
Pro

THE EXPERT’S VOICE® IN .NET

Pro  

DLR in .NET 4 

Chaur Wu

Integrate dynamic languages such as Python 

and Ruby into your .NET applications on an 

equal footing with C#

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


 

Pro DLR in .NET 4 

 

 

 







  
Chaur Wu 

                                               

www.allitebooks.com

http://www.allitebooks.org


Pro DLR in .NET 4 

Copyright © 2010 by Chaur Wu  

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 
system, without the prior written permission of the copyright owner and the publisher. 

ISBN-13 (pbk): 978-1-4302-3066-3 

ISBN-13 (electronic): 978-1-4302-3067-0 

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1 

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol 
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only 
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of 
the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject 
to proprietary rights. 

President and Publisher: Paul Manning 
Lead Editor: Jonathan Gennick 
Technical Reviewer: Scott Isaacs  
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick, 

Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper, Frank 
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh 

Coordinating Editor: Jennifer L. Blackwell 
Copy Editor: Sharon Terdeman 
Compositor: Bytheway Publishing Services 
Indexer: Brenda Miller 
Artist: Integra Software Services Pvt. Ltd. 
Cover Designer: Anna Ishchenko 

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail  
orders-ny@springer-sbm.com, or visit www.springeronline.com.  

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.  

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our 
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales. 

The information in this book is distributed on an “as is” basis, without warranty. Although every 
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have 
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused 
directly or indirectly by the information contained in this work. 

www.allitebooks.com

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.allitebooks.org


I want to dedicate this book to Sarah, Everett, Cedric, and Chiachi 

 

www.allitebooks.com

http://www.allitebooks.org


 CONTENTS AT A GLANCE 

iv 

Contents at a Glance 

 About the Author.................................................................................................. xiv 

 About the Technical Reviewer .............................................................................. xv 

 Acknowledgments ............................................................................................... xvi 

 Introduction ........................................................................................................ xvii 

PART 1    DLR Fundamentals ............................................................................1 

 Chapter 1: Introduction to DLR ...............................................................................3 

 Chapter 2: DLR Expression....................................................................................27 

 Chapter 3: Late Binding and Caching....................................................................65 

 Chapter 4: Late Binding and Interoperability........................................................87 

 Chapter 5: Dynamic Objects................................................................................109 

 Chapter 6: DLR Hosting API.................................................................................133 

PART 2    Applying the DLR...........................................................................163 

 Chapter 7: DLR and Aspect-Oriented Programming ...........................................165 

 Chapter 8: Metaprogramming.............................................................................185 

 Chapter 9: Stitch — A DSL for Hosting Languages .............................................211 

 Chapter 10: Application Scripting.......................................................................239 

 Chapter 11: DLR in Silverlight.............................................................................251 

 Chapter 12: Dynamic Languages on JVM ...........................................................275 

 Index ...................................................................................................................297 

 

www.allitebooks.com

http://www.allitebooks.org


 CONTENTS 

v 

Contents 

 About the Author.................................................................................................. xiv 

 About the Technical Reviewer .............................................................................. xv 

 Acknowledgments ............................................................................................... xvi 

 Introduction ........................................................................................................ xvii 

PART 1    DLR Fundamentals ............................................................................1 

 Chapter 1: Introduction to DLR ...............................................................................3 

Setting Up Code Examples.................................................................................................4 

Software Requirements............................................................................................................................ 4 

Installing the DLR, IronPython, and IronRuby ........................................................................................... 5 

Hello World Examples ........................................................................................................6 

Implementing REPL for the Hello Language ............................................................................................. 9 

Practical Uses for the DLR .................................................................................................9 

Application Scripting and DSL ................................................................................................................ 10 

XML Builder ............................................................................................................................................ 10 

Aspect-Oriented Programming............................................................................................................... 11 

Runtime ...........................................................................................................................13 

Runtime vs. Run Time............................................................................................................................. 14 

Run Time vs. Compile Time .................................................................................................................... 14 

Dynamic vs. Static ...........................................................................................................16 

Dynamic Typing ...................................................................................................................................... 17 

Dynamic Dispatch................................................................................................................................... 20 

Language .........................................................................................................................21 

Programming Languages in Practice...............................................................................22 

www.allitebooks.com

http://www.allitebooks.org


 CONTENTS 

vi 

Putting It Together ...........................................................................................................24 

Summary .........................................................................................................................25 

 Chapter 2: DLR Expression....................................................................................27 

DLR Expression as a Language........................................................................................27 

Code as Data .......................................................................................................................................... 28 

A Common Denominator like CLR........................................................................................................... 28 

Concrete Syntax and Serialization.......................................................................................................... 29 

Expressions vs. Statements.............................................................................................29 

Expression Type and Kind................................................................................................31 

Binary Expressions ..........................................................................................................33 

Flow Control Expressions ................................................................................................36 

If-Then-Else Expressions........................................................................................................................ 37 

Switch Expressions ................................................................................................................................ 38 

Scopes and Name Binding...............................................................................................39 

Lexical vs. Dynamic Scope ..................................................................................................................... 40 

BlockExpression and Lexical Scoping .................................................................................................... 41 

Lambda Expressions and Closure....................................................................................44 

The GotoExpression Class................................................................................................46 

While Loops .....................................................................................................................48 

Dynamic Expressions.......................................................................................................49 

Index Expressions............................................................................................................52 

Expression Abstraction, Reduction and Extension...........................................................53 

Immutability and the Visitor Pattern ................................................................................55 

Visitor Pattern in General........................................................................................................................ 56 

Visitor Pattern in DLR Expression ........................................................................................................... 57 

Expression Visitor Examples................................................................................................................... 59 

Summary .........................................................................................................................63 

www.allitebooks.com

http://www.allitebooks.org


 CONTENTS 

vii 

 Chapter 3: Late Binding and Caching....................................................................65 

Binding.............................................................................................................................65 

Call Sites and Early Binding.............................................................................................66 

Call Sites and Late Binding..............................................................................................67 

DLR Binders .....................................................................................................................68 

Set Up Code Examples.....................................................................................................69 

Making a Debug Build of the DLR for .NET 2.0 ....................................................................................... 69 

Developing for Both .NET 2.0 and .NET 4.0 ............................................................................................ 69 

The CallSiteBinder Class..................................................................................................71 

DLR Call Sites ..................................................................................................................72 

Binding Restrictions and Rules........................................................................................73 

Checking Binding Rules in Debug Mode..........................................................................75 

Caching............................................................................................................................78 

Three Cache Levels ................................................................................................................................ 78 

Late-Binding Context .............................................................................................................................. 80 

L0 Cache Example .................................................................................................................................. 82 

L1 Cache Example .................................................................................................................................. 83 

L2 Cache Example .................................................................................................................................. 84 

Creating Canonical Binders .............................................................................................86 

Summary .........................................................................................................................86 

 Chapter 4: Late Binding and Interoperability........................................................87 

Language Interoperability................................................................................................87 

Static and Dynamic Objects.............................................................................................91 

Late-Binding Logic in Two Places....................................................................................92 

Late Binding Logic in Binders................................................................................................................. 92 

Late-Binding Logic in Dynamic Objects.................................................................................................. 94 

Late-Bound Actions .........................................................................................................94 

www.allitebooks.com

http://www.allitebooks.org


 CONTENTS 

viii 

Examples ................................................................................................................................................ 94 

Common Type System............................................................................................................................ 96 

Class Hierarchy of Binders ..................................................................................................................... 99 

Implement a Custom Binder Class.................................................................................100 

Interoperability Protocol ................................................................................................102 

Summary .......................................................................................................................106 

 Chapter 5: Dynamic Objects................................................................................109 

What is a Dynamic Object?............................................................................................109 

IDynamicMetaObjectProvider Interface .........................................................................111 

Dynamic Meta Objects...................................................................................................112 

DynamicMetaObject and Binding Logic................................................................................................ 113 

DynamicMetaObject and Binding Result .............................................................................................. 114 

Interoperability...............................................................................................................115 

DynamicObject Class .....................................................................................................119 

XML Builder ...................................................................................................................122 

Summary .......................................................................................................................130 

 Chapter 6: DLR Hosting API.................................................................................133 

Life Without the DLR Hosting API...................................................................................133 

Using a Static Language’s Code in Another Static Language............................................................... 134 

Using a Static Language’s Code in a Dynamic Language..................................................................... 134 

Using a Dynamic Language’s Code in a Static Language..................................................................... 135 

Using a Dynamic Language’s Code in Another Dynamic Language ..................................................... 136 

Overview of the DLR Hosting API ...................................................................................136 

Major Classes in the API ....................................................................................................................... 137 

The Tale of Two APIs ............................................................................................................................ 138 

The DLR Hosting API in Relation to Binders and Dynamic Objects ....................................................... 139 

Using Script Runtime to Execute Code ..........................................................................139 

www.allitebooks.com

http://www.allitebooks.org


 CONTENTS 

ix 

Configuring the Languages You Want to Speak.............................................................140 

Configuring Script Runtime Declaratively............................................................................................. 141 

Configuring Script Runtime Programmatically ..................................................................................... 142 

Scripting an Object Model .............................................................................................143 

Script Scopes.................................................................................................................145 

Value and Reference Variables ......................................................................................146 

Global Scope and Variable Passing ...................................................................................................... 147 

Language Neutral Scope and Variable Passing.................................................................................... 148 

Level Two Use of the DLR Hosting API...........................................................................150 

Compiling Code..................................................................................................................................... 150 

Loading Assemblies into Script Runtime.............................................................................................. 152 

Creating Python Class Instances Using Object Operations................................................................... 153 

Level Three Use of the DLR Hosting API ........................................................................154 

Script Host ............................................................................................................................................ 154 

Object Operations ................................................................................................................................. 156 

Remote Script Runtime ........................................................................................................................ 156 

.NET Remoting Quick Tour.............................................................................................158 

Running Script Runtime in a Separate Process.............................................................159 

Summary .......................................................................................................................161 

PART 2    Applying the DLR...........................................................................163 

 Chapter 7: DLR and Aspect-Oriented Programming ...........................................165 

Aspect-Oriented Programming ......................................................................................165 

Cross-Cutting Concerns........................................................................................................................ 165 

Advice, Join Points, and Pointcuts ....................................................................................................... 166 

An Example........................................................................................................................................... 167 

A Test Run ............................................................................................................................................ 170 

AOP for Dynamic Objects...............................................................................................171 

Understanding the Framework............................................................................................................. 171 



 CONTENTS 

x 

Implementing the Framework . ............................................................................................................ 172 

Integration with Spring.NET AOP ...................................................................................174 

Getting the AOP Advisors. .................................................................................................................... 175 

Implementing Advice. .......................................................................................................................... 177 

Applying Advice . .................................................................................................................................. 178 

Cutting Across Dynamic and Static Objects . ....................................................................................... 180 

Summary . ......................................................................................................................183 

 Chapter 8: Metaprogramming.............................................................................185 

Overview of Metaprogramming .....................................................................................185 

Changing Class Definitions ............................................................................................186 

Ruby . ................................................................................................................................................... 187 

Python. ................................................................................................................................................. 189 

DLR . ..................................................................................................................................................... 191 

LINQ Query Provider. ......................................................................................................196 

Understanding the End Goal . ............................................................................................................... 196 

Implementing the Query Class. ............................................................................................................ 196 

Implementing the QueryProvider Class . .............................................................................................. 198 

Implementing QueryExpressionVisitor. ................................................................................................ 200 

Data Access ...................................................................................................................201 

Static Data Access. .............................................................................................................................. 202 

Dynamic Data Access . ......................................................................................................................... 204 

Generated Data Access . ...................................................................................................................... 206 

Summary . ......................................................................................................................210 

 Chapter 9: Stitch — A DSL for Hosting Languages .............................................211 

The Need for Stitch. .......................................................................................................211 

Syntax of the Stitch Language.......................................................................................212 

Requirements for the Example ......................................................................................214 

Software Requirements. ...................................................................................................................... 214 



 CONTENTS 

xi 

Organization of the Code ...................................................................................................................... 214 

Stitch in Use...................................................................................................................215 

Being Declarative ................................................................................................................................. 215 

Hosting DLR- and Non-DLR-Based Languages..................................................................................... 216 

Hosting Stitch Itself .............................................................................................................................. 217 

Executing in Parallel ............................................................................................................................. 217 

Stitch Language Grammar.............................................................................................218 

Setting Up Eclipse and ANTLR .............................................................................................................. 219 

Defining the Grammar .......................................................................................................................... 220 

Test-Driving the Grammar .................................................................................................................... 224 

The Stitch Runtime ........................................................................................................225 

Overview of the Runtime ...................................................................................................................... 226 

The Script Engine ................................................................................................................................. 227 

Function Execution Coordinator............................................................................................................ 228 

Parallel Extensions for .NET.................................................................................................................. 230 

Script Runner........................................................................................................................................ 231 

Running DLR-based Language Code .............................................................................233 

Language Plug-In...........................................................................................................234 

Develop a Stitch Plug-In for PowerShell............................................................................................... 234 

Configuring a Plug-In............................................................................................................................ 237 

Summary .......................................................................................................................238 

 Chapter 10: Application Scripting.......................................................................239 

Ball World ......................................................................................................................239 

Software Requirements .................................................................................................240 

Application Architecture ................................................................................................241 

Application Object Model...............................................................................................241 

Application Scripting......................................................................................................244 

The Physics Engine........................................................................................................246 



 CONTENTS 

xii 

User Interface ................................................................................................................248 

Summary .......................................................................................................................250 

 Chapter 11: DLR in Silverlight.............................................................................251 

Different Client Side Web Scripting Approaches ...........................................................251 

Apache HTTP Server Configurations..............................................................................252 

Using the Hosted Gestalt Components ..........................................................................253 

Hosting the Gestalt Components ...................................................................................254 

Dissecting the Gestalt Components...............................................................................255 

Scripting HTML ..............................................................................................................257 

Scripting XAML ..............................................................................................................260 

DLR Settings ..................................................................................................................263 

Speak Your Own Language in Silverlight.......................................................................264 

Software Requirements........................................................................................................................ 264 

Build DLR for Silverlight........................................................................................................................ 265 

The Hello Language .......................................................................................................265 

Hello Console in Silverlight ............................................................................................266 

Gestalt-like Hello Console on Silverlight........................................................................270 

Summary .......................................................................................................................273 

 Chapter 12: Dynamic Languages on JVM ...........................................................275 

Quick Comparisons........................................................................................................275 

Python and Ruby on JVM...............................................................................................276 

Hosting Python Code in Java Programs................................................................................................ 277 

Hosting Ruby Code in Java Programs................................................................................................... 279 

Overview of the BoolScript Example..............................................................................280 

BoolScript Language......................................................................................................281 

Script Engine Factory.....................................................................................................282 



 CONTENTS 

xiii 

Script Engine Discovery Mechanism .............................................................................284 

Bindings, Scope, and Context........................................................................................286 

BoolScript Engine ..........................................................................................................289 

Compile BoolScript Code ...............................................................................................291 

Run BoolScript Code as Invocable Function ..................................................................294 

Summary .......................................................................................................................295 

 Index ...................................................................................................................297 



xiv 

 About the Author 

 Chaur Wu is an author and developer with a passion for model-based, language-oriented software 
development. He works extensively with .NET, with experience going back to the initial beta release in 
2000. He has two successful books to his credit: Professional Design Patterns in VB.NET and Professional 
UML with Visual Studio .NET, both published by Wrox Press. 

Wu has implemented a number of domain-specific and general-purpose languages—for work, for 

study, and for fun. All of the projects he developed for Pro DLR in .NET 4 are collectively hosted on an 
open source project site at http://code.google.com/p/dpier/. You are welcome to visit the web site and 
check out the latest development there. 

 

http://code.google.com/p/dpier


 INTRODUCTION 

xv 

About the Technical Reviewer 

 Scott Isaacs spent the first 25 years of his life in California's Central Valley.  He has long since moved 
to southeast Wisconsin, where he designs software.  He also runs the WI .NET Users Group, one of the 
oldest and largest .NET community groups around. 

Isaacs lives in a Milwaukee suburb with his wife and children.  He occasionally blogs at 
http://tapmymind.com/, and can also be found online at http://twitter.com/daughtkom/. 

 

http://tapmymind.com
http://twitter.com/daughtkom


 INTRODUCTION 

xvi 

 

Acknowledgments 

I'd like to thank the fabulous folks at Apress, especially Jonathan Gennick and Jennifer Blackwell for their 

support throughout the writing of the book. There were times when it was impossible for me to make 
any progress on the writing and I really appreciated Jonathan and Jennifer's understanding and 

encouragement during those tough periods. I'd also like to thank Scott Isaacs for reviewing the book 

and providing valuable feedback. Throughout my career as a software engineer, I’ve continually 

benefited from the many people I work with, and from open source communities. For this book, I'd like 

to express my thanks to the DLR forum and the wonderful folks who provided prompt answers to the 

questions I posted on the forum. A great part of this book was written when I was in Taiwan at my 

parents' place. I enjoyed my time with them and I want them to know that I love them very much. The 

rest of the book was written in Fremont, California with the love and support of my wife. Without that 
love and support, this book would not be what it is. 

 
 
 



 INTRODUCTION 

xvii 

Introduction 

The book you’re holding focuses on Microsoft’s Dynamic Language Runtime (DLR) and what it can do 
for you in your day-to-day programming work. Many think the DLR is an esoteric platform that matters 
only if you happen to be one of the very few who are implementing languages such as Python and Ruby 
atop the .NET Framework. That belief is far from the truth. The DLR puts a number of exciting 
capabilities at your disposal. Implementing languages is actually pretty far down on that list. 

One of the most obvious things to do with the DLR is to mix and match code and objects from 
different languages. Do you have an object in Python that does what you need? Use the DLR to make 
that object usable from your C# code. 

