Select the item System.Data.Linq from the list and click on
the OK button.

c07.indd 548c07.indd 548 4/25/2012 1:58:13 PM4/25/2012 1:58:13 PM

7.8 Update and Delete Data Against Database Using Stored Procedures 549

6. Add the following directives at the top of the Faculty Form window:
 • Imports System.Data.Linq
 • Imports System.Data.Linq.Mapping

7. Follow steps listed in Section 4.6.1 in Chapter 4 to create entity classes using the Object
Relational Designer . The database used in this project is CSE_DEPT.mdf . Open the Server
Explorer window and add this database by right - clicking on the Data Connections item
and select Add Connection if it has not been added into our project.

8. We need to create fi ve entity classes, and each of them is associated with a data table in our
sample database. Drag each table from the Server Explorer window and place it on the
Object Relational Designer canvas. The mapping fi le ’ s name is CSE_DEPT.dbml . Make
sure that you enter this name into the Name box in the Object Relational Designer .

9. Right - click on the mapping fi le CSE_DEPT.dbml from the Solution Explorer window and
select the View Code item to create Visual Basic.NET code fi le for our sample database,
CSE_DEPT.vb .

 Now let ’ s begin the coding process for this project. Since we need to use the Select
button ’ s Click event procedure to validate our data updating and deleting actions, we
need to divide our coding process into the following four parts:

1. Create a new object of the DataContext class and do some initialization codes.

2. Develop the codes for the Select button ’ s Click event procedure to retrieve the selected
faculty record using the LINQ to SQL query.

3. Develop the codes for the Update button ’ s Click event procedure to update the selected
faculty member using the LINQ to SQL query.

4. Develop the codes for the Delete button ’ s Click event procedure to delete the selected
faculty member using the LINQ to SQL query.

 Now let ’ s start from Part I .

7.8.3.1 Create a New Object of the DataContext Class

 We need to create this new object of the DataContext class since we need to use this
object to connect to our sample database to perform data queries. We have connected
this DataContext class to our sample database CSE_DEPT.mdf in step 7 above, and the
connection string has been added into our app.confi g fi le when step 7 is done. Therefore,
we do not need to indicate the special connection string when we create this object.

 Some initialization codes includes retrieving all updated faculty members from the
Faculty table in our sample database using the LINQ to SQL query and displaying them
in the Faculty Name combo box control.

 Open the Form_Load() event procedure of the Faculty Form window, and enter the
codes that are shown in Figure 7.38 into this procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Two namespaces related to LINQ To SQL are imported since we need to use some com-
ponents stored in that namespace to perform the data queries.

B. A new form level object of the DataContext class, cse_dept , is created fi rst since we
need to use this object to connect our sample database to this project to perform the data
actions later.

c07.indd 549c07.indd 549 4/25/2012 1:58:13 PM4/25/2012 1:58:13 PM

550 Chapter 7 Data Updating and Deleting with Visual Basic.NET

C. A user - defi ned subroutine procedure UpdateFaculty() is executed to retrieve all updated
faculty members from our sample database and display them in the Faculty Name combo
box control to allow the user to select a desired faculty.

D. The LINQ query is created and initialized with three clauses, from , let , and select . The
range variable fi is selected from the Faculty entity in our sample database. All current
faculty members (faculty_name) will be read back using the let clause.

E. The LINQ query is executed to pick up all queried faculty members and add them into
the Faculty Name combo box control in our Faculty Form.

 Let ’ s continue to develop the codes for the second part.

7.8.3.2 Develop the Codes for the Select Button Click Event Procedure

 Double - click on the Select button to open its Click event procedure and enter the codes
that are shown in Figure 7.39 into this procedure. The function of this piece of codes is
to retrieve the detailed information for the selected faculty member from the Faculty
table in our sample database and display them in the associated textbox control in the
Faculty Form window as this Select button is clicked by the user.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The user defi ned subroutine ShowFaculty() is executed to identify and display a matched
faculty image for the selected faculty member. You can copy the codes for this subroutine
from the Faculty Form in the project SQLUpdateDeleteSP we developed in this chapter
and paste them into this code window.

B. The LINQ query is created and initialized with three clauses, from , where , and select .
The range variable fi is selected from the Faculty entity in our sample database based on
a matched faculty members (faculty_name).

Figure 7.38. Initialization codes for the Form_Load event procedure of the Faculty Form.

Imports System.Data.Linq
Imports System.Data.Linq.Mapping

Public Class FacultyForm

Dim cse_dept As New CSE_DEPTDataContext()

Private Sub FacultyForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

Call UpdateFaculty()
ComboName.SelectedIndex = 0

End Sub

Private Sub UpdateFaculty()
Dim faculty = From fi In cse_dept.Faculties

Let fields = "faculty_name"
Select fi

For Each f In faculty
ComboName.Items.Add(f.faculty_name)

Next f

End Sub

End Class

A

B

C

D

E

(FacultyForm Events) Load

c07.indd 550c07.indd 550 4/25/2012 1:58:13 PM4/25/2012 1:58:13 PM

7.8 Update and Delete Data Against Database Using Stored Procedures 551

Figure 7.39. The codes for the Select button Click event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click

Call ShowFaculty(ComboName.Text)

Dim faculty = From fi In cse_dept.Faculties
Where fi.faculty_name = ComboName.Text
Select fi

For Each f In faculty
txtID.Text = f.faculty_id
txtName.Text = f.faculty_name
txtTitle.Text = f.title
txtOffice.Text = f.office
txtPhone.Text = f.phone
txtCollege.Text = f.college
txtEmail.Text = f.email

Next f

End Sub

A

B

C

cmdSelect Click

C. The LINQ query is executed to pick up all columns for the selected faculty member and
display them on the associated textbox in this Faculty Form.

 Now let ’ s concentrate on the coding process for our data updating and deleting
actions.

7.8.3.3 Develop the Codes for the Update Button Click Event Procedure

 Double - click on the Update button from our Faculty Form window to open its Click
event procedure and enter the codes that are shown in Figure 7.40 into this procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A selection query is executed using the Standard Query Operator method with the
faculty_name as the query criterion. The First() method is used to return only the fi rst
matched record. It does not matter for our application since we have only one record that
is associated with this specifi ed faculty_name .

Figure 7.40. The codes for the Update button Click event procedure.

Private Sub cmdUpdate_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdUpdate.Click

Dim fi As Faculty = cse_dept.Faculties.Where(Function(f) f.faculty_name = ComboName.Text).First()
'updating the existing faculty information
fi.faculty_name = txtName.Text
fi.title = txtTitle.Text
fi.office = txtOffice.Text
fi.phone = txtPhone.Text
fi.college = txtCollege.Text
fi.email = txtEmail.Text
cse_dept.SubmitChanges()
ComboName.Items.Clear()
UpdateFaculty()

End Sub

A

B

C
D

cmdUpdate Click

c07.indd 551c07.indd 551 4/25/2012 1:58:13 PM4/25/2012 1:58:13 PM

552 Chapter 7 Data Updating and Deleting with Visual Basic.NET

B. All six columns, except the faculty_id , for the selected faculty record, are updated by
assigning the current value stored in the associated textbox to each column in the Faculty
table in our sample database.

C. This data updating cannot really occur until the SubmitChanges() method is executed.

D. The Faculty Name combo box is cleaned up, and the user - defi ned subroutine procedure
UpdateFaculty() is executed to refresh the updated faculty members stored in that control.

 Next, let ’ s perform the coding development for the data deleting action. This coding
process is similar to that of data updating we did in this part.

7.8.3.4 Develop the Codes for the Delete Button Click Event Procedure

 Double - click on the Delete button from the Faculty Form window to open its Click event
procedure and enter the codes that are shown in Figure 7.41 into this procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The LINQ query is created and initialized with three clauses, from , where , and select .
The range variable fi is selected from the Faculty, which is exactly an instance of our entity
class Faculty, and the faculty_name works as the query criterion for this query. All infor-
mation related to the selected faculty member (faculty_name) will be retrieved and stored
in the query variable faculty . The Single means that only a single record is queried.

B. The system method DeleteOnSubmit() is executed to issue a deleting action to the faculty
instance, Faculties .

C. Another system method SubmitChanges() is executed to exactly perform this deleting
action against data tables in our sample database. Only after this method is executed, is
the deleting action actually performed to our database.

D. All TextBoxes stored information related to the deleted faculty are cleaned up by assigning
an empty string to each of them.

 The codes for the Back button Click event procedure is simple. Just enter Me.Close()
into that event procedure.

Figure 7.41. The codes for the Delete button Click event procedure.

Private Sub cmdDelete_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdDelete.Click
Dim faculty = (From fi In cse_dept.Faculties

Where fi.faculty_name = ComboName.Text
Select fi).Single()

cse_dept.Faculties.DeleteOnSubmit(faculty)
cse_dept.SubmitChanges()

'clean up all textboxes
txtID.Text = String.Empty
txtName.Text = String.Empty
txtOffice.Text = String.Empty
txtTitle.Text = String.Empty
txtPhone.Text = String.Empty
txtCollege.Text = String.Empty
txtEmail.Text = String.Empty

End Sub

A

B
C

D

cmdDelete Click

c07.indd 552c07.indd 552 4/25/2012 1:58:13 PM4/25/2012 1:58:13 PM

7.8 Update and Delete Data Against Database Using Stored Procedures 553

 Now we can build and run our project to test the data updating and deleting action
against our sample database. One point we need to note before we can run the project
is that we must make sure that all faculty image fi les should have been stored in the
default folder, in which our executable fi le LINQSQLQuery.exe is located. In this appli-
cation, it should be: C:\Chapter 7\LINQSQLQuery\bin\Debug .

 Copy all faculty image fi les from the folder Images that is located at the Wiley ftp
site (refer to Figure 1.2 in Chapter 1) and paste them into the folder shown above.

 Run the project now to perform the data updating for the selected faculty member,
such as Ying Bai , with the following updated information:

 • Peter Bai Faculty Name textbox

 • Distinguished Professor Title textbox

 • MTC-228 Offi ce textbox

 • 750-378-1220 Phone textbox

 • University of Main College textbox

 • pbai@college.edu Email textbox

 • Default.jpg Faculty Image textbox

 • Ying Bai Faculty Name textbox

 • Associate Professor Title textbox

 • MTC-211 Offi ce textbox

 • 750-378-1148 Phone textbox

 • Florida Atlantic University College textbox

 • ybai@college.edu Email textbox

 • (Keep empty) Faculty Image textbox

 To confi rm this data updating, you need to fi nd the updated faculty name from the
Faculty Name combo box and click on the Select button to try to retrieve the updated
faculty record and display it in this form. Remember, you need to recover those updated
pieces of information to the originals for the selected faculty member in order to keep
our sample database neat and complete. A good way to do that recovery is to run this
project again and perform another updating with the following updated information for
the updated faculty member Ying Bai :

 Now let ’ s test the deleting function by clicking on the Delete button. Click on the
Yes button to confi rm and perform this data deletion. To confi rm this deleting action,
click on the Back button to terminate our project. Then run the project again and you
can fi nd that the faculty member Ying Bai cannot be found in the Faculty Name combo
box, which means that the selected faculty member has been deleted from our
database.

 Our data updating and deleting actions using the LINQ to SQL in the SQL Server
database are very successful.

c07.indd 553c07.indd 553 4/25/2012 1:58:13 PM4/25/2012 1:58:13 PM

554 Chapter 7 Data Updating and Deleting with Visual Basic.NET

 In order to keep our database neat and complete, refer to Tables 7.7 – 7.10 in Section
 7.8.1.3 to recover those deleted records one by one using the SQL Server Management
Studio. The point is the order to recover these deleted records and the value for NULL
columns. The correct order and NULL values are:

1. Recover the deleted faculty record from the Faculty table since it is a parent table.

2. Recover all other deleted records for all other related child tables, such as the Course, the
LogIn, and the StudentCourse tables.

3. Leave a blank for any NULL column, such as the student_id in the LogIn table.

 A complete project LINQSQLQuery can be found in the folder DBProjects\Chapter
7 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

7.9 CHAPTER SUMMARY

 Data updating and deleting queries are discussed in this chapter with two popular data-
bases: SQL Server and Oracle.

 Five popular data updating and deleting methods are discussed and analyzed with
eight real project examples:

1. Using TableAdapter DBDirect methods, such as TableAdapter.Update() and TableAdapter.
Delete() , to update and delete data directly against the databases.

2. Using TableAdapter.Update() method to update and execute the associated TableAdapter ’ s
properties, such as UpdateCommand or DeleteCommand, to save changes made for the
table in the DataSet to the table in the database.

3. Using the runtime object method to develop and execute the Command ’ s method
ExecuteNonQuery() to update or delete data against the database directly.

4. Using the stored procedures to update or delete data against the database directly.

5. Using LINQ to SQL query method to update and delete data against our sample SQL
Server database CSE_DEPT.mdf .

 Both methods 1 and 2 need to use Visual Studio.NET design tools and wizards to
create and confi gure suitable TableAdapters, build the associated queries using the
Query Builder, and call those queries from Visual Basic.NET applications. The difference
between method 1 and 2 is that method 1 can be used to directly access the database
to perform the data updating and deleting in a single step, but method 2 needs two
steps to fi nish the data updating or deleting. First, the data updating or deleting are per-
formed to the associated tables in the DataSet, and then those updated or deleted data
are updated to the tables in the database by executing the TableAdapter.Update()
method.

 This chapter is divided into two parts: Part I provides discussions on data updating
and deleting using methods 1 and 2, or in other words, using the TableAdapter.Update()
and TableAdapter.Delete() methods developed in Visual Studio.NET design tools and
wizards. Part II presents the data updating and deleting using the runtime object method
to develop command objects to execute the ExecuteNonQuery() method dynamically.
Updating and deleting data against our sample database using the stored procedures and
the LINQ to SQL query method are also discussed in the second part.

c07.indd 554c07.indd 554 4/25/2012 1:58:13 PM4/25/2012 1:58:13 PM

Homework 555

 Eight real sample projects are provided in this chapter to help readers to understand
and design the professional data - driven applications to update or delete data against
three types of database: Microsoft Access, SQL Server, and Oracle databases. The stored
procedures and LINQ to SQL methods are discussed in the last section to help readers
to perform the data updating or deleting more effi ciently and conveniently.

HOMEWORK

I. True/False Selections

 ____ 1. Three popular data updating methods are: the TableAdapter DBDirect method,
TableAdapter.Update(), and ExecuteNonQuery() method of the Command class.

 ____ 2. Unlike the Fill() method, a valid database connection must be set before a data can be
updated in the database.

 ____ 3. One can directly update data or delete records against the database using the TableAdapter.
Update() method.

 ____ 4. When executing an UPDATE query, the order of the input parameters in the SET list can
be different with the order of the data columns in the database.

 ____ 5. To update data against the Oracle database using stored procedures, an Oracle Package
must be developed to include stored procedures.

 ____ 6. One can directly delete records from the database using the TableAdapter DBDirect
method, such as TableAdapter.Delete() method.

 ____ 7. When performing the data updating, the same data can be updated in the database multiple
times.

 ____ 8. To delete data from the database using the TableAdapter.Update() method, the data should
be fi rst deleted from the table in the DataSet, and then the Update() method is executed
to update that deletion to the table in the database.

 ____ 9. To update data in the SQL Server database using the stored procedures, one can create and
test the new stored procedure in the Server Explorer window.

 ___ 10. To call stored procedures to update data against a database, the parameters ’ names must
be identical with those names of the input parameters defi ned in the stored procedures.

II. Multiple Choices

1. To update data in the database using the TableAdapter.Update() method, one needs to use the
________ to build the _________.

 a. Data Source, Query Builder
 b. TableAdapter Query Confi guration Wizard, Update query
 c. Runtime object, Insert query
 d. Server Explorer, Data Source

2. To delete data from the database using the TableAdapter.Update() method, one needs fi rst to
delete data from the _______, and then update that data into the database.

 a. Data table
 b. Data table in the database
 c. DataSet
 d. Data table in the DataSet

c07.indd 555c07.indd 555 4/25/2012 1:58:13 PM4/25/2012 1:58:13 PM

556 Chapter 7 Data Updating and Deleting with Visual Basic.NET

3. To delete data from the database using the TableAdapter.Update() method, one can delete
____________.

 a. One data row only
 b. Multiple data rows
 c. The whole data table
 d. Either of above

4. Because ADO.NET provides a disconnected mode to the database, to update or delete a record
against the database, a valid ________ must be established.

 a. DataSet
 b. TableAdapter
 c. Connection
 d. Command

5. The _______ operator should be used as an assignment operator for the WHERE clause with
a dynamic parameter for a data query in Oracle database.

 a. = :
 b. LIKE
 c. =
 d. @

6. To confi rm the stored procedure built in the Object Browser page in the Oracle database, one
can _______ the stored procedure to make sure it works.

 a. Build
 b. Test
 c. Debug
 d. Compile

7. To confi rm the stored procedure built in the Server Explorer window for the SQL Server
database, one can _______ the stored procedure to make sure it works.

 a. Build
 b. Execute
 c. Debug
 d. Compile

8. To update data in an Oracle database using the UPDATE command, the data types of the
parameters in the SET list should be ________.

 a. OleDbType
 b. SqlDbType
 c. OracleDbType
 d. OracleType

9. To update data using stored procedures, the CommandType property of the Command object
must be equal to ___________.

 a. CommandType.InsertCommand
 b. CommandType.StoredProcedure
 c. CommandType.Text
 d. CommandType.Insert

c07.indd 556c07.indd 556 4/25/2012 1:58:13 PM4/25/2012 1:58:13 PM

Homework 557

10. To update data using stored procedures, the CommandText property of the Command object
must be equal to ___________.

 a. The content of the CommandType.InsetCommand
 b. The content of the CommandType.Text
 c. The name of the Insert command
 d. The name of the stored procedure

III. Exercises

1. Figure 7.42 shows a stored procedure developed in the SQL Server database. Please develop a
piece of codes in Visual Basic.NET to call this stored procedure to update a record in the
database.

2. Figure 7.43 shows a piece of codes developed in Visual Basic.NET, and this piece of codes is
used to call a stored procedure in the Oracle database to update a record in the database. Please
create the associated stored procedure in the Oracle database using the PL - SQL language.

3. Using the tools and wizards provided by Visual Studio.NET and ADO.NET to perform the data
updating for the Student form in the AccessUpdateDeleteWizard project. The project fi le can

Figure 7.42. A SQL Server stored procedure.

CREATE OR REPLACE PROCEUDRE dbo.UpdateStudent
(@Name IN VARCHAR(20),

@Major IN text,
@SchoolYear IN int,
@Credits IN float,
@Email IN text
@StudentID IN VARCHAR(20))

AS
UPDATE Student SET student_name=@Name, major=@Major, schoolYear=@SchoolYear,

credits=@Credits, email=@Email
WHERE (student_id=@StudentID)
RETURN

Figure 7.43. A piece of VB codes.

Dim cmdString As String = "UpdateCourse"
Dim intInsert As Integer
Dim oraCommand As New OracleCommand

oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.StoredProcedure
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add("Name", OracleType.Char).Value = ComboName.Text
oraCommand.Parameters.Add("CourseID", OracleType.Char).Value = txtCourseID.Text
oraCommand.Parameters.Add("Course", OracleType.Char).Value = txtCourse.Text
oraCommand.Parameters.Add("Schedule", OracleType.Char).Value = txtSchedule.Text
oraCommand.Parameters.Add("Classroom", OracleType.Char).Value = txtClassRoom.Text
oraCommand.Parameters.Add("Credit", OracleType.Char).Value = txtCredits.Text
oraCommand.Parameters.Add("StudentID", OracleType.Char).Value = txtID.Text

intInsert = oraCommand.ExecuteNonQuery()

c07.indd 557c07.indd 557 4/25/2012 1:58:13 PM4/25/2012 1:58:13 PM

558 Chapter 7 Data Updating and Deleting with Visual Basic.NET

be found the folder DBProjects\Chapter 7 that is located at the Wiley ftp site (refer to Figure
 1.2 in Chapter 1).

4. Using the Runtime objects to complete the update data query for the Student form by using the
project SQLUpdateDeleteRTObject . The project fi le can be found in the folder DBProjects\
Chapter 7 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

5. Using the stored procedure to complete the data - updating query for the Student form to
the Student table by using the project OracleUpdateRTObjectSP . The project fi le can be found
the folder DBProjects\Chapter 7 that is located at the Wiley ftp site (refer to Figure 1.2
in Chapter 1).

6. Using the stored procedure to complete the data - deleting query for the Student form to the
Student table by using the project OracleUpdateRTObjectSP . The project fi le can be found in
the folder DBProjects\Chapter 7 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1). It is highly recommended to recover those deleted records after they are deleted).

Hints: You need to delete the related records from the LogIn, Course, and the
StudentCourse tables, and then delete record from the Student table.

c07.indd 558c07.indd 558 4/25/2012 1:58:13 PM4/25/2012 1:58:13 PM

 Chapter 8

Accessing Data in ASP.NET

Practical Database Programming with Visual Basic.NET, Second Edition. Ying Bai.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.

559

 We have provided a very detailed discussion on database programming with Visual Basic.
NET using the Windows - based applications in the previous chapters. Starting from this
chapter, we will concentrate on the database programming with Visual Basic.NET using
Web - based applications. To develop a Web - based application and allow users to access
the database through the Internet, you need to understand an important component:
Active Server Page.NET or ASP.NET.

 Essentially, ASP.NET allows users to write software to access databases through a
Web browser rather than a separate program installed on computers. With the help of
ASP.NET, the users can easily create and develop an ASP.NET Web application and run
it on the server as a server - side project. The user then can send requests to the server to
download any Web page, to access the database to retrieve, display, and manipulate data
via the Web browser. The actual language used in the communications between the client
and the server is Hypertext Markup Language (HTML).

 When fi nished this chapter, you will:

 • Understand the structure and components of ASP.NET Web applications

 • Understand the structure and components of .NET Framework

 • Select data from the database and display data in a Web page

 • Understand the Application state structure and implement it to store global variables

 • Understand the AutoPostBack property and implement it to communicate with the server
effectively

 • Insert, Update, and Delete data from the database through a Web page

 • Use the stored procedure to perform the data actions against the database via a Web
application

 • Use LINQ to SQL query to perform the data actions against the database via a Web
application

 • Perform client - side data validation in Web pages

 In order to help readers to successfully complete this chapter, fi rst, we need to provide
a detailed discussion about the ASP.NET. But the prerequisite to understand the ASP.
NET is the .NET Framework, since the ASP.NET is a part of .NET Framework, or in

c08.indd 559c08.indd 559 4/25/2012 1:58:20 PM4/25/2012 1:58:20 PM

560 Chapter 8 Accessing Data in ASP.NET

other words, the .NET Framework is a foundation of the ASP.NET. So we need fi rst to
give a detailed discussion about the .NET Framework.

8.1 WHAT IS THE . NET FRAMEWORK?

 The .NET Framework is a model that provides a foundation to develop and execute dif-
ferent applications at an integrated environment, such as Visual Studio.NET. In other
words, the .NET Framework can be considered as a system to integrate and develop
multiple applications, such as Windows applications, Web applications, or XML Web
Services by using a common set of tools and codes, such as Visual Basic.NET or Visual
C#.NET.

 The .NET Framework consists of the following components:

 • The Common Language Runtime (CLR) (called runtime). The runtime handles runtime
services, such as language integration, security, and memory management. During the devel-
opment stage, the runtime provides features that are needed to simplify the development.

 • Class Libraries. Class libraries provide reusable codes for most common tasks, such as data
access, XML Web service development, and Web and Windows forms.

 The main goal in developing the .NET Framework is to overcome several limitations
on Web applications since different clients may provide different client browsers. To solve
these limitations, .NET Framework provides a common language called Microsoft
Intermediate Language (MSIL) that is language - independent and platform - independent,
and allows all programs developed in any .NET - based language to be converted into this
MSIL. MSIL can be recognized by CLR, and CLR can compile and execute the MSIL
codes by using the Just - In - Time compiler.

 You access the .NET Framework by using the class libraries provided by the .NET
Framework, and you implement the .NET Framework by using the tools, such as Visual
Studio.NET, provided by the .NET Framework, too. All class libraries provided by the
.NET Framework are located at the different namespaces. All .NET - based languages
access the same libraries.

 A typical .NET Framework model is shown in Figure 8.1 .

Figure 8.1. The .NET Framework model.

Clients

ASP.NET Web
Applications

XML Web
Services

Database

Developer
Tools

.NET
Framework

c08.indd 560c08.indd 560 4/25/2012 1:58:20 PM4/25/2012 1:58:20 PM

8.2 What Is ASP.NET? 561

 The .NET Framework supports three types of user interfaces:

 • Windows Forms that run on Windows 32 client computers. All projects we developed in the
previous chapters used this kind of user interface.

 • Web Forms that run on Server computers through ASP.NET and the Hypertext Transfer
Protocol (HTTP).

 • The Command Console.

 Summarily, the advantages of using the .NET Framework to develop Windows - based
and Web - based applications include, but no limited to:

 • The .NET Framework is based on Web standards and practices, and it fully supports Internet
technologies, including the HTML, HTTP, XML, Simple Object Access Protocol (SOAP),
XML Path Language (XPath) and other Web standards.

 • The .NET Framework is designed using unifi ed application models, so the functionality of
any class provided by the .NET Framework is available to any .NET - compatible language
or programming model. The same piece of code can be implemented in Windows applica-
tions, Web applications, and XML Web services.

 • The .NET Framework is easy for developers to use since the code in the .NET Framework
is organized into hierarchical namespaces and classes. The .NET Framework provides a
common type system, which is called the unifi ed type system, and it can be used by any
.NET - compatible language. In the unifi ed type system, all language elements are objects that
can be used by any .NET application written in any .NET - based language.

 Now let ’ s have a closer look at the ASP.NET.

8.2 WHAT IS ASP.NET?

 ASP.NET is a programming framework built on the .NET Framework, and it is used to
build Web applications. Developing ASP.NET Web applications in the .NET Framework
is very similar to developing Windows applications. An ASP.NET Web application is
composed of many different parts and components, but the fundamental component of
ASP.NET is the Web Form. A Web Form is the Web page that users view in a browser,
and an ASP.NET Web application can contain one or more Web Forms. A Web Form is
a dynamic page that can access server resources.

 A completed structure of an ASP.NET Web application is shown in Figure 8.2 .
 Unlike the traditional Web page that can run scripts on the client, an ASP.NET

Web Form can also run server - side codes to access databases, to create additional Web
Forms, or to take advantage of built - in security of the server. In addition, since an ASP.
NET Web Form does not rely on client - side scripts, it is independent on the client ’ s
browser type or operating system. This independence allows users to develop a
single Web Form that can be viewed on any device that has Internet access and a Web
browser.

 Because ASP.NET is part of the .NET Framework, the ASP.NET Web application
can be developed in any .NET - based language.

 The ASP.NET technology also supports XML Web services. XML Web services are
distributed applications that use XML for transferring information between clients, appli-
cations, and other XML Web services.

c08.indd 561c08.indd 561 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

562 Chapter 8 Accessing Data in ASP.NET

 The main parts of an ASP.NET Web application include:

 • Web Forms or Default.aspx pages. The Web Forms or Deafult.aspx pages provide the user
interface for the Web application, and they are very similar to the Windows Forms in the
Windows - based application. The Web Forms fi les are indicated with an extension of .aspx .

 • Code - behind pages. The so - called code - behind pages are related to the Web Forms and
contain the server - side codes for the Web Form. This code - behind page is very similar to the
code window for the Windows Forms in a Windows - based application we discussed in the
previous chapters. Most event procedures or handlers associated with controls on the Web
Forms are located in this code - behind page. The code - behind pages are indicated with an
extension of .aspx.vb .

 • Web Services or .asmx pages. Web services are used when you create dynamic sites that will
be accessed by other programs or computers. ASP.NET Web services may be supported by
a code - behind page that is designed by the extension of .asmx.vb.

 • Confi guration fi les. The Confi guration fi les are XML fi les that defi ne the default settings for
the Web application and the Web server. Each Web application has one Web.confi g confi gu-
ration fi le, and each Web server has one machine.confi g fi le.

 • Global .asax fi le. The Global.asax fi le, also known as the ASP.NET application fi le, is an
optional fi le that contains code for responding to application - level events that are raised by
ASP.NET or by HttpModules. At runtime, Global.asax is parsed and compiled into a dynami-
cally generated .NET Framework class that is derived from the HttpApplication base class.
This dynamic class is very similar to the Application class or main thread in Visual C ++ , and
this class can be accessed by any other objects in the Web application.

 • XML Web service links. These links are used to allow the Web application to send and
receive data from an XML Web service.

 • Database connectivity. The Database connectivity allows the Web application to transfer
data to and from database sources. Generally, it is not recommended to allow users to access
the database from the server directly because of the security issues; instead, in most industrial

Figure 8.2. The structure of an ASP.NET Web application.

O
u

tp
u

t
C

a
c
h

e

Clients

Default.
aspx

Default2.
aspx

Web
Forms

Code-
behind
pages

Global.
asax

Web.
config

machine.
config

XML
Data Components

Database

Internet

Web
Services

ASP.NET Web Server

c08.indd 562c08.indd 562 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

8.2 What Is ASP.NET? 563

and commercial applications, the database can be accessed through the application layer to
strengthen the security of the databases.

 • Caching. Caching allows the Web application to return Web Forms and data more quickly
after the fi rst request.

8.2.1 ASP.NET Web Application File Structure

 When you create an ASP.NET Web application, Visual Studio.NET creates two folders
to hold the fi les that are related to the application. When the project is compiled, a third
folder is created to store the terminal dll fi le. In other words, the fi nal or terminal fi le of
an ASP.NET Web application is a dynamic linked library (dll) fi le.

 Figure 8.3 shows a typical fi le structure of an ASP.NET Web application.
 The folders listed on the left side in Figure 8.3 are very familiar to us since they are

created by the Windows - based applications. But the folders created on the right side are
new to us, and the functionalities of those folders are:

 • The Inetpub folder contains another folder named wwwroot, and it is used to hold the root
address of the Web project whose name is defi ned as ProjectName . The project fi le
ProjectName.vbproj is an XML fi le that contains references to all project items, such as
forms and classes.

 • The bin folder contains the assembly fi le or the terminal fi le of the project with the name
of ProjectName.dll. All ASP.NET Web applications will be fi nally converted to a dll fi le and
stored in the server ’ s memory.

8.2.2 ASP.NET Execution Model

 When you fi nished an ASP.NET Web application, the Web project is compiled, and two
terminal fi les are created:

Figure 8.3. ASP.NET Web application fi le structure.

Default.aspx.vb
(Code-behind page)

My Documents

Visual Studio
Projects

Solution

Inetpub

wwwroot

ProjectName

Solution.sln

bin

ProjectName.vbproj

Default.aspx

ProjectName.dll

Development Files Assembly Files

c08.indd 563c08.indd 563 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

564 Chapter 8 Accessing Data in ASP.NET

1. Project Assembly fi les (.dll). All code - behind pages (.aspx.vb) in the project are compiled
into a single assembly fi le that is stored as ProjectName.dll . This project assembly fi le is
placed in the \bin directory of the website and will be executed by the Web server as a
request is received from the client at the running time.

2. AssemblyInfo.vb fi le . This fi le is used to write the general information, especially assembly
version and assembly attributes, about the assembly.

 As the Web project runs and the client requests a Web page for the fi rst time, the
following events occur:

1. The client browser issues a GET HTTP request to the server.

2. The ASP.NET parser interprets the course code.

3. Based on the interpreting result, ASP.NET will direct the request to the associated assembly
fi le (.dll) if the code has been compiled into the dll fi les. Otherwise, the ASP.NET invokes
the compiler to convert the code into the dll format.

4. Runtime loads and executes the MSIL code and send back the required Web page to the
client in the HTML fi le format.

 For the second time, when the user requests the same Web page, no compiling process
is needed, and the ASP.NET can directly call the dll fi le and execute the MSIL code to
speed up this request.

 From this execution sequence, it looks like that the execution or running of a Web
application is easy and straightforward, but in practice, a lot of data round trips occurred
between the client and the server. To make it clear, let ’ s make a little more analysis
to see what happened between the client and the server as a Web application is
executed.

8.2.3 What Really Happens When a Web Application
Is Executed?

 The key point is that a Web Form is built and run on the Web server. When the user sends
a request from the user ’ s client browser to request that Web page, the server needs to
build that form and sends it back to the user ’ s browser in the HTML format. Once the
Web page is received by the client ’ s browser, the connection between the client and
the server is terminated. If the user wants to request any other page or information from
the server, additional requests must be submitted.

 To make this issue more clear, we can use our LogIn form as an example. When the
user sends a request to the server to ask to start a logon process for the fi rst time, the
server builds the LogIn form and sends it back to the client in the HTML format. After
that, the connection between the client and the server is gone. After the user received
the LogIn Web page and entered the necessary logon information, such as the username
and password to the LogIn form, the user needs to send another request to the server to
ask the server to process those pieces of logon information. If, after the server received
and processed the logon information, the server found that the logon information is
invalid, the server needs to rebuild the LogIn form and resend it back to the client with
some warning message. So you can see how many round trips occurred between the client
and the server as a Web application is executed.

c08.indd 564c08.indd 564 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

8.2 What Is ASP.NET? 565

 A good solution to try to reduce those round trips is to make sure that all informa-
tion entered from the client side should be as correct as possible. In other words, try
to make as much validation as possible in the client side to reduce the burden of the
server.

 Now we have fi nished the discussion about the .NET Framework and ASP.NET, as
well as the ASP.NET Web applications. Next, we will create and develop some actual Web
projects using the ASP.NET Web Forms to illustrate how to access the database through
the Web browser to select, display, and manipulate data on Web pages.

8.2.4 The Requirements to Test and Run the Web Project

 Before we can start to create our real Web project using the ASP.NET, we need the fol-
lowing requirements to test and run our Web project:

1. Web server: To test and run our Web project, you need a Web server either on your local
computer or on your network. By default, if you installed the Internet Information Service s
(IIS) on your local computer before the .NET Framework is installed on your computer,
the FrontPage Server Extension 2000 should have been installed on your local computer.
This software allows your Web development tools, such as Visual Studio.NET, to connect
to the server to upload or download pages from the server.

2. In order to make our Web project simple and easy, we always use our local computer as a
local server. In other words, we always use the localhost, which is the IP name of our local
computer, as our Web server to communicate with our browser to perform the data access-
ing and manipulating.

 If you have not installed the IIS on your computer, follow the steps below to install
this component on your computer:

 • Click start, then click on Control Panel, and click on Add or Remove Programs.

 • Click Add/Remove Windows Components . The Windows Components Wizard appears,
which is shown in Figure 8.4 .

 • Check the checkbox for the Internet Information Services (IIS) from the list to add the
IIS to your computer. To confi rm that this installation contains the FrontPage 2000 Server
Extensions, click on the Details button. Check the item FrontPage 2000 Server Extensions
to select it. Although Microsoft has stopped supporting to this version of the server, and the
current version is FrontPage 2002 Server Extensions, you can still use it.

 Click on the OK and the Next button to begin to install the IIS and the FrontPage
2000 Server Extensions to your computer. You may need the system OS CD/DVD to
fi nish this installation.

 As we know, the .NET Framework includes two Data Providers for accessing enter-
prise databases: the .NET Framework Data Provider for OLE DB and the .NET
Framework Data Provider for SQL Server. Because both the SQL Server and the Oracle
database belong to the server database, in this chapter, we only use the SQL Server
database and the Oracle database as our target databases to illustrate how to select,
display, and manipulate data from the database through the Web pages.

c08.indd 565c08.indd 565 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

566 Chapter 8 Accessing Data in ASP.NET

 This chapter is organized in the following ways:

1. Develop ASP.NET Web application to select and display data from the Microsoft SQL
Server database.

2. Develop an ASP.NET Web application to insert data into the Microsoft SQL Server
database.

3. Develop an ASP.NET Web application to update and delete data against the Microsoft SQL
Server database.

4. Develop an ASP.NET Web application to select and manipulate data against the Microsoft
SQL Server database using LINQ to SQL query.

5. Develop ASP.NET Web application to select and display data from the Oracle database.

6. Develop an ASP.NET Web application to insert data into the Oracle database.

7. Develop an ASP.NET Web application to update and delete data against the Oracle
database.

 Let ’ s start from the fi rst one to create and build our ASP.NET Web application.

8.3 DEVELOP ASP.NET WEB APPLICATION TO SELECT
DATA FROM SQL SERVER DATABASES

 Let ’ s start a new ASP.NET Web application project SQLWebSelect to illustrate how
to access and select data from the database via the Internet. Open the Visual Studio.

Figure 8.4. The opened Windows Components wizard.

c08.indd 566c08.indd 566 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 567

NET and click on the File|New Web Site to create a new ASP.NET Web application
project.

 On the opened New Web Site wizard, which is shown in Figure 8.5 , keep the default
template ASP.NET Web Site selected. Also, keep the default Language Visual Basic
unchanged. Click on the Browse button to browse to any location or folder where you
want to save this project to. In fact, you can place your new project in any folder as you
like in your computer. In our case, we place it in our folder: C:\Chapter 8 . Browse to that
folder and click on the Open button. Attach our Web project SQLWebSelect after the
folder C:\Chapter 8 in the Web Location box. Your fi nished New Web Site wizard is
shown in Figure 8.5 . Click on the OK button to continue.

 On the opened new project, the default Web Form is named Default.aspx , and it is
located at the Solution Explorer window. This is the Web Form that works as a user
interface in the server - side. Now let ’ s perform some modifi cations to this form to make
it as our LogIn form.

8.3.1 Create the User Interface: LogIn Form

 Right - click on the Default.aspx item and select the Rename item from the pop - up menu
to change the name of this Web Form to LogIn.aspx . Then we need to perform the fol-
lowing modifi cations to the Source fi le to make it as our LogIn Form page:

1. Open the Source fi le by clicking on the Source tab on the bottom of the window. Move the
cursor to the end of the second line and change the value of the Inherits item from
Inherits = “_Default” to Inherits = “_LogIn” (do not worry if a blue underscore appears;
we can fi x this in the next step).

Figure 8.5. The opened Template wizard.

c08.indd 567c08.indd 567 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

568 Chapter 8 Accessing Data in ASP.NET

2. Double - click on the LogIn.aspx.vb from the Solution Explorer window to open the code -
 behind page. Change the class name from _Default to _LogIn .

3. Go to Build|Rebuild Web Site to build our project.

 The Source fi le basically is an HTML fi le that contains the related codes for all con-
trols you added into this Web form in the HTML format. Compared with the codes in
the code - behind page, the difference between them is that the Source fi le is used to
describe all controls you added into the Web form in HTML format, but the code - behind
page is used to describe all controls you added into the Web form in Visual Basic.NET
code format.

 Now let ’ s click on the View Designer button from the Solution Explorer window to
open and design our LogIn Web page.

 Unlike the Windows - based application, by default, the user interface in the Web -
 based application has no background color. You can modify the Web form by adding
another Style Sheet, and format the form as you like. Also, if you want to make this style
such as the header and footer of the form apply to all of your pages, you can add a Master
Page to do that. But in this project, we prefer to use the default window as our user
interface and each page in our project has a different style.

 We need to remove all default contents from this page and add the controls shown
in Table 8.1 into our LogIn user interface or Web page. One point to be noticed is that
there is no Name property available for any control in the Web form object; instead, the
property ID is used to replace the Name property, and it works as a unique identifi er for
each control you added into the Web form.

 Another difference with the Windows - based form is that when you add these controls
into our Web form, fi rst you must locate a position for the control to be added using the
Space key and the Enter key on your keyboard in the Web form, and then pick up a
control from the Toolbox window and drag it to that location. You cannot pick and drag
a control to a random location as you want in this Web form, and this is a signifi cant dif-
ference between the Windows - based form and the Web - based form windows.

 Your fi nished user interface should match the one that is shown in Figure 8.6 .
 Before we can add the codes into the code - behind page to respond to the controls

to perform the logon process, fi rst, we must run the project to allow the Web.confi g fi le

Table 8.1. Controls for the LogIn form

Type ID Text TabIndex BackColor TextMode Font

Label Label1 Welcome to CSE DEPT 0 #E0E0E0 Bold/Large

Label Label2 User Name 1 Bold/Small

Textbox txtUserName 2

Label Label3 Pass Word 3 Bold/Small

Textbox txtPassWord 4 Password

Button cmdLogIn LogIn 5 Bold/Medium

Button cmdCancel Cancel 6 Bold/Medium

c08.indd 568c08.indd 568 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 569

to recognize those controls we have added into the Web form. Click the Start Debugging
button on the toolbar to run our project. Click on the OK button to a prompted MessageBox
to add a Web.confi g fi le with the debugging enabled as the project runs. Your running
Web page should match the one that is shown in Figure 8.6 . Click on the Close button
that is located at the upper - right corner of the form to close this page.

 Now let ’ s develop the codes to access the database to perform the logon process.

8.3.2 Develop the Codes to Access and Select Data
from the Database

 Open the code - behind page by clicking on the View Code button from the Solution
Explorer window. First, we need to add two imports commands as we did for those proj-
ects in the previous chapters. Add the following two commands to the top of this code
window to import the namespace of the SQL Server Data Provider:

Imports System.Data
Imports System.Data.SqlClient

 Next, we need to create a global variable, sqlConnection , for our connection object.
Enter the following code under the class header:

Public sqlConnection As SqlConnection

 This connection object will be used by all Web forms in this project.
 Now we need to develop the codes for the Page_Load() event procedure, which is

similar to the Form_Load() event procedure in the Windows - based application. Go to
the Class Name combo box and select the (Page Events) item, and select the Load item

Figure 8.6. The fi nished LogIn Web form.

c08.indd 569c08.indd 569 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

570 Chapter 8 Accessing Data in ASP.NET

from the Method Name combo box to open this event procedure. Enter the codes that
are shown in Figure 8.7 into this event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. First, the namespaces for the SQL Server Data Provider are imported since we need to
use some components defi ned in those namespaces to perform data actions in this page.

B. A global connection object sqlConnection is declared fi rst, and this object will be used
by all Web forms in this project later to connect to the database.

C. As we did for the Form_Load() event procedure in the Windows - based applications, we
need to perform the database connection in this event procedure. A connection string is
created with the database server name, database name, and security mode.

D. A new database connection object is created with the connection string as the argument.

E. The global connection object sqlConnection is added into the Application state function,
and this object can be used by any pages in this application by accessing this Application
state function later. Unlike global variables defi ned in the Windows - based applications, one
cannot access a global variable by prefi xing the form ’ s name before the global variable
declared in that form from other pages. In the Web - based application, the Application state
function is a good place to store any global variable. In ASP.NET Web application, the
Application state is stored in an instance of the HttpApplicationState class that can be
accessed through the Application property of the HttpContext class in the server side, and
is faster than storing and retrieving information in a database.

F. First, we need to check whether this database connection has been done. If it is, we need
fi rst to disconnect this connection by using the Close() method.

G. Then we can call the Open() method to set up the database connection.

Figure 8.7. The codes for the Page_Load event procedure.

Imports System.Data
Imports System.Data.SqlClient

Partial Class _LogIn
Inherits System.Web.UI.Page
Public sqlConnection As SqlConnection

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
Dim sqlString As String = "Server=localhost;" + _

"Data Source=Smart\SQL2008EXPRESS;Database=CSE_DEPT;" + _
"Integrated Security=SSPI"

sqlConnection = New SqlConnection(sqlString)
Application("sqlConnection") = sqlConnection 'define a global connection object

If sqlConnection.State = ConnectionState.Open Then
sqlConnection.Close()

End If

sqlConnection.Open()
If sqlConnection.State <> ConnectionState.Open Then

Response.Write("<script>alert('Database connection is Failed')</script>")
Exit Sub

End If

End Sub

End Class

A

B

C

D
E

F

G
H

(Page Events) Load

c08.indd 570c08.indd 570 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 571

H. By checking the database connection state property, we can confi rm whether the connec-
tion is successful or not. If the connection state is not equal to Open , which means that
the database connection has failed, a warning message is displayed and the procedure
is exited.

 One signifi cant difference in using the Message box to display some debug informa-
tion in the Web form is that you cannot use a Message box as you did in the Windows -
 based applications. In the Web form development, no Message box is available, and you
can only use the Javascript alert() method to display a Message box in ASP.NET. Two
popular objects are widely utilized in the ASP.NET Web applications: the Request and
the Response objects. The ASP Request object is used to get information from the user,
and the ASP Response object is used to send output to the user from the server. The
Write() method of the Response object is used to display the message sent by the server.
You must add the script tag <script>...…</script> to indicate that the content is written
in Javescript language.

 Now, let ’ s develop the codes for the LogIn button ’ s Click event procedure. The func-
tion of this piece of codes is to access the LogIn table located in our sample SQL Server
database based on the username and password entered by the user to try to fi nd the
matched logon information. Currently, since we have not created our next page — Selection
page — we just display a Message box to confi rm the success of the logon process if it is
successful. Click on the View Design button from the Solution Explorer window and then
double - click on the LogIn button to open its event procedure. Enter the codes that are
shown in Figure 8.8 into this event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. An SQL query statement is declared fi rst since we need to use this query statement to
retrieve the matched username and password from the LogIn table. Since this query state-
ment is relatively long, we split it into two substrings. Of course, you can use the concatenat-
ing operator “ & ” to make these two strings as one if you like.

B. Some data objects are created here such as the Command object, DataReader object, and
Parameter objects.

C. Then two parameter objects are initialized with the parameter ’ s name and value properties.
The Command object is built by assigning it with the Connection object, commandType,
and Parameters collection properties of the Command class.

D. The Add() method is utilized to add two actual parameters to the Parameters collection
of the Command class.

E. The ExecuteReader() method of the Command class is executed to access the database,
retrieve the matched username and password, and return them to the DataReader object.

F. If the HasRows property of the DataReader is True, this means that at least one matched
username and password has been found and retrieved from the database. A successful
message is created and sent back from the server to the client to display in the client
browser.

G. Otherwise, no matched username or password found in the database, and a warning
message is created and sent back to the client and displayed in the client browser.

H. The used objects such as the Command and the DataReader are released.

I. Since we have not created any other pages, at this moment, we temporarily close the con-
nection between our page and the database. In our formal application, this connection

c08.indd 571c08.indd 571 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

572 Chapter 8 Accessing Data in ASP.NET

should be open until the Exit button in the Selection Web form is clicked by the user as
the project runs.

 Next, let ’ s develop the codes for the Cancel button ’ s Click event procedure.
 The function of this event procedure is to close the current Web page if this Cancel

button is clicked, which means that the user wants to terminate the ASP.NET Web appli-
cation. Double - click on the Cancel button from the Design View of the LogIn form to
open this event procedure and enter the codes shown in Figure 8.9 into this procedure.

Figure 8.9. The codes for the Cancel button ’ s event procedure.

Protected Sub cmdCancel_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdCancel.Click
If sqlConnection.State = ConnectionState.Open Then

sqlConnection.Close()
End If
Response.Write("<script>window.close()</script>")

End Sub

A

B

cmdCancel Click

Figure 8.8. The codes for the LogIn button ’ s Click event procedure.

Protected Sub cmdLogIn_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdLogIn.Click
Dim cmdString1 As String = "SELECT user_name, pass_word, faculty_id, student_id FROM LogIn "
Dim cmdString2 As String = "WHERE (user_name LIKE @name) AND (pass_word LIKE @word)"
Dim cmdString As String = cmdString1 & cmdString2
Dim paramUserName As New SqlParameter
Dim paramPassWord As New SqlParameter
Dim sqlCommand As New SqlCommand
Dim sqlDataReader As SqlDataReader

paramUserName.ParameterName = "@name"
paramUserName.Value = txtUserName.Text
paramPassWord.ParameterName = "@word"
paramPassWord.Value = txtPassWord.Text
sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add(paramUserName)
sqlCommand.Parameters.Add(paramPassWord)
sqlDataReader = sqlCommand.ExecuteReader

If sqlDataReader.HasRows = True Then
'selForm.Show()
'Me.Hide()
Response.Write("<script>alert('LogIn is successful!')</script>")

Else
Response.Write("<script>alert('No matched username/password found!')</script>")

End If

sqlCommand.Dispose()
sqlCommand = Nothing
sqlDataReader.Close()
sqlDataReader = Nothing
sqlConnection.Close() 'this line will be removed for the former application

End Sub

A

B

C

D

E

F

G

H

I

cmdLogIn Click

c08.indd 572c08.indd 572 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 573

 The function of this piece of codes is:

A. First, we need to check whether the database is still connected to our Web form. If it is, we
need to close this connection before we can terminate our Web application.

B. The server sends back a command with the Response object ’ s method Write() to issue a
Javascript statement window.close() to close the Web application.

 At this point, we have fi nished developing the codes for the LogIn Web form. Before
we can run the project to test our Web page, we need to add some data validation func-
tions in the client side to reduce the burden of the server.

8.3.3 Validate the Data in the Client Side

 In order to reduce the burden on the server, we should make every effort to perform the
data validation in the client side. In other words, before we can send requests to the server,
we need to make sure that our information to be sent to the server should be as correct
as possible. ASP.NET provides some tools to help us to complete this data validation.
These tools include fi ve validation controls that are shown in Table 8.2 .

 All of these fi ve controls are located at the Validation tab in the Toolbox window in
Visual Studio.NET environment.

 We want to use the fi rst control, RequiredFieldValidator , to validate our two text
boxes, txtUserName and txtPassWord , in the LogIn page to make sure that both of
them are not empty when the LogIn button is clicked by the user as the project runs.

 Open the Design View of the LogIn Web form, go to the Toolbox window, and expand
the Validation tab. Drag the RequiredFieldValidator control from the Toolbox window
and place it next to the UserName textbox. Set the following properties to this control
in the property window:

 • ErrorMessage: UserName is Required

 • ControlToValidate: txtUserName

Table 8.2. Validation Controls

Validation Control Functionality

RequiredFieldValidator Validate whether the required field has valid data (not blank).

RangeValidator Validate whether a value is within a given numeric range. The range is defined by the
MaximumValue and MinimumValue properties provided by users.

CompareValidator Validate whether a value fits a given expression by using different Operator properties, such
as “equal”, “greater than”, “less than”, and the type of the value, which is set by the Type
property.

CustomValidator Validate a given expression using a script function. This method provides the maximum
flexibility in data validation but one needs to add a function to the Web page and send it to
the server to get the feedback from it.

RegularExpressionValidator Validate whether a value fits a given regular expression by using the ValidationExpression
property, which should be provided by the user.

c08.indd 573c08.indd 573 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

574 Chapter 8 Accessing Data in ASP.NET

Figure 8.10. Adding the data validation: RequiredFieldValidator.

 Perform the similar dragging and placing operations to locate the second
RequiredFieldValidator just next to the PassWord textbox. Set the following properties
for this control in the property window:

 Your fi nished LogIn Web form should match the one that is shown in Figure 8.10 .
 Now run our project to test this data validation by clicking on the Start Debugging

button. Without entering any data into two textboxes, directly click on the LogIn button.
Immediately, two error messages, which are created by the RequiredFieldValidators , are
displayed to ask users to enter these two pieces of information. After entering the user-
name and password, click on the LogIn button again, and a successful login message is
displayed. So you can see how the RequiredFieldValidator works to reduce the process-
ing load for the server.

 One good thing always brings some bad things, which is true to our project, too. After
the RequiredFieldValidator is added into our Web page, the user cannot close the page
by clicking on the Cancel button if both UserName and PassWord textboxes are empty.
This is because the RequiredFieldValidator is performing the validation checking, and
no further action can be taken by the Web page until both textboxes are fi lled with some
valid data. Therefore, if you want to close the Web page now, you have to enter a valid
username and password, and then you can close the page by clicking on the Cancel
button.

8.3.4 Create the Second User Interface: Selection Page

 Now let ’ s continue to develop our Web application by adding another Web page, the
Selection page. As we did in the previous chapters, after the logon process, the next step

 • ErrorMessage: PassWord is Required

 • ControlToValidate: txtPassWord

c08.indd 574c08.indd 574 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 575

is to allow users to select different functions from the Selection form to perform the
associated database actions.

 The function of this Selection page is to allow users to visit different pages to perform
the different database actions, such as selecting, inserting, updating, or deleting data
against the database via the different tables by selecting the different items. So this
Selection page needs to perform the following jobs:

 • Provide and display all available selections to allow users to select them.

 • Open the associated page based on the users ’ selection.

 Now let ’ s build this page. To do that, we need to add a new Web page. Right - click on
the project item from the Solution Explorer window and select the Add New Item from
the pop - up menu. On the opened window, keep the default Template Web Form selected,
and enter Selection.aspx into the Name box as the name for this new page, and then
click on the Add button to add this page into our project.

 On the opened Web form, add the controls shown in Table 8.3 into this page.
 As we mentioned in the last section, before you pick up those controls from the

Toolbox window and drag them into the page, you must fi rst use the Space or the Enter
keys from the keyboard to locate the positions on the page for those controls. Your fi n-
ished Selection page should match the one that is shown in Figure 8.11 .

Figure 8.11. The fi nished Selection page.

Table 8.3. Controls on the Selection form

Type ID Text TabIndex BackColor Font

Label Label1 Make Your Selection: 0 #E0E0E0 Bold/Large

DropDownList ComboSelection 1

Button cmdSelect Select 2 Bold/Medium

Button cmdExit Exit 3 Bold/Medium

c08.indd 575c08.indd 575 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

576 Chapter 8 Accessing Data in ASP.NET

 Next, let ’ s create the codes for this Selection page to allow users to select a different
page to perform the associated data actions.

8.3.5 Develop the Codes to Open the Other Page

 First, let ’ s run the Selection page to build the Web confi guration fi le. Click on the Start
Debugging button to run this page, and then click on the Close button that is located on
the upper - right corner of the page to close it.

 Click on the View Code button from the Solution Explorer window to open the code
page for the Selection Web form. First, let ’ s add two Imports commands to the top of this
page to provide the namespace for the SQL Data Provider:

Imports System.Data
 Imports System.Data.SqlClient

 Then select the (Page Events) from the Class Name combo box and select the Load
item from the Method Name combo box to open the Page_Load event procedure. Enter
the codes that are shown in Figure 8.12 into this event procedure to add all selection
items into the combo box control ComboSelection .

 The function of this piece of codes is straightforward. Three pieces of information
are added into the combo box ComboSelection by using the Add() method, and these
pieces of information will be selected by the user as the project runs.

 Next, we need to create the codes for two buttons ’ Click event procedures. First, let ’ s
develop the codes for the Select button. Click on the View Designer button from the
Solution Explorer window to open the Selection Web form, and then double - click on the
Select button to open its event procedure. Enter the codes that are shown in Figure 8.13
into this event procedure.

Figure 8.13. The codes for the Select button ’ s event procedure.

Protected Sub cmdSelect_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
If ComboSelection.Text = "Faculty Information" Then

Response.Redirect("Faculty.aspx")
ElseIf ComboSelection.Text = "Student Information" Then

Response.Redirect("Student.aspx")
ElseIf ComboSelection.Text = "Course Information" Then

Response.Redirect("Course.aspx")
End If

End Sub

cmdSelect Click

Figure 8.12. The codes for the Page_Load event procedure of the Selection page.

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

ComboSelection.Items.Add("Faculty Information")
ComboSelection.Items.Add("Course Information")
ComboSelection.Items.Add("Student Information")

End Sub

(Page Events) Load

c08.indd 576c08.indd 576 4/25/2012 1:58:21 PM4/25/2012 1:58:21 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 577

 The function of this piece of codes is easy. Based on the information selected by the
user, the related Web page is opened by using the server ’ s Response object by using the
Redirect() method of the server ’ s Response object. All of these three pages will be
created and discussed in the following sections.

 Finally, let ’ s take care of the coding process for the Exit button ’ s Click event proce-
dure. The function of this piece of codes is to close the database connection and close the
Web application. Double - click on the Exit button from the Design View of the Selection
page to open this event procedure. Enter the codes that are shown in Figure 8.14 into
this event procedure.

 First, we need to check if the database is still connected to our application. If it is, the
global connection object stored in the Application state is activated with the Close()
method to close the database connection. Then, the Write() method of the server Response
object is called to close the Web application.

8.3.6 Modify the Codes in the LogIn Page to Transfer to the
Selection Page

 Now we have fi nished the coding process for the Selection page. Before we can run the
project to test this page, we need to do some modifi cations to the codes in the LogIn
button ’ s Click event procedure in the LogIn page to allow the application to switch from
the LogIn page to the Selection page as the login process is successful.

 Open the LogIn page and the LogIn button ’ s Click event procedure, and replace the
code line that is located inside the If block:

Response.Write(“ < script > alert(‘ LogIn is successful! ’) < /script > ”)

 with the following code line:

Response.Redirect(“ Selection.aspx ”)

 Also, remove the last code line sqlConnection.Close() from this event procedure
since we need this connection opened during our project runs.

 In this way, as long as the login process is successful, the next page, the Selection page,
will be opened by executing the Redirect() method of the server Response object. The
argument of this method is the URL of the Selection page. Since the Selection page is
located at the same application as the LogIn page does, a direct page name is used.

 Now let ’ s run the application to test these two pages. Make sure that the LogIn page
is the starting page for our application. To do that, right - click on the LogIn.aspx from
the Solution Explorer window and select the item Set As Start Page from the pop - up
menu. Click on the Start Debugging button to run our project.

Figure 8.14. The codes for the Exit button ’ s Click event procedure.

Protected Sub cmdExit_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdExit.Click
If Application("sqlConnection").State = ConnectionState.Open Then

Application("sqlConnection").Close()
End If
Response.Write("<script>window.close()</script>")

End Sub

cmdExit Click

c08.indd 577c08.indd 577 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

578 Chapter 8 Accessing Data in ASP.NET

 Enter a suitable username and password, such as jhenry and test , into the username
and password boxes, and click on the LogIn button. The Selection page is displayed if this
login process is successful, as shown in Figure 8.15 .

 Click on the Exit button to close the application. Now let ’ s begin to develop our next
page, Faculty page.

8.3.7 Create the Third User Interface: Faculty Page

 Right - click on our project folder from the Solution Explorer window and select the Add
New Item from the pop - up menu. On the opened wizard, keep the default template Web
Form selected and enter Faculty.aspx into the Name box as the name for this new page,
and then click on the Add button to add this new page into our project.

 On the opened Web form, add the controls that are shown in Table 8.4 into this page.
 As we mentioned in the last section, before you pick up those controls from the

Toolbox window and drag them into the page, you must fi rst use the Space or the Enter
keys from the keyboard to locate the positions on the page for those controls. You cannot
place a control in a random position on the form as you did in the Windows - based appli-
cations since the Web - based applications have special layout requirements.

 Now you can enlarge this Image and place it in the left on this page by dragging it
to that position.

 Two important points to be noted when building this page are:

1. After drag and place the Image control into this page, go to the Properties window and set
the ImageAlign property to Left .

2. Click on any place in this page and go to the Properties window. Select the Style property
and click on the expansion button to open the Modify Style wizard. Click on the Position
item from the left pane and select the absolute item from the position combo box in the
right pane.

3. Click on the OK button to complete these setups.

Figure 8.15. The running status of the second page: Selection page.

c08.indd 578c08.indd 578 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 579

Table 8.4. Controls on the Faculty form

Type ID Text TabIndex BackColor Font

Label Label1 CSE_DEPT Faculty Page 0 #E0E0E0 Bold/Large

Label Label2 Faculty Image 1 Bold/Small

TextBox txtImage 2

Label Label3 Faculty Name 3 Bold/Small

DropDownList ComboName 4

Image PhotoBox 24

Label Label4 Faculty ID 5 Bold/Small

TextBox txtID 6

Label Label5 Name 7 Bold/Small

TextBox txtName 8

Label Label6 Title 9 Bold/Small

TextBox txtTitle 10

Label Label7 Office 11 Bold/Small

TextBox txtOffice 12

Label Label8 Phone 13 Bold/Small

TextBox txtPhone 14

Label Label9 College 15 Bold/Small

TextBox txtCollege 16

Label Label10 Email 17 Bold/Small

TextBox txtEmail 18

Button cmdSelect Select 19 Bold/Medium

Button cmdInsert Insert 20 Bold/Medium

Button cmdUpdate Update 21 Bold/Medium

Button cmdDelete Delete 22 Bold/Medium

Button cmdBack Back 23 Bold/Medium

c08.indd 579c08.indd 579 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

580 Chapter 8 Accessing Data in ASP.NET

 Your fi nished Faculty page should match the one that is shown in Figure 8.16 .
 An easy way to build this Faculty page is to add an existing Faculty page Faculty.

aspx that can be found in the folder VB Forms\Web in the Wiley ftp site (refer to Figure
 1.2 in Chapter 1). Perform the following operations to add this existing Faculty page into
our project:

1. Right - click on our current project from the Solution Explorer window, and select the Add
Existing Item .

2. Browse to the folder VB Forms\Web in the Wiley ftp site and select the Faculty.aspx item.
Then click on the Add button to add this page into our project. You can also save this page
into a temporary folder in your computer and then perform this adding action.

 Although we have added fi ve buttons into this Faculty page, in this section, we only
take care of the Select and the Back button since we want to discuss how to retrieve
data based on the query command entered by the user from the database and display the
retrieved result in this Faculty page. The other buttons will be used in the following sec-
tions later.

 Now let ’ s begin to develop the codes for the Faculty page to perform a data query
from the Faculty table in our sample database.

8.3.8 Develop the Codes to Select the Desired
Faculty Information

 First, let ’ s run the project to build the confi guration fi le Web.confi g to confi gure all
controls we just added into the Faculty page. Click on the Start Debugging button to run

Figure 8.16. The fi nished Faculty page.

c08.indd 580c08.indd 580 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 581

the project, and enter the suitable username and password to open the Selection page.
Select the Faculty Information item from this page to open the Faculty page. Click on
the Close button that is located at the upper - right corner of this page to close the project.

 Open the code page of the Faculty form and as we did before, and add two Imports
commands to the top of this code page:

Imports System.Data
 Imports System.Data.SqlClient

 The codes for this page can be divided into three parts: coding for the Page_Load()
event procedure, coding for the Select button ’ s Click event procedure, and coding for
other procedures. First, let ’ s take care of the coding for the Page_Load() event
procedure.

8.3.8.1 Develop the Codes for the Page_Load Event Procedure

 In the opened code page, open the Page_Load() event procedure by selecting the item
(Page Events) from the Class Name combo box and the item Load from the Method
Name combo box. Enter the codes that are shown in Figure 8.17 into this event
procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A form - level textbox array is created fi rst since we need this array to hold seven pieces of
faculty information and display them in seven textboxes later.

B. Before we can perform the data actions against the database, we need to make sure that
a valid database connection is set to allow us to transfer data between our project and the
database. An Application state, which is used to hold our global connection object variable,

Figure 8.17. The codes for the Page_Load event procedure.

Imports System.Data
Imports System.Data.SqlClient

Partial Class Faculty
Inherits System.Web.UI.Page
Private FacultyTextBox(6) As TextBox 'Faculty table has 7 columns, we used all of them

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

If Application("sqlConnection").State <> ConnectionState.Open Then
Application("sqlConnection").Open()

End If

If Not IsPostBack Then
ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")

End If

End Sub

A

B

C

(Page Events) Load

c08.indd 581c08.indd 581 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

582 Chapter 8 Accessing Data in ASP.NET

is utilized to perform this checking and connecting to our database if it has not been
connected.

C. As the project runs, each time the user clicks the Select button to perform a data query,
a request is sent to the database server and the Web server (they can be the same server).
Then, the Web server will post back a refreshed Faculty page to the client when it received
this request (IsPostBack = True). When this happened, the Page_Load event procedure
will be activated, and the duplicated eight faculty members are attached to the end of the
Faculty Name combo box control again. To avoid this duplication, we need to check the
IsPostBack property of the page and add eight faculty members into the Faculty Name
combo box control only one time when the project starts (IsPostBack = False). Refer to
Section 8.3.9.1 for more detailed discussion about the AutoPostBack property.

 Next, we need to develop the codes for the Select button ’ s Click event procedure to
perform the data query against the database.

8.3.8.2 Develop the Codes for the Select Button Event Procedure

 The function of this piece of codes is to make a query to the database to retrieve the
faculty information based on the selected faculty member by the user from the Faculty
Name combo box control, and display those pieces of retrieved information in seven
textbox controls on the Faculty page.

 Open this Select button ’ s Click event procedure by double - clicking on this button
from the Design View of the Faculty form, and enter the codes that are shown in Figure
 8.18 into this event procedure.

Figure 8.18. The codes for the Select button ’ s Click event procedure.

Protected Sub cmdSelect_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim cmdString As String = "SELECT faculty_id, faculty_name, office, phone, college, title, email FROM Faculty " & _

"WHERE faculty_name LIKE @facultyName"
Dim paramFacultyName As New SqlParameter
Dim sqlCommand As New SqlCommand
Dim sqlDataReader As SqlDataReader

paramFacultyName.ParameterName = "@facultyName"
paramFacultyName.Value = ComboName.Text
sqlCommand.Connection = Application("sqlConnection")
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add(paramFacultyName)

Call ShowFaculty(ComboName.Text)
sqlDataReader = sqlCommand.ExecuteReader
If sqlDataReader.HasRows = True Then

Call FillFacultyReader(sqlDataReader)
Else

Response.Write("<script>alert('No matched faculty found!')</script>")
End If
sqlDataReader.Close()
sqlDataReader = Nothing
sqlCommand.Dispose()
sqlCommand = Nothing

End Sub

A

B

C

D

E
F
G

H

I

cmdSelect Click

c08.indd 582c08.indd 582 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 583

 Let ’ s take a closer look at this piece of codes to see how it works.

A. The query string that contains a SELECT statement is declared here since we need to use
this as our command text. The dynamic parameter of this query is facultyName , defi ned
in the WHERE clause.

B. Some data components, such as the Command, Parameter, and DataReader objects, are
declared here since we need to use them to perform the data query later.

C. The Parameter object is initialized by assigning the dynamic parameter ’ s name and value
to it.

D. The Command object is initialized by assigning the associated components to it. These
components include the global Connection object that is stored in the Application state,
the Parameters collection object, and the CommandType, as well as the CommandText
properties.

E. The user - defi ned subroutine ShowFaculty() that will be developed later is called to display
the selected faculty photo in the Image control on the Faculty page.

F. The ExecuteReader() method of the Command object is called to execute the query
command to retrieve the selected faculty information, and assign it to the DataReader
object.

G. By checking the HasRows property of the DataReader, we can determine whether this
query is successful or not. If this property is greater than zero, which means that at least
one row is retrieved from the Faculty table in the database and therefore the query is suc-
cessful, a user - defi ned subroutine FillFacultyReader() is called to fi ll seven textboxes on
the Faculty page with the retrieved faculty information.

H. Otherwise, if the HasRows property is equal to zero, which means that no row has been
retrieved from the database and the query has failed. A warning message is displayed in
the client by calling the Write() method of the server Response object.

I. All data components used for this data query are released after this query.

 At this point, we fi nished the codes for the Select button ’ s Click event procedure.

8.3.8.3 Develop the Codes for Other Procedures

 Next, let ’ s take care of the coding process for other procedures in this Faculty page; this
includes the coding process for the following procedures:

1. User - defi ned subroutine procedure ShowFaculty() .

2. User - defi ned subroutine procedure FillFacultyReader() .

3. User - defi ned subroutine procedure MapFacultyTable() .

4. Back button ’ s Click event procedure.

 The third subroutine MapFacultyTable() is used and called by the second subroutine
FillFacultyReader() in our project. Now let ’ s discuss the coding process for these sub-
routines one by one.

 First, let ’ s see the coding process for the subroutine ShowFaculty() . The function of
this subroutine is to get the matched faculty photo from the default location based on
the input faculty name and display it in the Image control on the Faculty page. The so -
 called default location for the photo fi le is exactly the current ASP.NET Web application
folder. In our case, it is C:\Chapter 8\SQLWebSelect . You must store all faculty photo

c08.indd 583c08.indd 583 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

584 Chapter 8 Accessing Data in ASP.NET

fi les in this location before you can run the project to pick up the desired faculty informa-
tion from the database and display it in the Faculty page. Of course, you can place your
faculty photo fi les in any folder in your computer. In that case, you must provide the full
name for the faculty photo, which includes the drive, path, and the name of the photo fi le.

 To make it simple, in this project, we used the default folder to store our faculty photo
fi les, which is C:\Chapter 8\SQLWebSelect .

 Open the code page of the Faculty page, and type and create this subroutine as shown
in Figure 8.19 .

 Let ’ s have a closer look at the codes of this subroutine to see how they work.

A. A local string variable FacultyImage is created, and it is used to hold the name of the
matched faculty photo fi le.

B. The Select…Case structure is utilized to fi nd the matched faculty photo fi le based on the
input faculty name. The name of the matched faculty photo fi le is assigned to the local
string variable FacultyImage if it is found.

C. If not, this means that no matched faculty photo fi le is existed. If the Faculty Image textbox
is empty, a default faculty image fi le is assigned to the local variable FacultyImage .
Otherwise, the faculty image fi le stored in that box is used as a new faculty image.

D. The name of the matched faculty photo fi le is assigned to the ImageUrl property of the
Image control to display that faculty photo.

Figure 8.19. The codes for the subroutine ShowFaculty.

Private Sub ShowFaculty(ByVal fName As String)

Dim FacultyImage As String

Select Case fName
Case "Ying Bai"

FacultyImage = "Bai.jpg"
Case "Satish Bhalla"

FacultyImage = "Satish.jpg"
Case "Black Anderson"

FacultyImage = "Anderson.jpg"
Case "Steve Johnson"

FacultyImage = "Johnson.jpg"
Case "Jenney King"

FacultyImage = "King.jpg"
Case "Alice Brown"

FacultyImage = "Brown.jpg"
Case "Debby Angles"

FacultyImage = "Angles.jpg"
Case "Jeff Henry"

FacultyImage = "Henry.jpg"
Case Else

If txtImage.Text = "" Then
FacultyImage = "Default.jpg"

Else
FacultyImage = txtImage.Text

End If
End Select

PhotoBox.ImageUrl = FacultyImage

End Sub

A

B

C

D

Faculty ShowFaculty

c08.indd 584c08.indd 584 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 585

 One signifi cant difference in displaying an image between the Windows - based and
the Web - based application is that the Image.Url property, which belongs to the control
System.Web.UI.WebControls.Image , is utilized to access the matched faculty photo
fi le, and only the name of the matched image fi le is needed to display the associated image
in the Web - based application. In the Windows - based application, a System.Drawing()
method must be used to display an image based on the image fi le ’ s name.

 The next subroutine is FillFacultyReader() . Open the code page of the Faculty Web
form, and type the codes that are shown in Figure 8.20 to create this subroutine inside
the Faculty class.

 The function of this subroutine is to pick up each data column from the retrieved
data that is stored in the DataReader and assign it to the associated textbox on the Faculty
page to display it. Let ’ s have a closer look at this piece of codes to see how it works.

A. A loop counter intIndex is declared fi rst.

B. Seven instances of the textbox array are created and initialized. These seven objects are
mapped to seven columns in the Faculty table in the database.

C. Another user - defi ned subroutine MapFacultyTable() is called to set up the correct
mapping between the seven textbox controls on the Faculty page window and the seven
columns in the query string cmdString .

D. A While loop is executed as long as the loop condition, Read() method, is True; this means
that a valid data is read out from the DataReader. This method will return a False if no
any valid data can be read out from the DataReader, which means that all data has been
read out. In this application, in fact, this While loop is only executed one time since we
have only one row (one record) read out from the DataReader.

E. A For…Next loop is utilized to pick up each data read out from the DataReader object,
and assign each of them to the associated textbox control on the Faculty page window. The
Item property with the index is used here to identify each data from the DataReader.

 Now let ’ s develop the codes for the subroutine MapFacultyTable() . The function of
this subroutine, as we mentioned, is to set up a correct mapping relationship between
seven textboxes in the textbox array on the Faculty page and the seven data columns in
the query string. The reason for that is because the order of the textboxes distributed in
the Faculty page may not be identical with the order of the data columns in the query

Figure 8.20. The codes for the subroutine FillFacultyReader.

Private Sub FillFacultyReader(ByVal FacultyReader As SqlDataReader)
Dim intIndex As Integer

For intIndex = 0 To 6 'Initialize the object array
FacultyTextBox(intIndex) = New TextBox()

Next intIndex

Call MapFacultyTable(FacultyTextBox)

While FacultyReader.Read()
For intIndex = 0 To FacultyReader.FieldCount - 1

FacultyTextBox(intIndex).Text = FacultyReader.Item(intIndex).ToString
Next intIndex

End While

End Sub

A

B

C

D

E

Faculty FillFacultyReader

c08.indd 585c08.indd 585 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

586 Chapter 8 Accessing Data in ASP.NET

string cmdString we created at the beginning of the Select button ’ s Click event
procedure.

 Open the code page of the Faculty Web form, and type the codes that are shown in
Figure 8.21 to create this subroutine inside the Faculty class.

 The order of seven textboxes on the right - hand side of the equal operator should be
equal to the order of the queried columns in the query string — cmdString . By performing
this assignment, the seven textbox controls on the Faculty page window has a correct
one - to - one relation with the queried columns in the query string cmdString .

 Finally, let ’ s take care of the coding process for the Back button ’ s Click event proce-
dure. The function of this piece of codes is to return to the Selection page as this button
is clicked. Double - click on the Back button from the Faculty page window to open this
event procedure and enter the code line shown in Figure 8.22 into this procedure.

 This piece of codes is straightforward and easy to understand. The Redirect() method
of the server Response object is executed to direct the client from the current Faculty
page back to the Selection page when this button is clicked by the user. The server resends
the Selection page to the client when this button is clicked, and a request is sent to the
server.

 We have fi nished all coding development for the Faculty page. It is the time for us to
run the project to test our pages. Before you can run the project, make sure that you have
stored all faculty photo fi les in the default location C:\Chapter 8\SQLWebSelect . You
can fi nd all faculty and student image fi les in the folder Images that is located at the
Wiley ftp site (refer to Figure 1.2 in Chapter 1). Copy all image fi les from that folder and
paste them into the default folder C:\Chapter 8\SQLWebSelect .

 Now click on the Start Debugging button to run our project. Enter the suitable user-
name and password, such as jhenry and test , to the LogIn page, and select the Faculty
Information from the Selection page to open the Faculty page. Select one faculty member

Figure 8.22. The codes for the Back button ’ s Click event procedure.

Protected Sub cmdBack_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdBack.Click
Response.Redirect("Selection.aspx")

End Sub

cmdBack Click

Figure 8.21. The codes for the subroutine MapFacultyTable.

Private Sub MapFacultyTable(ByRef fText As Object)
fText(0) = txtID 'The order must be identical
fText(1) = txtName 'with the real order in the query string cmdString
fText(2) = txtOffice
fText(3) = txtPhone
fText(4) = txtCollege
fText(5) = txtTitle
fText(6) = txtEmail

End Sub

Faculty MapFacultyTable

c08.indd 586c08.indd 586 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 587

from the Faculty Name combo box, such as Ying Bai , and then click on the Select button
to retrieve the selected faculty information from the database. All pieces of information
related to that selected faculty are retrieved and displayed in this Faculty page, as shown
in Figure 8.23 .

 Click on the Back button to return to the Selection page, and then click on the Exit
button to terminate our project. So far, our Web application is successful.

 Next, we need to create our last Web page, Course page, and add it into our project
to select and display all courses taught by the selected faculty member.

8.3.9 Create the Fourth User Interface: Course Page

 To create a new Web page and add it into our project, go to the Solution Explorer window
and right - click on our project folder, select Add New Item from the pop - up menu to
open the Add New Item wizard. On the opened wizard, keep the default template Web
Form selected. Then enter Course.aspx into the Name box as the name for our new
page and click on the Add button to add it into our project.

 On the opened Web form, add the controls that are shown in Table 8.5 into this
page.

 As we mentioned before, you cannot place a control in any position on the form as
you like. You must fi rst use the Space or the Enter keys from the keyboard to locate the
positions on the page for those controls. You cannot place a control in a random position
on the form as you did in the Windows - based applications since the Web - based applica-
tions have special layout requirements.

Figure 8.23. The running status of the Faculty page.

c08.indd 587c08.indd 587 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

588 Chapter 8 Accessing Data in ASP.NET

Table 8.5. Controls on the Course form

Type ID Text TabIndex BackColor Font AutoPostBack

Panel Panel1 16 #C0C0FF

Label Label1 Faculty Name 0 Bold/Smaller

DropDownList ComboName 1

ListBox CourseList 17 Bold/Medium True

Panel Panel2 18 #C0C0FF

Label Label2 Course ID 2 Bold/Smaller

TextBox txtID 3

Label Label3 Course 4 Bold/Smaller

TextBox txtCourse 5

Label Label4 Schedule 6 Bold/Smaller

TextBox txtSchedule 7

Label Label5 Classroom 8 Bold/Smaller

TextBox txtClassroom 9

Label Label6 Credit 10 Bold/Smaller

TextBox txtCredit 11

Label Label7 Enrollment 12 Bold/Smaller

TextBox txtEnroll 13

Button cmdSelect Select 14 Bold/Medium

Button cmdInsert Insert 15 Bold/Medium

Button cmdUpdate Update 16 Bold/Medium

Button cmdDelete Delete 17 Bold/Medium

Button cmdBack Back 18 Bold/Medium

 An easy way to build this Course page is to add an existing Course page Course.
aspx that can be found in the folder VB Forms\Web in the Wiley ftp site (refer to Figure
 1.2 in Chapter 1). Perform the following operations to add this existing Course page into
our project:

1. Right - click on our current project from the Solution Explorer window, and select the Add
Existing Item .

2. Browse to the folder VB Forms\Web in the Wiley ftp site and select the Course.aspx item.
Then click on the Add button to add this page into our project. You can also save this page
into a temporary folder in your computer and then perform this adding action.

c08.indd 588c08.indd 588 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 589

 Your fi nished Course page should match the one that is shown in Figure 8.24 .
 Before we can continue to develop the following codes, we must emphasize one key

point for the list box control used in the Web - based applications. There is a signifi cantly
different process for the list box control used in the Windows - based and Web - based
applications.

8.3.9.1 The AutoPostBack Property of the List Box Control

 One important property is the AutoPostBack property for the list box control CourseList
in this page. Unlike the list box control used in the Windows - based application, a
SelectedIndexChanged event will not be created in the server side if the user clicked and
selected an item from the list box. The reason for that is because the default value for
the AutoPostBack property of a list box control is set to False when you add a new list
box to your Web form. This means that even if the user clicked and changed the item
from the list box, a SelectedIndexChanged event can only be created in the client side,
and it cannot be sent to the server. As you know, all controls, including the list box, are
running at the server side when your project runs. So no matter how many times you
clicked and changed the items from the list box, no event can be sent to the server side.
Therefore, it looks like that your clicking on the list box cannot be responded by your
project.

 However, in this project, we need to use this SelectedIndexChanged event to trigger
our event procedure to perform the course information query. In order to solve this

Figure 8.24. The fi nished Course Web page.

c08.indd 589c08.indd 589 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

590 Chapter 8 Accessing Data in ASP.NET

problem, the AutoPostBack property should be set to True . In this way, each time
when you click on an item to select it from the list box, this AutoPostBack property
will set a value to post back to the server to indicate that the user has triggered this
control.

 In this section, we only discuss the coding development for the Select and the Back
buttons ’ Click event procedures to perform the course data query. The coding process for
other buttons, such as Insert , Update , and Delete , will be discussed later in the following
sections when we perform the data inserting, updating, or deleting actions against the
database using the Web pages.

 Now let ’ s develop the codes for the Select and the Back buttons ’ Click event pro-
cedures to pick up the course data from the database using the Course Web page.

8.3.10 Develop the Codes to Select the Desired Course
Information

 The functions of the Course page are:

1. When the user selected the desired faculty member from the Faculty Name combo box
control and clicks on the Select button, all IDs of the courses taught by the selected faculty
should be retrieved from the database and displayed in the list box control CourseList on
the Course page.

2. When the user clicks on any course_id from the list box control CourseList , the detailed
course information related to the selected course_id in the list box will be retrieved from
the database and displayed in six textboxes on the Course page.

 Based on the function analysis above, we need to concentrate our coding process on
two event procedures: the Select button ’ s Click event procedure and the CourseList
box ’ s SelectedIndexChanged event procedure. The fi rst piece of codes is used to retrieve
and display all course_id related to courses taught by the selected faculty in the list box
control CourseList , and the second coding is to retrieve and display the detailed course
information, such as the course title, schedule, classroom, credit, and enrollment, related
to the selected course_id from the CourseList control.

 The above coding jobs can be divided into four parts:

1. Coding for the Course page loading and ending event procedures. These procedures include
the Page_Load() and the Back button ’ s Click event procedure.