Going further, you can mix and match dynamic and compiled languages in ways that are 
convenient, that allow you to choose the best tool for the job at hand within your overall application. 
This ability to mix and match leads directly to using dynamic languages as scripting languages within 
your applications. Going even further, you can dive in and make the DLR your basis for implementing 
application- and domain-specific scripting languages.  

Aspect-oriented programming and runtime code generation are two other techniques made 
possible by the DLR. You’ll find examples of both in this book. You’ll also find clear examples that show 
the details of using the DLR. You’ll learn about core components such as LINQ expressions, call sites, 
binders, and dynamic objects. You’ll see how to apply those components to the problem of combining 
dynamic and compiled languages into a single application. You’ll end up  with the ability to apply 
whatever language or language-library is most productive given the programming problem you’re trying 
to solve at any given moment. You’ll truly be able to apply the best tool to the job at hand. 

Prerequisites 
Chapter 1 describes the prerequisites in detail, explaining the software you need to install in order to 

mimic my own configuration so you can run the examples in this book. In general, though, you should 
be comfortable programming in C#. You should also know at least one of the common scripting 
languages, such as Python or Ruby. If you can compile and run a C# program and you can execute 
Python or Ruby code, you have what it takes to get the most out of this book. 

Structure of the Book (or How this Book is Organized…) 
This book  consists of two parts: 
 

Part I deals with the fundamentals. You are introduced to the DLR, and to the core functionality 
that the API provides. This is where you’ll learn the mechanics of using the DLR. 



 INTRODUCTION 

xviii 

Part II explores applying the DLR to various ends. You’ll find chapters devoted to such topics as 
aspect-oriented programming, application scripting, domain-specific languages, meta-
programming, and more. 

 

Part I consists of six chapters. Chapter 1 stands out in that it gives you a whirlwind tour — code 
included! — showing all you can accomplish using the DLR. If you want to get the lay of the land, to 
know what the possibilities are, Chapter 1 is what you should read. Chapters 2-6 then go into detail on 
the various mechanics of using the DLR. 

Part II also consists of six chapters. Here the emphasis is on applying the DLR to specific 
programming techniques. You’ll begin, for example, by learning how the DLR helps enable aspect-
oriented programming. You’ll be introduced to STITCH, a domain-specific language implemented atop 
the DLR that makes it easier to host languages such as Python and Ruby from within your C# programs. 
And you’ll learn about metaprogramming, application scripting, and how to run DLR applications on 
the Silverlight platform. 

Obtaining the Source Code 
Source code is available for the examples shown in this book. You can download that source code from 
the book’s catalog page on the Apress web site. Here is the URL for that page: 

http://apress.com/book/view/1430230665 

Once there, look under the book’s cover image for the catalog page section entitled “Book 
Resources,” where you’ll see a link for “Source Code.” Click that link to download a zip archive 
containing the example code for this book. 

When you have the download, refer to Chapter 1. There you’ll find instructions on setting up the 
code examples. You’ll also find a description of the directory structure used in the example archive. 

 

www.allitebooks.com

http://apress.com/book/view/1430230665
http://www.allitebooks.org


 

P  A  R  T     1 



DLR Fundamentals





C H A P T E R  1 
    
 

3 

Introduction to DLR 

DLR stands for dynamic language runtime. Maybe you already know something about it and the reason 
you picked up this book is to learn how the DLR works and how to make use of it. If you haven’t heard of 
the DLR, you may be wondering whether it’s worth your time learning it. One reason people might 
regard the DLR as irrelevant to their work is that they think the DLR is for implementing new languages. 
And since most of us write programs to solve specific problems and very few of us implement languages, 
learning the DLR may not seem like a good investment. That was in fact my initial misconception when I 
first heard of the DLR, around the time it was announced in 2007. After some study, I quickly realized the 
broad applicability of the DLR in many areas of my day-to-day programming work. 

Because of that potential misconception, I want to highlight some areas in which the DLR shines. 
The point I want to get across is that the DLR is not merely for running or implementing dynamic 
languages. It is also very useful for application scripting, meta-programming, aspect-oriented 
programming (AOP), building DSLs (domain-specific languages), unit test mocking, and a lot more. 
Instead of just throwing out those buzz words and iterating through them with dry discussions, I figure 
the best way to highlight the practical usefulness of the DLR is through some examples. So that’s what 
this chapter will do. Normally an introductory chapter like this has a Hello World example. We will have 
not just one, but four, plus some demonstrations.  

Since most people know the DLR as a platform for building and running dynamic languages, we’ll 
start with a Hello World example of running a dynamic language. Next we’ll show a Hello World example 
of building a dynamic language. We’ll then take that language and show how to embed it in a host 
application written in C#. Finally, we’ll end the series of Hello World examples with a REPL (read-eval-
print-loop) console for the Hello World language. It might seem strange to use the building of a 
programming language as a Hello World example. After all, building a programming language is no 
trivial task. But, as you will see, because of the rich features the DLR provides, we can do all the things 
mentioned with very little code. 

The series of Hello World examples is about using, embedding, and building programming 
languages. But the DLR also does a good job of enabling application scripting. The DLR makes it very 
easy to add scripting capacity to your applications. Users of your application can take advantage of 
popular dynamic languages such as IronPython and IronRuby to extend your application with custom 
capabilities, automate certain tasks, or integrate your application with other systems. If you like, you can 
choose to create your own domain-specific language and let users script in a syntax closer to the domain 
of your application. And that’s what later chapters in this book will show you. In Chapter 10, you’ll 
implement a fun WPF application that uses a physics engine to detect collisions between balls. You can 
write IronPython code to script the movement of balls. You can also write code in the DSL that Chapter 
12 will explore, to do things like stopping and starting a ball. I’ll give a preview of that WPF application in 
this chapter.  

After that, we’ll see how the DLR makes it very intuitive to work with data. The technique we’ll use is 
often referred to as builders. In Chapter 5, we’ll explore the XML builder library we’ll use to build XML 
data.  



CHAPTER 1  INTRODUCTION TO DLR 

4 

Finally, we’ll delve into the Aspect-Oriented Programming (AOP) framework covered in Chapter 7. 
AOP is a programming paradigm that is very well-suited to solving the problem of cross-cutting 
concerns. Common cross-cutting concerns in a software system are things like transaction 
management, security, auditing, performance monitoring, logging, and tracing, and the like. By virtue of 
addressing the problem of cross-cutting concerns in an elegant manner, AOP provides tremendous 
value in the design and architecture of software systems. As you’ll see, one nice thing about the AOP 
framework is that it works across dynamic and static languages, and it’s also integrated with 
Spring.NET’s AOP framework.  

 Even though this chapter will not get into the details of the demonstrations, I hope after seeing the 
examples and demonstrations, you’ll feel that the benefits and applicability of DLR advocated here are 
more real and tangible. Without further ado, let’s begin by setting up the software components needed 
for running the examples. 

Setting Up Code Examples 
If you download and unzip the file that contains this book’s code examples, you’ll see the following file 
structure: 

 
ProDLR 
   lib 
      Antlr 
      DLR 
      … 
   src 
      Examples 
         Chapter 1 
         Chapter 2 
         … 

 
The Examples folder contains a subfolder for each chapter where you can find all of a chapter’s code 

examples. Most of the code examples depend on one or more software components. The lib folder has a 
subfolder for each of the software components used in this book. You’ll need to download those 
components and put the needed assembly files into the subfolders under the lib folder. The next section 
will describe what you need to do to download the DLR assemblies and put them into the lib\DLR folder. 
For the other software components, I’ll describe how to set them up when we encounter them in later 
chapters. Throughout the book, I’ll assume that the ProDLR folder is placed under C:\. If you choose to 
place it in a different folder, you’ll need to substitute the path with your own whenever I refer to it in the 
book. 

 

Software Requirements 
For most of the examples in this book, you’ll need the following software to follow along: 

• .NET 4.0 SDK: You can download this from Microsoft’s web site and follow the 
instructions there to install it. 



 CHAPTER 1  INTRODUCTION TO DLR 

5 

• Visual Studio 2010 Express: Although you technically don’t need to install this, it is 
highly recommended as it will make following the code examples much easier. 
The installation of Visual Studio 2010 Express also installs the .NET 4.0 SDK, so if 
you choose to install this component, you don’t need to install the .NET 4.0 SDK 
separately. 

• DLR, IronPython, and IronRuby: You can go to the DLR project web site at 
CodePlex to download all three in one bundle. At the time of this writing, the 
download page of the DLR CodePlex website provides only source code, no 
binaries. The next section will describe where to get the binaries and how to install 
them.   

The DLR, IronPython, and IronRuby can run on .NET 2.0. To do so, you’ll need to download 
different binaries from the IronPython and IronRuby websites. As we go through the installation of the 
DLR, IronPython, and IronRuby in the next section, I’ll point out the binaries you need if you want to use 
.NET 2.0 as the target platform. The code examples in this book are developed to run on .NET 4.0, but 
Chapter 3 shows you how to target both .NET 2.0 and .NET 4.0.        

Installing the DLR, IronPython, and IronRuby 
Even though the files you download from the DLR CodePlex web site contain only the source code, you 
can get the DLR binaries from IronPython’s or IronRuby’s CodePlex web sites. Here are the steps you 
need to take to get the release bits of DLR, IronPython, and IronRuby.  

 

1. Go to ironpython.codeplex.com/ and download IronPython 2.6.1 for .NET 4.0. 
That’s the version  I use for this book’s code examples; it’s an .msi file. You simply 
double-click it and follow the instructions to install IronPython. From now on, I’ll 
assume that it’s installed in C:\Program Files (x86)\IronPython 2.6 for .NET 4.0\. If 
you choose to install it in a different folder, you’ll need to substitute the path with 
your own whenever I refer to it in the book. If you need to develop DLR-based 
applications that run on .NET 2.0, download IronPython 2.6.1 for .NET 2.0 SP1 
instead. 

2. Go to http://ironruby.codeplex.com/ and download IronRuby 1.0 for .NET 4.0 
(ironruby-1.0v4.msi). That is the version of IronRuby I use in this book. Again 
simply double-click on it and follow the instruction to install it. I’ll assume that it’s 
installed in C:\Program Files (x86)\IronRuby 1.0v4\. If you need to develop DLR-
based applications that run on .NET 2.0, download IronRuby 1.0 for .NET 2.0 SP1 
instead. 

3. Copy the following files from C:\Program Files (x86)\IronRuby 1.0v4\bin to 
C:\ProDLR\lib\DLR\release: 

• IronRuby.dll 

• IronRuby.Libraries.dll 

• Microsoft.Dynamic.dll (This and the next assembly are the DLR version 
1.0 binaries). 

• Microsoft.Scripting.dll 

http://ironruby.codeplex.com


CHAPTER 1  INTRODUCTION TO DLR 

6 

4. Copy the following files from C:\Program Files (x86)\IronPython 2.6 for .NET 4.0\ 
to C:\ProDLR\lib\DLR\release: 

• IronPython.dll 

• IronPython.Modules.dll 

To make it convenient to run the Read-Eval-Print-Loop (REPL) consoles of IronPython and 
IronRuby, you might want to make sure that "C:\Program Files (x86)\IronPython 2.6 for .NET 4.0" and 
"C:\Program Files (x86)\IronRuby 1.0v4\bin" are included in your Path environment variable. 

Hello World Examples 
Now let’s get started with our four Hello World examples that run, build, and embed DLR-based 
dynamic languages. Let’s have some fun! 

Hello World from a Dynamic Language 

We’ll first look at an implementation of a Hello World program in a dynamic language. IronPython is one 
of the most mature DLR-based dynamic languages. There are other implementations of the Python 
language, such as CPython and Jython. But those are based on their own runtimes, not on the DLR. 
Figure 1-1 shows IronPython code that prints “Hello World” to IronPython’s interactive console. 
 

 

Figure 1-1. Hello World from IronPython 

That looks fairly straightforward. Like most dynamic languages, IronPython comes with an 
interactive console that reads the code you type in, evaluates that code, prints out the result of the 
evaluation, and waits for the next code snippet. This is commonly called a REPL (Read-Eval-Print-Loop) 
console. IronPython’s REPL console is the ipy.exe executable file. If you’ve put the right paths in the 
Windows Path environment variable as mentioned earlier, you should be able to just type ipy in the 
command console to execute ipy.exe. When prompted for input by >>>, you type the code print “Hello 
World”, and the result of evaluating that code is printed in the next line. 

Creating a “Hello” Language  

Next, we’ll look at implementing our own language. Yes, we’ll create a whole, new language just for 
“Hello World.” We will implement a DLR-based language that we’ll call the Hello language, and it will 
print “Hello World” to the console no matter what Hello code you write. In other words, the language 
accepts any input code as valid Hello code and responds to that input code by printing out “Hello 



 CHAPTER 1  INTRODUCTION TO DLR 

7 

World”. Because any Hello code is valid, we don’t need a parser to parse the code. Nor do we need to 
interpret or compile any code. You can find the source code for this example is in the HelloLanguage 
project of the Chapter 1 solution. 

Implementing a DLR-based language as simple as the Hello language means we need to implement 
two things: a language context and a script code. I’ll explain language context and script code in more 
detail when we get to the discussion of the DLR Hosting API in Chapter 6. For the time being, we can 
understand language context as something that provides an entry point to a language’s compilation 
capability. As for script code, just think of it as a representation of a language’s compiled code for now.  

Listing 1-1 shows the language context implementation for the Hello language. All of the code is 
boilerplate except the line in bold. We can see that a language context provides an entry point method 
CompileSourceCode that invokes the source code compilation capability of a language. The source code is 
represented as an instance of type SourceUnit and passed as an input argument to the 
CompileSourceCode method. Our implementation of the CompileSourceCode method simply creates an 
instance of HelloScriptCode, which represents the result of compiling the input source code, i.e., the 
SourceUnit instance.  

Listing 1-2 shows the code for the HelloScriptCode class. HelloScriptCode has a method Run, which 
is supposed to know how to run Hello code. Since running Hello code means printing “Hello World” to 
the console, we do just that in the Run method and that’s all. We have completed our first DLR-based 
language. 

Listing 1-1. Hello Language Context 

public class HelloContext : LanguageContext 
{ 
    public HelloContext(ScriptDomainManager domainManager,  

IDictionary<string, object> options) 
            : base(domainManager) 
    { } 
 
    public override ScriptCode CompileSourceCode(SourceUnit sourceUnit,  

CompilerOptions options, ErrorSink errorSink) 
    { 
        return new HelloScriptCode(sourceUnit); 
    } 
} 

Listing 1-2. Hello Language Script Code 

public class HelloScriptCode : ScriptCode 
{ 
public HelloScriptCode(SourceUnit sourceUnit) : base(sourceUnit) 
{ } 
 
public override object Run(Scope scope) 
{ 
    Console.WriteLine("Hello"); 
    return null; 
} 
}       



CHAPTER 1  INTRODUCTION TO DLR 

8 

Embedding the Hello Language 

Now that we’ve built a language, let’s put it into use. In this example, we’ll embed the Hello language in a 
host application written in C#. In this case, C# is said to be the host language. To achieve the goal, we 
need to write the C# host application, of course, and to set up proper configurations in the App.config 
file so the C# host application can locate the Hello language.  

Listing 1-3 shows the configurations you need to put into App.config. Don’t worry too much if you 
don’t fully understand every line of the code shown here. We’ll delve into it more when we discuss the 
DLR Hosting API in Chapter 6. Essentially, the configurations tell the DLR runtime that there is a 
language called Hello and that its language context is the type HelloLanguage.HelloContext we saw in 
the previous example.  

Listing 1-3. App.config for Hosting the Hello Language 

<configuration> 
<configSections> 
<section name="microsoft.scripting"  
type="Microsoft.Scripting.Hosting.Configuration.Section, Microsoft.Scripting,  
Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 
</configSections> 
<microsoft.scripting> 
    <languages> 
      <language names="Hello" 
                extensions=".hello" 
                displayName="Hello 1.0" 
                type="HelloLanguage.HelloContext,HelloLanguage, Version=1.0.0.0,  
Culture=neutral" /> 
    </languages> 
</microsoft.scripting> 
</configuration>       
 
With the App.config file ready, there isn’t much left to do. Listing 1-4 shows the C# code for the 

application that hosts the Hello language. Line 3 in Listing 1-4 reads the configuration information from 
App.config and creates an instance of the ScriptRuntime class. Given the information in App.config, line 
4 is able to call our Hello language context behind the scenes and return an instance of ScriptEngine.  
The code in line 5 passes in “any text” as the input Hello code to the script engine. Line 6 calls the 
Execute method of ScriptSource to execute the Hello code and the words “Hello World” are printed to 
the console.  

Listing 1-4. Method Inside Program.cs for Hosting the Hello Language 

1) private static void ExecuteHelloCode() 
2) { 
3)      ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration(); 
4)      ScriptEngine engine = scriptRuntime.GetEngine("Hello"); 
5)      ScriptSource script = engine.CreateScriptSourceFromString("any text"); 
6)      script.Execute(engine.CreateScope()); 
7)      Console.ReadLine(); 
8) } 



 CHAPTER 1  INTRODUCTION TO DLR 

9 

Implementing REPL for the Hello Language  
With very little effort, we can provide a REPL console for the Hello language like IronPython’s. For this 
task, we’ll leverage the ConsoleHost class that the DLR provides. Listing 1-5 shows how to use this class 
to implement the console. 

Listing 1-5. REPL Console 

class HelloConsole : ConsoleHost 
{ 
    protected override Type Provider 
    { 
         get { return typeof(HelloContext); } 
    } 
} 
 

As Listing 1-5 shows, all you need to do is override the Provider property and make it return the type 
HelloLanguage.HelloContext. The code is so simple because the ConsoleHost class does most of the 
heavy lifting, like printing the >>> prompt, reading user input, and calling HelloContext to execute that 
input. The REPL console in this example does not run by itself. We need the code in Listing 1-6 to run it. 

Listing 1-6. Run the Hello REPL Console 

private static void RunHelloREPL(string[] args) 
{ 
     (new HelloConsole()).Run(args); 
} 
 

Figure 1-2 shows the result of running the program. As you can see, it doesn’t matter what input 
code we type, the Hello REPL console always prints “Hello” to the screen. To exit the REPL, press Ctrl+Z. 

 

 

Figure 1-2. Running the Hello language’s REPL console  

Practical Uses for the DLR 
The next few subsections show some of the code examples you’ll develop as you follow along in this 
book. The main purpose of these demonstrations is to get across the point that the DLR is more broadly 
applicable than for just implementing and running dynamic languages. Furthermore, I hope the 



CHAPTER 1  INTRODUCTION TO DLR 

10 

demonstrations will whet your appetite and make you look forward to the later chapters where we’ll 
explain the source code in detail. I’ll indicate for each demonstration the chapter it belongs to. 

Application Scripting and DSL 
Figure 1-3 shows a screen capture of the WPF application we’ll develop in chapter 10. The application 
uses the Farseer Physics Engine to detect collisions between moving balls. The Farseer Physics Engine is 
a project hosted on the CodePlex site. It’s a 2D physics engine that is very fun to work with. It’s even 
more fun when we introduce scripting and extensibility into the application we build. For example, we 
can implement a domain-specific language (DSL) with commands such as Start Ball or Stop Ball. Users 
of the application will be able to write some script code to control ball movements. 

 

 

Figure 1-3. A scriptable WPF application that does collision dectection  

XML Builder 
DLR makes it possible to design fluent APIs for working with certain kinds of data. For example, the 
“static” classes like XmlDocument, XmlElement, and  so forth in the .NET Class Library have methods for 
getting an XML element or attribute by name. With the DLR, we can implement a more fluent API whose 
method names are directly the names of the XML elements we want to access. Listing 1-7 shows what 
that looks like when we use a dynamic library to build an XML snippet. 

www.allitebooks.com

http://www.allitebooks.org


 CHAPTER 1  INTRODUCTION TO DLR 

11 

Listing 1-7. Using a Fluent API to Build an XML Snippet 

dynamic builder = new XmlBuilder(); 
String xml = builder. 
        Customers.b 

   .Customer(firstName: "John", lastName: "Smith").b 
               .Address.b 
                   .Street("123 Main St") 
                   .City("Alcatraz") 
                   .State("CA") 
                   .Zip("55555") 
               .d 
           .d 
        .d.build(); 
 

The output of running the code in Listing 1-7 is shown below. As you can see in Listing 1-7, instead 
of calling methods that access XML elements by name, we access those names directly as if they are 
methods. Of course, the library works with any XML data you might want to build. I didn’t implement 
the library in such a way that it recognizes only the Customer, Address, and other elements shown in the 
example. That would be cheating.  

 
<Customers> 
    <Customer firstName="John" lastName="Smith"> 
         <Address> 
             <Street>123 Main St</Street> 
             <City>Alcatraz</City> 
             <State>CA</State> 
             <Zip>55555</Zip> 
         </Address> 
    </Customer> 
</Customers> 

 
The DLR is not the only component that allows the design of fluent APIs like the one shown in the 

example. The Groovy language has this capability too and people have implemented many builders in 
Groovy for working with different kinds of data. Besides XML, the builder technique can also be applied 
to data sources such as file systems, registry entries, IT management, and more. For example, instead of 
a library that accesses files and folders in a file system by name, we can imagine a dynamic, fluent library 
that accesses files and folders as if their names are methods. Instead of accessing registry entries by 
name, we can access them as if those names are methods. You see the pattern. 

Aspect-Oriented Programming 
Aspect-oriented programming (AOP) is a programming paradigm for solving the problem of cross-
cutting concerns, such as transaction management, auditing, security, logging, and the like. There are 
several techniques for implementing an AOP system. Some implementations use compile-time code 
weaving. Some use load-time code weaving. Some use runtime method interception. And most use a 
combination of these approaches. In Chapter 7, we’ll see how to implement a DLR-based AOP 
framework that works across both static and dynamic languages. The AOP approach used in that chapter 
is runtime method interception. I will have more to say about the different AOP approaches when we get 



CHAPTER 1  INTRODUCTION TO DLR 

12 

to Chapter 7. Here I’ll just demonstrate what it looks like when we use the AOP framework to log the
activities that take place in both a static object and a dynamic object. 

Listing 1-8 contains two objects, customer and employee. The employee object is a typical static object
that we are all familiar with. Line 7 obtains the employee object from the Spring.NET container (because
our AOP framework is integrated with Spring.NET’s AOP framework). The other object, customer, is a
dynamic object created in line 3.   

Listing 1-8. AOP-Based Logging for Both Static and Dynamic Objects 

1) static void Main(string[] args) 
2) { 
3)     dynamic customer = new Customer("John", 5); 
4)     Console.WriteLine("Customer {0} is {1} years old.\n", customer.Name, customer.Age); 
5)  
6)     IApplicationContext context = new XmlApplicationContext("application-config.xml"); 
7)     IEmployee employee = (IEmployee)context["employeeBob"]; 
8)     Console.WriteLine("Employee {0} is {1} years old.", employee.Name, employee.Age); 
9)     Console.ReadLine(); 
10) } 

Figure 1-4 shows the result of running the program in Listing 1-8. As you can see, for both the
customer and employee objects, the same AOP logging logic is applied and the console shows log
statements for both objects. 

Figure 1-4. Running Listing 1-8 produces logging for both a dynamic and a static object. 



 CHAPTER 1  INTRODUCTION TO DLR 

13 

Now that you’ve seen the Hello World examples and some practical applications of the DLR, I will 
introduce the DLR itself and describe what it is. Of course, the name Dynamic Language Runtime 
conveys a lot about what DLR is. So let’s kick off the discussion by looking at each of the words that make 
up the name, starting with runtime.  

Runtime 
The DLR is a runtime—that’s pretty obvious. A runtime is a software component that does its work at the 
time a program runs. Let’s say you use the .NET SDK in the development of your program. The SDK 
comes with both runtime components and development tools. You use the development tools like the 
C# compiler to develop and build your application. When you ship your application to customers, you 
don’t need to include those tools in your distribution. In contrast, you do need to include the runtime 
components of the SDK because your application depends on them to function properly. 

So the fact that the DLR is a runtime means that if we build our applications on top of the DLR, we 
need to distribute it together with our applications. More specifically, it means we will need to 
redistribute assemblies such as Microsoft.Scripting.dll and Microsoft.Dynamic.dll, two of the 
assemblies that make up the DLR. 

Different runtime components do different kinds of work. One major kind of work the DLR does is 
executing expressions, and that’s something we’ll explore in great length in the next chapter. For now, 
you can think of expressions as a kind of intermediate language like MSIL (Microsoft Intermediate 
Language). Expressions are to the DLR what MSIL is to the CLR (Common Language Runtime). There are 
many other runtimes that execute code. Just as the CLR executes MSIL code compiled from C# or 
VB.NET programs, the JVM (Java Virtual Machine) executes Java byte code, and IronPython runtime 
interprets Python code.  

The DLR executes expressions by interpreting them or by compiling them into MSIL. If the DLR 
compiles expressions into MSIL, the MSIL code will be sent to the CLR for execution. Figure 1-5 shows 
this flow: The tree at the left is fed into the DLR’s expression compiler. Out of the compiler comes some 
MSIL code, which is fed into the CLR for execution. As you can see, DLR is built on top of CLR and 
leverages CLR to execute the MSIL code it generates.   

 

Expression

compiler

Idloc.1

Idc.i4.3

stloc.0

...

CLR

 

Figure 1-5. How the DLR executes expressions 

As a runtime, the CLR provides services, such as garbage collection, runtime type checking, code 
access security, etc. Like the CLR, the DLR provides many services, including:  

• Hosting API 

• Debugging API 

• Call site caching 

• Expression compilation and interpretation 

• Meta-object protocol for dynamic language interoperability 



CHAPTER 1  INTRODUCTION TO DLR 

14 

Besides the services listed above, because the DLR is built on top of the CLR, applications based on 
the DLR automatically benefit from the CLR’s services. For example, .NET Application Domain and 
Remoting are leveraged in the DLR Hosting API to allow hosting dynamic languages in separate process 
or on a remote machine. The CLR’s garbage collection is readily available to dynamic languages built on 
the DLR. If you were going to implement a language without taking advantage of the DLR, CLR, or JVM 
for that matter, imagine how much work you’d have to do to, for example, implement a garbage 
collector for your language’s runtime. 

While we are on the subject of runtimes and how they (i.e., the CLR and DLR) can be built on one 
another, let’s throw IronPython into the picture. As mentioned earlier, IronPython is a runtime that 
interprets Python code. It is built on DLR. So when we run IronPython code, there will be three language 
runtimes, CLR, DLR, and IronPython, working together one on top of another. 

Runtime vs. Run Time 

To avoid confusion, I’d like to make clear the distinction between the word runtime and the phrase  “run 
time.” Runtime in our context is a software component. Run time, on the other hand, means the time 
when our code runs. If you say “my program throws an exception at run time,” people will understand 
that as “your program throws an exception when it runs.” However, it would be really odd if you say “my 
program throws an exception at runtime.” The word runtime and the phrase ‘run time’ might appear to 
be interchangeable in other books or articles. The distinction we make here is only for the purpose of our 
discussions throughout the book. 

Run Time vs. Compile Time 
The terms  “run time” and “compile time” (or compile-time) are often used to indicate whether 
something occurs when a program is executed, or when it is compiled. Run time is usually contrasted 
with compile-time. Run time means the time when the code runs. Compile time means the time when 
code is being compiled. In this section, we will compare run time and compile time by looking at the 
typical flow of activities of each.  

Figure 1-6 shows the typical flow of compile-time activities. Basically, at compile time the compiler 
takes source code as input and parses it. If the code does not conform to the syntax rules of the language, 
the compiler stops and reports errors. If the code passes the parsing phase, the compiler typically creates 
an intermediate representation of the source code in the form of a tree data structure. The tree data 
structure is often called an AST (abstract syntax tree). The compiler uses the AST to perform code 
analysis, such as type checking and possibly some code optimizations. In the end, the compiler 
generates the output binaries. Different compilers generate different binary files. C# compiler generates 
.NET assemblies; Java compiler, JVM byte code; and C++ compiler, machine code.    

 

source code Intermediate

representation (AST)

generated

binaries

Int Foo() {

 ....

 if ... else ...

 return x;

}

lexer / parser
code analysis /

generation
01101

1001..

 

Figure 1-6. Typical flow of compile-time activities 



 CHAPTER 1  INTRODUCTION TO DLR 

15 

Run time flow basically picks up where the compile-time flow left off. It takes the binaries generated 
as the final output of compilation and executes them. Figure 1-7 shows the typical flow of run-time 
activities. The flow begins with the runtime loading the binaries into memory. If the binaries are 
compiled from C++ code, they will contain machine code and the C++ runtime will directly execute the 
machine code. If the binaries are compiled from C# or VB.NET, the binaries will contain .NET IL and the 
CLR will at its discretion interpret the IL or JIT (just-in-time) compile the IL to machine code.   

 
 

01101

1001..

generated

binaries

runtime

running

application

.....

 

Figure 1-7. Typical flow of run-time activities 

 
So far, I have described the flow of run-time and compile-time activities in general. Let’s look at 

them again, this time specific to DLR-based languages and to the DLR itself. We will look at DLR-based 
languages first and then at the DLR itself.  

A DLR-based language may or may not have a compiler. Even if it has one, you may have the choice 
of not using it. For example, IronPython provides a compiler you can use to compile IronPython code 
into IL. But depending on the situation, you might not always want to do the compilation. For example, 
in a scenario where you provide scripting capability and let users write IronPython code to automate or 
extend your application, since the IronPython code is written by users, you probably want to make it 
easier by not requiring them to compile their code. The code snippet below shows the IronPython code 
that compiles the source file sample.py into the .NET assembly file sample.dll.  

 
import clr 
clr.CompileModules("sample.dll", "sample.py") 

 
Normally a DLR-based language like IronPython parses input source code, builds its own AST, 

translates that AST to DLR’s AST, and invokes the DLR to interpret or compile the DLR AST. Figure 1-8 
shows the flow of compiling Python code into MSIL. 

 



CHAPTER 1  INTRODUCTION TO DLR 

16 

Idloc.1

Idc.i4.3

stloc.0

...

Python

source code IronPython AST

IronPython

parser

def foo():

 ...

 i = 3

 bar()

 ...

Expression

compiler

MSIL code DLR AST

Tree rewrite /

transformation

 

Figure 1-8. IronPython source file compilation flow 

 
The DLR AST shown in the figure is nothing new, just the DLR expressions mentioned earlier. They 

are implemented as classes in the System.Linq.Expressions namespace inside the System.Core.dll 
assembly. The DLR AST in Figure 1-8 serves as input to the DLR expression compiler, which is 
implemented in the class Microsoft.Scripting.Ast.LambdaCompiler. Compiling expressions is not an 
easy task. Instead of doing all the work of compiling expressions by itself, LambdaCompiler leverages 
classes in the Microsoft.Scripting.Generation namespace to compile expressions into MSIL code. 
Those classes in turn use classes in the System.Reflection.Emit namespace, which you’ll be familiar 
with if you’ve done some work at the MSIL level. The DLR, at its discretion, can also decide to interpret 
expressions instead of compiling them. 

Dynamic vs. Static 
We looked at the word runtime in the previous section. Let’s look at another word that’s part of DLR’s 
name—dynamic. The word “dynamic” is in contrast to the word “static.” In our context, we are talking 
about dynamic and static languages. One fundamental question we need to answer is, how do we decide 
which languages are dynamic languages and which are static? On the surface, it might seem that a 
language is dynamic if you don’t need to specify types for things like function arguments and variables 
when you write code in that language. That is, however, not true, and a counter example is F#. F# does 
not require you to provide type information in your code, yet it’s a static language. It enforces type rules 
by performing type inference and type checking at compile time.  

Another criterion that might seem like a good indicator is whether the language has a compiler. As it 
turns out, this is true in many but not all cases. We saw a counter example of this in the previous section. 
There we mentioned that you can compile IronPython code into IL—and IronPython is a dynamic 
language.  

In fact, whether a language is dynamic or static is a matter of degree. Languages that we generally 
regard as static, such as C# and Java, are not entirely static. I’ll give an example of what I mean by that 
shortly. Let’s explain what we mean by dynamic and static first. In the context of programming 
languages, being dynamic means doing things at run time. In contrast, being static means doing things at 



 CHAPTER 1  INTRODUCTION TO DLR 

17 

compile time. With that in mind, an example of C# or Java being dynamic is array bounds checking. The 
C# compiler by design does not check and catch the following error: 

 
String[] names = new String[] {“John”, “Mary”}; 
String name = names[10]; 

 
The C# compiler will give green light to the code above and we will get an array index out-of-bounds 

exception at run time. As you can see, the checking of array index bounds is not performed statically at 
compile time, but dynamically at run time. 

 
So why doesn’t the C# compiler catch the error? After all, isn’t it pretty obvious that the array 

contains only two items? While the array index out-of- bounds error is obvious in the code snippet 
above, that same error (if it exists) might not be obvious in this code: 

 
String[] names = GetAllNamesFromDatabase(); 
String name = names[10]; 

 
The C# compiler simply can’t know how many names there are in the database unless it runs the 

code. The array bounds checking is a classic example of activities that even static languages would 
perform at run time. Moreover, there’s the new “dynamic” keyword that’s been added to C# 4.0. With 
that new feature, it becomes even clearer that there’s often no black and white divide when it comes to 
deciding whether a language is dynamic.  

 If we accept that whether a language is dynamic or static is a matter of degree, here are two key 
factors people often use to determine that degree: 

• dynamic typing 

• dynamic dispatch (aka late binding) 

If a language exhibits some or all of both, it’s often regarded as being more dynamic. We will go over 
these items in the next sections. In each section, we will describe the subject in general and also 
specifically as it relates to the DLR. 

Dynamic Typing 
Both static and dynamic languages can be strongly typed. The main difference is when they do type 
checking. Strongly typed static languages perform type checking at compile time while strongly typed 
dynamic languages perform type checking at run time. It would be much clearer if we called them 
dynamically checked and statically checked languages. But the terms static and dynamic languages are 
already in wide use. 

Besides that main difference, there are two other key type-related differences between static and 
dynamic languages: changing types of variables and changing the definition of types. Let’s look at some 
examples. 

The C# code below causes a compilation error because C#, like most static languages, does not allow 
you to change the type of a variable. 

 
//explicit static typing. Causes compilation error. 
int i = 3; 
i = “hello”; 
 

The following C# code again causes a compilation error, even though we use the var keyword to 
declare the type of variable i. The difference between this code and the previous is that the previous 



CHAPTER 1  INTRODUCTION TO DLR 

18 

code snippet explicitly tells the C# compiler that the type of variable i is int whereas this code tells the 
C# compiler to infer the type of variable i for us. Sure enough the C# compiler is able to do the inference 
and it dutifully reports back a compilation error to us. 

 
//implicit static typing. Causes compilation error. 
var i = 3; 
i = “hello”; 
 

In C# 4.0, there is a new language keyword called dynamic. If we use that keyword to declare the 
type of a variable, we are telling the C# compiler that the variable’s type can change. The code snippet 
below shows an example. The variable i is not fixed to a single type. In other words, its type is dynamic, 
not static, and the C# compiler won’t bother doing type checking on the variable i at compile time. If we 
compare this example to the previous two examples, the difference should be clear. Note that all three of 
these code snippets are strongly typed. The first two are strongly typed and their type correctness is 
checked at compile time. The last code snippet is also strongly typed and its type correctness is checked 
at run time. 