2. Coding for the Select button ’ s click event procedure.

3. Coding for the SelectedIndexChanged event procedure of the list box control CourseList .

4. Coding for other user - defi ned subroutine procedures.

 Before we can take care of the fi rst coding job, we need to add two Imports com-
mands to the top of the Course page. Open the code window of the Course page and
enter two Imports commands to the top of that page:

Imports System.Data
 Imports System.Data.SqlClient

 Now let ’ s start our coding process from the fi rst part.

c08.indd 590c08.indd 590 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 591

8.3.10.1 Coding for the Course Page Loading and Ending Event Procedures

 Open the Page_Load event procedure by selecting (Page Events) from the Class Name
combo box and Load from the Method Name combo box from the code window. Enter
the codes that are shown in Figure 8.25 into this event procedure.

 Let ’ s take a closer look at this piece of codes to see how it works.

A. This coding fragment is similar to the one we did for the Faculty form. Six textbox controls
are used to display the detailed course information that is related to the selected faculty
from the Faculty Name combo box. The Course table has seven columns, but we only need
six of them, so the size of this TextBox array is 5, and each element or each TextBox control
in this array is indexed from 0 to 5.

B. The function of this code segment is: Before we can perform any data query, we need to
check whether a valid connection is available. Since we created a global connection instance
in the LogIn page and stored it in the Application state, now we need to check this con-
nection object and reconnect it to the database if our application has not been connected
to the database.

C. The following codes are used to initialize the Faculty Name combo box control, and the
Add() method is utilized to add all faculty members into this combo box control to allow
users to select one to get the course information as the project runs. Here, a potential bug
exists for this piece of codes. As we mentioned in Section 8.3.9.1 , an AutoPostBack prop-
erty will be set to True whenever the user clicked and selected an item from the list box
control, and this property will be sent to the server to indicate that an action has been
taken by the user to this list box. After the server received this property, it will send back
a refreshed Course page to the client; therefore, the Page_Load event procedure of the
Course page will be triggered and run again as a refreshed Course page is sent back. The
result of execution of this Page_Load procedure is to attach another copy of all faculty
members to the end of those faculty members that have been already added into the

Figure 8.25. The codes for the Page_Load event procedure.

Imports System.Data
Imports System.Data.SqlClient

Partial Class Course
Inherits System.Web.UI.Page
Private CourseTextBox(5) As TextBox 'we need to quewry 6 columns from the Course table

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
If Application("sqlConnection").State <> ConnectionState.Open Then

Application("sqlConnection").Open()
End If
If Not IsPostBack Then 'these items can only be added into the combo box in one time

ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")

End If
End Sub

End Class

A

B

C

(Page Events) Load

c08.indd 591c08.indd 591 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

592 Chapter 8 Accessing Data in ASP.NET

Faculty Name combo box control when the Course page is displayed in the fi rst time. As
the number of times you clicked on an item from the CourseList box increases, the number
of copies of all faculty members will also be increased and displayed in the Faculty Name
combo box. To avoid these duplications, we only need to add all faculty members in the
fi rst time as the Course page is displayed, but do nothing if an AutoPostBack property
occurred.

 The codes for the Back button ’ s Click event procedure are similar to that for the
Back button ’ s Click procedure in the Faculty page. When this button is clicked by the
user, the Course page should be switched back to the Selection page. The Redirect()
method of the server Response object is used to fulfi ll this switching function. Double -
 click on the Back button from the Course page window and enter the following codes
into this procedure:

Response.Redirect(“ Selection.aspx ”)

 Let ’ s continue to develop the codes for the Select button ’ s click event procedure.

8.3.10.2 Coding for the Select Button ’s Click Event Procedure

 As we mentioned at the beginning of this section, the function of this event procedure is:
when the user selected the desired faculty member from the Faculty Name combo box
control and clicks on the Select button, all course_id related to courses taught by the
selected faculty should be retrieved from the database and displayed in the list box
control CourseList in the Course page.

 Double - click on the Select button from the Course page window to open this event
procedure, and enter the codes that are shown in Figure 8.26 into this procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The joined table query string is declared at the beginning of this event procedure. Here,
two columns are queried. The fi rst one is the course_id , and the second is the course name.

Figure 8.26. The codes for the Select button ’ s Click event procedure.

Protected Sub cmdSelect_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim cmdString As String = "SELECT Course.course_id, Course.course FROM Course JOIN Faculty " & _

"ON (Course.faculty_id LIKE Faculty.faculty_id) AND (Faculty.faculty_name LIKE @name)"

Dim sqlCommand As New SqlCommand
Dim sqlDataReader As SqlDataReader

sqlCommand.Connection = Application("sqlConnection")
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add("@name", SqlDbType.Char).Value = ComboName.Text

sqlDataReader = sqlCommand.ExecuteReader

If sqlDataReader.HasRows = True Then
Call FillCourseReader(sqlDataReader)

Else
Response.Write("<script>alert('No matched course found!')</script>")

End If

sqlDataReader.Close()
sqlDataReader = Nothing
sqlCommand.Dispose()
sqlCommand = Nothing

End Sub

A

B

C

 D

 E

 F

 G

cmdSelect Click

c08.indd 592c08.indd 592 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 593

The reason for this is that we need to use the course_id , not course name, as the identifi er
to pick up each course ’ detailed information from the Course table when the user clicked
and selected the course_id from the CourseList box. We use the course_id with the
course name together in this joined table query and we will use that course_id later.
The comparator LIKE is used to replace the original equal symbol for the criteria in the
ON clause in the query string, and this is required by SQL Server database operation.
For a more detailed discussion about the joined table query, refer to Section 5.19.6 in
Chapter 5 .

B. Some SQL data objects, such as the Command and DataReader, are created here. All of
these objects should be prefi xed by the keyword sql to indicate that all those components
are related to the SQL Server Data Provider.

C. The sqlCommand object is initialized with the connection string, command type, command
text, and command parameter. The parameter ’ s name must be identical with the dynamic
parameter @name , which is defi ned in the query string, and it is exactly located after the
LIKE comparator in the ON clause. The parameter ’ s value is the content of the Faculty
Name combo box, which should be selected by the user as the project runs.

D. The ExecuteReader() method of the Command class is executed to read back all courses
(course_id) taught by the selected faculty and assign them to the DataReader object.

E. If the HasRows property of the DataReader is True , which means that at least one row
data has been retrieved from the database, the subroutine FillCourseReader() is called to
fi ll the course_id into the CourseList box.

F. Otherwise, this joined query has failed, and a warning message is displayed.

G. Finally some cleaning jobs are preformed to release objects used for this query.

 Now let ’ s develop the codes for the user - defi ned subroutine FillCourseReader() ,
which is shown in Figure 8.27 . Open the code page of the Course Web form
and enter the codes that are shown in Figure 8.27 to create this procedure inside the
Course class.

 Let ’ s see how this piece of codes works.

A. A local string variable strCourse is created, and this variable can be considered as
an intermediate variable that is used to temporarily hold the queried data from the
Course table.

B. We need to clean up the CourseList box before it can be fi lled.

C. A While loop is utilized to retrieve each fi rst column ’ s data (GetString(0)) whose column
index is 0, and the data value is the course_id . The queried data fi rst is assigned to the

Figure 8.27. The codes for the subroutine FillCourseReader().

Private Sub FillCourseReader(ByRef CourseReader As SqlDataReader)

Dim strCourse As String = String.Empty

CourseList.Items.Clear()

While CourseReader.Read()
strCourse = CourseReader.GetString(0) 'the 1st column is course_id
CourseList.Items.Add(strCourse)

End While

End Sub

A

B

C

Course FillCourseReader

c08.indd 593c08.indd 593 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

594 Chapter 8 Accessing Data in ASP.NET

intermediate variable strCourse , and then it is added into the CourseList box by using
the Add() method.

 Now let ’ s start to develop the codes for the SelectedIndexChanged event procedure
of the list box control CourseList . The function of this event procedure is: when the user
clicks any course_id from the list box control CourseList , the detailed course informa-
tion related to the selected course_id , such as the course title, schedule, credit, classroom,
and enrollment, will be retrieved from the database and displayed in six textboxes on the
Course page form.

8.3.10.3 Coding for the SelectedIndexChanged Event Procedure of the

CourseList Box

 Double - click on the list box control CourseList from the Course Web form to open this
event procedure, and enter the codes that are shown in Figure 8.28 into this procedure.

 Let ’ s take a closer look at this piece of codes to see how it works.

A. The query string is created with six queried columns, such as course_id , course , credit ,
classroom , schedule , and enrollment . The query criterion is course_id , which is obtained
from the CourseList box control. The comparator LIKE is used to replace the original equal
symbol for the criteria in the WHERE clause in the query string, and this is required by
SQL Server database operation.

B. Two SQL data objects are created, and these objects are used to perform the data opera-
tions between the database and our project. All of these objects should be prefi xed by the
keyword sql since in this project, we used an SQL Server Data Provider.

Figure 8.28. The codes for the SelectedIndexChanged event procedure.

Protected Sub CourseList_SelectedIndexChanged(ByVal sender As Object, ByVal e As System.EventArgs) Handles _
CourseList.SelectedIndexChanged

Dim cmdString As String = "SELECT course_id, course, credit, classroom, schedule, enrollment FROM Course " & _
"WHERE course_id LIKE @courseid"

Dim sqlCommand As New SqlCommand
Dim sqlDataReader As SqlDataReader

sqlCommand.Connection = Application("sqlConnection")
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add("@courseid", SqlDbType.Char).Value = CourseList.SelectedItem.ToString
sqlDataReader = sqlCommand.ExecuteReader

If sqlDataReader.HasRows = True Then
Call FillCourseReaderTextBox(sqlDataReader)

Else
Response.Write("<script>alert('No matched course information found!')</script>")

End If

sqlDataReader.Close()
sqlDataReader = Nothing
sqlCommand.Dispose()
sqlCommand = Nothing

End Sub

A

B

C

D

E

F

G

CourseList SelectedIndexChanged

c08.indd 594c08.indd 594 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 595

C. The sqlCommand object is initialized with the connection object, command type, command
text, and command parameter. The parameter ’ s name must be identical with the dynamic
nominal name @courseid , which is defi ned in the query string, exactly after the LIKE
comparator in the WHERE clause. The parameter ’ s value is the course_id selected by the
user from the CourseList box.

D. The ExecuteReader() method is executed to read back the detailed information for the
selected course, and assign it to the DataReader object.

E. If the HasRows property of the DataReader is True , which means that at least one row
data has been retrieved from the database, the user - defi ned subroutine procedure
FillCourseReaderTextBox() is called to fi ll detailed course information into six
textboxes.

F. Otherwise, this query has failed and a warning message is displayed.

G. Finally, some cleaning jobs are preformed to release objects used for this query.

 The coding for other user - defi ned subroutine procedures includes the coding for
the user - defi ned subroutine procedures FillCourseReaderTextBox() and MapCourse
Table() .

8.3.10.4 Coding for Other User -Defi ned Subroutine Procedures

 First, let ’ s develop the codes for the subroutine FillCourseReaderTextBox() . On the
opened code page of the Course Web form, enter the codes that are shown in Figure 8.29
into the Course class to create this user - defi ned subroutine procedure.

 Let ’ s take a closer look at this piece of codes to see how it works.

A. A loop counter intIndex is fi rst created, and it is used for the loop of creation of the textbox
object array and the loop of retrieving data from the DataReader later.

B. The fi rst loop is used to create the textbox object array and perform the initialization for
those objects.

C. The user - defi ned subroutine MapCourseTable() is executed to set up a one - to - one rela-
tionship between each textbox control in the Course page and each queried column in the
query string. This step is necessary since the distribution order of six textbox controls in
the Course page may be different with the column order in the query string.

Figure 8.29. The codes for the subroutine FillCourseReaderTextBox().

Private Sub FillCourseReaderTextBox(ByVal CourseReader As SqlDataReader)

Dim intIndex As Integer

For intIndex = 0 To 5 'Initialize the object array
CourseTextBox(intIndex) = New TextBox

Next intIndex

Call MapCourseTable(CourseTextBox)
While CourseReader.Read()

For intIndex = 0 To CourseReader.FieldCount - 1
CourseTextBox(intIndex).Text = CourseReader.Item(intIndex).ToString

Next intIndex
End While

End Sub

A

B

C
 D

Course FillCourseReaderTextBox

c08.indd 595c08.indd 595 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

596 Chapter 8 Accessing Data in ASP.NET

D. A While and a For…Next loop are used to pick up all six pieces of course - related infor-
mation from the DataReader one by one. The Read() method is used as the While loop
condition. A returned True means that a valid data is read out from the DataReader, and
a returned False means that no valid data has been read out from the DataReader; in
other words, no more data is available, and all data has been read out. The For…Next loop
uses the FieldCount – 1 as the termination condition since the index of the fi rst data fi eld
is 0, not 1, in the DataReader object. Each read - out data is converted to a string and
assigned to the associated textbox control in the textbox object array.

 The codes for the subroutine MapCourseTable() are shown in Figure 8.30 .
 The function of this piece of codes is straightforward with no trick. The order of the

textboxes on the right - hand side of the equal operator is the column order in the query
string — cmdString . By assigning each column of required data to each of its partner, the
textbox in the textbox object array in this order, a one - to - one relationship between each
column of queried data and the associated textbox control in the Course page is built,
and the data retrieved from the DataReader can be mapped exactly to the associated
textbox control in the Course page, and can be displayed in there.

 At this point, we have fi nished all coding developments for the Course Web form.
Now let ’ s run the project to test the function of this form. Click on the Start Debugging
button to run the project. Enter the suitable username and password, such as jhenry and
test , to the LogIn page, and select the Course Information item from the Selection page
to open the Course page.

 On the opened Course page, select a faculty member from the Faculty Name combo
box control and click on the Select button to retrieve all courses (course_id) taught by
that selected faculty. Immediately, all courses (course_id) are retrieved and displayed
in the CourseList box. Your running result should match the one that is shown in
Figure 8.31 .

 Click on any course_id from the CourseList box to select it; immediately, the
detailed course information related to that selected course_id is displayed in six text-
boxes, which is shown in Figure 8.32 .

 Click on the Back button to return to the Selection page, and you can click on any
other item from the Selection page to perform the associated information query, or you
can click on the Exit button to terminate the application.

 Our Web application is successful.

Figure 8.30. The codes for the subroutine MapCourseTable().

Private Sub MapCourseTable(ByRef fCourse As Object)

fCourse(0) = txtID 'The order must be identical with the column order in the query
fCourse(1) = txtCourse 'string – cmdString1 in CourseList_SelectedIndexChanged procedure
fCourse(2) = txtCredit
fCourse(3) = txtClassRoom
fCourse(4) = txtSchedule
fCourse(5) = txtEnroll

End Sub

Course MapCourseTable

c08.indd 596c08.indd 596 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

8.3 Develop ASP.NET Web Application to Select Data from SQL Server Databases 597

Figure 8.31. The running status of the Course page.

Figure 8.32. The detailed course information.

c08.indd 597c08.indd 597 4/25/2012 1:58:22 PM4/25/2012 1:58:22 PM

598 Chapter 8 Accessing Data in ASP.NET

 A complete Web application project SQLWebSelect , which is used for data query
from the SQL Server database, can be found in the folder DBProjects\Chapter 8 that is
located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

 Next, let ’ s discuss how to insert data into our sample database via Web
applications.

8.4 DEVELOP ASP.NET WEB APPLICATION TO INSERT DATA
INTO SQL SERVER DATABASES

 In this section, we discuss how to insert a new faculty record into the SQL Server database
from the Web page. To do that, we do not need to create any new Web application; instead,
we can modify an existing Web project SQLWebSelect we built in the last section to
make it our new Web application SQLWebInsert . Perform the following operations to
create this new Web application project SQLWebInsert :

1. Open the Windows Explorer and create a new folder Chapter 8 if you have not
done that.

2. Copy the project SQLWebSelect from the folder DBProjects\Chapter 8 that is located
at the Wiley ftp site (refer to Figure 1.2 in Chapter 1), and paste it to our new folder
C:\Chapter 8 .

3. Rename this project to SQLWebInsert .

 Recall that we built fi ve buttons on the Faculty page in the project SQLWebSelect .
In this section, we will concentrate on the coding development for the Insert button on
the Faculty page to perform the faculty data insertion action to our sample database.

8.4.1 Develop the Codes to Perform the
Data Insertion Function

 The function of this Insert button ’ s Click event procedure is:

1. During the project runs, you need to open the Faculty page by selecting the Faculty
Information from the Selection page.

2. To insert a new faculty record into the database, you need to enter seven pieces of new
information into seven textboxes in the Faculty page. The information includes the faculty_
id , faculty_name , title , offi ce , phone , college , and email .

3. The Faculty Image textbox is optional, which means that you can either enter a new faculty
photo name with this new record or leave it blank. If you leave it blank, a default faculty
image will be adopted and displayed when this new record is validated.

4. After all pieces of information has been fi lled into all textboxes, you can click on the
Insert button to insert this new record into the Faculty table in our database via the
Web page.

 Now let ’ s start creating the codes for this Insert button ’ s Click event procedure.

c08.indd 598c08.indd 598 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

8.4 Develop ASP.NET Web Application to Insert Data into SQL Server Databases 599

8.4.2 Develop the Codes for the Insert Button Click Event
Procedure

 Open the Insert button ’ s Click event procedure by double - clicking on the Insert button
from the Faculty Web form, and enter the codes that are shown in Figure 8.33 into this
event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. The insert query string is declared fi rst, and it contains seven pieces of information that is
related to seven columns in the Faculty table in the database.

B. The data components and local variables used in the procedure are declared here. The
local integer variable intInsert is used to hold the returned running result from the execu-
tion of the data insertion command.

C. The Command object is initialized by assigning it with the connection object stored in the
Application state, the command type and the command text objects, respectively.

D. The user - defi ned subroutine InsertParameters() is executed to assign all seven input
parameters to the Parameters collection of the command object.

E. The ExecuteNonQuery() method of the command object is called to run the insert query
to perform this data insertion.

F. A cleaning job is performed to release all objects used in the procedure.

G. The ExecuteNonQuery() method will return an integer to indicate whether this data inser-
tion is successful or not. The value of this returned data equals to the number of rows that
have been successfully inserted into the Faculty table in the database. If a zero returned,
which means that no any row has been inserted into the database, a warning message is

Figure 8.33. The codes for the Insert button ’ s Click event procedure.

Protected Sub cmdInsert_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdInsert.Click
Dim cmdString As String = "INSERT INTO Faculty (faculty_id,faculty_name,office,phone,college,title,email) " & _

"VALUES (@faculty_id,@faculty_name,@office,@phone,@college,@title,@email)"

Dim sqlCommand As New SqlCommand
Dim intInsert As Integer

sqlCommand.Connection = Application("sqlConnection")
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString

InsertParameters(sqlCommand)
intInsert = sqlCommand.ExecuteNonQuery()
sqlCommand.Dispose()
sqlCommand = Nothing

If intInsert = 0 Then
Response.Write("<script>alert('The data insertion is failed')</script>")
Exit Sub

End If

Application("FacultyImage") = txtImage.Text 'reserve the inserted faculty image
 cmdInsert.Enabled = False 'disable the Insert button

ComboName.Items.Add(txtName.Text) 'reserve faculty name for validation
Call CleanInsert() 'clean up faculty information stored in six textboxes

End Sub

A

B

C

 D
 E
 F

 G

H
 I
J
K

cmdInsert Click

c08.indd 599c08.indd 599 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

600 Chapter 8 Accessing Data in ASP.NET

displayed to indicate this situation, and the procedure is exited. Otherwise, the data inser-
tion is successful.

H. A global variable FacultyImage is created and initialized with the faculty image fi le name
stored in the Faculty Image textbox. In some cases, the user may want to add a faculty
image with that faculty record insertion. In order to save this image fi le for the data valida-
tion, we need this step.

I. The Insert button is disabled after the current record is inserted into the database. This is
to avoid the multiple insertions of the same record into the database. The Insert button
will be enabled again when the content of the Faculty ID textbox is changed, which means
that a new, different faculty record will be inserted.

J. The newly inserted faculty name is added into the Faculty Name combo box by using the
Add() method, and this faculty name will be used later for the validation purpose.

K. The user - defi ned subroutine procedure CleanInsert() is executed to clean up six textboxes
in the Faculty page (except the Faculty ID textbox).

 When the content of the faculty_id textbox is changed (a TextChanged event of the
faculty_id textbox will be triggered), which means that a new faculty record should be
inserted, we need to enable the Insert button if this situation happened. To do this piece
of codes, double - click on the faculty_id textbox from the Faculty page to open
its TextChanged event procedure and enter cmdInsert.Enabled = True into this
procedure.

 The detailed codes for the user - defi ned subroutine InsertParameters() are shown in
Figure 8.34 .

 This piece of codes is straightforward and easy to be understood. Each piece of new
faculty information is assigned to the associated input parameter by using the Add()
method of the Parameters collection of the command object.

 The codes for the user - defi ned subroutine CleanInsert() are shown in Figure 8.35 .
 The function of this piece of codes is to clean up contents of six textboxes, except the

faculty_id textbox. The reason for that is: the Insert button would be enabled if the
content of the faculty_id textbox is cleaned up (changed) since a TextChanged event will
be triggered. However, this cleaning up action has nothing to do with inserting a new
record. Therefore, in order to avoid this confusing operation, we will not clean up the
faculty_id textbox.

Figure 8.34. The codes for the subroutine InsertParameters().

Private Sub InsertParameters(ByRef cmd As SqlCommand)
cmd.Parameters.Add("@faculty_id", SqlDbType.Char).Value = txtID.Text
cmd.Parameters.Add("@faculty_name", SqlDbType.Char).Value = txtName.Text
cmd.Parameters.Add("@office", SqlDbType.Char).Value = txtOffice.Text
cmd.Parameters.Add("@phone", SqlDbType.Char).Value = txtPhone.Text
cmd.Parameters.Add("@college", SqlDbType.Char).Value = txtCollege.Text
cmd.Parameters.Add("@title", SqlDbType.Char).Value = txtTitle.Text
cmd.Parameters.Add("@email", SqlDbType.Char).Value = txtEmail.Text

End Sub

Faculty InsertParameters

c08.indd 600c08.indd 600 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

8.4 Develop ASP.NET Web Application to Insert Data into SQL Server Databases 601

8.4.3 Modify the Codes in the Subroutine ShowFaculty()
for the Data Validation

 In order to validate this data insertion action, we need to modify some codes inside the
user - defi ned subroutine ShowFaculty() to enable a newly inserted faculty image to be
retrieved and displayed in this page if the user wants to add a new faculty image for that
data insertion.

 Open this subroutine and perform the modifi cations, which are shown in Figure 8.36 ,
to this procedure. The modifi ed parts have been highlighted in bold.

Figure 8.35. The codes for the subroutine CleanInsert().

Private Sub CleanInsert()
txtName.Text = String.Empty
txtOffice.Text = String.Empty
txtPhone.Text = String.Empty
txtCollege.Text = String.Empty
txtTitle.Text = String.Empty
txtEmail.Text = String.Empty

End Sub

Faculty CleanInsert

Figure 8.36. The modifi ed codes for the subroutine ShowFaculty().

Private Sub ShowFaculty(ByVal fName As String)
Dim FacultyImage As String = String.Empty

Select Case fName
Case "Ying Bai"

FacultyImage = "Bai.jpg"
Case "Satish Bhalla"

FacultyImage = "Satish.jpg"
Case "Black Anderson"

FacultyImage = "Anderson.jpg"
Case "Steve Johnson"

FacultyImage = "Johnson.jpg"
Case "Jenney King"

FacultyImage = "King.jpg"
Case "Alice Brown"

FacultyImage = "Brown.jpg"
Case "Debby Angles"

FacultyImage = "Angles.jpg"
Case "Jeff Henry"

FacultyImage = "Henry.jpg"
Case Else

If txtImage.Text = "" And Application("FacultyImage") = String.Empty Then
FacultyImage = "Default.jpg"

ElseIf txtImage.Text <> String.Empty Then
FacultyImage = txtImage.Text

ElseIf Application("FacultyImage") <> String.Empty Then
FacultyImage = Application("FacultyImage")

End If
End Select
PhotoBox.ImageUrl = FacultyImage

End Sub

A

B

C

D

Faculty ShowFaculty

c08.indd 601c08.indd 601 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

602 Chapter 8 Accessing Data in ASP.NET

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. The local variable FacultyImage is initialized with an empty string.

B. To check whether a new faculty image has been inserted or no matched faculty image has
been found, we use an And logic operator to combine both conditions together. If both of
them are empty, which means that no matched faculty image can be found, a default faculty
image is used.

C. If the Faculty Image textbox contains a valid faculty image fi le ’ s name, it is assigned to the
local String variable FacultyImage and displayed later.

D. If the global variable FacultyImage is not empty, which means that a valid faculty image ’ s
name has been assigned to it by the user, and this faculty image will be used and displayed
later.

 Now we have fi nished all coding development for this data insertion action, and we
can run the project to test the data insertion function via the Web page. However, before
we can start the project, make sure that all faculty image fi les, including a default faculty
photo fi le named Default.jpg , have been stored in our default folder in which our project
is located since we need to use those photo fi les to run our project. Also, make sure that
the start page is the LogIn page by right - clicking on the LogIn page from the Solution
Explorer window and selecting the item Set As Start Page .

 Click on the Start Debugging button to run the project. Enter the suitable username
and password, such as jhenry and test , to the LogIn page, and select the Faculty
Information item from the Selection page to open the Faculty page. Enter the following
data as the information for a new faculty record:

 • B55880 Faculty ID textbox

 • Susan Bai Name textbox

 • Professor Title textbox

 • MTC-335 Offi ce textbox

 • 750-378-2355 Phone textbox

 • Duke University College textbox

 • sbai@college.edu Email textbox

 • Default.jpg Faculty Image textbox

 Your fi nished new faculty information page is shown in Figure 8.37 .
 Click on the Insert button to insert this new record into the database. The Insert

button is immediately disabled, and the associated six textboxes are cleaned up.

8.4.4 Validate the Data Insertion

 To confi rm and validate this faculty record insertion, go to the Faculty Name combo box
control, and you can fi nd that the newly inserted faculty name Susan Bai is already there.
Click on this name to select this faculty and then click on the Select button to retrieve
this newly inserted record from the database and display it in this page. The inserted
record is displayed in this page, which is shown in Figure 8.38 .

 Our data insertion is successful.

c08.indd 602c08.indd 602 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

8.4 Develop ASP.NET Web Application to Insert Data into SQL Server Databases 603

Figure 8.37. The running status of the Faculty page.

Figure 8.38. The data validation process.

c08.indd 603c08.indd 603 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

604 Chapter 8 Accessing Data in ASP.NET

 Click on the Back button, and then the Exit button to close our project.
 A complete Web application project SQLWebInsert can be found in the

folder DBProjects\Chapter 8 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1).

 In the next section, we will discuss how to perform the data updating and deleting
actions against the SQL Server database via the Web pages.

8.5 DEVELOP WEB APPLICATIONS TO UPDATE AND DELETE
DATA IN SQL SERVER DATABASES

 Updating or deleting data against the relational databases is a challenging topic. We have
provided a very detailed discussion and analysis for this topic in Section 7.1.1 . Refer to
that section to get more detailed discussion for these data actions. Here, we want to
emphasize some important points related to the data updating and deleting.

1. When updating or deleting data against related tables in a DataSet, it is important to update
or delete data in the proper sequence in order to reduce the chance of violating referential
integrity constraints. The order of command execution will also follow the indices of the
DataRowCollection in the dataset. To prevent data integrity errors from being raised, the
best practice is to update or delete data against the database in the following sequence:

a. Child table: delete records.
b. Parent table: insert, update, and delete records.
c. Child table: insert and update records.

2. To update an existing data against the database, generally, it is unnecessary to update the
primary key for that record. It is much better to insert a new record with a new primary
key into the database than updating the primary key for an existing record because of the
complicated tables operations listed above. In practice, it is very rare to update a primary
key for an existing record against the database in the real applications. So in this section,
we concentrate our discussion on updating the existing record by modifying all data columns
except the primary key column.

3. To delete a record from a relational database, the normal operation sequence listed above
must be followed. For example, to delete a record from the Faculty table in our application,
one must fi rst delete those records, which are related to the data to be deleted in the Faculty
table, from the child table, such as the LogIn and Course tables, and then one can delete
the record from the Faculty table. The reason for this deleting sequence is because the
faculty_id is a foreign key in the LogIn and the Course tables, but it is a primary key in the
Faculty table. One must fi rst delete data with the foreign keys and then delete the data with
the primary key from the database.

 Keep these three points we discussed above in mind; now let ’ s begin our project.
 We need to modify our existing project SQLWebInsert and make it as our new

project SQLWebUpdateDelete . To do that, open the Windows Explorer and create a
new folder Chapter 8 if you have not done that. Then copy the project SQLWebInsert
from the folder DBProjects\Chapter 8 that is located at the Wiley ftp site (refer to Figure
 1.2 in Chapter 1). Rename this project to SQLWebUpdateDelete .

 To update or delete an existing record against our sample database, we don ’ t need
any new Web page as our user interface, and we can use the Faculty page as our user

c08.indd 604c08.indd 604 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

8.5 Develop Web Applications to Update and Delete Data in SQL Server Databases 605

interface to perform those data actions. To meet our data actions ’ requirements, we need
to perform some modifi cations to the codes in the Faculty page.

 First, let ’ s handle the data updating action to the Faculty table in our sample database
via the Faculty page.

8.5.1 Modify the Codes for the Faculty Page

 The code modifi cations for this data action can be divided into two parts: the code modi-
fi cations to the Select button ’ s Click event procedure and code creation for the Update
button ’ s Click event procedure. First, let ’ s handle the code modifi cations to the Select
button ’ s Click event procedure.

 The only modifi cation to this event procedure is to add one more statement, which
is shown in step A in Figure 8.39 .

 The newly added statement has been highlighted in bold. The purpose of this state-
ment is to store the current selected faculty name that is located at the Faculty Name
combo box control into the Application state as a global variable. During the data updat-
ing process, the faculty name may be updated by the user. If this happened, the updated
faculty name that is stored in the txtName textbox will be added into the Faculty Name
combo box, and the original faculty name will be removed from that control. In order to
remember the original faculty name, we must use this global variable to keep it since this
is a Web application, and each time when the server posts back a refreshed Faculty page

Figure 8.39. The modifi ed Select button ’ s event procedure.

A

Protected Sub cmdSelect_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim cmdString As String = "SELECT faculty_id, faculty_name, office, phone, college, title, email FROM Faculty " & _

"WHERE faculty_name LIKE @facultyName"

Dim paramFacultyName As New SqlParameter
Dim sqlCommand As New SqlCommand
Dim sqlDataReader As SqlDataReader

Application("oldFacultyName") = ComboName.Text

 paramFacultyName.ParameterName = "@facultyName"
 paramFacultyName.Value = ComboName.Text
 sqlCommand.Connection = Application("sqlConnection")
 sqlCommand.CommandType = CommandType.Text
 sqlCommand.CommandText = cmdString
 sqlCommand.Parameters.Add(paramFacultyName)

Call ShowFaculty(ComboName.Text)
 sqlDataReader = sqlCommand.ExecuteReader

If sqlDataReader.HasRows = True Then
Call FillFacultyReader(sqlDataReader)

Else
 Response.Write("<script>alert('No matched faculty found!')</script>")

End If
 sqlDataReader.Close()
 sqlDataReader = Nothing
 sqlCommand.Dispose()
 sqlCommand = Nothing

End Sub

kcilCtceleSdmc

c08.indd 605c08.indd 605 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

606 Chapter 8 Accessing Data in ASP.NET

based on the client ’ s request, all contents in all controls on that page will be refreshed
and all old staff will be lost.

 Now let ’ s develop the codes for the Update button ’ s click event procedure.

8.5.2 Develop the Codes for the Update Button Click
Event Procedure

 Open this event procedure by double - clicking on the Update button from the Faculty
Web form window and enter the codes that are shown in Figure 8.40 into this
procedure.

 Let ’ s take a closer look at this piece of codes to see how it works.

A. An updating query string is declared fi rst with the fi d as the name of the dynamic param-
eter. This is because we want to update all other columns in the Faculty table based on the
faculty_id that will be kept unchanged.

B. All data objects used in this procedure are created here, and a local integer variable
intUpdate is also created, which is used as a value holder to keep the returned data from
executing the ExecutNonQuery() method.

C. Now we need to check whether the user wants to update the faculty name or not. To do
that, we need to compare the global variable oldFacultyName that is stored in the
Application state during the data selection process in the Select button ’ s click event pro-
cedure with the current or updated faculty name that is stored in the txtName textbox. If
both names are different, this means that the user has updated the faculty name. In that
case, we need to add the updated faculty name into the Faculty Name combo box and
remove the old faculty name from that box to allow users to select this updated faculty to
perform the data validation later.

Figure 8.40. The codes for the Update button ’ s click event procedure.

Protected Sub cmdUpdate_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdUpdate.Click
Dim cmdString As String = "UPDATE Faculty SET faculty_name = @name, office = @office, phone = @phone, " & _

"college = @college, title = @title, email = @email WHERE (faculty_id LIKE @fid)"

Dim sqlCommand As New SqlCommand
Dim intUpdate As Integer

If txtName.Text <> Application("oldFacultyName") Then
 ComboName.Items.Add(txtName.Text)
 ComboName.Items.Remove(Application("oldFacultyName"))

End If

 sqlCommand.Connection = Application("sqlConnection")
 sqlCommand.CommandType = CommandType.Text
 sqlCommand.CommandText = cmdString
 UpdateParameters(sqlCommand)
 intUpdate = sqlCommand.ExecuteNonQuery()
 sqlCommand.Dispose()
 sqlCommand = Nothing

If intUpdate = 0 Then
 Response.Write("<script>alert('The data updating is failed')</script>")

Exit Sub
End If

End Sub

A

B

C

D

E
F

G

H

kcilCetadpUdmc

c08.indd 606c08.indd 606 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

8.5 Develop Web Applications to Update and Delete Data in SQL Server Databases 607

D. The Command object is initialized with the connection object, command type, and com-
mand text.

E. The user - defi ned subroutine UpdateParameters() , whose detailed codes are shown below,
is called to assign all input parameters to the command object.

F. The ExecuteNonQuery() method of the command class is called to execute the data updat-
ing operation. This method returns a feedback data to indicate whether this data updating
is successful or not, and this returned data is stored to the local integer variable
intUpdate .

G. A cleaning job is performed to release all data objects used in this procedure.

H. The data value returned from calling the ExecuteNonQuery() is exactly equal to the
number of rows that have been successfully updated in the database. If this value is zero,
which means that no any row has been updated and this data updating has failed, a warning
message is displayed and the procedure is exited. Otherwise, if this value is nonzero, which
means that this data updating is successful.

 The detailed codes for the subroutine UpdateParameters() are shown in Figure 8.41 .
 Seven input parameters are assigned to the Parameters collection property of the

command object using the Add() method. One point for this parameters assignment is
the last input parameter @fi d . Since we want to update all other columns in the Faculty
table except the faculty_id , therefore, we will use the original faculty_id without any
modifi cation.

 At this point, we have fi nished all coding jobs for the data updating actions against
the SQL Server database in the Faculty page. Before we can run the project to test this
data updating function, make sure that the starting page is the LogIn page, and all faculty
image fi les, including a default faculty image fi le Default.jpg , have been stored in our
default folder. To check the starting page, perform the following operations:

1. Right - click on our project icon from the Solution Explorer window, and select the Start
Options item from the pop - up menu to open the Start action wizard.

2. Then check on the Specifi c page radio button and click on the expansion button to open
the Select Page to Start wizard.

3. Select the LogIn.aspx page as the start page by clicking on it.

4. Click on two OK buttons to close this starting page setup.

 Now let ’ s run the project to test the data updating actions. Click on the Start Debugging
button to run the project. Enter the suitable username and password to the LogIn page,

Figure 8.41. The codes for the subroutine UpdateParameters().

Private Sub UpdateParameters(ByRef cmd As SqlCommand)
 cmd.Parameters.Add("@name", SqlDbType.Char).Value = txtName.Text
 cmd.Parameters.Add("@office", SqlDbType.Char).Value = txtOffice.Text
 cmd.Parameters.Add("@phone", SqlDbType.Char).Value = txtPhone.Text
 cmd.Parameters.Add("@college", SqlDbType.Char).Value = txtCollege.Text
 cmd.Parameters.Add("@title", SqlDbType.Char).Value = txtTitle.Text
 cmd.Parameters.Add("@email", SqlDbType.Char).Value = txtEmail.Text
 cmd.Parameters.Add("@fid", SqlDbType.Char).Value = txtID.Text
End Sub

sretemaraPetadpUytlucaF

c08.indd 607c08.indd 607 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

608 Chapter 8 Accessing Data in ASP.NET

and select the Faculty Information item from the Selection page to open the Faculty
page. Keep the default faculty name Ying Bai selected from the Faculty Name combo
box, and click on the Select button to retrieve the information for this selected faculty
from the database and display it in this page.

 Now let ’ s test the data updating actions by entering the following data into the associ-
ated textboxes to update this faculty record:

 • Susan Bai Name textbox

 • Professor Title textbox

 • MTC-353 Offi ce textbox

 • 750-378-3300 Phone textbox

 • Duke University College textbox

 • sbai@college.edu Email textbox

 • Default.jpg Faculty Image textbox

Figure 8.42. The data updating process.

 Click on the Update button to perform this data updating. To confi rm this data updat-
ing, fi rst select another faculty from the Faculty Name combo box and click on the Select
button to retrieve and display that faculty information. Then select the updated faculty
Susan Bai from the combo box control and click on the Select button to retrieve and
display it. You can see that the selected faculty information has been updated, which is
shown in Figure 8.42 .

c08.indd 608c08.indd 608 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

8.5 Develop Web Applications to Update and Delete Data in SQL Server Databases 609

 Our data updating action is very successful. Click on the Back and then the Exit
button to terminate our project.

 It is highly recommended to recover this updated faculty record to the original one.
Refer to the original faculty record shown in Table 8.6 to complete this recovery job. You
can do this recovery using either the Server Explorer window or the SQL Server
Management Studio. Next, let ’ s take care of the data deleting action against the SQL
Server database.

8.5.3 Develop the Codes for the Delete Button Click
Event Procedure

 Since deleting a record from a relational database is a complex issue, we have provided
a detailed discussion about this data action in Section 8.5 . Refer to that part to get more
detailed information for this data action. In this section, we divide this data deleting action
discussion into the following fi ve sections:

1. Relationships between fi ve tables in our sample database

2. Data deleting sequence

3. Use the Cascade deleting option to simplify the data deleting

4. Create a stored procedure to perform the data deleting

5. Call the stored procedure to perform the data deleting action

8.5.3.1 Relationships between Five Tables in Our Sample Database

 As we discussed in Section 8.5 , to delete a record from a relational database, one must
follow the correct sequence. In other words, one must fi rst delete the records that are
related to the record to be deleted in the parent table from the child tables. In our sample
database, fi ve tables are related together by using the primary and foreign keys. In order
to make these relationships clear, we redraw Figure 2.5 , which is Figure 8.43 in this section,
to illustrate this issue.

 If you want to delete a record from the Faculty table, you must fi rst delete the related
records from the LogIn, Course, StudentCourse, and Student tables, and then you can
delete the desired record from the Faculty table. The reason for that is because relation-
ships exist between the fi ve tables.

 For example, if one wants to delete a faculty record from the Faculty table, one must
perform the following deleting jobs:

 • The faculty_id is a primary key in the Faculty table, but it is a foreign key in the LogIn and
the Course table. Therefore, the Faculty table is a parent table, and the LogIn and the Course

Table 8.6. The original data for the faculty member Ying Bai in the Faculty table

faculty_id faculty_name office phone college title email

B78880 Ying Bai MTC-211 750-378-1148 Florida Atlantic University Associate Professor ybai@college.edu

c08.indd 609c08.indd 609 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

610 Chapter 8 Accessing Data in ASP.NET

are child tables. Before one can delete any record from the Faculty table, one must fi rst
delete records that have the faculty_id as the foreign key from the child tables. In other
words, one must fi rst delete those records that use the faculty_id as a foreign key from the
LogIn and the Course tables.

 • When deleting records that use the faculty_id as a foreign key from the Course table, the
related course_id that is a primary key in the Course table will also be deleted. The Course
table now is a parent table relative to the StudentCourse table since the course_id is a
primary key in the Course table, but a foreign key in the StudentCourse table. As we men-
tioned, to delete any record from a parent table, one must fi rst deleted the related records
from the child tables. Now, the StudentCourse table is a child table for the Course table, so
the records that use the course_id as a foreign key in the StudentCourse table should be
deleted fi rst.

 • After those related records in the child tables have been deleted, fi nally, the faculty member
can be deleted from the parent table, Faculty table.

8.5.3.2 Data Deleting Sequence

 To summarize, to delete a record from the Faculty table, one needs to perform the fol-
lowing deleting jobs in the sequence shown below:

1. Delete all records that use the course_id as the foreign key from the StudentCourse table.

2. Delete all records that use the faculty_id as the foreign key from the LogIn table.

3. Delete all records that use the faculty_id as the foreign key from the Course table.

4. Delete the desired faculty member from the Faculty table.

 You can see how complicated it is in these operations to delete one record from the
relational database from this example.

Figure 8.43. The relationships between fi ve tables.

user_name pass_word faculty_id student_id

LogIn

faculty_id name office college

Faculty

student_id name major gpa

Student

course_id course credits

Course

s_course_id

StudentCourse

faculty_id

student_id course_id

P.K. P.K.

P.K. P.K.

P.K.

F.K. F.K.

F.K.

F.K. F.K.

one-to-many

one-to-many

many-to-many

one-to-many

one-to-many one-to-many

c08.indd 610c08.indd 610 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

8.5 Develop Web Applications to Update and Delete Data in SQL Server Databases 611

8.5.3.3 Use the Cascade Deleting Option to Simplify the Data Deleting

 To simplify the data deleting operations, we can use the cascade deleting option provided
by the SQL Server 2008 Database Management Studio.

 Recall that when we created and built the relationship between our fi ve tables, the
following fi ve relationships are built between tables:

1. A relationship between the LogIn and the Faculty tables is set up using the faculty_id as a
foreign key FK_LogIn_Faculty in the LogIn table.

2. A relationship between the LogIn and the Student tables is set up using the student_id as
a foreign key FK_LogIn_Student in the LogIn table.

3. A relationship between the Course and the Faculty tables is set up using the faculty_id as
a foreign key FK_Course_Faculty in the Course table.

4. A relationship between the StudentCourse and the Course table is set up using the course_
id as a foreign key FK_StudentCourse_Course in the StudentCourse table.

5. A relationship between the StudentCourse and the Student table is set up using the student_
id as a foreign key FK_StudentCourse_Student in the StudentCourse table.

 Refer to the data deleting sequence listed in Section 8.5.3.2 ; to delete a record from
the Faculty table, one needs to perform four deleting operations in that sequence.
Compared with all four deleting operations, the fi rst one is the most diffi cult and the
reason for that is:

 To perform the fi rst data deleting, one must fi rst fi nd all course_id that use the
faculty_id as the foreign key from the Course table, and then based on those course_id ,
one needs to delete all records that use those course_id as the foreign keys from the
StudentCourse table. For deleting operations in sequences 3 and 4, they are easy, and
each deleting operation only needs one deleting query. The question for this discussion
is: how do we fi nd an easy way to complete the deleting operation in sequence 1?

 A good solution to this question is to use the Cascade option for the data deleting
and updating setup dialog provided by the SQL Server 2008 Database Management
Studio. This Cascade option allows the SQL Server 2008 database engine to perform that
deleting operation in sequence 1 as long as a Cascade option is selected for relationships
4 and 5 listed above.

 Now let ’ s use a real example to illustrate how to use this Cascade option to simplify
the data deleting operations, especially for the fi rst data deleting in that sequence.

 Open the SQL Server Management Studio Express by going to start|All Programs
|Microsoft SQL Server 2008|SQL Server Management Studio . On the opened Studio
Express wizard, click on Database and expand our sample database CSE_DEPT . Then
expand that database to display all fi ve tables. Since we only have our interest on relation-
ships 4 and 5, expand the dbo.StudentCourse table and expand the Keys folder to
display all Keys we set up before. Double - click on the FK_StudentCourse_Course key
to open it, which is shown in Figure 8.44 .

 On the opened wizard, keep our desired foreign key FK_StudentCourse_Course
selected in the left pane, and then click on the small plus icon before the item INSERT
And UPDATE Specifi cation , and you can fi nd that a Cascade mode has been set for
both Delete Rule and Update Rule items, which is shown in Figure 8.44 .

 For the foreign key FK_StudentCourse_Student , the same cascade mode has been
set up for Student and the StudentCourse tables.

c08.indd 611c08.indd 611 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

612 Chapter 8 Accessing Data in ASP.NET

 After this Cascade option is set up, each time you want to delete all records that use
the course_id or the student_id as the foreign keys in the StudentCourse table, the SQL
Server engine will perform those data deleting operations automatically for you. So now
you can see how easy it is to perform the data deleting in sequence 1.

 After the fi rst data deleting operation listed in the deleting sequence in Section 8.5.3.2
is performed, we can do the following three operations by executing three deleting
queries. But we want to integrate those three queries into a single stored procedure to
perform this data deleting operation.

 Well, wait a moment before we can start to create our stored procedure. One question
is that is it possible for us to set up Cascade options for relationships 1, 2, and 3 to allow
the SQL Server engine to help us to perform those data deleting operations? If it is, can
we only use one query to directly delete the faculty member from the Faculty table? The
answer is Yes! We prefer to leave this as homework to allow students to handle this issue
themselves.

 Now let ’ s create our stored procedure for this data deleting operation.

8.5.3.4 Create the Stored Procedure to Perform the Data Deleting

 This stored procedure contains three deleting queries that can be mapped to three
sequences listed in Section 8.5.3.2 , which are sequences 2, 3 and 4.

 Open the Visual Studio.NET 2010 and open the Sever Explorer window, expand our
database CSE_DEPT.mdf , and right - click on the Stored Procedures folder. Select the
Add New Stored Procedure item from the pop - up menu and enter the codes that are
shown in Figure 8.45 into this newly stored procedure.

Figure 8.44. The Foreign Key Relationship wizard.

c08.indd 612c08.indd 612 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

8.5 Develop Web Applications to Update and Delete Data in SQL Server Databases 613

 Let ’ s take a closer look at this piece of codes to see how it works.

A. The stored procedure ’ s name is dbo.DeleteFaculty_SP , and the prefi x dbo is required by
the SQL Server database to create any stored procedure.

B. This stored procedure has only one input parameter, which is the faculty name. So a
nominal input parameter @FacultyName is defi ned in the input/output parameter list at
the beginning of this stored procedure.

C. A local variable @FacultyID is declared, and it is used to hold the returned faculty_id
from the execution of the data query to the Faculty table in step D .

D. A data query is executed to pick up the matched faculty_id from the Faculty table based
on the input parameter @FacultyName .

E. After the faculty_id is obtained from the data query, three deleting queries are executed
in the order that is shown in Figure 8.43 to perform three deleting operations. The order
is: fi rst, one must delete all records that use the faculty_id as the foreign keys from the
child tables, such as the LogIn and the Course tables. Then one can delete the record that
uses the faculty_id as the primary key from the parent table, such as the Faculty table.

 Go to the File|Save StoredProcedure1 menu item to save this stored procedure.
Now let ’ s test this stored procedure in the Server Explorer environment to make sure
that it works fi ne.

 Right - click on our newly stored procedure dbo.DeleteFaculty_SP from the Server
Explorer window, and click on the Execute item from the pop - up menu to open the Run
Stored Procedure wizard. Enter the input parameter Ying Bai , which is the faculty to be
deleted from the Faculty table into the Value box, and your fi nished parameters wizard
is shown in Figure 8.46 .

 Click on the OK button to run this stored procedure. The running result is displayed
in the Output window at the bottom, which is shown in Figure 8.47 .

 One point to be noted is the number of rows that are affected in Figure 8.47 . It indi-
cates that six rows are affected or deleted from our sample database, but this number is

Figure 8.45. The stored procedure dbo.DeleteFaculty.

A

B

C
D

E

c08.indd 613c08.indd 613 4/25/2012 1:58:23 PM4/25/2012 1:58:23 PM

614 Chapter 8 Accessing Data in ASP.NET

not the total number of rows that have been deleted from our database. According to the
records built in our sample database, in total, there should be 11 rows that have been
deleted from our database, which is shown in Table 8.7 .

 The reason for that is sometimes, the cascaded rows are not counted by this data
deleting. In other words, some rows that are deleted by the SQL Server database engine
are not included with this total number of affected rows, and this is a design defi ciency.

 To confi rm this data deleting, open the following data tables from the Server Explorer
window (Sometime you need to close the Visual Studio.NET and reopen the project to
see these deleting results in these tables):

 • LogIn table

 • Faculty table

 • Course table

 • StudentCourse table

 It can be found that all records listed in the Rows Affected in Table 8.7 have been
deleted from the associated tables.

Figure 8.46. The fi nished Run Stored Procedure wizard.

Figure 8.47. The running result of the stored procedure.

c08.indd 614c08.indd 614 4/25/2012 1:58:24 PM4/25/2012 1:58:24 PM

8.5 Develop Web Applications to Update and Delete Data in SQL Server Databases 615

 Another point to be noted is that we do not have to put all of three DELETE queries
in this stored procedure to perform these data deleting actions; instead, we can only
use one DELETE query: DELETE FROM Faculty WHERE faculty_name LIKE
@FacultyName , to do the same function as these three queries did. The SQL Server
engine can handle the data deleting actions from the child tables because of the cascaded
deleting mode we have built for these tables in Chapter 2 . For illustration purposes, we
provide a complete picture with these deleting queries to show readers the details of this
deleting function.

 Next, we need to develop the codes in the ASP.NET environment to call this stored
procedure to delete the selected faculty record from the database via our Web application
project. However, before we can develop our codes, it is highly recommended to recover
all deleted records from our sample database to make our database neat and complete.

 To do that recovery job, you need to close the Visual Studion.NET and open the SQL
Server Management Studio Express, and take the following actions in the following
orders:

1. Recover the Faculty table by adding the deleted faculty record, which is shown in Table 8.8 ,
into the Faculty table.

2. Recover the LogIn table by adding the deleted login record, which is shown in Table 8.9 ,
into the LogIn table.

Table 8.7. The total number of rows affected or deleted

Table Rows Affected Number of Rows Affected

LogIn user_name = ybai (faculty_id = B78880) 1

Course course_id = CSC-132B (faculty_id = B78880)

course_id = CSC-234A (faculty_id = B78880)

course_id = CSE-434 (faculty_id = B78880)

course_id = CSE-438 (faculty_id = B78880)

4

StudentCourse s_course_id = 1005 (course_id = CSC-234A)

s_course_id = 1009 (course_id = CSE-434)

s_course_id = 1014 (course_id = CSE-438)

s_course_id = 1016 (course_id = CSC-132B)

s_course_id = 1017 (course_id = CSC-234A)

5

Faculty faculty_id = B78880 1

Table 8.8. The data to be added into the Faculty table

faculty_id faculty_name office phone college title email

B78880 Ying Bai MTC-211 750-378-1148 Florida Atlantic University Associate Professor ybai@college.edu

Table 8.9. The data to be added into the LogIn table

user_name pass_word faculty_id student_id

ybai reback B78880 NULL

c08.indd 615c08.indd 615 4/25/2012 1:58:24 PM4/25/2012 1:58:24 PM

616 Chapter 8 Accessing Data in ASP.NET

3. Recover the Course table by adding the deleted courses taught by the deleted faculty
member, which are shown in Table 8.10 , into the Course table.

4. Recover the StudentCourse table by adding the deleted courses taken by the associated
students, which are shown in Table 8.11 , into the StudentCourse table.

 An easy way to add data into the related tables in our sample database is to copy all
rows from Tables 8.8 to 8.11 and paste them into the last line of the associated tables.

 Save these changes and now we can close the SQL Server Management Studio and
open the Visual Studio.NET to develop our codes to call the stored procedure to perform
the data deleting actions against the SQL Server database.

8.5.3.5 Develop the Codes to Call the Stored Procedure to Perform

the Data Deleting

 On the opened Visual Studio.NET, go to the File|Open Web Site menu item to open
our Web application project SQLWebUpdateDelete . Then open the Delete button ’ s
Click event procedure and enter the codes that are shown in Figure 8.48 into this event
procedure.

 Let ’ s take a closer look at this piece of codes to see how it works.

A. The content of the query string now is equal to the name of the stored procedure we
developed in the Server Explorer window. This query string will be assigned to the
CommandText property of the Command object later to inform it that a stored procedure
needs to be executed to perform this data deleting action. Here, the name assigned to the

Table 8.10. The data to be added into the Course table

course_id course credit classroom schedule enrollment faculty_id

CSC-132B Introduction to Programming 3 TC-302 T-H: 1:00-2:25 PM 21 B78880

CSC-234A Data Structure & Algorithms 3 TC-302 M-W-F: 9:00-9:55 AM 25 B78880

CSE-434 Advanced Electronics Systems 3 TC-213 M-W-F: 1:00-1:55 PM 26 B78880

CSE-438 Advd Logic & Microprocessor 3 TC-213 M-W-F: 11:00-11:55 AM 35 B78880

Table 8.11. The data to be added into the StudentCourse table

s_course_id student_id course_id credit major

1005 J77896 CSC-234A 3 CS/IS

1009 A78835 CSE-434 3 CE

1014 A78835 CSE-438 3 CE

1016 A97850 CSC-132B 3 ISE

1017 A97850 CSC-234A 3 ISE

c08.indd 616c08.indd 616 4/25/2012 1:58:24 PM4/25/2012 1:58:24 PM

8.5 Develop Web Applications to Update and Delete Data in SQL Server Databases 617

Figure 8.48. The codes for the Delete button ’ s Click event procedure.

Protected Sub cmdDelete_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdDelete.Click
Dim cmdString As String = "dbo.DeleteFaculty_SP"
Dim sqlCommand As New SqlCommand
Dim intDelete As Integer

 sqlCommand.Connection = Application("sqlConnection")
 sqlCommand.CommandType = CommandType.StoredProcedure
 sqlCommand.CommandText = cmdString
 sqlCommand.Parameters.Add("@FacultyName", SqlDbType.Char).Value = ComboName.Text
 intDelete = sqlCommand.ExecuteNonQuery()
 sqlCommand.Dispose()
 sqlCommand = Nothing

If intDelete = 0 Then
 Response.Write("<script>alert('The data Deleting is failed')</script>")

Exit Sub
End If

 CleanDelete()
End Sub

A
B

C
D

E
F
G

H

I

kcilCeteleDdmc

query string must be exactly identical with the name of the stored procedure we developed
in the Server Explorer window; otherwise, an error would be encountered as the project
runs since the page cannot identify the stored procedure if no matched name can be found.

B. The data object and local variable used in this procedure are declared here. The integer
variable intDelete is used to hold the returned value from calling of the ExecuteNonQuery()
method of the Command class later.

C. The Command object is initialized by assigning the connection object, which is a global
variable and stored in the Application state, to the Connection property.

D. The CommandType property must be assigned to the StoredProcedure to inform the
Command object that a stored procedure needs to be called when this Command object
is executed. This is very important and should be distinguished with the general query text
string.

E. The input parameter @FacultyName , which is the only input to the stored procedure, is
assigned with the real parameter ’ s value, and it is the faculty name stored in the Faculty
Name combo box control in the Faculty page. Similarly, the name of this input parameter
must be identical with the name of the input parameter used in the stored procedure we
built earlier.

F. After the Command object is initialized, the ExecuteNonQuery() method of the Command
class is called to run the stored procedure to perform the data deleting actions. This method
will return a data value and assign it to the local variable intDelete .

G. A cleaning job is performed to release all objects used in this procedure.

H. The returned value from calling the ExecuteNonQuery() method is exactly equal to the
number of rows that have been successfully deleted from our sample database. If this value
is zero, which means that no row has been deleted or affected from our database, and this
data deleting has failed, a warning message is displayed and the procedure is exited.
Otherwise, if a nonzero value returned, which means that at least one row in our database
has been deleted (all rows should be also deleted) from our database and this data deleting
is successful.

c08.indd 617c08.indd 617 4/25/2012 1:58:24 PM4/25/2012 1:58:24 PM

618 Chapter 8 Accessing Data in ASP.NET

I. A user - defi ned subroutine CleanDelete() , whose detailed codes are shown below, is
executed to clean up the contents of all textboxes that stored the deleted faculty
information.

 The codes for the subroutine CleanDelete() are shown in Figure 8.49 .
 This piece of codes is easy to understand. All textboxes are cleaned up by assigning

an empty string to their Text property.
 At this point, we fi nished all coding jobs for deleting data against the SQL Server

database using the stored procedure. Before we can run the project to test this deleting
function, make sure that the starting page is the LogIn page.

 After the project runs, enter the suitable username and password to complete the
LogIn process, open the Faculty page, and keep the default faculty name Ying Bai
selected in the Faculty Name combo box, and click on the Select button to retrieve
and display this faculty ’ s record. Click on the Delete button to run the stored procedure
dbo.DeleteFaculty_SP to delete this faculty record from our database. Immediately, all
pieces of information stored in seven textboxes are deleted.

 To confi rm this data deleting, open the SQL Server 2008 Management Studio and
our sample database. You can fi nd that all records related to that default faculty have
been deleted from our database. Yes, our data deleting is successful.

 Before you can close the SQL Server Management Studio, we highly recommend
that you recover all deleted records in the associated tables. Refer to Tables 8.8 – 8.11 in
the last section to add those records back the associated tables.

 A complete Web application project SQLWebUpdateDelete can be found in the
folder DBProjects\Chapter 8 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1).

8.6 DEVELOP ASP.NET WEB APPLICATIONS
WITH LINQ TO SQL QUERY

 In this section, we provide a fundamental end - to - end LINQ to SQL scenario for selecting,
adding, modifying, and deleting data against our sample database via Web pages. You
know, LINQ to SQL queries can perform not only the data selection, but also the data
insertion, updating, and deletion actions. The standard LINQ to SQL queries include:

Figure 8.49. The codes for the subroutine CleanFaculty().

Private Sub CleanDelete()
 txtID.Text = String.Empty
 txtName.Text = String.Empty
 txtTitle.Text = String.Empty
 txtOffice.Text = String.Empty
 txtPhone.Text = String.Empty
 txtCollege.Text = String.Empty
 txtEmail.Text = String.Empty
End Sub

eteleDnaelCytlucaF

c08.indd 618c08.indd 618 4/25/2012 1:58:24 PM4/25/2012 1:58:24 PM

8.6 Develop ASP.NET Web Applications with LINQ to SQL Query 619

 • Select

 • Insert

 • Update

 • Delete

 To perform any of these operations or queries, we need to use the entity classes and
DataContext we discussed in Section 4.6.1 in Chapter 4 to do LINQ to SQL actions
against our sample database. We have already created a Console project QueryLINQSQL
in that section to illustrate how to use LINQ to SQL to perform data queries, such as
data selection, insertion, updating, and deleting, against our sample database CSE_DEPT.
mdf . In this section, we want to create a Web - based project SQLWebLINQ by adding a
graphic user interface to perform the data selection, data insertion, data updating, and
deleting actions against our sample database CSE_DEPT.mdf using the LINQ to SQL
query via Web pages. Let ’ s perform the following steps to create our new project
SQLWebLINQ :

1. Create a new Visual Basic.NET website project and name it as SQLWebLINQ .

2. Add an existing Web form page FacultyLINQ.aspx that can be found in the folder VB
Forms\Web that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

3. Add the System.Data.Linq reference to this new project by right - clicking on our new
project from the Solution Explorer window, selecting the Add Reference item and scrolling
down the .NET list, then selecting the item System.Data.Linq from the list and clicking on
the OK button.

4. Add the following imports commands to the top of the FacultyLINQ.aspx page fi le:

 • Imports System.Data.Linq
 • Imports System.Data.Linq.Mapping

5. Follow steps listed in Section 4.6.1 to create entity classes using the Object Relational
Designer. The database used in this project is CSE_DEPT.mdf , and it can be found in the
folder Database\SQLServer that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1). Open the Server Explorer window and add this database by right - clicking on
the Data Connections item and select Add Connection if it has not been added into our
project.

6. We need to create fi ve entity classes, and each of them is associated with a data table in
our sample database. Drag each table from the Server Explorer window and place it on
the Object Relational Designer canvas. The mapping fi le ’ s name is CSE_DEPT.dbml .
Make sure that you enter this name into the Name box in the Object Relational
Designer.

 Now let ’ s begin the coding process for this project. Since we need to use the Select
button ’ s Click event procedure to validate our data insertion, data updating, and deleting
actions, we need to divide our coding process into the following fi ve parts:

A. Create a new object of the DataContext class and do some initialization coding.

B. Develop the codes for the Select button ’ s Click event procedure to retrieve the selected
faculty information using the LINQ to SQL query.

C. Develop the codes for the Insert button ’ s Click event procedure to insert a new faculty
member using the LINQ to SQL query.

c08.indd 619c08.indd 619 4/25/2012 1:58:24 PM4/25/2012 1:58:24 PM

620 Chapter 8 Accessing Data in ASP.NET

Figure 8.50. The added FacultyLINQ.aspx Web page.

D. Develop the codes for the Update button ’ s Click event procedure to update the selected
faculty member using the LINQ to SQL query.

E. Develop the codes for the Delete button ’ s Click event procedure to delete the selected
faculty member using the LINQ to SQL query.

 Before we can start the coding process, fi rst, let ’ s add an existing Web page
FacultyLINQ.aspx as our graphic user interface to perform those data actions.

8.6.1 Add an Existing Web Page FacultyLINQ.aspx

 Perform the following operations to add this existing Web page into our project:

1. Right - click on our new website project SQLWebLINQ from the Solution Explorer window
and select the Add Existing Item to open the Add Existing Item wizard.

2. Browse to the folder VB Forms\Web that is located at the Wiley ftp site (refer to Figure
 1.2 in Chapter 1) to fi nd the Web page FacultyLINQ.aspx . Click this page to select it, and
click on the Add button to add it into our project.

3. Right - click on this added page FacultyLINQ.aspx in the Solution Explorer window and
select the Set As Start Page item to make this page as the starting page for our project.

 Your added Web page FacultyLINQ.aspx is shown in Figure 8.50 .
 Perform steps 3 – 6 listed in the last section to add the System.Data.Linq reference

and build fi ve entity classes for this project. Now let ’ s start our coding process for this
page. First, let ’ s handle creating a new object of the DataContext class in our project.

c08.indd 620c08.indd 620 4/25/2012 1:58:24 PM4/25/2012 1:58:24 PM

8.6 Develop ASP.NET Web Applications with LINQ to SQL Query 621

8.6.2 Create a New Object of the DataContext Class

 We need to create this new object of the DataContext class since we need to use this
object to connect to our sample database to perform data queries. We have connected
this DataContext class to our sample database CSE_DEPT.mdf in step 5 in Section 8.6 ,
and a connection string has been added into our web.confi g fi le when this connection is
done. Therefore, we do not need to indicate the special connection string for this object.

 Some initialization codes include retrieving all updated faculty members from the
Faculty table in our sample database using the LINQ to SQL query and displaying them
in the Faculty Name combo box.

 Open the code window and the Page_Load() event procedure of the Faculty Web
page, and enter the codes that are shown in Figure 8.51 into this procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Two LINQ - related namespaces are imported at the beginning of this page since we need
to use some LINQ objects to perform data queries later.

B. A new form - level object of the DataContext class, cse_dept , is created fi rst since we need
to use this object to connect our sample database to this Web project to perform the data
actions.

C. A user - defi ned subroutine UpdateFaculty() is executed to retrieve all updated faculty
members from our sample database and display them in the Faculty Name combo box to
allow the user to select a desired faculty later. To avoid multiple displaying of retrieved
faculty members, an If selection structure is adopted to make sure that we only display
those updated faculty members in the Faculty Name combo box at the fi rst time as this
Web page is loaded, and will not display them each time as the server sends back a
refreshed Faculty page to the client when a request is sent to the server.

Figure 8.51. Initialization codes for the Faculty Web page.

Imports System.Data.Linq
Imports System.Data.Linq.Mapping

Partial Class FacultyLINQ
Inherits System.Web.UI.Page
Dim cse_dept As New CSE_DEPTDataContext()

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
If Not IsPostBack Then
 UpdateFaculty()
 ComboName.SelectedIndex = 0
End If

End Sub

Private Sub UpdateFaculty()
 ComboName.Items.Clear()

Dim faculty = From fi In cse_dept.Faculties
Let fields = "faculty_name"
Select fi

For Each f In faculty
 ComboName.Items.Add(f.faculty_name)
Next f

End Sub

A

B

C

D
E

F

(Page Events) Load

c08.indd 621c08.indd 621 4/25/2012 1:58:24 PM4/25/2012 1:58:24 PM

622 Chapter 8 Accessing Data in ASP.NET

D. Before we can update the Faculty Name combo box control by adding the updated faculty
members into this control, a cleaning job is performed to avoid the multiple adding and
displaying of those faculty members.

E. The LINQ query is created and initialized with three clauses, From , Let , and Select . The
range variable fi is selected from the Faculty entity in our sample database. All current
faculty members (faculty_name) will be read back using the Let clause and assigned to
the query variable faculty .

F. The LINQ query is executed to pick up all queried faculty members and add them into
the Faculty Name combo box control in the Faculty Form.

 The codes for the Exit button ’ s Click event procedure are shown in Figure 8.52 .
 The function of this piece of codes is to close the entity object and the Web project.

8.6.3 Develop the Codes for the Data Selection Query

 Double - click on the Select button to open its Click event procedure and enter the codes
that are shown in Figure 8.53 into this procedure. The function of this piece of codes is
to retrieve detailed information for the selected faculty member from the Faculty table
in our sample database and display them in seven textbox controls in the Faculty Form
page as this Select button is clicked by the user.

Figure 8.52. The codes for the Exit button Click event procedure.

Protected Sub cmdExit_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdExit.Click

 cse_dept.Dispose()
 Response.Write("<script>window.close()</script>")

End Sub

cmdExit Click

Figure 8.53. The codes for the Select button Click event procedure.

Protected Sub cmdSelect_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdSelect.Click

Call ShowFaculty(ComboName.Text)
Dim faculty = From fi In cse_dept.Faculties

Where fi.faculty_name = ComboName.Text
Select fi

For Each f In faculty
txtID.Text = f.faculty_id
txtName.Text = f.faculty_name
txtTitle.Text = f.title
txtOffice.Text = f.office
txtPhone.Text = f.phone
txtCollege.Text = f.college
txtEmail.Text = f.email

Next f

End Sub

A
B

C

cmdSelect Click

c08.indd 622c08.indd 622 4/25/2012 1:58:24 PM4/25/2012 1:58:24 PM

8.6 Develop ASP.NET Web Applications with LINQ to SQL Query 623

Figure 8.54. The codes for the user - defi ned subroutine ShowFaculty().

Private Sub ShowFaculty(ByVal fName As String)
Dim FacultyImage As String = String.Empty

Select Case fName
Case "Ying Bai"

FacultyImage = "Bai.jpg"
Case "Satish Bhalla"

FacultyImage = "Satish.jpg"
Case "Black Anderson"

FacultyImage = "Anderson.jpg"
Case "Steve Johnson"

FacultyImage = "Johnson.jpg"
Case "Jenney King"

FacultyImage = "King.jpg"
Case "Alice Brown"

FacultyImage = "Brown.jpg"
Case "Debby Angles"

FacultyImage = "Angles.jpg"
Case "Jeff Henry"

FacultyImage = "Henry.jpg"
Case Else

If txtImage.Text = "" And Application("FacultyImage") = String.Empty Then
 FacultyImage = "Default.jpg"
ElseIf txtImage.Text <> String.Empty Then

 FacultyImage = txtImage.Text
ElseIf Application("FacultyImage") <> String.Empty Then

 FacultyImage = Application("FacultyImage")
End If

End Select
 PhotoBox.ImageUrl = FacultyImage

End Sub

A

B

C

D

FacultyLINQ ShowFaculty

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A user - defi ned subroutine procedure ShowFaculty() is executed to identify and display a
matched faculty image for the selected faculty member.

B. The LINQ query is created and initialized with three clauses, From , Where , and Select .
The range variable fi is selected from the Faculty entity in our sample database based on
a matched faculty members (faculty_name).

C. The LINQ query is executed to pick up all columns for the selected faculty member and
display them in the associated textbox in the Faculty Form page.

 The codes for the user - defi ned subroutine ShowFaculty() are shown in Figure 8.54 .
 The function of this piece of codes is simple. A Select Case structure is used to fi nd

the matched faculty image fi le, and display it in the PhotoBox with the ImageUrl
property.

 Now, let ’ s concentrate on the coding development for the data insertion actions.

8.6.4 Develop the Codes for the Data Insertion Query

 Double - click on the Insert button from our Faculty Form page to open its Click event
procedure and enter the codes that are shown in Figure 8.55 into this procedure.

c08.indd 623c08.indd 623 4/25/2012 1:58:24 PM4/25/2012 1:58:24 PM

624 Chapter 8 Accessing Data in ASP.NET

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A new instance of the Faculty entity class is created since we need to add a new record
into the Faculty table in our sample database.

B. Seven pieces of the new faculty information stored in seven textbox controls are assigned
to the associated columns in the Faculty instance that can be mapped to the Faculty table
in our sample database.

C. The newly inserted faculty image fi le is assigned to a global variable FacultyImage stored
in the Application state function, and this will be used later for the insertion validation
purpose. If no new faculty image is used for this insertion, the txtImage.Text will be an
empty string that is assigned to the FacultyImage .

D. A system method InsertOnSubmit() is executed to send our newly created Faculty instance
to our Faculty table via the DataContext class.

E. Another system method SubmitChanges() is executed to perform this data insertion. The
point is that this method must be included in a Try…Catch block to avoid some possible
unnecessary exceptions during the execution of this method.

F. After a new record has been inserted into our database, we need to update our Faculty
Name combo box control to refl ect that insertion. First, we need to clean up all original
contents from this control to avoid multiple updating.

G. Then, the user - defi ned subroutine UpdateFaculty() is called to complete this faculty data
updating.

 Now let ’ s begin the coding development for our data updating and deleting actions.

Figure 8.55. The codes for the Insert button Click event procedure.

Protected Sub cmdInsert_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdInsert.Click

Dim newFaculty As New Faculty()

 newFaculty.faculty_id = txtID.Text
 newFaculty.faculty_name = txtName.Text
 newFaculty.title = txtTitle.Text
 newFaculty.office = txtOffice.Text
 newFaculty.phone = txtPhone.Text
 newFaculty.college = txtCollege.Text
 newFaculty.email = txtEmail.Text

 Application("FacultyImage") = txtImage.Text 'reserve the inserted faculty image

'Add the faculty members to the Faculty table.
 cse_dept.Faculties.InsertOnSubmit(newFaculty)
Try

 cse_dept.SubmitChanges()
Catch ex As Exception

 Console.WriteLine(ex)
End Try

 ComboName.Items.Clear()
 UpdateFaculty()

End Sub

A

B

C

D

E

F
G

cmdInsert Click

c08.indd 624c08.indd 624 4/25/2012 1:58:24 PM4/25/2012 1:58:24 PM

8.6 Develop ASP.NET Web Applications with LINQ to SQL Query 625

8.6.5 Develop the Codes for the Data Updating and Deleting
Queries

 First, let ’ s build the codes for the data updating actions to the Faculty table in our sample
database. Double - click on the Update button from our Faculty page window to open its
Click event procedure and enter the codes that are shown in Figure 8.56 into this
procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A selection query is executed using the Standard Query Operator method with the
faculty_name as the query criterion. The First() method is used to return only the fi rst
matched record. This method does not have any effect to our application since we have
only one record that is matched to this specifi ed faculty_name .

B. All six columns, except the faculty_id , for the selected faculty member are updated by
assigning the current value stored in the associated textbox to each column in the Faculty
instance in our DataContext class object cse_dept .

C. This data updating can be really performed only after the system method SubmitChanges()
is executed.

D. The Faculty Name combo box is cleaned up to make it ready to be updated.

E. The user - defi ned subroutine UpdateFaculty() is executed to refresh the updated faculty
members stored in the Faculty Name combo box control.

 Before we can run our Web project to test these data actions, let ’ s complete the last
coding development for our data deleting action.

 Double - click on the Delete button from our Faculty page window to open its Click
event procedure and enter the codes that are shown in Figure 8.57 into this procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A LINQ selection query is fi rst executed to pick up the faculty member to be deleted. This
query is initialized with three clauses, From , Where , and Select . The range variable fi is
selected from the Faculty, which is an instance of our entity class Faculty, and the faculty_
name works as the query criterion for this query. All pieces of information related to the

Figure 8.56. The codes for the Update button Click event procedure.

 Protected Sub cmdUpdate_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdUpdate.Click

Dim fi As Faculty = cse_dept.Faculties.Where(Function(f) f.faculty_name = ComboName.Text).First()
'updating the existing faculty information

 fi.faculty_name = txtName.Text
 fi.title = txtTitle.Text
 fi.office = txtOffice.Text
 fi.phone = txtPhone.Text
 fi.college = txtCollege.Text
 fi.email = txtEmail.Text
 cse_dept.SubmitChanges()
 ComboName.Items.Clear()
 UpdateFaculty()

End Sub

A

B

C
D
E

cmdUpdate Click

c08.indd 625c08.indd 625 4/25/2012 1:58:24 PM4/25/2012 1:58:24 PM

626 Chapter 8 Accessing Data in ASP.NET

selected faculty member (faculty_name) will be retrieved and stored in the query variable
faculty . The Single() method means that only a single or the fi rst record is queried.

B. The system method DeleteOnSubmit() is executed to issue a deleting action to the faculty
instance, Faculties , in our DataContext class object cse_dept .

C. A Try…Catch block is used to execute another system method SubmitChanges() to
exactly perform this deleting action against the data table in our sample database. The
point is that this method must be included in this block to avoid some unnecessary excep-
tions during the execution of this method. Only after this method is executed can the
selected faculty record be deleted from our database.

D. All textboxes that stored information related to the deleted faculty are cleaned up by
assigning an empty string to each of them.

E. The Faculty Name combo box is cleaned up to make it ready to be updated.

F. The user - defi ned subroutine UpdateFaculty() is executed to refl ect this faculty record
deleting for all faculty members stored in the Faculty Name combo box.

 Now we can build and run our Web project to test the data actions against our sample
database. One point we need to note before we can run the project is that we must make
sure that all faculty image fi les should have been stored in the default folder, in which
our Web project SQLWebLINQ is located. In this application, it should be: C:\Chapter
8\SQLWebLINQ . You can fi nd all faculty and student image fi les from the folder Images
that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

 Click on the Start Debugging button to run our project. Click on the Yes button on
the pop - up message box to enable the debugging function as the project runs. Click on
the Select button to test the faculty data query function.

Figure 8.57. The codes for the Delete button Click event procedure.

 Protected Sub cmdDelete_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdDelete.Click

Dim faculty = (From fi In cse_dept.Faculties
Where fi.faculty_name = ComboName.Text
Select fi).Single()

 cse_dept.Faculties.DeleteOnSubmit(faculty)
Try

cse_dept.SubmitChanges()
Catch ex As Exception

Console.WriteLine(ex)
End Try

'clean up all textboxes
 txtID.Text = String.Empty
 txtName.Text = String.Empty
 txtOffice.Text = String.Empty
 txtTitle.Text = String.Empty
 txtPhone.Text = String.Empty
 txtCollege.Text = String.Empty
 txtEmail.Text = String.Empty

 ComboName.Items.Clear()
 UpdateFaculty()

End Sub

A

B
C

D

E
F

cmdDelete Click

c08.indd 626c08.indd 626 4/25/2012 1:58:24 PM4/25/2012 1:58:24 PM

8.6 Develop ASP.NET Web Applications with LINQ to SQL Query 627

 Now let ’ s test the data insertion action. Enter the following eight pieces of informa-
tion into eight textboxes as a new faculty record:

 • P77777 Faculty ID textbox

 • Peter Tom Name textbox

 • Assistant Professor Title textbox

 • MTC-200 Offi ce textbox

 • 750-378-2000 Phone textbox

 • University of Miami College textbox

 • ptom@college.edu Email textbox

 • Default.jpg Faculty Image textbox

Figure 8.58. The testing status of the data insertion action.

 Then click on the Insert button to perform this data insertion.
 To confi rm this data action, fi rst select another faculty member from the Faculty

Name combo box and click on the Select button to retrieve and display that faculty ’ s
record. Then select the newly inserted faculty Peter Tom from the Faculty Name combo
box, and click on the Select button to try to retrieve this newly inserted faculty ’ s record
and display it in this page. Your data insertion confi rmation page should match the one
that is shown in Figure 8.58 .

 A default faculty image is displayed for this data insertion, since we placed a default
faculty image fi le Default.jpg into the Faculty Image textbox for this insertion. You can

c08.indd 627c08.indd 627 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

628 Chapter 8 Accessing Data in ASP.NET

test to insert a new faculty with a selected faculty image by entering the name of that
faculty image fi le into the Faculty Image textbox if you like.

 You can continue to test the data updating and deleting functions for this project.
However, one point to be noted is that you had better recover any deleted faculty record
if a data deleting action is tested for this project since we want to keep our sample data-
base neat and complete. Refer to Tables 8.8 – 8.11 in Section 8.5.3.4 in this chapter to
recover the deleted records in our sample database. You can do this recovery job using
either the Server Explorer in Visual Studio.NET 2010 IDE or the SQL Server Management
Studio.

 A complete Web page application project SQLWebLINQ can be found in the
folder DBProjects\Chapter 8 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1).

8.7 DEVELOP ASP.NET WEB APPLICATION TO SELECT DATA
FROM ORACLE DATABASES

 Because of the coding similarity between the SQL Server and Oracle databases, we will
emphasize the main differences between the codes in the SQL Server and the Oracle
database actions. Also, in order to save time and space, we will modify an existing Web
application project SQLWebSelect we developed in the last section to make it as our
new project OracleWebSelect in this section.

 The main coding differences that exist between these two database operations are:

1. Oracle Database reference and Imports commands in all pages

2. Connection string in the LogIn page

3. LogIn query string in the LogIn page

4. Query string in the Faculty page

5. Query strings in the Course page, which include the query string in the Select button ’ s click
event procedure and the query string in the SelectedIndexChanged event procedure of the
CourseList box control.

6. Data objects used in the Selection page

7. Prefi x for all data objects and classes used for the Oracle database operations.

8. Data type of the passed arguments in all user - defi ned subroutine procedures for Oracle
database operations

 Now let ’ s begin to modify the project SQLWebSelect based on the eight differences
listed above to make it our new project OracleWebSelect . Open the Windows Explorer
and create a new folder Chapter 8 if you have not created it. Copy the project
SQLWebSelect from the folder DBProjects\Chapter 8 that is located at the Wiley ftp
site (refer to Figure 1.2 in Chapter 1) and paste it into the folder Chapter 8 . Rename the
project to OracleWebSelect .

 Open Visual Studio.NET, go to the File|Open Web Site menu item, and browse to
our new project OracleWebSelect . Then click on the Open button to open it.

 First, let ’ s add an Oracle database reference into our project and modify all Imports
commands for all Web pages in this new project.

c08.indd 628c08.indd 628 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

8.7 Develop ASP.NET Web Application to Select Data from Oracle Databases 629

8.7.1 Add the Oracle Database Reference
and Modify Imports Commands

 In this section, we will use the Oracle Database 11g Express Edition as our database
source and provider. Refer to Appendix B for detailed procedures to download, install,
and confi gure this database on your computer.

 Starting from .NET Framework 4.0, Microsoft no longer support Oracle database
related operations. Therefore, we need to use an Oracle database driver provided by a
third - party vendor. We will use an Oracle database driver dotConnect for Oracle 6.30
Express provided by Devart. Refer to Appendix F to get detailed information about how
to download and confi gure this driver in your machine.

 After installing Oracle Database 11g XE and dotConnect for Oracle 6.30 Express
in your machine, perform the following operations to add this Oracle database reference
into this new project:

1. Right - click on our new project OracleWebSelect from the Solution Explorer window
and select the Add Reference item from the pop - up menu to open the Add Reference
wizard.

2. With the .NET tab selected, scroll down the list until you fi nd the items Devart.Data and
Devart.Data.Oracle , then click on both to select them, and click on the OK button to add
these two references to our project.

 Now, let ’ s modify all Imports commands in all Web pages in this new project to make
them match to the Oracle data source. Let ’ s start from the LogIn page. Open the code
window of the LogIn page and change Import commands on the top of this page to:

Imports System.Data
 Imports Devart.Data
 Imports Devart.Data.Oracle

 Perform a similar modifi cation for these Import commands for all other pages in this
project, including the Selection, Faculty and Course pages.

 Next, let ’ s modify the codes of the connection string in the LogIn page.

8.7.2 Modify the Connection String in the LogIn Page

 Open the Page_Load() event procedure by selecting the (Page Events) item from the
Class Name combo box and Load item from the Method Name combo box. Perform the
modifi cations shown in Figure 8.59 to this event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Modify all Imports commands on the top of this page to provide references for all Oracle
data components used in this page.

B. Change the prefi x for the global connection object from sqlConnection to oraConnection
since we need to use the Oracle data components in this section.