 
//dynamic typing. No compilation error. No runtime error. 
dynamic i = 3; 
i = “hello”; 
 

C# allows variables to take on different types. Dynamic languages do that too, and more. In dynamic 
languages, it’s not only variables that can take on different types; statements like if and switch can have 
different types as well. The Python example below shows an if statement that returns a number in its if-
branch and a string in its else-branch. The if statement resides in a function called callIf. The function 
is called once with the integer 6, which causes the if-branch to be executed. The function is then called 
with the integer 4 to cause the else-branch to be executed. If you do something like this in C#, you’ll get a 
compilation error because the C# language requires that you return objects of the same type in both 
branches.  
 
def callIf(n): 
    if n > 5: 
 return 5 
    else: 
 return "hello" 
 
x = callIf(6) 
print x 
print type(x) 
 
x = callIf(4) 
print x 
print type(x) 
 

The result of running this code looks like this: 
 
5 
<type ‘int’> 



 CHAPTER 1  INTRODUCTION TO DLR 

19 

Hello 
<type ‘str’> 
 

The other major difference between static and dynamic languages is changing a type’s definition at 
run time. Static languages typically don’t allow that. With dynamic languages like Python and Ruby, we 
can change a type’s definition by, say, adding new methods to it. Listing 1-9 shows some Ruby code that 
adds new methods to a type’s definition at both the class level and instance level. The example first 
defines a class called Customer. The Customer class has an initialize method and a callRep method. The 
initialize method is a special method in Ruby. It is called after an instance of the class is created to 
initialize the newly created instance. In this example, the Customer class has a member variable called 
name. The initialize method sets the member variable name to the value passed to it. The callRep 
method of the Customer class simply prints a message to the console indicating that the customer’s 
representative is called. 

Once the Customer class is defined, the example code in Listing 1-9 creates two customer objects: 
bill and bob. Here’s where things get interesting. Notice that bob’s callRep method is redefined to print 
a different message that indicates the customer has no representative assigned to him. This is an 
example of redefining a method at the instance level. It’s quite common to be able to do that in dynamic 
languages, but not in static languages. Because the callRep method is redefined only for bob, bill is not 
affected.  

Next, the code shows an example of modifying a class’s definition. It does so by adding a new 
method called makeReferral to the Customer class. Because the new method is added to the Customer 
class, both bob and bill will have that method defined for them. Again, changing a class’s definition at 
run time is quite common in dynamic languages, but not so in static languages. 

Listing 1-9. Adding Methods at Class Level and Instance Level 

class Customer 
  def initialize(name) 
     @name = name 
  end 
 
  def callRep 
     puts "#{@name}'s rep is called" 
  end 
end 
 
bob = Customer.new("Bob") 
bill = Customer.new("Bill") 
 
# We can redefine a method at instance level. 
def bob.callRep 
   puts "#{@name} has no rep assigned" 
end 
 
bob.callRep 
bill.callRep 
 
# We can add a new method to a class. 
class Customer 
  def makeReferral 
     puts "#{@name} makes a referral" 



CHAPTER 1  INTRODUCTION TO DLR 

20 

  end 
end 
 
bob.makeReferral 
bill.makeReferral 
 

To run the code in Listing 1-9, first save the code into a file called something like Customer.rb. Then 
open a command console, navigate to the folder where the file Customer.rb resides, and simply execute 
ir Customer.rb. In the command, “ir” refers to the REPL executable of IronRuby. And I’m assuming that 
"C:\Program Files (x86)\IronRuby 1.0v4\bin" is in your Path environment variable. When running the 
code in Listing 1-9, you should see output like the following: 

 
Bob has no rep assigned 
Bill’s rep is called 
Bob makes a referral 
Bill makes a referral 

Dynamic Dispatch 
When we do coding, we generally write code that calls a method, creates a new instance of a class, 
applies an arithmetic operator on some operands, and so forth. A language compiler or interpreter 
needs to know what to do when it encounters that code. When a line of code is a method invocation, the 
compiler/interpreter needs to know which method of which class to invoke. The method might be 
overloaded and, if that’s the case, the compiler/interpreter needs to resolve that and pick the right 
method based on the input arguments passed to the method invocation. Similarly, when the line of code 
is an application of an operator on some operands, the compiler/interpreter needs to know which 
operator it should use. The operator can be overloaded for operands of different types. If that’s the case, 
then again some kind of resolution based on the operands’ types is necessary. The resolutions we talk 
about here are also called method bindings or method dispatches. In static languages, the bindings are 
done at compile time and because compile time happens earlier than run time, the bindings are also 
called early bindings. In dynamic languages, the bindings are done at run time and therefore are often 
called late bindings. Another commonly used term that’s interchangeable with late binding is dynamic 
dispatch. The C# code below is an example of early binding. At compile time, the C# compiler knows the 
type of the variable name is String. When we call the ToLower method on name, the compiler knows that 
we’re calling the ToLower method of the String class. It will also check and make sure that the String 
class has a ToLower method that takes no input arguments and returns a String instance. 

 
String name =  "Bob"; 
String lowercaseName = name.ToLower(); 

 
The IronPython code below is an example of late binding. Basically, all of the things the C# compiler 

does to the previous C# code snippet are now done at run time by the IronPython runtime.  
 
name = "Bob"; 
lowercaseName = name.ToLower(); 

 
You don't need to supply type information in the Python code and there is no type checking during 

development. But when you run the code, the IronPython runtime performs similar type checking and 
method binding that the C# compiler does to the C# code at compile time. 

www.allitebooks.com

http://www.allitebooks.org


 CHAPTER 1  INTRODUCTION TO DLR 

21 

Language 
The final word we haven’t talked about that makes up the name of the DLR is language. A programming 
language—or a human language, for that matter—essentially consists of two parts: syntax and 
semantics. Syntax is the form. Semantics is the meaning of the form. For example, in English, the literal 
form of the sentence “Roses are red” is in the realm of syntax. Its semantics is the meaning we associate 
with it, the fact that roses are red.  

Different programming languages define different forms of the if statement. The forms look similar, 
but they are not exactly the same. If you take one language’s form of the if statement and use it in 
another language, that other language won’t recognize that form and it will throw an error when it tries 
to parse the if statement. However, although if statements in different languages differ in their forms, 
they pretty much have the same semantic meaning. This is analogous to human languages. English, 
Chinese, and Spanish each have a syntactic form for writing down the sentence “Roses are red,” and 
those forms all have the same meaning.  

This observation of syntax and semantics leads very well to what the DLR provides. Because 
syntactic forms usually vary from language to language, the DLR doesn’t restrict you to any specific form 
when you design a DLR-based language. You are totally free in defining the syntax of your language and 
in parsing that syntax. You define a language’s syntax by specifying its grammar rules. In English, the 
sentence “Roses are red” is syntactically valid because it obeys the grammar rules of English. The 
sentence “Roses are not flowers” is also grammatically correct. But if you say it, you’ll get “run time 
exceptions” (people frowning at you) because the sentence does not make sense semantically. 

Since different if statements in different programming languages have the same semantic meaning, 
it’s not surprising that the DLR provides a common semantics model for all DLR-based languages. That 
common semantics model is DLR expressions. When a DLR-based language maps its syntactic forms to 
DLR expressions, it essentially defines the semantics of those syntactic forms. DLR expressions play a 
pivotal role in the overall DLR architecture. It’s the component that stitches together all the other core 
DLR components and makes the whole larger than the sum of the parts. Understanding DLR expressions 
is crucial in understanding how DLR works, and we will delve into them in the next chapter.  

DLR expressions are a superset of LINQ expressions. In terms of implementation, LINQ expressions 
are the classes in the System.Linq.Expressions namespace of the System.Core.dll assembly. The DLR 
adds some expression classes of its own on top of LINQ expressions. Those DLR expressions are 
packaged in the Microsoft.Scripting.Ast namespace of the Microsoft.Dynamic.dll assembly. 
Throughout this book, I will use the terms DLR expressions and LINQ expressions interchangeably. 

Although I just said that DLR expressions offer a common semantics model for all DLR-based 
languages, you can view them and use them as a syntax model if you like. That might seem confusing at 
first, but it’s in fact not as blurry as it seems. Expressions are just objects. If we use the DLR runtime to 
execute them, then they have semantics and those are the semantics defined by the DLR. However, if we 
don’t use the DLR to execute the expressions and instead interpret the expressions ourselves, those 
expressions are just a form of syntax up to us as to how we want to interpret them.  

The LINQ query-provider mechanism is a good example of using LINQ expressions as a syntax 
model. Figure 1-9 shows what we mean by that statement, using LINQ to SQL as an example.  

 
 



CHAPTER 1  INTRODUCTION TO DLR 

22 

query

abstract syntax tree

(LINQ expressions)

from c in Customers where c.City=”New York”

select c.Name

syntax

semantics

query provider

(LINQ to SQL)

SQL query

Figure 1-9. Using expressions as a syntax model 

In the figure, the overall query process begins with the LINQ query at the top. The query is to
retrieve the names of all customers who live in New York. It is transformed into a LINQ expression tree
whose meaning is still open for interpretation. When the expression tree crosses the dashed line and
reaches the LINQ to SQL query provider, it will then have the semantic meaning the query provider gives
it. The query provider will interpret the expression tree according to the semantic meaning it has for the
tree and the result of that is a SQL database query that can be executed to retrieve customers who live in
New York. 

Programming Languages in Practice 
I just said that a programming language is essentially syntax plus semantics. Well, that’s essentially true,
but it’s practically not true. Practically, using a programming language is more than just knowing the
language's syntax and semantics. More often than not, you'll need a nice code editor that gives help with
syntax, a debugger that allows you to step in and out of the code, libraries so that you don’t need to code
everything from scratch, a unit testing framework for obvious reasons, and maybe an IDE that integrates
all the different pieces together in a nice and intuitive way to improve your already remarkable
productivity even further. In addition to all those, you might also want to have tools for doing static code
analysis, unit test coverage, performance benchmarks, and more. Table 1-1 contrasts C# with typical
DLR-based languages. The table shows what you get with C# compared with what you typically need to
provide if you are to implement a DLR-based language. The idea is to give you a feeling for the amount 



 CHAPTER 1  INTRODUCTION TO DLR 

23 

of work needed to implement a DLR-based language that has the tooling support commonly seen in a 
language like C#. 

Table 1-1. C# versus DLR-based Languages 

Facet C# DLR-Based Language 

Compiler/interpreter C# compiler You are free to use your favorite 
software tools and components to 
build the language’s lexer/parser. You 
will typically define the language’s 
semantics by mapping the language’s 
syntax tree to DLR expressions. 

Runtime C# uses CLR as the runtime. Your language can use DLR, CLR as 
the runtime.* 

Code editor Visual Studio’s code editor for C# The DLR does not provide any feature 
for implementing a language’s source 
code editor. 

Debugger Visual Studio’s debugger for C# You can leverage the DLR Debugging 
API.* 

Libraries .NET libraries from Microsoft and 
third parties are accessible to C# 
code. 

.NET libraries from Microsoft and 
third parties are accessible to code 
written in a DLR-based language.* 

Unit test framework NUnit and others Developers who write code in a DLR-
based language can use NUnit and 
others as the unit test frameworks for 
testing their code. Most unit test 
frameworks are software libraries and 
all .NET libraries are accessible to code 
written in a DLR-based language. 

IDE Visual Studio The DLR does not provide any feature 
for implementing an IDE or 
integrating into an existing IDE for 
your language. 

Static code analysis FxCop The DLR does not provide any feature 
for implementing a static code 
analyzer for your language. 

REPL, embedded in 
other languages 

C# does not have a REPL console. 
C# can’t be easily embedded in 
other languages. 

DLR Hosting API allows dynamic 
languages to easily support REPL and 
to be embedded in other languages.* 



CHAPTER 1  INTRODUCTION TO DLR 

24 

In Table 1-1, the cells with an asterisk are the areas in which I think DLR provides the most value. As 
you can see, a language has a lot of aspects besides syntax and semantics. Syntax and semantics are, of 
course, the things that define the language. However, to become efficient and productive with a 
language, you need to be familiar with the various tools and libraries surrounding the language too. 

Putting It Together 
The previous sections describe what the DLR is by exploring the various concepts, such as runtime, 
language, and dynamicity. This section will introduce the DLR from a different angle. We will take a 
high-level look at the major components that make up the DLR. The overview of the major DLR 
components will serve to orient the rest of the chapters in Part 1 of this book. Figure 1-10 shows the 
major components that make up the DLR runtime.  

 

Expression compiler/

interpreter
IL code generator

Expressions

Call site caching

Interoperability binders

and dynamic objects

DLR
Hosting APl

Debugging APl

 

Figure 1-10. Major components of the DLR 

 
As the figure shows, the DLR has a compiler and an interpreter. The compiler uses an IL code 

generator to compile DLR expressions into IL code. The interpreter interprets DLR expressions. Here’s a 
brief description for each of the other components: 

Expressions: These are the backbone of the DLR. Almost everything in the DLR centers around DLR 
expressions. The compiler and interpreter act on DLR expressions. The very important call site 
caching mechanism and the language interoperability capability that the DLR provides are based on 
DLR expressions. If you have some experience with LINQ, you will probably be happy to know that 
these are basically LINQ expressions along with some DLR extensions. It is very likely that the DLR 
extensions will become a part of LINQ expressions in a later version of .NET. We will explore 
expressions in great depth in the next chapter.  

Call site caching: This is the caching mechanism that makes DLR-based applications run fast. 
Dynamic languages have been criticized for their performance in comparison to static languages. 
This is because dynamic languages perform late binding for various actions like method invocation 



 CHAPTER 1  INTRODUCTION TO DLR 

25 

at run time, which is traditionally several orders of magnitude slower than static languages. The call 
site caching component in DLR solves the problem by caching the results of late binding. The 
results of late binding are represented as DLR expressions. The caching mechanism is based on an 
optimization technique called polymorphic inline cache and it’s implemented mainly in the 
CallSiteBinder class. Chapter 3 will dive deep into the details of this DLR component. 

Interoperability binders and dynamic objects: This is what enables interoperability between 
dynamic and static languages. This component uses expressions to represent the results of late 
binding. It also defines a common type system that consists of twelve late-bound operations to 
facilitate language interoperability. Binders and dynamic objects are the two kinds of entities in DLR 
that contain late-binding logic. They interact in a well-established protocol in order to achieve 
language interoperability. Chapter 4 will cover the interoperability binders. Chapter 5 will look at 
dynamic objects. 

Hosting API: This API allows one language to host (i.e., embed) another language. For example, with 
this API, we can execute Python code inside a C# application. Once we do that, we generally want to 
pass some objects from the C# application to the Python code and perhaps receive some objects 
back from the Python code. That’s all possible with the DLR, thanks to the interoperability binders 
and dynamic objects. We will look at the Hosting API in Chapter 6. In Part 2 of this book, you’ll see 
examples of how to use the Hosting API to allow users to script your applications. 

Debugging API: This API is to help you implement a debugger for your DLR-based language. The 
API is still in its early stage of development and is less mature than the rest of the DLR components. 
This book will therefore not cover this particular topic. I would refer you to Harry Pierson’s weblog 
at http://devhawk.net for more information on this topic.  

Summary 
This chapter introduces the DLR by first showing a series of four Hello World examples. It goes on to 
demonstrate some of the applications you’ll develop over the course of this book. After the examples and 
demonstrations, I describe what the DLR is by explaining some fundamental concepts, such as 
programming languages, dynamic typing, and late binding, and we looked at the flows of compile time 
and run time activities. The chapter also includes a high-level discussion on programming language 
syntax and semantics and a partial survey of tooling support for programming languages. The chapter 
concludes with a brief description of the key components that make up DLR, with pointers to the 
chapters that will cover each of these components in more detail. The DLR has wide applicability in 
many areas of our day-to-day software design and development. This chapter offers a preview, and 
glimpse of DLR’s potential. The rest of the book will dive deep and show the rest of the iceberg 
underneath. 

 

http://devhawk.net




C H A P T E R  2 
    
 

27 

DLR Expression 

DLR Expression is the backbone of the DLR. It is a separate feature that you can use without involving 
the rest of the DLR. If you do use it with other DLR features, there are basically two usage scenarios. One 
scenario involves defining a language’s semantics in terms of DLR expressions. The other is defining the 
late binding logic of binders and dynamic objects. Don’t worry if these don’t make much sense to you 
right now. In this chapter, you will learn how to use DLR Expression by itself, while later chapter will 
cover the two usage scenarios. Once you get a good grasp of using DLR Expression by itself, you’ll be in a 
good position to use DLR Expression and the other DLR features together. 

DLR Expression as a Language 
Let’s take a look at what DLR Expression is first, before getting into the examples. DLR Expression is 
much like a programming language. It has constructs like the loop expressions, assignment 
expressions, and method invocation expressions you normally see in other languages. For example, a 
Hello World program in C# looks like this: 

 
Console.Writeline(“Hello World”); 

 
The equivalent code in DLR Expression looks like this: 
 

MethodInfo method = typeof(Console).GetMethod("WriteLine", new Type[] { typeof(String) }); 
 
Expression callExpression = Expression.Call(null, 
          method, 
          Expression.Constant("Hello World")); 

 
This code snippet uses .NET reflection to create a MethodInfo instance that represents the static 
WriteLine method of the Console class. The code then calls the static Call method of the Expression 
class to create an Expression instance. The Expression instance represents a call to the 
Console.WriteLine method that will print “Hello World” to the screen. The first input parameter of the 
Expression.Call method is the target object upon which to call the method designated by the second 
input parameter of Expression.Call. If the method designated by the second input parameter is a static 
method, there’s no target object to call the method on. That’s why the code snippet passes null as the 
first input parameter to the Expression.Call method. 