C. Change the connection string to contain the User ID and PassWord related to the Oracle
database.

c08.indd 629c08.indd 629 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

630 Chapter 8 Accessing Data in ASP.NET

D. Create a new instance of the Oracle connection class with the Oracle connection string
oraString as the argument. Also, change the prefi x for all Oracle data classes and objects
from Sql to Oracle , and from sql to ora , respectively.

E. Change the prefi x for the global connection object stored in the Application state from
sql to ora .

F. Change the prefi x for all data components from sql to ora .

 Your fi nished modifi cations to the Page_Load() event procedure and the connection
string should match those that are shown in Figure 8.59 . All modifi ed parts have been
highlighted in bold.

8.7.3 Modify the Query String in the LogIn Page

 Open the LogIn button ’ s Click event procedure and perform the modifi cations shown in
Figure 8.60 to this event procedure.

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. Change the query string from the SQL Server database - based to the Oracle database -
 based. The Oracle database comparison operator =: is used to replace the SQL Server
database comparison operator LIKE @ .

B. Change the prefi x for all data objects and classes from sql to ora , and from Sql to Oracle ,
respectively.

C. Change the nominal names for the dynamic parameters from @name to name , and from
@word to word , respectively.

Figure 8.59. The modifi ed connection object and connection string.

Imports System.Data
Imports Devart.Data
Imports Devart.Data.Oracle

Partial Class _LogIn
Inherits System.Web.UI.Page
Public oraConnection As OracleConnection

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

Dim oraString As String = "Data Source=XE;" + _
"User ID=CSE_DEPT;" + "Password=reback"

oraConnection = New OracleConnection(oraString)
 Application("oraConnection") = oraConnection 'define a global connection object

If oraConnection.State = ConnectionState.Open Then
oraConnection.Close()

End If

oraConnection.Open()
If oraConnection.State <> ConnectionState.Open Then
 Response.Write("<script>alert('Database connection is Failed')</script>")

Exit Sub
End If

End Sub

A

B

C

D
E

F

(Page Events) Load

c08.indd 630c08.indd 630 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

8.7 Develop ASP.NET Web Application to Select Data from Oracle Databases 631

D. Change the prefi x for all data components and classes from sql to ora , and from Sql to
Oracle , respectively.

E. Change the prefi x for all data components from sql to ora .

 Your fi nished modifi cations to this event procedure should match the one that is
shown in Figure 8.60 . All modifi ed parts have been highlighted in bold.

 Another modifi cation to this page is the modifi cations to the codes in the Cancel
button ’ s click event procedure. This modifi cation is simple and just changes the prefi x of
all data objects from sql to ora .

 Go to the File|Save All menu item to save these modifi cations.

8.7.4 Modify the Query String in the Faculty Page

 The modifi cations to this page include the following parts:

1. Modifi cations to the global connection object stored in the Application state in the Page_
Load() event procedure.

2. Modifi cations to the codes in the Select button ’ s click event procedure.

3. Modifi cations to the data type of the passed argument in the user - defi ned subroutine
FillFacultyReader() .

Figure 8.60. The modifi cations to the codes in the LogIn button event procedure.

Protected Sub cmdLogIn_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdLogIn.Click
Dim cmdString1 As String = "SELECT user_name, pass_word, faculty_id, student_id FROM LogIn "
Dim cmdString2 As String = "WHERE user_name=:name AND pass_word=:word"
Dim cmdString As String = cmdString1 & cmdString2
Dim paramUserName As New OracleParameter
Dim paramPassWord As New OracleParameter
Dim oraCommand As New OracleCommand
Dim oraDataReader As OracleDataReader

 paramUserName.ParameterName = "name"
 paramUserName.Value = txtUserName.Text
 paramPassWord.ParameterName = "word"
 paramPassWord.Value = txtPassWord.Text

oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add(paramUserName)
oraCommand.Parameters.Add(paramPassWord)
oraDataReader = oraCommand.ExecuteReader

If oraDataReader.HasRows = True Then
 Response.Redirect("Selection.aspx")
Else
 Response.Write("<script>alert('No matched username/password found!')</script>")
End If

oraCommand.Dispose()
oraCommand = Nothing
oraDataReader.Close()
oraDataReader = Nothing

End Sub

A

B

C

D

E

cmdLogIn Click

c08.indd 631c08.indd 631 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

632 Chapter 8 Accessing Data in ASP.NET

 Open the Page_Load() event procedure and change the connection object stored in
the Application state from sqlConnection to oraConnection . Your fi nished modifi ca-
tions to this event procedure should match the one that is shown in Figure 8.61 . The
modifi ed parts have been highlighted in bold.

 Now open the Select button ’ s click event procedure and perform the modifi cations
shown in Figure 8.62 to this procedure.

A. Change the query string by replacing the SQL Server database comparison operator LIKE
@ with the Oracle comparison operator =: in the WHERE clause.

B. Change the prefi x for all data objects and classes from sql to ora and from Sql to Oracle ,
respectively.

C. Modify the nominal name of the dynamic parameter by removing the @ symbol before
the parameter facultyName .

D. Modify the global connection object stored in the Application state from the sqlConnec-
tion to the oraConnection .

E. Change the prefi x for all data objects and classes from sql to ora and from Sql to Oracle .

 Your fi nished modifi cations to this event procedure should match the one that is
shown in Figure 8.62 . All modifi ed parts have been highlighted in bold.

 The Modifi cation to the data type of the passed argument in the user - defi ned sub-
routine FillFacultyReader() is simple. Just change the data type of the passed argument
FacultyReader from the SqlDataReader to the OracleDataReader .

 Next, let ’ s handle the modifi cations to the query strings in the Course page.

Figure 8.61. The modifi ed Page_Load() event procedure.

Imports System.Data
Imports Devart.Data
Imports Devart.Data.Oracle

Partial Class Faculty
Inherits System.Web.UI.Page
Private FacultyTextBox(6) As TextBox 'Faculty table has 7 columns, we used all of them

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
If Application("oraConnection").State <> ConnectionState.Open Then

Application("oraConnection").Open()
End If
If Not IsPostBack Then

ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")

 ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")

End If

End Sub

(Page Events) Load

c08.indd 632c08.indd 632 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

8.7 Develop ASP.NET Web Application to Select Data from Oracle Databases 633

8.7.5 Modify the Query Strings in the Course Page

 The modifi cations to this page include the following contents:

1. Modifi cations to the global connection object stored in the Application state in the Page_
Load() event procedure.

2. Modifi cations to the codes in the Select button ’ s click event procedure.

3. Modifi cations to the codes in the SelectedIndexChanged event procedure of the list box
control CourseList .

4. Modifi cations to the data type of the passed argument in the user - defi ned subroutines
FillCourseReader() and FillCourseReaderTextBox() .

 Open the Page_Load() event procedure and change the connection object stored in
the Application state from sqlConnection to oraConnection . Your fi nished modifi ca-
tions to this event procedure should match the one that is shown in Figure 8.63 . The
modifi ed parts have been highlighted in bold.

 Now open the Select button ’ s click event procedure and perform the modifi cations
shown in Figure 8.64 to this procedure.

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. The query string applied to the joined table should be modifi ed to make it acceptable to
the Oracle database actions. In Oracle database, the comparison operator is =: , not LIKE@ ,
which used for the SQL Server query string. Modify this query string and replace LIKE@
with =: in the CString2 for this query action, which is shown in Figure 8.64 .

Figure 8.62. The modifi cations to the Select button ’ s event procedure.

Protected Sub cmdSelect_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim cmdString As String = "SELECT faculty_id, faculty_name, office, phone, college, title, email FROM Faculty " & _

"WHERE faculty_name=:facultyName"
Dim paramFacultyName As New OracleParameter
Dim oraCommand As New OracleCommand
Dim oraDataReader As OracleDataReader

 paramFacultyName.ParameterName = "facultyName"
 paramFacultyName.Value = ComboName.Text

oraCommand.Connection = Application("oraConnection")
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add(paramFacultyName)

Call ShowFaculty(ComboName.Text)
oraDataReader = oraCommand.ExecuteReader
If oraDataReader.HasRows = True Then

Call FillFacultyReader(oraDataReader)
Else

 Response.Write("<script>alert('No matched faculty found!')</script>")
End If
oraDataReader.Close()
oraDataReader = Nothing
oraCommand.Dispose()
oraCommand = Nothing

End Sub

A

B

C

D

E

cmdSelect Click

c08.indd 633c08.indd 633 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

634 Chapter 8 Accessing Data in ASP.NET

Figure 8.63. The modifi ed Page_Load event procedure.

Imports System.Data
Imports Devart.Data
Imports Devart.Data.Oracle

Partial Class Course
Inherits System.Web.UI.Page
Private CourseTextBox(5) As TextBox 'we need to quewry 6 columns from the Course table

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
If Application("oraConnection").State <> ConnectionState.Open Then
 Application("oraConnection").Open()
End If
If Not IsPostBack Then 'these items can only be added into the combo box in one time
 ComboName.Items.Add("Ying Bai")
 ComboName.Items.Add("Satish Bhalla")
 ComboName.Items.Add("Black Anderson")
 ComboName.Items.Add("Steve Johnson")
 ComboName.Items.Add("Jenney King")
 ComboName.Items.Add("Alice Brown")
 ComboName.Items.Add("Debby Angles")
 ComboName.Items.Add("Jeff Henry")
End If

End Sub

(Page Events) Load

Figure 8.64. The modifi ed Select button ’ s Click event procedure.

Protected Sub cmdSelect_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdSelect.Click

Dim cString1 As String = "SELECT Course.course_id, Course.course FROM Course JOIN Faculty "
Dim cString2 As String = "ON (Course.faculty_id=Faculty.faculty_id) AND (Faculty.faculty_name=:name)"
Dim cmdString As String = cString1 & cString2
Dim oraCommand As New OracleCommand
Dim oraDataReader As OracleDataReader

oraCommand.Connection = Application("oraConnection")
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add("name", OracleDbType.Char).Value = ComboName.Text
oraDataReader = oraCommand.ExecuteReader

If oraDataReader.HasRows = True Then
Call FillCourseReader(oraDataReader)

Else
 Response.Write("<script>alert('No matched course found!')</script>")
End If

oraDataReader.Close()
oraDataReader = Nothing
oraCommand.Dispose()
oraCommand = Nothing

End Sub

A

B

C

D
E
F
G

H

cmdSelect Click

c08.indd 634c08.indd 634 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

8.7 Develop ASP.NET Web Application to Select Data from Oracle Databases 635

B. Change the prefi x for all data objects and classes from sql to ora and from Sql to Oracle ,
respectively.

C. Modify the global connection object stored in the Application state from the sqlConnec-
tion to the oraConnection .

D. Change the prefi x for all data objects from sql to ora and change the data type of the
dynamic parameter name from SqlDbType to OracleDbType .

E. Change the prefi x for all data objects from sql to ora . The steps involved in this modifi ca-
tion include E through H .

 Next, open the SelectedIndexChanged event procedure of the list box control
CourseList , and perform the modifi cations shown in Figure 8.65 to this procedure.

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. Modify the comparison operator for the dynamic parameter courseid in the query string
by replacing LIKE @ with the Oracle operator =: .

B. Change the prefi x for all data objects and classes from sql to ora and from Sql to Oracle ,
respectively.

C. Modify the global connection object stored in the Application state from the sqlConnec-
tion to the oraConnection .

D. Modify the nominal name of the dynamic parameter by removing the @ symbol before
the parameter courseid . Also, change the data type for this dynamic parameter from
SqlDbType to OracleDbType .

E. Change the prefi x for all data objects from sql to ora . The steps involved in this modifi ca-
tion include E and F .

Figure 8.65. The modifi ed SelectedIndexChanged event procedure.

Protected Sub CourseList_SelectedIndexChanged(ByVal sender As Object, ByVal e As System.EventArgs) Handles _
CourseList.SelectedIndexChanged

Dim cmdString As String = "SELECT course_id, course, credit, classroom, schedule, enrollment FROM Course " & _
"WHERE course_id =: courseid"

Dim oraCommand As New OracleCommand
Dim oraDataReader As OracleDataReader

oraCommand.Connection = Application("oraConnection")
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add("courseid", OracleDbType.Char).Value = CourseList.SelectedItem.ToString
oraDataReader = oraCommand.ExecuteReader

If oraDataReader.HasRows = True Then
Call FillCourseReaderTextBox(oraDataReader)

Else
 Response.Write("<script>alert('No matched course information found!')</script>")

End If

oraDataReader.Close()
oraDataReader = Nothing
oraCommand.Dispose()
oraCommand = Nothing

End Sub

A

B

C

D

E

F

CourseList SelectedIndexChanged

c08.indd 635c08.indd 635 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

636 Chapter 8 Accessing Data in ASP.NET

 Modifi cations to the data type of the passed argument in the user - defi ned subroutines
FillCourseReader() and FillCourseReaderTextBox() are simple, and just change the
data type of that passed argument from the SqlDataReader to the OracleDataReader .

8.7.6 Modify the Global Connection Object
in the Selection Page

 The last modifi cation is to change the global connection object stored in the Application
state from the sqlConnection to the oraConnection in the Exit button ’ s click event
procedure in the Selection page.

 At this point, we fi nished all modifi cations to this project. Before we can run the
project to test the functions of our codes, the following two jobs must be performed:

1. Make sure that all faculty image fi les have been stored in our default folder, in which our
project fi le is located.

2. Make sure that the Start page in our Web application is the LogIn page.

 To confi rm the second point, right - click on our project icon from the Solution Explorer
window and select the Start Options item from the pop - up menu to open the Property
Page wizard. On the opened wizard, select the Specifi c page radio button, and click on
the ellipsis button that is next to the Specifi c page box to open the Select Page to Start
wizard. In the opened wizard, click on the LogIn.aspx from the list and click on the OK
button to select it as our start page. Finally, click on the OK button to the Property Page
to fi nish this setup.

 Now you can click on the Start Debugging button to run the project to confi rm the
functions of our codes in these pages.

 A complete Web application project OracleWebSelect can be found in the
folder DBProjects\Chapter 8 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1).

8.8 DEVELOP ASP.NET WEB APPLICATION TO INSERT DATA
INTO ORACLE DATABASES

 Because of the coding similarity between the SQL Server and the Oracle databases, we
only emphasize the important differences on the codes for these two databases. To save
time and space, we need to modify an existing project OracleWebSelect to make it as
our new project OracleWebInsert . The codes we need to add can be copied from another
existing project SQLWebInsert with some modifi cations.

 The main codes ’ differences in these two database operations are:

A. The added codes to the Insert button ’ s Click event procedure in the Faculty page.

B. The added codes to the TextChanged event procedure of the Faculty ID textbox.

C. The modifi ed codes to the subroutine ShowFaculty() in the Faculty page.

 Now, let ’ s modify the project OracleWebSelect to make it our new project
OracleWebInsert by performing the following operations:

c08.indd 636c08.indd 636 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

8.8 Develop ASP.NET Web Application to Insert Data into Oracle Databases 637

1. Open the Windows Explorer and create a new folder Chapter 8 under your C: drive if you
have not created it.

2. Copy the project OracleWebSelect from the folder DBProjects\Chapter 8 that is located
at the Wiley ftp site (refer to Figure 1.2 in Chapter 1) and paste it into our new created
folder C:\Chapter 8 .

3. Rename the project to OracleWebInsert .

 Open the Visual Studio.NET, go to the File|Open Web Site menu item and browse
to our new project OracleWebInsert , and then click on the Open button to open it. First,
let ’ s build the codes for the Insert button Click event procedure to perform the faculty
data insertion function to the Faculty table in our sample database via the Web page
Faculty.aspx .

8.8.1 Create the Codes for the Insert Button Click Event
Procedure

 Open this event procedure and enter the codes that are shown in Figure 8.66 into this
event procedure.

 Let ’ s have a closer look at this piece of newly added codes to see how it works.

A. Change the query string from the SQL Server database style to the Oracle database style.
This modifi cation includes replacing all @ symbols before each input parameter with
the : operator, which is an Oracle database operator.

B. The data components and local variables used in the procedure are declared here. The
local integer variable intInsert is used to hold the returned running result from the execu-
tion of the data insertion command.

Figure 8.66. The added codes to the Insert button ’ s event procedure.

Protected Sub cmdInsert_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdInsert.Click

Dim cmdString As String = "INSERT INTO Faculty (faculty_id, faculty_name, office, phone, college, title, email) " & _
"VALUES (:FacultyID, :FacultyName, :Office, :Phone, :College, :Title, :Email)"

Dim oraCommand As New OracleCommand
Dim intInsert As Integer

oraCommand.Connection = Application("oraConnection")
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString

 InsertParameters(oraCommand)
 intInsert = oraCommand.ExecuteNonQuery()

oraCommand.Dispose()
oraCommand = Nothing

If intInsert = 0 Then
 Response.Write("<script>alert('The data insertion is failed')</script>")

Exit Sub
End If

 Application("FacultyImage") = txtImage.Text 'reserve the inserted faculty image
 cmdInsert.Enabled = False 'disable the Insert button
 ComboName.Items.Add(txtName.Text) 'reserve faculty name for validation

Call CleanInsert() 'clean up faculty information stored in six textboxes

End Sub

A

B

C

D
 E
F

G

H
I
J
K

cmdInsert Click

c08.indd 637c08.indd 637 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

638 Chapter 8 Accessing Data in ASP.NET

C. The Command object is initialized by assigning it with the connection object stored in the
Application state, the command type, and the command text objects, respectively.

D. The user - defi ned subroutine InsertParameters() is executed to assign all seven input
parameters to the Parameters collection of the command object.

E. The ExecuteNonQuery() method of the command object is called to run the insert query
to perform this data insertion.

F. A cleaning job is performed to release all objects used in the procedure.

G. The ExecuteNonQuery() method will return an integer to indicate whether this data inser-
tion is successful or not. The value of this returned data equals to the number of rows that
have been successfully inserted into the Faculty table in the database. If a zero returned,
which means that no any row has been inserted into the database, a warning message is
displayed to indicate this situation and the procedure is exited. Otherwise, the data inser-
tion is successful.

H. A global variable FacultyImage is created and initialized with the faculty image fi le name
stored in the Faculty Image textbox. In some cases, the user may want to add a faculty
image with that faculty record insertion. In order to save this image fi le for the data valida-
tion, we need this step.

I. The Insert button is disabled after the current record is inserted into the database. This is
to avoid the multiple insertions of the same record into the database. The Insert button
will be enabled again when the content of the Faculty ID textbox is changed, which means
that a new different faculty record will be inserted.

J. The newly inserted faculty name is added into the Faculty Name combo box by using the
Add() method, and this faculty name will be used later for the validation purpose.

K. The user - defi ned subroutine procedure CleanInsert() is executed to clean up six textboxes
in the Faculty page (except the Faculty ID textbox).

 Next, let ’ s build the subroutine InsertParameters() . Create this subroutine by enter-
ing the codes that are shown in Figure 8.67 into this page.

 The function of this subroutine is straightforward, which is to assign all input param-
eters to the associated VALUES columns in the insert query.

 The codes for the user - defi ned subroutine CleanInsert() are shown in Figure 8.68 .
 The function of this piece of codes is to clean up contents of six textboxes, except the

faculty_id textbox. The reason for that is: the Insert button would be enabled if the
content of the faculty_id textbox is cleaned up (changed), since a TextChanged event will

Figure 8.67. The codes for the subroutine InsertParameters().

Private Sub InsertParameters(ByRef cmd As OracleCommand)
 cmd.Parameters.Add("FacultyID", OracleDbType.Char).Value = txtID.Text
 cmd.Parameters.Add("FacultyName", OracleDbType.Char).Value = txtName.Text
 cmd.Parameters.Add("Office", OracleDbType.Char).Value = txtOffice.Text
 cmd.Parameters.Add("Phone", OracleDbType.Char).Value = txtPhone.Text
 cmd.Parameters.Add("College", OracleDbType.Char).Value = txtCollege.Text
 cmd.Parameters.Add("Title", OracleDbType.Char).Value = txtTitle.Text
 cmd.Parameters.Add("Email", OracleDbType.Char).Value = txtEmail.Text
End Sub

Faculty InsertParameters

c08.indd 638c08.indd 638 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

8.8 Develop ASP.NET Web Application to Insert Data into Oracle Databases 639

be triggered. However, this cleaning up action has nothing to do with inserting a new
record. Therefore, in order to avoid this confusing operation, we will not clean up the
faculty_id textbox.

 Next, let ’ s handle the coding process for the TextChanged event procedure of the
Faculty ID textbox.

8.8.2 Create the Codes for the TextChanged Event Procedure
of the Faculty ID Textbox

 When the content of the faculty_id textbox is changed (a TextChanged event of the
faculty_id textbox will be triggered), which means that a new faculty record should be
inserted, we need to enable the Insert button if this situation happened. To do this
piece of codes, double - click on the faculty_id textbox from the Faculty page to open
its TextChanged event procedure and enter cmdInsert.Enabled = True into this
procedure.

8.8.3 Modify the Codes in the Subroutine ShowFaculty()
for the Data Validation

 In order to validate this data insertion action, we need to modify some codes inside the
user - defi ned subroutine ShowFaculty() to enable a newly inserted faculty image to be
retrieved and displayed in this page if the user wants to add a new faculty image for that
data insertion.

 Open this subroutine and perform the modifi cations, which are shown in Figure 8.69 ,
to this procedure. The modifi ed parts have been highlighted in bold.

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. The local variable FacultyImage is initialized with an empty string.

B. To check whether a new faculty image has been inserted or no matched faculty image has
been found, we use an And logic operator to combine both conditions together. If both of
them are empty, which means that no matched faculty image can be found, a default faculty
image is used.

C. If the Faculty Image textbox contains a valid faculty image fi le ’ s name, it is assigned to the
local String variable FacultyImage and displayed later.

Figure 8.68. The codes for the subroutine CleanInsert().

Private Sub CleanInsert()
 txtName.Text = String.Empty
 txtOffice.Text = String.Empty
 txtPhone.Text = String.Empty
 txtCollege.Text = String.Empty
 txtTitle.Text = String.Empty
 txtEmail.Text = String.Empty
End Sub

Faculty CleanInsert

c08.indd 639c08.indd 639 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

640 Chapter 8 Accessing Data in ASP.NET

D. If the global variable FacultyImage is not empty, which means that a valid faculty image ’ s
name has been assigned to it by the user, and this faculty image will be used and
displayed later.

 At this point, we have fi nished all modifi cations to our new project. Before we can
run the project to test the data insertion functionality, make sure that the following two
jobs have been done:

1. Make sure that all faculty image fi les, including a default faculty fi le Default.jpg , have been
stored in our default folder in which our Web application project is located. In our applica-
tion, it is C:\Chapter 8\OracleWebInsert .

2. Make sure that the startup page is LogIn.aspx . To confi rm this, right - click on our project
from the Solution Explorer Window, select the Start Options item from the pop - up menu.
On the opened wizard, be sure that the Specifi c page radio button is selected, and the page
LogIn.aspx is in that box. Click on the OK button to close this wizard.

 Now, click on the Start Debugging button to run the project. Enter the suitable user-
name and password to the LogIn page, and select the Faculty Information from the
Selection page to open the Faculty page. Enter the following data as the information for
a new faculty member:

Figure 8.69. The modifi ed codes for the subroutine ShowFaculty().

Private Sub ShowFaculty(ByVal fName As String)
Dim FacultyImage As String = String.Empty

Select Case fName
Case "Ying Bai"

FacultyImage = "Bai.jpg"
Case "Satish Bhalla"

FacultyImage = "Satish.jpg"
Case "Black Anderson"

FacultyImage = "Anderson.jpg"
Case "Steve Johnson"

FacultyImage = "Johnson.jpg"
Case "Jenney King"

FacultyImage = "King.jpg"
Case "Alice Brown"

FacultyImage = "Brown.jpg"
Case "Debby Angles"

FacultyImage = "Angles.jpg"
Case "Jeff Henry"

FacultyImage = "Henry.jpg"
Case Else

If txtImage.Text = "" And Application("FacultyImage") = String.Empty Then
 FacultyImage = "Default.jpg"
ElseIf txtImage.Text <> String.Empty Then

FacultyImage = txtImage.Text
ElseIf Application("FacultyImage") <> String.Empty Then

FacultyImage = Application("FacultyImage")
End If

End Select
 PhotoBox.ImageUrl = FacultyImage

End Sub

A

B

C

D

Faculty ShowFaculty

c08.indd 640c08.indd 640 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

8.8 Develop ASP.NET Web Application to Insert Data into Oracle Databases 641

 Click on the Insert button to insert this new record into the database.
 To confi rm this faculty record insertion, go to the Faculty Name combo box control

and you can fi nd that the newly inserted faculty name Ali Mhamed has already been in
there. Click it to select this faculty and then click on the Select button to retrieve this
newly inserted record from the database and display it in this page. The inserted record
is displayed in this page, which is shown in Figure 8.70 .

 Our data insertion to the Oracle database is successful. Click on the Back , and then
the Exit button to close our project. A complete Web application project OracleWebInsert
can be found at the folder DBProjects\Chapter 8 that is located at the Wiley ftp site
(refer to Figure 1.2 in Chapter 1).

 In the next section, we will discuss how to perform the data updating and deleting
against the Oracle database via the website.

 • M56789 Faculty ID textbox

 • Ali Mhamed Name textbox

 • Professor Title textbox

 • MTC-353 Offi ce textbox

 • 750-378-3355 Phone textbox

 • University of Main College textbox

 • amhamed@college.edu Email textbox

 • Mhamed.jpg Faculty Image textbox

Figure 8.70. The data validation process.

c08.indd 641c08.indd 641 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

642 Chapter 8 Accessing Data in ASP.NET

8.9 DEVELOP ASP.NET WEB APPLICATION TO UPDATE AND
DELETE DATA IN ORACLE DATABASES

 Because of the coding similarity between the SQL Server and the Oracle databases, we
only emphasize the important differences on the codes for these two databases. To save
time and space, we want to modify an existing Web application project OracleWeb-
Insert we developed in the previous section to make it as our new project
OracleWebUpdateDelete . To do that, open the Windows Explorer and create a new
folder Chapter 8 if you have not created it. Copy the project OracleWebInsert from the
folder DBProjects\Chapter 8 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1) and paste it to our new folder Chapter 8 . Rename the project to
OracleWebUpdateDelete .

 We divide this section into two parts in terms of the coding functions:

1. Build the codes for the new project to perform the data updating actions against the Oracle
database.

2. Build a stored procedure to perform the data deleting actions against the Oracle
database.

 In fact, we built a project SQLWebUpdateDelete to update and delete data against
our SQL Server database in Section 8.5 . The only difference between that project and
our current project is the data source or database used for these projects. All functions
and codes are similar between these projects. Therefore, you can copy some codes from
the associated event procedures in that project and paste them in this project with a little
modifi cation.

 Now, let ’ s start from the fi rst part — build the codes for the new project to make it
perform the data updating against the Oracle database.

8.9.1 Build the Codes for the Project to Perform
the Data Updating

 Open the Visual Studio.NET, go to the File|Open Web Site menu item and browse to
our new project OracleWebUpdateDelete and then click on the Open button to
open it.

 The modifi cations to this page can be divided into the following two parts:

1. Modify the Select button ’ s click event procedure by adding one statement to reserve the
original or the old faculty name stored in the Faculty Name combo box control for the pos-
sible faculty name updating operation later.

2. Add the codes to the Update button ’ s click event procedure and the user - defi ned subrou-
tine procedure UpdateParameters() .

 Let ’ s begin with the fi rst modifi cation.

8.9.1.1 Modifi cations to the Select Button ’s Click Event Procedure

 Now, open the Select button ’ s click event procedure and add one statement into this
event procedure. Your fi nished modifi cations to this event procedure should match the

c08.indd 642c08.indd 642 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

8.9 Develop ASP.NET Web Application to Update and Delete Data in Oracle Databases 643

one that is shown in Figure 8.71 . The newly added statement has been highlighted in bold,
and the codes we developed in the previous section have been highlighted with gray.

 The purpose of this statement is to store the current selected faculty name that is
located at the Faculty Name combo box control into the Application state as a global
variable. During the data updating process, the faculty name may be updated by the user.
If this happened, the updated faculty name that is stored in the txtName textbox will be
added into the Faculty Name combo box control, and the original faculty name will be
removed from that control. In order to remember the original faculty name, we must use
this global variable to keep it since this is a Web application, and each time when the
server posts back a refreshed Faculty page based on the client ’ s request, all contents in
all controls on that page will be refreshed and all old staff will be lost.

 Now let ’ s develop the codes for the Update button ’ s click event procedure.

8.9.1.2 Add the Codes to the Update Button Event

and UpdateParameters Procedures

 In order to save the time, you can copy some codes from the Update button ’ s Click event
procedure in the Faculty page in a project SQLWebUpdateDelete we built in Section
 8.5 in this chapter and paste them into the Update button Click event procedure in our
current project with some modifi cations. You can fi nd the project SQLWebUpdateDelete
in the folder DBProjects\Chapter 8 that is located at the Wiley ftp site (refer to Figure
 1.2 in Chapter 1).

Figure 8.71. The modifi ed Select button ’ s event procedure.

Protected Sub cmdSelect_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim cmdString As String = "SELECT faculty_id, faculty_name, office, phone, college, title, email FROM Faculty " & _

"WHERE faculty_name =: facultyName"
Dim paramFacultyName As New OracleParameter
Dim oraCommand As New OracleCommand
Dim oraDataReader As OracleDataReader

Application("oldFacultyName") = ComboName.Text 'reserve the old name for data updating

 paramFacultyName.ParameterName = "@facultyName"
 paramFacultyName.Value = ComboName.Text
 oraCommand.Connection = Application("oraConnection")
 oraCommand.CommandType = CommandType.Text
 oraCommand.CommandText = cmdString
 oraCommand.Parameters.Add(paramFacultyName)

Call ShowFaculty(ComboName.Text)
 oraDataReader = oraCommand.ExecuteReader

If oraDataReader.HasRows = True Then
Call FillFacultyReader(oraDataReader)

Else
 Response.Write("<script>alert('No matched faculty found!')</script>")

End If
 oraDataReader.Close()
 oraDataReader = Nothing
 oraCommand.Dispose()
 oraCommand = Nothing
End Sub

cmdSelect Click

c08.indd 643c08.indd 643 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

644 Chapter 8 Accessing Data in ASP.NET

 Open the Update button ’ s click event procedure in the Faculty page in the project
SQLWebUpdateDelete , and copy all codes from that procedure, and paste them into the
Update button click event procedure in the Faculty page in our current project. Perform
the modifi cations shown in Figure 8.72 to this event procedure.

 Let ’ s take a closer look at this piece of modifi ed codes to see how it works.

A. The updating query string has been modifi ed by replacing the @ operator with the Oracle
operator : . Also, the comparison operator LIKE @ in the WHERE clause has been changed
to =: , which is the Oracle comparison operator.

B. All data objects used in this procedure are created here, and a local integer variable intUp-
date is also created, which is used as a holder to keep the returned data value from the
executing the ExecutNonQuery() method later. The prefi x of all data objects and classes
have been changed from sql to ora , and from Sql to Oracle . The modifi ed codes have
been highlighted in bold.

C. Now we need to check whether the user wants to update the faculty name or not. To do
that, we need to compare the global variable oldFacultyName that is stored in the
Application state with the current faculty name that is stored in the txtName textbox. If
both names are different, this means that the user has updated the faculty name. In that
case, we need to add the updated faculty name into the Faculty Name combo box control
and remove the old faculty name from that control to allow users to select this updated
faculty to perform the validation for this data updating later.

D. The Command object is initialized with the connection object, command type, and command
text. Change the prefi x of all data objects from sql to ora .

Figure 8.72. The modifi ed Update button ’ s event procedure.

Protected Sub cmdUpdate_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdUpdate.Click
Dim cmdString As String = "UPDATE Faculty SET faculty_name =: name, office =: office, phone =: phone, " & _

"college =: college, title =: title, email =: email WHERE (faculty_id =: fid)"

Dim oraCommand As New OracleCommand
Dim intUpdate As Integer

If txtName.Text <> Application("oldFacultyName") Then
 ComboName.Items.Add(txtName.Text)
 ComboName.Items.Remove(Application("oldFacultyName"))
End If

oraCommand.Connection = Application("oraConnection")
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString

 UpdateParameters(oraCommand)
 intUpdate = oraCommand.ExecuteNonQuery()

oraCommand.Dispose()
oraCommand = Nothing

If intUpdate = 0 Then
 Response.Write("<script>alert('The data updating is failed')</script>")

Exit Sub
End If

End Sub

A

B

C

D

 E
F
G

H

cmdUpdate Click

c08.indd 644c08.indd 644 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

8.9 Develop ASP.NET Web Application to Update and Delete Data in Oracle Databases 645

E. The user - defi ned subroutine UpdateParameters() , whose detailed codes are shown below,
is called to assign all input parameters to the command object.

F. The ExecuteNonQuery() method of the command class is called to execute the data updat-
ing operation. This method returns a feedback data to indicate whether this data updating
is successful or not, and this returned data is stored to the local integer variable
intUpdate .

G. A cleaning job is performed to release all data objects used in this procedure. Change the
prefi x of all data objects from sql to ora. Steps involved in this modifi cation include E , F ,
and G .

H. The data value returned from calling the ExecuteNonQuery() is exactly equal to the
number of rows that have been successfully updated in the database. If this value is zero,
which means that no row has been updated and this data updating has failed, a warning
message is displayed and the procedure is exited. Otherwise, if this value is nonzero, which
means that this data updating is successful.

 Now, let ’ s develop the codes for the user - defi ned subroutine UpdateParameters() .
You can copy this subroutine from the project SQLWebUpdateDelete we built in Section
 8.5 and paste it into the code window of this page. Perform the modifi cations shown in
Figure 8.73 to this subroutine after you paste this subroutine.

 The function of this subroutine is straightforward. Seven input parameters are
assigned to the Parameters collection property of the command object using the Add()
method. Two modifi cations for this subroutine are:

A. Change the data type of the argument cmd for this subroutine from SqlCommand to
OracleCommand .

B. Change the data type for all input parameters from SqlDbType to OracleDbType .

 At this point, we have fi nished all coding developments for the data updating actions
against the Oracle database in the Faculty page. Before we can run the project to test this
data updating function, make sure that the starting page is the LogIn page, and all faculty
image fi les, including a default faculty image fi le Default.jpg , have been stored in our
current project folder (C:\Chapter 8\OracleWebUpdateDelete).

 Now you can start to run the project to test the data updating function in the Faculty
page against the Faculty table in our sample Oracle database.

Figure 8.73. The modifi ed subroutine UpdateParameters().

Private Sub UpdateParameters(ByRef cmd As OracleCommand)
 cmd.Parameters.Add("name", OracleDbType.Char).Value = txtName.Text
 cmd.Parameters.Add("office", OracleDbType.Char).Value = txtOffice.Text
 cmd.Parameters.Add("phone", OracleDbType.Char).Value = txtPhone.Text
 cmd.Parameters.Add("college", OracleDbType.Char).Value = txtCollege.Text
 cmd.Parameters.Add("title", OracleDbType.Char).Value = txtTitle.Text
 cmd.Parameters.Add("email", OracleDbType.Char).Value = txtEmail.Text
 cmd.Parameters.Add("fid", OracleDbType.Char).Value = txtID.Text
End Sub

Faculty UpdateParameters

A
B

c08.indd 645c08.indd 645 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

646 Chapter 8 Accessing Data in ASP.NET

8.9.2 Develop Stored Procedures to Perform the Data Deleting

 As we discussed at the beginning of this section, to delete a record from a relational
database, one must follow the correct sequence. In other words, one must fi rst delete the
records that are related to the record to be deleted in the parent table from the
child tables. For example, in our application, to delete a record from the Faculty table,
one must fi rst delete the related records from the LogIn and the Course tables, and
then one can delete the desired record from the Faculty table. The reason for that is
because the faculty_id is a primary key in the Faculty table, but it is a foreign key for
other tables.

 Based on the analysis above, it can be seen that to delete one record from a parent
table, such as the Faculty table in our sample database, many delete queries will be
executed to fi rst delete related records from the child tables, such the LogIn and the
Course, and then delete the target record from the parent table. An easy way to perform
these multiple deleting queries is to use the stored procedure to perform this data
deleting.

8.9.2.1 Delete an Existing Record from the Faculty Table

 Recall that in Section 7.8.2.3 in Chapter 7 , we discussed how to develop a stored proce-
dure in the Oracle database and call that stored procedure to perform the data deleting
operation against the Oracle database. In this section, we still want to use our Faculty
table as an example to discuss how to delete an existing record from related tables.

 In our sample database, there are two child tables related to our Faculty table, the
LogIn and the Course tables. Two child tables are connected with the Faculty table by
using the faculty_id , which is a primary key in the Faculty table and foreign key in two
child tables. To delete a faculty member from the parent table, or the Faculty table, one
must fi rst delete those records that are related to that faculty member in the parent table
from the child table, such as from the LogIn and the Course tables, and then one can
delete that faculty member from the Faculty table. Basically, this deleting can be divided
into the following three steps or three queries:

1. Delete all records that are related to the faculty member to be deleted in the Faculty table
from the LogIn table. In our sample database, only one row is related to each faculty
member in the LogIn table.

2. Delete all records that are related to the faculty member to be deleted in the Faculty table
from the Course table. In our sample database, there are about four to six records related
to each faculty member in the Course table, since each faculty can teach four to six courses.

3. Delete the faculty member from the parent or the Faculty table.

 These three steps are exactly equivalent to three deleting queries, and we can combine
these three queries into a single stored procedure. By calling and executing this stored
procedure, we can easily complete this multi - table data deleting operation. The devel-
opment sequence for this data deleting operation can be divided into the following
three steps:

1. Develop the stored procedure in the Oracle database to perform the multi - table data
deleting function.

c08.indd 646c08.indd 646 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

8.9 Develop ASP.NET Web Application to Update and Delete Data in Oracle Databases 647

2. Call the stored procedure from the ASP.NET Web application to perform the data deleting
against the Oracle database.

3. Validate the data deleting action after the data deleting operation.

 To save the time and the space, we will not provide a duplicated discussion about
how to create a stored procedure in the Oracle database to perform this data deleting
operation in this section, since we have discussed this topic in very detail in Section 7.8.2.3
in Chapter 7 . Refer to that section to get more detailed materials about this issue. We will
use the stored procedure DeleteFacultySP , which was developed in that section, to
perform the data deleting action in this section.

 In the following part, we assume that we have fi nished developing the stored proce-
dure DeleteFacultySP , and we only take care of the coding process for steps 2 and 3.

8.9.2.2 Develop the Codes for the Delete Button ’s Event Procedure

 Open the Delete button ’ s click event procedure and enter the codes that are shown in
Figure 8.74 into this event procedure.

 Let ’ s take a closer look at this piece of codes to see how it works.

A. The content of the query string is now equal to the name of the stored procedure
DeleteFacultySP that we created in the Oracle database in Section 7.8.2.3 in Chapter 7 .
Refer to that section to get the detailed codes for this stored procedure. When calling a
stored procedure, the content of the query string must be equal to the name of the stored
procedure.

B. The data object and local variable used in this procedure are declared here. The integer
variable intDelete is used to hold the returned value of executing the data updating
method ExecuteNonQuery() of the command class later. Change the prefi x of all data
objects and classes from sql to ora , and from Sql to Oracle .

C. The Command object is initialized with the associated objects. The fi rst object is the con-
nection object oraConnection that is stored in the Application state.

Figure 8.74. The codes for the Delete button ’ s event procedure.

Protected Sub cmdDelete_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdDelete.Click
Dim cmdString As String = "DeleteFacultySP"
Dim oraCommand As New OracleCommand
Dim intDelete As Integer

oraCommand.Connection = Application("oraConnection")
oraCommand.CommandType = CommandType.StoredProcedure
oraCommand.CommandText = cmdString

oraCommand.Parameters.Add("FacultyName", OracleDbType.Char).Value = ComboName.Text
 intDelete = oraCommand.ExecuteNonQuery()

oraCommand.Dispose()
oraCommand = Nothing

If intDelete = 0 Then
 Response.Write("<script>alert('The data Deleting is failed')</script>")

Exit Sub
End If

 CleanFaculty()

End Sub

A

B

C

D

 E
F
G

H

I

cmdDelete Click

c08.indd 647c08.indd 647 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

648 Chapter 8 Accessing Data in ASP.NET

D. The next object is the command type. The CommandType.StoredProcedure must be
assigned to this command type property to make sure that the application will call a stored
procedure as a query during the project runs.

E. The dynamic parameter is initialized with the real parameter faculty name that is stored
in the Faculty Name combo box control. One point to be noted is that you must use the
faculty name stored in this combo box control, not the faculty name stored in the faculty
name textbox control, for this dynamic parameter since the latter may be an updated
faculty name but not an original faculty name.

F. The ExecuteNonQuery() method of the command class is called to run the stored proce-
dure to perform the data deleting operation. This method will return an integer to indicate
whether this calling is successful or not.

G. A cleaning job is performed to release all objects used in this event procedure.

H. The integer value returned from the calling of ExecuteNonQuery() method is equal to the
number of rows that have been successfully deleted from the database. If this value is zero,
which means that no row has been deleted from the database and this data deleting has
failed, a warning message is displayed and the procedure is exited. Otherwise, if this value
is nonzero, which means that at least one row has been deleted from the database, and this
data deleting is successful.

I. A user - defi ned subroutine CleanFaculty() , whose detailed codes are shown below, is called
to clean up all faculty information stored in seven textboxes.

 The codes for the subroutine CleanFaculty() are shown in Figure 8.75 .
 The function of this piece of codes is straightforward and easy to be understood. An

Empty property of the String class is assigned to all textboxes to make them empty and
to clean them up.

 Now we have fi nished all coding developments for the data deleting action against
the Oracle database for the Faculty page. Before we can run the project to test the data
deleting function, make sure that the starting page is the LogIn page, and all faculty image
fi les, including a default faculty photo fi le Default.jpg , have been stored in our current
project folder (C:\Chapter 8\OracleWebUpdateDelete).

 Now we can run the project to test the data deleting function. Click on the Start
Debugging button to run the project.

 Enter the suitable username and password to the LogIn page, and select the Faculty
Information from the Selection page to open the Faculty page. Then keep the default

Figure 8.75. The codes for the subroutine CleanFaculty().

Private Sub CleanFaculty()
 txtID.Text = String.Empty
 txtName.Text = String.Empty
 txtTitle.Text = String.Empty
 txtOffice.Text = String.Empty

txtPhone.Text = String.Empty
 txtCollege.Text = String.Empty
 txtEmail.Text = String.Empty
End Sub

Faculty CleanFaculty

c08.indd 648c08.indd 648 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

8.9 Develop ASP.NET Web Application to Update and Delete Data in Oracle Databases 649

faculty name Ying Bai to be selected from the Faculty Name combo box control and click
on the Select button to retrieve and display this faculty record in the Faculty page.

 To test the data deleting action against the Faculty table in our sample database, click
on the Delete button from this page to try to delete this record from the Faculty table in
our sample database. Immediately, you can fi nd that all seven textboxes that contains the
selected faculty information are cleaned up. Does that mean our data deleting is success-
ful? Let ’ s perform the following steps to confi rm it.

8.9.2.3 Validate the Data Deleting Actions

 To confi rm this data deleting, there are two ways to do that. The fi rst way is to try to
retrieve this deleted faculty record from the database. The data deleting action would be
successful if no such faculty record can be found and retrieved from the database. The
second way is to open the database to check the associated tables to confi rm this data
deleting.

 First, let ’ s do this confi rmation using the fi rst way. Still in the Faculty page, keep the
faculty name Ying Bai selected in the Faculty Name combo box control and click on the
Select button to retrieve this faculty record from the database and display it in the Faculty
page. A warning message “No matched faculty found! ” is displayed, which means that
the selected faculty record has been successfully deleted from the database.

 Next, let ’ s perform the following operations to open the Oracle database to check
the associated tables to confi rm this data deleting.

1. Open the Oracle Database 11g XE home page by going to the start|All Programs| Oracle
Database 11g Express Edition|Get Started items.

2. On the opened starting page, click on the APEX button to open the APEX login wizard.
Enter the username and password and then click on the Login button to open the APEX
Workshop wizard.

3. Click on the Already have an account? Login Here button to open the Workshop login
wizard. Keep the default workshop name CSE_DEPT unchanged, and enter the password
reback to complete this login process.

4. Click on the SQL Workshop and then the Object Browser icon, and keep the default item
Table selected.

5. On the opened Table page, double - click on the FACULTY table from the left pane, and then
click on the Data tab to open this table, which is shown in Figure 8.76 .

 You can fi nd that the faculty member Ying Bai with the faculty_id B78880 has been
deleted from this Faculty table.

 As we mentioned before, our sample database is a relational database, and the Faculty
table has some relationships with other tables, such as LogIn and the Course. The Faculty
table has some relationships with all other four tables in our sample database, which
include the Student and the StudentCourse tables. But at this moment, we only take care
of the LogIn and the Course tables, and we will discuss the other two tables in the next
section.

 Open the LogIn and the Course tables by double - clicking on each of them one by
one from the left pane; you can fi nd that those records related to the faculty member
Ying Bai have been deleted from the LogIn and the Course tables. The relationship

c08.indd 649c08.indd 649 4/25/2012 1:58:25 PM4/25/2012 1:58:25 PM

650 Chapter 8 Accessing Data in ASP.NET

between the Faculty and the LogIn tables, as well as between the Faculty and the Course
tables, is set up by the faculty_id , which is a primary key in the Faculty table and a foreign
key in both LogIn and Course tables.

 This confi rmed that our data deleting is successful.
 But the story is not fi nished. As you know, the Faculty table has some relationships

with all other four tables in our sample database, which include the Student and the
StudentCourse tables. To check this relationship, open the StudentCourse table. You can
fi nd that all courses related to (taught by) the faculty member Ying Bai have been deleted
from this table, too! These courses include CSC-132B , CSC-234A , CSE-434 , and CSE-
438 . That is not enough; take a closer look at records in this table, and you can fi nd that
the students who are identifi ed by the student_id and took these four courses have also
been deleted from the StudentCourse table! Why those records are deleted and who did
that? To solve this problem and fi nd the answer to this question, we need to review our
sample Oracle database building process. Recall that when we built our sample database
in Chapter 2 , we set up the relationships between four tables by using the foreign and
the primary keys. Now let ’ s have a closer look at those staffs to try to solve our problem
in the next section.

8.9.2.4 The Constraint Property: On Delete Cascade in the Data Table

 Recall that in Section 2.11.6 in Chapter 2 , we used the constraint property to set up the
foreign key and create the relationship between tables. When we add a foreign key to a
table, we need to indicate the Constraint Name and the Constraint Type . For example,
to create a foreign key for the StudentCourse table and set up a relationship between the
Course and the StudentCourse tables, we selected the course_id as the primary key for

Figure 8.76. The Faculty table after the data deleting.

c08.indd 650c08.indd 650 4/25/2012 1:58:26 PM4/25/2012 1:58:26 PM

8.9 Develop ASP.NET Web Application to Update and Delete Data in Oracle Databases 651

the Course table and a foreign key for the StudentCourse table. To create this foreign
key to the StudentCourse table, the Constraint Name and the Constraint Type are:

 • STUDENTCOURSE_COURSE_FK

 • Foreign Key

 The important point is that there is a radio button named Cascade Delete , which is
located at the right of the Constraint Type textbox. We checked this radio button when
we created this foreign key for the StudentCourse table. To make this issue clear and
provide readers with a global picture, we redisplay Figure 2.67 , which is Figure 8.77 in
this section.

 It can be found that the Cascade Delete radio button has been checked. This means
that all records related to this foreign key course_id in this StudentCourse table will be
deleted if the primary key, which is the course_id , in the Course table is deleted. This is
the meaning of so - called cascaded deleting mode. The word cascade means series, and
cascaded deleting means that if the records that contain a primary key in a table (parent
table) are deleted, all related records that have the same foreign key in all other tables
would also be serially deleted.

Figure 8.77. Create the foreign key between the StudentCourse and the Course table.

c08.indd 651c08.indd 651 4/25/2012 1:58:26 PM4/25/2012 1:58:26 PM

652 Chapter 8 Accessing Data in ASP.NET

 Now, we can answer the question we asked in the last section. All students who are
identifi ed by the associated student_id and took the four courses taught by the deleted
faculty member Ying Bai have also been deleted from the StudentCourse table. The
reason for that is because of the course_id , which is a primary key in the Course table
but a foreign key in the StudentCourse table. Since the Cascade Delete radio button was
checked when we set up the relationship between these two tables, all records related to
this foreign key course_id in the StudentCourse table will be serially deleted by the
database engine if the records that contain the primary key course_id in the Course table
are deleted. The faculty_id in the Course table is a foreign key, and when the four courses
that are identifi ed by their course_id and taught by the faculty member Ying Bai are to
be deleted from the Course table, all records related to that course_id that is a foreign
key in the StudentCourse table will also be deleted since the course_id is a primary key
in the Course table. It is the Oracle database engine that performed this cascaded or
series data deleting if this Cascade Delete radio button was checked when the relation-
ship is set up between tables. Similar things happened to the student_id , which is also a
foreign key in the StudentCourse table.

 In fact, to perform this faculty member deleting action, we do not need to build
any stored procedure to include all of those three queries. We can only delete the desired
faculty member from the Faculty table, and the Oracle database engine can perform
these cascaded deleting actions to delete all other related records from all other four
tables.

 Before we can close the Oracle database 11g XE, it is highly recommended to recover
all deleted records to the associated tables. Refer to Tables 8.12 – 8.15 to add those records
back to the associated tables. You use the Insert Row button in the Object Browser to
add these records into the associated tables. Now you can close the Oracle Database
11g XE.

Table 8.13. The data to be added into the LogIn table

user_name pass_word faculty_id student_id

ybai reback B78880

Table 8.14. The data to be added into the Course table

course_id course credit classroom schedule enrollment faculty_id

CSC-132B Introduction to Programming 3 TC-302 T-H: 1:00-2:25 PM 21 B78880

CSC-234A Data Structure & Algorithms 3 TC-302 M-W-F: 9:00-9:55 AM 25 B78880

CSE-434 Advanced Electronics Systems 3 TC-213 M-W-F: 1:00-1:55 PM 26 B78880

CSE-438 Advd Logic & Microprocessor 3 TC-213 M-W-F: 11:00-11:55 AM 35 B78880

Table 8.12. The data to be added into the Faculty table

faculty_id faculty_name office phone college title email

B78880 Ying Bai MTC-211 750-378-1148 Florida Atlantic University Associate Professor ybai@college.edu

c08.indd 652c08.indd 652 4/25/2012 1:58:26 PM4/25/2012 1:58:26 PM

8.10 Chapter Summary 653

 A complete Web application project OracleWebUpdateDelete can be found in the
folder DBProjects\Chapter 8 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1).

8.10 CHAPTER SUMMARY

 A detailed and completed introduction to the ASP.NET and the .NET Framework is
provided at the beginning of this chapter. This part is especially useful and important to
readers or students who do not have any knowledge or background in the Web applica-
tion project developments and implementations.

 Following the introduction section, a detailed discussion on how to install and con-
fi gure the environment to develop the ASP.NET Web applications is provided. Some
essential tools, such as the Web server, IIS, and FrontPage Server Extension 2000, as well
as the installation process of these tools, are introduced and discussed in detail.

 Starting from Section 8.3 , the detailed development and building process of ASP.NET
Web applications to access databases are discussed with seven real Web application proj-
ects. Two popular databases, SQL Server and Oracle, are utilized as the target databases.
Seven real ASP.NET Web application projects include:

1. Develop an ASP.NET Web application to select and display data from the Microsoft SQL
Server 2008 database.

2. Develop an ASP.NET Web application to insert data into the Microsoft SQL Server 2008
database.

3. Develop an ASP.NET Web application to update and delete data against the Microsoft SQL
Server 2008 database.

4. Develop an ASP.NET Web application project to access and manipulate data against SQL
Server 2008 database using LINQ to SQL query method.

5. Develop an ASP.NET Web application to select and display data from the Oracle 11g XE
database.

6. Develop an ASP.NET Web application to insert data into the Oracle 11g XE database.

7. Develop an ASP.NET Web application to update and delete data against the Oracle 11g
XE database.

Table 8.15. The data to be added into the StudentCourse table

s_course_id student_id course_id credit major

1005 J77896 CSC-234A 3 CS/IS

1009 A78835 CSE-434 3 CE

1014 A78835 CSE-438 3 CE

1016 A97850 CSC-132B 3 ISE

1017 A97850 CSC-234A 3 ISE

c08.indd 653c08.indd 653 4/25/2012 1:58:26 PM4/25/2012 1:58:26 PM

654 Chapter 8 Accessing Data in ASP.NET

 The stored procedures are utilized in two projects, projects 3 and 7, to help readers
or students to perform the data updating and deleting actions against two kinds of popular
databases more effi ciently and conveniently. The detailed discussion on the data deleting
order is provided to help readers to understand the integrity constraint built in the rela-
tional database. It is a tough topic to update or delete data from related tables in a rela-
tional database, and a clear and deep discussion on this topic will signifi cantly benefi t the
readers and improve their knowledge and hands - on experience on these issues.

HOMEWORK

I. True/False Selections

 ____ 1. The actual language used in the communications between the client and the server is HTML.

 ____ 2. ASP.NET and .NET Framework are two different models that provide the development
environments to the Web programming.

 ____ 3. The .NET Framework is composed of the Common Language Runtime (called runtime)
and a collection of class libraries.

 ____ 4. You access the .NET Framework by using the class libraries provided by the .NET
Framework, and you implement the .NET Framework by using the tools, such as Visual
Studio.NET, provided by the .NET Framework, too.

 ____ 5. ASP.NET is a programming framework built on the .NET Framework, and it is used to
build Web applications.

 ____ 6. The fundamental component of ASP.NET is the Web Form. A Web Form is the Web page
that users view in a browser, and an ASP.NET Web application can contain one or more
Web Forms.

 ____ 7. A Web Form is a dynamic page that runs on the server side, and it can access server resources
when it is viewed by users via the client browser.

 ____ 8. Similar to traditional Web pages, an ASP.NET Web page can only run scripts on the client
side.

 ____ 9. The controls you added to the Web form will run on the Web server when this Web page is
requested by the user through a client browser.

 ___ 10. To allow a List Box control to respond to a user click as the Web page runs, the AutoPostBack
property of that List Box must be set to False.

II. Multiple Choices

1. When the user sends a request from the user ’ s client browser to request a Web page, the server
needs to build that form and sends it back to the user ’ s browser in the ______ language format.

 a. ASP.NET
 b. .NET Framework
 c. XML
 d. HTML

2. Once a requested Web page is received by the client ’ s browser, the connection between the
client and the server is ________.

 a. Still active
 b. Terminated

c08.indd 654c08.indd 654 4/25/2012 1:58:26 PM4/25/2012 1:58:26 PM

Homework 655

 c. Not active
 d. Either active or inactive

3. As a Web application runs, the programs developed in any .NET - based language are converted
into the _______ codes that can be recognized by the CLR, and the CLR can compile and
execute the MSIL codes by using the Just - In - Time compiler.

 a. Visual Studio.NET
 b. Visual Basic.NET
 c. Microsoft Intermediate Language (MSIL)
 d. C#

4. The terminal fi le of an ASP.NET Web application is a _________ fi le.

 a. Dynamic Linked Library (dll)
 b. MSIL
 c. XML
 d. HTML

5. Because Web pages are frequently refreshed by the server, one must use the ________ to store
the global variable.

 a. Global.asax fi le
 b. Defaulty.aspx fi le
 c. Confi g fi le
 d. Application state

6. One needs to use the _______ method to display a message box in Web applications.

 a. MessageBox.Show()
 b. MessageBox.Display
 c. Java script alert()
 d. Response.Write()

7. Unlike the Windows - based applications that use the Form_Load as the fi rst event procedure,
a Web - based application uses the ________ as the fi rst event procedure.

 a. Start_Page
 b. Page_Load
 c. First_Page
 d. Web_Start

8. To delete data from a relational database, one must fi rst delete the data from the ________
tables, and then one can delete the target data from the _______ table.

 a. Major, minor
 b. Parent, child
 c. Parent, parent
 d. Child, parent

9. To allow the SQL Server database engine to delete all related records from the child tables,
the Delete Rule item in the INSERT And UPDATE Specifi cations box of the Foreign Key
Relationship dialog box must be set to ________.

 a. No action
 b. Cascade
 c. Set default
 d. Set Null

c08.indd 655c08.indd 655 4/25/2012 1:58:26 PM4/25/2012 1:58:26 PM

656 Chapter 8 Accessing Data in ASP.NET

10. To display any message on a running Web page, one must use the _______ method.

 a. MessageBox.Show()
 b. Response()
 c. Response.Redirect()
 d. Response.Write()

III. Exercises

1. Write a paragraph to answer and explain the following questions:

 a. What is ASP.NET?
 b. What is the main component of the ASP.NET Web application?
 c. How is an ASP.NET Web application executed?

2. Suppose we want to delete one record from the Student table in our sample database CSE_
DEPT based on one student_id = H10210 . List all deleting steps and deleting queries, including
the data deleting from the child and the parent tables.

3. Figure 8.78 shows a piece of codes developed in the Page_Load() event procedure. Explain the
function of the statement If Not IsPostBack Then block.

4. Add a Web page and develop the codes to perform the data deleting for the Student page in the
SQLWebUpdateDelete project. The project fi le can be found in the folder DBProjects\Chapter
8 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

5. Use the Cascade options for relationships 1, 2, and 3 listed in Section 8.5.3.2 in this chapter to
create only one deleting query to delete a faculty member from the Faculty table in our sample
database (refer to Section 8.5.3.2 to get a detailed discussion for this issue).

6. Develop a Web page Student.aspx and create a stored procedure to delete one record from
the Student table by using the project OracleWebUpdateDelete . The project fi le can be found
fi n the folder DBProjects\Chapter 8 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1). It is highly recommended to recover those deleted records after they are deleted.

Hints: You need to delete the related records from the LogIn and StudentCourse tables,
and then delete record from the Student table.

Figure 8.78. The codes for the Page_Load() event procedure.

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
If Application("oraConnection").State <> ConnectionState.Open Then
 Application("oraConnection").Open()
End If
If Not IsPostBack Then ‘these items can only be added into the combo box in one time

ComboName.Items.Add("Ying Bai")
 ComboName.Items.Add("Satish Bhalla")

ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")

 ComboName.Items.Add("Jeff Henry")
End If

End Sub

(Page Events) Load

c08.indd 656c08.indd 656 4/25/2012 1:58:26 PM4/25/2012 1:58:26 PM

 Chapter 9

 ASP . NET Web Services

Practical Database Programming with Visual Basic.NET, Second Edition. Ying Bai.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.

657

 We provided a very detailed discussion about the ASP.NET Web applications in the last
chapter. In this chapter, we will concentrate on another ASP.NET - related topic — the ASP.
NET Web Services.

 Unlike the ASP.NET Web applications in which the user needs to access the Web
server through the client browser by sending requests to the server to obtain the desired
information, the ASP.NET Web Services provide an automatic way to search, identify,
and return the desired information required by the user through a set of methods installed
in the Web server, and those methods can be accessed by a computer program, not the
user, via the Internet. Another important difference between the ASP.NET Web applica-
tions and ASP.NET Web Services is that the latter do not provide any graphic user inter-
face s (GUI s), and the users need to create those GUIs themselves to access the Web
services via the Internet.

 When fi nished this chapter, you will

 • Understand the structure and components of ASP.NET Web Services, such as Simple Object
Access Protocol (SOAP), Web Services Description Language (WSDL) and Universal
Description, Discovery, and Integration (UDDI).

 • Create correct SOAP Namespaces for the Web Services to make used names and identifi ers
unique in the user ’ s document.

 • Create suitable security components to protect the Web methods.

 • Build the professional ASP.NET Web Service projects to access our sample database to
obtain required information.

 • Build client applications to provide GUIs to consume a Web Service.

 • Build the professional ASP.NET Web Service projects to insert new records into our sample
database.

 • Build the professional ASP.NET Web Service projects to update and delete data against our
sample database.

 In order to help readers to successfully complete this chapter, fi rst, we need to provide
a detailed discussion about the ASP.NET Web Services and their components.

c09.indd 657c09.indd 657 4/25/2012 7:31:55 PM4/25/2012 7:31:55 PM

658 Chapter 9 ASP.NET Web Services

9.1 WHAT ARE WEB SERVICES AND THEIR COMPONENTS?

 Essentially, the Web services can be considered as a set of methods installed in a Web
server and can be called by computer programs installed on the clients through the
Internet. Those methods can be used to locate and return the target information required
by the computer programs. Web services do not require the use of browsers or HTML,
and therefore Web services are sometimes called application services .

 To effectively fi nd, identify, and return the target information required by computer
programs, a Web service needs the following components:

1. XML (Extensible Markup Language)

2. SOAP

3. UDDI

4. WSDL

 The function of each component is listed below.
XML is a text - based data storage language, and it uses a series of tags to defi ne and

store data. The so - called tags are used to mark up data to be exchanged between applica-
tions. The marked up data then can be recognized and used by different applications
without any problem. As you know, the Web services platform is XML + HTTP (Hypertext
Transfer Protocol), and the HTTP protocol is the most popular Internet protocol. But the
XML provides a kind of language that can be used between different platforms and
programming languages to express complex messages and functions. In order to make
the codes used in the Web services be recognized by applications developed in different
platforms and programming languages, XML is used for the coding in the Web services
to make them up line by line.

SOAP is a communication protocol used for communications between applications.
Essentially, SOAP is a simple XML - based protocol to help applications developed in
different platforms and languages to exchange information over HTTP. Therefore, SOAP
is a platform - independent and language - independent protocol, which means that it can
run at any operating systems with any programming languages. Exactly, a SOAP works
as a carrier to transfer data or requests between applications. Whenever a request is made
to the Web server to request a Web service, this request is fi rst wrapped into a SOAP
message and sent over the Internet to the Web server. Similarly, as the Web service returns
the target information to the client, the returned information is also wrapped into a SOAP
message and sent over the Internet to the client browser.

WSDL is an XML - based language for describing Web services and how to access
them. In WSDL terminology, each Web service is defi ned as an abstract endpoint or a
Port, and each Web method is defi ned as an abstract operation. Each operation or method
can contain some SOAP messages to be transferred between applications. Each message
is constructed by using the SOAP protocol as a request is made from the client. WSDL
defi nes two styles for how a Web service method can be formatted in a SOAP message:
 Remote Procedure Call (RPC) and Document. Both RPC and Document style message
can be used to communicate with a Web Service using an RPC.

 A single endpoint can contain a group of Web methods, and that group of methods
can be defi ned as an abstract set of operations called a Port Type. Therefore, WSDL is an
XML format for describing network services as a set of endpoints operating on SOAP

c09.indd 658c09.indd 658 4/25/2012 7:31:55 PM4/25/2012 7:31:55 PM

9.2 Procedures to Build a Web Service 659

messages containing either document - oriented or procedure - oriented information. The
operations and messages are described abstractly, and then bound to a concrete network
protocol and message format to defi ne an endpoint.

UDDI is an XML - based directory for businesses to list themselves on the Internet,
and the goal of this directory is to enable companies to fi nd one another on the Web and
make their systems interoperable for e - commerce. UDDI is often considered as a tele-
phone book ’ s yellow and white pages. By using those pages, it allows businesses to list
themselves by name, products, locations, or the Web services they offer.

 Summarily, based on these components and their roles discussed above, we can
conclude:

 • The XML is used to tag the data to be transferred between applications.

 • SOAP is used to wrap and pack the data tagged in the XML format into the messages rep-
resented in the SOAP protocol.

 • WSDL is used to map a concrete network protocol and message format to an abstract end-
point, and to describe the Web services available in an WSDL document format.

 • UDDI is used to list all Web services that are available to users and businesses.

 Figure 9.1 shows a diagram to illustrate these components and their roles in an ASP.
NET Web service process.

 By now, we have obtained the fundamental knowledge about the ASP.NET Web
services and their components; next, let ’ s see how to build a Web service.

9.2 PROCEDURES TO BUILD A WEB SERVICE

 Different methods and languages can be used to develop different Web services, such as
the C# Web services, Java Web services, and Perl Web services. In this section, we only
concentrate on developing the ASP.NET Web services using the Visual Basic.NET 2010.
Before we can start to build a real Web service project, let ’ s fi rst take a closer look at the
structure of a Web service project.

Figure 9.1. A typical process of a Web service.

Clients Web
Server

Database
Server

Web
Services

Message in
SOAP Format

ASP.net
Web Services

Database

Prepare
Information

Request in
XML tags

WSDL &
UDDI

c09.indd 659c09.indd 659 4/25/2012 7:31:55 PM4/25/2012 7:31:55 PM

660 Chapter 9 ASP.NET Web Services

9.2.1 The Structure of a Typical Web Service Project

 A typical Web service project contains the following components:

1. As a new Web service project is created, two page fi les and two folders are created under
this new project. The folder App_Code contains the code - behind page that has all real codes
for a simple default Web service and the Web service to be created. The folder App_Data
is used to store all project data.

2. The code - behind page Service.vb . This page contains the real Visual Basic.NET codes for
a simple Web service. Visual Web Developer includes three default declarations to help
users to develop Web services on the top of this page, which are:

Imports System.Web

 Imports System.Web.Services

 Imports System.Web.Services.Protocols

 By default, a new code - behind fi le contains a class named Service that is defi ned with the
WebService and WebServiceBinding attributes. The class defi ned a default Web method
named HelloWorld that is a placeholder, and you can replace it with your own method or
methods later when you develop your own Web service project.

3. The main Web service page fi le Service.asmx . This page is used to display information
about the Web service ’ s methods and provide access to the Web service ’ s WSDL informa-
tion. The extension .asmx means that this is an Active Service Method fi le, and the letter x
is just a rotation of the attached symbol + after the keyword ASP, since the ASP.NET was
called ASP + in the early day. If you open the ASMX fi le on disk, you will see that it actually
contains only one command line:
 < %@ WebService Language = “ vb ” CodeBehind = “ ~ /App_Code/Service.vb ” Class = “ Service ” % >

 It indicates the programming language in which the Web service ’ s code - behind fi le is written,
the code - behind fi le ’ s location, and the class that defi nes the Web service. When you request
the ASMX page through IIS, ASP.NET uses this information to generate the content dis-
played in the Web browser.

4. The confi guration fi le Web.confi g , which is XML - based fi le, is used to set up a confi guration
for the newly created Web service project, such as the namespaces for all kinds of Web
components, Connection string, and default authentication mode. Each Web service project
has its own confi guration fi le.

 Of all fi les and folders discussed above, the code - behind page is the most important
fi le, since all Visual Basic.NET codes related to build a Web service are located in this
page, and our major coding development will be concentrated on this page, too.

9.2.2 The Real Considerations When Building
a Web Service Project

 Based on the structure of a typical Web service project, some issues related to building
an actual Web service project are emphasized here, and these issues are very important
and should be followed carefully to successfully create a Web service project in the Visual
Studio.NET environment.

c09.indd 660c09.indd 660 4/25/2012 7:31:55 PM4/25/2012 7:31:55 PM

9.2 Procedures to Build a Web Service 661

 As a request is made and sent from a Windows or Web form client over the Internet
to the server, the request is packed into a SOAP message and sent to the Internet
Information Service s (IIS) on the client computer, which works as a pseudo server. Then,
the IIS will pass the request to ASP.NET to get it processed in terms of the extension
.asmx of the main service page. ASP.NET checks the page to make sure that the code -
 behind page contains the necessary codes to power the Web Service, exactly to trigger
the associated Web methods to search, fi nd, and retrieve the information required by the
client, pack it to the SOAP message, and return it to the client.

 During this process, the following detailed procedures must be performed:

1. When ASP.NET checks the received request represented in a SOAP message, ASP.NET
will make sure that the names and identifi ers used in the SOAP message must be unique;
in other words, those names and identifi ers cannot be confl icted with any name and identi-
fi er used by any other message. To make names and identifi ers unique, we need to use our
specifi c namespace to place and hold our SOAP message.

2. Generally, a request contains a set of information, not a single piece of information.
To request those pieces of information, we need to create a Web service proxy class to
consume Web services. In other words, we do not want to develop a separate Web
method to query each piece of information, and that will make our project ’ s size terribly
large if we need a lot of information. A good solution is to instantiate an object based on
that class and integrate those pieces of information into that object. All information can
be embedded into that object and can be returned if that object returns. Another choice is
to design a Web method to make it return a DataSet, and it is a convenient way to return
all data.

3. As a professional application, we need to handle the exceptions to make our Web
service as prefect as possible. In that case, we need to create a base class to hold some error -
 checking codes to protect our real class that will be instantiated to an object that contains
all information we need, so this real class should be a child class inherited from the base
class.

4. Since the Web services did not provide any GUI, we need to develop some GUIs in either
Windows - based or Web - based applications to interface to the Web services to display
returned information on GUIs.

 Starting from .NET Frameworks 4.0, a good platform, Windows Communication
Foundation (WCF), is provided as support to build professional Web Services projects.
First, let ’ s have a basic understanding about this new tool.

9.2.3 Introduction to Windows Communication
Foundation (WCF)

 As the development of the service - oriented communications advanced, the software
development has been signifi cantly changed. Whether the message is done with SOAP or
in some other ways, applications that interact through services have become the norm.
For Windows developers, this change is made possible by using the WCF. First released
as part of.NET Framework 3.0 in 2006, then updated in.NET Framework 3.5, the most
recent version of this technology is included in the .NET Framework 4. For a substantial
share of new software built on .NET, WCF is the right foundation.

c09.indd 661c09.indd 661 4/25/2012 7:31:55 PM4/25/2012 7:31:55 PM

662 Chapter 9 ASP.NET Web Services

9.2.3.1 What Is WCF?

 WCF is a framework for building service - oriented applications. Using WCF, you can send
data as asynchronous messages from one service endpoint to another. A service endpoint
can be part of a continuously available service hosted by IIS, or it can be a service hosted
in an application. An end point can be a client of a service that requests data from a
service end point.

 WCF is a unifi ed framework for creating secure, reliable, transacted, and interoper-
able distributed applications. In earlier versions of Visual Studio, there were several
technologies that could be used for communicating between applications.

 If you wanted to share information in a way that enabled it to be accessed from any
platform, you would use a Web service (also known as an ASMX Web service). If you
wanted to just move data between a client and server that are running on the Windows
operating system, you would use .NET Remoting. If you wanted transacted communica-
tions, you would use Enterprise Services (DCOM), or if you wanted a queued model, you
would use Message Queuing (also known as MSMQ).

 WCF brings together the functionality of all those technologies under a unifi ed
programming model. This simplifi es the experience of developing distributed
applications.

 In fact, WCF is implemented primarily as a set of classes on the top of the .NET
Framework ’ s Common Language Runtime (CLR). This allows .NET developers to build
service - oriented applications in an easy way. Also, WCF allows creating clients that access
services in a mutual way, which means that both the client and the service can run in
pretty much the same way as any Windows process did. WCF doesn ’ t defi ne a required
host. Wherever they run, clients and services can interact via SOAP, via a WCF - specifi c
binary protocol, and in other ways.

9.2.3.2 WCF Data Services

 WCF Data Services, formerly known as ADO.NET Data Services, is a component of the
.NET Framework that enables you to create services that use the Open Data Protocol
(OData) to expose and consume data over the Web or Intranet by using the semantics
of representational state transfer (REST). Odata exposes data as resources that are
addressable by URIs. Data is accessed and changed by using standard HTTP verbs of
GET, PUT, POST, and DELETE. OData uses the entity - relationship conventions of
the Entity Data Model to expose resources as sets of entities that are related by
associations.

 WCF Data Services uses the OData protocol for addressing and updating resources.
In this way, you can access these services from any client that supports OData. OData
enables you to request and write data to resources by using well - known transfer formats:
Atom, a set of standards for exchanging and updating data as XML, and JavaScript Object
Notation (JSON), a text - based data exchange format used extensively in AJAX
application.

 WCF Data Services can expose data that originates from various sources as OData
feeds. Visual Studio tools make it easier for you to create an OData - based service by
using an ADO.NET Entity Framework data model. You can also create OData feeds
based on CLR classes and even late - bound or untyped data.

c09.indd 662c09.indd 662 4/25/2012 7:31:55 PM4/25/2012 7:31:55 PM

9.2 Procedures to Build a Web Service 663

 WCF Data Services also includes a set of client libraries, one for general .NET
Framework client applications and another specifi cally for Silverlight - based applications.
These client libraries provide an object - based programming model when you access an
OData feed from environments, such as the .NET Framework and Silverlight.

9.2.3.3 WCF Services

 A WCF service is based on an interface that defi nes a contract between the service and
the client. It is marked with a ServiceContractAttribute attribute, as shown in the codes
in Figure 9.2 .

 You defi ne functions or methods that are exposed by a WCF service by marking them
with an OperationContractAttribute attribute. In addition, you can expose serialized
data by marking a composite type with a DataContractAttribute attribute. This enables
data binding in a client.

 After an interface and its methods are defi ned, they are encapsulated in a class that
implements the interface. A single WCF service class can implement multiple service
contracts.

 A WCF service is exposed for consumption through what is known as an endpoint .
The endpoint provides the only way to communicate with the service; you cannot access
the service through a direct reference as you would with other classes.

 An endpoint consists of an address, a binding, and a contract. The address defi nes
where the service is located — this could be a URL, an FTP address, or a network or local
path. A binding defi nes the way that you communicate with the service. WCF bindings
provide a versatile model for specifying a protocol, such as HTTP or FTP, a security
mechanism, such as Windows Authentication or user names and passwords, and much
more. A contract includes the operations that are exposed by the WCF service class.

 Multiple endpoints can be exposed for a single WCF service. This enables different
clients to communicate with the same service in different ways. For example, a banking
service might provide one endpoint for employees and another for external customers,
each using a different address, binding, and/or contract.

9.2.3.4 WCF Clients

 A WCF client consists of a proxy that enables an application to communicate with a
WCF service, and an endpoint that matches an endpoint defi ned for the service. The proxy
is generated on the client side in the app.confi g fi le and includes information about the
types and methods that are exposed by the service. For services that expose multiple
endpoints, the client can select the one that best fi ts its needs, for example, to communicate
over HTTP and use Windows Authentication.

Figure 9.2. The Service interface and contract.

<ServiceContract()>
Public Interface IService1
<OperationContract()>
Function GetData(ByVal value As String) As String

c09.indd 663c09.indd 663 4/25/2012 7:31:55 PM4/25/2012 7:31:55 PM

664 Chapter 9 ASP.NET Web Services

 After a WCF client has been created, you reference the service in your code just as
what you could do for any other object. For example, to call the GetData() method shown
in Figure 9.2 , you would write the codes shown in Figure 9.3 .

 In most cases, you need to create a proxy to set up a reference to the server in the
client to access the operations defi ned in the server.

9.2.3.5 WCF Hosting

 From a developer perspective, WCF provides two alternatives for hosting services, which
are both mostly identical under the covers. The easier of the two alternatives is to host
services inside an ASP.NET application, the more fl exible and more explicit alternative
is to host services yourself and in whichever application process you choose.

 Hosting WCF services in ASP.NET is very simple and straightforward and very
similar to the ASMX model. You can either place your entire service implementation in
a *.svc fi le just as with ASP.NET Web services *.asmx fi les, or you can reference a service
implementation residing in a code - behind fi le or some other assembly. With respect to
how the service implementation class is located (and possibly compiled), none of these
options differ much from how you would typically create an ASMX Web service, even
the attributes of the @Service directive are the same as those for the @WebService
directive.

 The important difference between WCF and ASMX is that the WCF service will not
do anything until you specify precisely how it shall be exposed to the outside world. An
ASMX service will happily start talking to the world once you place the *.asmx fi le into
an IIS virtual directory. A WCF service will not talk to anybody until you tell it to do so
and how to do so.

9.2.3.6 WCF Visual Studio Templates

 Visual Studio.NET provides a set of WCF templates to help developers build different
Web services and applications. In fact, WCF Visual Studio templates are predefi ned
project and item templates you can use in Visual Studio to quickly build WCF services
and surrounding applications.

 WCF Visual Studio templates provide a basic class structure for service development.
Specifi cally, these templates provide the basic defi nitions for service contract, data con-
tract, service implementation, and confi guration. You can use these templates to create a

Figure 9.3. The codes in the client side to call the operation GetData() in the server.

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim client As New ServiceReference1.Service1Client
Dim returnString As String

returnString = client.GetData(TextBox1.Text)
Label1.Text = returnString

End Sub

c09.indd 664c09.indd 664 4/25/2012 7:31:55 PM4/25/2012 7:31:55 PM

9.2 Procedures to Build a Web Service 665

simple service with minimal code interaction, as well as a building block for more advanced
services.

 Two popular templates are WCF Service Application template and WCF Service
Library template. Both are located under the New Project\Visual Basic\WCF command
folder.

9.2.3.6.1 WCF Web Service Application Template When you create a new Visual
Basic.NET project using the WCF Web Service Application template, the project
includes the following four fi les:

1. Service host fi le (Service.svc). The service host fi le indicates the general properties of this
service, including the language used, service name, and the name of the code - behind fi le.

2. Service contract fi le (IService.vb). The service contract fi le is an interface that has WCF
service attributes applied. This fi le provides a defi nition of a simple service to show you how
to defi ne your services, and includes parameter - based operations and a simple data contract
sample. This is the default fi le displayed in the code editor after creating a WCF service
project.

3. Service implementation fi le (Service.vb). The service implementation fi le implements the
contract defi ned in the service contract fi le.

4. Web confi guration fi le (Web.confi g). The confi guration fi le provides the basic elements of
a WCF service model with a secure HTTP binding. It also includes an endpoint for the
service and enables metadata exchange.

 The template automatically creates a Website that will be deployed to a virtual direc-
tory and hosts a service in it.

9.2.3.6.2 WCF Service Library Project Template When you create a new Visual
Basic.NET project using the WCF Service Library template, the new project automati-
cally includes the following three fi les:

1. Service contract fi le (IService.vb).

2. Service implementation fi le (Service.vb).

3. Application confi guration fi le (App.confi g).

 Now, let ’ s start to build our Web service project using the WCF template. We prefer
to use the WCF Web Service Application template and include our Web service in our
ASP.NET application project.

9.2.4 Procedures to Build an ASP.NET Web Service

 The advantages of using the WCF templates to build our Web services are obvious: for
instance, the protocols of the interface and contract have been predefi ned. However, you
must follow up those protocols to fi ll your codes, such as operations and methods. An
easy way to do these is to directly add our Web service with our operations in our ways.
In the following sections, we will not use the protocols provided by WCF and directly
create our Web services and place them into an ASP.NET Web services *.asmx fi le.

c09.indd 665c09.indd 665 4/25/2012 7:31:55 PM4/25/2012 7:31:55 PM

666 Chapter 9 ASP.NET Web Services

 Web service is basically composed of a set of Web methods that can be called by the
computer programs in the client side. To build those methods, generally one needs to
perform the following steps:

1. Create a new WCF Web Service project.

2. Add a new ASP.NET Web Service project.

3. Create a base class to handle the error checking to protect our real class.

4. Create our real Web service class to hold all Web methods and codes to response to requests.

5. Add all Web methods into our Web service class.

6. Develop the detail codes for those Web methods to perform the Web services.

7. Build a Windows - based or Web - based project to consume the Web service to pick up and
display the required information on the GUI.

8. Store our ASP.NET Web service project fi les in a safe location.

 In this chapter, we try to develop the following projects to illustrate the building and
implementation process of Web services project:

 • Build a professional ASP.NET Web Service project to access the SQL Server database to
obtain required information.

 • Build client applications to provide GUIs to consume a Web Service.

 • Build a professional ASP.NET Web Service project to insert new records into the SQL
Server database.

 • Build a professional ASP.NET Web Service project to update and delete data against the
SQL Server database.

 • Build a professional ASP.NET Web Service project to access the Oracle database to obtain
required information.

 • Build a professional ASP.NET Web Service project to insert new records into the Oracle
database.

 • Build a professional ASP.NET Web Service project to update and delete data against the
Oracle database

 Based on procedures discussed above, we can start to build our fi rst Web service
project WebServiceSQLSelect .

9.3 BUILD ASP.NET WEB SERVICE PROJECT TO ACCESS SQL
SERVER DATABASE

 To create a new ASP.NET Web Service project, perform the following operations:

1. Open the Windows Explorer to create a new folder Chapter 9 under your root drive C.

2. Open the Visual Studio.NET 2010 and go to File|New Web Site item.

3. On the opened New Web Site wizard, make sure that the Visual Basic is selected under
the Recent Templates , and select the WCF Service item from the Templates list. Enter
C:\Chapter 9\WebServiceSQLSelect into the box that is next to the Web Location box,
which is shown in Figure 9.4 .

c09.indd 666c09.indd 666 4/25/2012 7:31:55 PM4/25/2012 7:31:55 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 667

 One point to be noted is that Visual Studio.NET 2010 introduced a Web project
model that can use either IIS or the Local File System to develop Web applications. This
model is good only when developing ASP.NET Web Services and Web Pages that are
running on a local Web server. This is our situation since we will run our Web service in
our local machine and use it as a development server, so the File System is used for our
server location, which is shown in Figure 9.4 .