So what are the differences between DLR Expression and a normal programming language, other 
than that the code in DLR Expression looks a ton more verbose? There are three key differences:  

Code as data and data as code—code expressed in DLR Expression is data that can 
be more easily analyzed and worked on. 



CHAPTER 2  DLR EXPRESSION 

28 

A common denominator of multiple languages—Like CLR’s IL instructions, DLR 
expressions serve as the common denominator of multiple languages. 

No concrete syntax, only abstract syntax—DLR Expression defines only abstract 
syntax and no concrete syntax. However, it supports serialization and we can use 
that to serialize abstract syntax to concrete syntax or, conversely, to deserialize 
concrete syntax into abstract syntax. 

Let’s look at each of the differences in more detail in the next few sections. 

Code as Data   
One key difference between DLR Expression and a typical programming language is that code in DLR 
Expression is data. Code in DLR Expression exists in memory at run time as objects. In contrast, C# code 
exists at run time as a bunch of IL instructions. Because code in DLR Expression is data, it does not 
execute like the C# code does. To execute the data, we can either interpret it or we can turn it into IL 
code and then run it. For example, the following code turns the Hello World example above into IL code 
and runs it: 

 
Action callDelegate = Expression.Lambda<Action>(callExpression).Compile(); 
callDelegate(); 

  
The first line in the code snippet wraps callExpression into a lambda expression and calls the 

Compile method to compile the lambda expression into a callable .NET delegate. This line of code 
essentially turns data into IL instructions. The second line in the code snippet executes the compiled 
code.  

As you can see, instead of one line of C# code, we write a lot more code to achieve the same thing. 
Obviously, there has to be a reason for doing all this extra work. The reason is that once code is 
represented as objects in memory, it is far easier to analyze than IL instructions. Of course, if we want to 
execute the code, we need to turn the objects back into code by either interpreting or compiling the 
objects. The transformation from code to objects is based on the idea of “code as data.” Likewise, the 
transformation from objects to code is based on the idea of “data as code.” The word data here means 
the objects that are used to represent code. Those objects are referred to as data because we analyze 
them like data. The concept of “code as data” and “data as code” has been around for a long time. 
People often use the concept to do things like code transformation, rewriting, generation, analysis, etc. 
LINQ to SQL is an example of using DLR Expression to do code transformation. It transforms a tree of 
DLR expressions into SQL statements. 

A Common Denominator like CLR 
Another key differentiator between DLR Expression and a normal programming language is that DLR 
Expression, like the set of IL instructions, is designed to be the common denominator of multiple 
languages. IL is the common denominator of languages such as C# and VB.NET. Languages like these 
translate their high-level language constructs into low-level IL instructions. CLR has a runtime for 
executing those IL instructions, because its instructions support the high-level language constructs in 
those languages. DLR Expression is the common denominator of languages such as IronPython and 
IronRuby for the same reason. Figure 2-1 below shows the analogy between CLR IL instructions and DLR 
expressions in their roles of being the common denominator of multiple high-level languages.  

 
 



 CHAPTER 2  DLR EXPRESSION 

29 

C# code ... ...

IL IL

VB. NET code
IronPython

code

IronRuby

code

DLR

expressions

DLR

expressions

DLR runtimeCLR runtime
 

Figure 2-1. The CLR and DLR as common denominators of multiple languages 

Concrete Syntax and Serialization 
One more difference between DLR Expression and a normal programming language is that DLR 
Expression defines only the abstract syntax and not the concrete syntax. The concrete syntax of a 
language is literally what you type in a code editor when you program in that language. For example, 
when I write 5 + 2 in C#, I write the code in C#’s concrete syntax in a code editor. When I compile the 
code, the language’s parser will parse the code I write in concrete syntax and represent it in memory as a 
tree of objects. The tree representation is called an abstract syntax tree, and it represents in abstract 
syntax the same code I write in concrete syntax. So what’s the big deal in this distinction between 
concrete syntax and abstract syntax? The idea here is that multiple concrete syntax notations can be 
mapped to one single abstract syntax notation.  

DLR Expression supports serialization. When we serialize a DLR expression tree into a file, the 
textual format in which we store the expression tree is one concrete syntax notation of DLR Expression. 
Each person is free to define his own concrete syntax for DLR Expression and implement the 
serialization/deserialization code. 

Unlike DLR Expression, a typical programming language like C# defines one concrete syntax and 
one abstract syntax. So the mapping from concrete syntax to abstract syntax is one-to-one. Of course, if 
you like, you can come up with a custom concrete syntax for writing C# code. You would then 
implement a custom parser to parse that code and transform it into C#’s abstract syntax. However, I’ve 
yet to see anybody so insane. Besides, the C# abstract syntax might not be accessible to the public.   

Expressions vs. Statements 
So far, we’ve looked at DLR Expression as a programming language. In programming languages, there’s 
a distinction between expressions and statements. The distinction between the two is very simple—
expressions yield values; statements don’t. This is best illustrated with some examples. 

Each of the following lines of code is an expression, compound or not, in C#. To qualify as an 
expression, according to what we just said, the code must yield a value. In the first three lines, the value 
each expression yields is the number 7. The value the last expression yields is the return value of the 
method call. The third line is particularly interesting. It’s a compound expression that consists of two 
assignment expressions: j = 7 and i = (j = 7). The expression j = 7 yields 7 as its value, which in turn is 
assigned to the variable i. If j = 7 were not an expression, there would be nothing to assign to variable i 
and the third line of code would cause a compilation error. 

 



CHAPTER 2  DLR EXPRESSION 

30 

5 + 2 
x = 7         //assignment expression 
i = j = 7     //this line of code consists of two assignment expressions 
someObject.Foo()    //method call expression 

 
Let’s now see some statements. The first line below shows that local variable declaration in C# is a 

statement. The second line shows that if we add semicolon to the end of an assignment expression, the 
result is an assignment statement. Similarly, if we add semicolon to the end of a method call expression, 
we get a method call statement as the result.  

 
int i; //variable declaration statement 
x = 5;   //assignment statement 
someObject.Foo();    //method call statement 

 
The if language construct in C# is a statement, not an expression. The following code is valid in C#: 
 

if (true)   //if statement 
    Console.WriteLine(“Hello”); 

 
The code below, however, is not valid C# code because the if statement yields no value that can be 

assigned to variable x. 
 

//This code is not valid in C# 
x = if (true) 
    Console.WriteLine(“Hello”); 

 
So what does all this discussion about expressions versus statements have to do with DLR 

Expression? Simply put, DLR Expression does not have statements. It has only expressions that yield 
values. That’s why it’s called DLR Expression, not DLR Statement. Let’s look at an example and see what 
that means. Listing 2-1 shows an invalid C# code snippet. It’s invalid because the if statement yields no 
value that can be assigned to variable y. The code in Listing 2-1 is similar to the code snippet we just 
looked at, so it shouldn’t be anything new to us. Now let’s look the almost equivalent code in DLR 
Expression in Listing 2-2. You can find the code for both Listing 2-1 and Listing 2-2 in the 
StatementVersusExpression.cs file of this chapter’s source code project.  

Listing 2-1. Invalid C# Code That Assigns an If Statement to a Variable. 

{ 
  String x = "Hello"; 
  String y = if (true)   //This causes compilation error. 
                x.ToLower(); 
} 

Listing 2-2. Assigning an If Statement to a Variable in DLR Expression 

1) MethodInfo method = typeof(String).GetMethod("ToLower", new Type[]{}); 
2) ParameterExpression x = Expression.Variable(typeof(String), "x"); 
3) ParameterExpression y = Expression.Variable(typeof(String), "y"); 
4) Expression blockExpression = Expression.Block(new ParameterExpression[] {x, y}, 
5)     Expression.Assign(x, Expression.Constant("Hello")), 

www.allitebooks.com

http://www.allitebooks.org


 CHAPTER 2  DLR EXPRESSION 

31 

6)     Expression.Assign(y,  
7)         Expression.Condition(Expression.Constant(true), 
8)             Expression.Call(x, method),  
9)             Expression.Default(typeof(String)),  
10)             typeof(String))) 
11) ); 
12)  
13) Func<String> blockDelegate = Expression.Lambda<Func<String>>(blockExpression).Compile(); 
14) String result = blockDelegate(); 
15) Console.WriteLine(result);             

 
Don’t be turned off by the amount of DLR Expression code that’s needed to achieve what the C# 

code in Listing 2-1 does. Later sections will describe DLR block expressions, conditional expressions, 
and assignment expressions in more detail, with examples. For now, I’ll explain the example code just 
enough to illustrate the important differences between expressions in the DLR and statements in C#.  

The code in Listing 2-2 has quite some interesting points. First, notice the blockExpression variable 
in line 4.  A DLR block expression is a container of smaller child expressions. The value of a DLR block 
expression is the value of the last child expression it contains. This is the first difference from the code in 
Listing 2-1. In Listing 2-1, the pair of curly braces and all the code within it make up a block statement 
that yields no value. 

The second difference from the code in Listing 2-1 is the assignment expression in line 6 that assigns 
a conditional expression to the parameter expression y. The conditional expression is the equivalent of 
the C# if statement in Listing 2-1. The parameter expression y is the equivalent of the variable y in 
Listing 2-1. Unlike in C#, the if conditional construct in the DLR is an expression, not a statement. It has 
a value that can be assigned to a variable.  

Line 13 in Listing 2-2 compiles the whole block expression into code, a .NET delegate of type 
Func<String>. That type Func<String> means the delegate takes no input arguments and returns a 
String object. I didn’t pick that delegate type randomly. The delegate type needs to match the type 
requirements of blockExpression. In our case, blockExpression takes no input arguments and returns a 
String. This echoes what I said about block expressions earlier. Remember I mentioned that a DLR block 
expression has a value and that value is the value of the last child expression it contains. In our example, 
the last child expression is the assignment expression that assigns the conditional expression to the 
variable y expression. The value of that assignment expression is of type String and therefore the value 
of the block expression is also of type String. 

The result of running the code in Listing 2-2 is the text “Hello” displayed in the console. Our 
discussion of expressions versus statements leads well to the next section’s topic—the Expression class. 

Expression Type and Kind 
DLR Expression has several classes to represent different expressions, such as the block expressions, 
conditional expressions, and assignment expressions we saw in the earlier sections. All those classes 
derive directly or indirectly from the Expression class in the System.Linq.Expressions namespace. The 
Expression class is the root base class that defines all the properties and operations common to all DLR 
expressions. Because all expressions yield a value (as we discussed in the previous section), the 
Expression class defines a property called Type to record the type of an expression’s value. Figure 2-2 
shows the key properties and methods of the Expression class this chapter covers. As the figure shows, 
Type is a property in the Expression class. Its type is System.Type. So for example, if a DLR expression 
represents the string literal “Hello”, that expression’s Type property is System.String.  

 



CHAPTER 2  DLR EXPRESSION 

32 

Expression

NodeType : ExpressionType

Type : Type 

CanReduce : bool 

Accept(visitor : ExpressionVisitor) : Expression

Reduce() : Expression

Figure 2-2. Expression class 

Besides the Type property, we’ll encounter two other important properties later: NodeType and
CanReduce. The CanReduce property and the Reduce method are about expression reduction, which we’ll
discuss later in the chapter. The Accept method is related to the Visitor design pattern we can use to
change DLR expressions. We will also discuss that later, and don’t worry—no prior knowledge of the
Visitor design pattern is required. I’ll explain the Visitor design pattern in general first, then show you
how the pattern is implemented in the DLR. For now, let’s look at just the NodeType property, then we’ll
jump right into a bunch of code examples that show how to write programs in DLR Expression.  

The NodeType property gives additional information about what kind of an expression you’re dealing
with. For example, Table 2-1 shows some C# expressions in the first column. The equivalent DLR
expressions of those C# expressions are all instances of the BinaryExpression class. Although they are all
instances of BinaryExpression, they have different values for the NodeType property shown in the second
column.  

Table 2-1. Binary Expressions and Their NodeType Properties 

C# Binary Expression NodeType 

5 + 2 ExpressionType.Add 

5 – 2 ExpressionType.Subtract 

5 * 2 ExpressionType.Multiply 

5 / 2 ExpressionType.Divide 

All of the C# expressions in Table 2-1 have one thing in common—they all have a left operand, a
right operand, and an operator in the middle. In other words, if we visualize them as expression trees,
they will all have the same shape shown in Figure 2-3. Because of this commonality, it’s very typical in
the design of abstract syntax trees to use something like DLR’s BinaryExpression class to represent them
all. The design approach is often called shape-based. Because the BinaryExpression instances all have
the same shape, there needs to be a way to distinguish whether a binary expression is an addition,
multiplication, subtraction, or something else. The NodeType property is there in the Expression class to
carry that additional information about an expression. 



 CHAPTER 2  DLR EXPRESSION 

33 

Binary expression

binary operator

(Node Type)

left operand

expression

right operand

expression
 

Figure 2-3. Shape of a binary expression 

The code snippet below is an example that prints out the Type and NodeType properties of a 
BinaryExpression instance and two ConstantExpression instances. The two ConstantExpression 
instances act as the left and right operands of the binary expression. The expressions in this code 
example match exactly the tree shape shown in Figure 2-3. In the code snippet, the binary expression is 
referenced by the addExpression variable. Because the binary expression represents arithmetic addition 
of two integers, when the code prints out the Type property of the binary expression, the text 
“System.Int32” will show up on the screen. As for the two ConstantExpression instances, because they 
represent constant integers, when the code prints out their Type property, we will see “System.Int32” on 
the screen too. The NodeType property of the binary expression has the value ExpressionType.Add to 
indicate that the binary expression is a binary addition, not a binary multiplication or any other kind of 
binary expression. The NodeType property of the two ConstantExpression instances has the value 
ExpressionType.Constant to indicate that the expressions are constant expressions.   

 
BinaryExpression addExpression = Expression.Add( 
                       Expression.Constant(10), 
                       Expression.Constant(20)); 
 
Console.WriteLine(addExpression.Type); 
Console.WriteLine(addExpression.Left.Type); 
Console.WriteLine(addExpression.Right.Type); 
 
Console.WriteLine(addExpression.NodeType); 
Console.WriteLine(addExpression.Left.NodeType); 
Console.WriteLine(addExpression.Right.NodeType); 

 
So far we’ve covered the important concepts of DLR Expression. The next few sections will 

introduce the various DLR expression classes, much like we’d introduce the language constructs of a 
programming language. You’ll see examples that show how to write arithmetic, if, switch, for loop, and 
other DLR expressions.  

Binary Expressions 
Binary expressions are expressions that have a left and a right child expression, such as one that adds 
two integers. The expression is binary. Its left child expression is the left operand of the addition 
operation. Its right child expression is the right operand. Binary expressions are represented as instances 



CHAPTER 2  DLR EXPRESSION 

34 

of the BinaryExpression class. Listing 2-3 shows first the C# code that adds two doubles and divides the 
result by 3. Below the C# code is the equivalent code in DLR Expression.  

In the DLR Expression part of the example, the doubles are constant expressions. The example calls 
Expression.Constant to create them. The Expression class provides factory methods for creating 
instances of built-in expression classes. The factory method for ConstantExpression is 
Expression.Constant. Similarly, the example calls Expression.Add and Expression.Divide to create the 
two binary expressions that represent the addition and division.  

Listing 2-3. BinaryExamples.cs 

public static void CSharpExample() 
{ 
    double result = (10d + 20d) / 3d; 
    Console.WriteLine(result); 
} 
 
public static void LinqExample() 
{ 
    Expression binaryExpression = Expression.Divide( 
        Expression.Add(    //left child of division 

Expression.Constant(10d),  //left child of addition 
         Expression.Constant(20d)), //right child of addition 
        Expression.Constant(3d)   //right child of division 
    ); 
 
    Func<double> binaryDelegate = Expression.Lambda<Func<double>>(binaryExpression) 

.Compile(); 
    Console.WriteLine(binaryDelegate()); 
} 
 

Both Expression.Add and Expression.Divide return an instance of BinaryExpression. The difference 
is that the BinaryExpression that Expression.Add returns has ExpressionType.Add as the value of its 
NodeType property whereas the BinaryExpression that Expression.Divide returns has 
ExpressionType.Divide. Tables 2-2 and 2-3 list all the different ExpressionType values that a binary 
expression’s NodeType property can take. We have seen some of them in Table 2-1 already. Tables 2-2 
and 2-3 present the complete list of all binary expressions and their NodeType property values. For each 
ExpressionType value in the first column of the tables, Table 2-2 and Table 2-3 show the equivalent C# 
binary operator in the second column. For each ExpressionType value, the tables don’t have a column 
that shows the corresponding factory method in the Expression class for creating a binary expression for 
that ExpressionType value. I omit it because the factory method names are the same as their 
corresponding ExpressionType values. For example, in the first row of Table 2-2, the ExpressionType 
value is Add and the corresponding factory method is Expression.Add. 

 Table 2-2 shows the ExpressionType values for binary arithmetic expressions. Table 2-3 shows the 
ExpressionType values for the rest of binary expressions. 



 CHAPTER 2  DLR EXPRESSION 

35 

Table 2-2. Arithmetic Binary Expressions 

NodeType property value Example of Equivalent  

C# Operator 

Add 

AddAssign 

AddChecked 

AddAssignChecked 

5 + 2 

x += 2 

checked (x + 2) 

checked (x += 2) 

Subtract  

SubtractAssign 

SubtractChecked 

SubtractAssignChecked 

5 – 2 

x -= 2 

checked (x - 2) 

checked (x -= 2) 

Multiply 

MultiplyAssign  

MultiplyChecked 

MultiplyAssignChecked 

5 * 2 

x *= 2 

checked (x * 2) 

checked (x *= 2) 

Divide 

DivideAssign 

5 / 2 

x /= 2 

Modulo 

ModuloAssign  

5 % 2 

x %= 2 

Power 

PowerAssign 

5 ^ 2 

x ^= 2 

Table 2-3. Non-Arithmetic Binary Expressions 

NodeType Example of Equivalent  

C# Operator 

And 

AndAlso 

AndAssign 

true & false 

true && false 

x &= true 



CHAPTER 2  DLR EXPRESSION 

36 

NodeType Example of Equivalent  

C# Operator 

Or 

OrElse 

OrAssign 

true | false 

true || false 

x |= false 

ExclusiveOr 

ExclusiveOrAssign 

true ^ false 

x ^= false 

LessThan 

LessThanOrEqual 

5 < 2 

5 <= 2 

GreaterThan 

GreaterThanOrEqual 

5 > 2 

5 >= 2 

Equal 

NotEqual 

5 == 2 

5 != 2 

RightShift 

RightShiftAssign 

5 >> 2 

x >>= 2 

LeftShift 

LeftShiftAssign 

5 << 2 

x <<= 2 

Assign x = 2 

ArrayIndex x[2] 

Coalesce (int) x 

Flow Control Expressions 
This section will look at examples of if and switch flow control expressions in the DLR. Because the 
examples will use the expression that calls the Console.WriteLine method in several places, it helps to 
wrap that expression into the Print helper method shown in Listing 2-4. This way the code examples will 
be more succinct and easier to read. 



 CHAPTER 2  DLR EXPRESSION 

37 

Listing 2-4. The Print helper method in ExpressionHelper.cs 

public class ExpressionHelper 
{ 
    public static Expression Print(string text) 
    { 
        return Expression.Call( 
                   null, 
                   typeof(Console).GetMethod("WriteLine", new Type[] { typeof(String) }), 
                   Expression.Constant(text) 
               ); 
    } 
} 

If-Then-Else Expressions 
Listing 2-5 has two methods, CSharpExample() and LinqExample(). The code in CSharpExample() is a 
simple if-else statement that will print “true” to the screen when you run it. The equivalent code in DLR 
Expression is in LinqExample(), which  calls the Expression.IfThenElse factory method to create an 
instance of ConditionalExpression. The conditional expression has three parts—if-test, if-true, and if-
false. Each of the tree parts is an expression by itself. In this example, the if-test part is a constant 
expression that has true as its value. The if-true expression is a method call expression that will print 
“true” to the screen when executed. The if-false expression is a method call expression that will print 
“false” to the screen when executed. 

Listing 2-5. IfExamples.cs 

public static void CSharpExample() 
{ 
    if (true) 
        Console.WriteLine("true"); 
    else 
        Console.WriteLine("false"); 
} 
 
public static void LinqExample() 
{ 
    Expression ifExpression = Expression.IfThenElse( 
        Expression.Constant(true), 
        ExpressionHelper.Print("true"), 
        ExpressionHelper.Print("false") 
    ); 
 
    Action ifDelegate = Expression.Lambda<Action>(ifExpression).Compile(); 
    ifDelegate(); 
} 



CHAPTER 2  DLR EXPRESSION 

38 

Switch Expressions 
Now we’ll look at an example of constructing a switch expression in the DLR. As before, the code in 
Listing 2-6 shows the example first in C# and then in DLR Expression. The code in CSharpExample() is a 
simple switch statement that will print “case 1” to the screen when you run it. The equivalent code in 
DLR Expression is in LinqExample(), which calls the Expression.Switch factory method to create an 
instance of the SwitchExpression class. The switch expression in the example consists of two parts—the 
switch value and the two cases. The switch value is an expression. The switch cases are not; they are 
instances of the SwitchCase class. In this example, the switch value is a constant expression that has 
integer 1 as its value. The example code calls the Expression.SwitchCase factory method to create the 
SwitchCase instances. Each SwitchCase instance consists of two parts—the conditions and the body of 
the case, all of which are expressions. A switch case can have one or more conditions. In our example, 
the first case has one condition, the integer 1, and the second case has two conditions, the integers 2 
and 3.  

One important difference between the C# code and the DLR expression code is that in the latter, 
there is no need to have a break expression to mark the end of each case.  

Listing 2-6. SwitchExamples.cs 

public static void CSharpExample() 
{ 
    switch (1) 
    { 
        case 1: 
            Console.WriteLine("case 1"); 
            break; 
        case 2: 
        case 3: 
            Console.WriteLine("case 2 and 3"); 
            break; 
    } 
} 
 
public static void LinqExample() 
{ 
    SwitchExpression switchExpression = Expression.Switch( 
        Expression.Constant(1), 
        new SwitchCase[] { 
            Expression.SwitchCase( 
                ExpressionHelper.Print("case 1"), 
                Expression.Constant(1) 
            ), 
            Expression.SwitchCase( 
                ExpressionHelper.Print("case 2 and 3"), 
                Expression.Constant(2), 
                Expression.Constant(3) 
            ) 
        } 
    ); 
 
    Action switchDelegate = Expression.Lambda<Action>(switchExpression).Compile(); 



 CHAPTER 2  DLR EXPRESSION 

39 

    switchDelegate(); 
} 

 

Scopes and Name Binding 
Every language defines its own scoping rules for binding names, and so does DLR Expression. Before I 
explain what that means, let’s look at an example. Listing 2-7 shows some C# code and the scopes it 
defines: 

Listing 2-7. Scopes 

namespace ExpressionExamples  
{        //new scope ExpressionExamples 
    public class Employee  
    {               //new scope Employee 
        private double monthlySalaryRate = 1000d; 
 
        public double calculateBonus(int performanceRating)  
        {      //new scope calculateBonus 
            return monthlySalaryRate * performanceRating; 
        }       //end of scope calculateBonus 
    }              //end of scope Employee 
 
    public class FatCat 
    {              //new scope FatCat 
        private double monthlySalaryRate = 1E10; 
 
        public double calculateBonus(int performanceRating) 
        {      //new scope calculateBonus 
            return monthlySalaryRate * 1E20; 
        }      //end of scope calculateBonus 
    }              //end of scope FatCat 
}       //end of scope ExpressionExamples 

 
In the example, I purposely define the same calculateBonus method names and the same 

monthlySalaryRate variable names to illustrate the effect scopes have on name bindings. When the same 
name shows up multiple times in code, the language’s compiler or interpreter needs to have rules for 
determining what those occurrences of the same name refer to. The rules, as it turns out, are defined in 
terms of scopes in most if not all languages.  

In general, the way it works is very simple (we’ll get to some subtle details later). First, you can’t 
define two things with the same name in one scope. In the code above, the names Employee and FatCat 
have to be different because they are defined in the same scope. Second, sibling scopes are totally 
isolated from each other. That’s why we can have the same variable names and method names in 
Employee and FatCat because the scopes Employee and FatCat define are siblings. Last, child scope (i.e., a 
scope nested within another scope) has visibility into its parent and parent’s parent and so on. The 
scope defined by the calculateBonus method in the Employee class is a child scope of the Employee 
class’s scope. That’s why in that method, when we use the name monthlySalaryRate to calculate an 
employee’s bonus, the C# compiler knows we are referring to the Employee class’s monthlySalaryRate, 
not FatCat’s monthlySalaryRate.  



CHAPTER 2  DLR EXPRESSION 

40 

Astute readers might notice that the scopes in the code example correspond to open-close curly 
brace pairs one to one. What’s more, the nesting of curly brace pairs and the nesting of scopes match up 
perfectly. That can’t be just coincidence, can it? No, it isn’t and in fact the essence of curly braces in C# is 
to define scopes for name bindings. In Listing 2-7, we saw that namespaces, classes, and methods can 
introduce new scopes. Besides those, in C#, the flow control statements like while, if-then-else, and for 
can be followed by open-close curly brace pairs and thereby introduce new scopes.  

Lexical vs. Dynamic Scope 
 

We will soon get to the discussion of DLR Expression on the subject of scopes and name binding. But 
first I want to show you some more examples and explain the term lexical scope.  

Listing 2-8 shows a C# program on the left and the equivalent Python program on the right. Listing 
2-9 shows a similar C# program on the left and its equivalent Python program on the right. Notice that in 
each program, the function addToY is called twice—once directly by the line addToY(5) and the other 
time indirectly by the line add4(5).  

In Listing 2-8, the function add4 assigns number 4 to the outer y and then calls addToY. That does 
not change the fact that the name y in addToY is bound to outer y. If you run either of the two programs 
in Listing 2-8, you will see the numbers 7 and 9 printed on the screen.  

Listing 2-8. Examples of Lexical Scopes and Name Binding with No Local Variables 

static void addToY(int x) { 
    Console.WriteLine(x + y); //refers to outer y 
} 
 
static void add4(int x) { 
    //this y is the same as the outer y 
    y = 4;       
    addToY(x); 
} 
 
static int y = 2;    //outer y 
static void Main(string[] args) { 
    addToY(5); 
    add4(5); 

} 

def addToY(x): 
  print x + y  #refers to outer y 
 
 
def add4(x): 
  #this y is the same as the outer y 
  global y  
  y = 4    
  addToY(x) 
 
y = 2        #outer y 
 
addToY(5) 
add4(5) 

 
 
 
In Listing 2-9, the function add4 assigns number 4 to a local y and then calls addToY. That again does 

not change the fact that the name y in addToY is bound to outer y. If you run either of the two programs 
in Listing 2-8, you will see the numbers 7 and 7 (because the value of outer y is never changed) printed 
on the screen.  

www.allitebooks.com

http://www.allitebooks.org


 CHAPTER 2  DLR EXPRESSION 

41 

Listing 2-9. Examples of Lexical Scopes and Name Binding with Local Variables 

static void addToY(int x) { 
    Console.WriteLine(x + y); //refers to outer y 
} 
 
static void add4(int x) { 
    int y = 4;      //local y 
    addToY(x); 
} 
 
static int y = 2;    //outer y 
static void Main(string[] args) { 
    addToY(5); 
    add4(5); 

} 

def addToY(x): 
  print x + y   #refers to outer y 
 
 
def add4(x): 
  y = 4      #local y 
  addToY(x) 
 
 
y = 2        #outer y 
 
addToY(5) 
add4(5) 

 
 
The point I want to emphasize with these programs is that in all four cases, (a) no matter where 

addToY is called (directly or indirectly within another function), and (b) no matter whether we change the 
value of a local y or the outer y before calling addToY within add4, the name y in function addToY always 
refers to the outer y. The point, in other words, is that the scope of addToY’s name binding does not 
depend on where addToY is called. It depends on where addToY is defined. Since addToY is defined in the 
scope where the outer y is also defined, the name y in addToY always refers to the outer y. This kind of 
scoping rule is called lexical scoping or static scoping. The opposite of lexical scoping is dynamic 
scoping. With dynamic scoping, the name y in addToY might not always be bound to the outer y. The 
binding is more fluid, and it depends on where addToY is called. All of the languages used in this book 
such as DLR Expression, C#, Ruby and Python use lexical scoping. Therefore, we will not discuss 
dynamic scoping in more detail.  

BlockExpression and Lexical Scoping 
So far, we’ve been using C# as an example for explaining scopes and name binding. Let’s see some 
examples in DLR Expression. Listing 2-10 shows a C# example of nested scopes. Listing 2-11 shows a 
similar example in DLR Expression. The C# example defines a lambda function add. The body of the add 
function has two blocks—i.e., the two pairs of left and right curly braces. Each block defines a scope. The 
outer scope declares the variable x. The inner scope declares the variable y. Because the name x is 
declared in the outer scope, C# does not allow us to bind that name to different object in the inner 
scope. That’s why in the inner scope if we declare a variable of the same name x, we’ll get a compilation 
error. 

Listing 2-10. C# Example in NestedBlockExamples.cs 

public static void BlockLexicalScopeCSharpExample() 
{ 
    Func<int> add = () => 
    { 
        int x = 2; 
        { 
            //int x = 1; //Compilation error. C# compiler does not allow this. 



CHAPTER 2  DLR EXPRESSION 

42 

            int y = 3; 
            return x + y; 
        } 
    }; 

    int result = add(); 
    Console.WriteLine("result is {0}", result);
} 

DLR Expression does not impose this limitation and the code in Listing 2-11 is the proof. The DLR
example, like the C# example, also has two blocks. Each block defines a scope. Unlike C#, DLR
Expression allows us to declare a variable x in the outer scope (line 7) and another variable x in the inner
scope (line 10). Both of these are references to the same bolded ParameterExpression instance x in line 
3. However, even though they are references to the same ParameterExpression instance x, the fact that
they are in different scopes has an impact on name bindings. That impact is illustrated in the example
with the code Expression.Add(x, y) in line 13. The result of the addition is 3, not 5. This is because the
addition expression is in the scope where the name x is bound to the inner scope’s local variable x. The
inner scope’s local variable x is implicitly initialized with the value 0. So the result of the addition is 3.  

If we don’t declare the local variable x in the inner scope, the result of the addition expression will
be 5. The result is 5 because the addition will add the outer scope’s x and the inner scope’s y. To not
declare the local variable x in the inner scope, all you need to do is to replace line 10 in Listing 2-11 with
the following line:  

//result will be 5 if you use the following line of code to replace line 10 in Listing 2-11                
new ParameterExpression[] { y },                   

Listing 2-11. DLR Expression Example in NestedBlockExamples.cs 

1) public static void BlockLexicalScopeLinqExample() 
2) { 
3)     ParameterExpression x = Expression.Variable(typeof(int), "x"); 
4)     ParameterExpression y = Expression.Variable(typeof(int), "y"); 
5)  
6)     Expression add = Expression.Block( 
7)             new ParameterExpression[] { x }, 
8)             Expression.Assign(x, Expression.Constant(2)), 
9)             Expression.Block( 
10)                 new ParameterExpression[] {x, y}, //Unlike C#, DLR allows this.  
11)                 Expression.Assign(y, Expression.Constant(3)), 
12)                 Expression.Add(x, y) 
13)             ) 
14)      //If we print out the value of x here, it will be 2. 
15)         ); 
16)      
17)      
18)     int result = Expression.Lambda<Func<int>>(add).Compile()(); 
19)     Console.WriteLine("result is {0}", result); 
20) } 

Notice the comment in line 14 of Listing 2-11. It says in the outer scope, if we print out the outer
scope’s x variable, we will see the number 2—even if the inner scope declares another variable x that’s 



 CHAPTER 2  DLR EXPRESSION 

43 

initialized to 0. Let me prove that to you in code, and then I’ll summarize the key takeaways from our 
discussion of the DLR’s BlockExpression. 

Listing 2-12 shows the code that prints out the outer scope’s x variable. The code in Listing 2-12 is a 
simplified version of the code in Listing 2-11. First, we don’t need the variable y from Listing 2-11 to 
demonstrate the point I’m trying to make. The code in Listing 2-12 simply has a variable x in the outer 
scope and another variable x in the inner scope. In the inner scope, the variable x is assigned the number 
1. Because the inner scope’s x is bound to a different object than the outer scope’s x, assigning the 
number 1 to the inner scope’s x does not change the value of the outer scope’s x. So when the code 
prints out the outer scope’s x, the number we’ll see on the screen is 2, not 1. The bolded line of code in 
Listing 2-12 is the line that prints out the outer scope’s variable x to the screen. The bolded line of code is 
a call to the static Print helper method in the ExpressionHelper class. This Print helper method is 
slightly different from the Print helper method we saw in Listing 2-4. The Print helper method in Listing 
2-4 takes a String object as the input parameter. The Print helper method here takes an Expression 
instance as the input parameter. Listing 2-13 shows the implementation of the Print helper method that 
takes an Expression instance as input. 

Listing 2-12. NestedBlockExamples.cs 

public static void OuterScopeVariableNotChangedByInnerScopeLinqExample() 
{ 
    ParameterExpression x = Expression.Variable(typeof(int), "x"); 
             
    Expression block = Expression.Block( 
            new ParameterExpression[] { x }, 
            Expression.Assign(x, Expression.Constant(2)), 
            Expression.Block( 
                new ParameterExpression[] { x },  
                Expression.Assign(x, Expression.Constant(1)) 
            ), 
            ExpressionHelper.Print(x) 
        ); 
 
    Expression.Lambda<Action>(block).Compile()(); 
} 

Listing 2-13. The Print Helper Method That Takes an Expression Instance as Input 

public static Expression Print(Expression expression) 
{ 
    return Expression.Call(null, 
                typeof(Console).GetMethod("WriteLine", new Type[] { typeof(int) }), 
                expression); 
} 
 

Here are the key takeaways from our discussions of BlockExpression: 

• Even if an outer block already declares variable x, DLR BlockExpression allows an 
inner block of the outer block to declare variable x again. C# does not allow that.  



CHAPTER 2  DLR EXPRESSION 

44 

• If an outer block and an inner block both declare variable x, those two variables 
are bound to different objects. Changing the value of one variable does not change 
the value of the other variable. This is true even when the two variables are 
represented by the same ParameterExpression instance. 

Lambda Expressions and Closure 
Lambda expressions are so called because they are based on a theory called lambda calculus in 
mathematics. Let’s look at a C# example of a lambda expression and then I’ll use that example to explain 
some concepts in lambda calculus. Although I had a lot of fun (and pain as well) with lambda calculus 
while taking the course “Introduction to Programming Language Theory” at Stanford, I promise I won’t 
digress and stray into the parts of lambda calculus that aren’t necessary for our discussion in this 
section. 

Listing 2-14 shows a C# code example that creates a lambda expression. The lambda expression is 
the part in bold. It is an expression and therefore can be assigned to the variable add. The lambda 
expression takes two input parameters x and y of type int and returns a value of type int. The body of 
the lambda expression is { return x + y ; }. The x and y in the body of the lambda expression are 
bound by the input parameters x and y. Therefore, the x and y in the body of the lambda expression are 
said to be bound variables.  