 Click on the OK button to create this new WCF Web service project in our default
folder C:\Chapter 9 .

9.3.1 Files and Items Created in the New Web Service Project

 After this new WCF Web service project is created, four items are produced in the
Solution Explorer window, which are shown in Figure 9.5 .

1. Service host fi le (Service.svc).

2. Service contract fi le (IService.vb).

3. Service implementation fi le (Service.vb).

4. Web confi guration fi le (Web.confi g).

Figure 9.4. Create a new WCF Web Service project.

c09.indd 667c09.indd 667 4/25/2012 7:31:55 PM4/25/2012 7:31:55 PM

668 Chapter 9 ASP.NET Web Services

 Since we want to build our Web service in our customer way, we do not need to use
fi les 2 and 3. Therefore, right click on these two fi les and select the Delete item to remove
both of them from our project.

 Perform the following operations to add a new Web service into our project:

1. Right - click on our new project WebServiceSQLSelect from the Solution Explorer window
and select Add New Item .

2. On the opened Add New Item wizard, select the Web Service from the Template list.

3. Enter WebServiceSQLSelect.asmx into the Name box.

4. Click on the Add button to complete this item addition operation.

 The modifi ed Web service project is shown in Figure 9.6 .
 Two folders, App_Code and App_Data , are also created in this new project. The

former is used to store our code - behind page WebServiceSQLSelect.vb , and the latter
is used to save the project data. The code - behind page WebServiceSQLSelect.vb is the
place we need to create and develop the codes for our Web services. This page contains
a default class named Service that is defi ned with the WebService and WebServiceBinding
attributes. The class defi ned a default Web method HelloWorld that is a placeholder, and
we can replace it with our own method or methods later on based on the requirement of
our Web service project.

Figure 9.6. The modifi ed Web service project.

Figure 9.5. Newly created items for a WCF Web service project.

c09.indd 668c09.indd 668 4/25/2012 7:31:55 PM4/25/2012 7:31:55 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 669

 The main service page fi le WebServiceSQLSelect.asmx is used to display informa-
tion about the Web service ’ s methods and provide access to the Web service ’ s WSDL
information. The confi guration fi le Web.confi g is used to set up a confi guration for our
new Web service project, such as the namespaces for all kinds of Web components, con-
nection strings for data components and Web services, and Windows authentication mode.
All of these components are automatically created and added into our new project. More
important, the page fi le WebServiceSQLSelect.asmx is designed to automatically create
extensible WSDL, dispatch Web methods, serialize and deserialize parameters, and
provide hooks for message interception within our applications. But now the default fi le
WebServiceSQLSelect.asmx only contains a compile directive when a new Web service
project is created and opened from the File System.

 Now let ’ s modify the Service host fi le Service.svc to make it matched to our Web
service.

 Double - click on this fi le from the Solution Explorer window to open this fi le. Perform
the following modifi cations to this fi le:

1. Change the Service ’ s name to WebServiceSQLSelect .

2. Change the name of the code - behind fi le to WebServiceSQLSelect.vb .

 Your modifi ed Service.svc fi le should match one that is shown in Figure 9.7 .
 Now double - click on the code - behind page WebServiceSQLSelect.vb to open this

fi le that is shown in Figure 9.8 , and let ’ s have a closer look at the codes in this page.

Figure 9.7. The Modifi ed Service host fi le Service.svc.

Figure 9.8. The default codes for the code - behind page WebServiceSQLSelect.vb.

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

' To allow this Web Service to be called from script, using ASP.NET AJAX, uncomment the following line.
' <System.Web.Script.Services.ScriptService()> _
<WebService(Namespace:="http://tempuri.org/")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class WebServiceSQLSelect

Inherits System.Web.Services.WebService

<WebMethod()> _
Public Function HelloWorld() As String

Return "Hello World"
End Function

End Class

A

B
C
D
E

F

(General) (Declarations)

c09.indd 669c09.indd 669 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

670 Chapter 9 ASP.NET Web Services

A. The Web services - related namespaces that contains the Web service components are
imported fi rst to allow us to access and use those components to build our Web service
project. A detailed description about those namespaces and their functionalities is shown
in Table 9.1 .

B. Some WebService attributes are defi ned in this part. Generally, WebService attributes
are used to identify additional descriptive information about deployed Web Services. The
namespace attribute is one of the examples. As we discussed in the last section, we need
to use our own namespace to store and hold names and identifi ers used in our SOAP
messages to distinguish them with any other SOAP messages used by other Web services.
Here, in this new project, Microsoft used a default namespace http://tempuri.org/ , which is
a temporary system - defi ned namespace to identify all Web Services code generated by
the .NET framework, to store this default Web method. We need to use our own
namespace to store our Web methods later when we deploy our Web services in a real
application.

C. This Web Service Binding attribute indicates that the current Web service complies with
the Web Services Interoperability Organization (WS - I.org) Basic Provide 1.1. Here, exactly
a binding is equivalent to an interface in which it defi nes a set of concrete operations.

D. This attribute indicates that the default class Service is created during the designing time
by the designer.

E. Our Web service class WebServiceSQLSelect is a child class that is derived from the
parent class WebService located in the namespace System.Web.Services .

F. The default Web method HelloWorld is defi ned as a global function, and this function
returns a string “ Hello World ” when it is returned to the client.

 Next, double - click on the main service page fi le WebServiceSQLSelect.asmx that
is the entry point of our project to open it. Only one code line that contains a compile
directive shown below is displayed since this project is created and opened using a File
System.

 < %@ WebService Language = “ VB ” CodeBehind = “ ~ /App_Code/WebServiceSQLSelect.vb ”

 Class = “ WebServiceSQLSelect ” % >

 As we mentioned in the last section, this code indicates the programming language
in which the Web service ’ s code - behind fi le is written, the code - behind fi le ’ s name and
location, and the class that defi nes the Web service. Now let ’ s run the default HelloWorld
Web service project to get a feeling about what it looks like and how it works.

 Click on the Start Debugging button to run the default HelloWorld project.

Table 9.1. The Web Service namespaces

Namespace Functionality

System.Web Enable browser and server communication using the .Net Framework

System.Web.Services Enable creations of XML Web services using ASP.NET

System.Web.Services.Protocols Define the protocol used to transmit data across the wire during the communication
between the Web Service clients and servers

c09.indd 670c09.indd 670 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 671

9.3.2 A Feeling of the Hello World Web Service Project
As it Runs

 After the project running, a message box is displayed with the following warning message
displayed, which is shown in Figure 9.9 .

 Generally, a Web service project should not be debugged when it is deployed, and
this is defi ned in the Web.confi g fi le with a control of disabling the debugging. But the
debugging can be enabled during the development process by modifying the Web.confi g
fi le. To do that, keep the default radio button selected and click on the OK button in
this message box to continue to run our project. Our WebServiceSQLSelect.asmx
page should be the starting page, and the following IE page is displayed as shown in
Figure 9.10 .

 This page displays the Web service class name WebServiceSQLSelect and all Web
methods or operations developed in this project. By default, only one method HelloWorld
is created and used in this project.

 Below the method, the default namespace in which the current method or operation
is located is shown up, and a recommendation that suggests us to create our own namespace
to store our Web service project is displayed. Following this recommendation, some
example namespaces used in C#, Visual Basic, and C ++ are listed.

 Now, let ’ s access our Web service by clicking on the HelloWorld method. The test
method page is shown up, which is shown in Figure 9.11 .

 The Invoke button is used to test our HelloWorld method using the HTTP Protocol.
Below the Invoke button, some message examples that are created by using different
protocols are displayed. These include the requesting message and responding message
created in SOAP 1.1, SOAP 1.2, and HTTP Post. The placeholder that is the default
namespace http://tempuri.org/ should be replaced by the actual namespace when this
project is modifi ed to a real application.

 Now click on the Invoke button to run and test the default method HelloWorld.
 As the Invoke button is clicked, a URL that contains the default namespace and the

default HelloWorld method ’ s name is activated, and a new browser window that is shown
in Figure 9.12 is displayed. When the default method HelloWorld is executed, the main

Figure 9.9. The Debugging Not Found message box.

c09.indd 671c09.indd 671 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

672 Chapter 9 ASP.NET Web Services

Figure 9.10. The running status of the default Web service project.

service page WebServiceSQLSelect.asmx sends a request to the IIS, and furthermore,
the IIS sends it to the ASP.NET runtime to process this request based on that URL.

 The ASP.NET runtime will execute the HelloWorld method and pack the returned
data as a SOAP message, and send it back to the client. The returned message contains
only a string object, that is, a string of “Hello World ” for this default method.

 In this returned result, the version and the encoding of the used XML code is indi-
cated fi rst. The xmlns attribute is used to indicate the namespace used by this String
object that contains only a string of “ Hello World. ”

 As we discussed in the previous section, ASP.NET Web service did not provide any
GUI, so the running result of this default project is represented using the XML codes in
some Web interfaces we have seen. This is because those Web interfaces are only provided
and used for testing purposes for the default Web service. In a real application, no such
Web interface will be provided and displayed.

 Click on the Close button that is located on the upper - right corner of the browser
to close two browser pages.

 At this point, we should have a basic understanding and feeling about a typical Web
service project and its structure, as well as its operation process. Next, we will build our
own Web service project by developing the codes to perform the request to our sample
database, that is, to the Faculty table, to get the desired faculty information.

c09.indd 672c09.indd 672 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 673

Figure 9.11. The test method page.

Figure 9.12. The running status of the default method.

c09.indd 673c09.indd 673 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

674 Chapter 9 ASP.NET Web Services

 We will develop our Web service project in the following sequence:

1. Modify the default namespace to create our own Web service namespace.

2. Create a base class to handle error - checking codes to protect our real Web service class.

3. Create our real Web service class to hold all Web methods and codes to response to requests
to pick up desired faculty information.

4. Add Web methods into our Web service class to access our sample database.

5. Develop the detail codes for those Web methods to perform the Web services.

6. Build a Windows - based and a Web - based project to consume the Web service to pick up
and display the required information on the GUI.

7. Deploy our completed Web service to IIS.

 Let ’ s start from the step 1.

9.3.3 Modify the Default Namespace

 We will modify the default Web service namespace to create our own namespace to store
our Web service project.

 Open the code - behind page WebServiceSQLSelect.vb by double clicking - on it
from the Solution Explorer window, and perform the modifi cations that are shown in
Figure 9.13 to this page.

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. We need to use our own namespace to replace the default namespace used by Microsoft
to tell the ASP.NET runtime the location from which our Web service can be found and
loaded as it runs. This specifi c namespace is unique because it is the home page of the Wiley
appended with the book ’ s ISBN number. In fact, you can use any unique location as your
specifi c namespace to store your Web service project if you like.

Figure 9.13. The modifi ed code - behind page.

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

' To allow this Web Service to be called from script, using ASP.NET AJAX, uncomment the following line.
' <System.Web.Script.Services.ScriptService()> _
<WebService(Namespace:="http://www.wiley.com/9780521712354/")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class WebServiceSQLSelect

Inherits System.Web.Services.WebService

<WebMethod()> _
Public Function HelloWorld() As String

Return "Hello World"
End Function

End Class

A

(General) (Declarations)

c09.indd 674c09.indd 674 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 675

 Double - click on our main service fi le WebServiceSQLSelect.asmx from the
Solution Explorer window to open it. Now click on the Start Debugging button to run
our new Web service project; a default Web interface is displayed with our project name,
as shown in Figure 9.14 .

 If you click on the default method HelloWorld and then Invoke button to test that
method, you can fi nd that the namespace has been updated to our new specifi c namespace,
 http://www.wiley.com/9780521712354/ .

 A point is that you must set the service fi le WebServiceSQLSelect.asmx as the start
page before you can run our service project since this fi le is the entry point of our Web
service project.

9.3.4 Create a Base Class to Handle Error Checking for Our
Web Service

 In this section, we want to create a parent class or base class and use it to handle some
possible errors or exceptions as our project runs. It is possible for some reasons that our
requests cannot be processed and returned properly. One of the most possible reasons
for that is the security issue. To report any errors or problems occurred in the processing
of requests, a parent or base class is a good candidate to perform those jobs. We name
this base class as SQLSelectBase , and it has two member data:

 • SQLRequestOK As Boolean : True if the request is fi ne, otherwise a False is set.

 • SQLRequestError As String : A string used to report the errors or problems.

 To create a new base class in our new project, right - click on our new service project
WebServiceSQLSelect from the Solution Explorer window. Then select the Add New
Item from the pop - up menu. On the opened Add New Item wizard, select the Class item
from the Template list, and enter SQLSelectBase.vb into the Name box as our new class
name. Then click on the Add button to add this new class into our project.

 Click Yes to the message box to place this new class into the App_Code folder in
our new Web service project.

Figure 9.14. The running status of the modifi ed Web service project.

c09.indd 675c09.indd 675 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

676 Chapter 9 ASP.NET Web Services

 Now double - click on this newly added class and enter the codes that are shown in
Figure 9.15 into this class as the class member data.

 Two public class member data, SQLRequestOK and SQLRequestError , are added
into this new base class. These two data will work together to report possible errors or
problems during the request processing.

9.3.5 Create the Real Web Service Class

 Now we need to create our real Web service class that will be instantiated and returned
to us with our required information as the project runs. This class should be a child class
of our base class SQLSelectBase we just created. We name this class as SQLSelectResult .

 Right - click on our new Web service project WebServiceSQLSelect from the Solution
Explorer window, and select the Add New Item from the pop - up menu. On the opened
Add New Item wizard, select the Class item from the Template list and then enter the
SQLSelectResult.vb into the Name box as the name for this new class, and then click
on the Add button to add this new class into our project.

 Click Yes to the message box to place this new class into the App_Code folder in
our new Web service project.

 Double - click on this newly added class and enter the codes that are shown in Figure
 9.16 into this class as the member data to this class.

Figure 9.16. The member data for the class SQLSelectResult.

Imports Microsoft.VisualBasic

Public Class SQLSelectResult
Inherits SQLSelectBase

'member data
Public FacultyID As String
Public FacultyOffice As String
Public FacultyPhone As String
Public FacultyCollege As String
Public FacultyTitle As String
Public FacultyEmail As String

End Class

SQLSelectResult (Declarations)

Figure 9.15. The class member data.

Imports Microsoft.VisualBasic

Public Class SQLSelectBase
'class member data
Public SQLRequestOK As Boolean
Public SQLRequestError As String

End Class

SQLSelectBase (Declarations)

c09.indd 676c09.indd 676 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 677

 Since this class will be instantiated to an object that will be returned with our desired
faculty information to us as the Web method is called, so all desired faculty information
should be added into this class as the member data. When we make a request to this Web
service project, and furthermore, to our sample database, the following desired faculty
data should be included and returned:

 • Faculty_id

 • Faculty offi ce

 • Faculty phone

 • Faculty college

 • Faculty title

 • Faculty email

 All of these pieces of information, which can be exactly mapped to all columns in the
Faculty table in our sample database, are needed to be added into this class as the member
data. This does not look like a professional schema, yes, that is true. Another better option
is that we do not need to create any class that will be instantiated to an object to hold
these pieces of information, instead we can use a DataSet to hold those pieces of informa-
tion and allow the Web method to return that DataSet as a whole package for those pieces
of faculty information. But that better option is relatively complicated compared with our
current class. So right now we prefer to start our project with an easier way, and later on
we will discuss how to use the DataSet to return our desired information in the following
sections.

 Let ’ s take a look at these added member data for this class.
 As we mentioned before, this class is a child class of our base class SQLSelectBase ;

in other words, this class is inherited from that base class. Six pieces of faculty information
are declared here as the member data for this class.

 Next, we need to take care of our Web method that will respond to our request and
return our desired faculty information to us as this method is called.

9.3.6 Add Web Methods into Our Web Service Class

 Before we can add a Web method to our project and perform the coding process for it,
we want to emphasize an important point that is easy to be confused by users, which is
the Web service class and those classes we just created in the last sections.

 The Web service class WebServiceSQLSelect.vb is a system class, and it is used to
contain all codes we need to access the Web service and Web methods to execute our
requests. The base class SQLSelectBase and the child class SQLSelectResult are created
by us, and they belong to application classes. These application classes will be instantiated
to the associated objects that will be used by the Web methods developed in the system
class WebServiceSQLSelect.vb to return the requested information as the project runs.
Keep this difference in mind and this will help you understand them better as you develop
a new Web service project.

 We can modify the default method HelloWorld and make it as our new Web
method in our system class WebServiceSQLSelect.vb . This method will use an object

c09.indd 677c09.indd 677 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

678 Chapter 9 ASP.NET Web Services

instantiated from the application class SQLSelectResult we created in the previous
section to hold and return the faculty information we requested.

9.3.7 Develop the Codes for Web Methods to Perform the
Web Services

 The name of this Web method is GetSQLSelect() , and it contains an input parameter
Faculty Name with the following functions as this method is called:

1. Set up a valid connection to our sample database.

2. Create all required data objects and local variables to perform the necessary data operations
later.

3. Instantiate a new object from the application class SQLSelectResult and use it as the
returned object that contains all required faculty data.

4. Execute the associated data object ’ s method to perform the data query to the Faculty table
based on the input parameter, Faculty Name.

5. Assign each piece of acquired information obtained from the Faculty table to the associated
class member data defi ned in the class SQLSelectResult .

6. Release and clean up all data objects used.

7. Return the object to the client.

9.3.7.1 Web Service Connection Strings

 Among these functions, function 1 is a challenging task. There are two ways to perform
this database connection in Web service applications. One way is to directly use the con-
nection string and connection object in the Web service class as we did in the previous
projects. Another way is to defi ne the connection string in the Web.confi g fi le. The second
way is better since the Web.confi g fi le provides an attribute <connectionStrings/> for
this purpose, and ASP.NET 4.0 recommends to store the data components ’ connection
string in the Web.confi g fi le.

 In this project, we will use the second way to store our connection string. To do that,
open the Web.confi g fi le by double - clicking on it, and enter the following codes into this
confi guration fi le (just above the confi guration ending tag </confi guration >):

< connectionStrings >
 < add name = “ sql_conn ” connectionString = “ Server = localhost\SQL2008EXPRESS; _
 Integrated Security = SSPI;Database = CSE_DEPT; ” / >
 < /connectionStrings >

 The following important points should be noted when creating this connection
string:

1. This connectionStrings attribute must be written in a single line in the Web.confi g fi le.
However, because of the space limitation, here, we used two lines to represent this attribute.
But in your real codes, you must place this attribute in a single line in your Web.confi g
fi le; otherwise, a grammar problem will be encountered.

c09.indd 678c09.indd 678 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 679

2. Web services that require a database connection in this project use SQL Server authentica-
tion with a login ID and password for a user account. Because we used Windows
Authentication Mode when we created our sample database in Chapter 2 , we do not need
any login ID and password for the database connection in our application. One important
issue is that the database we are using is not a real SQL Server 2008 database, instead, we
are using SQL Server 2008 Express, so we have to add the InstanceName of our database,
which is SQL2008EXPRESS , into this connection string to tell the ASP.NET runtime
to make the correct connection. Attach this instance name after the localhost in the
ServerName item.

 To test and confi rm this connectionString , we can develop some codes and modify
the codes in the default HelloWorld Web method in the code - behind page to do that.
Close the Web.confi g fi le and open the code - behind page WebServiceSQLSelect.vb
by double - clicking on it from the Solution Explorer window, and enter the codes shown
in Figure 9.17 into this page.

 All modifi ed codes have been highlighted in boldface, and let ’ s see how this piece of
codes works to test our connection string defi ned in the web.confi g fi le.

A. The namespace that contains the SQL Server Data Provider is added into this page using
the Imports command since we need to use those data components in this page.

B. The ConnectionStrings property of the Confi gurationManager class is used to pick up
the connection string we defi ned in the Web.confi g fi le, which can be considered as a
default connection confi guration. The connection name sql_conn , which works as an
argument for this property, must be identical with the name we used for the connection

Figure 9.17. The modifi ed codes to test the connection string.

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Data.SqlClient

<WebService(Namespace:="http://www.cambridge.org/9780521712354/")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class WebServiceSQLSelect

Inherits System.Web.Services.WebService

<WebMethod()> _
Public Function HelloWorld() As String

Dim cmdString As String=ConfigurationManager.ConnectionStrings("sql_conn").ConnectionString
Dim sqlConnection As New SqlConnection
sqlConnection.ConnectionString = cmdString
sqlConnection.Open()
If sqlConnection.State <> Data.ConnectionState.Open Then

MsgBox("Database Open is failed")
Else

MsgBox("Database Open is successful")
sqlConnection.Close()

End If
Return "Hello World"

End Function

End Class

A

B
C

D
E

F

WebServiceSQLSelect HelloWorld

c09.indd 679c09.indd 679 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

680 Chapter 9 ASP.NET Web Services

name in the Web.confi g fi le. When this property is used, it returns a Connection
StringSettingsCollection object containing the contents of the Connection-
StringsSection object for the current application ’ s default confi guration, and a
ConnectionStringsSection object contains the contents of the confi guration fi le ’ s con-
nectionStrings section.

C. A new SQL Connection object is created and initialized with the connection string we
obtained above.

D. The Open() method of the SQL Connection object is executed to try to open our sample
database and set up a valid connection.

E. By checking the State property of the Connection object, we can determine whether this
connection is successful or not. If the State property is not equal to the ConnectionState.
Open , which means that a valid database connection has not been installed, a warning
message is displayed.

F. Otherwise, the connection is successful, a successful message is displayed, and the connec-
tion is closed.

 Now you can run the project by clicking on the Start Debugging button. Click on the
HelloWorld method from the built - in Web interface, and then click on the Invoke button
to execute that method to test our database connection.

 A successful message should be displayed if this connection is fi ne. Click on the OK
button on the message box, and you can get the returned result from the execution of
the method HelloWorld .

 An issue is that when you run this project, it may take a little while to complete this
database connection. The reason for that is because the MsgBox() is used, and it is dis-
played behind the current Web page when it is activated. You need to move the current
page by dragging it down, and then you can fi nd that MsgBox. Click on the OK button
to that MsgBox, and the project will be continued, and the running result will be
displayed.

 Another issue is that this piece of codes is only used for testing purposes, and we will
modify this piece of codes and place it into a user - defi ned function SQLConn() later when
we develop our real project.

9.3.7.2 Modify the Existing HelloWorld Web Method

 Now let ’ s start to take care of our Web methods. In this project, we want to modify the
default method HelloWorld as our fi rst Web method and develop codes for this method
to complete the functions (2 – 7) listed at the beginning of this section.

 Open the Web service code - behind page if it is not opened, and make the following
modifi cations:

1. Change the Web method ’ s name from HelloWorld to GetSQLSelect .

2. Change the data type of the returned object of this method from String to SQLSelectResult ,
which is our child application class we developed before.

3. Add a new input parameter FacultyName as an argument to this method using Passing -
 By - Value format.

4. Create a new object based on our child application class SQLSelectResult and name this
object as SQLResult .

c09.indd 680c09.indd 680 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 681

5. Create the following data components used in this method:

a. SQL Command object sqlCommand .
b. SQL Data Reader object sqlReader .

6. Replace the default returned object in the method from “ Hello World ” string to the newly
created object SQLResult .

7. Move the connection testing codes we developed in this section into a user - defi ned function
SQLConn() .

 Your fi nished Web method GetSQLSelect() is shown in Figure 9.18 .
 Let ’ s take a closer look at this piece of modifi ed codes to see how it works.

A. Modifi cation steps 1, 2, and 3 listed above are preformed at this line. The method ’ s name
and the returned data type are modifi ed to GetSQLSelect and SQLSelectResult , respec-
tively. Also, an input parameter FacultyName is added into this method as an argument.

B. Modifi cation step 4 is performed at this line, and an instance of the application class
SQLSelectResult is created here.

C. Modifi cation step 5 is performed at this line, and two SQL data objects are created: sql-
Command and sqlReader , respectively.

D. Modifi cation step 6 is performed at this line, and the original returned data is updated to
the current object SQLResult .

E. Modifi cation step 7 is performed here, and a new user - defi ned function SQLConn() is
created with the codes we developed to test the connection string above.

F. If this connection has failed, a warning message is displayed, and the returned connection
object is assigned with Nothing. Otherwise, a successful connection object is assigned to
the returned connection object conn .

G. The connection object is returned to the Web method.

Figure 9.18. The modifi ed Web method — GetSQLSelect().

<WebMethod()> _
Public Function GetSQLSelect (ByVal FacultyName As String) As SQLSelectResult

Dim sqlConnection As New SqlConnection
Dim SQLResult As New SQLSelectResult
Dim sqlCommand As New SqlCommand
Dim sqlReader As SqlDataReader

Return SQLResult
End Function

Protected Function SQLConn() As SqlConnection
Dim cmdString As String = ConfigurationManager.ConnectionStrings("sql_conn").ConnectionString
Dim conn As New SqlConnection

conn.ConnectionString = cmdString
conn.Open()
If conn.State <> Data.ConnectionState.Open Then

MsgBox("Database Open is failed")
conn = Nothing

End If
Return conn

End Function

A

B
C

D

E

F

G

WebServiceSQLSelect GetSQLSelect

c09.indd 681c09.indd 681 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

682 Chapter 9 ASP.NET Web Services

 Next, we need to develop the codes to execute the associated data object ’ s method
to perform the data query to the Faculty table based on the input parameter, Faculty
Name.

9.3.7.3 Develop the Codes to Perform the Database Queries

 To perform the database query via our Web service project, we need to perform the fol-
lowing coding developments:

 • Add the major codes into our Web method to perform the data query.

 • Create a user - defi ned subroutine FillFacultyReader() to handle the data assignments to our
returned object.

 • Create an error or exception - processing subroutine ReportError() to report any errors
encountered during the project runs.

 Now, let ’ s fi rst concentrate on adding the codes to perform the data query to our
sample database CSE_DEPT .

 Open our code - behind page and add the codes that are shown in Figure 9.19 into our
Web method. The codes we developed in the previous sections have been highlighted
with the gray color as the background. This sentence has been reworded for clarity. Please
check and confi rm it is correct.

 Let ’ s take a closer look at these newly added codes to see how they work.

A. The namespace System.Data is added into this page since some basic data components
and data types are defi ned in this namespace, and we need to use those components in this
page.

B. The query string is declared at the beginning of this method. One point you may have
already noted is that a + symbol is used here to replace the concatenated operator & that
is used in our Visual Basic.NET project before. The Web service page allows us to use this
one as the concatenating operator.

C. Initially, we assume that our Web method works fi ne by setting the Boolean variable
SQLRequestOK , which we defi ned in our base class SQLSelectBase , to True . This vari-
able will keep this value until an error or exception is encountered.

D. The user - defi ned function SQLConn() , whose detailed codes are shown in Figure 9.18 , is
called to perform the database connection. This function will return a connection object if
the connection is successful. Otherwise, the function will return a Nothing object.

E. If a Nothing is returned from calling the function SQLConn() , which means that the
database connection has something wrong, a warning message is displayed, and the user -
 defi ned subroutine ReportError() , whose codes are shown in Figure 9.21 , is executed to
report the encountered error.

F. The Command object is initialized with the connection object that is obtained from the
function SQLConn() , command type, and command text. Also, the input parameter @
facultyName is assigned with the real input parameter FacultyName , which is an input
parameter to the Web method. One issue is the data type for this parameter. For
this application, it does not matter whether a SqlDbType.Char or SqlDbType.Text is
used.

G. The ExecuteReader() method of the command class is called to invoke the DataReader
to perform the data query from our Faculty table.

c09.indd 682c09.indd 682 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 683

H. By checking the HasRows property of the DataReader, we can determine whether this
query is successful or not. If this property is True , which means that at least one row has
been returned and the query is successful, the user - defi ned subroutine FillFacultyReader()
is called to assign all queried data columns to the associated member data we created in
our child class SQLSelectResult . Two arguments, SQLResult , which is our returning
object, and sqlReader , which is our DataReader object, are passed into that subroutine.
The difference between these two arguments is the passing mode; the returning object
SQLResult is passed by using a passing - by - reference mode, which means that an address
of that object is passed into the subroutine, and all assigned data columns to that object

Figure 9.19. The modifi ed codes for the Web method.

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Data.SqlClient
Imports System.Data

' To allow this Web Service to be called from script, using ASP.NET AJAX, uncomment the following line.
' <System.Web.Script.Services.ScriptService()> _
<WebService(Namespace:="http://www.wiley.com/9780521712354/")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class WebServiceSQLSelect

Inherits System.Web.Services.WebService

<WebMethod()> _
Public Function GetSQLSelect(ByVal FacultyName As String) As SQLSelectResult

Dim cmdString As String = "SELECT faculty_id, office, phone, college, title, email FROM Faculty " + _
"WHERE faculty_name LIKE @facultyName"

Dim sqlConnection As New SqlConnection
Dim SQLResult As New SQLSelectResult()
Dim sqlCommand As New SqlCommand
Dim sqlReader As SqlDataReader

SQLResult.SQLRequestOK = True
sqlConnection = SQLConn()
If sqlConnection Is Nothing Then

SQLResult.SQLRequestError = "Database connection is failed"
ReportError(SQLResult)
Return Nothing

End If
sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add("@facultyName", SqlDbType.Text).Value = FacultyName
sqlReader = sqlCommand.ExecuteReader

If sqlReader.HasRows = True Then
Call FillFacultyReader(SQLResult, sqlReader)

Else
SQLResult.SQLRequestError = "No matched faculty found"
ReportError(SQLResult)

End If

If Not sqlReader Is Nothing Then sqlReader.Close()
sqlReader = Nothing
If Not sqlConnection Is Nothing Then sqlConnection.Close()
sqlConnection = Nothing
Return SQLResult

End Function

A

B

C
D
E

F

G

H

I

J

K

WebServiceSQLSelect GetSQLSelect

c09.indd 683c09.indd 683 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

684 Chapter 9 ASP.NET Web Services

can be brought back to the calling procedure. This is very similar to a returned object from
calling a function. But the DataReader sqlReader is passed by using a passing - by - value
mode, which means that only a copy of that object is passed into the subroutine, and any
modifi cation to that object is temporary.

I. If the HasRows property returns False , this means that the data query has failed. An error
message is assigned to the member data SQLRequestError defi ned in our base class
SQLSelectBase , and our ReportError() subroutine is called to report this error.

J. A cleaning job is performed to release all data objects used in this method.

K. The object SQLResult is returned as the query result to our Web service.

 Next, let ’ s take care of developing the codes for our two user - defi ned subroutine
procedures FillFacultyReader() and ReportError() .

9.3.7.4 Develop the Codes for Subroutines Used in the Web Method

 The codes for the subroutine FillFacultyReader() are shown in Figure 9.20 . Let ’ s have a
closer look at this piece of codes in this subroutine to see how it works.

A. The Read() method of the DataReader is executed to read out the queried data row; in
our case, only one row that is matched to the input faculty name is read out and fed into
the DataReader object sReader .

B. A With . . . End With block is utilized here to simplify the assignment operations. The
object sResult , which is our returning object, is attached after the keyword With , and all
member data of that object can be represented by using the dot (.) operator without
needing the prefi x of that object. Each data column in the Faculty table can be identifi ed
by using its name from the DataReader object sReader and converted to a string using
the Convert class method ToString() , and fi nally assigned to the associated member data
in our returning object.

 Optionally, you can use the GetString() method to retrieve each data column from
the DataReader sReader if you like. An index that is matched to the position of each
column in the query string cmdString must be used to locate each data if this method
is used.

Figure 9.20. The codes for the subroutine FillFacultyReader().

Protected Sub FillFacultyReader(ByRef sResult As SQLSelectResult, ByVal sReader As SqlDataReader)
If sReader.Read() = True Then

With sResult
.FacultyID = Convert.ToString(sReader("faculty_id"))
.FacultyOffice = Convert.ToString(sReader("office"))
.FacultyPhone = Convert.ToString(sReader("phone"))
.FacultyCollege = Convert.ToString(sReader("college"))
.FacultyTitle = Convert.ToString(sReader("title"))
.FacultyEmail = Convert.ToString(sReader("email"))

End With
End If

End Sub

A
B

WebServiceSQLSelect FillFacultyReader

c09.indd 684c09.indd 684 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 685

 The key point for this subroutine is the passing mode for the fi rst argument. A
passing - by - reference mode is used for our returning object, and this is equivalent to
returning an object from a function.

 The detailed codes for the subroutine ReportError() are shown in Figure 9.21 .
 The input parameter to this subroutine is our returning object. A False is assigned

to the SQLRequestOK member data, and the error message is assigned to the
SQLRequestError string variable defi ned in our base class SQLSelectBase . Since our
returning object is instantiated from our child class SQLSelectResult that is inherited
from our base class, our returning object can access and use those member data defi ned
in the base class.

 At this point, we fi nished all coding jobs for our Web service project. Now, let ’ s run
our project to test the data query functionality. Click on the Start Debugging button to
run the project, and the built - in Web interface is displayed, which is shown in Figure 9.22 .

 Click on our Web method GetSQLSelect to open the built - in Web interface for our
Web method, which is shown in Figure 9.23 . Enter the faculty name Ying Bai into the
FacultyName box as an input Value, and then click on the Invoke button to execute the
Web method to trigger the ASP.NET runtime to perform our data query.

 The running result is returned and displayed in the XML format, which is shown in
Figure 9.24 .

 Each returned data is enclosed by a pair of XML tags to indicate or markup its facil-
ity. For example, the B78880 , which is the queried faculty_id , is enclosed by the tag

Figure 9.21. The codes for the subroutine ReportError().

Protected Sub ReportError(ByVal ErrSource As SQLSelectResult)
ErrSource.SQLRequestOK = False
MsgBox(ErrSource.SQLRequestError)

End Sub

WebServiceSQLSelect ReportError

Figure 9.22. The running status of the Web service.

c09.indd 685c09.indd 685 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

686 Chapter 9 ASP.NET Web Services

Figure 9.23. The running status of our Web method.

Figure 9.24. The running result of our Web service project.

c09.indd 686c09.indd 686 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 687

<FacultyID>. . . </FacultyID> , and the name of this tag is defi ned in our child class
SQLSelectResult . Our fi rst Web service method is very successful.

 As we mentioned before, a Web service did not provide any user interface, and one
needs to develop some user interfaces to consume the Web service if one wants to display
those pieces of information obtained from the Web services. Here, a built - in Web interface
is provided by Microsoft to help users to display queried information from the Web ser-
vices. In most real applications, users need to develop user interfaces themselves to
perform these data displaying or other data operations.

 Click on the Close button that is located at the upper - right corner of the page to
close our Web service project.

9.3.8 Develop the Stored Procedure to Perform the Data Query

 An optional and better way to perform the data query via Web service is to use the stored
procedures. The advantage of using this method is that the coding process can be greatly
simplifi ed, and most query jobs can be performed in the database side. Therefore, the
query execution speed can be improved. The query effi ciency can also be improved, and
the query operations can be integrated into a single group or block of code body to
strengthen the integrity of the query.

9.3.8.1 Develop the Stored Procedure WebSelectFacultySP

 Now, let ’ s fi rst develop our stored procedure in the Server Explorer window in Visual
Studio.NET environment.

 Open the Visual Studio.NET and open the Server Explorer window, and click on
the small plus icon in front of our SQL Server data fi le CSE_DEPT.mdf to expand our
sample database. Then right - click on the Stored Procedures folder and select the item
Add New Stored Procedure from the pop - up menu to open a new stored procedure.
Enter the codes that are shown in Figure 9.25 into this code body as our new stored
procedure.

Figure 9.25. The stored procedure dbo.WebSelectFacultySP.

c09.indd 687c09.indd 687 4/25/2012 7:31:56 PM4/25/2012 7:31:56 PM

688 Chapter 9 ASP.NET Web Services

 Go to the File|Save StoredProcedure1 menu item to save this new stored procedure
with a name of dbo.WebSelectFacultySP .

 We can run this stored procedure in the Visual Studio.NET environment to confi rm
that it works fi ne. Right - click on this new created stored procedure from the Server
Explorer window and select the Execute item from the pop - up menu to open the Run
Stored Procedure wizard. Enter the faculty name Ying Bai to the Value box as the input
parameter and click on the OK button to run this stored procedure. The running result is
displayed in the Output window that is located at the bottom of this wizard, which is
shown in Figure 9.26 .

 All queried six columns that include the faculty_id , offi ce , phone , college , title , and
email in the Faculty table are displayed in this Output window. You need to move the
horizontal bar at the bottom to see all of these six columns. Each column name and its
data value are separated with a dash line.

 Our stored procedure is successful.
 Now, let ’ s handle the coding development in our Web service project to call this stored

procedure to perform this data query.

9.3.8.2 Add Another Web Method to Call the Stored Procedure

 To distinguish from the fi rst Web method we developed in the previous section, we had
better add another Web method to perform this data query by calling the stored proce-
dure. To do that, highlight and select the whole coding body of our fi rst Web method
GetSQLSelect() , including both the method header and the code body. Then, copy this
whole coding body and paste it to the bottom of our code - behind page (must be inside
our Web service class). Perform the modifi cations shown in Figure 9.27 to this copied Web
method to make it as our second Web method GetSQLSelectSP() . The modifi ed parts
have been highlighted in bold.

A. Change the Web method ’ s name by attaching two letters SP to the end of the original Web
method ’ s name, and the new method ’ s name becomes GetSQLSelectSP .

B. Change the content of the query string cmdString to “ dbo.WebSelectFacultySP ” . To
call a stored procedure from a Web service project, the content of the query string must
be exactly equal to the name of the stored procedure we developed in the last section.
Otherwise a running error may be encountered during the project runs because the project
cannot fi nd the desired stored procedure.

Figure 9.26. The running result of the stored procedure.

c09.indd 688c09.indd 688 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 689

C. Change the CommandType property of the Command object from the CommandType.
Text to the CommandType.StoredProcedure . This changing is very important since we
need to call a stored procedure to perform the data query. Therefore, we must tell the ASP.
NET runtime that a stored procedure should be called when the command object is
executed.

 Now you can run the project to test this new Web method. Click on the second Web
method GetSQLSelectSP as the project runs, enter a desired faculty member, such as
Ying Bai , into the FacultyName box, and click on the Invoke button to run it. The same
running result that we got from the last project can be obtained.

 You can see how easy it is to develop codes to perform the data query by calling the
stored procedure in the Web service project.

 Next, we will discuss how to use a DataSet as a returning object to contain all pieces
of queried information we need from running a Web service project.

9.3.9 Use DataSet as the Returning Object for the Web Method

 The advantage of using a DataSet as the returning object for a Web method is that we
do not need to create any application class to instantiate a returning object. Another

Figure 9.27. The modifi ed Web method — GetSQLSelectSP().

<WebMethod()> _
Public Function GetSQLSelectSP(ByVal FacultyName As String) As SQLSelectResult

Dim cmdString As String = "dbo.WebSelectFacultySP"
Dim sqlConnection As New SqlConnection
Dim SQLResult As New SQLSelectResult()
Dim sqlCommand As New SqlCommand
Dim sqlReader As SqlDataReader

SQLResult.SQLRequestOK = True
sqlConnection = SQLConn()
If sqlConnection Is Nothing Then

SQLResult.SQLRequestError = "Database connection is failed"
ReportError(SQLResult)
Return Nothing

End If
sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.StoredProcedure
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add("@facultyName", SqlDbType.Text).Value = FacultyName
sqlReader = sqlCommand.ExecuteReader

If sqlReader.HasRows = True Then
Call FillFacultyReader(SQLResult, sqlReader)

Else
SQLResult.SQLRequestError = "No matched faculty found"
ReportError(SQLResult)

End If

If Not sqlReader Is Nothing Then sqlReader.Close()
sqlReader = Nothing
If Not sqlConnection Is Nothing Then sqlConnection.Close()
sqlConnection = Nothing
Return SQLResult

End Function

A
B

C

WebServiceSQLSelect GetSQLSelectSP

c09.indd 689c09.indd 689 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

690 Chapter 9 ASP.NET Web Services

advantage is that a DataSet can contain multiple records coming from the different tables,
and we do not need to create multiple member data in our application class to hold those
data items. Finally, the size of our coding body could be greatly reduced when a DataSet
is used, especially for a large block of data that are queried via the Web service project.

 To distinguish from those Web methods we developed in the previous sections, we
can create another new Web method GetSQLSelectDataSet() and add it into our Web
service project. To do that, open our code - behind page if it is not yet opened, highlight
and select the whole coding body of our fi rst Web method GetSQLSelect() , including the
method header and coding body. Copy and paste it to the bottom of our page (must be
inside our Web service class). Perform the modifi cations shown in Figure 9.28 to this
copied Web method to make it as our third Web method. The modifi ed codes have been
highlighted in bold.

 Let ’ s have a closer look at this modifi ed Web method to see how it works.

A. The Web method ’ s name is modifi ed by attaching the DataSet to the end of the original
method name. The data type of the returning object is the DataSet , which means that this
Web method will return a DataSet.

Figure 9.28. The modifi ed Web method — GetSQLSelectDataSet().

<WebMethod()> _
Public Function GetSQLSelectDataSet(ByVal FacultyName As String) As DataSet

Dim cmdString As String = "SELECT faculty_id, office, phone, college, title, email FROM Faculty " + _
"WHERE faculty_name LIKE @facultyName"

Dim sqlConnection As New SqlConnection
Dim SQLResult As New SQLSelectResult()
Dim sqlCommand As New SqlCommand
Dim FacultyAdapter As New SqlDataAdapter
Dim dsFaculty As New DataSet
Dim intResult As Integer

SQLResult.SQLRequestOK = True
sqlConnection = SQLConn()

If sqlConnection Is Nothing Then
SQLResult.SQLRequestError = "Database connection is failed"
ReportError(SQLResult)
Return Nothing

End If

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add("@facultyName", SqlDbType.Text).Value = FacultyName
FacultyAdapter.SelectCommand = sqlCommand
intResult = FacultyAdapter.Fill(dsFaculty, "Faculty")

If intResult = 0 Then
SQLResult.SQLRequestError = "No matched faculty found"
ReportError(SQLResult)

End If

If FacultyAdapter IsNot Nothing Then FacultyAdapter.Dispose()
FacultyAdapter = Nothing
If sqlConnection IsNot Nothing Then sqlConnection.Close()

sqlConnection = Nothing
Return dsFaculty

End Function

A

B

C
D

E

F

G

WebServiceSQLSelect GetSQLSelectDataSet

c09.indd 690c09.indd 690 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 691

B. Two new data objects, FacultyAdapter and dsFaculty , are created. The fi rst object works
as a DataAdapter and the second works as a DataSet, respectively. A local integer variable
intResult is also created, and it will be used to hold the returning value from calling the
Fill() method of the DataAdapter to perform the data query later.

C. The initialized Command object is assigned to the SelectCommand property of
the DataAdapter class. This Command object will be executed when the Fill() method
is called to perform the data query, that is, to fi ll the faculty table in the DataSet
dsFaculty .

D. The Fill() method of the DataAdapter class is executed to fi ll the Faculty table in our
DataSet. This method will return an integer value stored in the local integer variable
intResult to indicate whether this calling is successful or not.

E. If the returned value is zero, which means that no row has been retrieved from the Faculty
table in our sample database and no any row has been fi lled into our Faculty table in our
DataSet dsFaculty . Therefore, this data query has failed. An error message will be sent to
our member data in our base class and that error will be reported by using the subroutine
ReportError() later.

F. Otherwise, if the returned value is nonzero, which means that at least one row has been
retrieved and fi lled into the Faculty table in our DataSet, a cleaning job is performed to
release all objects used for this Web method. Typically, this returned value is equal to the
number of rows that have been successfully retrieved from the Faculty table in our data-
base and fi lled into the Faculty table in our DataSet. In our application, this value should
be equal to one since only one record is returned from the Faculty table in our sample
database and fi lled into the DataSet.

G. Finally, the fi lled DataSet dsFaculty , exactly the fi lled Faculty table in this DataSet, is
returned to the Web service.

 Now, we can run the project to test this returned DataSet functionality. Click on the
Start Debugging button to run the project. Now, we have three Web methods available
to this Web service, which is shown in Figure 9.29 .

Figure 9.29. Three Web methods in built - in Web interface window.

c09.indd 691c09.indd 691 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

692 Chapter 9 ASP.NET Web Services

 Click on the second Web method GetSQLSelectDataSet from the built - in Web
interface window and enter the faculty name Ying Bai into the Value box as our desired
faculty member. Then click on the Invoke button to call this Web method to perform the
data query. The running result is returned and shown in Figure 9.30 .

 A new DataSet is created since we used a nontyped DataSet in this application, and
all six pieces of faculty information related to the desired faculty member Ying Bai are
retrieved and fi lled into the Faculty table in our DataSet. Also, these pieces of information
are returned to our Web service project and displayed in the built - in Web interface
window, as shown in Figure 9.30 .

 At this point, we have fi nished all codes developing jobs in our Web service project
in the server side. A complete Web service project WebServiceSQLSelect that contains
three Web methods can be found in the folder DBProjects\Chapter 9 that is located at
the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

 Next, we need to develop some professional Windows - based or Web - based applica-
tions with beautiful GUIs to use or consume our Web service project. Those Windows -
 based or Web - based applications can be considered as Web service clients.

9.3.10 Build Windows -Based Web Service Clients to Consume
the Web Services

 To use or consume a Web service, fi rst, we need to create a Web service proxy class in
our Windows - based or Web - based applications. Then we can create a new instance of the
Web service proxy class and execute the desired Web methods located in that Web service
class. The process of creating a Web service proxy class is equivalent to adding a Web
reference to our Windows - based or Web - based applications.

Figure 9.30. The running result of the Web method GetSQLSelectDataSet().

c09.indd 692c09.indd 692 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 693

9.3.10.1 Create a Web Service Proxy Class

 Basically, adding a Web reference to our Windows - based or Web - based applications is to
execute a searching process. During this process, Visual Studio.NET 2010 will try to fi nd
all Web services available to our applications. The following operations will be performed
by Visual Studio.NET 2010 during this process:

1. When looking for Web services from the local computers, Visual Studio.NET 2010 will check
all fi les that include a Web service main page with an .asmx extension, a WSDL fi le with a
.wsdl extension, or a Discovery fi le with a .disco extension.

2. When searching for Web services from the Internet, Visual Studio.NET 2010 will try to fi nd
a UDDI fi le that contains all registered Web services with their associated Discovery
documents.

3. When all available Web services are found, either from your local computer or from the
Internet, you can select your desired Web services from them by adding them into the Web
client project as Web references. Also, you can open each of them to take a look at the
detailed description for each Web service and its Web methods. Once you selected the
desired Web services, you can modify the names of the selected Web services as you want.
The point is that even if the name of the Web service is changed in the Web client side, the
ASP.NET runtime can remember and still use the original name of that Web service as it
is consumed.

4. As those Web services have been referenced to the client project, a group of necessary fi les
or documents are also created by Visual Studio.NET 2010. These fi les include:

A. A Discovery Map fi le that provides the necessary SOAP interfaces for communications
between the client project and the Web services.

B. A Discovery fi le that contains all available XML Web services on a Web server,
and these Web services are obtained through a process called XML Web services
Discovery.

C. A WSDL fi le that provides a detailed description and defi nition about those Web ser-
vices in an abstract manner.

 To add a Web reference to our client project, we need fi rst to create a client project.
Now let ’ s create a Windows - based application to consume the Web service we developed
in the previous sections.

 Open Visual Studio.NET 2010 and create a new Visual Basic Windows - based project,
and name it as WinClientSQLSelect .

 Now let ’ s add a Web reference to our new project.
 There are two ways we can use to select the desired Web services and add it as a

reference to our client project: one way is to use the Browser provided by the Visual
Studio.NET 2010 to fi nd the desired Web service, and another way is to copy and paste
the desired Web service URL to the URL box located in this Add Web Reference wizard.
In order to use the second way, you need fi rst to run the Web service, and then copy its
URL and paste it to the URL box in this wizard if you have not deployed that Web service
to IIS. If you did deploy that Web service, you can directly type that URL into the
Address box in this wizard.

 Because we developed our Web service using the File System on our local computer,
and we have not deployed our Web service to IIS, we should use the second way to fi nd
our Web service. Perform the following operations to add this Web reference:

c09.indd 693c09.indd 693 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

694 Chapter 9 ASP.NET Web Services

1. Open Visual Studio.NET 2010 and our Web service project WebServiceSQLSelect , and
click on the Start Debugging button to run it.

2. Copy the URL from the Address bar in our running Web service project.

3. Then open another Visual Studio.NET 2010 and open our client project WinClientSQLSelect .

4. Right - click on our client project WinClientSQLSelect from the Solution Explorer window,
and select the item Add Service Reference from the pop - up menu to open the Add
Service Reference wizard.

5. Click on the Advanced button located at the lower - left corner on this wizard to open the
Service Reference Settings wizard.

6. Click on the Add Web Reference button to open the Add Web Reference wizard, which
is shown in Figure 9.31 .

7. Paste that URL we copied from step 2 into the URL box in the Add Web Reference wizard
and click on the Green Arrow button to enable the Visual Studio.NET 2010 to begin to
search it.

8. When the Web service is found, the name of our Web service is displayed in the right pane,
which is shown in Figure 9.31 .

9. Alternately you can change the name for this Web reference from localhost to any mean-
ingful name, such as WS_SQLSelect in our case. Click on the Add Reference button to
add this Web service as a reference to our new client project.

Figure 9.31. The Add Web Reference wizard.

c09.indd 694c09.indd 694 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 695

10. Click on the Close button from our Web service built - in Web interface window to termi-
nate our Web service project.

 Immediately, you can fi nd that the Web service WS_SQLSelect , which is under the
folder Web References , has been added into the Solution Explorer window in our client
project. This reference is the so - called Web service proxy class.

 Next, let ’ s develop the GUI by adding useful controls to interface to our Web service
and display the queried information.

9.3.10.2 Develop the Graphic User Interface for the Windows -Based

Client Project

 Perform the following modifi cations to our new project:

1. Rename the Form File object from the default name Form1.vb to our desired name
WinClient Form.vb .

2. Rename the Window Form object from the default name Form1 to our desired name
FacultyForm by modifying the Name property of the form window.

3. Rename the form title from the default title Form1 to CSE_DEPT Faculty Form by modi-
fying the Text property of the form.

 To save time and space, we can use the GUI located in the project
SQLUpdateDeleteRTObject we developed in Chapter 7 . Open that project from the
folder DBProjects\Chapter 7 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1). Then open the Faculty form window and select all controls from that form
by going to the menu item Edit|Select All , and then Edit|Copy menu item to copy all
controls selected from this form window.

 Return to our new Windows - based Web service client project WinClientSQLSelect ,
open our form window, and paste those controls we copied from the Faculty form in the
project SQLUpdateDeleteRTObject .

 The purpose of the combo box control Query Method is to select one of three dif-
ferent query methods developed in our Web service project to get the desired faculty
information:

1. Method 1: uses an object to return our queried information.

2. Method 2: uses a stored procedure to return our queried information.

3. Method 3: uses a DataSet to return our queried information.

 The Faculty Name combo box control is used to select the desired faculty member
as the input parameter for the Web method to pick up our desired faculty information.
In this application, only the Select and Back buttons are used.

 The function of this project is: when the project runs, as the desired method and the
faculty name have been selected from the associated controls, the Select button will be
clicked by the user. Our client project will be connected to our Web service based on the
Web reference we provided, and the selected method will be called based on the method
chosen from the Query Method combo box control to perform the data query to retrieve
the desired faculty record from our sample database, and display it in this GUI.

 Now let ’ s take care of the coding process for this project to connect to our Web
service using the Web reference we developed in the last section.

c09.indd 695c09.indd 695 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

696 Chapter 9 ASP.NET Web Services

9.3.10.3 Develop the Code to Consume the Web Service

 The coding job can be divided into four parts:

1. The coding development for the Form_Load event procedure to initialize the Query Method
and the Faculty Name combo box controls. The fi rst initialization is to set up three Web
methods that can be selected by the user to perform the data query from the Web service.
The second one is to set up a default list of faculty members that can be selected by the
user to perform the associated faculty information query.

2. The coding process for the Back button click event procedure to terminate the project.

3. The coding development for the Select button click event procedure.

4. The coding process for user - defi ned subroutine procedures, such as the ShowFaculty() ,
ProcessObject() , FillFacultyObject() , and FillFacultyDataSet() .

 The main coding job is performed inside the Select button ’ s click event procedure.
As we discussed, as this button is clicked by the user, a connection to our Web service
should be established using the Web reference we set up in the previous section. So we
need fi rst to create an object based on that Web reference or instantiate that Web service
to get an instance, and then we can access the different Web methods to perform our data
query. This process is called instantiating the proxy class and invokes the Web methods.
The protocol to instantiate a proxy class is:

Dim newInstanceName As New WebReferenceName.WebServiceName

 After this new instance is created, a connection between our client project and our
Web service can be set up by using this instance. The pseudo codes for this event proce-
dure are listed below:

A. A new Web service instance wsSQLSelect is created using the protocol given above.

B. A new object wsSQLResult is also created, and it can be used as a mapping to the real
object SQLSelectResult developed in the Web service. We can easily access the related
Web method to perform our data query and to pick up the result from that returning object
by assigning it to the mapping object.

C. A new DataSet object is created, and it is used to call the Web method that returns a
DataSet.

D. Based on the method selected by the user from the Query Method combo box control,
different Web methods can be called to perform the related data query.

E. The returned data that are stored in the real object is assigned to our mapping object, and
each piece of information can be retrieved from this object and displayed in our GUI.

F. If a DataSet method is used, the returned DataSet object is assigned to our mapping
DataSet, and the subroutine FillFacultyDataSet() is called to fi ll the textboxes in the Client
form with the information picked up from the DataSet.

9.3.10.3.1 Develop the Codes for the Form_Load Event Procedure Now let ’ s
begin to develop the codes for the Form_Load event procedure to complete the initializa-
tion jobs listed in step 1 above.

 Open the Form_Load event procedure by selecting the (FacultyForm Events) item
from the Class Name combo box, and Load item from the Method Name combo box

c09.indd 696c09.indd 696 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 697

from the code window of the FacultyForm . Enter the codes that are shown in Figure 9.32
into this event procedure.

 Let ’ s take a closer look at this piece of codes to see how it works.

A. Eight default faculty members are added into the Faculty Name combo box control using
the Add() method. This will allow users to select one desired faculty from this combo box
control to perform the data query as the project runs. The default faculty is the fi rst one
by setting the SelectedIndex property to zero.

B. Three Web query methods are also added into the Query Method combo box control to
allow users to select one of them to perform the associated data query via our Web service.
The default method is selected as the fi rst one.

 The codes for the Back button ’ s click event procedure are very simple. Open this
event procedure and enter Me.Close() into this event procedure, which means that the
project will be terminated as soon as the user clicks on this button as the project runs.
The Close() method tells Visual Basic.NET to terminate the current project.

 Next, let ’ s build the codes for the Select button ’ s Click event procedure.

9.3.10.3.2 Develop the Codes for the Select Button Click Event Procedure Open
the Select button ’ s click event procedure and enter the codes that are shown in Figure
 9.33 into this procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Some data objects are created at the beginning of this event procedure, which include a
new Web service instance wsSQLSelect that is created using the protocol given above, a
new object wsSQLResult that can be used as a mapping to the real object SQLSelectResult
developed in the Web service. We can easily access the Web method to perform our data
query and pick up the result from that returning object by assigning it to this mapping
object later. Also, a new DataSet object that is used to call the Web method that returns a
DataSet.

B. If the user selected the Object Method from the Query Method combo box control, a
Try . . . Catch block is used to call the associated Web method GetSQLSelect() , which is
developed in our Web service, through the instantiated reference class to perform the data

Figure 9.32. The codes for the Form_Load event procedure.

Private Sub FacultyForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboName.SelectedIndex = 0

ComboMethod.Items.Add("Object Method")
ComboMethod.Items.Add("Stored Procedure Method")
ComboMethod.Items.Add("DataSet Method")
ComboMethod.SelectedIndex = 0

End Sub

A

B

(FacultyForm Events) Load

c09.indd 697c09.indd 697 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

698 Chapter 9 ASP.NET Web Services

query. The selected faculty that is located in the Faculty Name combo box control is passed
as a parameter for this calling.

C. The Catch statement is used to collect any possible exceptions if any error occurred for
this calling, and the error message is displayed using a message box.

D. If no exception occurred, the user - defi ned subroutine ProcessObject() is executed to pick
up all pieces of retrieved information from the returned object and displays them in this
form window.

E. If the user selected the Stored Procedure Method , the associated Web method
GetSQLSelectSP() , which is developed in our Web service, is called via the instance of the
Web referenced class to perform the data query.

F. The Catch statement is used to collect any possible exceptions if any error occurred for
this calling, and the error message is displayed using a message box.

G. The user - defi ned subroutine ProcessObject() is executed to pick up all pieces of retrieved
information from the returned object and displays them in this form.

H. If users selected the DataSet Method , the Web method GetSQLSelectDataSet() is called
through the instance of the Web referenced class, and the method returns a DataSet that
contains our desired faculty record.

I. The Catch statement is used to collect any possible exceptions if any error occurred for
this calling, and the error message is displayed using a message box.

J. The subroutine FillFacultyDataSet() is called to pick up all pieces of retrieved information
from the returned DataSet, and displays them in this form window.

Figure 9.33. The codes for the Select button click event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim wsSQLSelect As New WS_SQLSelect.WebServiceSQLSelect
Dim wsSQLResult As New WS_SQLSelect.SQLSelectResult
Dim wsDataSet As New DataSet

If ComboMethod.Text = "Object Method" Then
Try

wsSQLResult = wsSQLSelect.GetSQLSelect(ComboName.Text)
Catch err As Exception

MsgBox("Web service is wrong: " & err.Message)
End Try

Call ProcessObject(wsSQLResult)
ElseIf ComboMethod.Text = "Stored Procedure Method" Then

Try
wsSQLResult = wsSQLSelect.GetSQLSelectSP(ComboName.Text)

Catch err As Exception
MsgBox("Web service is wrong: " & err.Message)

End Try

Call ProcessObject(wsSQLResult)
Else

Try
wsDataSet = wsSQLSelect.GetSQLSelectDataSet(ComboName.Text)

Catch err As Exception
MsgBox("Web service is wrong: " & err.Message)

End Try

Call FillFacultyDataSet(wsDataSet)
End If

End Sub

A

B

C

D
E

F

G
H

I

J

cmdSelect Click

c09.indd 698c09.indd 698 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 699

9.3.10.3.3 Develop the Codes for User -defi ned Subroutines The codes for the
user - defi ned subroutines ProcessObject() and FillFacultyObject() are shown in Figure
 9.34 . Both subroutines use our child class SQLSelectResult as the data type of the passed
argument since our returned object is an instance of this class. The function of this piece
of codes is:

A. If the member data SQLRequestOK , which is stored in the instance of our child class or
returned object, is set to True , which means that our Web method is executed successfully,
the user - defi ned subroutine FillFacultyObject() is called and executed. This subroutine
picks up each piece of information from the queried object wsResult and displays it in
this form window.

B. Otherwise, some exceptions occurred, and a warning message is displayed with a message
box.

C. As the subroutine FillFacultyObject() is called, all six pieces of faculty information stored
in the returned object are picked up and assigned to the associated textbox in this form to
be displayed. The faculty name can be obtained directly from the Faculty Name combo
box control from this form window.

 The codes for the subroutine FillFacultyDataSet() are shown in Figure 9.35 . The
argument passed into this subroutine is an instance of DataSet we created in the Select
button click event procedure.

 Let ’ s take a look at this piece of codes to see how it works.

A. Two data objects, FacultyTable, which is a new object of the DataTable class, and FacultyRow,
which is a new instance of the DataRow class, are created fi rst since we need to use these
two objects to access the DataSet to pick up all requested faculty information later.

B. The returned Faculty table that is embedded in our returned DataSet is assigned to our
newly created object FacultyTable. Because the DataSet we created in the Select button
click event procedure is an untyped DataSet, the table name must be clearly indicated with
a string “ Faculty. ” For typed DataSet, you can directly use the table name to access the
desired table without needing any string.

Figure 9.34. The codes for two user - defi ned subroutines.

Private Sub ProcessObject(ByRef wsResult As WS_SQLSelect.SQLSelectResult)
If wsResult.SQLRequestOK = True Then

Call FillFacultyObject(wsResult)
Else

MsgBox("Faculty information cannot be retrieved: " & wsResult.SQLRequestError)
End If

End Sub

Private Sub FillFacultyObject(ByRef sqlResult As WS_SQLSelect.SQLSelectResult)
txtID.Text = sqlResult.FacultyID
txtName.Text = ComboName.SelectedItem.ToString
txtOffice.Text = sqlResult.FacultyOffice
txtPhone.Text = sqlResult.FacultyPhone
txtCollege.Text = sqlResult.FacultyCollege
txtTitle.Text = sqlResult.FacultyTitle
txtEmail.Text = sqlResult.FacultyEmail

End Sub

A

B

C

FacultyForm ProcessObject

c09.indd 699c09.indd 699 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

700 Chapter 9 ASP.NET Web Services

C. Since we only request one record or one row from the Faculty table, the returned Faculty
table contains only one row information that is located at the top row with an index of
zero. This one row information is assigned to our FacultyRow object we created above.

D. We can access each column from returned one row data using the column name repre-
sented by a string with a class method ToString. As we mentioned, the DataSet we are
using is an untyped DataSet, therefore, the column name must be indicated with a string,
and the value of that column must be converted to a string by using the ToString method.
If a typed DataSet is used, you can directly use the column name (no string to cover it) to
access that column without needing to use the ToString method. Each piece of information
returned is assigned to the associated textbox, and it will be displayed there.

 At this point, we have almost fi nished coding development for this Windows - based
Web service client project. We have one more step to go to complete this client project,
which is to add another user - defi ned subroutine ShowFaculty() to display the requested
faculty photo in the image box in this form.

9.3.10.3.4 Develop a Subroutine ShowFaculty to Display the Faculty Image All
default faculty and student images can be found in the folder Images that is located at
the Wiley ftp site (refer to Figure 1.2 in Chapter 1). To display the requested faculty image
in the form, following jobs are needed to be performed:

1. Copy all default faculty and student image fi les from the folder Images that is located at
the Wiley ftp site, and paste them into our current client project folder, exactly into the
Debug folder that is under our project ’ s bin folder. For our case, one needs to paste all
faculty and student image fi les into the folder C:\Chapter 9\WinClientSQLSelect\bin\
Debug .

2. Develop the codes to perform this faculty image displaying.

 Now let ’ s develop the codes for this subroutine. Open the code window from our
client project, and type the codes that are shown in Figure 9.36 into this code window to
create our subroutine ShowFaculty() .

 The codes for this subroutine are straightforward with no trick. A Selection - Case
structure is used to pick up each associated or matched faculty image fi le based on the
input faculty name. The selected faculty image fi le is passed as an argument to the system

Figure 9.35. The codes for the subroutine FillFacultyDataSet().

Private Sub FillFacultyDataSet(ByRef ds As DataSet)
Dim FacultyTable As New DataTable
Dim FacultyRow As DataRow

FacultyTable = ds.Tables("Faculty")
FacultyRow = FacultyTable.Rows(0) 'only one row in the Faculty table
txtID.Text = FacultyRow("faculty_id").ToString
txtName.Text = ComboName.SelectedItem.ToString
txtOffice.Text = FacultyRow("office").ToString
txtPhone.Text = FacultyRow("phone").ToString
txtCollege.Text = FacultyRow("college").ToString
txtTitle.Text = FacultyRow("title").ToString
txtEmail.Text = FacultyRow("email").ToString

End Sub

A

B
C
D

FacultyForm FillFacultyDataSet

c09.indd 700c09.indd 700 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 701

method Image.FromFile() , and then is displayed in the PhotoBox control in this form
window. A default faculty image will be used if no matched faculty image can be found.

 To call this subroutine to display the selected faculty image, add one more statement
that is shown below to the Select button ’ s click event procedure. The location to add this
statement is the fi rst code line under the data objects declaration part.

 Call ShowFaculty(ComboName.Text)

 Now we can start to run this client project to interface to our Web service, and fur-
thermore to access and use the Web methods to perform our data query.

 Wait a moment! There is one important issue you need to note before you can run
this project, which is that you must run our Web service project WebServiceSQLSelect
fi rst to allow our Web service available to all clients. Otherwise, you may encounter some
running exceptions (such as the Web service or remote computer cannot be found) during
your client project runs.

 Open Visual Studio.NET and our Web Service project WebServiceSQLSelect , and
click on the Start Debugging button to run it. Once our Web service project runs, you can
close it and access it using our client project without problem at all. One point is that our
Web service project must be kept in the running status (even the page has been closed)
in order to allow our client project to access and interface to it. An exception will be
encountered if you stop our Web service when you try to access it using our client project.

Figure 9.36. The codes for the subroutine ShowFaculty().

Private Sub ShowFaculty(ByVal fName As String)

Dim FacultyImage As String

Select Case fName
Case "Ying Bai"

FacultyImage = "Bai.jpg"
Case "Satish Bhalla"

FacultyImage = "Satish.jpg"
Case "Black Anderson"

FacultyImage = "Anderson.jpg"
Case "Steve Johnson"

FacultyImage = "Johnson.jpg"
Case "Jenney King"

FacultyImage = "King.jpg"
Case "Alice Brown"

FacultyImage = "Brown.jpg"
Case "Debby Angles"

FacultyImage = "Angles.jpg"
Case "Jeff Henry"

FacultyImage = "Henry.jpg"
Case Else

If txtImage.Text = "" Then
FacultyImage = "Default.jpg"

Else
FacultyImage = txtImage.Text

End If
End Select
PhotoBox.Image = System.Drawing.Image.FromFile(FacultyImage)

End Sub

FacultyForm ShowFaculty

c09.indd 701c09.indd 701 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

702 Chapter 9 ASP.NET Web Services

 Make sure that our Web service has been run once, and it is in the running status,
which can be identifi ed by a small Web service running icon in the task bar on the bottom
of your screen. You can double click on that icon to open the running status of our Web
service project, which is shown in Figure 9.37 .

 Then start our client project by clicking on the Start Debugging button from the
project WinClientSQLSelect . The running status is shown in Figure 9.38 .

 Keep the default Web method and the faculty name Ying Bai selected, and click on
the Select button to call the associated Web method to retrieve the desired faculty record.
The returned faculty data is displayed in the associated textboxes with the faculty photo,
which is shown in Figure 9.38 .

 You can try to select other two Web methods, either the Stored Procedure or the
DataSet method, and other faculty members to perform this data query. The running

Figure 9.37. The running status of our Web service project WebServiceSQLSelect.

Figure 9.38. The running status of our client project.

c09.indd 702c09.indd 702 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 703

result confi rmed that both our Web service and our Windows - based Web service client
projects are very successful. Click on the Back button to terminate our project.

 A complete Windows - based Web service client project WinClientSQLSelect can be
found in the folder DBProjects\Chapter 9 that is located at the Wiley ftp site (refer to
Figure 1.2 in Chapter 1). You need to load both our client and our Web service projects
from that site and install them in your computer if you want to run and test this client
project. Also, you must run our Web service project one time to make sure that our Web
service is ready to be consumed by that client project.

 Next, we want to develop a Web - based project to consume our Web service by retriev-
ing the desired faculty information.

9.3.11 Build Web -Based Web Service Clients to Consume the
Web Service

 Developing a Web - based client application to consume a Web service is very similar to
developing a Windows - based client project to reference and access a Web service as we
did in the last section. As long as a Web service is referenced by the Web - based client
project, one can access and call any Web method developed in that Web service to perform
the desired data queries via the Web - based client project without problem. Visual Studio.
NET will create the same document fi les, such as the Discovery Map fi le, the WDSL fi le,
and the DISCO fi le, for the client project no matter this Web service is consumed by a
Windows - based or a Web - based client application.

 To save time and space, we can modify an existing ASP.NET Web application
SQLWebSelect we developed in Chapter 8 to make it as our new Web - based Web service
client project WebClientSQLSelect . In fact, we can copy and rename that entire project
as our new Web - based client project. However, we prefer to create a new ASP.NET
website application project and only copy and modify the Faculty page.

 The developing process in this section can be divided into the following parts:

1. Create a new ASP.NET website project WebClientSQLSelect and add an existing website
page Faculty.aspx from the project SQLWebSelect into our new project.

2. Add a Web service reference to our new project and modify the Web page window of the
Faculty.aspx to meet our data query requirements.

3. Modify the codes in the related event procedures of the Fcaulty.aspx.vb fi le to call the
associated Web method to perform our data query. The code modifi cations include the fol-
lowing sections:

A. Modify the codes in the Page_Load event procedure.
B. Modify the codes in the Select button ’ s click event procedure.
C. Add three user - defi ned subroutines, ProcessObject() , FillFacultyObject() , and

FillFacultyDataSet() . These three subroutines are basically identical with those we
developed in the last Windows - based Web service client project WinClientSQLSelect .
One can copy and paste them into our new project. The only modifi cation is for the
subroutine ProcessObject() .

D. Modify the codes in the Back button ’ s click event procedure.

 Now let ’ s start with the fi rst part listed above.

c09.indd 703c09.indd 703 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

704 Chapter 9 ASP.NET Web Services

9.3.11.1 Create a New Web Site Project and Add an Existing Web Page

 Open Visual Studio.NET and go to the File|New Web Site menu item to create a new
website project. Enter C:\Chapter 9\WebClientSQLSelect into the Name box that is
next to the Location box, and click on the OK button to create this new Website project.

 Perform the following operations to add an existing Web page Faculty.aspx into our
new website project:

1. Remove the Default.aspx from the Solution Explorer window since we do not need this
page in this application.

2. Right - click on our new project WebClientSQLSelect from the Solution Explorer window,
and select the item Add Existing Item from the pop - up menu to open the Add Existing
Item wizard.

3. Browse to our Web project SQLWebSelect that can be found in the folder DBProjects\
Chapter 8 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1). Select the
Web page Faculty.aspx from the list and click on the Add button to add this Web page
into our new Website project.

 One issue we need to emphasize is that we had better add all faculty image fi les into
our new project before we can continue to the next step. In this way, the selected faculty
image can be displayed as that faculty ’ s information is queried. This step is highly recom-
mended, since we need those faculty image fi les later when we display each of them for
each selected faculty as we perform the data query. You can fi nd all faculty and student
image fi les in the folder Images that is located at the Wiley ftp site (refer to Figure 1.2
in Chapter 1).

 Perform the following operations to add all faculty and student image fi les into our
project:

1. Right - click on our new project icon WebClientSQLSelect from the Solution Explorer
window, and select the Add Existing Item from the pop - up menu.

2. Browse to the Images folder, select all image fi les, and then click the Add button to add
all of image fi les into our current Website project.

 Now let ’ s handle to add a Web reference to our project to access the Web service we
built in the previous section.

9.3.11.2 Add a Web Service Reference and Modify the Web Form Window

 Perform the following operations to add this Web reference:

1. Open Visual Studio.NET 2010 and our Web service project WebServiceSQLSelect , and
click on the Start Debugging button to run it.

2. Copy the URL from the Address bar in our running Web service project.

3. Then open another Visual Studio.NET 2010 and open our Web client project
WebClientSQLSelect .

4. Right - click on our client project WebClientSQLSelect from the Solution Explorer window,
and select the item Add Web Reference from the pop - up menu to open the Add Web
Reference wizard, which is shown in Figure 9.39 .

c09.indd 704c09.indd 704 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 705

5. Paste that URL we copied from step 2 into the URL box in the Add Web Reference wizard
and click on the Green Arrow button to enable the Visual Studio.NET 2010 to begin to
search it.

6. When the Web service is found, the name of our Web service is displayed in the right pane,
which is shown in Figure 9.39 .

7. Alternately, you can change the name for this Web reference from localhost to any mean-
ingful name, such as WS_SQLSelect in our case. Click on the Add Reference button to
add this Web service as a reference to our new client project.

8. Click on the Close button from our Web service built - in Web interface window to close our
Web service page.

 Immediately, you can fi nd that the following three fi les are created in the Solution
Explorer window under the folder of the newly added Web reference:

 • WebServiceSQLSelect.disco

 • WebServiceSQLSelect.discomap

 • WebServiceSQLSelect.wsdl

 This reference is the so - called Web service proxy class.
 Next, let ’ s begin the code modifi cation process to build the codes for this project.

Figure 9.39. Add a Web reference.

c09.indd 705c09.indd 705 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

706 Chapter 9 ASP.NET Web Services

9.3.11.3 Modify the Codes for the Related Event Procedures

 The fi rst modifi cation is to add a combo box control Query Method to the Faculty.aspx
page to enable users to select one of three query methods to perform the related data
query operation.

9.3.11.3.1 Add a Combo Box Control Query Method to the Faculty Page Open
the Faculty.aspx page and add one more combo box control and an associated label
Query Method just under the Faculty Name combo box control in this page. Name this
control as ComboMethod . Your modifi ed Faculty.aspx page should match the one that
is shown in Figure 9.40 .

 The second modifi cation is to change the codes in the Page_Load event procedure
and some global variables.

9.3.11.3.2 Modify the Codes in the Page_Load Event Procedure Perform the
following changes to complete this modifi cation:

1. Remove the second Imports command Imports System.Data.SqlClient from the top of
this page since we do not need it in this application.

2. Remove the form level variable FacultyTextBox(6) that is a textbox array.

3. Remove the If block inside the Page_Load event procedure and the associated global con-
nection object that is stored in the Application state Application(“sqlConnection”) .

4. Add the codes to display three Web methods in the Query Method combo box control.

Figure 9.40. The modifi ed Faculty.aspx page.

c09.indd 706c09.indd 706 4/25/2012 7:31:57 PM4/25/2012 7:31:57 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 707

 Your fi nished codes for the Page_Load event procedure should match the one that
is shown in Figure 9.41 . The newly added codes have been highlighted in bold.

 The next modifi cation is to change the codes inside the Select button ’ s click event
procedure.

9.3.11.3.3 Modify the Codes in the Select Button Event Procedure Replace all
codes in this event procedure with the modifi ed codes shown in Figure 9.42 . This replace-
ment includes:

A. Create the following three new instances:

1. wsSQLSelect for the proxy class of our Web service
2. wsSQLResult for the child class of our Web service
3. wsDataSet for the DataSet class

B. Create a local string variable errMsg , and it is used to store the possible error message.

C. Call the subroutine ShowFaculty() to display the selected faculty image.

D. If the user selected the Web object method, a Try . . . Catch block is used to call the fi rst
Web method GetSQLSelect() that we developed in our Web service project with the
selected faculty name as the input parameter. The returned object that contains our queried
faculty information is assigned to our local mapping object wsSQLResult if this calling is
successful. Otherwise, an error message is displayed using the Write() method of the
Response object of the server.

E. The subroutine ProcessObject() is executed to assign the retrieved faculty information to
the associated textbox in our Web page to display each of them.

F. If the user selected the Stored Procedure Method , the associated Web method
GetSQLSelectSP() , which is developed in our Web service, is called via the instance of the
Web referenced class to perform the data query. The Catch statement is used to collect
any possible exceptions if any error occurred for this calling, and the error message is
displayed using the Write() method of the Response object of the server. The subroutine

Figure 9.41. The modifi ed Page_Load event procedure.

Imports System.Data

Partial Class Faculty
Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
If Not IsPostBack Then

ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboMethod.Items.Add("Object Method")
ComboMethod.Items.Add("Stored Procedure Method")
ComboMethod.Items.Add("DataSet Method")

End If

End Sub

(Page Events) Load

c09.indd 707c09.indd 707 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

708 Chapter 9 ASP.NET Web Services

ProcessObject() is executed to pick up all pieces of retrieved information from the
returned object and displays them in this page.

G. If users selected the DataSet Method , the Web method GetSQLSelectDataSet() is called
through the instance of the Web referenced class, and the method returns a DataSet that
contains our desired faculty information. The Catch statement is used to collect any pos-
sible exceptions if any error occurred for this calling, and the error message is displayed
using the Write() method of the Response object of the server.

H. The subroutine FillFacultyDataSet() is called to pick up all pieces of retrieved information
from the returned DataSet and displays them in this page.

 All of these modifi cation steps are shown in Figure 9.42 .

9.3.11.3.4 Add Three User -Defi ned Subroutine Procedures We need to add three
user - defi ned subroutines: ProcessObject() , FillFacultyObject() , and FillFacultyDataSet() ,
into this project. The codes for these three subroutines are basically identical with those
we developed in the last Windows - based Web service client project WinClientSQLSelect ,
and one can copy and paste them into our new project with a little modifi cation.

Figure 9.42. The modifi ed codes for the Select button ’ s click event procedure.

Protected Sub cmdSelect_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim wsSQLSelect As New WS_SQLSelect.WebServiceSQLSelect
Dim wsSQLResult As New WS_SQLSelect.SQLSelectResult
Dim wsDataSet As New DataSet
Dim errMsg As String

Call ShowFaculty(ComboName.Text)
If ComboMethod.Text = "Object Method" Then

Try
wsSQLResult = wsSQLSelect.GetSQLSelect(ComboName.Text)

Catch err As Exception
errMsg = "Web service is wrong: " & err.Message
Response.Write("<script>alert('" + errMsg + "')</script>")

End Try
ProcessObject(wsSQLResult)

ElseIf ComboMethod.Text = "Stored Procedure Method" Then
Try

wsSQLResult = wsSQLSelect.GetSQLSelectSP(ComboName.Text)
Catch err As Exception

errMsg = "Web service is wrong: " & err.Message
Response.Write("<script>alert('" + errMsg + "')</script>")

End Try
ProcessObject(wsSQLResult)

Else
Try

wsDataSet = wsSQLSelect.GetSQLSelectDataSet(ComboName.Text)
Catch err As Exception

errMsg = "Web service is wrong: " & err.Message
Response.Write("<script>alert('" + errMsg + "')</script>")

End Try
Call FillFacultyDataSet(wsDataSet)

End If

End Sub

A

B

C
D

E

F

G

H

cmdSelect Click

c09.indd 708c09.indd 708 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 709

 Open our Windows - based Web service client project WinClientSQLSelect , copy
these three subroutines from that project, and paste them into the code page of our
current Faculty page. The only modifi cation is for the MsgBox() method in the subroutine
ProcessObject() .

 As you know, in the website project, we need to use the Write() method provided by
the Response object of the server class to replace the Windows - based method MsgBox()
to display an error message. Create a local string variable errmsg for this subroutine to
hold the possible error message. Your modifi ed codes for this subroutine should match
those that are shown in Figure 9.43 . The modifi ed parts have been highlighted in bold.

 There is no any modifi cation needed for the other two subroutines FillFacultyObject()
and FillFacultyDataSet().

9.3.11.3.5 Modify the Codes for the Back Button Event Procedure The modifi ca-
tion to the Back button ’ s click event procedure is to use the Web - based Close() method
to replace the Response.Redirect() method to terminate our Web client page project.
Your modifi ed Back button ’ s click event procedure should match the one that is shown
in Figure 9.44 . The modifi ed parts have been highlighted in bold.

 Before we can run our project, we need to remove two unused user - defi ned subrou-
tine procedures, FillFacultyReader() and MapFacultyTable() , from this project since
both of them were built in the previous project, and we will not use them in this project.

 Now, it is the time for us to run our Web - based Web service client project to test the
functions of our data query and our Web service. However, before we can run our project,
we need to make sure that the following two things have been done:

1. Make sure that the starting page is our Faculty.aspx page as the project runs. To confi rm
that, right - click our Faculty.aspx page from the Solution Explorer window and select the
item Set As Start Page from the pop - up menu.

Figure 9.43. The modifi ed codes for the subroutine ProcessObject().

Private Sub ProcessObject(ByRef wsResult As WS_SQLSelect.SQLSelectResult)
Dim errmsg As String

errmsg = "Faculty information cannot be retrieved: " & wsResult.SQLRequestError
If wsResult.SQLRequestOK = True Then

Call FillFacultyObject(wsResult)
Else

Response.Write("<script>alert('" + errmsg + "')</script>")
End If

End Sub

Faculty ProcessObject

Figure 9.44. The modifi ed codes for the Back button event procedure.

Protected Sub cmdBack_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdBack.Click
Response.Write("<script>window.close()</script>")

End Sub

cmdBack Click

c09.indd 709c09.indd 709 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

710 Chapter 9 ASP.NET Web Services

2. Make sure that our Web service WebServiceSQLSelect has been run at least one time and
that Web service status is running. This can be identifi ed by a small white icon located in
the task bar at the bottom of the screen.

 Now, click on the Start Debugging button to run our project. The Faculty page is
displayed, and it is shown in Figure 9.45 .

 Keep the default Web method in the Query Method combo box control selected and
the faculty name in the Faculty Name combo box control unchanged. Then click on the
Select button to call the associated Web method developed in our Web service to retrieve
the selected faculty information from our sample database via the Web server. The query
result is shown in Figure 9.45 .

 You can try to select different Web methods with different faculty members to test
this project. Our Web - based Web service client project is very successful.

 A complete Web - based Web service client project WebClientSQLSelect can be
found in the folder DBProjects\Chapter 9 that is located at the Wiley ftp site (refer to
Figure 1.2 in Chapter 1).

9.3.12 Deploy the Completed Web Service to
Production Servers

 When we fi nished developing and testing our Web service in our local machine, we need
to deploy it to the .NET SDK or an IIS 5 or higher virtual directory to allow users to
access and use it via a production server. We may discuss this topic in the early section

Figure 9.45. The running status of our Web - based client project.

c09.indd 710c09.indd 710 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 711

when we fi nished developing our Web service project. The reason we delay this discussion
until this section is that we do not have to perform this Web service deployment if we
run our Web service and access it using a client project in our local computer (develop-
ment server). However, we must deploy our Web service to IIS if we want to run it in a
formal Web server (production server).

 Basically, we have two ways to do this deployment. One way is to simply copy our
Web service fi les to a server running the IIS 5 or higher, or to the folder that is or contains
our virtual directory. Another way is to use the Builder provided by Visual Studio.NET
to precompile the Web pages and copy the compiled fi les to our virtual directory. The
so - called virtual directory is a default directory that can be recognized and accessed by
a Web server, such as IIS to run our Web services. In both ways, we need a virtual direc-
tory to store our Web service fi les and allow Web server to pick up and run our Web
service from that virtual directory. Now let ’ s see how to create an IIS virtual directory.

 The following steps describe how to create an IIS virtual directory using the IIS
Manager:

1. First, create a folder to save our virtual directory ’ s fi les. Typically, we need to create this
folder under the default Web service root folder C:\Inetpub\wwwroot . In our case, create
a new folder named WSSQLSelect and place it under the root folder C:\Inetpub\wwwroot .

2. Open the IIS Manager by double - clicking on the Administrative Tools icon from the
Control Panel. On the opened wizard, double - click on the icon Computer Management ,
then expand the item Services and Applications from the opened wizard and continue to
expand the item Internet Information Services . Three items are listed under this icon: We
Sites , Default Web Site , and Default SMTP Virtual Server .

3. Right - click on the second item Default Web Site and select the item New|Virtual Directory
from the pop - up menu to open the Creation Wizard. Click on the Next to go to the next
step.

4. Enter WSSQLSelect into the Alias box as the name for this virtual directory, and then click
on the Next button to continue.

5. In the next wizard, click on the Browse button to fi nd folder we created at step 1, which is
WSSQLSelect . Then click on the OK button and the Next button to go to the next step.

6. Keep all default setting unchanged in the next wizard and click on the Next button to
continue.

7. Click on the Finish button to complete this process.

 Our virtual directory is created but the story is not fi nished. As you know, there is no
Default.asmx page in our Web service project. In order to enable the Web server to fi nd
our starting page, we need to modify the default page for this virtual directory. Follow
the steps below to fi nish this modifi cation:

1. Right click on our newly created virtual directory WSSQLSelect from the Computer
Management window and select the Properties item to open the Property window

2. Click on the Documents tab from the Properties window and remove all items from the
list box by selecting them and clicking on the Remove button.

3. Click on the Add button and enter our starting page, WebServiceSQLSelect.asmx , into
the Default Document Name box as our default starting page. Then click on the OK button.

4. Click on the Apply and then the OK button to close this window.

c09.indd 711c09.indd 711 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

712 Chapter 9 ASP.NET Web Services

 After our virtual directory is set up, next, we can deploy our Web service by either
copying fi les to this virtual directory or performing a precompile process. First, let ’ s do
that by copying all fi les to the virtual directory since this method is relatively simple.

9.3.12.1 Copy Web Service Files to the Virtual Directory

 Perform the following steps to complete this copying process:

1. Open Visual Studio.NET and our Web service project WebServiceSQLSelect .

2. Go to Website|Copy Web Site menu item to open the Copy Web Site wizard that is shown
in Figure 9.46 .

3. Click on the Connect button that is located at the right of the Connections text box.

4. On the opened wizard, click on the Local IIS icon from the left pane and then expand the
Default Web Site item to fi nd our virtual directory WSSQLSelect . Click this item to select
it and then click on the Open button.

5. Select all fi les and folders from our Web service project, and click on the right - arrow button
to copy all fi les to our virtual directory, as shown in Figure 9.46 .

6. Now go to the File|Open Web Site menu item to open the Open Web Site wizard. Click
on the Local IIS icon from the left pane and select our virtual directory WSSQLSelect , and
then click the Open button. Click Yes on the message box to allow our site to be confi gured
for use ASP.NET 4.0 if this message box is displayed.

7. On the opened Web service project, open the Web.confi g fi le and replace the attribute
<compilation debug = “true”/> with <compilation debug = “false”/> .

8. Rebuild our Web service project and run it again. This will replace the built - in Web server.
Check the Run without Debugging radio button if a warning message box is displayed.

Figure 9.46. Copy Web service fi les to the virtual directory.

c09.indd 712c09.indd 712 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

9.3 Build ASP.NET Web Service Project to Access SQL Server Database 713

 Next, we will discuss how to publish a Web service to the production server using the
precompiled Web service method.

9.3.12.2 Publish Precompiled Web Service

 Before publishing our Web service to a production server, make sure that a virtual direc-
tory has been created. In our case, this virtual directory is a new folder named
WSSQLSelectCompile , and it is located under the root folder C:\Inetpub\wwwroot .
Follow steps 1 – 7 listed in Section 9.3.12 to create this virtual directory if you have not
done it.

 Now open our Web service project if it is not opened. Go to the Build|Publish Web
Site menu item to open the Publish Web Site wizard. Enter the virtual directory we
created above, which is http://localhost/WSSQLSelectCompile , into the Target Location
box as our target directory, keep the default setups unchanged, and click on the OK button
to begin the publishing process.

 When the publishing process is completed, the processing and the output of this
publishing process are displayed in the Output window. To see what happened to this
process, open this Output window by going to View|Other Windows|Output . A sample
processing result is shown in Figure 9.47 .

 Another way to check this publishing result is to open the virtual directory we created
for this published Web service to inspect the associated compiled fi les. To do that, open
the Windows Explorer window and browse to our virtual directory C:\Inetpub\ wwwroot\
WSSQLSelectCompile . You can fi nd that two terminal fi les named App_Code.com-
piled and App_Code.dll are located in the bin folder under this virtual directory. The
fi rst fi le corresponds to pages, and the second fi le contains the executable code for the
Web service, such as the class fi le that you created. Remember that the page, its code, and
the separate class fi le that you created have all been compiled into the executable code.

 To test this published Web service, you can open the Microsoft Internet Explorer (IE)
and type our virtual directory http://localhost/WSSQLSelectCompile as the URL into the
Address box to try to open our service page.

 At this point, we have fi nished the discussion about how to create and consume a
Web service using a Windows - based and a Web - based Web service client project. In the

Figure 9.47. The processing result of the Web service publishing.

c09.indd 713c09.indd 713 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

714 Chapter 9 ASP.NET Web Services

following sections, we will expand these discussions to perform the data insertion, updat-
ing, and deleting actions against the database through the Web services.

9.4 BUILD ASP.NET WEB SERVICE PROJECT TO INSERT DATA
INTO SQL SERVER DATABASE

 In this section, we will discuss how to insert data into our sample database through a Web
service developed in Visual Studio.NET. The data table we try to use for this data action
is the Course table. In other words, we want to insert a new course record for the selected
faculty into the Course table via a Web service we will develop in this section.

 To save time and space, we can copy and modify an existing Web service project
WebServiceSQLSelect we developed in the previous section to make it as our new Web
service project WebServiceSQLInsert .

 You can fi nd the Web service application project WebServiceSQLSelect in
the folder DBProjects\Chapter 9 that is located at the Wiley ftp site (refer to Figure
 1.2 in Chapter 1). You can copy that project and save it to a local folder at your
computer.

9.4.1 Modify an Existing Web Service Project

 First, let ’ s create a new folder, such as Chapter 9 , in our root directory using the Windows
Explorer, and then copy the WebServiceSQLSelect project and paste it into our newly
created folder C:\Chapter 9 . Rename it to WebServiceSQLInsert and perform the fol-
lowing modifi cations to this project in the Windows Explorer:

1. Change our main Web service page from WebServiceSQLSelect.asmx to
WebServiceSQLInsert.asmx .

2. Change the name of our base class from SQLSelectBase , which is located in the folder
App_Code , to SQLInsertBase .

3. Change the name of our child class from SQLSelectResult , which is located in the folder
App_Code , to SQLInsertResult .

4. Change the name of the code - behind page from WebServiceSQLSelect.vb to
WebServiceSQLInsert.vb .

5. Open Visual Studio.NET and our new Web project WebServiceSQLInsert . Then open our
entry page WebServiceSQLInsert.asmx by double - clicking on it, and change the compiler
directive from

CodeBehind = “ ~ /App_Code/WebServiceSQLSelect.vb ”

 to

 CodeBehind = “ ~ /App_Code/WebServiceSQLInsert.vb ”

 Also, change the class name from

 Class = “ WebServiceSQLSelect ” to Class = “ WebServiceSQLInsert ”

6. Remove the child class SQLInsertResult.vb from this project since the data insertion has
no any data to be returned.

c09.indd 714c09.indd 714 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 715

7. Open the base class SQLInsertBase.vb and perform the following modifi cations:

 Change the class name from SQLSelectBase to SQLInsertBase .

A. Change two member data from SQLRequestOK to SQLInsertOK , and from
SQLRequestError to SQLInsertError .

B. Add the following seven member data into this class:

a. Public FacultyID As String
b. Public CourseID(10) As String
c. Public Course As String
d. Public Schedule As String
e. Public Classroom As String
f. Public Credit As Integer
g. Public Enrollment As Integer

 Go to the File|Save All menu item to save these modifi cations.
 Next, let ’ s take care of creating the different Web methods to perform the course

record insertion actions.

9.4.2 Develop the Web Service Methods

 We try to develop four Web methods in this Web service project; two of them are
used to insert the desired course information into our sample database, and two of
them are used to retrieve the newly inserted course information from the database to
test the data insertion. The fourth Web method is used to retrieve the detailed
course information based on the course_id . The functions of these methods are described
below:

1. Develop a Web method SetSQLInsertSP() to call a stored procedure to perform this new
course insertion.

2. Develop a Web method GetSQLInsert() to retrieve the new inserted course information
from the database using a joined table query.

3. Develop a Web method SQLInsertDataSet() to perform the data insertion by using multi-
query and return a DataSet that contains the updated Course table.

4. Develop a Web method GetSQLInsertCourse() to retrieve the detailed course information
based on the input course_id .

 The reason we use two different methods to perform this data insertion is to try to
compare them. As you know, there is no faculty name column in the Course table, and
each course is related to an associated faculty_id . In order to insert a new course into
the Course table, you must fi rst perform a query to the Faculty table to get the desired
faculty_id based on the selected faculty name, and then you can perform another inser-
tion query to insert a new course based on that faculty_id obtained from the fi rst query.
The fi rst method combines those queries into a stored procedure, and the third method
uses a DataSet to return the whole Course table to make this data insertion more
convenient.

 The main code developments and modifi cations are performed in our code - behind
page WebServiceSQLInsert.vb . In fact, most modifi cations will be made on the codes
in our four Web methods listed above.

c09.indd 715c09.indd 715 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

716 Chapter 9 ASP.NET Web Services

9.4.3 Develop and Modify the Codes for the Code -Behind Page

 Open our new project WebServiceSQLInsert if it has not been opened. Open the code
window of our code - behind page WebServiceSQLInsert.vb and change our main Web
service class ’ s name from WebServiceSQLSelect to WebServiceSQLInsert .

 The second modifi cation is to remove the user - defi ned subroutine FillFacultyReader()
since we do not need to return any data for this data insertion operation.

 The third modifi cation is to remove two Web methods, GetSQLSelectSP() and
GetSQLSelectDataSet() , including the entire coding body, since we will not use them in
this application.

 The last modifi cation to this page is to modify the codes of the user - defi ned subrou-
tine ReportError() . Perform the following modifi cations to this subroutine:

1. Change the data type of the passed argument from SQLSelectResult to SQLInsertBase .

2. Change the member data in the fi rst coding line from SQLRequestOK to SQLInsertOK .

3. Change the member data in the second coding line from SQLRequestError to
SQLInsertError .

 Now let ’ s start our modifi cation to the fi rst Web method.

9.4.3.1 Develop and Modify the First Web Method SetSQLInsertSP

 Perform the modifi cations shown in Figure 9.48 to the Web method GetSQLSelect() to
get our new Web method SetSQLInsertSP() .

 This Web method uses a stored procedure to perform the data insertion. Recall that
in Section 6.8.1.1 in Chapter 6 , we developed a stored procedure dbo.InsertFacultyCourse
in the SQL Server database and used it to insert a new course into the Course table. We
will use this stored procedure again in this Web method to reduce our coding load. Refer
to that section to get more detailed information about how to develop this stored proce-
dure. Seven input parameters are used for this stored procedure, @FacultyName , @
CourseID , @Course , @Schedule , @Classroom , @Credit , and @Enroll . All of these
parameters will be input by the user as this Web service project runs.

 Let ’ s take a closer look at the codes for this Web method to see how they work.

A. Our Web service class name is changed to WebServiceSQLInsert to distinguish is from
the original one.

B. The Web method name is also changed to SetSQLInsertSP , which means that this Web
method will call a stored procedure to perform the data insertion action. Seven input
parameters are passed into this method as a new course record to be inserted into the
Course table. The returned object should be an instance of our modifi ed base class
SQLInsertBase .

C. The content of the query string must be equal to the name of the stored procedure we
developed in Section 6.8.1.1 in Chapter 6 . Otherwise, a possible running error may be
encountered as this Web service is executed, since the stored procedure is identifi ed by its
name when it is called.

D. A returned object SetSQLResult is created based on our modifi ed base class
SQLInsertBase There is no any data supposed to be returned for the data insertion action.
However, in order to enable our client project to get a clear feedback from the execution

c09.indd 716c09.indd 716 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 717

Figure 9.48. The modifi cation to the fi rst Web method.

<WebService(Namespace:="http://www.wiley.com/9780521712354/")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class WebServiceSQLInsert

Inherits System.Web.Services.WebService

<WebMethod()> _
Public Function SetSQLInsertSP(ByVal FacultyName As String, ByVal CourseID As String, ByVal Course As String, _

ByVal Schedule As String, ByVal Classroom As String, ByVal Credit As Integer, ByVal Enroll As Integer) As _
SQLInsertBase

Dim cmdString As String = "dbo.InsertFacultyCourse"
Dim sqlConnection As New SqlConnection
Dim SetSQLResult As New SQLInsertBase
Dim sqlCommand As New SqlCommand
Dim intInsert As Integer

SetSQLResult.SQLInsertOK = True
sqlConnection = SQLConn()

If sqlConnection Is Nothing Then
SetSQLResult.SQLInsertError = "Database connection is failed"
ReportError(SetSQLResult)
Return Nothing

End If

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.StoredProcedure
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add("@FacultyName", SqlDbType.Text).Value = FacultyName
sqlCommand.Parameters.Add("@CourseID", SqlDbType.Char).Value = CourseID
sqlCommand.Parameters.Add("@Course", SqlDbType.Text).Value = Course
sqlCommand.Parameters.Add("@Schedule", SqlDbType.Char).Value = Schedule
sqlCommand.Parameters.Add("@Classroom", SqlDbType.Text).Value = Classroom
sqlCommand.Parameters.Add("@Credit", SqlDbType.Int).Value = Credit
sqlCommand.Parameters.Add("@Enroll", SqlDbType.Int).Value = Enroll
intInsert = sqlCommand.ExecuteNonQuery()
sqlCommand.Dispose()
sqlCommand = Nothing
If Not sqlConnection Is Nothing Then sqlConnection.Close()
sqlConnection = Nothing

If intInsert = 0 Then
SetSQLResult.SQLInsertError = "Data insertion is failed"
ReportError(SetSQLResult)

End If
Return SetSQLResult

End Function

A

B

C

D

E

F

G

H

I

J
K

L

M

WebServiceSQLInsert SetSQLInsertSP

of this Web service, we prefer to return an object that contains the information indicating
whether this Web service is successful or not.

E. A local integer variable intInsert is declared, and this variable is used to hold the returned
value from calling of the ExecuteNonQuery() method of the Command class, and that
method will call the stored procedure to perform the data insertion action. This returned
value is equal to the number of rows that have been successfully inserted into our
database.

F. Initially, we set the member data SQLInsertOK that is located in our modifi ed base class
SQLInsertBase to True to indicate our Web service running status is good.

G. If the connection to our sample database has failed, which is indicated by a returned
Connection object contained Nothing , an error message is assigned to another member

c09.indd 717c09.indd 717 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

718 Chapter 9 ASP.NET Web Services

data SQLInsertError that is also located in our modifi ed base class SQLInsertBase to log
on this error. The user - defi ned subroutine ReportError() is called to report this error.

H. The property value CommandType.StoredProcedure must be assigned to the
CommandType property of the Command object to tell the project that a stored procedure
should be called as this command object is executed.

I. Seven input parameters are assigned to the Parameters collection property of the Command
object, and the last six parameters work as a new course record to be inserted into the
Course table. One important point to be noted is that these input parameters ’ names must
be identical with those names defi ned in the stored procedure dbo.InsertFacultyCourse
developed in Section 6.8.1.1 in Chapter 6 . Refer to that section to get a detailed description
of those parameters ’ names defi ned in that stored procedure.

J. The ExecuteNonQuery() method is executed to call the stored procedure to perform
this data insertion. This method returns an integer that is stored in our local variable
intInsert .

K. A cleaning job is performed to release data objects used in this method.

L. The returned value from calling of the ExecuteNonQuery() method, which is stored in the
variable intInsert , is equal to the number of rows that have been successfully inserted into
the Course table. If this value is zero, which means that no row has been inserted into our
database, and this data insertion has failed, a warning message is assigned to the member
data SQLInsertError that will be reported by using our user - defi ned subroutine procedure
ReportError() .

M. Finally, the instance of our base class, SetSQLResult , is returned to the calling procedure
to indicate the running result of this Web method.

 At this point, we have fi nished the coding development and modifi cation to this Web
method. Now we can run this Web service project to insert a new course record to our
sample database via this Web service. Click on the Start Debugging button to run the
project. The built - in Web interface is shown in Figure 9.49 .

 Click on the Web method SetSQLInsertSP to open another built - in Web interface
to display the input parameters window, which is shown in Figure 9.50 .

Figure 9.49. The running status of the built - in Web interface.

c09.indd 718c09.indd 718 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 719

Figure 9.50. The input parameter interface.

 • FacultyName: Ying Bai

 • CourseID: CSE-556

 • Course: Advanced Fuzzy Systems

 • Schedule: M-W-F: 1:00 –1:55 PM

 • Classroom: TC-315

 • Credit: 3

 • Enroll: 28

 Enter the following parameters as a new course record into this Web method:

c09.indd 719c09.indd 719 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

720 Chapter 9 ASP.NET Web Services

 Click on the Invoke button to run this Web method to call the stored procedure to
perform this data insertion. The running result is displayed in the built - in Web interface,
which is shown in Figure 9.51 .

 Based on the returned member data SQLInsertOK = True , it indicates that our data
insertion is successful. To confi rm this, fi rst, click on the Close button that is located at
the upper - right corner of this Web interface to terminate our Web service project. Then
open the Course table in our sample database CSE_DEPT.mdf using the SQL Server
Management Studio to check this newly inserted course.

 It can be found from this running result that the values for both attributes <Credit>
and <Enrollment> are zero. This makes sense since we have not assigned any data to
them, and the default value is zero for any Integer variable. Also you can fi nd that the
<CourseID> tag, which is a string array CourseID(10) (0 – 10 elements) defi ned in our
base class SQLInsertBase.vb , returned 11 empty or true strings. Because we only inserted
a new course record into the Course table in our sample database, and this insertion needs
to return nothing according our defi nition to this base class.

Figure 9.51. The running result of the fi rst Web method.

c09.indd 720c09.indd 720 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 721

9.4.3.2 Develop the Second Web Method GetSQLInsert

 The function of this Web method is to retrieve all course_id , which includes the original
and the newly inserted course_id , from the Course table based on the input faculty name.
This Web method will be called or consumed by a client project later to get back and
display all course_id in a list box control in the client project.

 Recall that in Section 5.19.6 in Chapter 5 , we developed a joined - table query to
perform the data query from the Course table to get all course_id based on the faculty
name. The reason for that is because there is no faculty name column available in the
Course table, and each course or course_id is related to a faculty_id in the Course table.
In order to get the faculty_id that is associated with the selected faculty name, one must
fi rst perform a query from the Faculty table to obtain it. In this situation, a join query is
the desired method to complete this function.

 We will use the same strategy to perform this data query in this section.
 Open the code window of our code - behind page WebServiceSQLInsert.vb and

enter the codes that are shown in Figure 9.52 into this page to create our new Web method
GetSQLInsert() .

Figure 9.52. The codes for our second Web method GetSQLInsert().

<WebMethod()> _
Public Function GetSQLInsert(ByVal FacultyName As String) As SQLInsertBase

Dim cmdString As String = "SELECT Course.course_id FROM Course JOIN Faculty " + _
"ON (Course.faculty_id LIKE Faculty.faculty_id) AND (Faculty.faculty_name LIKE @fname)"

Dim sqlConnection As New SqlConnection
Dim GetSQLResult As New SQLInsertBase
Dim sqlCommand As New SqlCommand
Dim sqlReader As SqlDataReader

GetSQLResult.SQLInsertOK = True
sqlConnection = SQLConn()
If sqlConnection Is Nothing Then

GetSQLResult.SQLInsertError = "Database connection is failed"
ReportError(GetSQLResult)
Return Nothing

End If
sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add("@fname", SqlDbType.Text).Value = FacultyName
sqlReader = sqlCommand.ExecuteReader
If sqlReader.HasRows = True Then

Call FillCourseReader(GetSQLResult, sqlReader)
Else

GetSQLResult.SQLInsertError = "No matched course found"
ReportError(GetSQLResult)

End If
If Not sqlReader Is Nothing Then sqlReader.Close()
sqlReader = Nothing
If Not sqlConnection Is Nothing Then sqlConnection.Close()
sqlConnection = Nothing
sqlCommand.Dispose()
Return GetSQLResult

End Function

A
B

C

D
E

F

G
H
I

J

K

L

WebServiceSQLInsert GetSQLInsert

c09.indd 721c09.indd 721 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

722 Chapter 9 ASP.NET Web Services

 Let ’ s have a closer look at the codes in this Web method to see how they work.

A. The returning data type for this Web method is our modifi ed base class SQLInsertBase ,
and an entire course record is stored in the different member data in this class. The input
parameter to this Web method is a selected faculty name.

B. The joined - table query string is defi ned here, and an ANSI92 standard, which is an up - to -
 date standard, is used for the syntax of this query string. The ANSI 89, which is an out - of -
 date syntax standard, can still be used for this query string defi nition. But the up - to - date
standard is recommended. Refer to Section 5.19.6 in Chapter 5 to get more detailed
descriptions for this topic. The nominal name of the input dynamic parameter to this query
is @fname .

C. All used data objects are declared here, such as the Connection, Command, and DataReader
objects. A returned object GetSQLResult that is instantiated from our base class
SQLInsertBase is also created, and it will be returned to the calling procedure with the
queried course information.

D. Initially, we set the running status of our Web method to ok.

E. The user - defi ned function SQLConn() is called to connect to our sample database. A
warning message is assigned to the member data in our returned object, and the user -
 defi ned subroutine ReportError() is executed to report any exception that occurred during
this connection. The Web method is exited if an error occurs for this connection.

F. The Command object is initialized with appropriate properties, such as the Connection
object, command type, and command text.

G. The real input parameter FacultyName is assigned to the dynamic parameter @fname
using the Add() method.

H. The ExecuteReader() method is called to trigger the DataReader and perform the data
query. This method is a read - only method, and the returned reading result is assigned to
the DataReader object sqlReader .

I. By checking the HasRows property of the DataReader, we can determine whether this
reading is successful or not. If this reading is successful (HasRows = True), the user -
 defi ned subroutine FillCourseReader() , whose detailed codes will be discussed below, is
called to assign the returned course_id to each associated member data in our returned
object GetSQLResult .

J. Otherwise, if this reading has failed, a warning message is assigned to our member data
SQLInsertError in our returned object, and this error is reported by calling the subroutine
ReportError() .

K. A cleaning job is performed to release all data objects used in this Web method.

L. The returned object that contains all queried course_id is returned to the calling
procedure.

 The detailed codes for our user - defi ned subroutine FillCourseReader() are shown in
Figure 9.53 .

 The function of this piece of codes is straightforward, without tricks. A While loop
is used to continuously pick up each course_id whose column index is zero from the
Course table, convert it to a string, and assign it to the CourseID() string array defi ned
in our base class SQLInsertBase .

c09.indd 722c09.indd 722 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 723

Figure 9.53. The codes for the subroutine FillCourseReader().

Protected Sub FillCourseReader(ByRef sResult As SQLInsertBase, ByVal sReader As SqlDataReader)
Dim pos As Integer

While sReader.Read()
sResult.CourseID(pos) = Convert.ToString(sReader.GetSqlString(0)) 'the 1st column is course_id
pos = pos + 1

End While

End Sub

WebServiceSQLInsert FillCourseReader

Figure 9.54. The running status of our Web service project.

 Now, let ’ s test this Web method by running this project. Click on the Start Debugging
button to run our project, and the built - in Web interface is displayed, which is shown in
Figure 9.54 .

 Click on the fi rst Web method GetSQLInsert and enter the faculty name Ying Bai
into the FacultyName box in the next built - in Web interface, which is shown in
Figure 9.55 .

 Click on the Invoke button to execute this Web method. The running result of this
method is shown in Figure 9.56 .

 It can be seen that all courses (exactly all course_id), including our newly inserted
course CSE-556 , taught by the selected faculty Ying Bai , are listed in an XML format.

 Our second Web method is successful. Click on the Close button that is located at
the upper - right corner of this page to terminate our Web service project. Then go to
File|Save All to save all methods we have developed.

 Next, let ’ s take care of building our third Web method SQLInsertDataSet() to insert
data into the Course table using the DataSet method.

c09.indd 723c09.indd 723 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

724 Chapter 9 ASP.NET Web Services

Figure 9.56. The running result of our Web method GetSQLInsert().

Figure 9.55. The input parameter wizard for the Web method GetSQLInsert().

c09.indd 724c09.indd 724 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 725

9.4.3.3 Develop the Third Web Method SQLInsertDataSet

 The function of this Web method is similar to that of the fi rst Web method, which is to
insert a new course record into the Course table based on the selected faculty member.
The difference is that this Web method uses multiquery to insert a new course record into
the Course table, and uses a DataSet as the returned object. Furthermore, the returned
DataSet contains the updated Course table that includes the newly inserted course record.
The advantages of using a DataSet as the returned object are:

1. Unlike Web methods 1 and 2, which are a pair of methods — the fi rst one is used to insert
data into the database and the second one is used to retrieve the new inserted data from
the database to confi rm the data insertion — Web method 3 contains both data insertion and
retrieving functions. Later, when a client project is developed to consume this Web service,
methods 1 and 2 must be called together from that client project to perform both data
insertion and data validation jobs. However, method 3 has both data insertion and data
validation functions, so it can be called independently.

2. Because a DataSet is returned, we do not need to create any new instance for our base class
as the returned object. However, in order to report or log on any exception encountered
during the project runs, we still need to create and use an instance of our base class to handle
those error - processing issues.

 Create a new Web method SQLInsertDataSet() and enter the codes that are shown
in Figure 9.57 into this method.

 Let ’ s have a closer look at the codes in this Web method to see how they work.

A. The name of the Web method is SQLInsertDataSet() . Seven input parameters are passed
into this method as a newly inserted record, and the returned data type is DataSet.

B. The data insertion query string is declared here. In fact, in total, we have three query strings
in this method. The fi rst two queries are used to perform the data insertion, and the third
one is used to retrieve the newly inserted data from the database to validate the data
insertion. For the data insertion, fi rst we need to perform a query to the Faculty table to
get the matched faculty_id based on the input faculty name since there is no faculty name
column available in the Course table. Second, we can insert a new course record into the
Course table by executing another query based on the faculty_id obtained from the fi rst
query. The query string declared here is the second query string.

C. All data objects and variables used in this Web method are declared here, which include
the Connection, Command, DataAdapter, DataSet, and an instance of our base class
SQLInsertBase . The local integer variable intResult is used to hold the returned value
from calling the ExecuteNonQuery() method. The string variable FacultyID is used to
reserve the faculty_id that is obtained from the fi rst query.

D. The member data SQLInsertOK is initialized to the normal case.

E. The user - defi ned subroutine procedure SQLConn() is called to perform the database
connection. A warning message will be displayed and reported using the subroutine
ReportError() if this connection encountered any error.

F. The Command object is fi rst initialized to perform the fi rst query — get faculty_id from the
Faculty table based on the input faculty name.

G. The fi rst query string is assigned to the CommandText property.

H. The dynamic parameter @fname is assigned with the actual input parameter FacultyName .

c09.indd 725c09.indd 725 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

726 Chapter 9 ASP.NET Web Services

I. The ExecuteScalar() method of the Command object is called to perform the fi rst query
to pick up the faculty_id and assign it to the local string variable FacultyID . One point to
be noted is the data type that the ExecuteScalar() method returned. An Object type is
returned from calling of this method in the normal case, but it can be automatically con-
verted to a String type by Visual Basic.NET if it is assigned to a variable with the String
type.

Figure 9.57. The codes for the Web method SQLInsertDataSet().

<WebMethod()> _
Public Function SQLInsertDataSet(ByVal FacultyName As String, ByVal CourseID As String, _

ByVal Course As String, ByVal Schedule As String, ByVal Classroom As String, ByVal Credit As Integer, _
ByVal Enroll As Integer) As DataSet

Dim cmdString As String = "INSERT INTO Course VALUES (@course_id, @course, @credit, @classroom, " + _
"@schedule, @enrollment, @faculty_id)"

Dim sqlConnection As New SqlConnection
Dim SetSQLResult As New SQLInsertBase
Dim sqlCommand As New SqlCommand
Dim CourseAdapter As New SqlDataAdapter
Dim dsCourse As New DataSet
Dim intResult As Integer
Dim FacultyID As String

SetSQLResult.SQLInsertOK = True
sqlConnection = SQLConn()
If sqlConnection Is Nothing Then

SetSQLResult.SQLInsertError = "Database connection is failed"
ReportError(SetSQLResult)
Return Nothing

End If

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = "SELECT faculty_id FROM Faculty WHERE faculty_name LIKE @fname"
sqlCommand.Parameters.Add("@fname", SqlDbType.Text).Value = FacultyName
FacultyID = sqlCommand.ExecuteScalar()

sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add("@faculty_id", SqlDbType.Text).Value = FacultyID
sqlCommand.Parameters.Add("@course_id", SqlDbType.Char).Value = CourseID
sqlCommand.Parameters.Add("@course", SqlDbType.Text).Value = Course
sqlCommand.Parameters.Add("@schedule", SqlDbType.Char).Value = Schedule
sqlCommand.Parameters.Add("@classroom", SqlDbType.Text).Value = Classroom
sqlCommand.Parameters.Add("@credit", SqlDbType.Int).Value = Credit
sqlCommand.Parameters.Add("@enrollment", SqlDbType.Int).Value = Enroll

CourseAdapter.InsertCommand = sqlCommand
intResult = CourseAdapter.InsertCommand.ExecuteNonQuery()
If intResult = 0 Then

SetSQLResult.SQLInsertError = "No matched course found"
ReportError(SetSQLResult)

End If
sqlCommand.CommandText = "SELECT * FROM Course WHERE faculty_id LIKE @FacultyID"
sqlCommand.Parameters.Add("@FacultyID", SqlDbType.Text).Value = FacultyID
CourseAdapter.SelectCommand = sqlCommand
CourseAdapter.Fill(dsCourse, "Course")
CourseAdapter.Dispose()
CourseAdapter = Nothing
If sqlConnection IsNot Nothing Then sqlConnection.Close()
sqlConnection = Nothing
sqlCommand.Dispose()
Return dsCourse

End Function

A

B

C

D
E

F

G
H
I

J
K

L
M
N

O
P
Q
R
S

T

WebServiceSQLInsert SQLInsertDataSet

c09.indd 726c09.indd 726 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 727

J. The second query string is assigned to the CommandText property to make it ready to
perform the second query — insert new course record into the Course table.

K. All seven input parameters to the INSERT command are initialized by assigning them with
the actual input values. The point to be noted is the data types of the last two parameters.
Both credit and enrollment are integers, so the data type SqlDbType.Int is used for both
of them.

L. The initialized Command object is assigned to the InsertCommand property of the
DataAdapter.

M. The ExecuteNonQuery() method is called to perform this data insertion query to insert a
new course record into the Course table in our sample database. This method will return
an integer to indicate the number of rows that have been successfully inserted into the
database.

N. If this returned integer is zero, which means that no row has been inserted into the data-
base and this insertion has failed, a warning message is assigned to the member data
SQLInsertError , and our subroutine ReportError() is called to report this error.

O. The third query string, which is used to retrieve all courses, including the newly inserted
course, from the database based on the input faculty_id , is assigned to the CommandText
property of the Command object.

P. The dynamic parameter FacultyID is initialized with the actual faculty_id obtained from
the fi rst query as we did above.

Q. The initialized Command object is assigned to the SelectCommand property of the
DataAdapter.

R. The Fill() method of the DataAdapter is executed to retrieve all courses, including the
newly inserted courses, from the database, and add them into the DataSet dsCourse .

S. A cleaning job is performed to release all objects used in this Web method.

T. Finally, the DataSet that contains the updated course information is returned to the calling
procedure.

 Compared with the fi rst Web method, it looks like that more codes are involved in
this method. Yes, it is true. However, this method has two functionalities: inserting data
into the database and validating the inserted data from the database. In order to validate
the data insertion for the fi rst method, the second Web method must be executed.
Therefore, from the point of view of data insertion and data validation process, the third
Web method has less code compared with the fi rst one.

 Now let ’ s run our Web service project to test this Web method using the built - in Web
interface. Click on the Start Debugging button to run the project and click on our third
Web method SQLInsertDataSet from the built - in Web interface to start it. The param-
eters wizard is displayed, which is shown in Figure 9.58 . Enter the following parameters
into each associated Value box as the data of a new course:

 • FacultyName: Ying Bai

 • CourseID: CSE-665

 • Course: Advanced Robotics

 • Schedule: T-H: 1:00 –2:25 PM

 • Classroom: TC-309

c09.indd 727c09.indd 727 4/25/2012 7:31:58 PM4/25/2012 7:31:58 PM

728 Chapter 9 ASP.NET Web Services

 • Credit: 3

 • Enroll: 32

Figure 9.58. The fi nished input parameter wizard.

 Your fi nished parameter wizard should match the one that is shown in Figure 9.58 .
 Click on the Invoke button to run this Web method to perform this new course inser-

tion. The running result is shown in Figure 9.59 .
 All six courses, including the sixth course CSE-665 , which is the newly inserted

course, are displayed in the XML format or tags in this running result interface.
 A point to be noted is that you can only insert this new course record into the data-

base one time, which means that after this new course has been inserted into the database,
you cannot continue to click on the Invoke button to perform another insertion with the
same course information since the data to be inserted into the database must be unique.

 Click on the Close button that is located at the upper - right corner of this Web inter-
face to terminate our service. A complete Web service project WebServiceSQLInsert

c09.indd 728c09.indd 728 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 729

Figure 9.59. The running result of the third Web method.

can be found in the folder DBProjects\Chapter 9 that is located at the Wiley ftp site
(refer to Figure 1.2 in Chapter 1).

 Next, let ’ s develop our fourth Web method.

9.4.3.4 Develop the Fourth Web Method GetSQLInsertCourse

 The function of this method is to retrieve the detailed course information from the data-
base based on the input course_id . This method can be consumed by a client project
when users want to get detailed course information, such as the course name, schedule,
classroom, credit, enrollment, and faculty_id when a course_id is selected from a list box
control.

 Because this query is a single query, you can use either a normal query or a stored
procedure if you want to reduce the coding load in this method. Relatively speaking, the
stored procedure is more effi cient compared with the normal query, so we prefer to use
a stored procedure to perform this query.

 Now let ’ s fi rst create our stored procedure WebSelectCourseSP.

9.4.3.4.1 Create the Stored Procedure WebSelectCourseSP Open Visual Studio.
NET 2010 and the Server Explorer window, click on our sample database folder CSE_
DEPT.mdf to connect it. Then expand to the Stored Procedures folder. To create a new

c09.indd 729c09.indd 729 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

730 Chapter 9 ASP.NET Web Services

Figure 9.60. The codes for the stored procedure WebSelectCourseSP().

Figure 9.61. The running result of the stored procedure WebSelectCourseSP().

stored procedure, right - click on this folder and select the item Add New Stored
Procedure to open the Add New Stored Procedure wizard.

 Enter the codes that are shown in Figure 9.60 into this wizard to create our new
stored procedure WebSelectCourseSP() .

 Go to File|Save StoredProcedure1 to save this stored procedure.
 To test this stored procedure, go to the Server Explorer window and right - click on

this newly created stored procedure. Then select the item Execute from the pop - up menu
to open the Run Stored Procedure wizard. Enter CSE-438 into the Value box in this
wizard as the input course_id and click on the OK button to run this stored procedure.
The running result is displayed in the Output window, which is shown in Figure 9.61 .

 One row is found and returned from the Course table in our sample database. To
view all returned columns, move the horizontal bar at the bottom of this Output window
right. Our stored procedure works fi ne.

 Right - click on our database folder CSE_DEPT.mdf and select the item Close
Connection from the pop - up menu to close this database connection.

9.4.3.4.2 Develop the Codes to Call This Stored Procedure Now let ’ s develop the
codes for our fourth Web method GetSQLInsertCourse() to call this stored procedure
to perform the course information query.

c09.indd 730c09.indd 730 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 731

 Open the code - behind page WebServiceSQLInsert.vb and add the codes that are
shown in Figure 9.62 into this page to create this Web method.

 Let ’ s take a look at the codes in this Web method to see how they work.

A. The name of the Web method is GetSQLInsertCourse , and it returns an instance of
our base class SQLInsertBase . The returned instance contains the detailed course
information.

B. The content of the query string is the name of the stored procedure we developed in the
last section. This is required if a stored procedure is used and called to perform a data
query. This name must be exactly identical with the name of the stored procedure we
developed; otherwise, a running error may be encountered since the stored procedure is
identifi ed by its name during the project runs.

C. Some data objects, such as the Connection and the DataReader, are created here. Also, a
returned instance of our base class is also created.

D. The subroutine SQLConn() is called to perform the database connection. A warning
message is displayed and reported using the subroutine ReportError() if any error is
encountered during the database connection process.

E. The Command object is created with two arguments: query string and connection object.
The coding load can be reduced, but the working load cannot when creating a Command

Figure 9.62. The codes for the Web method GetSQLInsertCourse().

<WebMethod()> _
Public Function GetSQLInsertCourse(ByVal CourseID As String) As SQLInsertBase

Dim cmdString As String = "dbo.WebSelectCourseSP"
Dim sqlConnection As New SqlConnection
Dim GetSQLResult As New SQLInsertBase
Dim sqlReader As SqlDataReader

GetSQLResult.SQLInsertOK = True
sqlConnection = SQLConn()
If sqlConnection Is Nothing Then

GetSQLResult.SQLInsertError = "Database connection is failed"
ReportError(GetSQLResult)
Return Nothing

End If

Dim sqlCommand = New SqlCommand(cmdString, sqlConnection)
sqlCommand.CommandType = CommandType.StoredProcedure
sqlCommand.Parameters.Add("@CourseID", SqlDbType.Text).Value = CourseID
sqlReader = sqlCommand.ExecuteReader

If sqlReader.HasRows = True Then
Call FillCourseDetail(GetSQLResult, sqlReader)

Else
GetSQLResult.SQLInsertError = "No matched course found"
ReportError(GetSQLResult)

End If

sqlReader.Close()
sqlReader = Nothing
sqlConnection.Close()
sqlCommand.Dispose()
Return GetSQLResult

End Function

A
B
C

D

E

F
G
H

I

J

K

L

WebServiceSQLInsert GetSQLInsertCourse

c09.indd 731c09.indd 731 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

732 Chapter 9 ASP.NET Web Services

object in this way. As you know, the Command class has four kinds of constructors, and we
used the third one here.

F. The CommandType property of the Command object must be set to the value of
StoredProcedure since we need to call a stored procedure to perform this course informa-
tion query in this method.

G. The dynamic parameter @CourseID is assigned with the actual parameter CourseID that
will be entered as an input parameter by the user as the project runs. One point to be noted
is that the nominal name of this dynamic parameter must be identical with the name of
input parameter defi ned in the stored procedure we developed in the last section.

H. After the Command object is initialized, the ExecuteReader() method is called to trigger
the DataReader and to run the stored procedure to perform the course information query.
The returned course information is stored to the DataReader.

I. By checking the HasRows property of the DataReader, we can determine whether the
course information query is successful or not. If this property is True , which means that
at least one row has been found and returned from our database, the subroutine
FillCourseDetail() , whose detailed codes are shown in Figure 9.63 , is executed to assign
each piece of course information to the associated member data defi ned in our base class,
and an instance of this class will be returned as this method is done.

J. Otherwise, if this property returns False , which means that no row has been selected and
returned from our database, a warning message is displayed and reported using the sub-
routine ReportError() .

K. A cleaning job is performed to release all data objects used in this Web method.

L. Finally, an instance of our base class SQLInsertBase , GetSQLResult , which contains the
queried course detailed information, is returned to the calling procedure.

 The detailed codes for the subroutine FillCourseDetail() are shown in Figure 9.63 .
 Let ’ s have a closer look at this piece of codes to see how it works.

A. Two arguments are passed into this subroutine: the fi rst one is our returned object that
contains all member data, and the second one is the DataReader that contains queried
course information. The point is that the passing mode for the fi rst argument is passing -
 by - reference, which means that an address of our returned object is passed into this sub-
routine. In this way, all modifi ed member data that contain the course information in this

Figure 9.63. The codes for the subroutine FillCourseDetail().

Protected Sub FillCourseDetail(ByRef sResult As SQLInsertBase, ByVal sReader As SqlDataReader)
sReader.Read()
With sResult

.FacultyID = Convert.ToString(sReader("faculty_id"))

.Course = Convert.ToString(sReader("course"))

.Schedule = Convert.ToString(sReader("schedule"))

.Classroom = Convert.ToString(sReader("classroom"))

.Credit = Convert.ToString(sReader("credit"))

.Enrollment = Convert.ToString(sReader("enrollment"))
End With

End Sub

A
B
C

WebServiceSQLInsert FillCourseDetail

c09.indd 732c09.indd 732 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 733

returned object can be returned to the calling procedure or our Web method —
GetSQLInsertCourse() . From this point of view, this subroutine works just as a function,
and our object can be returned as this subroutine is completed.

B. The Read() method of the DataReader is executed to read course records from the
DataReader.

C. A With . . . End With block is executed to assign each column of queried course record
to the associated member data in our base class. A Convert.ToString() class method is
used to convert all data to strings before this assignment.

 Now let ’ s run our project to test this Web method. Click on the Start Debugging
button to run the project. Select our Web method GetSQLInsertCourse from the built - in
Web interface and enter CSE-665 as the course_id into the Value box. Then click on
the Invoke button to run this Web method. The running result is shown in Figure 9.64 .

 Six pieces of course information are displayed in XML tags except the course_id .
We defi ned this member data as a string array with a dimension of 11. Keep in mind that
the index of an array starts from 0, not 1. Therefore, the size of our array CourseID(10)

Figure 9.64. The running result of our Web method GetSQLInsertCourse().

c09.indd 733c09.indd 733 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

734 Chapter 9 ASP.NET Web Services

is 11. This member data is used for our second Web method, GetSQLInsert() , which
returns an array contains all course_id . Since we did not use it in this method, 11 ele-
ments of this CourseID array are set to true and displayed in this resulting fi le.

 Click on the Close button that is located at the upper - right corner of this Web inter-
face to terminate our service. A complete Web service project WebServiceSQLInsert
that contains all of those four Web methods can be found in the folder DBProjects\
Chapter 9 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

 At this point, we have fi nished all code developing jobs in our Web service project
in the server side. Next, we want to develop some professional Windows - based and Web -
 based application projects with beautiful GUIs to use or to consume the Web service
application we developed in this Web service project WebServiceSQLInsert . Those
Windows - based and Web - based applications can be considered as Web service clients.

9.4.4 Build Windows -Based Web Service Clients to Consume
the Web Services

 To use or consume a Web service, fi rst, we need to create a Web service proxy class in
our Windows - based or Web - based applications. Then we can create a new instance of the
Web service proxy class and execute the desired Web methods located in that Web service
class. The process of creating a Web service proxy class is equivalent to adding a Web
reference to our Windows - based or Web - based applications.

9.4.4.1 Create a Windows -Based Consume Project and a Web Service

Proxy Class

 Basically, adding a Web reference to our Windows - based or Web - based applications is to
execute a searching process. During this process, Visual Studio.NET 2010 will try to fi nd
all Web services available to our applications.

 To add a Web reference to our client project, we need fi rst to create a client project.
Open Visual Studio.NET 2010 and create a new Windows - based project, and name this
project as WinClientSQLInsert .

 As we mentioned in Section 9.3.10.1 , there are two ways we can use to select the
desired Web service and add it as a reference to our client project: (1) use the Browser
provided by the Visual Studio.NET 2010 to fi nd the desired Web service, or (2) copy and
paste the desired Web service URL to the URL box located in the Add Web Reference
wizard. The second way needs you fi rst to run the Web service, and then copy its URL
and paste it to the URL box in this wizard if you did not deploy that Web service to IIS.
If you did deploy that Web service, you can directly type that URL into the URL box in
this wizard.

 Because we developed our Web service using the File System on our local computer,
and, also, we have not deployed our Web service to IIS, we can use the second way to
fi nd our Web service. Perform the following operations to add this Web reference:

1. Open Visual Studio.NET 2010 and our Web service project WebServiceSQLInsert , and
click on the Start Debugging button to run it.

2. Copy the URL from the Address bar in our running Web service project.

c09.indd 734c09.indd 734 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 735

3. Then open another Visual Studio.NET 2010 and our Windows - based client project
WinClientSQLInsert .

4. Right - click on our client project WinClientSQLInsert from the Solution Explorer window,
and select the item Add Service Reference from the pop - up menu to open the Add Service
Reference wizard.

5. Click on the Advanced button located at the lower - left corner on this wizard to open the
Service Reference Settings wizard.

6. Click on the Add Web Reference button to open the Add Web Reference wizard, which
is shown in Figure 9.65 .

7. Paste that URL we copied from step 2 into the URL box in the Add Web Reference wizard
and click on the Green Arrow button to enable the Visual Studio.NET 2010 to begin to
search it.

8. When the Web service is found, the name of our Web service is displayed in the right pane,
which is shown in Figure 9.65 .

9. Alternately, you can change the name for this Web reference from localhost to any mean-
ingful name, such as WS_SQLInsert in our case. Click on the Add Reference button to
add this Web service as a reference to our new client project.

10. Click on the Close button from our Web service built - in Web interface window to terminate
our Web service project.

Figure 9.65. The fi nished Add Web Reference wizard.

c09.indd 735c09.indd 735 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

736 Chapter 9 ASP.NET Web Services

 Immediately, you can fi nd that the Web service WS_SQLInsert , which is under the
folder Web References , has been added into the Solution Explorer window in our client
project. This reference is the so - called Web service proxy class.

 Next, let ’ s develop the GUI by adding useful controls to interface to our Web service
and to display the queried course information.

9.4.4.2 Develop the Graphic User Interface for the Client Project

 Perform the following modifi cations to our new client project:

1. Rename the Form File object from the default name Form1.vb to our desired name
WinClient Form.vb .

2. Rename the Window Form object from the default name Form1 to our desired name
CourseForm by modifying the Name property of the form window.

3. Rename the form title from the default title Form1 to CSE_DEPT Course Form by modify-
ing the Text property of the form.

4. Change the StartPosition property of the form window to CenterScreen .

 To save time and space, we can use the Course Form located in the project
SQLUpdateDeleteRTObject we developed in Chapter 7 as our GUI. You can fi nd this
project in the folder DBProjects\Chapter 7 that is located at the Wiley ftp site (refer to
Figure 1.2 in Chapter 1). Perform the following operations to add this Course Form into
our new client project:

1. Open the project SQLUpdateDeleteRTObject and the Course form window from the
Wiley ftp site.

2. Select all controls from that form by going to the item Edit|Select All , and go to Edit|Copy
menu item to copy all controls selected from this form window.

3. Return to our new Windows - based Web service client project WinClientSQLInsert , open
our form window CourseForm , and paste those controls we copied from step 2 into this
form.

 Your fi nished GUI is shown in Figure 9.66 .
 The purpose of the Query Method combo box control is to select two different

methods developed in our Web service project to get our desired course information:

1. Stored Procedure Method that uses a stored procedure to insert a new course record into
the database.

2. DataSet Method that uses three queries to insert a new course record into the database
and return a DataSet that contains the detailed course information.

 The Faculty Name combo box control is used to select a desired faculty member
as the input parameter to the Web methods to insert and pick up the desired course
record.

 In this application, only the Insert , Select , and Back buttons are used. The Insert
button is used to trigger a data insertion action, the Select button is to trigger a data
validation action to confi rm that data insertion, and the Back button is used to terminate
our project.

c09.indd 736c09.indd 736 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 737

 The detailed functions of this project are:

1. Insert Data Using the Stored Procedure Method : When the project runs, as this method
and a faculty name have been selected, and a new course record that is stored in six text-
boxes have been entered. Then, when the Insert button is clicked by the user, our client
project will be connected to our Web service via the Web reference we provided, and call
the selected Web method SetSQLInsertSP() to run the stored procedure to insert that new
course record into our sample database.

2. Insert Data Using the DataSet Method : If this method is selected, the Web method
SQLInsertDataSet() developed in our Web service will be called to execute two queries to
perform this new course insertion. Also, all courses, which include the newly inserted course,
taught by the selected faculty that works as an input to this method, will be retrieved and
stored into a DataSet by another query, and that DataSet will be returned to our client
project.

3. Validate Data Insertion Using the Stored Procedure Method : To confi rm this data inser-
tion, the Select button, that is the Select button ’ s click event procedure we will develop
below, is used to validate that data insertion. If the Stored Procedure Method is selected,
the Web method GetSQLInsert() is called to perform a joined - table query to retrieve all
course_id , which include the newly inserted course_id , from the database, and stored them
into an instance of our base class SQLInsertBase in our Web service. This instance will be
returned to our client project, and all course_id stored in that instance will be taken out
and displayed in the list box control CourseList in our client form window.

4. Validate Data Insertion Using the DataSet Method : If this method is selected and the
Select button is clicked, the Select button ’ s click event procedure we will develop below
is executed to pick up all course_id from a DataSet that is returned in step 2. Also all
course_id will be displayed in the list box control CourseList in our client form window.

Figure 9.66. The fi nished graphic user interface.

c09.indd 737c09.indd 737 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

738 Chapter 9 ASP.NET Web Services

5. Get Detailed Course Information for a Specifi c Course : When this method is selected
and a course_id in the list box control CourseList is clicked, the Web method
GetSQLInsertCourse() in our Web service will be called to run a stored procedure to
retrieve all six pieces of information related to that selected course_id and store them into
an instance of our base class SQLInsertBase in our Web service. This instance will be
returned to our client project, and all six pieces of course information stored in that instance
will be taken out and displayed in six textbox controls in our client form window.

 Now let ’ s take care of the coding development for this project to connect to our Web
service using the Web reference we developed in the last section to call the associated
Web methods to perform the different data actions.

9.4.4.3 Develop the Code to Consume the Web Service

 The coding development can be divided into the following four parts:

1. Initialize and terminate the client project.

2. Insert a new course record into the database using both methods.

3. Validate the data insertion using both methods.

4. Get the detailed information for a specifi c course using both methods.

 Now let ’ s start our coding process based on these four steps.

9.4.4.3.1 Develop the Codes to Initialize and Terminate the Client Project This
coding process includes the development codes for the Form_Load event procedure, the
Back button ’ s click event procedure, and some other initializations, such as the Imports
commands and form - level variables.

 Open Visual Studio.NET 2010 and our client project WinClientSQLInsert if it has
not been opened. Then open the Code Window of this client project by clicking on the
View Code button from the Solution Explorer window and enter the codes that are shown
in Figure 9.67 into this Code Window.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. Two namespaces related to all data components and SQL Server Data Providers are
imported since we need to use them later.

B. Three form - level variables are created here. The fi rst one is a Boolean variable dsFlag ,
and it is used to set a fl ag to indicate whether the SQLInsertDataSet Web method
has been executed or not. Because this Web method performs both data insertion and
data retrieving, it must be called once from the Insert button ’ s click event procedure before
you can perform the data retrieving from the Select button ’ s click event procedure.
The second is a DataSet object, since we need to use this DataSet in multiple event pro-
cedures and multiple processes in this project, such as the data insertion and the data vali-
dation processes later. The third one is an instance of the base class SQLInsertBase
developed in our Web service project, and this instance is used to receive the returned
instance from calling the fi rst Web method SetSQLInsertSP() when performing a data
insertion.

C. In the Form_Load event procedure, eight default faculty members are added into the
Faculty Name combo box control using the Add() method. These faculty members will be
displayed and selected by the user as the input parameter to call different Web methods

c09.indd 738c09.indd 738 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 739

Figure 9.67. The codes of the Form_Load and Back button event procedures.

Imports System.Data
Imports System.Data.SqlClient

Public Class CourseForm
Private dsFlag As Boolean
Private wsDataSet As DataSet
Private wsSQLResult As New WS_SQLInsert.SQLInsertBase

Private Sub CourseForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboName.SelectedIndex = 0

ComboMethod.Items.Add("Stored Procedure Method")
ComboMethod.Items.Add("DataSet Method")
ComboMethod.SelectedIndex = 0

End Sub

Private Sub cmdBack_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdBack.Click
Me.Close()

End Sub
End Class

A

B

C

D

E

(CourseForm Events) Load

to perform either a data insertion or data validation operation as the project runs. The fi rst
faculty member is selected as the default one by setting the SelectedIndex property to zero.

D. Two Web methods, Stored Procedure Method and DataSet Method , are added into the
Query Method combo box control, and these methods can be selected by the user to call
the associated Web method to perform the desired data operation as the project runs.
Similarly, the fi rst method, the Stored Procedure Method , is selected as the default one.

E. The codes for the Back button ’ s click event procedure are very simple. The Close() method
is called to terminate our client project.

 The fi rst coding job is done, and let ’ s continue to perform the next coding process.

9.4.4.3.2 Develop the Codes to Insert a New Course Record into the Database

This coding development can be divided into two parts based on two methods: the Stored
Procedure Method and the DataSet Method . Because of the similarity between the
codes in these two methods, we combine them together.

 To insert a new course record into the database via our Web service, the following
three jobs should have been completed before the Insert button can be clicked:

1. The Web method has been selected from the Query Method combo box control.

2. The faculty name has been selected from the Faculty Name combo box control.

3. Six textboxes have been fi lled with six pieces of information related to a new course to be
inserted.

c09.indd 739c09.indd 739 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

740 Chapter 9 ASP.NET Web Services

 Besides those conditions, one more important requirement for this data insertion is
that any new course record can only be inserted into the database once. In other words,
no duplicated record can be inserted into the database. This duplication can be identifi ed
by checking the content of the textbox Course ID , or the column course_id in the Course
table in the database. As you know, the course_id is the primary key in the Course table,
and each record is identifi ed by using this primary key. As long as the course_id is dif-
ferent, no duplication could occur. Based on this analysis, in order to avoid the duplicated
insertion from occuring, the Insert button should be disabled after a new course record
is inserted into the database, and this button should be kept disabled until a different or
a new course_id is entered into the Course ID textbox, which means that a new record
is ready to be inserted into the database.

 Keep this in mind, and now let ’ s start to develop the codes for the Insert button ’ s
click event procedure.

 Double - click on the Insert button from the Design View of our client project to open
the Insert button ’ s click event procedure. Then enter the codes that are shown in Figure
 9.68 into this event procedure.

 Let ’ s have a closer look at this piece of codes to see how it works.

A. An instance of the Web reference to our Web service or our proxy class is created here
since we need it to access our Web methods to perform different data actions later. This
instance works as a bridge between our client project and Web methods developed in our
Web service project.

B. If users selected the Stored Procedure Method to perform the data insertion, a Try
. . . Catch block is used to call the Web method SetSQLInsertSP() with seven pieces
of new course information as arguments to insert a new course record into the database.

Figure 9.68. The codes for the Insert button Click event procedure.

Private Sub cmdInsert_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdInsert.Click
Dim wsSQLInsert As New WS_SQLInsert.WebServiceSQLInsert

If ComboMethod.Text = "Stored Procedure Method" Then
Try

wsSQLResult = wsSQLInsert.SetSQLInsertSP(ComboName.Text, txtID.Text, _
txtCourse.Text, txtSchedule.Text, txtClassRoom.Text, _
txtCredits.Text, txtEnroll.Text)

Catch err As Exception
MsgBox("Web service is wrong: " & err.Message)

End Try
If wsSQLResult.SQLInsertOK = False Then

MsgBox(wsSQLResult.SQLInsertError)
End If

Else
 dsFlag = True 'indicate the DataSet insert is performed

Try
wsDataSet = wsSQLInsert.SQLInsertDataSet(ComboName.Text, txtID.Text, _

txtCourse.Text, txtSchedule.Text, txtClassRoom.Text, _
txtCredits.Text, txtEnroll.Text)

Catch err As Exception
MsgBox("Web service is wrong: " & err.Message)

End Try
End If
cmdInsert.Enabled = False

End Sub

A

B

C

D

E

F

G

cmdInsert Click

c09.indd 740c09.indd 740 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 741

The calling result is returned and assigned to our form - level variable wsSQLResult that
will be checked later.

C. If any error is encountered, the error message is displayed.

D. Besides those errors - checking performed by the Catch statement, we also need to check
the member data defi ned in our base class to make sure that the running status of our Web
method is fi ne. One of member data SQLInsertOK is used to store this running status. If
this status is False , which means that something is wrong during the execution of this Web
method, the error message is displayed using another member data SQLInsertError that
stored the error source.

E. If users selected the DataSet Method , fi rst, the Boolean variable dsFlag is set to True to
indicate that the Web method SQLInsertDataSet() has been executed once. This fl ag
should be reset to False if users want to retrieve the course information from the database
by clicking on the Select button, but they have not called this Web method to fi rst insert
a new course record. If this happened, a message is displayed to direct the users to fi rst
execute this Web method to insert a new record into the database. Another Try . . . Catch
block is used to call the Web method SQLInsertDataSet() with seven pieces of new course
information as arguments to insert a new course record into the database. In addition to
performing the new course insertion, this Web method also performed a data query to
retrieve all courses, including the newly inserted course, from the database and assign them
to the DataSet that is returned to our client project.

F. If any system error is detected by the Catch statement, the error message is displayed.

G. Finally, the Insert button is disabled to avoid multiple insertions of the same record into
the database.

 Another coding development is for the Course ID textbox, that is, to the TextChanged
event procedure of the Course ID textbox. As we mentioned, the Insert button should
be disabled after one new course record has been inserted into the database to avoid the
multi - insertion of the same data. However, this button should be enabled when a new
different course record is ready to be inserted into the database. As soon as the content
of the Course ID textbox changed, which means that a new record is ready, the Insert
button should be enabled. To do this coding, double - click on the textbox Course ID from
the Design View of our client project window to open its TextChanged event procedure.
Enter the following codes into this event procedure:

cmdInsert.Enabled = True

 At this point, we have fi nished all coding developments for the data insertion process.
Before we can continue to develop the rest of our project, we prefer to fi rst run the client
project to test this data insertion functionality.

 The prerequisite to run our client project is to make sure that our Web service is in
the running status in this local computer. To check and confi rm that, open our Web service
project WebServiceSQLInsert and click on the Start Debugging button to run it. Then
you can close our Web service page by clicking on the Close button (our Web service is
still in the running status even the page is closed).

 Now you should fi nd that a small white icon has been added into the status bar on
the bottom of the screen. This small white icon means that our Web service is in the
running status, and any client can access and use it now. The reason we closed our Web
service page is that we do not need to keep our Web service page in an opening status,
instead, we need it in the background running status. After our Web service project runs

c09.indd 741c09.indd 741 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

742 Chapter 9 ASP.NET Web Services

one time, it will be in the running status, that is. it is in the background running status
even the Web page is closed.

 Now run our Windows - based client project WinClientSQLInsert by clicking on
the Start Debugging button. As the CourseForm window is displayed, perform the
following two insertions by using two Web methods with the following operations and
parameters:

1. Insert the fi rst new course record that is shown in Table 9.2 using the Stored Procedure
Method . Click on the Insert button to fi nish this data insertion.

2. Insert the second new course record that is shown in Table 9.3 using the DataSet Method .
 Click on the Insert button to fi nish this data insertion.

Table 9.3. The second course record to be inserted

Controls Input Parameters

Method: DataSet Method

Faculty Name: Ying Bai

Course ID: CSE-526

Course Name: Embedded Microcontrollers

Schedule: M-W-F: 9:00-9:55 AM

Classroom: TC-308

Credits: 3

Enrollment: 32

Table 9.2. The fi rst course record to be inserted

Controls Input Parameters

Method: Stored Procedure Method

Faculty Name: Ying Bai

Course ID: CSE-665

Course Name: Advanced Fuzzy Systems

Schedule: T-H: 1:00-2:25 PM

Classroom: TC-315

Credits: 3

Enrollment: 26

c09.indd 742c09.indd 742 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 743

 Now click on the Back button to terminate our client project. To confi rm these two
data insertions, open the Microsoft SQL Server Management Studio or Studio Express.
Then open our sample database CSE_DEPT.mdf and our Course table. You can fi nd that
these two records have been added into our Course table in the last two rows. It is highly
recommended to delete these two new records from our Course table after this checking
since we will perform the same data insertions when we confi rm these data insertions
programmablly in the following section.

9.4.4.3.3 Develop the Codes to Perform the Inserted Data Validation To confi rm
or validate the data insertion, we can open our database and data table to check it.
However, a professional way to do this confi rmation is to use codes to perform this vali-
dation. In this section, we discuss how to perform this validation by developing the codes
in the Select button ’ s click event procedure in our client project.

 As we mentioned in the previous sections, as this Select button is clicked after a new
course insertion, all course_id , including the newly inserted course_id , will be retrieved
from the database and displayed in a list box control in this CourseForm window. This
data validation is also divided into two parts according to the method adopted by the
user: either the Stored Procedure Method or the DataSet Method . Different processes
will be performed based on these two methods. Because of the codes similarity between
these two methods, we combine these codes together and put them into this Select but-
ton ’ s click event procedure.

 Now double - click on the Select button from the Design View of our client project
WinClientSQLInsert to open this event procedure and enter the codes that are shown
in Figure 9.69 into this event procedure.

Figure 9.69. The codes for the Select button Click event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim wsSQLInsert As New WS_SQLInsert.WebServiceSQLInsert

If ComboMethod.Text = "Stored Procedure Method" Then
Try

wsSQLResult = wsSQLInsert.GetSQLInsert(ComboName.Text)
Catch err As Exception

MsgBox("Web service is wrong: " & err.Message)
End Try
If wsSQLResult.SQLInsertOK = False Then

MsgBox(wsSQLResult.SQLInsertError)
End If
ProcessObject(wsSQLResult)

Else
If dsFlag = False Then

MsgBox("No DataSet Insert performed, do data insertion first")
Exit Sub

End If
Call FillCourseDataSet(wsDataSet)

 dsFlag = False
End If

End Sub

A

B

C

D
E

F
G

cmdSelect Click

c09.indd 743c09.indd 743 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

744 Chapter 9 ASP.NET Web Services

 Let ’ s take a closer look at this piece of codes to see how it works.

A. An instance of our Web service reference or proxy class is created, and this instance works
as a bridge to connect our client project with the Web methods developed in our Web
service together.

B. If the Stored Procedure Method has been selected by the user, a Try . . . Catch block
is used to call our Web method GetSQLInsert() with the selected faculty name as the input
to retrieve all course_id from the database. This method returns an instance of our base
class defi ned in the Web service, and this instance, which contains all course_id retrieved
from the database, is assigned to our form - level variable wsSQLResult to be processed
later. An error message is displayed if any error were encountered during the execution
of this Web method.

C. In addition to the error checking performed by the system in the Catch statement, we also
need to perform our error - checking process by inspecting the status of the member data
SQLInsertOK . The error source will be displayed if any error occurred.

D. If this Web method works fi ne, a user - defi ned subroutine ProcessObject() , whose detailed
codes are shown in Figure 9.70 , is called to extract all course columns from that returned
instance wsSQLResult .

E. If the user selected the DataSet Method , fi rst we need to check whether the Web method
SQLInsertDataSet() has been executed or not by checking the status of the form - level
variable dsFlag . Because when users use this method to retrieve the course information
from the database, this method must have been executed once from the Insert button ’ s
click event procedure. The reason for that is because this method performs both data inser-
tion and data retrieving. An error may be encountered if you use this method to retrieve
the course information from the Select button ’ s click event procedure without fi rst per-
forming the data insertion from the Insert button ’ s click event procedure since nothing
has been inserted. Therefore, nothing can be obtained from the returned DataSet. If this
dsFlag is False , which means that nothing has been inserted, an information message is
displayed to ask you to fi rst perform the data insertion.

Figure 9.70. The codes for the subroutines ProcessObject() and FillCourseListBox.

Private Sub ProcessObject(ByRef wsResult As WS_SQLInsert.SQLInsertBase)
If wsResult.SQLInsertOK = True Then

Call FillCourseListBox(wsResult)
Else

MsgBox("Course information cannot be retrieved: " & wsResult.SQLInsertError)
End If

End Sub

Private Sub FillCourseListBox(ByRef sqlResult As WS_SQLInsert.SQLInsertBase)
Dim index As Integer

CourseList.Items.Clear() 'clean up the course listbox
For index = 0 To sqlResult.CourseID.Length - 1

If sqlResult.CourseID(index) <> vbNullString Then
CourseList.Items.Add(sqlResult.CourseID(index))

End If
Next index

End Sub

A

B

C

D
E

CourseForm ProcessObject

c09.indd 744c09.indd 744 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 745

F. If the Web method SQLInsertDataSet() has been executed, a user - defi ned subroutine
FillCourseDataSet() , whose detailed codes are shown in Figure 9.71 , is called to fi ll the
list box control with all retrieved course_id .

G. Finally, the dsFlag is reset to False .

 The detailed codes for the subroutines ProcessObject() and FillCourseListBox() are
shown in Figure 9.70 .

 Let ’ s have a look at the codes in these two subroutines to see how they work.

A. First, we need to check the member data SQLInsertOK to make sure that the Web method
is executed successfully. If it is, the subroutine FillCourseListBox() is called to fi ll all
course_id contained in the returned instance to the list box control in our client form.

B. A warning message is displayed if any error was encountered during the execution of that
Web method.

C. In the subroutine FillCourseListBox() , fi rst, a local integer variable index is created, and
it works as a loop number for a For loop to continuously pick up all course_id from the
returned instance and add them into the list box control.

D. The course list box control is cleaned up fi rst before any course_id can be added into it.
This process is very important in displaying all course_id , otherwise, any new course_id
will be attached at the end of the original course_id in this control, and the displaying
result is messy.

E. A For loop is used to continuously pick up the course_id from the CourseID() array
defi ned in our base class SQLInsertBase . One point to be noted is the upper bound and
the length of this array. The length or the size of this array is 11, but the upper bound of
this array is 10, since the index of this array starts from 0, not 1. Therefore, the upper bound
of this array is equal to the length of this array minus 1. As long as the content of the
CourseID(index) is not Null, the remaining course_id is added into the list box control
by using the Add() method.

 The codes for the subroutine FillCourseDataSet() is shown in Figure 9.71 .
 Let ’ s have a look at the codes in this subroutine to see how they work.

A. Two objects, a DataTable and a DataRow, are declared at the beginning of this subroutine
since we need to use them to perform the data extraction from the returned instance and
the data addition to the list box control.

B. The list box control is fi rst cleaned up to avoid a messy displaying of multiple
course_id .

Figure 9.71. The codes for the subroutine FillCourseDataSet().

Private Sub FillCourseDataSet(ByRef ds As DataSet)
Dim CourseTable As New DataTable
Dim CourseRow As DataRow

CourseList.Items.Clear() 'clean up the course listbox
CourseTable = ds.Tables("Course")

For Each CourseRow In CourseTable.Rows
CourseList.Items.Add(CourseRow(0)) 'the 1st column is course_id

Next

End Sub

A

B
C

D

CourseForm FillCourseDataSet

c09.indd 745c09.indd 745 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

746 Chapter 9 ASP.NET Web Services

C. The CourseTable object is initialized by adding a new data table named “ Course “ and is
assigned to the DataSet object ds .

D. A For Each . . . In loop is used to continuously pick up the fi rst column that is the
course_id column from all returned rows, and add each of them into the list box control.
One point to be noted is that the fi rst column has an index value of 0, not 1, since the index
starts from 0.

 At this point, we fi nished all coding process for the Select button ’ s click event pro-
cedure. In other words, all codes related to the data validation are done.

 Now let ’ s run our client project to perform the data validation after the data insertion
process. Before we can start to run the project, make sure that the following two condi-
tions are met:

1. Our Web service is in the running status, and this can be checked by locating a small white
icon on the status bar on the bottom of the screen. If you cannot fi nd this icon, open our
Web service project WebServiceSQLInsert and click on the Start Debugging button to run
it. After the Web service starts to run, you can close the Web page if you like, but it is still
in the running status.

2. Two new course records, which we inserted before by testing the Insert button ’ s click event
procedure, have been deleted from the Course table in our sample database since we want
to insert the same course records in the following test.

 Now click on the Start Debugging button to run our client project. Enter the same
input parameters as shown in Table 9.2 in Section 9.4.4.3.2 , and click on the Insert button
to fi nish this data insertion using the Stored Procedure Method . Next, enter the same
input parameters as shown in Table 9.3 in Section 9.4.4.3.2 , and click on the Insert button
to fi nish this data insertion using the DataSet Method .

 To check or validate these data insertions, make sure that the selected method in the
Query Method combo box is still the DataSet Method and the Faculty Name is Ying
Bai . Then click on the Select button to retrieve all course_id from the database. It can
be found that all six courses taught by the selected faculty are listed in the list box control
with the course_id as the identifi er for each course.

 To test the Stored Procedure Method , make sure that the Stored Procedure
Method is selected from the Query Method combo box. Now we can select another
faculty from the Faculty Name combo box control, and click on the Select button to pick
up all course_id taught by the selected faculty. Next, reselect the default Faculty Name
Ying Bai , and then click on the Select button to try to retrieve all course_id taught by
the selected faculty. You can fi nd that the same results as we obtained using the DataSet
Method are displayed in the list box control.

 The running result or the data validation is shown in Figure 9.72 . It can be found that
our newly inserted two courses CSE-665 and CSE-526 have been added and displayed
in the list box control, and our data insertion is successful. Click on the Back button to
terminate our project.

 Next, let ’ s concentrate on the coding development to display the detailed course
information for a selected course_id from the list box control.

9.4.4.3.4 Develop the Codes to Get the Details for a Specifi c Course The func-
tion of this piece of codes is that the detailed course information, such as the course name,
schedule, classroom, credit, and enrollment, will be displayed in the associated textbox

c09.indd 746c09.indd 746 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 747

Figure 9.72. The running result of the data validation.

control as the user clicked and selected one course_id from the list box control. The main
coding job is performed inside the SelectedIndexChanged event procedure of the list box
control CourseList . Because when user clicks or selects a course_id from the list box
control, a SelectedIndexChanged event is issued, and this event is passed to the associated
SelectedIndexChanged event procedure.

 To pick up the detailed course information for the selected course_id , the Web
method GetSQLInsertCourse() in our Web service project WebServiceSQLInsert is
called. This method returns an instance of the base class SQLInsertBase to our client
project. The detailed course information is stored in that returned instance.

 Double - click on the list box control CourseList from the Design View of our client
project window to open the SelectedIndexChanged event procedure of the list box
control, and enter the codes that are shown in Figure 9.73 into this event procedure.

 Let ’ s take a closer look at this piece of codes to see how it works.

A. An instance of our Web service reference or the proxy class wsSQLInsert is created here.
This instance works as a bridge between our client project and the Web methods developed
in the Web service project.

B. A Try . . . Catch block is used to call the Web method GetSQLInsertCourse() with the
selected course_id from the list box control as the argument to perform this course infor-
mation retrieving. The selected course_id is stored in the Text property of the CourseList
control.

C. An exception message is displayed if any error was encountered during the execution of
this Web method and caught by the system method Catch .

D. In addition to the error checking performed by the system, we also need to perform our
exception checking by inspecting the member data SQLInsertOK in the base class
SQLInsertBase . If this data value is False , which means that an application error occurred

c09.indd 747c09.indd 747 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

748 Chapter 9 ASP.NET Web Services

during the running of this Web method, an error message is displayed, and the subroutine
is exited.

E. If everything is fi ne, a user - defi ned subroutine FillCourseDetail() is executed to extract
the detailed course information from the returned instance and assign it to each associated
textbox control in our client window form.

F. The codes for the subroutine FillCourseDetail() are simple. The course_id can be directly
obtained from the list box control, and all other pieces of information can be extracted
from the returned instance and assigned to the associated textbox.

 When performing this function to get the detailed course information from the data-
base, no difference exists between the Stored Procedure Method and the DataSet
Method . Both methods use the same process.

 At this point, we have fi nished all coding jobs for our Windows - based client project.
Now we can run the client project to test all functions of this project, as well as the func-
tions of our Web service project. Before we can do this, make sure that the following jobs
have been performed:

1. Our Web service is in the running status, and this can be checked by locating a small white
icon on the status bar on the bottom of the screen. If you cannot fi nd this icon, open our
Web service project WebServiceSQLInsert and click on the Start Debugging button to run
it. After the Web service starts to run, you can close the Web page if you like but it is still
in the running status.

2. Two new course records, which we inserted before by testing the Insert button ’ s click event
procedure, have been deleted from the Course table in our sample database since we want
to insert the same course records in this test.

Figure 9.73. The codes for the SelectedIndexChanged event procedure.

Private Sub CourseList_SelectedIndexChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles CourseList.SelectedIndexChanged

Dim wsSQLInsert As New WS_SQLInsert.WebServiceSQLInsert

Try
wsSQLResult = wsSQLInsert.GetSQLInsertCourse(CourseList.Text)

Catch err As Exception
MsgBox("Web service is wrong: " & err.Message)

End Try

If wsSQLResult.SQLInsertOK = False Then
MsgBox(wsSQLResult.SQLInsertError)
Exit Sub

End If

Call FillCourseDetail(wsSQLResult)
End Sub

Private Sub FillCourseDetail(ByRef sqlResult As WS_SQLInsert.SQLInsertBase)
txtID.Text = CourseList.Text
txtCourse.Text = sqlResult.Course
txtSchedule.Text = sqlResult.Schedule
txtClassRoom.Text = sqlResult.Classroom
txtCredits.Text = sqlResult.Credit
txtEnroll.Text = sqlResult.Enrollment

End Sub

A

B

C

D

E

F

CourseList SelectedIndexChanged

c09.indd 748c09.indd 748 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 749

 Now click on the Start Debugging button to run our client project. Insert two new
courses by entering parameters listed in Tables 9.2 and 9.3 in Section 9.4.4.3.2 and clicking
on the Insert button. Then perform the data validation by clicking on the Select button.
To get the detailed course information for the selected course_id from the list box
control, click one course_id , and immediately the detailed information about the selected
course_id is displayed in those associated textboxes, which is shown in Figure 9.74 .

 Click on the Back button to terminate our client project.
 A complete Windows - based Web service client project WinClientSQLInsert can be

found in the folder DBProjects\Chapter 9 that is located at the Wiley ftp site (refer to
Figure 1.2 in Chapter 1).

9.4.5 Build Web -Based Web Service Clients to Consume the
Web Services

 As we did in Section 9.3.11 , it can be found that there is no signifi cant difference between
developing a Web - based client application and developing a Windows - based client project
to consume a Web service. As long as the Web service is referenced by the Web - based
client project, one can access and call any Web method developed in that Web service to
perform the desired data queries via the Web - based client project without problem. Visual
Studio.NET will create the same document fi les, such as the Discovery Map fi le, the
WDSL fi le, and the DISCO fi le, for the client project no matter if this Web service is
consumed by a Windows - based or a Web - based client application.

 To save time and space, we can modify an existing ASP.NET Web application
SQLWebInsert we developed in Chapter 8 to make it as our new Web - based Web service
client project WebClientSQLInsert . In fact, we can copy and rename that entire project

Figure 9.74. The running status of getting the detailed course information.

c09.indd 749c09.indd 749 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

750 Chapter 9 ASP.NET Web Services

as our new Web - based client project, but we prefer to create a new ASP.NET website
project and only copy and modify the Course page.

 This section can be developed in the following sequences:

1. Create a new ASP.NET Website project WebClientSQLInsert and add an existing website
page Course.aspx from the project SQLWebInsert into our new project.

2. Add a Web service reference to our new project and modify the Web form page Course.
aspx to meet our data insertion requirements.

3. Modify the codes in the related event procedures of the Course.aspx.vb fi le to call the
associated Web method to perform our data insertion. The code modifi cations include the
following sections:

A. Modify the codes in the Page_Load event procedure.
B. Develop the codes for the Insert button ’ s click event procedure.
C. Develop the codes for the TextChanged event procedure of the Course ID textbox.
D. Modify the codes in the Select button ’ s click event procedure. Also, add four user -

 defi ned subroutines: ProcessObject() , FillCourseListBox() , FillCourseDataSet() , and
FillCourseDetail() . These four subroutines are basically identical with those we devel-
oped in the last Windows - based Web service client project WinClientSQLInsert . One
can copy and paste them into our new project with a few modifi cations.

E. Modify the codes in the SelectedIndexChanged event procedure.
F. Modify the codes in the Back button ’ s click event procedure.

 Now let ’ s start with the fi rst step listed above.

9.4.5.1 Create a New Web Site Project and Add an Existing Web Page

 Open Visual Studio.NET and go to the File|New Web Site menu item to create a
new Web site project. Enter C:\Chapter 9\WebClientSQLInsert into the Name box
that is next to the Web Location box, and click on the OK button to create this new
project.

 On the opened new project window, right click on our new project WebClientSQLInsert
from the Solution Explorer window, and select the item Add Existing Item from the
pop - up menu to open the Add Existing Item wizard. Browse to our Web project
SQLWebInsert that can be found in the folder DBProjects\Chapter 8 that is located at
the Wiley ftp site (refer to Figure 1.2 in Chapter 1), and double click on this project folder
to open all existing items for this Website project.

 Select the item Course.aspx from the list and click on the Add button to add this
item into our new Website project.

9.4.5.2 Add a Web Service Reference and Modify the Web Form Window

 Perform the following operations to add this Web reference:

1. Open Visual Studio.NET 2010 and our Web service project WebServiceSQLInsert , and
click on the Start Debugging button to run it.

2. Copy the URL from the Address bar in our running Web service project.

3. Then open another Visual Studio.NET 2010 and open our Web client project
WebClientSQLInsert .

c09.indd 750c09.indd 750 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 751

4. Right - click on our client project WebClientSQLInsert from the Solution Explorer window,
and select the item Add Web Reference from the pop - up menu to open the Add Web
Reference wizard, which is shown in Figure 9.75 .

5. Paste the URL we copied from step 2 into the URL box in the Add Web Reference wizard,
and click on the Green Arrow button to enable the Visual Studio.NET 2010 to begin to
search it.

6. When the Web service is found, the name of our Web service is displayed in the right pane,
which is shown in Figure 9.75 .

7. Alternately, you can change the name for this Web reference from localhost to any mean-
ingful name such as WS_SQLInsert in our case. Click on the Add Reference button to add
this Web service as a reference to our new client project.

8. Click on the Close button from our Web service built - in Web interface window to close our
Web service page.

 Click on the Add Reference button to fi nish this adding Web reference process.
Immediately, you can fi nd that the following three fi les are created in the Solution
Explorer window under the folder of the newly added Web reference:

 • WebServiceSQLInsert.disco

 • WebServiceSQLInsert.discomap

 • WebServiceSQLInsert.wsdl

Figure 9.75. The fi nished Add Web Reference wizard.

c09.indd 751c09.indd 751 4/25/2012 7:31:59 PM4/25/2012 7:31:59 PM

752 Chapter 9 ASP.NET Web Services

 The modifi cations to the Web page of the Course.aspx include three steps:

1. Set the AutoPostBack property of the Course ID textbox to True. This is very important
since when the content of this textbox is changed during the project runs, a TextChanged
event occurs. However, this event only occurs in the client side, not the server side. Our
Web - based client project is running is a Web server or server - side, so this event cannot be
responded by the server. Therefore, the command inside this event procedure cannot be
executed (the Insert button cannot be enabled); even the content of the Course ID textbox
is changed when the project runs. To solve this problem, we must set the AutoPostBack
property of this textbox to True to allow it to send back a TextChanged event to the client
automatically as the content of this textbox is changed.