Listing 2-14. A C# Example of a Lambda Expression 

public static void LambdaCSharpExample() 
{ 
    Func<int, int, int> add = (x, y) => { return x + y; }; 
    int result = add(3, 5); 
    Console.WriteLine("result is {0}", result); 
} 
 

Listing 2-15 shows the DLR Expression equivalent. This code calls the Expression.Lambda<T> factory 
method to create an instance of Expression<T>. Here T is the delegate type of the lambda expression the 
factory method creates. The bolded code in line 7 of Listing 2-15 is the body of the lambda expression. 
The x and y in line 8 are the two input parameters of the lambda expression. The x and y in the body of 
the lambda expression are bound by the x and y input parameters in line 8. 

Listing 2-15. A DLR LambdaExpression Example 

1) public static void LambdaLinqExample() 
2) { 
3)     ParameterExpression x = Expression.Parameter(typeof(int), "x"); 
4)     ParameterExpression y = Expression.Parameter(typeof(int), "y"); 
5)  
6)     Expression<Func<int, int, int>> add = Expression 
7)               .Lambda<Func<int, int, int>>(Expression.Add(x, y),  
8)                                            x, y); 
9)  
10)     int result = add.Compile()(3, 5); 
11)     Console.WriteLine("result is {0}", result); 
12) } 



 CHAPTER 2  DLR EXPRESSION 

45 

So far, the lambda expressions and bound variables we’ve discussed all have their roots in the 
lambda calculus theory. Lambda calculus also includes the opposite of bound variables, called free (or 
unbound) variables, and  C# and DLR Expression allow free variables in lambda expressions, too. Listing 
2-16 shows a C# example of a lambda expression that has free variables. The code first declares two 
variables x and y, then it creates a lambda expression. The body of the lambda expression is the same as 
the lambda expression body in Listing 2-14. However, in Listing 2-16, the lambda expression does not 
take any input parameters and, because of this, the variables x and y in the body of the lambda 
expression are said to be free variables. The free variables need to be bound before the lambda 
expression can be executed. Because the lexical scope in which the lambda expression is created defines 
the variables x and y in lines 3 and 4, the x and y in the body of the lambda expression in line 7 are 
bound to the variables x and y in lines 3 and 4. The lambda expression and the variables x and y in line 3 
and line 4 together is called a closure. 

Because the lambda expression’s free variables are bound in the closure, we can execute the closure. 
The code in Listing 2-16 purposely executes the closure within a block that spans from line 10 to line 13. 
The block is redundant in the code. I wrote the code in such a way so that it’s as close as possible to the 
almost equivalent DLR code in Listing 2-17.  

Listing 2-16. A C# Example of a Lambda Expression That Has Free Variables 

1) public static void ClosureLexicalScopeCSharpExample() 
2) { 
3)     int x = 2; 
4)     int y = 1; 
5)  
6)     //The 'add' delegate and variables x, y form a closure. 
7)     Func<int> add = () => { return x + y; }; 
8)  
9)     int result; 
10)     { 
11)         //int y = 3; //C# compiler does not allow this. 
12)         result = add(); 
13)     } 
14)  
15)     Console.WriteLine("result is {0}", result); 
16) } 
 

Listing 2-17 shows a DLR Expression example of a lambda expression that has free variables. In 
Listing 2-17, the code defines a lambda expression and assigns it to the variable add in line 12. The 
lambda expression has two free variables, x and y, that are bound to the x and y declared in line 9. The 
key point here is that lexical scoping determines what the free variables x and y are bound to. The free 
variables x and y are bound to the x and y declared in line 9 because the x and y in line 9 are declared in 
the same lexical scope as the lambda expression. Because the lambda expression is defined in the outer 
scope, the free variables x and y are bound to the outer scope’s local variables x and y. To prove that, the 
example deliberately invokes the closure in an inner scope where the name y is bound to the inner 
scope’s local variable y, which has value 3. It doesn’t matter where the closure is invoked. The free 
variables are always bound to the outer scope’s local variables x and y. Therefore, the result of running 
the code in Listing 2-17 is 3 (i.e., 2 + 1), not 5 (i.e., 2 + 3).  



CHAPTER 2  DLR EXPRESSION 

46 

Listing 2-17. A DLR Expression Example of a Lambda Expression That Has Free Variables. 

1) public static void ClosureLexicalScopeLinqExample() 
2) { 
3)     ParameterExpression x = Expression.Variable(typeof(int), "x"); 
4)     ParameterExpression y = Expression.Variable(typeof(int), "y"); 
5)     ParameterExpression add = Expression.Variable(typeof(Func<int>), "add"); 
6)  
7)     Expression addExpression = Expression.Block( 
8)      //add is defined in the outer scope but invoked in the inner scope. 
9)        new ParameterExpression[] { x, add, y }, 
10)        Expression.Assign(x, Expression.Constant(2)), 
11)        Expression.Assign(y, Expression.Constant(1)), 
12)      Expression.Assign(add, Expression.Lambda<Func<int>>( 
13)                 Expression.Add(x, y))),  //x, y here are bound to outer scope’s x, y 
14)        Expression.Block( 
15)                 new ParameterExpression[] { y },  
16)                 Expression.Assign(y, Expression.Constant(3)), 
17)                 Expression.Invoke(add)  //invoke add in the inner scope. 
18)             ) 
19)         ); 
20)  
21)     int result = Expression.Lambda<Func<int>>(addExpression).Compile()(); 
22)     Console.WriteLine("result is {0}", result); 
23) } 

The GotoExpression Class 
Many languages have language constructs such as for, for-each, while, and do-while for performing 
iterations.  DLR Expression supports those, too. However, instead of providing the various high-level 
constructs for doing iterations, the DLR provides the GotoExpression class as a lower-level construct 
that those high-level constructs can base on. This section will look at GotoExpression and compare it to 
C#’s goto statements. The next section will show you how to use GotoExpression to achieve what C#’s 
while statements can do. 

Listing 2-18 shows a C# example of goto statements, and Listing 2-19 shows a similar example in 
DLR Expression. The C# example shows that C# does not allow code that jumps from an outer scope to a 
label declared in an inner scope. Line 4 in Listing 2-18 tries to jump from an outer block to the 
InnerBlock label declared in an inner block. If you uncomment line 4, you’ll get compilation error. 

As this demonstrates, C# does not allow code to jump from outer scope to a label declared in an 
inner scope. However, C# allows jumps in the other direction: It allows code to jump from an inner 
scope to a label declared in an outer scope. The code in line 10 does exactly that. 

Listing 2-18. GotoExamples.cs 

1) public static void CSharpExample() 
2) { 
3)     //C# cannot do this jump 
4)     //goto InnerBlock; 
5)      



 CHAPTER 2  DLR EXPRESSION 

47 

6)     { 
7)     InnerBlock: 
8)         Console.WriteLine("In inner block."); 
9)         //jump to outer block 
10)         goto OuterBlock; 
11)         Console.WriteLine("This line is unreachable"); 
12)     } 
13)  
14) OuterBlock: 
15)     Console.WriteLine("In outer block."); 
16) } 
 

This limitation in C# does not exist in DLR Expression. As Listing 2-19 shows, DLR Expression allows 
us to jump in both directions. To jump, we need to label the target we want to jump to. So the example 
code in Listing 2-19 creates two instances of LabelTarget, innerBlock and outerBlock, in lines 3 and 4, to 
represent the two targets. In lines 12 and 17, the example calls the Expression.Label method and passes 
it a LabelTarget instance to mark a place in code we can jump to. To jump to a target, the example calls 
ExpressionGoto in lines 9 and 14. Now let’s trace the execution flow of the code and see where the code 
jumps. In line 9, the code is to jump to the innerBlock label, which is marked in line 12. So the code 
execution skips line 10 and jumps to line 12. It continues to line 13 and prints out “In inner block.” Then 
it gets to line 14. The code in line 14 is to jump to the outerBlock label, which is marked in line 17. So the 
code execution skips line 15 and jumps to line 17. Then it continues to line 18, prints out “In outer block” 
and finishes. 

Listing 2-19. GotoExamples.cs  

1) public static void LinqExample() 
2) { 
3)     LabelTarget innerBlock = Expression.Label(); 
4)     LabelTarget outerBlock = Expression.Label(); 
5)  
6)     Expression<Action> lambda = Expression.Lambda<Action>( 
7)         Expression.Block( 
8)             //DLR can do this jump 
9)             Expression.Goto(innerBlock), 
10)             ExpressionHelper.Print("Unreachable"), 
11)             Expression.Block( 
12)               Expression.Label(innerBlock), 
13)                 ExpressionHelper.Print("In inner block."), 
14)                 Expression.Goto(outerBlock), 
15)                 ExpressionHelper.Print("Unreachable") 
16)             ), 
17)             Expression.Label(outerBlock), 
18)             ExpressionHelper.Print("In outer block."))); 
19)  
20)     lambda.Compile()(); 
21) } 



CHAPTER 2  DLR EXPRESSION 

48 

While Loops 
Now that we’ve introduced GotoExpression, let’s see how to use it to achieve the equivalent of what 
while statements do in C#. First, let’s see the C# example that will then be translated into the DLR 
Expression example. Listing 2-20 shows two C# methods. The first method, CSharpExample, has a while 
loop that adds the numbers 0, 1, and 2. The second method, CSharpGotoExample does the same thing 
except that instead of using a while loop, it uses C#’s goto statements.  

Listing 2-20. C# Examples in WhileExamples.cs 

public static void CSharpExample()  
{ 
    int i = 0; 
    while (i < 3) 
       i++; 
 
    Console.WriteLine("i is {0}", i); 
} 
 
public static void CSharpGotoExample() 
{ 
    int i = 0; 
 
WhileLabel: 
 
    if (i < 3) 
    { 
        i++; 
        goto WhileLabel; 
    } 
 
    Console.WriteLine("i is {0}", i); 
} 
 

As you can see, if a language already defines the if and goto constructs, the while construct is 
merely syntactic sugar. The syntactic sugar might let users of the language write more concise and 
readable code, but it doesn’t let them express anything that they can’t express with if and goto. Given 
the CSharpGotoExample method in Listing 2-20, it’s pretty straightforward to translate that code into the 
equivalent code in DLR Expression in Listing 2-21. This code creates an instance of LabelTarget called 
whileLabel (line 3). It uses whileLabel to mark the target of the goto expression (line 9), then it calls the 
Expression.Goto factory method to create a goto expression that jumps to the target (line 13).  

Notice that the code in line 12 calls the PostIncrementAssign factory method to create an expression 
that represents the code i++. The method PostIncrementAssign returns an instance of UnaryExpression 
whose NodeType property is ExpressionType.PostIncrementAssign. There are many other kinds of unary 
expressions for representing unary operations such as ++i, --i, -i (negation), etc. You can refer to the 
MSDN documentation for a comprehensive list of these unary operations. 

Besides GotoExpression, another way to do looping is to use the LoopExpression class in the 
System.Linq.Expressions namespace. After seeing the code examples in this section, it should be 
straightforward to learn how to use LoopExpression by reading Microsoft’s MSDN documentation. The 
DLR does not provide anything like a WhileExpression class for doing while loops in particular yet.   



 CHAPTER 2  DLR EXPRESSION 

49 

Listing 2-21. DLR Expression example in WhileExamples.cs 

1) public static void LinqExample() 
2) { 
3)     LabelTarget whileLabel = Expression.Label(); 
4)     ParameterExpression i = Expression.Variable(typeof(int), "i"); 
5)      
6)     Expression<Func<int>> lambda = Expression.Lambda<Func<int>>( 
7)         Expression.Block( 
8)             new ParameterExpression[] {i}, 
9)             Expression.Label(whileLabel), 
10)             Expression.IfThen(Expression.LessThan(i, Expression.Constant(3)), 
11)             Expression.Block( 
12)                 Expression.PostIncrementAssign(i), 
13)                 Expression.Goto(whileLabel))), 
14)             i)); 
15)  
16)     int result = lambda.Compile()(); 
17)     Console.WriteLine("i is {0}", result); 
18) } 

Dynamic Expressions 
So far none of our discussions about DLR Expression involves dynamic behaviors. Everything has been 
statically typed. Here’s an example of what I mean. In the section “Expression Type and Kind,” we saw 
the following code snippet: 

 
BinaryExpression addExpression = Expression.Add(Expression.Constant(10), 
                   Expression.Constant(20)); 
Console.WriteLine(addExpression.Type); 
Console.WriteLine(addExpression.Left.Type); 
Console.WriteLine(addExpression.Right.Type); 

 
This code constructs a BinaryExpression object to represent the addition of two integers. The 

expression has two subexpressions—the left operand expression and the right operand expression. The 
left operand expression represents the integer constant 10 and hence its Type property is System.Int32. 
Similarly, the right operand expression represents the integer constant 20 and hence its Type property is 
also System.Int32. Adding two integers will result in another integer. Therefore, the Type property of 
addExpression is System.Int32. If you run the code, you’ll see the text “System.Int32” printed three times 
on the screen. 

The point I want to stress is that all three expressions know statically the type of the value they 
represent. So how about the dynamic C# code shown below in Listing 2-22? Is DLR Expression capable 
of expressing that? The answer is yes, and that’s the topic of this section. 

Listing 2-22. A C# Example That Contains a Late-Bound Binary Addition. 

public static void CSharpExample() 
{ 
    dynamic x = 5; 
    dynamic y = x + 2; 

3



CHAPTER 2  DLR EXPRESSION 

50 

    Console.WriteLine("5 + 2 = {0}", y); 
} 
 

The challenge here is that when the code in the bolded line in Listing 2-22 adds x and 2, it doesn’t 
know x’s type. Well, you might think it’s obvious from the code that x is an integer and has the value 5. 
That’s true in this example. But in general, x can come to the bolded line by other means, perhaps as an 
input argument of the CSharpExample method. In that case, it’s totally up to the caller of the 
CSharpExample method what the variable x will be.  

Because in the bolded line we don’t know the static type of x, we can’t simply use BinaryExpression 
to represent the addition. The variable x might not be an integer. It might be some wacky object that 
simply knows how to add 2 to itself. In order to represent dynamic code like the bolded line in Listing 2-
22, the DLR provides the DynamicExpression class. DynamicExpression works very much like what the C# 
compiler does when it compiles the code in Listing 2-22. So let’s look at what the C# compiler does first 
and then use that knowledge to help us explain DynamicExpression. 

When the C# compiler sees the code in Listing 2-22, it compiles it into something similar to what 
Listing 2-23 compiles to. The code might look baffling because it has things like call site binder and call 
site that I haven’t explained. To fully explain those concepts requires a fair amount of background 
information. You’ll see the detailed explanation of those concepts in Chapters 3 and 4. For now, I want 
to stay focused on DynamicExpression, so I’ll explain those concepts just enough for our discussion. 

The variable binder in Listing 2-23 knows how to do late binding for binary additions. The variable 
binder in our example points to an instance of the SimpleOperationBinder class, which is where the late 
binding logic is. Listing 2-24 shows the SimpleOperationBinder class, which returns the number 3 as the 
result of late binding (lines 10 to 13). So if we use an instance of SimpleOperationBinder to perform the 
late binding of an addition operation, no matter what the two operands of the addition are, the result 
will always be 3. Of course, no one would find much practical use in a binder like that. I’m using it here 
because it’s the simplest binder I can think of for our example. The C# compiler, of course, won’t 
compile the code in Listing 2-22 into something that uses SimpleOperationBinder. C# has a set of binder 
classes for performing the late binding logic it desires. We will see some examples of the C# binder 
classes in Chapter 4. Listing 2-23 is only a simplified illustration of what C# compiler does in compiling 
the dynamic code in Listing 2-22. 

Once the binder is in place, to use the binder, the code in Listing 2-23 creates a call site. The call site 
is an instance of CallSite<T>. The generic type parameter T in this case is the delegate type 
Func<CallSite, object, object, object>. You can ignore it for now and be assured that it will become 
clear when we get to Chapters 3 and 4. The important thing to notice here is that the binder variable is 
passed to the CallSite<T>.Create method when the call site is created (line 6). Because of that, the call 
site will use the binder instance created in line 3 to do the late binding when the call site’s Target 
method is invoked (line 9). Finally, when line 10 prints the result of the late binding, we will see the 
number 3 show up on the screen.  

Listing 2-23. A Simplified Illustration of What C# Compiler Does with Dynamic Code 

(DynamicExamples.cs)  

1) public static void CSharpSimpleBinderExample() 
 { 
    CallSiteBinder binder = new SimpleOperationBinder(); 
 
    CallSite<Func<CallSite, object, object, object>> site = 
      CallSite<Func<CallSite, object, object, object>>.Create(binder); 
 
    //This will invoke the binder to do the binding. 

www.allitebooks.com

http://www.allitebooks.org


 CHAPTER 2  DLR EXPRESSION 

51 

    object sum = site.Target(site, 5, 2); 
    Console.WriteLine("Sum is {0}", sum); 
} 

Listing 2-24. SimpleOperationBinder.cs 

1) class SimpleOperationBinder : BinaryOperationBinder 
2) { 
3)     public SimpleOperationBinder() 
4)         : base(ExpressionType.Add) 
5)     { } 
6)  
7)     public override DynamicMetaObject FallbackBinaryOperation(DynamicMetaObject target, 
8)           DynamicMetaObject arg, DynamicMetaObject errorSuggestion) 
9)     { 
10)         return new DynamicMetaObject( 
11)                 Expression.Convert(Expression.Constant(3), typeof(object)), 
12)                 BindingRestrictions.GetExpressionRestriction( 
13)                     Expression.Constant(true))); 
14)     } 
15) } 
 

Now that we’ve seen conceptually what the C# compiler does in compiling code that involves late 
binding, let‘s see how DynamicExpression is related to all that. Simply put, there are two ways to do late 
binding in the DLR. One is to create binders and call sites and use them like the code in Listing 2-23 
shows. The other way is to create binders and instances of DynamicExpression and use them like the code 
in Listing 2-25 shows. Internally, when a DynamicExpression instance is compiled into IL and executed 
like line 11 in Listing 2-25, a call site is created and the whole late binding process will take place 
similarly to what the code in Listing 2-23 does. The fact that when a DynamicExpression instance is 
executed a call site will be created is what underlies a useful late binding technique called deferred 
binding. We will look at deferred binding in Chapter 4. I mention it here so that when we get to that 
discussion in Chapter 4, you’ll associate it with what you learn in this section. 