2. Add one more DropDownList control and the associated label to the left of the Faculty
Name combo box control. Name this DropDownList as ComboMethod and the label with
the Text property as Method . This DropDownList control is used to store two Web methods
developed in our Web service and allow users to select one of them to perform the associ-
ated data insertion as the project runs.

3. Change the ID property of the Credit textbox from txtCredit to txtCredits .

 Your modifi ed Course.aspx Web form window is shown in Figure 9.76 .
 Go to the File|Save All menu item to save these modifi cations.

9.4.5.3 Modify the Codes for the Related Event Procedures

 The fi rst modifi cation is to change the codes in the Page_Load event procedure and some
global variables.

Figure 9.76. The modifi ed Course page window.

c09.indd 752c09.indd 752 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 753

9.4.5.3.1 Modify the Codes in the Page_Load Event Procedure Perform the fol-
lowing changes to complete this modifi cation:

1. Remove the second Imports command Imports System.Data.SqlClient from the top of
this page since we do not need it in this application.

2. Remove the form level variables CourseTextBox(5) since we do not need it in this
application.

3. Add the following three form level variables into the Form ’ s General Declaration section:

 Private dsFlag As Boolean
 Private wsDataSet As New DataSet

 Private wsSQLResult As New WS_SQLInsert.SQLInsertBase

4. Remove the If block in the Page_Load event procedure and the associated global connec-
tion object Application(“sqlConnection”) .

5. Add the codes to display two Web methods in the Method combo box control ComboMethod .

 Your fi nished codes for the Page_Load event procedure should match the one that
is shown in Figure 9.77 . The newly added codes have been highlighted in bold.

 The next step is to develop the codes for the Insert button ’ s click event procedure.

9.4.5.3.2 Develop Codes for the Insert Button Event Procedure The function of
this piece of codes is to insert a new course record that is stored in six textboxes in the
Web page into the database as this Insert button is clicked. This piece of codes is basically
identical with those in the same event procedure of the Windows - based client project we
developed in the last section. Therefore, we can copy those codes from that event proce-
dure and paste them into our current procedure with a few modifi cations.

Figure 9.77. The modifi ed Page_Load event procedure.

Imports System.Data

Partial Class Course
Inherits System.Web.UI.Page
Private dsFlag As Boolean
Private wsDataSet As New DataSet
Private wsSQLResult As New WS_SQLInsert.SQLInsertBase

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
If Not IsPostBack Then

ComboName.Items.Add("Ying Bai")
ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboMethod.Items.Add("Stored Procedure Method")
ComboMethod.Items.Add("DataSet Method")

End If
End Sub

(Page Events) Load

c09.indd 753c09.indd 753 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

754 Chapter 9 ASP.NET Web Services

 Open the Windows - based client project WinClientSQLInsert in the folder
DBProjects\Chapter 9 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter
 1), and browse to the Insert button ’ s click event procedure. Copy all codes from that
event procedure and paste them into the Insert button ’ s click event procedure in our
current Web - based client project WebClientSQLInsert .

 The only modifi cation to this event procedure is to add one more String variable
errMsg that is used to store the returned error information from calling different Web
methods. Also all message box functions MsgBox() should be replaced by the Write()
method of the Response object of the server class since MsgBox() can only be used in
the client side.

 Your fi nished codes for the Insert button ’ s click event procedure should match the
one that is shown in Figure 9.78 . The modifi cation parts have been highlighted in bold.

 Let ’ s have a quick review for this piece of codes to see how it works.

A. If the user selected the Stored Procedure Method to perform this data insertion, the Web
method SetSQLInsertSP() in the Web service is executed to call the associated stored
procedure to insert a new course record into our sample database. Any error encountered
during the execution of this Web method will be displayed.

B. If the user chose the DataSet Method to perform this data insertion, we need to set a fl ag
to tell the project that a DataSet data insertion has been performed.

Figure 9.78. The codes for the Insert button event procedure.

Protected Sub cmdInsert_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdInsert.Click
Dim wsSQLInsert As New WS_SQLInsert.WebServiceSQLInsert
Dim errMsg As String

If ComboMethod.Text = "Stored Procedure Method" Then
Try

wsSQLResult = wsSQLInsert.SetSQLInsertSP(ComboName.Text, txtID.Text, _
txtCourse.Text, txtSchedule.Text, txtClassRoom.Text, _
txtCredits.Text, txtEnroll.Text)

Catch err As Exception
errMsg = "Web service is wrong: " & err.Message
Response.Write("<script>alert('" + errMsg + "')</script>")

End Try
If wsSQLResult.SQLInsertOK = False Then

Response.Write("<script>alert('" + wsSQLResult.SQLInsertError + "')</script>")
End If

Else
 dsFlag = True 'indicate the DataSet insert is performed

Application("dsFlag") = dsFlag ‘reserve this flag as a global flag
Try

wsDataSet = wsSQLInsert.SQLInsertDataSet(ComboName.Text, txtID.Text, _
txtCourse.Text, txtSchedule.Text, txtClassRoom.Text, _
txtCredits.Text, txtEnroll.Text)

Catch err As Exception
errMsg = "Web service is wrong: " & err.Message
Response.Write("<script>alert('" + errMsg + "')</script>")

End Try
End If
Application("wsDataSet") = wsDataSet 'reserve the global DataSet
cmdInsert.Enabled = False

End Sub

A

B

C

D

E
F

cmdInsert Click

c09.indd 754c09.indd 754 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 755

C. This fl ag is set up and stored in a global variable using the Application state. The reason
we need to make this setup is that the Web method SQLInsertDataSet() has two functions:
insert data into the database and retrieve data from the database. In order to perform the
data retrieving using this method, fi rst we must insert data using this method. Otherwise,
no data can be retrieved if no data has been inserted into the database using this DataSet
method. The reason we use an Application state to store this fl ag is that our Web client
project will run on a Web server and the server will send back a refreshed page to the
client each time a request is sent to the server; therefore, all global variables ’ values will
also be refreshed when a refreshed page is sent back. However, the Application state is
never changed no matter how many times our client page is refreshed.

D. The associated Web method SQLInsertDataSet() is called to insert this new course record
into the database. Similarly, if any error is encountered during this calling process, it will
be displayed and reported immediately.

E. The returned DataSet object wsDataSet that contains all course_id is a form - level vari-
able. Because of the same reason as we discussed in step C , we need to use an Application
state to store this DataSet since we need to pick up all course_id from it when we perform
the validation process later by clicking on the Select button. Otherwise, the content of this
DataSet will be refreshed each time when a refreshed Course page is sent back by the
server.

F. Finally, the Insert button is disabled to avoid multi - insertion of the same data into the
database.

9.4.5.3.3 Develop Codes for the CourseID TextChanged Event Procedure The
codes for this event procedure are very simple. Open this event procedure by double
clicking on the Course ID textbox from the Web page window and enter the following
code into this event procedure:

 cmdInsert.Enabled = True

 As we mentioned, after a new course record has been inserted into the database, the
Insert button must be disabled to avoid the possible multi - insertion of the same record
into the database. But as the next new course record is ready to be inserted into the
database, this Insert button should be enabled to allow users to do that insertion. To
distinguish between the existing and a new course record, the content of the Course ID
textbox or the course_id column is a good candidate since it is a primary key in our
Course data table. Each course_id is a unique identifi er for each course record, and
therefore as long as the content of this Course ID textbox changed, which means that
when a new course record is ready to be inserted, the Insert button should be enabled
for this situation.

 Another important point is that making sure that the AutoPostBack property of this
Course ID textbox is set to True to allow the server to send back a TextChanged event
to the client when its content is changed.

9.4.5.3.4 Modify the Codes in the Select Button ’s Click Event Procedure

The codes in this event procedure are similar to those codes we developed in the same
event procedure in our Windows - based client project WinClientSQLInsert . So we can
copy those codes and paste them into our current Select button ’ s click event procedure
with a few modifi cations. Open the Select button ’ s click event procedure from our

c09.indd 755c09.indd 755 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

756 Chapter 9 ASP.NET Web Services

Windows - based client project WinClientSQLInsert , copy those codes, and paste them
into our Select button ’ s click event procedure. The only modifi cation to this piece of
copied codes is to change the Windows - based message box function MsgBox() to the
Web - based message box function. Your fi nished codes for this event procedure are shown
in Figure 9.79 . The modifi ed parts have been highlighted in bold.

 Let ’ s take a quick review for this piece of codes to see how it works.

A. An instance of our Web service reference WebServiceSQLInsert is created fi rst and this
instance works as a bridge to connect this client project with the associated Web methods
built in the Web service together. Also, an errMsg string variable is created, and it is used
to store the error message to be displayed and reported later.

B. If the Stored Procedure Method is selected by the user, the associated Web method
GetSQLInsert() is executed to call the stored procedure to pick up all course_id taught
by the selected faculty based on the input faculty name. If any error occurred during the
execution of this Web method, the error source is reported and displayed with an alert()
script method.

C. Besides the system error checking, we also need to inspect any application error, and this
can be performed by checking the status of the member data SQLInsertOK that is defi ned
in the base class SQLInsertBase in our Web service project.

D. If no any error is detected, the user - defi ned subroutine ProcessObject() , whose detailed
codes are shown in Figure 9.80 , is called to extract all retrieved course_id from the
returned instance and add them into the list box control in our client page window.

E. If user selected the DataSet Method , fi rst, we need to check the dsFlag stored in an
Application state to make sure that the Web method SQLInsertDataSet() has been exe-

Figure 9.79. The codes for the Select button event procedure.

Protected Sub cmdSelect_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim wsSQLInsert As New WS_SQLInsert.WebServiceSQLInsert
Dim errMsg As String

If ComboMethod.Text = "Stored Procedure Method" Then
Try

wsSQLResult = wsSQLInsert.GetSQLInsert(ComboName.Text)
Catch err As Exception

errMsg = "Web service is wrong: " & err.Message
Response.Write("<script>alert('" + errMsg + "')</script>")

End Try
If wsSQLResult.SQLInsertOK = False Then

Response.Write("<script>alert('" + wsSQLResult.SQLInsertError + "')</script>")
End If
ProcessObject(wsSQLResult)

Else
If Application("dsFlag") = False Then

errMsg = "No DataSet Insert performed, do data insertion first"
Response.Write("<script>alert('" + errMsg + "')</script>")
Exit Sub

End If
Call FillCourseDataSet(Application("wsDataSet"))
Application("dsFlag") = False

End If

End Sub

A

B

C

D
E

F
G

cmdSelect Click

c09.indd 756c09.indd 756 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 757

Figure 9.80. The codes for subroutines ProcessObject() and FillCourseListBox().

Private Sub ProcessObject(ByRef wsResult As WS_SQLInsert.SQLInsertBase)
Dim errMsg As String

If wsResult.SQLInsertOK = True Then
Call FillCourseListBox(wsResult)

Else
errMsg = "Course information cannot be retrieved: " & wsResult.SQLInsertError
Response.Write("<script>alert('" + errMsg + "')</script>")

End If
End Sub

Private Sub FillCourseListBox(ByRef sqlResult As WS_SQLInsert.SQLInsertBase)
Dim index As Integer

CourseList.Items.Clear() 'clean up the course listbox
For index = 0 To sqlResult.CourseID.Length - 1

If sqlResult.CourseID(index) <> vbNullString Then
CourseList.Items.Add(sqlResult.CourseID(index))

End If
Next index

End Sub

A

B

C

D

E
F

Course ProcessObject

cuted once since our current data query needs to extract all course_id from the DataSet
that is returned from the last execution of the Web method SQLInsertDataSet() . If this
dsFlag is False , which means that this Web method has not been called and executed,
therefore, we do not have any returned DataSet available. A warning message is displayed,
and the procedure is exited if that situation occurred.

F. If the dsFlag is True , which means that the Web method SQLInsertDataSet() has been
executed, and a returned DataSet that contains all course_id is available. A user - defi ned
subroutine FillCourseDataSet() is executed to extract all course_id from that returned
DataSet and add them into the list box control in our client page window. The global
DataSet object wsDataSet that is stored in an Application state is passed as an argument
for this subroutine calling.

G. Finally, the dsFlag stored in an Application state is reset to False .

 The detailed codes for the subroutines ProcessObject() and FillCourseListBox() are
shown in Figure 9.80 .

 Let ’ s have a closer look at this piece of codes to see how it works.

A. A local string variable errMsg is declared, and it is used to hold any error message to be
displayed and reported later.

B. First, we need to check the member data SQLInsertOK to make sure that the Web method
is executed successfully. If it is, a user - defi ned subroutine procedure FillCourseListBox()
is called to fi ll all course_id contained in the returned instance to the list box control in
our client page.

C. A warning message is displayed if any error was encountered during the execution of that
Web method.

D. In the subroutine FillCourseListBox() , fi rst, a local integer variable index is created, and
it works as a loop number for a For loop to continuously pick up all course_id from the
returned instance and add them into the list box control.

c09.indd 757c09.indd 757 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

758 Chapter 9 ASP.NET Web Services

E. The course list box control is cleaned up fi rst before any course_id can be added into it.
This process is very important in displaying all course_id , otherwise, any new course_id
will be attached at the end of the original course_id in this control and the displaying
result is messy.

F. A For loop is used to continuously pick up the course_id from the CourseID() array
defi ned in our base class SQLInsertBase . One point to be noted is the upper bound and
the length of this array. The length or the size of this array is 11, but the upper bound of
this array is 10, since the index of this array starts from 0, not 1. Therefore the upper bound
of this array is equal to the length of this array minus 1. As long as the content of the
CourseID(index) is not Null, a valid course_id is added into the list box control by using
the Add() method.

 The codes for the subroutine FillCourseDataSet() are shown in Figure 9.81 . This
piece of codes is identical with that in the same subroutine we developed in our Windows -
 based client project WinClientSQLInsert . You can copy it from that Windows - based
project and paste it into our current project.

 Let ’ s have a look at the codes in this subroutine to see how they work.

A. Two objects, a DataTable and a DataRow, are declared at the beginning of this subroutine
since we need to use them to perform the data extraction from the returned instance and
data addition to the list box control.

B. The list box control is fi rst cleaned up to avoid messy displaying of multiple course_id .

C. The CourseTable object is initialized by adding a new data table named “Course” and is
assigned to the DataSet object ds .

D. A For Each . . . In loop is used to continuously pick up the fi rst column that is the
course_id column from all returned rows and add each of them into the list box control.
One point to be noted is that the fi rst column has an index value of 0, not 1, since the index
starts from 0.

 Next, we need to modify the codes in the SelectedIndexChanged event procedure
and add the fourth subroutine FillCourseDetail() . Before we can continue to do these
jobs, fi rst we need to delete the following procedures and subroutines from our current
project:

 • FillCourseReader()

 • FillCourseReaderTextBox()

 • MapCourseTable()

Figure 9.81. The codes for the subroutine FillCourseDataSet().

Private Sub FillCourseDataSet(ByRef ds As DataSet)
Dim CourseTable As New DataTable
Dim CourseRow As DataRow

CourseList.Items.Clear() 'clean up the course listbox
CourseTable = ds.Tables("Course")

For Each CourseRow In CourseTable.Rows
CourseList.Items.Add(CourseRow(0)) 'the 1st column is course_id

Next

End Sub

A

B
C

D

Course FillCourseDataSet

c09.indd 758c09.indd 758 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 759

 Now let ’ s modify the codes in the SelectedIndexChanged event procedure and add
the fourth user - defi ned subroutine procedure FillCourseDetail() .

9.4.5.3.5 Modify the Codes in the SelectedIndexChanged Event Procedure The
function of this piece of codes is that the detailed course information, such as the course
name, schedule, classroom, credit, and enrollment, will be displayed in the associated
textbox control as the user clicked and selected one course_id from the list box control.
In fact, the main coding job is performed inside the SelectedIndexChanged event proce-
dure of the list box control. Because when the user clicks or selects a course_id from the
list box control, a SelectedIndexChanged event is issued, and this event is passed to the
associated SelectedIndexChanged event procedure.

 To pick up the detailed course information for the selected course_id , the Web
method GetSQLInsertCourse() in our Web service project WebServiceSQLInsert is
called, and this method returns an instance of the base class SQLInsertBase to our client
project. The detailed course information is stored in that returned instance.

 The codes in this event procedure are identical with those we did for the same event
procedure in our Windows - based client project WinClientSQLInsert . So we can copy
those codes from that event procedure and paste them into our current project with a
few modifi cations.

 Double - click on the list box control CourseList from our client page window to open
the SelectedIndexChanged event procedure of the list box control. Copy and paste those
codes into our current Web - based project. The only modifi cation is to change the Windows -
 based MsgBox() method to the Web - based script message method alert() . Your fi nished
SelectedIndexChanged event procedure should match the one that is shown in Figure
 9.82 . The modifi ed parts have been highlighted in bold.

 Let ’ s take a closer look at this piece of codes to see how it works.

A. An instance of our Web service reference or the proxy class wsSQLInsert is created here.
This instance works as a bridge between our client project and the Web methods developed

Figure 9.82. The modifi ed codes for the SelectedIndexChanged event procedure.

Protected Sub CourseList_SelectedIndexChanged(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles CourseList.SelectedIndexChanged

Dim wsSQLInsert As New WS_SQLInsert.WebServiceSQLInsert
Dim errMsg As String

Try
wsSQLResult = wsSQLInsert.GetSQLInsertCourse(CourseList.Text)

Catch err As Exception
errMsg = "Web service is wrong: " & err.Message
Response.Write("<script>alert('" + errMsg + "')</script>")

End Try

If wsSQLResult.SQLInsertOK = False Then
Response.Write("<script>alert('" + wsSQLResult.SQLInsertError + "')</script>")
Exit Sub

End If

Call FillCourseDetail(wsSQLResult)

End Sub

A

B

C

D

CourseList SelectedIndexChanged

c09.indd 759c09.indd 759 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

760 Chapter 9 ASP.NET Web Services

in the Web service project. Also, a local string variable errMsg is declared and it is used
to hold the error message to be displayed and reported later.

B. A Try . . . Catch block is used to call the Web method GetSQLInsertCourse() with the
selected course_id from the list box control as the argument to perform this course infor-
mation retrieving. The selected course_id is stored in the Text property of the CourseList
control. An exception message is displayed if any error was encountered during the execu-
tion of this Web method and caught by the system method Catch .

C. In addition to the error checking performed by the system, we also need to perform our
exception checking by inspecting the member data SQLInsertOK in the base class
SQLInsertBase . If this data value is False , this means that an application error occurred
during the running of this Web method. A related error message is displayed and the sub-
routine is exited.

D. If everything is fi ne, the user - defi ned subroutine FillCourseDetail() is executed to extract
the detailed course information from the returned instance and assign it to each associated
textbox control in our client page form.

 The detailed codes for the subroutine FillCourseDetail() is shown in Figure 9.83 .
 This piece of codes is identical with that we developed in the same subroutine in our

Windows - based client project WinClientSQLInsert . You can copy it from that project
and paste it in this project.

 The function of this piece of codes is straightforward without tricks. Each piece of
course information is extracted from the returned instance and assigned to the associated
textbox control in our client page window.

9.4.5.3.6 Modify the Codes in the Back Button ’s Click Event Procedure The fi nal
modifi cation is to change the codes for the Back button ’ s click event procedure. When
this button is clicked by the user, our client project should be terminated. Open this event
procedure and replace the original codes with the following codes in this event procedure
to close our client project:

 Response.Write(“ < script > window.close() < /script > ”)

 In this way, our client page will be terminated when the script command close() is
executed.

 At this point, we have fi nished all coding jobs for this Web - based client project.
Before we can run this project to test the data insertion and validation functionalities,
make sure that the following tasks have been performed:

Figure 9.83. The codes for the subroutine FillCourseDetail().

Private Sub FillCourseDetail(ByRef sqlResult As WS_SQLInsert.SQLInsertBase)
txtID.Text = CourseList.Text
txtCourse.Text = sqlResult.Course
txtSchedule.Text = sqlResult.Schedule
txtClassRoom.Text = sqlResult.Classroom
txtCredits.Text = sqlResult.Credit
txtEnroll.Text = sqlResult.Enrollment

End Sub

Course FillCourseDetail

c09.indd 760c09.indd 760 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

9.4 Build ASP.NET Web Service Project to Insert Data into SQL Server Database 761

 • Our main Web page Course.aspx has been set as the starting page. This can be done by
right - clicking on our main Web page and select the item Set As Start Page from the pop - up
menu.

 • Our Web service WebServiceSQLInsert is in the running status, and this can be checked
by locating a small white icon on the status bar on the bottom of the screen. If you cannot
fi nd this icon, open our Web service project and click on the Start Debugging button to run
it. After the Web service starts to run, you can close its Web page if you like but it is still in
the running status.

 • Two new course records, CSE-665 and CSE-526 , which we inserted before by testing the
Insert button ’ s click event procedure, should have been deleted from the Course table in
our sample database since we want to insert the same course records in this test.

 Now click on the Start Debugging button to run our client project. First, let ’ s test the
data insertion function. Select the Stored Procedure Method from the Method combo
box control. Then select the default faculty Ying Bai from the Faculty Name combo box
control, enter the fi rst new course record (shown in Table 9.2 in Section 9.4.4.3.2) into the
associated textboxes, and then click on the Insert button. Perform the similar operation
to insert the second new course record (shown in Table 9.3 in Section 9.4.4.3.2) with the
DataSet Method selected. Your running Web page is shown in Figure 9.84 .

 To validate these data insertions, click on the Select button for DataSet Method
and then the Stored Procedure Method . The running result is shown in Figure 9.85 .

 You can fi nd that our two newly inserted courses CSE-665 and CSE-526 have been
added into and retrieved from our database and displayed in the list box control.

Figure 9.84. The running status of inserting new course records.

c09.indd 761c09.indd 761 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

762 Chapter 9 ASP.NET Web Services

Figure 9.85. The running status of the data validation process.

 To get detailed course information for a specifi c course, click a desired course_id
from the list box control. Immediately, the detailed course information for the selected
course_id is displayed on each associated textbox, which is shown in Figure 9.86 .

 You can try to get the detailed information for different courses by selecting different
course_id from the list box control via either DataSet or Stored Procedure method. Click
on the Back button to terminate our Web client project.

 A completed Web - based Web service client project WebClientSQLInsert can be
found in the folder DBProjects\Chapter 9 that is located at the Wiley ftp site (refer to
Figure 1.2 in Chapter 1).

 Next, we need to take care of updating and deleting data via Web services.

9.5 BUILD ASP.NET WEB SERVICE TO UPDATE AND DELETE
DATA FOR SQL SERVER DATABASE

 In this section, we discuss how to update and delete a record against the Course table in
our sample database via the Web services. Two major Web methods are developed in this
Web service project: SQLUpdateSP() and SQLDeleteSP() , both methods call the associ-
ated stored procedure to perform the data updating and deleting operations.

 To save time and space, we can modify an existing Web service project
WebServiceSQLInsert we developed in Section 9.4 to make it as our new Web service
project WebServiceSQLUpdateDelete .

c09.indd 762c09.indd 762 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

9.5 Build ASP.NET Web Service to Update and Delete Data for SQL Server Database 763

Figure 9.86. The running status of getting the detailed course information.

9.5.1 Modify an Existing Web Service Project

 Open the Internet Explorer, browse to the folder DBProjects\Chapter 9 that is located
at the Wiley ftp site (refer to Figure 1.2 in Chapter 1), and select the Web service project
WebServiceSQLInsert . Copy this project and paste it into our development folder C:\
Chapter 9 in our computer. Rename this project to WebServiceSQLUpdateDelete .

 Open Visual Studio.NET 2010 and our new Web service project WebServiceSQL-
UpdateDelete , and perform the following modifi cations to this project:

1. Expand the App_Code folder from the Solution Explorer window, fi nd and rename our
base class from SQLInsertBase.vb to SQLBase.vb by right - clicking on this class fi le and
select the Rename item from the pop - up menu.

2. Similarly, rename our code - behind page from WebServiceSQLInsert.vb to
WebServiceSQLUpdateDelete.vb .

3. Rename our main Web service page from WebServiceSQLInsert.asmx to
WebServiceSQLUpdateDelete.asmx in a similar way.

4. Double - click on our new Web main page WebServiceSQLUpdateDelete.asmx to open it,
and make the following changes to the top coding line:

a. From: CodeBehind = “ ~ /App_Code/WebServiceSQLInsert.vb ”
 To: CodeBehind = “ ~ /App_Code/WebServiceSQLUpdateDelete.vb ”

b. From: Class = “ WebServiceSQLInsert ”
 To: Class = “ WebServiceSQLUpdateDelete ”

c09.indd 763c09.indd 763 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

764 Chapter 9 ASP.NET Web Services

5. Double - click on our new base class fi le SQLBase and perform the following modifi cations
to the class name and the fi rst two member data:

a. Change the class name from SQLInsertBase to SQLBase .
b. Change Public SQLInsertOK As Boolean to Public SQLOK As Boolean .
c. Change Public SQLInsertError As Boolean to Public SQLError As Boolean.

6. Double - click on our new code - behind page WebServiceSQLUpdateDelete.vb from the
Solution Explorer window to open it. Change our Web class name that is located after the
access mode Public Class from WebServiceSQLInsert to WebServiceSQLUpdateDelete .

 Go to the File|Save All menu item to save these modifi cations. Next, let ’ s concentrate
on the modifi cations to the related Web methods.

9.5.2 Guideline in Modifying Related Web Methods

 These modifi cations include:

1. Remove the Web method SQLInsertDataSet() from this project since we do not need this
method to perform either data updating or deleting actions.

2. Modify the Web method SetSQLInsertSP() to make it as our new Web method
SQLUpdataSP() . This method will call a stored procedure to perform the data updating for
our Course table.

3. Modify the Web method GetSQLInsert() to make it as our new Web method GetSQLCourse()
that will return all course_id , including the original and the updated course_id , to the
calling procedure. This method will be called by the client project to perform a data updat-
ing or deleting validation.

4. Modify the Web method GetSQLInsertCourse() to make it as our new Web method
GetSQLCourseDetail() that will return detailed information for a specifi c course_id to the
calling procedure. This method will be called by the client project to perform a data updat-
ing validation.

5. Add a new Web method SQLDeleteSP() , and this method will be used to delete a course
record based on the input course_id .

 Now let ’ s detail these modifi cations starting from step 2.

9.5.2.1 Modify the Web Method from SetSQLInsertSP to SQLUpdataSP

 The function of this Web method is to call an SQL Server stored procedure named dbo.
WebUpdateCourseSP() that will be developed in Section 9.5.3.1 to perform the data
updating for a course record based on the course_id .

 Regularly, we do not need to update the primary key for a record to be updated
because it is better to insert a new record with a new primary key than to update that
record with a new primary key. Another reason for this issue is that it would be very
complicated if one wants to update a primary key in a parent table since that primary
key may be used as foreign keys in many other child tables. Therefore, one has to update
those foreign keys fi rst in many child tables before the primary key can be updated in
the parent table. In this application, we concentrate on updating all other columns for a
course record without touching the primary key course_id .

c09.indd 764c09.indd 764 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

9.5 Build ASP.NET Web Service to Update and Delete Data for SQL Server Database 765

 Open our new Web service project WebServiceSQLUpdateDelete and the Web
method SetSQLInsertSP() . Perform the modifi cations that are shown in Figure 9.87 to
this method. The modifi ed parts have been highlighted in bold.

 Let ’ s have a closer look at these modifi ed codes to see how they work.

A. The name of this Web method is changed to SQLUpdateSP . Also the returned data type
is our modifi ed base class whose name is changed to SQLBase .

B. The content of the query string is equal to the name of the stored procedure that will be
developed in Section 9.5.3.1 . Keep in mind that this name must be identical with the name
of the stored procedure to be developed later.

C. An instance of our modifi ed base class SQLBase , SQLResult , is created and this instance
contains the running status of this Web method and will be returned to the calling
procedure.

D. A local integer variable intUpdate is declared here, and it is used to hold the returned
value from calling the ExecuteNonQuery() method.

Figure 9.87. The modifi ed codes for the Web method SQLUpdateSP().

<WebMethod()> _
Public Function SQLUpdateSP(ByVal FacultyName As String, ByVal CourseID As String, ByVal Course As String, _

ByVal Schedule As String, ByVal Classroom As String, ByVal Credit As Integer, ByVal Enroll As Integer) As _
SQLBase

Dim cmdString As String = "dbo.WebUpdateCourseSP"
Dim sqlConnection As New SqlConnection
Dim SQLResult As New SQLBase
Dim sqlCommand As New SqlCommand
Dim intUpdate As Integer

SQLResult.SQLOK = True
sqlConnection = SQLConn()

If sqlConnection Is Nothing Then
SQLResult.SQLError = "Database connection is failed"
ReportError(SQLResult)
Return Nothing

End If

sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.StoredProcedure
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add("@FacultyName", SqlDbType.Text).Value = FacultyName
sqlCommand.Parameters.Add("@CourseID", SqlDbType.Char).Value = CourseID
sqlCommand.Parameters.Add("@Course", SqlDbType.Text).Value = Course
sqlCommand.Parameters.Add("@Schedule", SqlDbType.Char).Value = Schedule
sqlCommand.Parameters.Add("@Classroom", SqlDbType.Text).Value = Classroom
sqlCommand.Parameters.Add("@Credit", SqlDbType.Int).Value = Credit
sqlCommand.Parameters.Add("@Enroll", SqlDbType.Int).Value = Enroll
intUpdate = sqlCommand.ExecuteNonQuery()
sqlCommand.Dispose()
sqlCommand = Nothing
If Not sqlConnection Is Nothing Then sqlConnection.Close()
sqlConnection = Nothing

If intUpdate = 0 Then
SQLResult.SQLError = "Data updating is failed"
ReportError(SQLResult)

End If
Return SQLResult

End Function

A

B

C

D

E

F

G

H
I

J

K

WebServiceSQLUpdateDelete SQLUpdateSP

c09.indd 765c09.indd 765 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

766 Chapter 9 ASP.NET Web Services

E. First, we preset a good running status of this Web method to the member data SQLOK to
indicate that so far, our Web method is running fi ne.

F. If any error is encountered during the database connection process, the error information
is stored into the member data SQLError and reported using a user - defi ned subroutine
ReportError() .

G. The Command object is initialized with associated data objects, such as connection object,
command text, and command type. One point to be noted is that the command type must
be set to the StoredProcedure since this method will call a stored procedure, not a data
query, to perform the data updating. The last initialization process for the Command object
is to assign all input or updating parameters to the associated dynamic parameter in the
UPDATE statement.

H. The ExecuteNonQuery() method is executed to call the stored procedure to perform the
data updating. An integer value will be returned from this method, and this value is equal
to the number of rows that have been successfully updated in our Course table.

I. A cleaning job is performed to release all objects used in this method.

J. If the returned value from calling of the ExecuteNonQuery() method is zero, this means
that no any row has been updated in our Course table and this data updating has failed.
An error message is sent to the member data SQLError and reported using the subroutine
ReportError() .

K. Finally, the instance SQLResult that contains the running status of this Web method is
returned to the calling procedure.

 Go to the File|Save All menu item to save these modifi cations.

9.5.2.2 Modify the Web Method GetSQLInsert to GetSQLCourse

 The function of this Web method is to retrieve all course_id , including the original and
updated course_id , and assign them to the CourseID() array in our base class SQLBase
that will be returned as an instance to the calling procedure. A client project will extract
all course_id from this returned instance and display them in a list box control in the
client project.

 Open this Web method and perform the modifi cations that are shown in Figure 9.88
to this method. The modifi ed parts have been highlighted in bold.

 Let ’ s take a closer look at these modifi ed codes to see how they work.

A. The name of this Web method is changed from GetSQLInsert to GetSQLCourse . Also,
the returned data type is changed to our modifi ed base class SQLBase .

B. An instance of our modifi ed base class SQLBase , SQLResult , is created, and this instance
contains all retrieved course_id and the running status of this Web method. This instance
will be returned to the calling procedure when this method is done.

C. First, we preset a good running status of this Web method to the member data SQLOK to
indicate that so far, our Web method is running fi ne.

D. If any error is encountered during the database connection process, the error information
is stored into the member data SQLError and reported using a user - defi ned subroutine
ReportError() .

E. The Command object is initialized with associated data objects and properties, such
as connection object, command text, and command type. Also the dynamic parameter

c09.indd 766c09.indd 766 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

9.5 Build ASP.NET Web Service to Update and Delete Data for SQL Server Database 767

@fname is assigned with the actual faculty name that is an input parameter to this
method.

F. After the ExecuteReader() method is called to perform this data query, we need to check
the status of the property HasRows . If this property is True , which means that at least one
row has been retrieved from the Course table, the subroutine FillCourseReader() is
executed to extract all course_id from the DataReader and assign them to the associated
member data in the returned instance.

G. Otherwise, if this property is False , which means that no any row has been retrieved from
the Course table, an error message is displayed and reported using the subroutine
ReportError() .

H. A cleaning job is performed to release all objects used in this method.

I. Finally, the instance containing all course_id is returned to the calling procedure.

 The only modifi cation to the user - defi ned subroutine FillCourseReader() is to change
the data type of the fi rst input argument sResult from SQLInsertBase to SQLBase .

Figure 9.88. The modifi ed codes for the Web method GetSQLCourse().

<WebMethod()> _
Public Function GetSQLCourse(ByVal FacultyName As String) As SQLBase

Dim cmdString As String = "SELECT Course.course_id FROM Course JOIN Faculty " + _
"ON (Course.faculty_id LIKE Faculty.faculty_id) AND (Faculty.faculty_name LIKE @fname)"

Dim sqlConnection As New SqlConnection
Dim SQLResult As New SQLBase
Dim sqlCommand As New SqlCommand
Dim sqlReader As SqlDataReader

SQLResult.SQLOK = True
sqlConnection = SQLConn()
If sqlConnection Is Nothing Then

SQLResult.SQLError = "Database connection is failed"
ReportError(SQLResult)
Return Nothing

End If
sqlCommand.Connection = sqlConnection
sqlCommand.CommandType = CommandType.Text
sqlCommand.CommandText = cmdString
sqlCommand.Parameters.Add("@fname", SqlDbType.Text).Value = FacultyName
sqlReader = sqlCommand.ExecuteReader
If sqlReader.HasRows = True Then

Call FillCourseReader(SQLResult, sqlReader)
Else

SQLResult.SQLError = "No matched course found"
ReportError(SQLResult)

End If
If Not sqlReader Is Nothing Then sqlReader.Close()
sqlReader = Nothing
If Not sqlConnection Is Nothing Then sqlConnection.Close()
sqlConnection = Nothing
sqlCommand.Dispose()
Return SQLResult

End Function

A

B

C

D

E

F

G

H

I

WebServiceSQLUpdateDelete GetSQLCourse

c09.indd 767c09.indd 767 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

768 Chapter 9 ASP.NET Web Services

9.5.2.3 Modify the Web Method GetSQLInsertCourse to GetSQLCourseDetail

 The function of this Web method is to retrieve the detailed information for a specifi c
course_id that works as an input parameter to this method. A SQL Server stored pro-
cedure WebSelectCourseSP , which we developed in Section 9.4.3.4.1 , is called to perform
this data query as this Web method is executed.

 Open this Web method and perform the modifi cations that are shown in Figure 9.89
to this method. The modifi ed parts have been highlighted in bold.

 Let ’ s have a closer look at these modifi ed codes to see how they work.

A. The name of this Web method is changed from GetSQLInsertCourse to
GetSQLCourseDetail . Also, the returned data type is changed to our modifi ed base class
SQLBase .

B. An instance of our modifi ed base class SQLBase , SQLResult , is created, and this instance
contains the detailed information retrieved from the Course table based on the specifi c
course_id and the running status of this Web method. This instance will be returned to
the calling procedure when this method is done.

C. First, we preset a good running status of this Web method to the member data SQLOK to
indicate that so far, our Web method is running fi ne.

D. If any error is encountered during the database connection process, the error information
is stored into the member data SQLError and reported using the subroutine ReportError() .

Figure 9.89. The modifi ed codes for the Web method GetSQLCourseDetail().

<WebMethod()> _
Public Function GetSQLCourseDetail(ByVal CourseID As String) As SQLBase

Dim cmdString As String = "dbo.WebSelectCourseSP"
Dim sqlConnection As New SqlConnection
Dim SQLResult As New SQLBase
Dim sqlReader As SqlDataReader

SQLResult.SQLOK = True
 sqlConnection = SQLConn()

If sqlConnection Is Nothing Then
SQLResult.SQLError = "Database connection is failed"

 ReportError(SQLResult)
Return Nothing

End If

Dim sqlCommand = New SqlCommand(cmdString, sqlConnection)
 sqlCommand.CommandType = CommandType.StoredProcedure
 sqlCommand.Parameters.Add("@CourseID", SqlDbType.Text).Value = CourseID
 sqlReader = sqlCommand.ExecuteReader

If sqlReader.HasRows = True Then
Call FillCourseDetail(SQLResult, sqlReader)

Else
SQLResult.SQLError = "No matched course found"

 ReportError(SQLResult)
End If

 sqlReader.Close()
 sqlReader = Nothing
 sqlConnection.Close()
 sqlCommand.Dispose()

Return SQLResult

End Function

A

B

C

D

E

F

G

H

I

WebServiceSQLUpdateDelete GetSQLCourseDetail

c09.indd 768c09.indd 768 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

9.5 Build ASP.NET Web Service to Update and Delete Data for SQL Server Database 769

E. The Command object is initialized with associated data objects and properties, such
as connection object, command text, and command type. Also, the dynamic parameter
@CourseID is assigned with the actual CourseID , which is an input parameter to this
method.

F. After the ExecuteReader() method is called to perform this data query, we need to check
the status of the property HasRows . If this property is True , which means that at least one
row has been retrieved from the Course table, the user - defi ned subroutine FillCourseDetail()
is executed to extract the detailed course information from the DataReader and assign it
to the associated member data in the returned instance.

G. Otherwise, if this property is False , this means that no row has been retrieved from
the Course table. An error message is displayed and reported using the subroutine
ReportError() .

H. A cleaning job is performed to release all objects used in this method.

I. Finally, the instance containing the detailed course information is returned to the calling
procedure.

 The only modifi cation to the user - defi ned subroutine FillCourseDetail() is to change
the data type of the fi rst input argument sResult from SQLInsertBase to SQLBase .

 The last modifi cation to this Web project is to modify the subroutine ReportError() .
Perform the following modifi cations to this subroutine:

1. Change the data type of the passed argument ErrSource from SQLInsertBase to
SQLBase .

2. Change the fi rst instruction from ErrSource.SQLInsertOK = False to ErrSource.
SQLOK = False .

3. Change the second instruction from MsgBox(ErrSource.SQLInsertError) to
 MsgBox(ErrSource.SQLError) .

 Next, let ’ s develop a new Web method SQLDeleteSP() to perform the data deleting
action against the Course table in our sample database via this project.

9.5.2.4 Add a New Web Method SQLDeleteSP

 As we discussed in Section 7.1.1 in Chapter 7 , to delete a record from a relational data-
base, one needs to follow the operational steps listed below:

1. Delete records that are related to the parent table using the foreign keys from child tables.

2. Delete records that are defi ned as primary keys from the parent table.

 In other words, to delete one record from the parent table, all records that are related
to that record as foreign keys and located at different child tables must be deleted fi rst.
In our case, in order to delete a record using the course_id as the primary key from the
Course table (parent table), one must fi rst delete those records using the course_id as a
foreign key from the StudentCourse table (child table). Fortunately, we have only one
child table related to our parent table in our sample database. Refer to Section 2.9.4 and
Figure 2.19 in Chapter 2 to get a clear relationship description among different data tables
in our sample database.

 From this discussion, it can be found that to delete a course record from our sample
database, two deleting queries need to be performed: the fi rst query is used to delete the

c09.indd 769c09.indd 769 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

770 Chapter 9 ASP.NET Web Services

related records from the child table or StudentCourse table, and the second query is used
to delete the target record from the parent table or the Course table. To save time and
space, as well as the effi ciency, we place these two queries into a stored procedure named
WebDeleteCourseSP() that we will develop in the following sections. A single input
parameter course_id is passed into this stored procedure. At this moment, we just assume
that we have already developed that stored procedure and will use it in this Web method.

 Open our code - behind page WebServiceSQLUpdateDelete.vb and create this Web
method SQLDeleteSP() , which is shown in Figure 9.90 .

 Let ’ s take a closer look at this piece of codes to see how it works.

A. The name of this Web method is SQLDeleteSP and the returned data type is our modifi ed
base class SQLBase .

B. The content of the query string is equal to the name of the stored procedure we will
develop soon. The point is that the name used in this query string must be identical with
the name used in our stored procedure later. Otherwise, a running error may be encoun-
tered since the stored procedure is identifi ed by its name as the project runs.

C. An instance of our modifi ed base class SQLBase , SQLResult , is created. This instance
contains the running status of this Web method and will be returned to the calling proce-
dure when this method is done. Also, a local integer variable intDelete is declared, and
this variable is used to hold the returned value from calling of the ExecuteNonQuery()
method after this method runs.

Figure 9.90. The codes for the Web method SQLDeleteSP().

<WebMethod()> _
Public Function SQLDeleteSP(ByVal CourseID As String) As SQLBase

Dim cmdString As String = "dbo.WebDeleteCourseSP"
Dim sqlConnection As New SqlConnection
Dim SQLResult As New SQLBase
Dim intDelete As Integer

 SQLResult.SQLOK = True
 sqlConnection = SQLConn()

If sqlConnection Is Nothing Then
SQLResult.SQLOK = False
SQLResult.SQLError = "Database connection is failed"

 ReportError(SQLResult)
Return Nothing

End If

Dim sqlCommand = New SqlCommand(cmdString, sqlConnection)
 sqlCommand.CommandType = CommandType.StoredProcedure

sqlCommand.Parameters.Add("@CourseID", SqlDbType.Text).Value = CourseID
 intDelete = sqlCommand.ExecuteNonQuery()

If intDelete = 0 Then
SQLResult.SQLError = "Data deleting is failed"

 ReportError(SQLResult)
End If

 sqlConnection.Close()
 sqlCommand.Dispose()
 sqlCommand = Nothing

Return SQLResult

End Function

A
B

C

D

E

F

G
H

I

J

K

WebServiceSQLUpdateDelete SQLDeleteSP

c09.indd 770c09.indd 770 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

9.5 Build ASP.NET Web Service to Update and Delete Data for SQL Server Database 771

D. First, we preset a good running status of this Web method to the member data SQLOK to
indicate that so far our Web method is running fi ne.

E. If any error is encountered during the database connection process, the error information
is stored into the member data SQLError and reported using the subroutine ReportError() .

F. The Command object is created with a constructor that includes two arguments: Command
string and Connection object. Then the Command object is initialized with associated data
objects and properties, such as Command Type. The point is that the Command Type
property must be set to the value of StoredProcedure since this command object will call
a stored procedure to perform this data deleting later.

G. Also, the dynamic parameter @CourseID is assigned with the actual CourseID that is an
input parameter to this Web method.

H. The ExecuteNonQuery() method is executed to call our stored procedure to perform this
data deleting action. This method returns an integer to indicate the running status of this
method, and the returned value is assigned to the local integer variable intDelete .

I. The value returned from execution of the ExecuteNonQuery() method is equal to the
number of rows that have been successfully deleted from the Course table. If this returned
value is zero, which means that no row has been deleted from the Course table, an error
message is displayed and reported using the subroutine ReportError() .

J. A cleaning job is performed to release all objects used in this method.

K. Finally, the instance containing the running status of this Web method is returned to the
calling procedure.

 At this point, we have fi nished all coding jobs for our Web service project. Next, let ’ s
begin to develop our two stored procedures.

9.5.3 Develop Two Stored Procedures WebUpdateCourseSP
and WebDeleteCourseSP

 Now, it is the time for us to develop two stored procedures we need to use for this Web
service project to perform both data updating and deleting actions. Both stored proce-
dures can be developed in the Server Explorer window in the visual Studio.NET 2010
environment.

9.5.3.1 Develop the Stored Procedure WebUpdateCourseSP

 Open Visual Studio.NET 2010 and Server Explorer window, and connect and expand our
sample SQL Server database CSE_DEPT.mdf to fi nd the Stored Procedures folder.
Right click on this folder and select the item Add New Stored Procedure from the
pop - up menu to open the Add New Stored Procedure wizard.

 Enter the codes that are shown in Figure 9.91 into this procedure to make it as our
new stored procedure. The new entered codes have been highlighted in bold.

 The actual name of this procedure is dbo.WebUpdateCourseSP , but generally, we
call this procedure as WebUpdateCourseSP without the prefi x dbo since this prefi x is
added automatically when a new SQL Server stored procedure is created.

 Seven input parameters are listed in the parameter section with the related data types.
Two queries are included in this procedure. The fi rst one is used to pick up the desired

c09.indd 771c09.indd 771 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

772 Chapter 9 ASP.NET Web Services

faculty_id based on the input parameter FacultyName since there is no faculty
name column available in the Course table. The second query is used to perform the data
updating based on another six input parameters with the course_id as the dynamic
parameter.

 Go to the File|Save StoredProcedure1 menu item to save this new stored
procedure.

 To test this stored procedure, we can run it in the Visual Studio.NET environment.
Right - click on our new created stored procedure from the Server Explorer window and
select Execute item from the pop - up menu to open the Run Stored Procedure wizard,
which is shown in Figure 9.92 .

 Enter a group of updating parameters shown in Table 9.4 into the Value box in the
Run Stored Procedure wizard as the input parameters (refer to Figure 9.92).

Figure 9.91. The codes for the new stored procedure WebUpdateCourseSP().

CREATE PROCEDURE dbo.WebUpdateCourseSP
(

@FacultyName VARCHAR(30),
@CourseID VARCHAR(10),
@Course text,
@Credit int,
@Classroom text,
@Schedule text,
@Enroll int

)
AS

DECLARE @FacultyID VARCHAR(10)
SET @FacultyID = (SELECT faculty_id FROM Faculty
WHERE faculty_name LIKE @FacultyName)
UPDATE Course SET course = @Course, credit = @Credit, classroom = @Classroom,

 schedule = @Schedule, enrollment = @Enroll, faculty_id = @FacultyID
WHERE (course_id LIKE @CourseID)
RETURN

Figure 9.92. The input parameters to stored procedure WebUpdateCourseSP().

c09.indd 772c09.indd 772 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

9.5 Build ASP.NET Web Service to Update and Delete Data for SQL Server Database 773

 Click on the OK button to run this stored procedure, and the running result is dis-
played in the Output windows, which is shown in Figure 9.93 .

 The result shows that one row has been affected, which means that the selected row
in the Course table has been successfully updated. To confi rm this data updating at this
moment, we can open our sample database CSE_DEPT.mdf in the Server Explorer
window and then expand to our Course table under the Tables folder, and fi nally open
the Course data table by right - clicking on it and selecting the item Show Table Data
from the pop - up menu to try to fi nd this updated course record. As our Course table is
fully opened, you can immediately fi nd that this record has been updated according to
the parameters we input when this procedure is executed (sometimes you need to refresh
this table to see the updated result).

 It is highly recommended to recover this updated record to the original one since we
will use the same input parameters later to update this record again when we test our
Web service project. So you can perform this record recovering in the opened Course
table with the values shown in Table 9.5 .

 Next, let ’ s build the second stored procedure WebDeleteCourseSP() .

Table 9.4. The input parameters to the stored procedure

Parameter Name Parameter Value

@FacultyName Ying Bai

@CourseID CSE-665

@Course Neural Networks

@Credit 3

@Classroom TC-316

@Schedule M-W-F: 11:00-11:55 AM

@Enroll 28

Figure 9.93. The running result of the stored procedure WebUpdateCourseSP().

c09.indd 773c09.indd 773 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

774 Chapter 9 ASP.NET Web Services

9.5.3.2 Develop the Stored Procedure WebDeleteCourseSP

 Open Visual Studio.NET 2010 and Server Explorer window, and connect and expand our
sample SQL Server database CSE_DEPT.mdf to fi nd the Stored Procedures folder.
Right - click on this folder and select the item Add New Stored Procedure from the
pop - up menu to open the Add New Stored Procedure wizard.

 Enter the codes that are shown in Figure 9.94 into this procedure to make it as our
new stored procedure. The newly entered codes have been highlighted in bold.

 The actual name of this procedure is dbo.WebDeleteCourseSP . However, generally,
we call this procedure as WebDeleteCourseSP without the prefi x dbo since this prefi x
is added automatically by the SQL Server engine when a new stored procedure is created.

 One input parameter @CourseID is listed in the parameter section with the related
data type. Two deleting queries are included in this procedure. The fi rst one is used to
delete all records related to the selected course_id from the child table StudentCourse
based on the input parameter @CourseID . The second query is used to delete the target
course from the parent table Course with the @CourseID as the dynamic parameter.

 Go to the File|Save StoredProcedure2 menu item to save this new stored
procedure.

Figure 9.94. The codes for the stored procedure WebDeleteCourseSP().

CREATE PROCEDURE dbo.WebDeleteCourseSP
(

@CourseID VARCHAR(10)
)
AS

DELETE FROM StudentCourse WHERE course_id LIKE @CourseID
DELETE FROM Course WHERE course_id LIKE @CourseID
RETURN

Table 9.5. The recovered course record for CSE - 665

Column Name Column Value

course_id CSE-665

course Advanced Fuzzy Systems

credit 3

classroom TC-315

schedule T-H: 1:00-2:25 PM

enrollment 26

faculty_id B78880

c09.indd 774c09.indd 774 4/25/2012 7:32:00 PM4/25/2012 7:32:00 PM

9.5 Build ASP.NET Web Service to Update and Delete Data for SQL Server Database 775

 To test this stored procedure, we can run it in the Visual Studio.NET environment.
Right - click on our new created stored procedure WebDeleteCourseSP from the Server
Explorer window and select Execute item from the pop - up menu to open the Run Stored
Procedure wizard, which is shown in Figure 9.95 .

 Enter CSE-526 into the Value box as the value of the input parameter @CourseID
and click on the OK button to run this stored procedure. The running result is displayed
in the Output window, which is shown in Figure 9.96 .

 The result shows that one row has been affected, which means that the selected row
in the Course table has been successfully deleted. To confi rm this data deleting at this
moment, we can open our sample database CSE_DEPT.mdf in the Server Explorer
window and then expand to our Course table under the Tables folder, and fi nally open
the Course data table by right - clicking on it and select the item Show Table Data from
the pop - up menu. As our Course table is opened, immediately, you can fi nd that the course
with the course_id of CSE-526 has been deleted from our Course (parent) table.
However, since this is a newly added course and no student has taken this course yet,
therefore, you cannot fi nd this course from the StudentCourse table.

 It is highly recommended to recover those deleted records from both tables since we
will use the same input parameter later to delete this record again when we test our Web
service project. Because this is a newly added course and no student has taken this course

Figure 9.95. The Run Stored Procedure wizard.

Figure 9.96. The running result of the stored procedure WebDeleteCourseSP().

c09.indd 775c09.indd 775 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

776 Chapter 9 ASP.NET Web Services

yet, therefore, we do not need to recover it for the StudentCourse table. So just perform
a recovering for the Course table by adding the record that is shown in Table 9.6 .

 We have fi nished the development for this Web service project, and now let ’ s run our
Web service project to test all Web methods. Click on the Start Debugging button to run
our project. The built - in Web interface window is displayed, which is shown in Figure 9.97 .

 Four Web methods are shown in this built - in interface. First, let ’ s test the Web method
SQLUpdateSP() . Click on this item to open the parameter - input interface, which is shown
in Figure 9.98 .

Figure 9.97. The running status of the Web service project.

Table 9.6. The recovered record for CSE - 526 in Course table

Column Name Column Value

course_id CSE-526

course Embedded Microcontrollers

credit 3

classroom TC-308

schedule M-W-F: 9:00-9:55 AM

enrollment 32

faculty_id B78880

c09.indd 776c09.indd 776 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

9.5 Build ASP.NET Web Service to Update and Delete Data for SQL Server Database 777

 Enter the updated parameters shown in Figure 9.98 into the associated box to update
a course with the course_id of CSE-526 . Click on the Invoke button to run this method.
The running result of this Web method is shown in Figure 9.99 .

 It can be found from this running result that the member data SQLOK is True , which
means that the running status of this Web method is successful, and a record in the Course
table has been updated. Because no any data should be returned from the execution of
this data updating, therefore, all data stored in the returned instance, including the
CourseID() array that has 11 elements and two integers Credit and Enrollment, are either
true or zero.

 To confi rm this data updating, we can call some other Web methods to do this job.
First, we want to get back all courses (exactly all course_id) taught by the selected faculty.
To do that, close the running result interface window shown in Figure 9.99 , and click on
the Back arrow to return to the home page of this built - in interface. Then click on the
Web method GetSQLCourse to obtain all course_id . Enter the faculty name Ying Bai
into the Value box as the input parameter to this Web method, which is shown in Figure
 9.100 . Click on the Invoke button to run this method.

Figure 9.98. The parameter - input interface.

c09.indd 777c09.indd 777 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

778 Chapter 9 ASP.NET Web Services

Figure 9.99. The running result for the Web method SQLUpdateSP().

Figure 9.100. The parameter - input built - in Web interface.

c09.indd 778c09.indd 778 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

9.5 Build ASP.NET Web Service to Update and Delete Data for SQL Server Database 779

Figure 9.101. The running result for the Web method GetSQLCourse().

 The running result for the Web method GetSQLCourse() is shown in Figure 9.101 .
 It can be found from Figure 9.101 that all six courses (or course_id) taught by the

selected faculty are retrieved and displayed in XML tags in this built - in Web interface.
 To confi rm and check whether the target course CSE-526 has been updated or not,

we need to run another Web method GetSQLCourseDetail() . Close the running result
interface shown in Figure 9.101 and click on the Back arrow to return to the home page
of our Web service. Click on the Web method GetSQLCourseDetail() to run it. Then
enter CSE-526 as the input parameter that is shown in Figure 9.102 to this method to
pick up the detailed information for this course.

 Click on the Invoke button to run this method, and the running result is shown in
Figure 9.103 .

 It can be found that the course CSE-526 has been updated based the input param-
eters we entered for the Web method SQLUpdateSP() in Figure 9.98 .

 Next, let ’ s test the Web method SQLDeleteSP() to try to delete a course record from
the Course table. Close the current running result window and click on the Back arrow
to return to the home page of the Web service. Click on the Web method SQLDeleteSP
to run it, and then enter CSE-526 as the course_id parameter into the Value box to this
method. Click on the Invoke button run this method.

 The running result is shown in Figure 9.104 .
 It can be found that the returned running status SQLOK , which is the only returned

data, is true , and this means that this data deleting is successful.

c09.indd 779c09.indd 779 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

Figure 9.103. The running result of the Web method GetSQLCourseDetail().

Figure 9.102. The parameter - input Web interface.

c09.indd 780c09.indd 780 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

9.5 Build ASP.NET Web Service to Update and Delete Data for SQL Server Database 781

 To confi rm this data deleting, close the current running result interface and click on
the Back arrow to return to the home page of the Web service project. Click on the Web
method GetSQLCourse to run it to pick up all courses taught by the selected faculty.
Enter the faculty name Ying Bai into the Value box as the input parameter to this method
and click on the Invoke button to run it.

 The running result is shown in Figure 9.105 .
 From this running result shown in Figure 9.105 , it can be found that the course with

the course_id CSE-526 has been deleted from the Course table since that course is
taught by the faculty Ying Bai .

 To get a more clear picture for this data deleting, let ’ s try to run another Web method
GetSQLCourseDetail() . Close the current running result interface and click the Back
arrow to return to the home page. Select and click on the Web method GetSQLCourseDetail
to try to run it. Enter CSE-526 as the course_id to the Value box as the input parameter
to this method and click on the Invoke button to run it.

 The running process becomes very slow. The reason for that is because a message
box is displayed behind the top page. Try to move the current top page to either side of
the screen and you can fi nd a message box with a message “No matched course found ”
is shown up. This means that the queried course has been deleted from the Course table
and it cannot be found from that table again.

Figure 9.104. The running result of the Web method SQLDeleteSP().

c09.indd 781c09.indd 781 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

782 Chapter 9 ASP.NET Web Services

 Click on the OK button to the message box to close it, and the running result is dis-
played, which is shown in Figure 9.106 . The following returned values are displayed for
two member data:

 • SQLOK: false

 • SQLError: No matched course found

 This is identical with the warning message displayed in the message box as this
method runs. Close the current page and our Web service project. Our Web service project
is very successful.

 As a reminder, it is highly recommended to recover all deleted data from all tables
in our sample database. To do that, open our sample database and the Course table from
either the Server Explorer in Visual Studio.NET or Microsoft SQL Server Management
Studio, and add all columns shown in Table 9.6 for the deleted course CSE-526 into our
Course table.

 You can remove all message box functions MsgBox() from this Web service project
to speed up the execution of this Web service if you like.

 A completed Web service project WebServiceSQLUpdateDelete can be found in
the folder DBProjects\Chapter 9 that is located at the Wiley ftp site (refer to Figure 1.2
in Chapter 1).

 Next, let ’ s take care of building some Windows - based and Web - based client projects
to consume this Web service.

Figure 9.105. The running result of the Web method GetSQLCourse().

c09.indd 782c09.indd 782 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

9.6 Build Windows-Based Web Service Clients to Consume the Web Services 783

9.6 BUILD WINDOWS -BASED WEB SERVICE CLIENTS TO
CONSUME THE WEB SERVICES

 To save the time and the space, we do not need to create any new project and perform a
full development. Instead, we can copy and modify an existing Windows - based client
project WinClientSQLInsert we developed in Section 9.4.4 in this chapter to make it as
our new client project WinClientSQLUpdateDelete . To do that, create a new folder
Chapter 9 at our root directory if you have not done that. Copy this client project from
the folder DBProjects\Chapter 9 that is located at the Wiley ftp site (refer to Figure 1.2
in Chapter 1) and paste it into our new folder C:\Chpater 9 . Rename the copied project
to WinClientSQLUpdateDelete .

 Now let ’ s perform the necessary modifi cations to this project to make it as our new
project. The modifi cations can be divided into three parts:

1. Modifi cations to the fi le folder and the project fi les.

2. Add a new Web reference to our new client project.

3. Modifi cations to the codes in the code window.

 First, let ’ s perform the modifi cations to the fi rst part.

Figure 9.106. The running result of the Web method GetSQLCourseDetail().

c09.indd 783c09.indd 783 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

784 Chapter 9 ASP.NET Web Services

9.6.1 Modifi cations to the File Folder and Project Files

 Open the Windows Explorer and browse to our new project folder WinClientSQL-
UpdateDelete that is located at the folder C:\Chapter 9 . Perform the following modifi ca-
tions to this project:

1. Rename the project folder from WinClientSQLInsert to WinClientSQLUpdateDelete .

2. Rename the project fi le from WinClientSQLInsert.vbproj to WinClientSQLUpdate-
Delete.vbproj .

3. Double - click on the project fi le WinClientSQLUpdateDelete.vbproj to open the
project. On the opened project window, click on our form WinClient Form.vb from
the Solution Explorer window and go to Project|WinClientSQLUpdateDelete
Properties menu item to open the project property wizard. Perform the following
modifi cations:

a. Change the Assembly name to WinClientSQLUpdateDelete .
b. Change the Root namespace to WinClientSQLUpdateDelete .
c. Click on the Assembly Information button to open the associated wizard.

 Change the Title and the Product to WinClientSQLUpdateDelete . Click on the OK
button to close this wizard.

d. Click on the Start Debugging button to run the project to make these modifi cations
updated, and then click on the Back button to terminate the project.

4. Reopen Windows Explorer, browse to our new project folder WinClient-
SQLUpdateDelete|bin|Debug , and remove all old project fi les that have an old name
WinClientSQLInsert with extensions, such as .exe, .pdb, .confi g , and .xml .

5. Go to the subfolder WinClientSQLUpdateDelete|obj|x86|Debug and remove all old
resource fi les with the name of WinClientSQLInsert followed with extensions, such as
resources and Cache .

6. Remove the Web Reference folder from both Windows Explorer and Solution Explorer
windows. To remove the Web Reference folder from Solution Explorer window, one needs
fi rst to delete the Web reference object and then the folder.

 Go to the File|Save All menu item to save these modifi cations.

9.6.2 Add a New Web Reference to Our Client Project

 To consume or use the Web service WebServiceSQLUpdateDelete we developed in
the last section, we need fi rst to set up a Web reference to connect to that Web service
with our client project together. Perform the following operations to add this Web
reference:

1. Open our Web service project WebServiceSQLUpdateDelete , and click on the Start
Debugging button to run it.

2. Copy the URL from the Address bar in our running Web service project.

3. Then open another Visual Studio.NET 2010 and our Windows - based client project
WinClientSQLUpdateDelete .

c09.indd 784c09.indd 784 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

9.6 Build Windows-Based Web Service Clients to Consume the Web Services 785

4. Right - click on our client project WinClientSQLUpdateDelete from the Solution Explorer
window, and select the item Add Service Reference from the pop - up menu to open the
Add Service Reference wizard.

5. Click on the Advanced button located at the lower - left corner on this wizard to open the
Service Reference Settings wizard.

6. Click on the Add Web Reference button to open the Add Web Reference wizard, which
is shown in Figure 9.107 .

7. Paste the URL we copied from step 2 into the URL box in the Add Web Reference wizard,
and click on the Green Arrow button to enable Visual Studio.NET 2010 to begin to search
it.

8. When the Web service is found, the name of our Web service is displayed in the right pane,
which is shown in Figure 9.107 .

9. Alternately, you can change the name for this Web reference from localhost to any mean-
ingful name, such as WS_SQLUpdateDelete in our case. Click on the Add Reference
button to add this Web service as a reference to our new client project.

10. Click on the Close button from our Web service built - in Web interface window to termi-
nate our Web service project.

 Next, let ’ s modify the codes in the related event procedures and user - defi ned subrou-
tines to call our Web service to perform the desired data actions.

Figure 9.107. The opened Add Web Reference wizard.

c09.indd 785c09.indd 785 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

786 Chapter 9 ASP.NET Web Services

9.6.3 Modify the Codes for the Different Event Procedures
and Subroutines

 The modifi cations to the codes include the following parts:

1. Modify the codes for the Form_Load event procedure and form - level variables.

2. Modify the codes for the Select button ’ s click event procedure and related subroutines,
ProcessObject() and FillCourseListBox() , to make them perform the data validation after
the data updating and deleting actions.

3. Remove the Insert button ’ s click event procedure since we do not need this action in this
application.

4. Modify the codes for the SelectedIndexChanged event procedure of the Course List Box
control and related subroutine FillCourseDetail() to perform the confi rmation for the data
updating actions.

5. Develop the codes for the Update button ’ s click event procedure to perform the data
updating actions.

6. Develop the codes for the Delete button ’ s click event procedure to perform the data delet-
ing actions.

 Let ’ s perform these modifi cations starting from the fi rst part.

9.6.3.1 Modify the Codes of the Form_Load Event Procedure and

Form-Level Variables

 Perform the following modifi cations to this part:

1. Change the class name of the form - level instance from WS_SQLInsert.SQLInsertBase to
WS_SQLUpdateDelete.SQLBase .

2. Remove the second method DataSet Method from the Form_Load event procedure.

Figure 9.108. The modifi ed Form_Load event procedure.

Imports System.Data
Imports System.Data.SqlClient

Public Class CourseForm
Private dsFlag As Boolean
Private wsDataSet As DataSet
Private wsSQLResult As New WS_SQLUpdateDelete.SQLBase

Private Sub CourseForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
 ComboName.Items.Add("Ying Bai")
 ComboName.Items.Add("Satish Bhalla")
 ComboName.Items.Add("Black Anderson")
 ComboName.Items.Add("Steve Johnson")
 ComboName.Items.Add("Jenney King")
 ComboName.Items.Add("Alice Brown")
 ComboName.Items.Add("Debby Angles")
 ComboName.Items.Add("Jeff Henry")
 ComboName.SelectedIndex = 0
 ComboMethod.Items.Add("Stored Procedure Method")
 ComboMethod.SelectedIndex = 0

End Sub

(CourseForm Events) Load

c09.indd 786c09.indd 786 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

9.6 Build Windows-Based Web Service Clients to Consume the Web Services 787

 Your modifi ed Form_Load event procedure and form - level variables should match
those that are shown in Figure 9.108 . The modifi ed parts have been highlighted in bold.

 Next, let ’ s modify the codes in the Select button ’ s click event procedure and related
user - defi ned subroutine procedures to perform the validation functions for our data
updating and deleting actions.

9.6.3.2 Modify the Codes for the Select Button Click Event Procedure and

Related User -defi ned Subroutine Procedures

 The function of this event procedure is: either after a data updating or deleting action is
performed, we need to confi rm this operation by retrieving the related courses taught by
the selected faculty from our sample database. To do that, a desired faculty member
should be selected from the Faculty Name combo box control, and the Select button
should be clicked by the user. Then this event procedure will call the Web method
GetSQLCourse() in our Web service project, and an instance that contains all retrieved
course_id taught by the selected faculty is returned from that Web method. Some related
subroutines are executed to extract those course_id from the returned instance and
display them in the list box control in our client form window.

 Open this event procedure and perform the modifi cations that are shown in Figure
 9.109 to this event procedure.

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. Rename the new instance ’ s name to wsSQLSelect and change the Web proxy class ’ s name
to WS_SQLUpdateDelete.WebServiceSQLUpdateDelete .

B. Remove the If . . . Else . . . End If block for the method - checking process since we have
only one method, Stored Procedure Method , used in this application. Also, remove all
codes between the Else and End If half - block since we do not have the DataSet Method
used in this project.

C. Change the instance name of our Web proxy class from wsSQLInsert to wsSQLSelect ,
and Web method ’ s name from GetSQLInsert() to GetSQLCourse() .

D. Change the name of the member data from SQLInsertOK to SQLOK .

E. Change the name of the member data from SQLInsertError to SQLError .

 All modifi cation parts have been highlighted in bold.

Figure 9.109. The modifi ed codes for the Select button event procedure.

Private Sub cmdSelect_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim wsSQLSelect As New WS_SQLUpdateDelete.WebServiceSQLUpdateDelete

Try
 wsSQLResult = wsSQLSelect.GetSQLCourse(ComboName.Text)

Catch err As Exception
MsgBox("Web service is wrong: " & err.Message)

End Try
If wsSQLResult.SQLOK = False Then
 MsgBox(wsSQLResult.SQLError)
End If

 ProcessObject(wsSQLResult)

End Sub

A
B

C

D
E

cmdSelect Click

c09.indd 787c09.indd 787 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

788 Chapter 9 ASP.NET Web Services

 Two user - defi ned subroutines are associated with this Select button ’ s click event
procedure, and they are: ProcessObject() and FillCourseListBox() . The modifi cations to
these two subroutines include the following steps (refer to Figure 9.110):

A. Change the data type of passed argument wsResult from WS_SQLInsert. SQLInsertBase
to WS_SQLUpdateDelete.SQLBase.

B. Change the If block condition variable from SQLInsertOK to SQLOK .

C. Change the error message member data from SQLInsertError to SQLError .

D. Change the data type of passed argument wsResult from WS_SQLInsert. SQLInsertBase
to WS_SQLUpdateDelete.SQLBase.

 Two modifi ed subroutines are shown in Figure 9.110 , and the modifi ed parts have
been highlighted in bold.

9.6.3.3 Remove the Insert Button Click Event Procedure

 Since we do not need this data action in this application, we can remove this procedure
from our current project. Select all codes of this event procedure, including the procedure
header and ender, and press the Delete key from your keyboard to remove this entire
event procedure.

9.6.3.4 Modify the Codes for the SelectedIndexChanged Event Procedure

 Open the SelectedIndexChanged event procedure of the CourseList control and perform
the modifi cations that are shown in Figure 9.111 to this event procedure. The modifi ed
parts have been highlighted in bold.

 Let ’ s take a closer look at this piece of modifi ed codes to see how it works.

A. Rename the new instance ’ s name to wsSQLSelect and change the Web proxy class ’ s name
to WS_SQLUpdateDelete.WebServiceSQLUpdateDelete .

Figure 9.110. The modifi ed subroutines ProcessObject() and FillCourseListBox().

Private Sub ProcessObject(ByRef wsResult As WS_SQLUpdateDelete.SQLBase)

If wsResult.SQLOK = True Then
Call FillCourseListBox(wsResult)

Else
 MsgBox("Course information cannot be retrieved: " & wsResult.SQLError)
End If

End Sub

Private Sub FillCourseListBox(ByRef sqlResult As WS_SQLUpdateDelete.SQLBase)
Dim index As Integer

 CourseList.Items.Clear() 'clean up the course listbox

For index = 0 To sqlResult.CourseID.Length - 1
If sqlResult.CourseID(index) <> vbNullString Then

CourseList.Items.Add(sqlResult.CourseID(index))
End If

Next index

End Sub

A

B

C

D

CourseForm ProcessObject

c09.indd 788c09.indd 788 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

9.6 Build Windows-Based Web Service Clients to Consume the Web Services 789

B. Change the instance name of our Web proxy class from wsSQLInsert to wsSQLSelect ,
and the Web method ’ s name from GetSQLInsert() to GetSQLCourseDetail() .

C. Change the name of the member data from SQLInsertOK to SQLOK .

D. Change the name of the member data from SQLInsertError to SQLError .

 The modifi cation to the related subroutine FillCourseDetail() is to change the data
type of the argument from WS_SQLInsert.SQLInsertBase to WS_SQLUpdateDelete.
SQLBase .

 Next, let ’ s concentrate on the code development for the Update button ’ s click event
procedure.

9.6.3.5 Develop the Codes for the Update Button Event Procedure

 The function of this event procedure is: when a faculty name is selected and all six pieces
of updated course information are entered in the six - textbox controls, the Update button
is clicked by the user. The updated course information will be passed to the Web method
SQLUpdateSP() in our Web service project, and the SQL Server stored procedure
WebUpdateCourseSP() is executed to perform this course updating.

 Now let ’ s double click on the Update button to open its click event procedure, and
enter the codes that are shown in Figure 9.112 into this event procedure.

 Let ’ s take a closer look at this piece of codes to see how it works.

A. A new instance of our Web proxy class, wsSQLUpdate , is created, and this instance
is used to access the Web methods we developed in our Web service class
WebServiceSQLUpdateDelete .

B. A Try . . . Catch block is used to call the Web method SQLUpdateSP() with six pieces of
course updated information to execute a stored procedure WebUpdateCourseSP() to
perform this course updating action against our sample database.

C. An error message will be displayed if any error is encountered during that data updating
action.

D. Besides the system error - checking methods, we also need to check the member data
SQLOK defi ned in our base class in the Web service project to make sure that this data

Figure 9.111. The modifi ed codes for the SelectedIndexChanged event procedure.

Private Sub CourseList_SelectedIndexChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles CourseList.SelectedIndexChanged

Dim wsSQLSelect As New WS_SQLUpdateDelete.WebServiceSQLUpdateDelete

Try
wsSQLResult = wsSQLSelect.GetSQLCourseDetail(CourseList.Text)

Catch err As Exception
 MsgBox("Web service is wrong: " & err.Message)
End Try

If wsSQLResult.SQLOK = False Then
 MsgBox(wsSQLResult.SQLError)

Exit Sub
End If

Call FillCourseDetail(wsSQLResult)
End Sub

A

B

C
D

CourseList SelectedIndexChanged

c09.indd 789c09.indd 789 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

790 Chapter 9 ASP.NET Web Services

updating is application - error free. A returned False indicates that this data updating
encountered some application errors, and the error source stored in another member data
SQLError is displayed.

 It looks like that this piece of codes is very simple — yes, it is! As long as the Web
service is developed and is ready to be used, developing some client projects to consume
that Web service is very simple and easy.

 Similarly, we can develop the codes for the Delete button ’ s click event procedure to
perform the data deleting actions against our sample database.

9.6.3.6 Develop the Codes for the Delete Button Event Procedure

 The function of this event procedure is: when a course_id has been selected from the
Course ID textbox control in this client form window, the selected course with a primary
key that equals to that course_id will be deleted from all tables, including the child and
parent tables, in our sample relational database.

 Double - click on the Delete button from our client form window to open the Delete
button Click event procedure, and enter the codes that are shown in Figure 9.113 into
this event procedure.

Figure 9.112. The codes for the Update button click event procedure.

Private Sub cmdUpdate_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles _
cmdUpdate.Click

Dim wsSQLUpdate As New WS_SQLUpdateDelete.WebServiceSQLUpdateDelete

Try
wsSQLResult = wsSQLUpdate.SQLUpdateSP(ComboName.Text, txtID.Text, _

txtCourse.Text, txtSchedule.Text, txtClassRoom.Text, _
txtCredits.Text, txtEnroll.Text)

Catch err As Exception
 MsgBox("Web service is wrong: " & err.Message)
End Try

If wsSQLResult.SQLOK = False Then
 MsgBox(wsSQLResult.SQLError)
End If

End Sub

A
B

C

D

cmdUpdate Click

Figure 9.113. The codes for the Delete button click event procedure.

Private Sub cmdDelete_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cmdDelete.Click
Dim wsSQLDelete As New WS_SQLUpdateDelete.WebServiceSQLUpdateDelete

Try
wsSQLResult = wsSQLDelete.SQLDeleteSP(txtID.Text)

Catch err As Exception
 MsgBox("Web service is wrong: " & Err.Message)
End Try
If wsSQLResult.SQLOK = False Then

MsgBox(wsSQLResult.SQLError)
End If

End Sub

A

B

C

D

cmdDelete Click

c09.indd 790c09.indd 790 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

9.6 Build Windows-Based Web Service Clients to Consume the Web Services 791

 Let ’ s take a closer look at this piece of codes to see how it works.

A. A new instance of our Web proxy class, wsSQLDelete , is created, and this instance is
used to access the Web methods we developed in our Web service class
WebServiceSQLUpdateDelete .

B. A Try . . . Catch block is used to call the Web method SQLDeleteSP() with one piece of
course information, course_id , that works as an identifi er, to run a stored procedure
WebDeleteCourseSP() to perform this course deleting action against our sample
database.

C. An error message will be displayed if any error is encountered during that data deleting
action.

D. Besides the system error - checking methods, we also need to check the member data
SQLOK that is defi ned in our base class in the Web service project to make sure that this
data deleting is application - error free. A returned False indicates that this data deleting
encountered some application errors, and the error source stored in another member data
SQLError is displayed.

 Go to the File|Save All menu item to save these modifi cations and developments.
 At this point, we have fi nished all modifi cations to this client project and now it is

the time for us to run this project to access our Web service to perform the data updating
and deleting actions. However, before we can run this project, make sure that our Web
service project WebServiceSQLUpdateDelete is in the running status. This can be iden-
tifi ed by a small white icon located in the status bar on the bottom of the screen. If you
cannot fi nd this icon, open our Web service project WebServiceSQLUpdateDelete and
click on the Start Debugging button to run it. As long as our Web service runs one time,
you can close our Web service page. However, the small white icon should be still in there,
and this means that our Web service is still running and ready to be accessed and
consumed.

 Now click on the Start Debugging button from our client project to run it. First, let ’ s
test the data updating function by updating a course record CSE-665 . Before we can do
that, we prefer to retrieve the current information for the course CSE-665 . Click on the
Select button to get all courses (course_id) currently taught by the selected faculty
member Ying Bai . All course_id will be retrieved and displayed in the list box control.
Click on the course_id CSE-665 from the list box control, and immediately, the detailed
information related to that course is displayed in the associated textbox control, which is
shown in Figure 9.114 .

 Now enter the updating information for the course CSE-665 into the associated
textbox, which is shown in Figure 9.115 .

 Click on the Update button to call the Web method SQLUpdateSP() in our Web
service project to update this course record.

 To confi rm this data updating, click on the Select button to try to retrieve all courses
taught by the selected faculty Ying Bai . All course_id taught by that faculty are returned
and displayed in the list box control, which is shown in Figure 9.116 .

 To check whether the course CSE-665 has been updated or not, fi rst, let ’ s select
another course_id from the list box, such as CSC-132B , and then click on the course_id
CSE-665 from the list box control. Immediately, the detailed information about this
updated course is displayed in the associated textbox, as shown in Figure 9.116 . It can be
found that this course has been updated successfully.

c09.indd 791c09.indd 791 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

792 Chapter 9 ASP.NET Web Services

 To test the deleting function, keep the course CSE-665 selected from the list box and
click on the Delete button to try to delete this record from the Course table. To confi rm
this course deleting action, click on the Select button to try to retrieve all courses taught
by the selected faculty. Immediately, all course_id are returned and displayed in the list
box control. It can be found that the course CSE-665 has been removed from the Course
table, and you cannot fi nd it from the list box now.

 Click on the Back button to terminate our client project. Our client project is very
successful.

Figure 9.114. The detailed information of the course CSE - 665.

Figure 9.115. The updating information for the course CSE - 665.

c09.indd 792c09.indd 792 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

9.7 Build Web-Based Web Service Clients to Consume the Web Services 793

 However, the story is not fi nished. It is highly recommended to recover the deleted
course CSE-665 for our Course table since we want to keep our database neat and com-
plete. You can recover this data by using one of the following fi ve methods:

1. Using the Server Explorer window in Visual Studio.NET to open our sample database
CSE_DEPT.mdf and our Course data table.

2. Using the Microsoft SQL Server Management Studio or Studio Express to open our sample
database CSE_DEPT.mdf and our Course data table.

3. Using our Web service project WebServiceSQLInsert to insert a new course to perform
this course recovering.

4. Using our Windows - based Web service client project WinClientSQLInsert to perform this
course recovering.

5. Using our Web - based Web service client project WebClientSQLInsert to insert a new
course to recover this course record.

 Relatively speaking, using the last three methods to recover this course record is
professional since regularly, no one wants to access and change the content of a database
directly by opening the database to do modifi cations.

 A complete Windows - based Web service client project WinClientSQLUpdateDelete
can be found in the folder DBProjects\Chapter 9 that is located at the Wiley ftp site
(refer to Figure 1.2 in Chapter 1).

9.7 BUILD WEB -BASED WEB SERVICE CLIENTS
TO CONSUME THE WEB SERVICES

 There is no signifi cant difference between building a Windows - based client project and
building a Web - based client project to consume a Web service. To save time and space,

Figure 9.116. The updated course CSE - 665.

c09.indd 793c09.indd 793 4/25/2012 7:32:01 PM4/25/2012 7:32:01 PM

794 Chapter 9 ASP.NET Web Services

we try to modify an existing Web - based client project WebClientSQLInsert we devel-
oped in the previous section to make it as our new Web - based client project
WebClientSQLUpdateDelete .

 In fact, we can copy and rename that entire project as our new Web - based client
project. But we prefer to create a new ASP.NET Website project, and then copy and
modify the Course page.

 This section can be developed in the following sequences:

1. Create a new ASP.NET Website project WebClientSQLUpdateDelete and add an existing
Website page Course.aspx from the project WebClientSQLInsert into our new project.

2. Add a Web service reference to our new project.

3. Modify the codes in the related event procedures of the Course.aspx.vb fi le to call the
associated Web method to perform our data updating and deleting. The code modifi cations
include the following sections:

A. Modify the codes in the Page_Load event procedure.
B. Modify the codes in the Select button ’ s click event procedure and the related subrou-

tines, ProcessObject() and FillCourseListBox() .
C. Modify the codes in the SelectedIndexChanged event procedure of the course list box

control and the related subroutine FillCourseDetail() .
D. Remove the Insert button ’ s click event procedure cmdInsert_Click() since we do not

need any data insertion action in this application.
E. Remove the TextChanged event procedure of the Course ID textbox since we do not

need this event and its event procedure in this application.
F. Develop the codes for the Update button ’ s click event procedure.
G. Develop the codes for the Delete button ’ s click event procedure.

 Now let ’ s start with the fi rst step listed above.

9.7.1 Create a New Web Site Project and Add
an Existing Web Page

 Open Visual Studio.NET and go to the File|New Web Site menu item to create a new
Web site project. Enter C:\Chapter 9\WebClientSQLUpdateDelete into the Name box
that is next to the Web location box, and click on the OK button to create this new project.

 On the opened new project window, right - click on our new project icon
WebClientSQLUpdateDelete from the Solution Explorer window, and select the item
Add Existing Item from the pop - up menu to open the Add Existing Item wizard. Browse
to our Web project WebClientSQLInsert that can be found in the folder DBProjects\
Chapter 9 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1). Double -
 click on it and select the Course.aspx from the list. Click on the Add button to add this
item into our new Website project.

9.7.2 Add a Web Service Reference and Modify
the Web Form Window

 To add a Web reference of our Web service to this new Website project, right - click on our
new project icon from the Solution Explorer window and select the item Add Web

c09.indd 794c09.indd 794 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

9.7 Build Web-Based Web Service Clients to Consume the Web Services 795

Reference from the pop - up menu. Open another Visual Studio.NET and our Web service
project WebServiceSQLUpdateDelete , and click on the Start Debugging button to run
it. As the project runs, copy the URL from the Address box and paste it into the URL
box in our Add Web Reference wizard. Then click on the green button to add this Web
service as a reference to our client project. You can modify this Web reference name to
any name you want. In this application, we prefer to change it to WS_SQLUpdateDelete .
Your fi nished Add Web reference wizard should match the one that is shown in Figure
 9.117 .

 Click on the Add Reference button to fi nish this adding Web reference process.
Immediately, you can fi nd that the following three fi les are created in the Solution
Explorer window under the folder App_WebReferences :

 • WebServiceSQLUpdateDelete.disco

 • WebServiceSQLUpdateDelete.discomap

 • WebServiceSQLUpdateDelete.wsdl

 Now let ’ s take care of modifi cations to the codes in related event procedures and
subroutines in the Course.aspx page.

Figure 9.117. The fi nished Add Web Reference wizard.

c09.indd 795c09.indd 795 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

796 Chapter 9 ASP.NET Web Services

9.7.3 Modify the Codes for the Related Event
Procedures and Subroutines

 The fi rst modifi cation is to change the codes in the Page_Load event procedure and
modify some form - level variables.

9.7.3.1 Modify the Codes in the Page_Load Event Procedure

 Perform the following changes to complete this modifi cation:

1. Change the name of the base class for the form level instance wsSQLResult from WS_
SQLInsert.SQLInsertBase to WS_SQLUpdateDelete.SQLBase .

2. In the Page_Load event procedure, remove the code that is used to add and display the
second Web method, DataSet Method , in the combo box control.

 Your modifi ed codes for the Page_Load event procedure should match one that is
shown in Figure 9.118 . The modifi ed codes have been highlighted in bold.

9.7.3.2 Modify Codes in the Select Button Event Procedure and

Related Subroutines

 The function of this event procedure is: either after a data updating or deleting action is
performed, we need to confi rm this operation by retrieving the related courses taught by
the selected faculty from our sample database. To do that, a desired faculty should be
selected from the Faculty Name combo box control, and the Select button should be
clicked by the user. Then this event procedure will call the Web method GetSQLCourse()
in our Web service, and an instance that contains all retrieved course_id taught by the

Figure 9.118. The modifi ed Page_Load event procedure.

Imports System.Data

Partial Class Course
Inherits System.Web.UI.Page
Private dsFlag As Boolean
Private wsDataSet As New DataSet
Private wsSQLResult As New WS_SQLUpdateDelete.SQLBase

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

If Not IsPostBack Then 'these items can only be added into the combo box in one time
 ComboName.Items.Add("Ying Bai")

ComboName.Items.Add("Satish Bhalla")
ComboName.Items.Add("Black Anderson")
ComboName.Items.Add("Steve Johnson")
ComboName.Items.Add("Jenney King")
ComboName.Items.Add("Alice Brown")
ComboName.Items.Add("Debby Angles")
ComboName.Items.Add("Jeff Henry")
ComboMethod.Items.Add("Stored Procedure Method")

End If
End Sub

(Page Events) Load

c09.indd 796c09.indd 796 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

9.7 Build Web-Based Web Service Clients to Consume the Web Services 797

selected faculty is returned from that Web method. Some subroutines are executed to
extract those course_id from the returned instance and display them in the list box
control in our client page window.

 Open this event procedure and perform the modifi cations that are shown in Figure
 9.119 to this event procedure. All modifi cation parts have been highlighted in bold.

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. Rename the new instance ’ s name to wsSQLSelect and change the Web proxy class ’ s name
to WS_SQLUpdateDelete.WebServiceSQLUpdateDelete .

B. Add one more local string variable errMsg that will be used to store the error source later.
Remove the If . . . Else . . . End If block for the method - checking process since we have
only one method, Stored Procedure Method , used in this application. Also, remove all
codes between the Else and End If half - block since we do not have the DataSet Method
used in this project.

C. Change the instance name of our Web proxy class from wsSQLInsert to wsSQLSelect ,
and the Web method ’ s name from GetSQLInsert() to GetSQLCourse() .

D. Change the name of the member data from SQLInsertOK to SQLOK .

E. Change the name of another member data from SQLInsertError to SQLError .

F. Remove the last two statements: Call FillCourseDataSet() and
Application(“dsFlag”) = False since we do not need these two operations in this
application.

 Two user - defi ned subroutines are associated with this Select button ’ s click event
procedure, ProcessObject() and FillCourseListBox() . The modifi cations to these two
subroutines include the following steps:

A. Change the data type of passed argument wsResult from WS_SQLInsert. SQLInsertBase
to WS_SQLUpdateDelete.SQLBase.

B. Change the If block condition variable from SQLInsertOK to SQLOK .

C. Change the error message member data from SQLInsertError to SQLError .

D. Change the data type of passed argument wsResult from WS_SQLInsert. SQLInsertBase
to WS_SQLUpdateDelete.SQLBase.

Figure 9.119. The modifi ed codes for the Select button event procedure.

Protected Sub cmdSelect_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdSelect.Click
Dim wsSQLSelect As New WS_SQLUpdateDelete.WebServiceSQLUpdateDelete
Dim errMsg As String

Try
wsSQLResult = wsSQLSelect.GetSQLCourse(ComboName.Text)

Catch err As Exception
 errMsg = "Web service is wrong: " & err.Message
 Response.Write("<script>alert('" + errMsg + "')</script>")
End Try

If wsSQLResult.SQLOK = False Then
 Response.Write("<script>alert('" + wsSQLResult.SQLError + "')</script>")
End If

ProcessObject(wsSQLResult)

End Sub

A
B

C

D
E

F

cmdSelect Click

c09.indd 797c09.indd 797 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

798 Chapter 9 ASP.NET Web Services

 Two modifi ed subroutines are shown in Figure 9.120 , and the modifi ed parts have
been highlighted in bold.

 Go to File|Save All menu item to save these modifi cations. Next, we will perform
the modifi cations to another event procedure SelectedIndexChanged, which is the event
procedure of the course list box control CourseList in our page window.

9.7.3.3 Modify the Codes in the SelectedIndexChanged Event Procedure of the

Course List Box Control and Related Subroutines

 Open the SelectedIndexChanged event procedure of the CourseList control and perform
the modifi cations that are shown in Figure 9.121 to this event procedure.

Figure 9.120. The modifi ed subroutines ProcessObject() and FillCourseListBox().

Private Sub ProcessObject(ByRef wsResult As WS_SQLUpdateDelete.SQLBase)
Dim errMsg As String

If wsResult.SQLOK = True Then
Call FillCourseListBox(wsResult)

Else
errMsg = "Course information cannot be retrieved: " & wsResult.SQLError

 Response.Write("<script>alert('" + errMsg + "')</script>")
End If

End Sub

Private Sub FillCourseListBox(ByRef sqlResult As WS_SQLUpdateDelete.SQLBase)
Dim index As Integer

 CourseList.Items.Clear() 'clean up the course listbox
For index = 0 To sqlResult.CourseID.Length - 1

If sqlResult.CourseID(index) <> vbNullString Then
CourseList.Items.Add(sqlResult.CourseID(index))

End If
Next index

End Sub

A

B

C

D

Course ProcessObject

Figure 9.121. The modifi ed codes for the SelectedIndexChanged event procedure.

Protected Sub CourseList_SelectedIndexChanged(ByVal sender As Object, ByVal e As System.EventArgs) Handles _
CourseList.SelectedIndexChanged

Dim wsSQLSelect As New WS_SQLUpdateDelete.WebServiceSQLUpdateDelete
Dim errMsg As String

Try
wsSQLResult = wsSQLSelect.GetSQLCourseDetail(CourseList.Text)

Catch err As Exception
 errMsg = "Web service is wrong: " & err.Message
 Response.Write("<script>alert('" + errMsg + "')</script>")
End Try

If wsSQLResult.SQLOK = False Then
 Response.Write("<script>alert('" + wsSQLResult.SQLError + "')</script>")

Exit Sub
End If

Call FillCourseDetail(wsSQLResult)

End Sub

A

B

C
D

CourseList SelectedIndexChanged

c09.indd 798c09.indd 798 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

9.7 Build Web-Based Web Service Clients to Consume the Web Services 799

 Let ’ s take a closer look at this piece of modifi ed codes to see how it works.

A. Rename the new instance ’ s name to wsSQLSelect and change the Web proxy class ’ s name
to WS_SQLUpdateDelete.WebServiceSQLUpdateDelete .

B. Change the instance name of our Web proxy class from wsSQLInsert to wsSQLSelect ,
and Web method ’ s name from GetSQLInsert to GetSQLCourseDetail .

C. Change the name of the member data from SQLInsertOK to SQLOK .

D. Change the name of the member data from SQLInsertError to SQLError .

 The modifi cation to the related subroutine FillCourseDetail() is to change the data
type of the argument from WS_SQLInsert.SQLInsertBase to WS_SQLUpdateDelete.
SQLBase .

9.7.3.4 Remove the Insert Button Click Event Procedure and the TextChanged

Event Procedure of the Course ID Textbox

 Since we do not need these two event procedures in this project, just select all codes in
these two event procedures, including the procedure headers and enders, and press the
Delete key from the keyboard to delete these procedures from this project.

 The next step is to develop the codes for the Update button ’ s click event
procedure.

9.7.3.5 Develop Codes for the Update Button Click Event Procedure

 The function of this event procedure is: when a faculty name is selected and all six pieces
of updated course information are entered into the six textbox controls, the updated
course information will be passed to the Web method SQLUpdateSP() in our Web service
project, and a stored procedure WebUpdateCourseSP() is executed to perform this
course updating action as the Update button is clicked by the user. Now let ’ s develop
the codes for this event procedure by double - clicking on the Update button to open its
click event procedure, and enter the codes that are shown in Figure 9.122 into this event
procedure.

Figure 9.122. The codes for the Update button click event procedure.

Private Sub cmdUpdate_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles _
cmdUpdate.Click

Dim wsSQLUpdate As New WS_SQLUpdateDelete.WebServiceSQLUpdateDelete
Dim errMsg As String

Try
wsSQLResult = wsSQLUpdate.SQLUpdateSP(ComboName.Text, txtID.Text, _

txtCourse.Text, txtSchedule.Text, txtClassroom.Text, _
txtCredits.Text, txtEnroll.Text)

Catch err As Exception
 errMsg = "Web service is wrong: " & err.Message
 Response.Write("<script>alert('" + errMsg + "')</script>")
End Try

If wsSQLResult.SQLOK = False Then
 Response.Write("<script>alert('" + wsSQLResult.SQLError + "')</script>")
End If

End Sub

A
B

C

D

E

cmdUpdate Click

c09.indd 799c09.indd 799 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

800 Chapter 9 ASP.NET Web Services

 Let ’ s take a closer look at this piece of codes to see how it works.

A. A new instance of our Web proxy class, wsSQLUpdate , is created, and this instance is used
to access the Web method SQLUpdateSP() we developed in our Web service class
WebServiceSQLUpdateDelete .

B. A local string variable errMsg is also created, and it is used to reserve the error source
that will be displayed as a part of an error message later.

C. A Try . . . Catch block is used to call the Web method SQLUpdateSP() with six pieces of
course updated information to execute a stored procedure WebUpdateCourseSP() to
perform this course updating action against our sample database.

D. An error message will be displayed if any error is encountered during that data updating
action. A point to be noted is that the display format of this error message. To display a
string variable in a message box in the client side, one must use the Java script function
alert() with the input string variable as an argument that is enclosed and represented by
“‘ + input_string + ’” .

E. Besides the system error - checking methods, we also need to check the member data
SQLOK that is defi ned in our base class in the Web service project to make sure that this
data updating is application - error free. A returned False indicates that this data updating
encountered some application error, and the error source stored in another member data
SQLError is displayed using the Java script function alert() .

 In the next section, we will develop the codes for the Delete button ’ s click event
procedure to perform the data deleting actions against our sample database.

9.7.3.6 Develop Codes for the Delete Button Click Event Procedure

 The function of this event procedure is: when a course_id has been selected from the
Course ID textbox control in this client page window, the selected course with a primary
key that equals to that course_id will be deleted from all tables, including the child and
parent tables, from our sample relational database.

 Double - click on the Delete button from our client page window to open the Delete
button click event procedure, and enter the codes that are shown in Figure 9.123 into this
event procedure.

Figure 9.123. The codes for the Delete button click event procedure.

Protected Sub cmdDelete_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles cmdDelete.Click
Dim wsSQLDelete As New WS_SQLUpdateDelete.WebServiceSQLUpdateDelete
Dim errMsg As String

Try
wsSQLResult = wsSQLDelete.SQLDeleteSP(txtID.Text)

Catch err As Exception
 errMsg = "Web service is wrong: " & err.Message
 Response.Write("<script>alert('" + errMsg + "')</script>")
End Try
If wsSQLResult.SQLOK = False Then
 Response.Write("<script>alert('" + wsSQLResult.SQLError + "')</script>")
End If

End Sub

A

B

C

D

E

cmdDelete Click

c09.indd 800c09.indd 800 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

9.7 Build Web-Based Web Service Clients to Consume the Web Services 801

 Let ’ s take a closer look at this piece of codes to see how it works.

A. A new instance of our Web proxy class, wsSQLDelete , is created, and this instance is
used to access the Web method SQLDeleteSP() we developed in our Web service class
WebServiceSQLUpdateDelete to perform the data deleting action later.

B. A local string variable errMsg is also created, and it is used to reserve the error source
that will be displayed as a part of an error message later.

C. A Try . . . Catch block is used to call the Web method SQLDeleteSP() with one piece of
course information, course_id , that works as an identifi er, to run a stored procedure
WebDeleteCourseSP() to perform this course deleting action against our sample
database.

D. An error message will be displayed if any error is encountered during that data deleting
action. A point to be noted is that the display format of this error message. To display a
string variable in a message box in the client side, one must use the Java script function
alert() with the input string variable as an argument that is enclosed and represented by
“‘ + input_string + ’” .

E. Besides the system error - checking methods, we also need to check the member data
SQLOK that is defi ned in our base class in the Web service project to make sure that this
data deleting is application - error free. A returned False value of this member data indi-
cates that this data deleting encountered some application error, and the error source
stored in another member data SQLError is displayed.

 Go to the File|Save All menu item to save these modifi cations and developments.
 At this point, we have fi nished all modifi cations to this Web - based client project and

now it is the time for us to run this project to access our Web service to perform the data
updating and deleting actions. However, before we can run this project, make sure that
our Web service project WebServiceSQLUpdateDelete is in the running status. This can
be identifi ed by a small white icon located in the status bar on the bottom of the screen.
If you cannot fi nd this icon, open our Web service project WebServiceSQLUpdateDelete
and click on the Start Debugging button to run it. As long as our Web service runs one
time, you can close our Web service page by clicking on the Close button. However, the
small white icon should still be in there, which means that our Web service is running and
ready to be accessed and consumed.

 Now click on the Start Debugging button from our client project to run it. First, let ’ s
test the data updating function by updating a course record CSE-665 . Before we can do
that, we prefer to retrieve the current information for the course CSE-665 . Click on the
Select button to get all course_id currently taught by the selected faculty Ying Bai . All
course_id will be retrieved and displayed in the list box control. Click on the course
CSE-665 from the list box control to get the detailed information for this course, which
is shown in Figure 9.124 .

 Now enter the updating information for the course CSE-665 into the associated
textbox, as shown in Figure 9.125 .

 Now click on the Update button to call the Web method SQLUpdateSP() in our
Web service project to update this course record.

 To check whether the course CSE-665 has been updated or not, fi rst, let ’ s
select another course from the list box, such as CSC-234A , and then click on the
course CSE-665 from the list box control. Immediately, the detailed information
about this updated course is displayed in the associated textbox, as shown in Figure 9.126 .

c09.indd 801c09.indd 801 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

802 Chapter 9 ASP.NET Web Services

Figure 9.124. The detailed information of the course CSE - 665.

Figure 9.125. The updating information for the course CSE - 665.

c09.indd 802c09.indd 802 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

9.7 Build Web-Based Web Service Clients to Consume the Web Services 803

It can be found that this course has been updated with our updating information
successfully.

 To test the deleting function, keep the course CSE-665 selected from the list box,
click on the Delete button to try to delete this record from the Course table. To confi rm
this course deleting action, click on the Select button to try to retrieve all courses
(course_id) taught by the selected faculty. Immediately, all course_id are returned and
displayed in the list box control. It can be found that the course CSE-665 has been
removed from the Course table, and you cannot fi nd it from the list box now.

 Click on the Back button to terminate our client project. Our client project is very
successful.

 However, the story is not fi nished. It is highly recommended to recover that deleted
course CSE-665 for our Course table since we want to keep our database neat and com-
plete. You can recover this record by using one of the following fi ve methods:

1. Using the Server Explorer window in Visual Studio.NET to open our sample database
CSE_DEPT.mdf and our Course data table.

2. Using the Microsoft SQL Server Management Studio or Studio Express to open our sample
database CSE_DEPT.mdf and our Course data table.

3. Using our Web service project WebServiceSQLInsert to insert the course CSE-665 to
perform this course recovering.

4. Using our Windows - based Web service client project WinClientSQLInsert to perform this
course recovering.

5. Using our Web - based Web service client project WebClientSQLInsert to insert this course
to recover this course record.

Figure 9.126. The updated course CSE - 665.

c09.indd 803c09.indd 803 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

804 Chapter 9 ASP.NET Web Services

 Relatively speaking, using the last three methods to recover this course record is
professional since regularly, no one wants to access and change the content of a database
directly by opening the database to do any modifi cations.

 Refer to Table 9.7 to recover this course record.
 A complete Web - based Web service client project WebClientSQLUpdateDelete can

be found in the folder DBProjects\Chapter 9 that is located at the Wiley ftp site (refer
to Figure 1.2 in Chapter 1).

 At this point, we have fi nished the discussion about how to access and manipulate
data against the SQL Server database via ASP.NET Web services. In the next section, we
will discuss how to access and manipulate data against the Oracle database via ASP.NET
Web services.

9.8 BUILD ASP.NET WEB SERVICE PROJECT TO ACCESS
ORACLE DATABASE

 Basically, the procedure to build an ASP.NET Web service to access the Oracle database
is very similar to the procedure of building an ASP.NET Web service to access the SQL
Server database. The main differences are listed below:

1. The connection string defi ned in the Web confi guration fi le Web.confi g .

2. The namespace directories listed at the top of each Web service page.

3. The stored procedures used by each Web service page.

4. The protocol of the data query string used by each Web service page.

5. The nominal names of dynamic parameters for the Parameters collection object.

 These fi ve distinguished points exist between the procedures to build a Web service
to access two kinds of databases. Let ’ s give a little more detailed discussion for these
issues and have a closer look at those issues.

Table 9.7. The recovered course record for CSE - 665

Column Name Column Value

course_id CSE-665

course Advanced Fuzzy Systems

credit 3

classroom TC-315

schedule T-H: 1:00-2:25 PM

enrollment 26

faculty_id B78880

c09.indd 804c09.indd 804 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

9.8 Build ASP.NET Web Service Project to Access Oracle Database 805

 First, when connecting to the different database, the connection string is obviously
different, which includes the protocol and security issues in that connection string. Refer
to Section 5.19.1 in Chapter 5 to get a clear picture of the difference that exists in the
connection strings between these two kinds of databases.

 Second, as we know, ADO.NET provides different Data Providers to support users
to access the different databases. These Data Providers are database - dependent, which
means that a different Data Provider is needed to use to access the different database.
For the Oracle database, ADO.NET provides the namespace System.Data.OracleClient
that contains all necessary data components to access and manipulate data stored in an
Oracle database. In other words, to use matched data components provided by ADO.
NET to access an Oracle database, one must import the associated namespace to access
those data components.

 Third, the prototype and structure of a stored procedure are different for the different
databases. To call a stored procedure to perform a data action against a SQL Server
database is totally different from calling a stored procedure to perform the similar data
action against an Oracle database.

 For differences 4 and 5 listed above, it is clear that the format of a query string is
different when calling the different database. Also the nominal name of the dynamic
parameter is distinguished when it is used for the different databases.

 Based on the discussion and analysis above, as well as the similarity between the SQL
Server and Oracle databases, we try to develop our Web service projects to access the
Oracle database by modifying some existing Web service projects we built in the previous
sections. In this part, we concentrate on the modifi cations to the Web service project
WebServiceSQLSelect and make it as our new service project WebServiceOracleSelect .

9.8.1 Build a Web Service Project WebServiceOracleSelect

 Open the Windows Explorer and create a new folder Chapter 9 under the root directory
if you have not done that. Then browse to our desired source Web service project
WebServiceSQLSelect that can be found in the folder DBProjects\Chapter 9 that is
located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1). Copy and paste it into our
new folder C:\Chapter 9 . Then rename this copied project to WebServiceOracleSelect .
In the opened Windows Explorer window, perform the following modifi cations to this
project to make it as our new Web service project:

1. Change the main Web service page from WebServiceSQLSelect.asmx to
WebServiceOracleSelect.asmx .

2. Open the App_Code folder and change the name of our base class fi le from SQLSelectBase.
vb to OracleSelectBase.vb .

3. Open the App_Code folder and change the name of our derived class fi le from
SQLSelectResult.vb to OracleSelectResult.vb .

4. Open the App_Code folder and change the name of our code - behind page from
WebServiceSQLSelect.vb to WebServiceOracleSelect.vb .

 Now open Visual Studio.NET 2010 and our new Web service project
WebServiceOracleSelect to perform the associated modifi cations to the contents of the

c09.indd 805c09.indd 805 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

806 Chapter 9 ASP.NET Web Services

fi les we renamed above. First, let ’ s perform the modifi cations to our main Web service
page WebServiceOracleSelect.asmx . Open this page by double - clicking on it from the
Solution Explorer window and perform the following modifi cations:

 • Change CodeBehind = “ ~ /App_Code/WebServiceSQLSelect.vb ”

 to CodeBehind = “ ~ /App_Code/WebServiceOracleSelect.vb ”

 • Change Class = “ WebServiceSQLSelect ” to Class = “ WebServiceOracleSelect ”

 Second, open the base class fi le OracleSelectBase.vb and perform the following
modifi cations:

 • Change the class name from SQLSelectBase to OracleSelectBase .

 • Change the name of the fi rst member data from SQLRequestOK to OracleRequestOK .

 • Change the name of the second member data from SQLRequestError to OracleRequestError .

 Next, open the derived class fi le OracleSelectResult.vb by double - clicking on it from
the Solution Explorer window, and perform the following modifi cations:

 • Change the class name from SQLSelectResult to OracleSelectResult .

 • Change the base class name (after the keyword Inherits) from SQLSelectBase to
OracleSelectBase .

9.8.2 Modify the Connection String

 Double - click on our Web confi guration fi le Web.confi g from the Solution Explorer
window to open it. Change the content of the connection string that is under the tag
<connectionStrings> to:

< add name = “ ora_conn ” connectionString = “ Server = XE;User ID = CSE_DEPT;Password = reback; ” / >

 The Oracle database server XE is used for the server name, the User ID is the name
of our sample database CSE_DEPT , and the Password is determined by the user when
installing the Oracle Database 11g Express Edition in the local computer. In our case,
the password we utilized is reback .

9.8.3 Add Oracle Database References and Modify the
Namespace Directories

 First, we need to add an Oracle Data Provider reference to our Web service project.
As you know, starting from .NET Framework 4.0, Microsoft no longer supports
Oracle database - related operations. Therefore, we need to use an Oracle database driver
provided by a third - party vendor. As we discussed in Section 5.20.3 in Chapter 5 , we
utilized a third - party product, dotConnect for Oracle 6.30 Express , developed by
Devart ™ Inc.

 Now let ’ s add some Oracle Data Provider references to our project. Perform the
following operations to complete this addition operation:

c09.indd 806c09.indd 806 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

9.8 Build ASP.NET Web Service Project to Access Oracle Database 807

1. Right - click on our project Chapter 9\WebServiceOracleSelect from the Solution Explorer
window and select the Add Reference item from the pop - up menu to open the Add refer-
ence wizard.

2. With the .NET tab selected, scroll down the list until you fi nd the items Devart.Data and
Devart.Data.Oracle , then click on both to select them and click on the OK button to add
these two references to our project.

 Now double - click our code - behind page WebServiceOracleSelect.vb to open it. On
the opened page, add two namespaces shown below to the top of this page:

 Imports Devart.Data
 Imports Devart.Data.Oracle

 Also change the name of our Web service class, which is located after the accessing
mode Public Class , from WebServiceSQLSelect to WebServiceOracleSelect .

 Next, we will perform the necessary modifi cations to three Web methods and related
fi ve differences listed above.

9.8.4 Modify the Web Method GetSQLSelect and Related
Subroutines

 The following issues are related to this modifi cation:

1. The name of this Web method and the name of the returned data type class.

2. The query string used in this Web method.

3. The names of the data components used in this Web method.

4. The subroutines SQLConn() and ReportError() .

5. The name of the dynamic parameter.

 Let ’ s perform those modifi cations step by step according to this sequence.
 Open this Web method and perform the modifi cations shown in Figure 9.127 to this

method. Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. Rename this Web method to GetOracleSelect and the name of returned class to
OracleSelectResult .

B. Modify the query string by replacing the LIKE @ comparator before the dynamic param-
eter facultyName with the comparator =: , which is a comparison operator used in the
Oracle database.

C. Change the prefi x from Sql to Oracle for all data classes, and from sql to ora for all data
objects. Also, change the returned instance name from SQLResult to OracleResult , and
change the derived class name from SQLSelectResult to OracleSelectResult .

D. Change the name of the returned instance from SQLResult to OracleResult , and member
data from SQLRequestOK to OracleRequestOK .

E. Change the name of the subroutine from SQLConn to OracleConn .

F. Change the prefi x from sql to ora for all data objects.

G. Modify the nominal name of the dynamic parameter by removing the @ symbol before
the nominal name facultyName . Also, change its data type from SqlDbType.Text to
OracleDbType.VarChar .

c09.indd 807c09.indd 807 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

808 Chapter 9 ASP.NET Web Services

H. Change the name of the returned instance from SQLResult to OracleResult , and change
the prefi x from sql to ora for all data objects.

 Now let ’ s perform the modifi cations to three related subroutines. Perform the follow-
ing modifi cations to the subroutines SQLConn(), FillFacultyReader(), and ReportError() :

A. Change the name of this subroutine from SQLConn to OracleConn , and return class name
from SqlConnection to OracleConnection . Also, change the connection string from
sql_conn to ora_conn .

B. Change the data type of the returned connection object to OracleConnection .

Figure 9.127. The modifi ed Web method GetOracleSelect().

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Data.SqlClient
Imports System.Data
Imports Devart.Data
Imports Devart.Data.Oracle

<WebService(Namespace:="http://www.wiley.com/9780521712354/")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class WebServiceOracleSelect

Inherits System.Web.Services.WebService

 <WebMethod()> _
Public Function GetOracleSelect(ByVal FacultyName As String) As OracleSelectResult

Dim cmdString As String = "SELECT faculty_id, office, phone, college, title, email FROM Faculty " + _
"WHERE faculty_name =: facultyName"

Dim oraConnection As New OracleConnection
Dim OracleResult As New OracleSelectResult()
Dim oraCommand As New OracleCommand
Dim oraReader As OracleDataReader

OracleResult.OracleRequestOK = True
oraConnection = OracleConn()
If oraConnection Is Nothing Then

OracleResult.OracleRequestError = "Database connection is failed"
 ReportError(OracleResult)

Return Nothing
End If
oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add("facultyName", OracleDbType.VarChar).Value = FacultyName
oraReader = oraCommand.ExecuteReader
If oraReader.HasRows = True Then

Call FillFacultyReader(OracleResult, oraReader)
Else

OracleResult.OracleRequestError = "No matched faculty found"
 ReportError(OracleResult)
End If
If Not oraReader Is Nothing Then oraReader.Close()
oraReader = Nothing
If Not oraConnection Is Nothing Then oraConnection.Close()
oraConnection = Nothing
Return OracleResult

End Function

A
B

C

D
E
F

G
H

WebServiceOracleSelect GetOracleSelect

c09.indd 808c09.indd 808 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

9.8 Build ASP.NET Web Service Project to Access Oracle Database 809

C. For the subroutine FillFacultyReader() , change the data type of the fi rst passed argument
from SQLSelectResult to OracleSelectResult . Also, change the data type of the second
passed argument from SqlDataReader to OracleDataReader . Perform the following
modifi cations to the subroutine ReportError() :

D. Change the data type of the passed argument from SQLSelectResult to OracleSelectResult .

E. Change the name of the fi rst member data from SQLRequestOK to OracleRequestOK .

F. Change the name of the second member data from SQLRequestError to
OracleRequestError .

 Your modifi ed subroutines OracleConn() , FillFacultyReader() , and ReportError()
are shown in Figure 9.128 . All modifi ed parts have been highlighted in bold.

9.8.5 Modify the Web Method GetSQLSelectSP and
Related Subroutines

 A stored procedure WebSelectFacultySP is called when this Web method is executed
to perform the faculty data query against our sample database. The modifi cations to this
Web method include the following two parts:

Figure 9.128. Three modifi ed user - defi ned subroutines.

 Protected Function OracleConn() As OracleConnection
Dim cmdString As String = ConfigurationManager.ConnectionStrings("ora_conn").ConnectionString
Dim conn As New OracleConnection

 conn.ConnectionString = cmdString
 conn.Open()

If conn.State <> ConnectionState.Open Then
 MsgBox("Database Open is failed")

conn = Nothing
End If
Return conn

End Function

Protected Sub FillFacultyReader(ByRef sResult As OracleSelectResult, ByVal sReader As OracleDataReader)
If sReader.Read() = True Then

With sResult
.FacultyID = Convert.ToString(sReader("faculty_id"))
.FacultyOffice = Convert.ToString(sReader("office"))
.FacultyPhone = Convert.ToString(sReader("phone"))
.FacultyCollege = Convert.ToString(sReader("college"))
.FacultyTitle = Convert.ToString(sReader("title"))
.FacultyEmail = Convert.ToString(sReader("email"))

End With
End If

End Sub

Protected Sub ReportError(ByVal ErrSource As OracleSelectResult)
 ErrSource.OracleRequestOK = False
 MsgBox(ErrSource.OracleRequestError)

End Sub

A
B

C

D
E
F

WebServiceOracleSelect OracleConn

c09.indd 809c09.indd 809 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

810 Chapter 9 ASP.NET Web Services

1. Modifi cations to the stored procedure since the prototype of a stored procedure in the SQL
Server is different with that of a stored procedure in the Oracle database.

2. Modifi cations to the codes in this Web method.

 Now let ’ s perform the modifi cations to the stored procedure fi rst.

9.8.5.1 Modifi cations to the Stored Procedure WebSelectFacultySP

 Basically, the modifi cations to this stored procedure are to develop a similar procedure
in the Oracle database environment. As you know, to develop a stored procedure that
returns data in the Oracle database is to build a Package in the Oracle database since a
stored procedure developed in the Oracle database won ’ t return any data. Refer to
Section 5.20.7.2 in Chapter 5 to get more detailed discussions about building and develop-
ing a Package in Oracle database.

 Many different methods can be used to build a Package in Oracle database. In this
section, we want to use the Object Browser page in Oracle Database 11g Express Edition
(XE) to build this Package.

 Open the Oracle Database 11g XE home page by going to the start|All
Programs|Oracle Database 11g Express Edition|Get Started items. Perform the fol-
lowing operations to create this package:

1. Click on the APEX button to open the Login to APEX page.

2. Enter SYSTEM and reback into the Username and Password box to complete the login
process for the APEX.

3. Since we have already created our sample database CSE_DEPT in Chapter 2 , click on the
Already have an account? Login Here button.

4. Enter reback into the Password box and click on the Login button.

5. Click on the SQL Workshop icon to open this workshop window.

6. Click on the Object Browser icon and click on the drop - down arrow on the Create
button, and select the Package item to open the Create Package wizard, which is shown
in Figure 9.129 .

 Each package has two parts: the defi nition or specifi cation part and the body part.
First, let ’ s create the specifi cation part by checking the Specifi cation radio button and
click on the Next button to open the Name page, which is shown in Figure 9.130 .

 Enter the package name, WebSelectFaculty , into the Package Name box, and click
on the Next button to go to the specifi cation page, which is shown in Figure 9.131 .

 A default package specifi cation prototype, which includes a procedure and a function,
is provided in this page. You need to use your real specifi cations to replace those default
items. Since we don ’ t need any function for our application, remove the default function
prototype, and change the default procedure name from test to our procedure name
SelectFaculty . Enter the codes shown in Figure 9.132 into the Specifi cation part as the
defi nition for our package.

 The coding language we used in this section is called Procedural Language Extension
for SQL or PL - SQL, which is a popular language and widely used in Oracle database
programming.

c09.indd 810c09.indd 810 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

9.8 Build ASP.NET Web Service Project to Access Oracle Database 811

Figure 9.129. The opened Create Package wizard.

Figure 9.130. The Name page of the Package wizard.

 In line 2, we defi ned the returned data type as a CURSOR_TYPE by using:

TYPE CURSOR_TYPE IS REF CURSOR;

 since we must use a cursor to return a group of data, and the IS operator is equivalent
to an equal operator.

 The prototype of the procedure SelectFaculty() is declared in line 3. Two arguments
are used for this procedure: input parameter FacultyName , which is indicated as an input
by using the keyword in followed by the data type of VARCHAR2 . The output parameter
is a cursor named FacultyInfo , followed by a keyword out . Each PL - SQL statement must
be ended by a semi - colon, and this rule is also applied to the end statement. Your fi nished

c09.indd 811c09.indd 811 4/25/2012 7:32:02 PM4/25/2012 7:32:02 PM

812 Chapter 9 ASP.NET Web Services

Specifi cation page should match the one that is shown in Figure 9.133 . Click on the Finish
button to complete this step.

 Click on the Body tab to open the Body page. Then click on the Edit button to begin
to create our body part. Enter the PL - SQL codes shown in Figure 9.134 into this body.
Your fi nished body part for this package is shown in Figure 9.135 .

 The procedure prototype is redeclared in line 2. Starting from begin , our real SQL
statements are included in lines 6 and 7. The OPEN FacultyInfo FOR command is used
to assign the returned faculty data columns from the following query to the cursor vari-
able FacultyInfo . Recall that we used a SET command to perform this assignment in the
SQL Server stored procedure in Section 5.19.8.4 in Chapter 5 . There are two end com-
mands applied at the end of this Package. The fi rst one is used to end the stored procedure,
and the second one is for the Package.

 Ok, now let ’ s compile our package by clicking on the Sava & Compile button. A
successful compiling message PL/SQL code successfully compiled (10:56:50) is dis-
played if this package is bug - free, which is shown in Figure 9.136 .

Figure 9.132. The codes for the Specifi cation page.

create or replace package WEBSELECTFACULTY as

TYPE CURSOR_TYPE IS REF CURSOR;

procedure SelectFaculty (

 FacultyName in VARCHAR2,

 FacultyInfo out CURSOR_TYPE);

end;

Figure 9.131. The opened Specifi cation page.

c09.indd 812c09.indd 812 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

9.8 Build ASP.NET Web Service Project to Access Oracle Database 813

Figure 9.133. The fi nished Specifi cation page.

Figure 9.134. The body part of the package WebSelectFaculty.

create or replace package body WebSelectFaculty AS
procedure SelectFaculty(FacultyName in VARCHAR2,

FacultyInfo out CURSOR_TYPE) AS
begin
OPEN FacultyInfo FOR
SELECT faculty_id, office, phone, college, title, email FROM Faculty
WHERE faculty_name = FacultyName;
end;

end;

Figure 9.135. The fi nished Body part of the package.

c09.indd 813c09.indd 813 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

814 Chapter 9 ASP.NET Web Services

 The development of our Oracle package is completed, and now let ’ s return to the
Visual Studio.NET to call this package to perform our faculty data query for our Web
service project. Close the Oracle Database 11g XE and open the Visual Studio.NET.

9.8.5.2 Modifi cations to the Codes in the Web Method GetSQLSelectSP

 The following issues are related to this modifi cation:

1. The name of this Web method and the name of the returned data type class.

2. The content of the query string used in this Web method.

3. The names of the data components used in this Web method.

4. The name of the dynamic parameter.

5. The names of the data classes and components used in this Web method.

 Open this Web method and perform the modifi cations shown in Figure 9.137 to this
method. The modifi ed parts have been highlighted in bold.

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. Rename this Web method to GetOracleSelectSP and the name of returned class to
OracleSelectResult .

B. Modify the query string by replacing the content of this string with the name of the Package
we developed in the Oracle database in the last section. The point is that both the Package ’ s
name (WebSelectFaculty) and the stored procedure ’ s name (SelectFaculty) must be
used together with the dot operator to tell the Web service that an Oracle stored procedure
that is embedded in an Oracle Package will be called to perform this faculty data query
as the project runs.

C. Change the prefi x from Sql to Oracle for all data classes, and from sql to ora for all data
objects. Also, change the returned instance name from SQLResult to OracleResult ; change
the derived class name from SQLSelectResult to OracleSelectResult .

Figure 9.136. The compiled codes for the body part of the package.

c09.indd 814c09.indd 814 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

9.8 Build ASP.NET Web Service Project to Access Oracle Database 815

Figure 9.137. The modifi ed Web method GetOracleSelectSP().

<WebMethod()> _
Public Function GetOracleSelectSP(ByVal FacultyName As String) As OracleSelectResult

Dim cmdString As String = "WebSelectFaculty.SelectFaculty"
Dim oraConnection As New OracleConnection
Dim OracleResult As New OracleSelectResult()
Dim oraCommand As New OracleCommand
Dim oraReader As OracleDataReader
Dim paramFacultyName As New OracleParameter
Dim paramFacultyInfo As New OracleParameter

OracleResult.OracleRequestOK = True
oraConnection = OracleConn()
If oraConnection Is Nothing Then

OracleResult.OracleRequestError = "Database connection is failed"
 ReportError(OracleResult)

Return Nothing
End If
paramFacultyName.ParameterName = "FacultyName"

 paramFacultyName.OracleDbType = OracleDbType.VarChar
 paramFacultyName.Value = FacultyName
 paramFacultyInfo.ParameterName = "FacultyInfo"
 paramFacultyInfo.OracleDbType = OracleDbType.Cursor
 paramFacultyInfo.Direction = ParameterDirection.Output 'this line is very important

oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.StoredProcedure
oraCommand.CommandText = cmdString

oraCommand.Parameters.Add(paramFacultyName)
oraCommand.Parameters.Add(paramFacultyInfo)

 oraReader = oraCommand.ExecuteReader

If oraReader.HasRows = True Then
Call FillFacultyReader(OracleResult, oraReader)

Else
OracleResult.OracleRequestError = "No matched faculty found"

 ReportError(OracleResult)
End If

If Not oraReader Is Nothing Then oraReader.Close()
oraReader = Nothing
If Not oraConnection Is Nothing Then oraConnection.Close()
oraConnection = Nothing
Return OracleResult

End Function

A
B

C

D

E
F

G

H

I

J

K

WebServiceOracleSelect GetOracleSelectSP

D. Two Oracle parameter objects are created here, and they are used to hold the properties
of the dynamic parameters FacultyName and FacultyInfo for the stored procedure.
Because the second parameter is an output parameter with a data type of Cursor , some
special processing steps on this parameter are needed.

E. Change the name of the returned instance from SQLResult to OracleResult , and member
data from SQLRequestOK to OracleRequestOK .

F. Change the name of the subroutine from SQLConn to OracleConn .

G. Two Oracle parameter objects are initialized with the appropriate properties and values.
In fact, for the fi rst parameter FacultyName , we can initialize and assign properties to it
with one command line by using the Add() method as we did before. But for the second
parameter, as we discussed in step D , which is an output parameter with a data type of
Cursor , and makes our initialization a little complicated. Two points must be noted for
this initialization: fi rst, the data type of this parameter must be OracleDbType.Cursor ,

c09.indd 815c09.indd 815 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

816 Chapter 9 ASP.NET Web Services

which is identical with the data type we defi ned in our stored procedure SelectFaculty() .
Second, the direction of this parameter must be Output , which is the value of the
ParameterDirection property.

H. The assignment for the parameter direction property is very important for this output
parameter. Otherwise, the stored procedure cannot be executed correctly if this property
were not set up correctly.

I. Change the prefi x from sql to ora for all data objects.

J. The Add() method is executed to add two initialized parameter objects to the Command
object and make the latter ready to be called.

K. Change the name of the returned instance from SQLResult to OracleResult , and change
the prefi x from sql to ora for all data objects.

9.8.5.3 Modify the Web Method GetSQLSelectDataSet

 The function of this Web method is to use a DataSet to store the queried faculty informa-
tion and return that DataSet to the calling procedure. The following issues are related to
this modifi cation:

1. The name of this Web method.

2. The content of the query string used in this Web method.

3. The names of the data components used in this Web method.

4. The name of the subroutine SQLConn() .

5. The name of the dynamic parameter.

6. The names of the data classes and components used in this Web method.

 Open this Web method and perform those modifi cations step by step according to
this sequence. Your modifi ed Web method GetOracleSelectDataSet() should match the
one that is shown in Figure 9.138 . All modifi ed parts have been highlighted in bold.

 Let ’ s take a closer look at this modifi ed Web method to see how it works.

A. Rename this Web method to GetOracleSelectDataSet .

B. Modify the query string by replacing the LIKE @ symbol before the dynamic parameter
facultyName with the symbol =: , which is a comparison operator used in the Oracle
database.

C. Change the prefi x from Sql to Oracle for all data classes, and from sql to ora for all data
objects. Also, change the returned instance name from SQLResult to OracleResult , and
change the derived class name from SQLSelectResult to OracleSelectResult .

D. Change the name of the returned instance from SQLResult to OracleResult , and member
data from SQLRequestOK to OracleRequestOK .

E. Change the name of the subroutine from SQLConn to OracleConn .

F. Change the prefi x from sql to ora for all data objects.

G. Modify the nominal name of the dynamic parameter by removing the @ symbol before
the nominal name facultyName . Also, change its data type from SqlDbType.Text to
OracleDbType.VarChar .

c09.indd 816c09.indd 816 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

9.8 Build ASP.NET Web Service Project to Access Oracle Database 817

Figure 9.138. The modifi ed Web method GetOracleSelectDataSet().

<WebMethod()> _
Public Function GetOracleSelectDataSet(ByVal FacultyName As String) As DataSet

Dim cmdString As String = "SELECT faculty_id, office, phone, college, title, email FROM Faculty " + _
"WHERE faculty_name =: facultyName"

Dim oraConnection As New OracleConnection
Dim OracleResult As New OracleSelectResult()
Dim oraCommand As New OracleCommand
Dim FacultyAdapter As New OracleDataAdapter
Dim dsFaculty As New DataSet
Dim intResult As Integer

OracleResult.OracleRequestOK = True
oraConnection = OracleConn()

If oraConnection Is Nothing Then
OracleResult.OracleRequestError = "Database connection is failed"

 ReportError(OracleResult)
Return Nothing

End If

oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add("facultyName", OracleDbType.VarChar).Value = FacultyName

 FacultyAdapter.SelectCommand = oraCommand
 intResult = FacultyAdapter.Fill(dsFaculty, "Faculty")

If intResult = 0 Then
OracleResult.OracleRequestError = "No matched faculty found"

 ReportError(OracleResult)
End If

If FacultyAdapter IsNot Nothing Then FacultyAdapter.Dispose()
 FacultyAdapter = Nothing

If oraConnection IsNot Nothing Then oraConnection.Close()
oraConnection = Nothing
Return dsFaculty

End Function

A
B

C

D
E

F

G

H

WebServiceOracleSelect GetOracleSelectDataSet

H. Change the name of the returned instance from SQLResult to OracleResult , and change
the prefi x from sql to ora for all data objects.

 At this point, we have fi nished all modifi cations to our new Web service project. It is
the time for us to run our project to test the data query functions. Click on the Start
Debugging button to run our Web service project. Click Yes on the message box to allow
the project to run in the Debug mode.

 First, let ’ s test the function of the Web method GetOracleSelect() to pick up the
detailed information for the selected faculty member. Click on this method to open the
parameter - input page, and enter the selected faculty name Ying Bai into the Value box.
Then click on the Invoke button to execute this method.

 The running result of this Web method is shown in Figure 9.139 .
 The detailed information for the selected faculty is displayed in the XML tag format

in this built - in Web interface page, as shown in Figure 9.139 .
 Now let ’ s test the next Web method GetOracleSelectSP() . To do that, close the

running result page by clicking on the Close button that is located at the upper - right
corner of this page, and click on the Back arrow on the top to return the initial page. Then

c09.indd 817c09.indd 817 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

818 Chapter 9 ASP.NET Web Services

Figure 9.140. The running result of the Web method GetOracleSelectSP().

Figure 9.139. The running result of the Web method GetOracleSelect().

click on the Web method GetOracleSelectSP to open its parameter - input page. Enter
the selected faculty name Satish Bhalla into the Value box and click on the Invoke
button to execute this Web method.

 This Web method will call an Oracle Package WebSelectFaculty that contains a
stored procedure SelectFaculty() we developed in the previous section to access our
sample Oracle database to retrieve the detailed information for the selected faculty. The
running result of this Web method is shown in Figure 9.140 .

c09.indd 818c09.indd 818 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

9.9 Build Web Service Client Projects to Consume the Web Service 819

Figure 9.141. The running result of the Web method GetOracleSelectDataSet().

 The detailed information for the selected faculty Satish Bhalla is displayed in this
built - in Web interface with XML tags.

 Finally, let ’ s test the Web method GetOracleSelectDataSet() . Close the current
running result page and click on the Back arrow to return to the initial page. Click on
the Web method GetOracleSelectDataSet() to open its parameter - input built - in Web
interface. Enter the selected faculty name Jenney King and click the Invoke button to
run this method. The running result of this Web method is shown in Figure 9.141 .

 As shown in Figure 9.141 , the detailed information that is contained in a DataSet for
the selected faculty Jenney King is retrieved and displayed in the XML tag format in
this built - in Web interface. Our Web service project is very successful. Click on the Close
button for both built - in Web interfaces to terminate our Web service project.

 A complete Web service project WebServiceOracleSelect can be found in the
folder DBProjects\Chapter 9 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1).

9.9 BUILD WEB SERVICE CLIENT PROJECTS
TO CONSUME THE WEB SERVICE

 To consume this Web service project, one can develop either a Windows - based or a Web -
 based Web service client project. In fact, there is no signifi cant difference between build-
ing a client project to consume a Web service to access the SQL Server database and
building a client project to consume a Web service to access the Oracle database.
For example, you can use any client project, such as either WinClientSQLSelect
or WebClientSQLSelect , which we developed in the previous sections, to consume
this Web service project WebServiceOracleSelect with small modifi cations. The main

c09.indd 819c09.indd 819 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

820 Chapter 9 ASP.NET Web Services

modifi cation is to replace the Web Reference with a new Web Reference class, which is
our newly developed Web service WebServiceOracleSelect .

 Follow the modifi cation steps below to complete these changes.

1. Remove the old Web reference from the Windows - based or Web - based client project. You
need to fi rst delete the Web reference object and then you can delete the Web_Reference
folder from the current project.

2. Add a new Web reference using the Add Web Reference wizard, run the desired Web service
project, copy the URL from that running Web service project, and paste it to the URL box
in the Add Web Reference wizard in the client project.

3. Change the Web reference name for all data components used in the client project.

4. Change the names of the base class and derived class located in the Web reference.

5. Change the names of all Web methods located in the Web reference.

 Two completed client projects, WinClientOracleSelect , which is Windows - based, and
WebClientOracleSelect , which is Web - based, can be found in the folder DBProjects\
Chapter 9 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

 Next, let ’ s develop a Web service project to perform the data insertion for the Oracle
database.

9.10 BUILD ASP.NET WEB SERVICE PROJECT TO INSERT DATA
INTO ORACLE DATABASE

 Basically, the procedure to build an ASP.NET Web service to insert data into the Oracle
database is very similar to the procedure of building an ASP.NET Web service to insert
data into the SQL Server database. The main differences are listed below:

1. The connection string defi ned in the Web confi guration fi le Web.confi g .

2. The namespace directories listed at the top of each Web service page.

3. The stored procedures used by each Web service page.

4. The protocol of the data query string used by each Web service page.

5. The nominal names of dynamic parameters for the Parameters collection object.

 These fi ve distinguished points exist between the procedures to build a Web service
to insert data into two kinds of databases.

 Based on the discussion and analysis we made in Section 9.8 , as well as the simila-
rity between the SQL Server and Oracle databases, we try to develop our Web
service projects to insert data into the Oracle database by modifying some existing
Web service projects. In this section, we concentrate on the modifi cations to the Web
service project WebServiceSQLInsert and make it as our new Web service project
WebServiceOracleInsert .

9.10.1 Build a Web Service Project WebServiceOracleInsert

 In this section, we try to modify an existing Web service project WebServiceSQLInsert
to make it as our new Web service project WebServiceOracleInsert , and allow it to insert
data into the Oracle database.

c09.indd 820c09.indd 820 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

9.10 Build ASP.NET Web Service Project to Insert Data into Oracle Database 821

 Open the Windows Explorer and create a new folder Chapter 9 under the root direc-
tory if you have not done that. Then browse to our desired source Web service project
WebServiceSQLInsert that can be found in the folder DBProjects\Chapter 9 that is
located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1). Copy and paste it into our
new folder Chapter 9 . Rename it to WebServiceOracleInsert . In the opened Windows
Explorer window, perform the following modifi cations to this project:

1. Change the main Web service page from WebServiceSQLInsert.asmx to
WebServiceOracleInsert.asmx .

2. Open the App_Code folder, change the name of our base class fi le from SQLInsertBase.
vb to OracleInsertBase.vb .

3. Open the App_Code folder and change the name of our code - behind page from
WebServiceSQLInsert.vb to WebServiceOracleInsert.vb .

 Now open Visual Studio.NET 2010 and our new Web service project WebService-
OracleInsert to perform the associated modifi cations to the contents of the fi les we
renamed above. First, let ’ s perform the modifi cations to our main Web service page
WebServiceOracleInsert.asmx . Open this page by double - clicking on it from the
Solution Explorer window and perform the following modifi cations:

 • Change CodeBehind = “ ~ /App_Code/WebServiceSQLInsert.vb ”

 to CodeBehind = “ ~ /App_Code/WebServiceOracleInsert.vb ”

 • Change Class = “ WebServiceSQLInsert ” to Class = “ WebServiceOracleInsert ”

 Second, open the base class fi le OracleInsertBase.vb and perform the following
modifi cations:

 • Change the class name from SQLInsertBase to OracleInsertBase .

 • Change the name of the fi rst member data from SQLInsertOK to OracleInsertOK .

 • Change the name of the second member data from SQLInsertError to OracleInsertError .

 Go to the File|Save All menu item to save these modifi cations.

9.10.2 Modify the Connection String

 Double - click our Web confi guration fi le Web.confi g from the Solution Explorer window
to open it. Change the content of the connection string that is under the tag <connec-
tionStrings> to:

 < add name = “ ora_conn ” connectionString = “ Server = XE;User ID = CSE_DEPT;Password = reback; ” / >

 The Oracle database server XE is used for the server name, the User ID is our sample
database CSE_DEPT , and the Password is determined by the user when installing the
Oracle Database 11g Expression Edition in the local computer. In our case, we used
reback as the password for our sample database.

c09.indd 821c09.indd 821 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

822 Chapter 9 ASP.NET Web Services

9.10.3 Add Oracle Database Reference and Modify the
Namespace Directories

 First, we need to add an Oracle Data Provider Reference to our Web service project.
As you know, starting from .NET Framework 4.0, Microsoft no longer supports Oracle
database - related operations. Therefore, we need to use an Oracle database driver
provided by a third - party vendor. As we discussed in Section 5.20.3 in Chapter 5 , we
utilized a third - party product, dotConnect for Oracle 6.30 Express developed by
Devart ™ Inc.

 Now let ’ s add some Oracle Data Provider references to our project. Perform the
following operations to complete this addition operation:

1. Right - click on our project Chapter 9\WebServiceOracleInsert from the Solution Explorer
window and select the Add Reference item from the pop - up menu to open the Add refer-
ence wizard.

2. With the .NET tab selected, scroll down the list until you fi nd the items Devart.Data and
Devart.Data.Oracle , click on both to select them, and click on the OK button to add these
two references to our project.

 Now double - click our code - behind page WebServiceOracleInsert.vb to open it. On
the opened page, add two namespaces shown below to the top of this page:

 Imports Devart.Data
 Imports Devart.Data.Oracle

 Also, change the name of our Web service class, which is located after the accessing
mode Public Class , from WebServiceSQLInsert to WebServiceOracleInsert .

 Next, we will perform the necessary modifi cations to four Web methods and related
fi ve differences listed above.

9.10.4 Modify the Web Method SetSQLInsertSP and Related
Subroutines

 The following issues are related to this modifi cation:

1. The name of this Web method and the name of the returned data type class.

2. The content of the query string used in this Web method.

3. The names of the data components used in this Web method.

4. The user - defi ned subroutines SQLConn() and ReportError() .

5. The names of the dynamic parameters.

 Let ’ s perform those modifi cations starting from the fi rst one.
 Open this Web method and perform the modifi cations shown in Figure 9.142 to this

method. All modifi ed parts have been highlighted in bold.
 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. Rename this Web method to SetOracleInsertSP and the name of returned class to
OracleInsertBase .

c09.indd 822c09.indd 822 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

9.10 Build ASP.NET Web Service Project to Insert Data into Oracle Database 823

Figure 9.142. The modifi ed Web method SetOracleInsertSP().

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Data
Imports Devart.Data
Imports Devart.Data.Oracle

<WebService(Namespace:="http://www.wiley.com/9780521712354/")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class WebServiceOracleInsert

Inherits System.Web.Services.WebService

<WebMethod()> _
Public Function SetOracleInsertSP(ByVal FacultyName As String, ByVal CourseID As String, ByVal Course As _
String, ByVal Schedule As String, ByVal Classroom As String, ByVal Credit As Integer, ByVal Enroll As Integer) _

As OracleInsertBase
Dim cmdString As String = "InsertFacultyCourse"
Dim oraConnection As New OracleConnection
Dim SetOracleResult As New OracleInsertBase
Dim oraCommand As New OracleCommand
Dim intInsert As Integer

 SetOracleResult.OracleInsertOK = True
oraConnection = OracleConn()
If oraConnection Is Nothing Then

SetOracleResult.OracleInsertError = "Database connection is failed"
 ReportError(SetOracleResult)

Return Nothing
End If
oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.StoredProcedure
oraCommand.CommandText = cmdString

oraCommand.Parameters.Add("CourseID", OracleDbType.VarChar).Value = CourseID
oraCommand.Parameters.Add("Course", OracleDbType.VarChar).Value = Course

 oraCommand.Parameters.Add("Credit", OracleDbType.Number).Value = Credit
oraCommand.Parameters.Add("Classroom", OracleDbType.VarChar).Value = Classroom
oraCommand.Parameters.Add("Schedule", OracleDbType.VarChar).Value = Schedule
oraCommand.Parameters.Add("Enroll", OracleDbType.Number).Value = Enroll

 oraCommand.Parameters.Add("FacultyName", OracleDbType.VarChar).Value = FacultyName

 intInsert = oraCommand.ExecuteNonQuery()
oraCommand.Dispose()
oraCommand = Nothing
If Not oraConnection Is Nothing Then oraConnection.Close()

If intInsert = 0 Then
SetOracleResult.OracleInsertError = "Data insertion is failed"

 ReportError(SetOracleResult)
End If
Return SetOracleResult

End Function

A

B
C

D
E
F

G

H

WebServiceOracleInsert SetOracleInsertSP

B. Modify the content of the query string by changing the name of the stored procedure from
dbo.InsertFacultyCourse to InsertFacultyCourse . The former is an SQL Server stored
procedure, and the latter is an Oracle stored procedure.

C. Change the prefi x from Sql to Oracle for all data classes, and from sql to ora for all data
objects. Also, change the returned instance name from SetSQLResult to SetOracleResult .

D. Change the name of the returned instance from SetSQLResult to SetOracleResult , and
member data from SQLInsertOK to OracleInsertOK .

c09.indd 823c09.indd 823 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

824 Chapter 9 ASP.NET Web Services

E. Change the name of the subroutine from SQLConn to OracleConn .

F. Change the prefi x from sql to ora for all data objects.

G. Modify the nominal names for all seven input parameters to the stored procedure by
removing the @ symbol before each nominal name. Also, change the data type of the top
fi ve input parameters from SqlDbType.Text to OracleDbType.VarChar . Change the data
type for the last two input parameters from SqlDbType.Text to OracleDbType.Number .

H. Change the name of the returned instance from SetSQLResult to SetOracleResult , and
change the prefi x from sql to ora for all data objects.

 Now let ’ s perform the modifi cations to two related subroutines SQLConn() and
ReportError() . Perform the following modifi cations to the subroutine SQLConn() :

A. Change the name of this subroutine from SQLConn to OracleConn , and return the class
name from SqlConnection to OracleConnection . Also, change the connection string from
sql_conn to ora_conn .

B. Change the data type of the returned connection object to OracleConnection .

Perform the following modifi cations to the subroutine ReportError() :

C. Change the data type of the argument from SQLInsertBase to OracleInsertBase .

D. Change the name of the fi rst member data from SQLInsertOK to OracleInsertOK .

E. Change the name of the second member data from SQLInsertError to OracleInsertError .

 Your modifi ed user - defi ned subroutine procedures OracleConn() and ReportError()
should match one that is shown in Figure 9.143 . All modifi ed parts have been highlighted
in bold.

 For the stored procedure InsertFacultyCourse , we do not need to perform any
modifi cation to this procedure since we successfully developed this stored procedure in
Section 6.8.2.1 in Chapter 6 . Therefore, we can directly use this procedure without any
problem. Refer to Section 6.8.2.1 to get more detailed information and discussion about
the development process for this stored procedure if you like.

Figure 9.143. Modifi ed subroutines OracleConn() and ReportError().

 Protected Function OracleConn() As OracleConnection
Dim cmdString As String = ConfigurationManager.ConnectionStrings("ora_conn").ConnectionString
Dim conn As New OracleConnection

conn.ConnectionString = cmdString
conn.Open()
If conn.State <> ConnectionState.Open Then
 MsgBox("Database Open is failed")
 conn = Nothing
End If
Return conn

End Function

Protected Sub ReportError(ByVal ErrSource As OracleInsertBase)
ErrSource.OracleInsertOK = False
MsgBox(ErrSource.OracleInsertError)

End Sub

A
B

C
D
E

WebServiceOracleInsert OracleConn

c09.indd 824c09.indd 824 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

9.10 Build ASP.NET Web Service Project to Insert Data into Oracle Database 825

9.10.5 Modify the Web Method GetSQLInsert
and Related Subroutines

 The function of this Web method is to retrieve all course_id , which includes the original
and the newly inserted course_id , from the Course table based on the input faculty name.
This Web method will be called or consumed by a client project later to get back and
display all course_id in a list box control in the client project.

 Recall that in Section 5.19.6 in Chapter 5 , we developed a joined - table query to
perform the data query from the Course table to get all course_id based on the faculty
name. The reason for that is because there is no faculty name column available in the
Course table, and each course or course_id is only related to a faculty_id in the Course
table. In order to get the faculty_id that is associated with the selected faculty name, one
must fi rst perform a query to the Faculty table to obtain it. In this situation, a join query
is a desired method to complete this function.

 Open this Web method and perform the modifi cations that are shown in Figure 9.144
to this method. All modifi ed parts have been highlighted in bold.

 Let ’ s take a closer look at these modifi cations to see how they work.

A. Change the name of this Web method from GetSQLInsert to GetOracleInsert . Also,
change the name of the returned instance from SQLInsertBase to OracleInsertBase .

Figure 9.144. The modifi ed Web method GetOracleInsert().

<WebMethod()> _
Public Function GetOracleInsert(ByVal FacultyName As String) As OracleInsertBase

Dim cmdString As String = "SELECT Course.course_id FROM Course JOIN Faculty " + _
"ON (Course.faculty_id = Faculty.faculty_id) AND (Faculty.faculty_name =: fname)"

Dim oraConnection As New OracleConnection
Dim GetOracleResult As New OracleInsertBase
Dim oraCommand As New OracleCommand
Dim oraReader As OracleDataReader

 GetOracleResult.OracleInsertOK = True
oraConnection = OracleConn()
If oraConnection Is Nothing Then

GetOracleResult.OracleInsertError = "Database connection is failed"
 ReportError(GetOracleResult)

Return Nothing
End If
oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add("fname", OracleDbType.VarChar).Value = FacultyName
oraReader = oraCommand.ExecuteReader
If oraReader.HasRows = True Then

Call FillCourseReader(GetOracleResult, oraReader)
Else
 GetOracleResult.OracleInsertError = "No matched course found"
 ReportError(GetOracleResult)
End If
If Not oraReader Is Nothing Then oraReader.Close()
If Not oraConnection Is Nothing Then oraConnection.Close()
oraCommand.Dispose()
Return GetOracleResult

End Function

A
B

C

D
E

F

G

H

WebServiceOracleInsert GetOracleInsert

c09.indd 825c09.indd 825 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

826 Chapter 9 ASP.NET Web Services

B. Modify the query string to match it to the ANSI 92 standard. Recall that we developed a
join - table query string for SQL Server database using the ANSI 92 standard in Section
 5.19.6 in Chapter 5 . Use the Oracle comparison operator =: to replace the SQL Server
comparator LIKE@ for the second WHERE clause and the = to replace the LIKE in the fi rst
WHERE clause for this query string.

C. Change the prefi x from Sql to Oracle for all data classes, and from sql to ora for all data
objects used in this method. Also change the name of the returned instance from
GetSQLResult to GetOracleResult . Change the fi rst member data from SQLInsertOK to
OracleInsertOK .

D. Change the name of the subroutine from SQLConn to OracleConn . Change the second
member data from SQLInsertError to OracleInsertError .

E. Change the prefi x from sql to ora for all data objects.

F. Modify the nominal name for the input parameter to the stored procedure by removing
the @ symbol before the nominal name fname . Also change the data type of this input
parameter from SqlDbType.Text to OracleDbType.VarChar .

G. Change the names of two arguments passed to the subroutine FillCourseReader() from
GetSQLResult to GetOracleResult , and from sqlReader to oraReader .

H. Change the name of the returned instance from GetSQLResult to GetOracleResult , and
change the prefi x from sql to ora for all data objects.

 The modifi cations to the related subroutine FillCourseReader() are relatively simple.
Perform the following modifi cations to this subroutine:

A. Modify the data types of two passed arguments by changing the data type of the fi rst argu-
ment from SQLInsertBase to OracleInsertBase , and by changing the data type of the
second argument from SqlDataReader to OracleDataReader .

B. Change the method from GetSQLString(0) to GetOracleString(0) .

 The modifi ed subroutine FillCourseReader() is shown in Figure 9.145 .

9.10.6 Modify the Web Method SQLInsertDataSet

 The function of this Web method is to use an insert query to perform the course insertion
and then retrieve the newly inserted course record and store it in a DataSet that will be
returned to the calling procedure. Perform the modifi cations that are shown in Figure
 9.146 to this Web method:

Figure 9.145. The modifi ed subroutine FillCourseReader().

Protected Sub FillCourseReader(ByRef sResult As OracleInsertBase, ByVal sReader As OracleDataReader)
Dim pos As Integer

While sReader.Read()
sResult.CourseID(pos) = Convert.ToString(sReader.GetOracleString(0)) ' the 1st column is course_id

 pos = pos + 1
End While

End Sub

A

B

WebServiceOracleInsert FillCourseReader

c09.indd 826c09.indd 826 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

9.10 Build ASP.NET Web Service Project to Insert Data into Oracle Database 827

A. Change the name of this method from SQLInsertDataSet to OracleInsertDataSet .

B. Change the query string by replacing the @ symbol before each input parameter with the
colon operator : , and this is required by the Oracle database operation.

C. Change the prefi x from Sql to Oracle for all data classes, and from sql to ora for all data
objects used in this method. Also, change the name of the returned instance from

Figure 9.146. The modifi ed Web method OracleInsertDataSet().

<WebMethod()> _
Public Function OracleInsertDataSet(ByVal FacultyName As String, ByVal CourseID As String, _

ByVal Course As String, ByVal Schedule As String, ByVal Classroom As String, ByVal Credit As Integer, _
ByVal Enroll As Integer) As DataSet

Dim cmdString As String = "INSERT INTO Course VALUES " + _
"(:course_id,:course,:credit,:classroom,:schedule,:enrollment,:faculty_id)"

Dim oraConnection As New OracleConnection
Dim SetOracleResult As New OracleInsertBase
Dim oraCommand As New OracleCommand
Dim CourseAdapter As New OracleDataAdapter
Dim dsCourse As New DataSet
Dim intResult As Integer
Dim FacultyID As String

 SetOracleResult.OracleInsertOK = True
oraConnection = OracleConn()
If oraConnection Is Nothing Then
 SetOracleResult.OracleInsertError = "Database connection is failed"
 ReportError(SetOracleResult)

Return Nothing
End If

oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = "SELECT faculty_id FROM Faculty WHERE faculty_name =: fname"
oraCommand.Parameters.Add("fname", OracleDbType.VarChar).Value = FacultyName
FacultyID = oraCommand.ExecuteScalar()
oraCommand.Parameters.Clear() 'very important

oraCommand.CommandText = cmdString
oraCommand.Parameters.Add("course_id", OracleDbType.VarChar).Value = CourseID
oraCommand.Parameters.Add("course", OracleDbType.VarChar).Value = Course
oraCommand.Parameters.Add("credit", OracleDbType.Number).Value = Credit
oraCommand.Parameters.Add("classroom", OracleDbType.VarChar).Value = Classroom
oraCommand.Parameters.Add("schedule", OracleDbType.VarChar).Value = Schedule
oraCommand.Parameters.Add("enrollment", OracleDbType.Number).Value = Enroll

 oraCommand.Parameters.Add("faculty_id", OracleDbType.VarChar).Value = FacultyID

 CourseAdapter.InsertCommand = oraCommand
 intResult = CourseAdapter.InsertCommand.ExecuteNonQuery()

If intResult = 0 Then
 SetOracleResult.OracleInsertError = "No matched course found"
 ReportError(SetOracleResult)
End If

 oraCommand.Parameters.Clear() 'very important
oraCommand.CommandText = "SELECT * FROM Course WHERE faculty_id =: FacultyID"
oraCommand.Parameters.Add("FacultyID", OracleDbType.VarChar).Value = FacultyID

 CourseAdapter.SelectCommand = oraCommand
 CourseAdapter.Fill(dsCourse, "Course")
 CourseAdapter.Dispose()
 CourseAdapter = Nothing

If oraConnection IsNot Nothing Then oraConnection.Close()
oraCommand.Dispose()
Return dsCourse

End Function

A

B

C

D

E

F
G

H

I

J

K
L
M
N

WebServiceOracleInsert OracleInsertDataSet

c09.indd 827c09.indd 827 4/25/2012 7:32:03 PM4/25/2012 7:32:03 PM

828 Chapter 9 ASP.NET Web Services

SetSQLResult to SetOracleResult . Change the fi rst member data from SQLInsertOK to
OracleInsertOK .

D. Change the name of the subroutine from SQLConn to OracleConn . Change the second
member data from SQLInsertError to OracleInsertError .

E. Change the prefi x from sql to ora for all data objects.

F. Modify the dynamic name for the input parameter by replacing the SQL comparison
operator LIKE @ before the nominal name fname with the Oracle comparison
operator =: .

G. Modify the nominal name of the input parameter by removing the @ symbol before the
nominal name fname . Also change the data type of this input parameter from SqlDbType.
Text to OracleDbType.VarChar .

H. Since the next query needs to use the different parameters, therefore, the Parameters col-
lection must be cleaned up using the Clear() method to remove the previous parameter
objects, and this is very important. An Oracle database exception may be encountered
without this cleaning job performed.

I. Modify the nominal names for all seven input parameters by removing the @ symbol
before each nominal name. Also, change the data type of the top fi ve input parameters
from SqlDbType.Text to OracleType.VarChar , and change the data type of the last two
input parameters from SqlDbType.Text to OracleDbType.Number .

J. Change the prefi x from sql to ora for all following data objects. Also change the name of
the returned instance from SetSQLResult to SetOracleResult . Change the second
member data from SQLInsertError to OracleInsertError .

K. Same function as we discussed in step H . However, this cleaning job is unnecessary in SQL
Server database operations.

L. Modify the dynamic name for the input parameter by replacing the SQL comparison
operator LIKE @ before the nominal name FacultyID with the Oracle comparison
operator =: .

M. Modify the nominal name of the input parameter by removing the @ symbol before the
nominal name FacultyID . Also, change the data type of this input parameter from
SqlDbType.Text to OracleDbType.VarChar .

N. Change the prefi x from sql to ora for all data objects used in this method.

9.10.7 Modify the Web Method GetSQLInsertCourse and
Related Subroutines

 The function of this Web method is to retrieve the detailed information for a selected
course_id that works as an input parameter to this method, and store the retrieved
information to an instance that will be returned to the calling procedure.

 The following three modifi cations are needed to be performed for this Web method:

1. Modify the codes of this Web method.

2. Modify the related subroutine FillCourseDetail() .

3. Modify the content of the query string and create a new Package that contains a stored
procedure.

c09.indd 828c09.indd 828 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

9.10 Build ASP.NET Web Service Project to Insert Data into Oracle Database 829

Figure 9.147. The modifi ed Web method GetOracleInsertCourse().

<WebMethod()> _
Public Function GetOracleInsertCourse(ByVal CourseID As String) As OracleInsertBase

Dim cmdString As String = "WebSelectCourseSP.SelectCourse"
Dim oraConnection As New OracleConnection
Dim GetOracleResult As New OracleInsertBase
Dim oraReader As OracleDataReader
Dim paramCourseID As New OracleParameter
Dim paramCourseInfo As New OracleParameter

GetOracleResult.OracleInsertOK = True
oraConnection = OracleConn()
If oraConnection Is Nothing Then
 GetOracleResult.OracleInsertOK = False
 GetOracleResult.OracleInsertError = "Database connection is failed"
 ReportError(GetOracleResult)

Return Nothing
End If
paramCourseID.ParameterName = "CourseID"
paramCourseID.OracleDbType = OracleDbType.VarChar
paramCourseID.Value = CourseID
paramCourseInfo.ParameterName = "CourseInfo"
paramCourseInfo.OracleDbType = OracleDbType.Cursor
paramCourseInfo.Direction = ParameterDirection.Output 'this is very important

Dim oraCommand = New OracleCommand(cmdString, oraConnection)
oraCommand.CommandType = CommandType.StoredProcedure
oraCommand.Parameters.Add(paramCourseID)
oraCommand.Parameters.Add(paramCourseInfo)
oraReader = oraCommand.ExecuteReader

If oraReader.HasRows = True Then
Call FillCourseDetail(GetOracleResult, oraReader)

Else
 GetOracleResult.OracleInsertError = "No matched course found"
 ReportError(GetOracleResult)
End If

oraReader.Close()
oraReader = Nothing
oraConnection.Close()
oraCommand.Dispose()
Return GetOracleResult

End Function

A
B
C

D

E

F

G

H

I

WebServiceOracleInsert GetOracleInsertCourse

 Open this Web method and perform the modifi cations shown Figure 9.147 to this
Web method. Let ’ s have a closer look at these modifi cations to see how they work.

A. Change the name of this Web method from GetSQLInsertCourse to GetOracle-
InsertCourse . Also, change the name of the returned base class from SQLInsertBase to
OracleInsertBase .

B. Change the name of the Package that we will develop in the next section from dbo.
WebSelectCourseSP to WebSelectCourseSP.SelectCourse . The WebSelectCourseSP
is an Oracle Package, and the SelectCourse is an Oracle stored procedure.

C. Change the prefi x from Sql to Oracle for all data classes, and from sql to ora for all data
objects used in this method. Also, change the name of the returned instance from
GetSQLResult to GetOracleResult . Change the fi rst member data from SQLInsertOK to
OracleInsertOK .

c09.indd 829c09.indd 829 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

830 Chapter 9 ASP.NET Web Services

D. Add two Oracle Parameter objects paramCourseID and paramCourseInfo . Because of
some differences existed between the SQL Server and Oracle databases, we need to use
the different way to assign parameters to the Command object later.

E. Change the name of the subroutine from SQLConn to OracleConn . Change the second
member data from SQLInsertError to OracleInsertError .

F. Initialize two OracleParameter objects by assigning them with the appropriate values. The
point is for the second parameter paramCourseInfo . The data type of this parameter is
Cursor and the Direction is Output . Both values are very important to this parameter and
must be assigned exactly as we did here. Otherwise, a running exception may be encoun-
tered when the project runs.

G. Add two statements to add two OracleParameter objects to the Command object.

H. Change the names of two arguments passed to the subroutine FillCourseDetail() from
GetSQLResult to GetOracleResult , and from sqlReader to oraReader .

I. Change the name of the returned instance from GetSQLResult to GetOracleResult , and
change the second member data from SQLInsertError to OracleInsertError .

 The modifi cations to the related subroutine FillCourseDetail() are simple. The only
modifi cations are to change the data types of two passed arguments sResult and sReader .
Change the data type of the fi rst argument from SQLInsertBase to OracleInsertBase ,
and the data type for the second argument from SqlDataReader to OracleDataReader .

 Now let ’ s create an Oracle Package WebSelectCourseSP that contains a stored
procedure SelectCourse to perform this course detailed information query. We will use
the Object Browser page in Oracle Database 11g XE to build this Package.

9.10.8 Build the Oracle Package WebSelectCourseSP

 Open the Oracle Database 11g XE home page by going to start|All Programs|Oracle
Database 11g Express Edition|Get Started items. Perform the following operations to
create this package:

1. Click on the APEX button to open the Login to APEX page.

2. Enter SYSTEM and reback into the Username and Password box to complete the login
process for the APEX.

3. Since we have already created our sample database CSE_DEPT in Chapter 2 , click on the
Already have an account? Login Here button.

4. Enter reback into the Password box and click on the Login button.

5. Click on the SQL Workshop icon to open this workshop window.

6. Click on the Object Browser icon and click on the drop - down arrow on the Create button,
and select the Package item to open the Create Package wizard.

 Each package has two parts: the defi nition or specifi cation part and the body part.
First, let ’ s create the specifi cation part by checking the Specifi cation radio button and
click on the Next button to open the Name page, which is shown in Figure 9.148 .

 Enter the package name WebSelectCourseSP into the Package Name box and click
on the Next button to go to the specifi cation page.

c09.indd 830c09.indd 830 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

9.10 Build ASP.NET Web Service Project to Insert Data into Oracle Database 831

Figure 9.148. The Name page of the Package window.

 A default package specifi cation prototype, which includes a procedure and a function,
is provided in this page, and you need to use your real specifi cations to replace those
default items. Since we don ’ t need any function for our application, remove the default
function prototype, and change the default procedure name from the test to our proce-
dure name SelectCourse . Enter the codes shown in Figure 9.149 into the Specifi cation
space as the defi nition for our package.

 In line 2, we defi ned the returned data type as a CURSOR_TYPE by using:

 TYPE CURSOR_TYPE IS REF CURSOR;

 since we must use a cursor to return a group of data, and the IS operator is equivalent
to an equal operator.

 The prototype of the procedure SelectCourse() is declared in line 3. Two arguments
are used for this procedure: the input parameter CourseID , which is indicated as an input
by using the keyword in followed by the data type of VARCHAR2 . The output parameter
is a cursor named CourseInfo followed by a keyword out . Each PL - SQL statement must
be ended by a semi - colon, and this rule is also applied to the end statement. Click on the
Finish button to create this specifi cation body.

 Click on the Body tab to open the Body page, and click on the Edit button to begin
to create our body part. Enter the PL - SQL codes that are shown in Figure 9.150 into this
body space.

Figure 9.149. The codes for the Specifi cation page.

create or replace package WEBSELECTCOURSESP as

TYPE CURSOR_TYPE IS REF CURSOR;

procedure SelectCourse (

 CourseID in VARCHAR2,

 CourseInfo out CURSOR_TYPE);

end;

c09.indd 831c09.indd 831 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

832 Chapter 9 ASP.NET Web Services

Figure 9.151. The compiled codes for the body part of the package.

Figure 9.150. The codes for the Body part of the package.

create or replace package body WebSelectCourseSP AS
procedure SelectCourse(CourseID in VARCHAR2,

 CourseInfo out CURSOR_TYPE) AS
begin
OPEN CourseInfo FOR
SELECT course, schedule, classroom, credit, enrollment, faculty_id FROM Course
WHERE course_id = CourseID;
end;

end;

 The procedure prototype is re - declared in line 2. Starting from the begin , our real
SQL statements are included in lines 6 and 7. The OPEN CourseInfo FOR command is
used to assign the returned course data columns from the following query to the cursor
variable CourseInfo . Recall that we used a SET command to perform this assignment in
the SQL Server stored procedure in Section 5.19.8.4 in Chapter 5 . There are two end
commands applied at the end of this Package. The fi rst one is used to end the stored
procedure, and the second one is for the Package.

 Ok, now let ’ s compile our package by clicking on the Save & Compile button. A
successful compiling information PL/SQL code successfully compiled (17:44:43) is
displayed if this package is bug - free, which is shown in Figure 9.151 .

 At this point, we fi nished the development of our Oracle package and all modifi ca-
tions to our new Web service project. Close the Oracle Database 11g XE by clicking on
the Close button located at the upper - right corner of the window.

 Now let ’ s run our Web service project to test the data insertion function. Click on the
Start Debugging button to run our Web service.

 First, let ’ s test the Web method SetOracleInsertSP() by clicking on this method.
Enter the input parameters that are shown in Figure 9.152 into the associated Value boxes
in the opened parameter - input page, and click on the Invoke button to run this method.

c09.indd 832c09.indd 832 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

9.10 Build ASP.NET Web Service Project to Insert Data into Oracle Database 833

Figure 9.152. The parameter - input built - in Web interface.

 The running result of this Web method is shown in Figure 9.153 .
 It can be found that the running result of this Web method is fi ne, and this can be

confi rmed by the returned status variable <OracleInsertOK> whose value is true . Another
way to confi rm this data insertion is to open the Course table in our sample database
CSE_DEPT from the Oracle Database 11g XE using the Browser Object to check this
newly inserted course.

 An example of an opened Course table is shown in Figure 9.154 , and you can fi nd
that the newly inserted course CSE-575 is located at the fi rst row.

 Now let ’ s test the second Web method GetOracleInsert() by clicking on it. On the
opened parameter - input page, enter the faculty name Ying Bai into the Value box and
click on the Invoke button to run this method. The running result is shown in Figure 9.155 .

 It can be found that the newly inserted course CSE-575 is indeed added into the
Course table, and this data insertion is successful.

 Close the current running result page and click the Back arrow to return to our Web
start page. Click on the Web method OracleInsertDataSet() to test this method. Enter
the input parameters that are shown in Figure 9.156 as the new course information into
the associated Value box in the opened parameter - input page, and click on the Invoke
button to run this method.

c09.indd 833c09.indd 833 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

834 Chapter 9 ASP.NET Web Services

Figure 9.154. The opened Course table.

Figure 9.153. The running result of the Web method SetOracleInsertSP().

c09.indd 834c09.indd 834 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

9.10 Build ASP.NET Web Service Project to Insert Data into Oracle Database 835

Figure 9.155. The running result of the Web method GetOracleInsert().

Figure 9.156. The parameter - input page.

c09.indd 835c09.indd 835 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

836 Chapter 9 ASP.NET Web Services

Figure 9.157. The running result of the Web method OracleInsertDataSet().

 The running result of this Web method is shown in Figure 9.157 .
 It can be found in Figure 9.157 that the newly inserted course CSC-532 is indeed

added into the Course table in our sample Oracle database.
 Finally, let ’ s test the Web method GetOracleInsertCourse() . Close the current

running result page window and click on the Back arrow to return to our initial Web page.
Click on the Web method GetOracleInsertCourse() to open its parameter - input page.

 On the opened page, enter CSC-532 into the Value box as the input parameter, and
click on the Invoke button to run this method. The running result is shown in Figure 9.158 .

 It can be found that the detailed information, such as the course name, classroom,
schedule, credit, and enrollment about the course CSC-532 has been retrieved and dis-
played in this built - in Web interface in XML tag format.

 At this point, we have fi nished the testing for all Web methods we developed in this
Web service project. A complete Web service project WebServiceOracleInsert can be
found in the folder DBProjects\Chapter 9 that is located at the Wiley ftp site (refer to
Figure 1.2 in Chapter 1).

9.11 BUILD WEB SERVICE CLIENT PROJECTS TO CONSUME
THE WEB SERVICE

 To consume this Web service project, one can develop either a Windows - based or a Web -
 based Web service client project. In fact, there is no signifi cant difference between build-

c09.indd 836c09.indd 836 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

9.11 Build Web Service Client Projects to Consume the Web Service 837

ing a client project to consume a Web service to access the Oracle database and building
a client project to consume a Web service to access the SQL Server database. For example,
you can use any client project, such as either WinClientSQLInsert or WebClientSQLInsert ,
which we developed in the previous sections, to consume this Web service project
WebServiceOracleInsert with small modifi cations. The main modifi cation is to replace
the Web Reference with a new Web Reference class, which is our newly developed Web
service WebServiceOracleInsert .

 Follow the modifi cation steps below to complete these changes.

1. Remove the old Web reference from the Windows - based or Web - based client project. You
need to fi rst delete the Web reference object, and then you can delete the Web_Reference
folder from the current project.

2. Add a new Web reference using the Add Web Reference wizard, run the desired Web service
project, copy the URL from that running Web service project, and paste it to the URL box
in the Add Web Reference wizard in the client project.

3. Change the Web reference name for all data components used in the client project.

4. Change the names of the base class and derived class located in the Web reference.

5. Change the names of all Web methods located in the Web reference.

 Two completed client projects, WinClientOracleInsert , which is is Windows - based,
and WebClientOracleInsert , which is Web - based, can be found in the folder DBProjects\
Chapter 9 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1).

Figure 9.158. The running result of the method GetOracleInsertCourse().

c09.indd 837c09.indd 837 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

838 Chapter 9 ASP.NET Web Services

9.12 BUILD ASP.NET WEB SERVICE TO UPDATE AND DELETE
DATA FOR THE ORACLE DATABASE

 Basically, the procedure to build an ASP.NET Web service to update and delete data
against the Oracle database is very similar to the procedure of building an ASP.NET Web
service to update and delete data against the SQL Server database. The main differences
are listed below:

1. The connection string defi ned in the Web confi guration fi le Web.confi g .

2. The namespace directories listed at the top of each Web service page.

3. The stored procedures used by each Web service page.

4. The protocol of the data query string used by each Web service page.

5. The nominal names of dynamic parameters for the Parameters collection object.

 These fi ve distinguished points exist between the procedures to build a Web service
to update and delete data against two kinds of databases.

 Based on the discussion and analysis we made in Section 9.8 , as well as the similarity
between the Oracle and SQL Server databases, we try to develop our Web service projects
to update and delete data against the Oracle database by modifying some existing Web
service project. In this section, we concentrate on the modifi cations to the Web service
project WebServiceSQLUpdateDelete and make it as our new Web service project
WebServiceOracleUpdateDelete .

9.12.1 Build a Web Service Project
WebServiceOracleUpdateDelete

 In this section, we try to modify an existing Web service project WebServiceSQL-
UpdateDelete to make it as our new Web service project WebServiceOracleUpdateDelete ,
and allow it to update and delete data against the Oracle database.

 Open the Windows Explorer and create a new folder Chapter 9 under the root direc-
tory if you have not done that. Then browse to our desired source Web service project
WebServiceSQLUpdateDelete that can be found in the folder DBProjects\Chapter 9
that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1). Copy and paste it
into our new folder C:\Chapter 9 . Rename this project to WebServiceOracleUpdateDelete .
In the Windows Explorer window, perform the following modifi cations to this project:

1. Change the main Web service page from WebServiceSQLUpdateDelete.asmx to
WebServiceOracleUpdateDelete.asmx .

2. Open the App_Code folder and change the name of our base class fi le from SQLBase.vb
to OracleBase.vb .

3. Open the App_Code folder and change the name of our code - behind page from
WebServiceSQLUpdateDelete.vb to WebServiceOracleUpdateDelete.vb .

 Now open Visual Studio.NET 2010 and our newly created Web service project
WebServiceOracleUpdateDelete to perform the associated modifi cations to the con-
tents of the fi les we renamed above. First, let ’ s perform the modifi cations to our main

c09.indd 838c09.indd 838 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

9.12 Build ASP.NET Web Service to Update and Delete Data for the Oracle Database 839

Web service page WebServiceOracleUpdateDelete.asmx . Open this page by double -
 clicking on it from the Solution Explorer window and perform the following
modifi cations:

 • Change CodeBehind = “ ~ /App_Code/WebServiceSQLUpdateDelete.vb ”

 to CodeBehind = “ ~ /App_Code/WebServiceOracleUpdateDelete.vb ”

 • Change Class = “ WebServiceSQLUpdateDelete ” to Class = “ WebServiceOracleUpdateDelete ”

 Second, open the base class fi le OracleBase.vb and perform the following
modifi cations:

 • Change the class name from SQLBase to OracleBase .

 • Change the name of the fi rst member data from SQLOK to OracleOK .

 • Change the name of the second member data from SQLError to OracleError .

 Go to the File|Save All menu item to save these modifi cations.
 Next, let ’ s begin to do the modifi cations listed above to our new Web service project.

We start from the fi rst step, modify the connection string in the Web confi guration fi le
Web.confi g .

9.12.2 Modify the Connection String

 Double - click our Web confi guration fi le Web.confi g from the Solution Explorer window
to open it. Change the content of the connection string that is under the tag <connec-
tionStrings> to:

 < add name = “ ora_conn ” connectionString = “ Server = XE;User ID = CSE_DEPT;Password = reback; ” / >

 The Oracle database server XE is used for the server name, the User ID is our sample
database CSE_DEPT , and the Password is determined by the user when installing the
Oracle Database 11g XE in the local computer. In our case, we used reback as the
password.

9.12.3 Add Oracle Database Reference and Modify the
Namespace Directories

 First, we need to add an Oracle Data Provider Reference to our Web service project. As
you know, starting from .NET Framework 4.0, Microsoft no longer supports Oracle
database - related operations. Therefore we need to use an Oracle database driver pro-
vided by a third - party vendor. As we discussed in Section 5.20.3 in Chapter 5 , we utilized
a third - party product, dotConnect for Oracle 6.30 Express developed by Devart ™ Inc.

 Now let ’ s add some Oracle Data Provider references to our project. Perform the
following operations to complete this addition operation:

1. Right - click on our project Chapter 9\WebServiceOracleUpdateDelete from the Solution
Explorer window, and select the Add Reference item from the pop - up menu to open the
Add Reference wizard.

c09.indd 839c09.indd 839 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

840 Chapter 9 ASP.NET Web Services

2. With the .NET tab selected, scroll down the list until you fi nd the items Devart.Data and
Devart.Data.Oracle , click on both to select them, and click on the OK button to add these
two references to our project.

 Now double - click our code - behind page WebServiceOracleUpdateDelete.vb
to open it. On the opened page, add two namespaces shown below to the top of this
page:

Imports Devart.Data
 Imports Devart.Data.Oracle

 Also, change the name of our Web service class, which is located after the accessing
mode Public Class, to WebServiceOracleUpdateDelete .

 Next, we will perform the necessary modifi cations to four Web methods developed
in this Web service project combined with those fi ve differences listed above.

9.12.4 Modify the Web Method SQLUpdateSP
and Related Subroutines

 The following issues are related to this modifi cation:

1. The name of this Web method and the name of the returned data type class.

2. The content of the query string used in this Web method.

3. The stored procedure used in this Web method.

4. The names of the data components used in this Web method.

5. The subroutines SQLConn() and ReportError() .

6. The names of the dynamic parameters.

 Let ’ s perform those modifi cations step by step according to this sequence. Open this
Web method and perform the modifi cations shown in Figure 9.159 . All modifi ed parts
have been highlighted in bold.

 Let ’ s have a closer look at this piece of modifi ed codes to see how it works.

A. Rename this Web method to OracleUpdateSP and the name of the returned class to
OracleBase .

B. Modify the content of the query string by changing the name of the stored procedure from
dbo.WebUpdateCourseSP to UpdateCourse_SP . The former is an SQL Server stored
procedure, and the latter is an Oracle stored procedure that will be developed in the next
section.

C. Change the prefi x from Sql to Oracle for all data classes, and from sql to ora for all data
objects. Also, change the returned instance name from SQLResult to OracleResult .

D. Change the name of the returned instance from SQLResult to OracleResult , and member
data from SQLOK to OracleOK .

E. Change the name of the subroutine from SQLConn to OracleConn .

F. Change the prefi x from sql to ora for all data objects.

G. Modify the nominal names for all seven input parameters to the stored procedure
by removing the @ symbol before each nominal name. Also, change the data type of the

c09.indd 840c09.indd 840 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

9.12 Build ASP.NET Web Service to Update and Delete Data for the Oracle Database 841

fi ve text input parameters from SqlDbType.Text to OracleDbType.VarChar . Change
the data type for the two number input parameters from SqlDbType.Text to
OracleDbType.Number .

H. Change the prefi x from sql to ora for all data objects.

I. Change the name of the returned instance from SQLResult to OracleResult , and change
the second member data from SQLError to OracleError .

 Now let ’ s perform the modifi cations to two related subroutines SQLConn() and
ReportError() . Perform the following modifi cations to the subroutine SQLConn() :

Figure 9.159. The modifi ed Web method OracleUpdateSP().

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Data
Imports Devart.Data
Imports Devart.Data.Oracle

<WebService(Namespace:="http://www.wiley.com/9780521712354/")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class WebServiceOracleUpdateDelete

Inherits System.Web.Services.WebService

<WebMethod()> _
Public Function OracleUpdateSP(ByVal FacultyName As String, ByVal CourseID As String, ByVal Course As String, _
ByVal Schedule As String, ByVal Classroom As String, ByVal Credit As Integer, ByVal Enroll As Integer) As OracleBase

Dim cmdString As String = "UpdateCourse_SP"
Dim oraConnection As New OracleConnection
Dim OracleResult As New OracleBase
Dim oraCommand As New OracleCommand
Dim intUpdate As Integer

OracleResult.OracleOK = True
oraConnection = OracleConn()
If oraConnection Is Nothing Then

OracleResult.OracleError = "Database connection is failed"
 ReportError(OracleResult)

Return Nothing
End If
oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.StoredProcedure
oraCommand.CommandText = cmdString

oraCommand.Parameters.Add("inCourseID", OracleDbType.VarChar).Value = CourseID
oraCommand.Parameters.Add("inCourse", OracleDbType.VarChar).Value = Course
oraCommand.Parameters.Add("inCredit", OracleDbType.Number).Value = Credit
oraCommand.Parameters.Add("inClassroom", OracleDbType.VarChar).Value = Classroom
oraCommand.Parameters.Add("inSchedule", OracleDbType.VarChar).Value = Schedule
oraCommand.Parameters.Add("inEnroll", OracleDbType.Number).Value = Enroll
oraCommand.Parameters.Add("FacultyName", OracleDbType.VarChar).Value = FacultyName

 intUpdate = oraCommand.ExecuteNonQuery()
oraCommand.Dispose()
If Not oraConnection Is Nothing Then oraConnection.Close()
oraConnection = Nothing

If intUpdate = 0 Then
OracleResult.OracleError = "Data updating is failed"

 ReportError(OracleResult)
End If
Return OracleResult

End Function

A

B
C

D
E
F

G

H

I

WebServiceOracleUpdateDelete OracleUpdateSP

c09.indd 841c09.indd 841 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

842 Chapter 9 ASP.NET Web Services

A. Change the name of this subroutine from SQLConn to OracleConn , and return class name
from SqlConnection to OracleConnection . Also, change the connection string from
sql_conn to ora_conn .

B. Change the data type of the returned connection object to OracleConnection .

Perform the following modifi cations to the subroutine ReportError() :

C. Change the data type of the passed argument from SQLBase to OracleBase .

D. Change the name of the fi rst member data from SQLOK to OracleOK .

E. Change the name of the second member data from SQLError to OracleError .

 Your modifi ed subroutines OracleConn() and ReportError() should match the one
that is shown in Figure 9.160 . All modifi ed parts have been highlighted in bold.

 Next, let ’ s develop the stored procedure UpdateCourseSP to perform the course
updating function.

9.12.4.1 Develop the Stored Procedure UpdateCourse_SP

 A very detailed discussion about creating and manipulating packages and stored proce-
dures in the Oracle database is provided in Section 5.20.7 in Chapter 5 . Refer to that
section to get more detailed information for creating Oracle ’ s stored procedures.

 The topic we are discussing in this section is to update and delete data against the
database, and no returned data is needed for these two data actions. Therefore, we only
need to create stored procedures in the Oracle database, not packages, to perform the
data updating and deleting functionalities.

 As we discussed in Section 5.20.7.1 in Chapter 5 , different methods can be used to
create Oracle ’ s stored procedures. In this section, we will use the Object Browser page
provided by Oracle Database 11g XE to create our stored procedures.

 Open the Oracle Database 11g XE home page by going to the start|All
Programs|Oracle Database 11g Express Edition|Get Started items. Perform the fol-
lowing operations to create this stored procedure:

Figure 9.160. Modifi ed subroutines OracleConn() and ReportError().

 Protected Function OracleConn() As OracleConnection
Dim cmdString As String = ConfigurationManager.ConnectionStrings("ora_conn").ConnectionString
Dim conn As New OracleConnection

conn.ConnectionString = cmdString
conn.Open()
If conn.State <> ConnectionState.Open Then
 MsgBox("Database Open is failed")
 conn = Nothing
End If
Return conn

End Function

Protected Sub ReportError(ByVal ErrSource As OracleBase)
ErrSource.OracleOK = False
MsgBox(ErrSource.OracleError)

End Sub

A
B

C
D
E

WebServiceOracleUpdateDelete OracleConn

c09.indd 842c09.indd 842 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

9.12 Build ASP.NET Web Service to Update and Delete Data for the Oracle Database 843

1. Click on the APEX button to open the Login to APEX page.

2. Enter SYSTEM and reback into the Username and Password box to complete the login
process for the APEX.

3. Since we have already created our sample database CSE_DEPT in Chapter 2 , click on the
Already have an account? Login Here button.

4. Enter reback into the Password box and click on the Login button.

5. Click on the SQL Workshop icon to open this workshop window.

6. Click on the Object Browser icon and click on the drop - down arrow on the Create button,
and select the Procedure item to open the Create Procedure wizard.

7. Enter UpdateCourse_SP into the Procedure Name box and keep the Include Arguments
checkbox checked, and click on the Next button to go to the next page.

8. The next wizard is used to allow us to enter all input parameters. For this stored procedure,
we need to perform two queries, so we have seven input parameters. The fi rst query is to
get the faculty_id from the Faculty table based on the faculty name that is an input and
selected by the user. The second query is to update a course record that contains six pieces
of information related to a current course_id in the Course table based on the faculty_id
obtained from the fi rst query. The seven input parameters are: Faculty Name, Course ID,
Course Title, Credit, Classroom, Schedule, and Enrollment. The fi rst input parameter
FacultyName is used by the fi rst query, and the following six input parameters are used
by the second query.

9. Enter those input parameters one by one into the argument box. The point is that the data
type of each input parameter must be identical with the data type of each data column
used in the Course table. Refer to Section 2.11.5 in Chapter 2 to get a detailed list of data
types used for those data columns in the Course data table.

10. For the Input/Output selection of the parameters, select IN for all seven parameters, since
no output is needed for this data - updating query.

 Your fi nished argument list should match one that is shown in Figure 9.161 .
 Click on the Next button to go to the procedure - defi ning page. Enter the codes that

are shown in Figure 9.162 into this new procedure as the body of the procedure using the
language of so - called PL - SQL. Then click on the Next and then the Finish buttons to
confi rm to create this procedure. Your fi nished stored procedure should match the one
that is shown in Figure 9.163 .

 Seven input parameters are listed at the beginning of this procedure with the keyword
IN to indicate that these parameters are inputs to the procedure. The intermediate param-
eter faculty_id is obtained from the fi rst query from the Faculty table. The data type of
each parameter is indicated after the keyword IN , and it must be identical with the data
type of the associated data column in the Course table. An IS command is attached after
the procedure header to indicate that an intermediate query result, faculty_id , will be
held by a local variable FacultyID declared later.

 Two queries are included in this procedure. The fi rst query is used to get the faculty_
id from the Faculty table based on the input parameter FacultyName . The second query
is to update a course record based on six input parameters in the Course table. A semi -
 colon must be attached after each PL - SQL statement.

 One important issue is that you need to create one local variable FacultyID and
attach it after the IS command as shown in line 9 in Figure 9.163 , and this coding line has

c09.indd 843c09.indd 843 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

844 Chapter 9 ASP.NET Web Services

been highlighted with the black color. Type this coding line to add this local variable. This
local variable is used to hold the returned faculty_id from executing the fi rst query.

 Another important issue to arrange the input parameters in the UPDATE command
is that the order of those parameters or arguments must be identical with the order of
the columns in the associated data table. For example, in the Course table, the order of
the data columns is: course_id , course , credit , classroom , schedule , enrollment , and
faculty_id . Accordingly, the order of input parameters placed in the UPDATE argument
list must be identical with the data columns ’ order displayed above.

 To make sure that this procedure works properly, we need to compile it fi rst. Click
on the Save & Compile button to compile and check our procedure. A successful com-
pilation message should be displayed if our procedure is a bug - free stored procedure.

 Close the Oracle Database 11g Express Edition by clicking the Close button that is
located at the upper - right corner of this wizard.

 Next, let ’ s return to the Visual Studio.NET environment and open our Web service
project WebServiceOracleUpdateDelete to build the codes to call this stored procedure
to perform the data updating actions against the Course table in our sample database.

Figure 9.162. The stored procedure body.

SELECT faculty_id INTO FacultyID FROM Faculty
WHERE faculty_name = FacultyName;

UPDATE Course SET course = inCourse, credit = inCredit, classroom = inClassroom,
schedule = inSchedule, enrollment = inEnroll, faculty_id = FacultyID
WHERE course_id = inCourseID;

Figure 9.161. The fi nished argument list wizard.

c09.indd 844c09.indd 844 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

9.12 Build ASP.NET Web Service to Update and Delete Data for the Oracle Database 845

9.12.5 Modify the Web Method GetSQLCourse
and Related Subroutines

 The function of this Web method is to retrieve all course_id , which includes the original
and the newly inserted course_id , from the Course table based on the input faculty name.
This Web method will be called or consumed by a client project later to get back and
display all course_id in a list box control in the client project.

 Recall that in Section 5.19.6 in Chapter 5 , we developed a joined - table query to
perform the data query from the Course table to get all course_id based on the faculty
name. The reason for that is because there is no faculty name column available in the
Course table, and each course or course_id is only related to a faculty_id in the Course
table. In order to get the faculty_id that is associated with the selected faculty name, one
must fi rst perform a query from the Faculty table to obtain it. In this situation, a join
query is a desired method to complete this function.

 Open this Web method and perform the modifi cations that are shown in Figure 9.164
to this method. All modifi ed parts have been highlighted in bold.

Figure 9.163. The completed stored procedure.

c09.indd 845c09.indd 845 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

846 Chapter 9 ASP.NET Web Services

 Let ’ s take a closer look at these modifi cations to see how they work.

A. Change the name of this Web method from GetSQLCourse to GetOracleCourse . Also,
change the name of the returned instance from SQLBase to OracleBase .

B. Modify the query string to match it to the Oracle database query style, which is to replace
the SQL comparison operator LIKE@ with the Oracle comparator =: for the second clause,
and the = to replace LIKE in the fi rst clause in the ON statement.

C. Change the prefi x from Sql to Oracle for all data classes and from sql to ora for all data
objects used in this method. Also, change the name of the returned instance from SQLResult
to OracleResult . Change the fi rst member data from SQLOK to OracleOK .

D. Change the name of the subroutine from SQLConn to OracleConn . Change the second
member data from SQLError to OracleError .

E. Change the prefi x from sql to ora for all data objects. Change the second member data
from SQLError to OracleError .

F. Modify the nominal name for the input parameter to the stored procedure by removing
the @ symbol before the nominal name fname . Also, change the data type of this input
parameter from SqlDbType.Text to OracleDbType.VarChar .

G. Change the names of two arguments passed to the subroutine FillCourseReader() from
SQLResult to OracleResult , and from sqlReader to oraReader .

Figure 9.164. The modifi ed Web method GetOracleCourse().

<WebMethod()> _
Public Function GetOracleCourse(ByVal FacultyName As String) As OracleBase

Dim cmdString As String = "SELECT Course.course_id FROM Course JOIN Faculty " + _
"ON (Course.faculty_id = Faculty.faculty_id) AND (Faculty.faculty_name =: fname)"

Dim oraConnection As New OracleConnection
Dim OracleResult As New OracleBase
Dim oraCommand As New OracleCommand
Dim oraReader As OracleDataReader

OracleResult.OracleOK = True
oraConnection = OracleConn()
If oraConnection Is Nothing Then

OracleResult.OracleError = "Database connection is failed"
 ReportError(OracleResult)

Return Nothing
End If
oraCommand.Connection = oraConnection
oraCommand.CommandType = CommandType.Text
oraCommand.CommandText = cmdString
oraCommand.Parameters.Add("fname", OracleDbType.VarChar).Value = FacultyName
oraReader = oraCommand.ExecuteReader
If oraReader.HasRows = True Then

Call FillCourseReader(OracleResult, oraReader)
Else

OracleResult.OracleError = "No matched course found"
 ReportError(OracleResult)
End If
If Not oraReader Is Nothing Then oraReader.Close()
If Not oraConnection Is Nothing Then oraConnection.Close()
oraCommand.Dispose()
Return OracleResult

End Function

A
B

C

D
E

F

G

H

WebServiceOracleUpdateDelete GetOracleCourse

c09.indd 846c09.indd 846 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

9.12 Build ASP.NET Web Service to Update and Delete Data for the Oracle Database 847

H. Change the name of the returned instance from SQLResult to OracleResult , change the
second member data from SQLError to OracleError , and change the prefi x from sql to
ora for all data objects.

 The modifi cations to the related subroutine FillCourseReader() are relatively simple.
Perform the following modifi cations to this subroutine:

A. Modify the data types of two passed arguments by changing the data type of the fi rst argu-
ment from SQLBase to OracleBase , and changing the data type of the second argument
from SqlDataReader to OracleDataReader .

B. Change the method from GetSQLString(0) to GetOracleString(0) .

 Your modifi ed subroutine FillCourseReader() should match the one that is shown
in Figure 9.165 .

9.12.6 Modify the Web Method GetSQLCourseDetail and
Related Subroutines

 The function of this Web method is to retrieve the detailed information for a selected
course_id that works as an input parameter to this method, and store the retrieved
information to an instance that will be returned to the calling procedure.

 The following three modifi cations need to be performed for this Web method:

1. Modify the codes of this Web method.

2. Modify the related subroutine FillCourseDetail() .

3. Modify the content of the query string and make it equal to the name of an Oracle Package,
WebSelectCourseSP , we developed in Section 9.10.8 .

 Open this Web method and perform the modifi cations that are shown in Figure 9.166
to this Web method. All modifi ed parts have been highlighted in bold.

 Let ’ s have a closer look at these modifi cations to see how they work.

A. Change the name of this Web method to GetOracleCourseDetail . Also, change the name
of the returned base class from SQLBase to OracleBase .

B. Modify the content of the query string and make it equal to the name of the Package we
developed in Section 9.10.8 . Change this query string from dbo.WebSelectCourseSP to
WebSelectCourseSP.SelectCourse . The WebSelectCourseSP is an Oracle Package,
and the SelectCourse is an Oracle stored procedure.

Figure 9.165. The modifi ed subroutine FillCourseReader().

Protected Sub FillCourseReader(ByRef sResult As OracleBase, ByVal sReader As OracleDataReader)
Dim pos As Integer

While sReader.Read()
sResult.CourseID(pos) = Convert.ToString(sReader.GetOracleString(0)) ' the 1st column is course_id
pos = pos + 1

End While
End Sub

A

B

WebServiceOracleUpdateDelete FillCourseReader

c09.indd 847c09.indd 847 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

848 Chapter 9 ASP.NET Web Services

C. Change the prefi x from Sql to Oracle for all data classes, and from sql to ora for all data
objects used in this method. Also, change the name of the returned instance from SQLResult
to OracleResult . Change the fi rst member data from SQLOK to OracleOK .

D. Add two Oracle Parameter objects paramCourseID and paramCourseInfo . Because of
some differences exist between the SQL Server and Oracle databases, we need to use a
different way to assign parameters to the Parameters collection of the Command object
later.

E. Change the name of the subroutine from SQLConn to OracleConn . Change the second
member data from SQLError to OracleError .

F. Initialize two OracleParameter objects by assigning them with the appropriate values. The
point is for the second parameter paramCourseInfo . The data type of this parameter is
Cursor and the Direction is Output . Both values are very important to this parameter and
must be assigned exactly as we did here. Otherwise a running exception may be encoun-
tered when the project runs.

Figure 9.166. The modifi ed Web method GetOracleCourseDetail().

<WebMethod()> _
Public Function GetOracleCourseDetail(ByVal CourseID As String) As OracleBase

Dim cmdString As String = "WebSelectCourseSP.SelectCourse"
Dim oraConnection As New OracleConnection
Dim OracleResult As New OracleBase
Dim oraReader As OracleDataReader
Dim paramCourseID As New OracleParameter
Dim paramCourseInfo As New OracleParameter

OracleResult.OracleOK = True
oraConnection = OracleConn()
If oraConnection Is Nothing Then

OracleResult.OracleOK = False
OracleResult.OracleError = "Database connection is failed"

 ReportError(OracleResult)
Return Nothing

End If
paramCourseID.ParameterName = "CourseID"
paramCourseID.OracleDbType = OracleDbType.VarChar
paramCourseID.Value = CourseID
paramCourseInfo.ParameterName = "CourseInfo"
paramCourseInfo.OracleDbType = OracleDbType.Cursor
paramCourseInfo.Direction = ParameterDirection.Output 'this is very important

Dim oraCommand = New OracleCommand(cmdString, oraConnection)
oraCommand.CommandType = CommandType.StoredProcedure
oraCommand.Parameters.Add(paramCourseID)
oraCommand.Parameters.Add(paramCourseInfo)
oraReader = oraCommand.ExecuteReader

If oraReader.HasRows = True Then
Call FillCourseDetail(OracleResult, oraReader)

Else
OracleResult.OracleError = "No matched course found"

 ReportError(OracleResult)
End If

oraReader.Close()
oraReader = Nothing
oraConnection.Close()
oraCommand.Dispose()
Return OracleResult

End Function

A
B
C

D

E

F

G

H

I

WebServiceOracleUpdateDelete GetOracleCourseDetail

c09.indd 848c09.indd 848 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

9.12 Build ASP.NET Web Service to Update and Delete Data for the Oracle Database 849

G. Use two statements to add two OracleParameter objects to the Command object.

H. Change the names of two arguments passed to the subroutine FillCourseDetail() from
SQLResult to OracleResult , and from sqlReader to oraReader .

I. Change the name of the returned instance from SQLResult to OracleResult , and change
the second member data from SQLError to OracleError .

 The modifi cations to the related subroutine FillCourseDetail() are simple. The only
modifi cation is to change the data type of two passed arguments sResult and sReader .
Change the data type of the fi rst argument from SQLBase to OracleBase , and change
the data type for the second argument from SqlDataReader to OracleDataReader .

9.12.7 Modify the Web Method SQLDeleteSP

 As we discussed in Section 7.1.1 in Chapter 7 , to delete a record from a relational data-
base, one needs to follow the operation steps listed below:

1. Delete records that are related to the parent table using the foreign keys from child
tables.

2. Delete records that are defi ned as primary keys from the parent table.

 In other words, to delete one record from the parent table, all records that are related
to that record as foreign keys and located at different child tables must be deleted fi rst.
In our case, in order to delete a record using the course_id as the primary key from the
Course table (parent table), one must fi rst delete those records using the course_id as a
foreign key from the StudentCourse table (child table). Fortunately, we have only one
child table related to our parent table in our sample database. Refer to Figure 2.5 in
Section 2.5 in Chapter 2 to get a clear relationship description among different data tables
in our sample database.

 From this discussion, it can be found that to delete a course record from our sample
database, two deleting queries need to be performed: the fi rst query is used to delete the
related records from the child table or StudentCourse table, and the second query is used
to delete the target record from the parent table or the Course table. To save time and
space, as well for effi ciency, we place these two queries into a stored procedure named
WebDeleteCourseSP() that will be developed in the following section. A single input
parameter course_id is passed into this stored procedure as the primary key.

 Open this Web method and perform the modifi cations that are shown in Figure 9.167
to this Web method. All modifi ed parts have been highlighted in bold.

 Let ’ s take a closer look at this piece of modifi ed codes to see how it works.

A. Change the name of this Web method from SQLDeleteSP to OracleDeleteSP and change
the returned data type from SQLBase to OracleBase .

B. The content of the query string is equal to the name of the stored procedure we will
develop soon. Change the name of the stored procedure from dbo.WebDeleteCourseSP
to WebDeleteCourseSP .

C. Change the prefi x from Sql to Oracle for all data classes and from sql to ora for all data
objects used in this method. Also, change the name of the returned instance from SQLResult
to OracleResult . Change the fi rst member data from SQLOK to OracleOK .

c09.indd 849c09.indd 849 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

850 Chapter 9 ASP.NET Web Services

D. Change the name of the subroutine from SQLConn to OracleConn . Change the second
member data from SQLError to OracleError .

E. Modify the nominal name for the input parameter to the stored procedure by removing
the @ symbol before the nominal name CourseID . Also, change the data type of this input
parameter from SqlDbType.Text to OracleDbType.VarChar .

F. Change the name of the returned instance from SQLResult to OracleResult , change the
second member data from SQLError to OracleError , and change the prefi x from sql to
ora for all data objects.

 Next, let ’ s build the Oracle stored procedure WebDeleteCourseSP().

9.12.7.1 Develop the Stored Procedure WebDeleteCourseSP

 The topic we are discussing in this section is to update and delete data against the data-
base, so no returned data is needed for these two data actions. Therefore, we only need
to create an Oracle stored procedure, not an Oracle package, to perform the data deleting
function.

 As we discussed in Section 5.20.7.1 in Chapter 5 , different methods can be used to
create Oracle ’ s stored procedures. In this section, we will use the Object Browser page
provided by Oracle Database 11g XE to create our stored procedures.

Figure 9.167. The modifi ed Web method OracleDeleteSP().

<WebMethod()> _
Public Function OracleDeleteSP(ByVal CourseID As String) As OracleBase

Dim cmdString As String = "WebDeleteCourseSP"
Dim oraConnection As New OracleConnection
Dim OracleResult As New OracleBase
Dim intDelete As Integer

OracleResult.OracleOK = True
oraConnection = OracleConn()

If oraConnection Is Nothing Then
OracleResult.OracleOK = False
OracleResult.OracleError = "Database connection is failed"

 ReportError(OracleResult)
Return Nothing

End If

Dim oraCommand = New OracleCommand(cmdString, oraConnection)
oraCommand.CommandType = CommandType.StoredProcedure
oraCommand.Parameters.Add("CourseID", OracleDbType.VarChar).Value = CourseID

 intDelete = oraCommand.ExecuteNonQuery()

If intDelete = 0 Then
OracleResult.OracleError = "Data deleting is failed"

 ReportError(OracleResult)
End If
oraConnection.Close()
oraCommand.Dispose()
oraCommand = Nothing
Return OracleResult

End Function

A
B
C

D

E

F

WebServiceOracleUpdateDelete OracleDeleteSP

c09.indd 850c09.indd 850 4/25/2012 7:32:04 PM4/25/2012 7:32:04 PM

9.12 Build ASP.NET Web Service to Update and Delete Data for the Oracle Database 851

 Open the Oracle Database 11g XE home page by going to start|All Programs|Oracle
Database 11g Express Edition|Get Started items. Perform the following operations to
create this stored procedure:

1. Click on the APEX button to open the Login to APEX page.

2. Enter SYSTEM and reback into the Username and Password box to complete the login
process for the APEX.

3. Since we have already created our sample database CSE_DEPT in Chapter 2 , click on the
Already have an account? Login Here button.

4. Enter reback into the Password box and click on the Login button.

5. Click on the SQL Workshop icon to open this workshop window.

6. Click on the Object Browser icon and click on the drop - down arrow on the Create button,
and select the Procedure item to open the Create Procedure wizard.

7. Enter WebDeleteCourseSP into the Procedure Name box and keep the Include
Arguments checkbox checked, and click on the Next button to go to the next page.

8. The next wizard is used to allow us to enter input parameters. For this stored procedure,
we need to perform two queries: fi rst, we need to delete any related course records from
the child table — StudentCourse table — and, secondly, we can delete the target course
record from the parent table — Course table — based on the input course_id . Only one
input parameter CourseID is needed for this stored procedure.

9. Enter this input parameter into the argument box. The point is that the data type of this
input parameter must be identical with the data type of the data column course_id in the
Course table. Refer to Section 2.11.5 in Chapter 2 to get a detailed list of data types used
for those data columns in the Course data table.

10. For the Input/Output selection of the parameters, select IN for this input parameter, since
no output is needed for this data deleting query.

 Your fi nished argument list should match one that is shown in Figure 9.168 .
 Click on the Next button to go to the procedure - defi ning page. Enter the codes that

are shown in Figure 9.169 into this new procedure as the body of the procedure using the

Figure 9.168. The argument list wizard.

c09.indd 851c09.indd 851 4/25/2012 7:32:05 PM4/25/2012 7:32:05 PM

852 Chapter 9 ASP.NET Web Services

language of so - called Procedural Language Extension for SQL or PL - SQL. Then click on
the Next and then the Finish buttons to confi rm creating this procedure. Your fi nished
stored procedure body should match one that is shown in Figure 9.170 .

 Two queries are included in this procedure. The fi rst query is used to delete the related
course records from the child table (StudentCourse table), and the second query is to
delete the target course record from the parent table (Course table). A semicolon must
be attached after each PL - SQL statement.

 To make sure that this procedure works properly, we need to compile it fi rst. Click
on the Save & Compile button to compile and check our procedure. A successful com-
pilation message should be displayed if our procedure is a bug - free stored procedure.

 Close the Oracle Database 11g Express Edition by clicking the Close button.
 At this point, we have fi nished all modifi cations to our new Web service project

WebServiceOracleUpdateDelete . Now it is the time for us to run this project to test
the data updating and deleting functionalities.

 Click on the Start Debugging button to run the project. First, let ’ s test the Web
method OracleUpdateSP() to update a course record CSE-575 against our sample data-
base. To do that, let ’ s fi rst check the original detailed information of this course by running
the Web method GetOracleCourseDetail() by clicking on it from the opened built - in
Web interface. On the opened parameter - input page, enter CSE-575 into the Value box
as the course_id and click on the Invoke button to retrieve the detailed information for
this course. The running result of this method is shown in Figure 9.171 .

Figure 9.169. The coding body of the stored procedure.

DELETE FROM StudentCourse WHERE course_id = CourseID;

DELETE FROM Course WHERE course_id = CourseID;

Figure 9.170. The completed coding body of the stored procedure.

c09.indd 852c09.indd 852 4/25/2012 7:32:05 PM4/25/2012 7:32:05 PM

9.12 Build ASP.NET Web Service to Update and Delete Data for the Oracle Database 853

Figure 9.171. The running result of the Web method GetOracleCourseDetail().

 Try to remember the detailed information for this course, and let ’ s now try to update
this course by running the Web method OracleUpdateSP() . To do that, close the current
running result page and click on the Back arrow on the top of this page to return to the
initial Web page. Click on the Web method OracleUpdateSP to open its parameter - input
page. Enter the updating course information that is shown in Figure 9.172 into the associ-
ated Value boxes.

 Click on the Invoke button to run this method. From the running result window, it
can be found that the member data OracleOK is true , which means that this data updat-
ing is successful. Close the running result wizard.

 To confi rm this course updating, click on the Back arrow to return to the initial page
and click on the Web method GetOracleCourseDetail to try to get back the detailed
information for this updated course to validate this data updating. Enter CSE-575 into
the CourseID box, and click on the Invoke button to run this method. The running result
of this method is shown in Figure 9.173 .

 Compare this running result with the one that is shown in Figure 9.171 ; it can be
found that this course has been updated.

 Close the current running result wizard and click the Back arrow to return to the
initial page. Next, let ’ s test the Web method OracleDeleteSP() .

 Click on this method and enter a course_id that you want to delete, such as CSE-575 ,
into the CourseID Value box, and click on the Invoke button to perform this data delet-
ing. It can be found from the running result that the member data OracleOK is true ,
which means that this data deleting is successful. Close the running result wizard.

 To confi rm this data deleting, let ’ s run the Web method GetOracleCourse() to
retrieve all courses taught by the selected faculty. Recall that the course CSE-575 was
taught by the faculty member Ying Bai . In the initial Web page, click on this method to
run it. Enter the faculty name Ying Bai into the FacultyName box, and click on the
Invoke button to run this Web method. The running result is shown in Figure 9.174 .

 From this running result, it can be found that the course CSE-575 has been deleted
from the Course table successfully.

c09.indd 853c09.indd 853 4/25/2012 7:32:05 PM4/25/2012 7:32:05 PM

854 Chapter 9 ASP.NET Web Services

Figure 9.173. The running result of the Web method GetOracleCourseDetail().

Figure 9.172. The parameter - input page.

c09.indd 854c09.indd 854 4/25/2012 7:32:05 PM4/25/2012 7:32:05 PM

9.13 Build Web Service Client Projects to Consume the Web Service 855

 At this point, we fi nished testing all Web methods we developed in this Web service
project. A complete Web service project WebServiceOracleUpdateDelete can be found
in the folder DBProjects\Chapter 9 that is located at the Wiley ftp site (refer to Figure
 1.2 in Chapter 1).

9.13 BUILD WEB SERVICE CLIENT PROJECTS TO CONSUME
THE WEB SERVICE

 To consume this Web service project, one can develop either a Windows - based or a Web -
 based Web service client project. In fact, there is no signifi cant difference between build-
ing a client project to consume a Web service to access the Oracle database and building
a client project to consume a Web service to access the SQL Server database. For example,
you can use any client projects, such as either WinClientSQLUpdateDelete or
WebClientSQLUpdateDelete , which we developed in the previous sections, to consume
this Web service project WebServiceOracleUpdateDelete with small modifi cations. The

Figure 9.174. The running result of the Web method GetOracleCourse().

c09.indd 855c09.indd 855 4/25/2012 7:32:05 PM4/25/2012 7:32:05 PM

856 Chapter 9 ASP.NET Web Services

main modifi cation is to replace the Web Reference with a new Web Reference class that
is our newly developed Web service WebServiceOracleUpdateDelete .

 Follow the modifi cation steps below to complete these changes.

1. Remove the old Web reference from the Windows - based or Web - based client project. You
need to fi rst delete the Web Reference object, and then you can delete the Web_Reference
folder from the current project.

2. Add a new Web reference using the Add Web Reference wizard. Run the desired Web
service project, copy the URL from that running Web service project, and paste it to the
URL box in the Add Web Reference wizard in the client project.

3. Change the Web reference name for all data components used in the client project.

4. Remove the namespace for the SQL Server Data Provider from the top of each page.

5. Change the name of the base class located in the Web reference.

6. Change the names of all Web methods located in the Web reference.

 Two completed client projects, WinClientOracleUpdateDelete , which is Windows -
 based, and WebClientOracleUpdateDelete , which is Web - based, can be found in the
folder DBProjects\Chapter 9 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1).

9.14 CHAPTER SUMMARY

 A detailed discussion and analysis about the structure and components of the Web ser-
vices is provided in this chapter. Unlike the ASP.NET Web applications in which the user
needs to access the Web server through the client browser by sending requests to the
server to obtain the desired information, the ASP.NET Web Services provide an auto-
matic way to search, identify, and return the desired information required by the user
through a set of methods installed in the Web server, and those methods can be accessed
by a computer program, not the user, via the Internet. Another important difference
between the ASP.NET Web applications and ASP.NET Web services is that the latter do
not provide any GUIs, and users need to create those GUIs themselves to access the Web
services via the Internet.

 Two popular databases, SQL Server and Oracle, are discussed and used for three
pairs of example Web service projects, which include:

 • WebServiceSQLSelect and WebServiceOracleSelect

 • WebServiceSQLInsert and WebServiceOracleInsert

 • WebServiceSQLUpdateDelete and WebServiceOracleUpdateDelete

 Each Web service contains different Web methods that can be used to access different
databases and perform the desired data actions, such as Select , Insert , Update , and
Delete via the Internet.

 To consume those Web services, different Web service client projects are also devel-
oped in this chapter. Both Windows - based and Web - based Web service client projects are
discussed and built for each kind of Web service listed above. In total, 18 projects, includ-
ing the Web service projects and the associated Web service client projects, are developed

c09.indd 856c09.indd 856 4/25/2012 7:32:05 PM4/25/2012 7:32:05 PM

Homework 857

in this chapter. All projects have been debugged and tested and can be run in any
Windows operating systems, such as Windows 2000, Windows XP, Windows Vista, Windows
7, and Windows 8.

HOMEWORK

I. True/False Selections

 ____ 1. Web services can be considered as a set of methods installed in a Web server and can be
called by computer programs installed on the clients through the Internet.

 ____ 2. Web services do not require the use of browsers or HTML, and, therefore, Web services are
sometimes called application services .

 ____ 3. XML is a text - based data storage language, and it uses a series of tags to defi ne and store
data.

 ____ 4. SOAP is an XML - based communication protocol used for communications between differ-
ent applications. Therefore, SOAP is a platform - dependent and language - dependent
protocol.

 ____ 5. WSDL is an XML - based language for describing Web services and how to access them. In
WSDL terminology, each Web service is defi ned as an abstract endpoint or a Port, and each
Web method is defi ned as an abstract operation.

 ____ 6. UDDI is an XML - based directory for businesses to list themselves on the Internet, and the
goal of this directory is to enable companies to fi nd one another on the Web and make their
systems interoperable for e - commerce.

 ____ 7. The code - behind page is the most important fi le in a Web service since all Visual Basic.NET
codes related to build a Web service are located in this page, and our major coding develop-
ment will be concentrated on this page.

 ____ 8. The names and identifi ers used in the SOAP message can be identical; in other words, those
names and identifi ers can be the same name and identifi er used by any other message.

 ____ 9. A single Web service can contain multiple different Web methods.

 ___ 10. You do not need to deploy a Web service to the development server if you use that service
locally in your computer, but you must deploy it to a production server if you want other
users to access your Web service from the Internet.

II. Multiple Choices

1. A Web service is used to effectively _________ the target information required by computer
programs.

a. Find
b. Find, identify, and return
c. Identify
d. Return

2. The four fundamental components of a Web service are ________.

a. IIS, Internet, Client, and Server
b. Endpoint, Port, Operation, and types
c. .asmx, web.confi g, .asmx.vb, and Web_Reference
d. XML, SOAP, WSDL, and UDDI

c09.indd 857c09.indd 857 4/25/2012 7:32:05 PM4/25/2012 7:32:05 PM

858 Chapter 9 ASP.NET Web Services

3. The XML is used to ________ the data to be transferred between applications.
a. Tag
b. Rebuild
c. Receive
d. Interpreter

4. SOAP is used to __________ the data tagged in the XML format into the messages represented
in the SOAP protocol.
a. Organize
b. Build
c. Wrap and pack
d. Send

5. WSDL is used to map a concrete network protocol and message format to an abstract endpoint,
and ________ the Web services available in a WSDL document format.
a. Illustrate
b. Describe
c. Provide
d. Check

6. UDDI is used to ________ all Web services that are available to users and businesses.
a. List
b. Display
c. Both a and b
d. None of above

7. Unlike Web - based applications, a Web service project does not provide a ________.
a. Start Page
b. Confi guration fi le
c. Code - behind page
d. Graphic User Interface

8. Each Web service must be located at a unique ________ in order to allow users to access it.
a. Computer
b. Server
c. SOAP fi le in a server
d. Namespace in a server

9. To consume a Web service by either a Windows - based or a Web - based client project, the pre-
requisite job is to add a _______ into the client project.

a. Connection
b. Web Reference
c. Reference
d. Proxy class

10. The running result of a Web service is represented by a(n) _______ format since each Web
service does not provide a graphic user interface (GUI).

a. XML
b. HTTP
c. HTML
d. Java scripts

c09.indd 858c09.indd 858 4/25/2012 7:32:05 PM4/25/2012 7:32:05 PM

Homework 859

III. Exercises

1. Write a paragraph to answer and explain the following questions:

a. What is ASP.NET Web service?
b. What are main components of the ASP.NET Web service?
c. How an ASP.NET Web service is executed?

2. Suppose we have a Web service project and the main service page contains the following
statement:

< %@ WebService Language = “ vb ” CodeBehind = “ ~ /App_Code/testWeb.vb ” Class = “ testWeb ” % >

 Answer the following questions:

a. What is the name of this Web service?
b. What are the name and the location of the code - behind page of this Web service?
c. Is the content of this page related to the WSDL fi le of this Web service?

3. Suppose we have developed a Web service named WebServiceSQLSelect with a Web method
GetSQLStudent() that has an input parameter student_name and returns six pieces of student
information, such as student_id , gpa , credits , major , schoolYear , and email . Please list steps
to develop a Windows - based client project to consume that Web service.

4. Add the Web method GetSQLStudent() in question 3 into our Web service project
WebServiceSQLSelect and develop the codes to that method to perform the data query for
the Student via our sample SQL Server database CSE_DEPT. The project fi le can be found in
the folder DBProjects\Chapter 9 that is located at the Wiley ftp site (refer to Figure 1.2 in
Chapter 1).

5. Develop a Windows - based Web service client project WinClientSQLStudent to consume the
Web service developed in question 4, exactly to consume the new Web method GetSQLStudent() .

Hints: Refer to project WinClientSQLSelect that can be found in the folder DBProjects\
Chapter 9 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1). In fact, you can
add some controls to the main form window and the codes to the associated event procedures
in that project to complete this job.

6. Develop a Web - based Web service client project WebClientSQLStudent to consume the Web
service developed in question 4, exactly to consume the new Web method GetSQLStudent() .

Hints: Refer to project WinClientSQLSelect that can be found in the folder DBProjects\
Chapter 9 that is located at the Wiley ftp site (refer to Figure 1.2 in Chapter 1). In fact, you can
add some controls to the main form window and the codes to the associated event procedures
in that project to complete this job.

c09.indd 859c09.indd 859 4/25/2012 7:32:05 PM4/25/2012 7:32:05 PM

Practical Database Programming with Visual Basic.NET, Second Edition. Ying Bai.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.

860

.NET Framework Collection Classes, 422

.NET Framework Data Provider, 253
<Extension()> Keyword, 231

A
AcceptCondition, 126
AcceptButtonproperty, 260
AcceptChanges(), 195
AccessSelectRTObject, 314–315, 329–330, 345, 349,

353, 379, 388, 395, 417
Active ServiceMethod fi le, 660
ActiveServer Page.NET, 560
ActiveX Data Object (ADO), 96
AddColumn, 68, 76
AddConnectiondialog, 190–191, 201, 307, 373
AddExistingItem, 750, 794
AddNewStoredProcedure, 375, 380
AddProceduredialog, 380
Add Query, 196
Add Reference, 462
Add Table, 296
Add Web Reference, 693–694, 705, 734, 735, 751, 785,

795, 821, 858
Add() Method, 106–108, 145, 218, 319, 322, 423–424,

449, 491, 502, 600, 645
Address Bar, 694, 704, 734, 750, 785
AddWithValue() Methods, 107
ADO.NET 3.5 Framework, 92
ADO.NET Common Language Runtime, 92
AllCells, 269
ALTERTABLE Command, 87
Alternate Keys, 17
ANSI 92 Standard, 364, 826
ANSI89 Standard, 722
Applicationstate, 560, 570, 577, 582, 584, 592, 599,

605–606, 617, 624, 630–633, 635–636, 638, 644–645,
647, 655, 706, 755–757

Application User Interfaces, 421, 499
Application.Exit(), 286, 323, 359, 392
AsEnumerable, 153–154, 179, 184, 186, 187–188, 194–

196, 238, 326, 348–349, 457
AsEnumerable(), 154, 186–188, 195–196, 238, 326,

348–349, 457

Index

asmx, 562, 661, 664–665, 669–672, 675, 686, 693, 712,
716, 722, 724, 731, 733, 764, 778–781, 783, 805–806,
818, 822, 836, 839–840, 859

ASP.NET, 560
ASP.NET Runtime, 672, 685
ASP.NET Web Application, 560–563, 566, 567, 570,

584, 653, 655–656, 703, 749
ASP.NET Web Forms, 565
ASP.NET Web Service, 666, 705, 845
ASP+, 660
Assembly Information, 421, 785
Attribute (XName), 221
Attributes, 16, 21, 23, 28, 30, 133, 216, 220–222, 230,

564, 660, 664–665, 669, 722
AutoPostBack Property, 560, 583, 590, 591, 752, 755
AutoSizeColumns Mode, 269
AutoSizeRows Mode, 269

B
BinFigure, 222, 224, 502
Bind ListBox, 298
Binding Navigator, 119, 246–247, 249, 259, 269, 311,

415
BandingSource, 119, 149, 242, 246–247, 249–250, 259,

269, 273–274, 276–278, 287, 299, 311, 414–416, 420,
498

Bitmap Indexes, 35
BorderStyle Property, 263
B-Tree, 29, 33, 35
BuildCommand(), 342, 344–345, 378, 383, 460, 469,

470, 521, 525
Built-in Web Interface, 680, 685, 687, 692, 695, 705,

718, 722–723, 728, 733, 735, 778, 785, 817, 819, 834,
837, 853

C
C# Web Services, 659
Caching, 94, 166, 213
Candidate Key, 17
Cardinality, 16, 35
Cascade Deleting, 611
Cascade Option, 611–612
Cast(), 172

bindex.indd 860bindex.indd 860 4/25/2012 7:31:45 PM4/25/2012 7:31:45 PM

Index 861

Cast(Of TResult)(IQueryable), 153
CDATA, 217
CenterScreen, 137, 259–260, 263, 736
ChangeData Source, 267, 307
Child Class, 199, 661, 670, 676–677, 685, 687, 699, 707,

716
Class Libraries, 560
Clear Method, 120, 122
ClearBeforeFill Property, 290
ClientServer Databases, 28
Close() Method, 101, 321, 577, 697, 709, 739
Clustered Index, 29
Clustered Table, 33
Code Illustrations, 562
Code Window, 96, 144, 170, 173, 176, 182, 184, 187,

191, 198, 203, 225, 270, 285, 289, 293, 300, 316, 317,
323, 341, 354, 355, 383, 384, 388, 389, 437, 454, 459,
462, 463, 474, 486, 522, 526, 551, 569, 592, 621, 629,
697, 700, 718, 783

Code-behind Page, 562, 568–569, 660, 669, 674, 679–
680, 682, 688, 690, 718, 721, 731, 765, 771, 807, 823,
859, 861

Column Scollection, 124–125, 128
Column Scollections, 123
ComboMethod, 753
ComboBox Control, 243, 245
Command Class, 103, 105, 107, 109, 110, 148, 346, 378,

407, 415, 447, 476, 493, 514–515, 518, 556, 571, 594,
617, 717, 732

Command Console, 561
Command Execution, 94, 495
Command Object, 4, 93, 95, 102–104, 106–110, 113,

116, 123, 145, 147–149, 185, 186, 193, 314, 319–320,
325, 327, 333, 342, 356, 364, 371–372, 377–378, 383,
384, 390, 395, 407–410, 414, 418–419, 443, 475–476,
492, 495, 513, 515, 518, 531, 540–541, 557–558, 571,
584, 596, 599, 616–617, 638, 645, 647, 681–682, 689,
691, 718, 722–728, 731–732, 767, 770, 772, 816, 831,
848–849

CommandText Property, 104, 122, 145, 371, 476, 495,
558, 616, 726, 728

CommandType Property, 104, 371, 383, 413, 495, 531,
540, 541, 557, 617, 689, 732

CommandType.StoredProcedure, 371, 377, 378, 406,
476, 487, 495, 531, 541, 557, 558, 617, 647, 689, 718,
731, 765, 769, 771, 830, 848, 850

Common Language Runtime, 654
Compile Directive, 669–670
Component Object Model, 91
Composite Key, 16
Confi guration Files, 562
Confi guration Manager class, 679
Connection Class, 99, 101–102
Connection Instance, 99–100, 316, 351, 354, 359, 592
Connection Object, 93
Connection Property, 104, 122, 617

Connection String, 99–101, 133, 140, 144–147, 185,
187, 189, 193, 203, 254, 268, 308–309, 317, 325,
350–355, 364, 367, 386–389, 441, 454, 463, 521–522,
550, 570, 594, 621, 629–630, 678–681, 804–806, 808,
821–822, 824, 839–840

ConnectionState.Open, 101, 317, 324, 332, 360,
362, 368, 392, 396, 455, 456, 459, 464, 466, 469,
570, 577, 582, 592, 630, 632, 634, 656, 679, 681,
824, 842

Connectivity, 94
Console.ReadLine(), 203
Console.WriteLine(), 170, 172–173, 177, 192, 194, 196,

205
Constraint Name, 650
Constraint Property, 650
Constraint Type, 99, 650
ControlToValidate, 573, 574
Count, 73, 83, 164, 171–172, 180, 184, 279, 290, 301,

319, 325, 333, 335, 336, 344, 378, 390, 407, 410, 414,
433, 545, 597, 650, 835

Count Property, 290, 301, 319, 333, 344, 378, 390, 407,
410

Createor Replace, 404, 485, 545, 812, 814, 832
Create Package, 400–401, 810–812
Create Procedure, 482–483, 843, 851
Creation Wizard, 87, 92
CURSOR_TYPE, 399, 402, 403, 811–812, 814–815,

832
Custom Stored Procedures, 369

D
Data Access Objects, 91
Data Actions, 4, 6, 114, 198, 201, 216, 263, 440–443,

494–495, 499, 512–513, 550, 576, 582, 621, 626, 738,
785, 842

DataBindings Property, 275, 277, 286, 299
Data Connections, 99, 312
Data Consistency, 14
Data Deleting Query, 500
Data Files, 14, 32, 31, 36
Data Independence, 14
Data Insertion Methods, 425
Data Model, 10, 12, 16, 129, 131, 168
Data Provider Classes, 468
DataProvider-Dependent Objects, 359
Data Query, 95, 103, 107, 110, 112, 119, 147–149, 162,

234, 242, 255, 257, 260, 263, 272, 288, 294, 302, 304,
310, 315, 318–319, 321–325, 332, 333, 337, 342, 344,
354, 356, 357–358, 360, 368, 379, 384, 389, 390, 392,
393, 396, 397, 411–418, 444, 450, 471, 494, 496, 499,
514, 557, 559, 583, 591, 592, 613, 626, 678, 682, 684,
685, 687–689, 691, 692, 695–698, 701, 703, 706, 709,
721, 722, 731, 767–770, 804, 809, 815, 821, 839, 845

Data Redundancy, 14
Data Selection, 203, 620
Data Sharing, 14

bindex.indd 861bindex.indd 861 4/25/2012 7:31:45 PM4/25/2012 7:31:45 PM

862 Index

DataSource Confi guration, 250, 252, 253, 266, 267,
268, 309

DataSource Parameter, 387
DataSource Wizard, 253
Data Tool, 71
Data Type, 105
Data Updating Query, 205
Data Validation, 421, 423, 425, 429, 444–446, 461, 474,

480, 491, 499, 516, 573, 574, 606, 641, 726, 736, 739,
746, 749, 763, 786

Data Adapter Class, 112–114, 186, 691
DataApapter.Update(), 513
Database Alias, 352, 386
Database Connectivity, 96, 562
Database Design, 10, 16, 19, 21
Database Development Process, 16, 93
Database Management Programs, 10
Database Management Systems, 12
Database Parameters, 100
Database Processing, 16
Database Programs, 1, 2, 12
Database Technology, 10, 386
Database Versions, 4
DataBindings Property, 276
DataColumn, 118, 123–125, 127, 128, 148, 195, 196,

327, 338, 346, 347, 415
DataColumn Objects, 118
DataColumn Collection, 123
Data Connector, 250
DataContext Class, 198–199, 203, 240, 550, 620, 621,

624–626
Data-driven Projects, 384
Data GridView, 119, 242, 246, 247, 249, 259, 269, 270,

272, 413
DataReader, 126
DataReader Method, 315, 321, 325, 335, 337, 364,

389, 407, 410, 417
DataReader Object, 94, 95, 115, 118, 147, 314, 320,

325, 357, 371, 383, 390, 571, 584, 586, 594, 597, 683,
684, 722

Data Relation, 117, 118, 148, 247
DataRow, 113, 118, 121, 123–128, 148, 179, 180, 192–

197, 205, 207, 327, 338, 346, 347, 415, 420, 430–433,
496, 497, 505–507, 699, 700, 745, 758

DataRow Object, 124–125, 431–432, 505
DataRow Collection, 125, 148, 415, 495, 604
DataRow Extensions, 166, 192, 196
DataRow State, 126
DataSet Class, 94, 114, 118–121, 247, 707
DataSet Component, 117
DataSet Designer, 119, 189, 190, 256, 257, 270, 272,

281, 288, 296, 301, 420, 498
DataSet Events, 121
DataSet Object, 124
DataSet-DataAdapter, 313, 443, 513
DataSet Name, 120

DataSet-TableAdapter, 315
DataSource, 249
DataTable Class, 118, 123–127, 148, 184, 196, 324, 327,

699
DataTable Components, 93
DataTable Object, 94–95, 123–125, 147, 148, 193, 196,

314, 327, 336, 413, 414
DataTable Extensions, 166, 192, 196
DataView, 123–124
dBase, 10
DBDirect Method, 425–427, 496, 498, 499, 503, 506,

556
DBML File, 199
DbType Property, 104–105, 829
Delete Rule Item, 655
Delete Command, 4, 94, 103, 112, 146, 314, 419, 420,

443, 497, 513, 555
Design View, 36, 52, 78
DialogResult, 506–507, 517–518, 531, 541
Direction Property, 407
Disconnected Working Mode, 418
Discovery Map File, 703, 749
DisplayMember Property, 298
Dispose() Method, 102
Disposed Event, 121
Domain Indexes, 35
Drop Column, 69
DropDownList Control, 752
DropDownStyle, 260, 262, 264
Dynamic Parameters, 106–107, 274, 358, 389–391,

413, 630, 804, 821, 823, 839, 841
Dynamic Query, 272, 274

E
Edit DataSet With Designer, 272, 281, 296
Edit Relationships, 43
ElementAt, 153, 158
ElementAtDefault(Of TSource), 158
Endpoint, 658–659, 662–663, 665, 859–860
Enforce Referential Integrity, 17
Enterprise Edition, 385–386
Enterprise ManagerWizard, 370
Entity Data Model, 137–138, 140, 143, 168
Entity Framework, 92, 128–133, 137–138, 210–211,

213–214
Entity Integrity Rule, 16, 88
Entity-Relationship Diagrams, 16
Entity-Relationship Model, 12
ER Diagram, 16
ER Notation, 20
Error Message, 8, 45, 301, 318, 324, 325, 332–333,

335–336, 342, 344, 356, 372, 378, 384, 389–390, 407,
518, 684, 691, 707, 741, 748, 757, 760, 767–768, 770,
772, 800

ExecuteNonQuery, 4, 95, 110, 111, 123, 146, 314,
371, 418–419, 443, 447, 449, 458, 468, 475–476, 487,

bindex.indd 862bindex.indd 862 4/25/2012 7:31:45 PM4/25/2012 7:31:45 PM

Index 863

492–493, 497, 505, 513–518, 531, 540–541, 555–556,
558, 599, 606–607, 617, 637–638, 645, 647, 648, 717–
718, 726–728, 765, 767, 771, 772, 828, 841, 850

ExecuteReader() Method, 95, 97, 110, 145, 148, 314,
320, 358, 367, 371, 384, 391, 395, 407, 410, 571, 584,
594, 596, 682, 722, 732, 768, 770

ExecuteScalar Method, 111
ExitSub, 101, 204, 279, 283, 290, 301, 317, 324, 332,

360, 362, 368, 377, 396, 424, 428, 431, 433, 446, 447,
455, 458, 464, 468, 475, 476, 487, 503, 504, 506, 507,
516, 517, 531, 540, 541, 570, 599, 606, 617, 630, 637,
645, 647, 743, 748, 756, 759, 789, 798

Extension Methods, 196, 225, 227, 229, 238, 239

F
Field Name, 38, 36
Field Properties, 38, 40
Field Size, 40
Field(), 189, 192, 193
FieldCount Property, 117
File Processing System, 12
File Server Databases, 28
File System, 175
FileNotFound Exception, 175
Fill() Method, 122, 186, 187, 193, 250, 255, 270, 274,

292, 296, 297, 302, 319, 320, 325, 333, 344, 364, 371,
372, 378, 384, 395, 407, 410, 414, 415, 493, 556, 691

FillFacultyReader, 328, 362, 394, 395, 586, 684
FillSchema Method, 113
First Normal Form, 21
FirstOrDefault, 159
Fixed Single, 263
Foreign Key, 134
Form_Load() Event Procedure, 247, 270, 284, 341,

359, 469, 502, 550, 569, 570
FrontPage 2002 Server Extensions, 565
FrontPage Server Extension 2000, 6, 565, 653
FullTable View, 269

G
GetData() Methods, 270
GetEnumerator, 156–158, 222, 234
GetFileText(), 177
GetOracleString, 826, 847
GetSQLInsertCourse, 731, 748, 759, 769, 829
GetString, 116, 594, 684
GetTypes(), 178
Global.asaxfi le, 562, 655
GroupBy, 281
GroupJoin, 155, 186

H
HasChanges, 121
HasErrors, 120
HasRows Property, 117, 320, 325, 335, 584, 594, 596,

683, 684, 722, 732

Hide() Method, 280
HTTPPOST, 673, 686, 720, 724, 729, 778, 780, 834,

836, 855
HTTP Protocol, 658
HttpApplication, 562
HttpApplicationState Class, 570
HttpContext Class, 570
HttpModules, 562
Hypertext Transfer Protocol, 658

I
IBM DB2, 10
IEnumerable, 4, 150–162, 164, 165, 169, 170–174, 176–

177, 179, 181, 183, 184, 186–188, 194–197, 217, 220,
222–224, 229, 233, 235–239, 348, 491

IEnumerable(Of int), 150
IIS Manager, 712
IIS Virtual Directory, 664
Image Properties, 376
Image.FromFile, 433, 451, 701
ImageUrl, 585, 601, 623, 640
Implementation Phase, 18
ImportRow, 126
Imports System.Data, 144, 185, 188, 192, 194–195,

203–204, 316–317, 324, 332, 341, 355, 362, 368, 388,
396, 454, 455, 522, 550, 569, 570, 576, 582, 591, 592,
620, 621, 629, 630, 632, 634, 679, 683, 706, 739, 753,
786, 796, 841

Index Organized Tables, 33
IndexOutOfRange Exception, 118
Initialization Parameter Files, 35
Initialized Event, 121
Inner Join Method, 364
InsertCommand, 94, 103, 146, 314, 420, 443, 447, 458,

468, 495, 513, 557, 727, 728, 828
InsertOnSubmit(), 206
Integrated Security, 101
Integrated Database Approach, 12, 14, 16, 93, 94
Integrated Databases, 12
Internet Information Services, 6, 565, 661
Invalid Operation Error, 318
Invoke Button, 671, 675, 680, 685, 689, 692, 723, 729,

777, 779, 781, 817–818, 832, 834, 854
IQueryable, 4, 150–153, 157–158, 161–162, 184, 197,

212–214, 233, 236–239, 491
IS Operator, 832
IsClosed, 116
IsDBNull, 116
IsDigit(), 172
IsPostBack, 656
Item Property, 586

J
Java Web Services, 659
Javascript Alert() Method, 571
Join, 30, 43, 153–155, 180, 182, 186–188, 235, 363

bindex.indd 863bindex.indd 863 4/25/2012 7:31:45 PM4/25/2012 7:31:45 PM

864 Index

Joint Engine, 28
Just-In-Time Compiler, 560

K
Key Parameter, 424
Keys Folder, 54, 59, 61, 65, 611
KeyValuePair Structure, 423

L
LIKE Operator, 470
ListBox, 525
LoadDataRow, 126
Local File System, 667
Local Host, 565
Logical Design, 16
LogIn Form, 243, 259–260, 280, 283, 307, 315, 353,

522, 567
LogIn Page, 577, 630
LoginTableAdapter, 243
Login Web Form, 569, 573, 574

M
Many-To-Many Relationship, 19–20, 90
MapFacultyTable(), 327–329, 584, 586, 709
Max, 164, 180, 182, 184
Me.Close(), 291, 395, 553
Merge Methods, 120
Merge Failed Event, 121
MessageBox, 280
Microsoft Access, 2, 4, 10, 12, 28, 30, 43, 50, 52, 71, 74,

93, 97, 98, 102, 118, 146, 161, 185, 187, 190, 191, 193,
246, 247, 252–254, 266, 315, 317, 349, 356, 359, 389,
413, 453, 455–456, 458–459, 461–462, 492, 512, 556,
565

Microsoft Intermediate Language, 560, 655
Microsoft ODBC, 97, 253–254, 307
Microsoft SQL Server, 566
Microsoft.Jet.OLEDB.4.0, 98
MissingSchemaAction, 113, 123
MsgBox, 679–681, 698–699, 709, 740, 743,

744, 748, 754, 756, 759–770, 782, 787–790,
824, 842

N
Named Parameter Mapping, 107
Namespace Attribute, 670
Nested Stored Procedures, 6
Network Identifi cation Tab, 356
newConnection, 314, 443, 513
New Database Dialog, 46
NewRow, 123, 126–128
Nonclustered Indexes, 29
Normal Forms, 21
NotNull, 68
NVARCHAR, 48, 50, 52, 143, 532

O
ObjectBrowser, 64, 66, 68, 84, 400, 487, 541, 544, 545,

549, 649, 651, 814, 831, 832, 835, 843, 850, 851
Object Explorer, 46, 50, 52, 48, 52, 59, 61, 65
Object Relational Designer, 168, 197, 200, 203, 550
Object Tool, 71
Object Query, 210–214
ODBC Data Provider, 96–97, 105, 146
ODBC Databases, 100
ODBC.NET, 96–97
OdbcCommand, 103, 110, 112
OdbcDataAdapter, 112
OdbcDataReader, 110, 115
OfType, 150, 153, 156, 170
OLE DB.NET Data Provider, 98
OleDb, 100
OLEDB Connection, 101
OleDb Namespace, 97, 453
OLEDB.NET, 96–98
OleDbCommand, 97, 103, 110, 112, 188, 194–195, 318,

320, 326, 337, 345, 413, 456, 457, 458, 459
OleDb Connection, 454
OleDb Connection Classes., 316
OleDb DataAdapter, 97, 112, 185, 188, 194–195, 318,

326, 337, 413, 456–458
OleDb DataReader, 320
OleDbException, 101–102, 317
OleDbType, 105–106, 318, 320, 326, 337, 459, 494, 557
ON clause, 469, 594
OnDeleteCascade, 650
One-To-Many Relationship, 19
One-To-One Relationship, 475, 597
Open Data Base Connectivity, 96
Open() Method, 101–102, 145, 185, 187, 193, 570
Oracle Database, 31, 67, 69, 71, 74, 93–95, 98, 147,

304, 306–307, 310, 350, 352–353, 388–393, 397,
400, 407, 416, 441, 453, 461–462, 464–466, 470–471,
480, 489, 493, 494, 496, 511, 520, 538, 541, 556–558,
565–566, 628–630, 633, 637, 641, 643–647, 649, 652,
666, 805, 807, 810, 819, 821, 829, 838, 839, 840, 842,
846

Oracle Client, 352
Oracle Data Provider, 350, 464
Oracle Database Connection, 100, 386
Oracle Database Environment, 397, 480
OracleParameter Objects, 831
OracleClient, 98
OracleCommand, 103, 110, 112, 391, 394, 395, 406,

409, 413, 465, 468, 487, 524, 525, 540–541, 631, 634,
637–638, 644–645, 647, 808, 825, 828, 830, 846, 848,
850

OracleCommand Object, 395
OracleConnection, 99, 101, 112, 352, 388, 413, 463–

464, 522, 630, 808, 824–825, 828, 830, 841–842, 846,
848, 850

bindex.indd 864bindex.indd 864 4/25/2012 7:31:45 PM4/25/2012 7:31:45 PM

Index 865

OracleConnection Class, 388
Oracle DataAdapter, 112, 394, 406, 409, 413, 465, 468,

828
OracleDataReader, 110, 115, 391, 394, 395, 406, 408–

410, 413, 466, 470, 525, 631, 632, 634, 636, 644, 809,
825–826, 830–831, 846–849

OracleParameter Objects, 390–391, 831, 848–849
OracleSelectRTObject, 314, 387–388, 417
OracleType.Char, 495, 558
OrderBy, 153, 156–157, 183, 222, 235
Outer join, 155
Output, 156

P
Package, 252, 397–405, 407, 417–478, 480, 541, 677,

810–812, 814–815, 831–832, 850
PageEvents, 66, 569
Parameter Classes, 103
Parameter Collection, 103
Parameter Mapping, 105
Parameter Object, 102, 104–107, 147–148, 371, 584
ParameterCollection Class, 107
Parameter Name, 107–108
Parameters Property, 104–105, 107, 148, 395
Partitioned Table, 31
Passing-Byre-Ference, 346
Passing-By-Value, 684
Password File, 31, 36
PasswordChar Property, 278
Perl Web Services, 659
Physical Design, 18, 93
PictureBox, 342, 245, 293
Port Type, 658
Positional Parameter Mapping, 105, 107
Precision, 79–80, 213
Primary Data Files, 32
Primary Key, 17, 25–26, 29, 37, 43, 48, 52, 69, 75–76,

84, 87, 93, 123–124, 206, 261, 363, 419, 454, 471,
495–496, 517, 537, 604, 651–652, 740, 765, 770, 790,
800, 849

Procedural Language Extension for SQL (PL-SQL),
403

Project|Assembly Files, 564
Project|DataSource, 287, 299
Project|Add Windows Form, 260
Property Page Wizard, 636
Provider Parameter, 351

Q
Query, 717
Query Analyzer, 370
Query Applications, 147
QueryBuilder, 273, 281–282, 288, 296–298, 311, 426–

427, 437–438, 497, 499, 500–501
QUERY DATA, 281

Query Method, 261–264, 295, 302–303, 331, 339–340,
342, 350, 368, 385, 411, 441, 478, 480, 489, 491, 502,
508–509, 526, 538, 548, 696, 702, 706, 710, 737, 747,
749

R
Read() Method, 329, 586
ReadAllText(), 177
ReadXml, 124, 126
Redirect() Method, 577, 587, 593
Redolog Files, 31, 36
Reference Table Column List, 85–86, 90–91, 651
Reference Table Name, 85–91, 651
Referential Integrity, 94
Referential Integrity Rules, 17
Regular Table, 31
RejectChanges, 126
Relational Data Model, 10
Relational Databases, 2, 4, 17, 94, 161, 169, 227, 604
Relation Scollection, 118
Remote Data 0bjects (RDOs), 96
Remote Procedure Call (RPC), 658
RemoveNodes(), 220
Rename Column, 69
Repeating Groups, 21
ReplaceNodes(), 219
Request Object, 571
RequiredFieldValidator, 573
Response Object, 571, 573, 577, 584, 587, 593, 707–

709, 754
RowChanged, 127
RowDeleted, 127
Rows Collection, 118, 124, 420
Rows.Count, 318, 326, 337, 357, 371, 377, 394, 406,

409, 456–457, 465
Run Stored Procedure Wizard, 473, 535, 613, 775
Run Without Debugging, 713
RunQuery(), 173
Runtime Object Method, 6, 413, 442, 493, 497,

514

S
Scale, 68, 69
Second Normal Form, 23
Secondary Data Files, 32
SelectCase Structure, 329
SELECT Statement, 105, 110–111, 113–114, 116,

122, 149, 270, 273–275, 281, 288, 292, 297, 302,
348–349, 389–390, 397–399, 414–415, 429, 436, 478,
500, 584

SelectCommand, 94, 103, 112, 114, 122, 146–147, 154,
185–188, 193–195, 314, 318–319, 326–327, 333, 336–
337, 342, 344, 356–357, 371, 377–378, 390, 394, 406–
407, 409–410, 443, 456–457, 465, 513, 690–691, 727–
728, 828

bindex.indd 865bindex.indd 865 4/25/2012 7:31:45 PM4/25/2012 7:31:45 PM

866 Index

SelectedindexChanged, 337, 340, 409, 459, 469–470,
521, 524–525, 590–591, 595, 597, 628, 633, 635, 750,
758–759, 786, 788–789, 794, 798

SelectionForm Class, 278
SelectMany, 157, 222
SelectWizardOracle Project, 307
Sequence Object, 75, 93
Server Explorer, 370
ServerName, 679
Service.asmx, 660
Set As StartPage, 621, 709, 761
SET Command, 812
SetAttribute(), 220
SetAttributeValue(), 221–222
SetElement(), 219–221
SetField(), 189, 192–194, 196
ShowFaculty(), 325, 329, 360, 395, 450, 451, 551, 584,

601, 623, 636, 639–640, 700–701, 707
Single(), 159, 194–195, 208, 553, 626
SingleOrDefault, 159, 208
SizeMode, 293, 377, 433
SOAP 1.2, 671
SOAP1.1, 671, 673, 686, 720
SOAP Interfaces, 693
SOAP Message, 658, 661, 859
SOAP Namespaces, 657
SOURCE CODE, 6
Source File, 567
SQL Commands Page, 397, 400
SQL Connection Object, 680
SQL Objects, 364
SQL Query, 105, 150, 152, 193, 197, 273, 497, 514, 555,

560, 571, 621
SQL Server Database, 31, 353, 414–415, 529, 630,

805
SQL Server Data Provider, 96, 104–106, 108, 110,

112, 121, 146, 354, 359, 367, 569, 594–595, 858
SQL Server Enterprise Manager, 370
SQL Server Management Studio Express, 397, 611,

615
SQL Statements, 281, 370, 398
SQL Stored Procedure, 414
SqlCommand Class, 114
SqlCommand Objects, 109
SqlConnection, 99, 101, 112, 114, 122, 145, 350–351,

413, 569
SqlConnection Objects, 112
SqlDataAdapter, 112
SqlDataAdapter Class, 114
SqlDataReader Class, 115
SqlDataReader Object, 112, 114, 122, 413, 447
sqlDataSet, 122
SqlDbType, 105, 494, 516, 557, 600, 683, 727, 769
SQLEXPRESS, 100, 101, 351
SQLMetal, 168, 197–198, 238, 492
SQL OLEDB Data Provider, 98

SqlParameter, 107
SqlParameter Object, 105
SQLSelectRTObject, 353–354, 382, 417, 444
SQLWebSelect, 587, 628, 704
Standard Query Operator, 152–153, 161, 169, 179–

180, 182, 197, 235
StartPosition, 137, 259–260, 263, 736
StartPosition Property, 137, 259–260
Static Parameter File, 35
StepInto Stored Procedure, 375
Stored Procedures, 28, 372, 374–376, 396–398, 414,

476, 480, 529, 541, 547, 555–556, 842, 850
Stretch Image, 377, 433
String.Empty, 541
Styleproperty, 578
StyleSheet, 568
SubmitChanges(), 205–208, 226, 491, 553, 624, 626
System Stored Procedures, 369
System.Collections.Generic, 150, 164, 183, 192, 204,

422, 423
System.Data.dll, 93
System.Data.Odbc, 96
System.Data.OleDb, 96–97, 185
System.Data.OracleClient, 96
System.Data.SqlClient, 96, 396
System.Drawing(), 586
System.Drawing.Image.FromFile, 377
System.Linq, 144, 150, 161, 164–165, 171, 178, 183,

185, 195, 204, 491
System.Web.Services, 660, 669–670, 679, 683, 717, 808,

841
System.Web.UI.WebControls.lmage, 586
System.Xml.dll, 93
Systems Development Life Cycle, 16

T
TableAdapter Confi guration Wizard, 272
TableAdapter DBDirect Method, 419
TableAdapter Method, 289, 294, 300, 303, 324, 326,

337, 360, 362, 394–396, 406, 426, 438, 455, 502
TableAdapter Query Confi guration Wizard, 296, 418,

425–426, 435–436, 438, 442, 494, 499, 556
TableAdapter.Delete(), 4, 419, 497, 494, 496, 505–506,

555–556
TableAdapter.Insert(), 4, 419–420, 427, 493, 496
TableAdapter.Update(), 419
Tables and Columns Dialog, 56, 61, 63
Table And Columns Specifi cation, 57
Target Location, 218
TextChanged Event Procedure, 430, 450, 636, 750,

794
Third Normal Form (3NF), 21
tnsnames.ora File, 352, 386
ToArray(), 160
ToArray (Of TSource), 160, 164
Toolbox Window, 241, 246

bindex.indd 866bindex.indd 866 4/25/2012 7:31:45 PM4/25/2012 7:31:45 PM

Index 867

ToString method, 113, 700
ToUpper(), 232
Transaction Log Files, 32
Transaction Logs, 31
Try. ... Catch Block, 102
tuples, 30
Typed DataSet, 119, 189, 191, 256, 700

U
UDDI, 659
UDDI File, 693
Untyped DataSet, 119
Update() Method, 4, 418–420, 425–426, 428, 430, 432,

443, 492–494, 497, 504–507, 513, 555–557
Update Command, 4, 94, 103, 112, 146, 419–420, 443,

497, 513, 555
Updating Query String, 606, 645
User-Defi ned Query, 272

V
Validate Data, 421–422, 445, 478, 489, 499, 737
Validate(), 504
Validation Controls, 573
Validation Tab, 573
Value Property, 319
ViewCode, 285, 289, 293, 315, 323, 331, 388, 454, 462,

550, 576, 738
ViewDesigner, 144, 274, 278, 285, 289, 297, 300, 302,

318, 320–321, 336, 357, 359, 389–390, 427, 430, 568,
576

Views, 14, 28, 32, 28, 62, 134, 136, 247, 255, 269, 400
Visual Basic Programmers, 96
VisualStudio 2005, 241
Visual Web Developer, 660

W
Web Application, 564
Web Confi guration File, 806
Web Services Description Language (WSDL), 657
Web Forms, 561–563, 654
Web Interfaces, 672
Web Methods, 4, 657–658, 661, 666, 671, 674, 677, 680,

690–692, 696, 701–702, 706, 710, 717–718, 726, 734,
738–740, 742, 747, 752, 754, 756, 759, 763, 765, 776–
777, 807, 821, 823, 837, 841, 856, 858, 859

Web Pages, 6, 560, 565, 620, 629, 654–655, 712
Web Reference, 692
Web Server, 4, 562, 564–565, 583, 653–654, 657–658,

667, 710, 712–713, 755, 858–859

Web Service Binding Attribute, 670
Web Service Class, 666, 674, 678, 690, 718, 801
Web Service Deployment, 712
Web Service Namespace, 672
Web Service Project, 670
Web Service Proxy Class, 692, 695, 705, 734, 736
Web Services, 657, 670
Web.confi g, 562, 568–569, 580, 665–667, 669, 671,

678–679, 713, 804, 806, 821–822, 839–840
Web-Based Applications, 578, 590, 661, 692, 734
Web-Based Web Service Client Project, 703, 749, 804
WebSelectFacultySP, 809
Web Service Attributes, 670
Web Service Binding, 660, 669, 679, 717, 808
WebServiceOracleSelect, 4, 805–808, 818–819, 821,

858
WebServiceSQLSelect, 805
WebServiceSQLUpdateDelete, 801
Where(), 183, 229, 235
WinClientSQLlnsert, 735
window.close, 573, 709, 760
Windows Components Wizard, 565
Windows Application, 133
Windows Authentication, 372, 663, 679
Windows Forms, 137, 190, 199, 247, 259, 561–562
Windows NT Security Authentication, 100
Windows-Based Form, 568
Windows-Based Web Service, 695, 700, 703, 708, 736,

749–750, 793, 803, 861
Wizards, 147
Write() Method, 163, 172, 183, 571, 577, 709, 754
WSDL File, 693
WSDL Terminology, 859

X–Z
XAttribute, 216–217, 220–221, 226
XCData, 216
XComment, 216–217, 223
XDocument, 216
XDocumentCreateNavigator(), 225
XDocumentType, 216
XElement, 215–221, 223–224
XML Documents, 32, 150, 161
XML Path Language (XPath), 561
XML Schema (XSD), 119
XMLWeb Service Links, 562
XMLWeb Service, 560
XNode, 216
XPath, 215, 224, 21

bindex.indd 867bindex.indd 867 4/25/2012 7:31:45 PM4/25/2012 7:31:45 PM

About the Author

 Dr. YING BAI is a Professor in the Department of Computer Science and Engineering
at Johnson C. Smith University. His special interests include: intelligent controls, mix -
 language programming, fuzzy logic controls, robotic controls, robots calibrations, and
fuzzy multi - criteria decision making. His industry experience includes positions as soft-
ware and senior software engineers at companies such as Motorola MMS, Schlumberger
ATE Technology, Immix TeleCom, and Lam Research. In recent years, Dr. Bai has pub-
lished more than 30 academic research papers in IEEE Transactions Journals and inter-
national conferences. He also published nine books with publishers such as Prentice Hall,
CRC Press LLC, Springer, Cambridge University Press, and Wiley IEEE Press in recent
years. The Russian translation of his fi rst book, Applications Interface Programming Using
Multiple Languages , was published by Prentice Hall in 2005. The Chinese translation of
his eighth book, Practical Database Programming with Visual C#.NET , was translated and
published by Tsinghua University Press in China at the end of 2011. Most of his books
are about software programming, and serial port and database programming, as well as
fuzzy logic controls in industrial applications.

Practical Database Programming with Visual Basic.NET, Second Edition. Ying Bai.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & Sons, Inc.

868

babout.indd 868babout.indd 868 4/25/2012 1:56:39 PM4/25/2012 1:56:39 PM