To create and use a DynamicExpression instance, you first have to have a binder. So the code in line 4 
of Listing 2-25 creates an instance of the SimpleOperationBinder class we saw in Listing 2-24 to serve as 
the binder in this example. Then the code in line 6 calls the Dynamic factory method of the Expression 
class, passing it the binder object as the first input parameter. The second input parameter passed to the 
Dynamic factory method is the return type of the late binding operation. In our example, the late binding 
operation returns the number 3 as an instance of System.Object in line 11 of Listing 2-24. That’s why in 
line 7 of Listing 2-25, the code passes typeof(object) as the second input parameter the Dynamic 
method. The third input parameter passed to the Dynamic method is an array of the operands of the late-
bound binary operation. Lines 10 and 11 compile the DynamicExpression instance into an executable 
delegate, which is executed in line 13. Line 14 prints the result of the execution to the screen, which will 
be the number 3. 

Listing 2-25. An Example of DynamicExpression in DynamicExamples.cs 

1) public static void LinqExample() 
2) { 
3)     //prepare a call site binder 
4)     CallSiteBinder binder = new SimpleOperationBinder(); 



CHAPTER 2  DLR EXPRESSION 

52 

5)  
6)     DynamicExpression dynamicExpression = Expression.Dynamic( 
7)                 binder, typeof(object),  
8)                 new [] {Expression.Constant(5), Expression.Constant(2)}); 
9)  
10)     Func<object> compiledDelegate = Expression. 
11)                    Lambda<Func<object>>(dynamicExpression).Compile(); 
12)  
13)     object result = compiledDelegate(); 
14)     Console.WriteLine("result is {0}", result); 
15) } 

Index Expressions 
Now we’ll look at an example of how to use the IndexExpression class in the System.Linq.Expressions
namespace. An IndexExpression instance represents an array or property index. Listing 2-26 shows a C#
example that uses an array index to change the value of an array’s second element. The integer array
numbers has three integers in it—7, 2, and 4. The code in Listing 2-26 changes the second element from 2
to 6. If you run the example, it will print 7, 6, 4 to the screen. 

Listing 2-26. A C# Example That Uses an Array Index to Change an Array’s Element 

public static void CSharpExample()
{ 
    int[] numbers = { 7, 2, 4 }; 
    numbers[1] = 6; 
    Console.WriteLine("{0}, {1}, {2}", numbers[0], numbers[1], numbers[2]);
} 

Listing 2-27 shows the DLR Expression code equivalent to the C# code in Listing 2-26. Like the C#
example in Listing 2-26, the code in Listing 2-27 also starts with the integer array numbers that has three
integers in it. The code from line 5 to line 7 calls the ArrayAccess factory method of the Expression class
to create an instance of the IndexExpression class. The IndexExpression instance represents index 1 of
the array numbers. Then the code in lines 9 and 10 creates an assignment expression that assigns an
expression representing the integer 6 to indexExpression. Because indexExpression represents index 1 of
the array numbers, when the assignment expression arrayIndexExp is executed, the integer 6 will be
assigned to the element whose index is 1 in the array numbers. If you run the example, it will print the
same result 7, 6, 4 to the screen as the C# example in Listing 2-26 does. 

Listing 2-27. A DLR Expression Example That Shows How to Use IndexExpression.  

1) public static void LinqExample() 
2) { 
3)     int[] numbers = { 7, 2, 4 }; 
4)              
5)     IndexExpression indexExpression = Expression.ArrayAccess( 
6)         Expression.Constant(numbers),  
7)         Expression.Constant(1)); 
8)               
9)     Expression arrayIndexExp = Expression.Assign( 



 CHAPTER 2  DLR EXPRESSION 

53 

10)              indexExpression, Expression.Constant(6)); 
11)  
12)     Action arrayIndexDelegate = Expression.Lambda<Action>(arrayIndexExp).Compile(); 
13)     arrayIndexDelegate(); 
14)     Console.WriteLine("{0}, {1}, {2}", numbers[0], numbers[1], numbers[2]); 
15) } 

Expression Abstraction, Reduction and Extension 
One feature of DLR Expression I like very much is expression reduction. The concept is simple and yet 
very powerful. The idea is that you can extend DLR Expression by defining your own expression classes. 
Since you are defining the classes, there is no way for the DLR Expression compiler/interpreter to know 
what they mean unless you tell it. And the way you tell it is by “reducing” your expressions to DLR 
expressions—the ones it already knows.  In other words, the set of expression classes in 
System.Linq.Expressions forms the baseline. If you can define the semantic meaning of your own 
expression classes in terms of those baseline classes, the DLR interpreter/compiler can understand and 
act on your expressions.  

Expression reduction provides an extension mechanism we can use to define our own custom 
expression classes. Not only does expression reduction make DLR Expression extensible, it also allows 
for different levels of abstraction among expression classes. This is because if X reduces to Y, you can 
think of X as being more abstract than Y. So if your expression classes reduce to the baseline DLR 
expression classes, yours are said to have a higher level of abstraction.  

Let’s look at an example of expression reduction. In earlier code examples, we achieve better code 
quality by using the ExpressionHelper.Print helper method in instead of repeating the code inside that 
helper method all over the place. Let’s refresh ourselves a little bit about what the 
ExpressionHelper.Print method does. The method returns an expression that represents a call to 
Console.WriteLine. That’s all it does. Here we’ll do the same thing again, but this time we’ll use 
expression reduction rather than the helper method. The plan is we will define a new expression class, 
and we will provide the logic for reducing our expression to the same expression 
ExpressionHelper.Print returns. Listing 2-28 shows the code for our new expression class, 
PrintExpression. 

Listing 2-28. PrintExpression.cs 

public class PrintExpression : Expression 
{ 
    private String text; 
     
    private static MethodInfo _METHOD = typeof(Console).GetMethod( 
        "WriteLine", new Type[] { typeof(String) }); 
     
    public PrintExpression(String text) 
    { 
        this.text = text; 
    } 
 
    public String Text 
    { 
        get { return text; } 
    } 



CHAPTER 2  DLR EXPRESSION 

54 

    public override bool CanReduce 
    { 
        get { return true; } 
    } 
 
    public override Expression Reduce() 
    { 
        return Expression.Call( 
                    null, 
                    _METHOD, 
                    Expression.Constant(text)); 
    } 
 
    public override ExpressionType NodeType 
    { 
        get { return ExpressionType.Extension; } 
    } 
 
    public override Type Type 
    { 
        get { return _METHOD.ReturnType; } 
    } 
 
    public override string ToString() 
    { 
        return "print " + text; 
    } 
} 

 
There are two basic requirements we need to meet when implementing a custom expression class. 

First, our class must derive directly or indirectly from System.Linq.Expressions.Expression. Second, the 
NodeType property of our class must return ExpressionType.Extension. Beyond those requirements, since 
we want our PrintExpression to be able to reduce to a MethodCallExpression, we make the CanReduce 
property of our class return true. The actual logic that performs the reduction is in the Reduce method. As 
you can see in Listing 2-28, in the Reduce method, we simply invoke the Expression.Call factory method 
to create and then return an instance of MethodCallExpression that represents a call to 
Console.WriteLine. Last but not least, don’t forget to take care of the Type property. In our case, our 
expression’s value is the same as the return value of the call to Console.WriteLine. And that value’s type 
is _METHOD.ReturnType. 

Now that we have the PrintExpression class defined, let’s see how it’s used. Because all the 
printing-related code is modularized into the ExpressionHelper.Print method, we don’t need to make 
changes all over the place in our code. All we need is modify the ExpressionHelper.Print method to use 
our PrintExpression class like the code snippet below shows: 

 
public class ExpressionHelper 
{ 
    public static Expression Print(string text) 
    { 
        return new PrintExpression(text); 
    } 
} 



 CHAPTER 2  DLR EXPRESSION 

55 

That’s it. Just one line of code in the method body! At run time, when the DLR Expression 
interpreter/compiler sees an instance of PrintExpression, it knows that the expression is reducible. So it 
calls the Reduce method on the expression and gets back a MethodCallExpression instance. The code 
snippet above is good, but we can make it slightly better. If you recall, DLR Expression provides factory 
methods for creating expressions. Our code snippet above is a factory method for creating instances of 
PrintExpression. To make our factory method look more aligned with the DLR’s factory methods, let’s 
rename the class name ExpressionHelper to ExpressionEx. Let’s also change the return type of the Print 
method from Expression to PrintExpression. After those changes, our code becomes:   

 
public partial class ExpressionEx 
{ 
    public static PrintExpression Print(String text) 
    { 
        return new PrintExpression(text); 
    } 
} 

 
IronPython makes a lot of use of expression reduction. If you take a look at the IronPython source 

code in the IronPython.Compiler.Ast namespace, you’ll see classes like ForStatement, ImportStatement, 
ScopeStatement, NameExpression and many others. Those classes all derive directly or indirectly from 
System.Linq.Expressions.Expression and implement their specific reduction logic in the Reduce 
method.  

Immutability and the Visitor Pattern 
A DLR expression can have child expressions. The child expressions can in turn have their own child 
expressions, and so on. All together, the expressions form a tree. There is one root expression in the tree. 
The leaves of the tree are the terminal expressions that don’t have any child expression of their own. 

Every expression in the tree is immutable. Once it’s created, its states are read-only and can’t be 
changed. The only way to achieve the effect of changing the states of an expression is to create a new 
expression and toss out the old one. The concept I’ve just described is termed immutability. 

Immutability is a very generic programming concept, and it’s not specific to DLR Expression. The 
class System.String is immutable, as are many other classes that have no relation to DLR Expression. 
There are many nice benefits of making a class immutable. For example, instances of an immutable class 
are automatically thread-safe. You don’t need to synchronize access to those instances from multiple 
threads because those instances’ states are read-only and, by virtue of that, those states can’t be 
corrupted by thread race conditions. 

Because expressions are immutable and because they almost always form a tree except in trivial 
cases, it’s not a straightforward thing to change an expression in a tree. To change an expression in a 
tree, you also need to change that expression’s parent, and the parent’s, parent and so on. Figure 2-4 
shows a pictorial view of this propagation of changes. All the nodes in the tree are immutable. When we 
change node 1 by creating a new node, we need to assign the new node as a new child of node 2. Because 
node 2 is immutable, we can’t simply change its children. We have to create a new node 2 and assign 
new node 1 as its child. We also need to assign the other unchanged child of the old node 2 to be a child 
of the new node 2. And because we change node 2, we have to change node 3 by creating a new node 3. 
We then have to assign the new node 2 as a child of new node 3. We also need to assign the other 3 
unchanged children of old node 3 to be children of the new node 3. 



CHAPTER 2  DLR EXPRESSION 

56 

3

2

1  

Figure 2-4. Propagation of changes in an expression tree 

 
As you can see, it’s a lot of work to change even a single node in a tree. When we make changes to a 

tree, there are mainly three things in the picture—the tree itself (i.e., the data structure), the tree 
traversal (i.e., walking the tree), and the actions we perform every time we encounter a node during tree 
traversal. Fortunately, this problem happens so often that a solution for it already exists—the Visitor 
design pattern. In the rest of this section, we will look at how the Visitor pattern provides an elegant 
solution for the problem of changing immutable trees. We will look at the pattern in general, as well as in 
the context of DLR Expression. As always, I will demonstrate how it works in practice with an example. 

Visitor Pattern in General 
Figure 2-5 shows the class diagram of the Visitor pattern in general. As the diagram shows, there are two 
class hierarchies in the Visitor pattern. The Element class hierarchy is the data structures and the Visitor 
class hierarchy is the algorithms that work on the data structures. The Client in Figure 2-5 is the glue that 
decides which algorithms to apply to which data structures. The spirit of the pattern is the decoupling 
between the data structures and the algorithms.  

 
 

Client

Element

ElementA ElementB

VisitorX VisitorY

Visitor

virtual Visit(element : ElementA) : Element

virtual Visit(element : ElementB) : Element

virtual Accept(visitor : Visitor) : Element

 

Figure 2-5. Class diagram of the Visitor design pattern 



 CHAPTER 2  DLR EXPRESSION 

57 

The Element class (which can be an interface) has an Accept method. The Accept method can be 
abstract in the Element class or it can have concrete implementation. Classes derived from Element can 
choose to override or not to override the Accept method. A typical implementation of the Accept method 
simply asks the visitor to visit the current element, like this:  

 
virtual Element Accept(Visitor visitor) 
{ 
    visitor.Visit(this); 
} 

 
From the code, it is clear that passing different visitors to the Accept method will have different 

results. If we need to introduce a new way of visiting the elements, we don’t need to change any code in 
the Element class and its derivatives. We can encapsulate that new algorithm (i.e., the new way of visiting 
the elements) into a new subclass of the Visitor class and pass an instance of that subclass to the Accept 
method.  

The Visitor class (it can be an interface) has one overloaded Visit method for each class derived 
from Element. Those overloaded Visit methods can be abstract or they can have a concrete 
implementation. A class derived from Visitor can choose to override those Visit methods that it wants 
to provide new logic for. For example, if we need VisitorX in Figure 2-5 to provide logic for visiting 
ElementA, then VisitorX will override only the method virtual Element Visit(ElementA element).  

The previous section mentioned that when we make changes to a tree, there are mainly three things 
in the picture—the tree itself, the tree traversal, and the actions we perform at each node. That 
observation links to the Visitor pattern nicely. The tree is the data structure and is represented by the 
Element hierarchy in the Visitor pattern. The tree traversal plus the actions are algorithms and they are 
represented by the Visitor hierarchy. 

Visitor Pattern in DLR Expression 
DLR Expression implements a slight variation of the Visitor pattern. Figure 2-6 shows that variation in a 
class diagram.  

 



CHAPTER 2  DLR EXPRESSION 

58 

Expression

PrintExpression

PrintExpressionVisitor

Accept (...) {

 visitor.VisitBinary(this);

}

VisitExtension(...) {

 ...

}

BinaryExpression

...

ExpressionVisitorClient

VisitorY

virtual Accept(visitor : ExpressionVisitor) : Expression

virtual VisitChildren(visitor : ExpressionVisitor) : Expression 

virtual Visit(element : Expression) : Expression

virtual VisitBinary(element : BinaryExpression) : Expression
 ....

virtual VisitExtension(element : Expression) : Expression 

 

Figure 2-6. Class diagram of the Visitor design pattern implemented in the DLR 

 
There is one key difference to note about the class diagram in Figure 2-6, and that’s the 

VisitChildren method in the Expression class. The VisitChildren method is about how to visit the child 
expressions of the current expression. In other words, the method is about tree traversal and hence 
should belong to the Visitor class hierarchy. However, in DLR Expression, the method is in the 
Expression class hierarchy. And if you look inside the source code of the DLR, you’ll see that all of the 
VisitChildren methods implemented in BinaryExpression, BlockExpression, and other DLR expression 
classes delegate the real job to methods in the ExpressionVisitor class. That appears to be unnecessarily 
convoluted at first glance. Why does the DLR put the VisitChildren method in the Expression class 
hierarchy and delegate the real job to the Visitor class hierarchy? Why not simply follow the original 
Visitor pattern and put the VisitChildren method in the Visitor class hierarchy in the first place? The 
reason is expression extension. 

For the built-in DLR expression classes, the DLR knows how to traverse their child expressions. For 
custom extensions like the PrintExpression class we implemented, the DLR does not know how we 
would like to traverse the child expressions, and therefore it leaves that decision to us. The DLR defines 
the VisitChildren method in the Expression class so that when we define a custom expression class, we 
can override the VisitChildren method and implement our own logic for traversing the custom 
expression’s child expressions. This explains why the method VisitChildren exists in the Expression 
class hierarchy. For the built-in DLR expression classes, DLR chooses to have a more truthful 
implementation of the Visitor design pattern, and hence it makes the VisitChildren method in 
BinaryExpression, BlockExpression, and so on delegate the real job back to methods in the 
ExpressionVisitor class. This choice makes total sense. The intention of the DLR Expression design is to 
keep the Expression class hierarchy intact while allowing developers to implement whatever tree 
walking and visiting behavior they fancy. Because BinaryExpression, BlockExpression, and so on 
delegate the real job of the VisitChildren method to ExpressionVisitor, we can override those methods 



 CHAPTER 2  DLR EXPRESSION 

59 

when we implement a class derived from ExpressionVisitor without ever needing to change anything in 
the Expression class hierarchy.  

If you want to look at the DLR source code to see how the built-in DLR expression classes traverse 
their child expressions, here’s a rundown of how the VisitChildren method in BinaryExpression, 
BlockExpression, and so on delegates the real job back to methods in the ExpressionVisitor class. The 
built-in expression classes like BinaryExpression and BlockExpression all inherit the VisitChildren 
method implementation from the base Expression class. If you look at the VisitChildren method 
implemented in the Expression class, you’ll see that it takes a visitor (instance of ExpressionVisitor) as 
the input parameter and calls the Visit method on the visitor. The visitor’s Visit method will in turn call 
back the Accept method of the expression. As you can see, the mechanism is convoluted. The expression 
calls the visitor and then the visitor calls back the expression. And the convolution is not finished yet. 
The expression’s Accept method is overridden in each Expression subclass to call some method on the 
visitor. For example, if the expression is an instance of BinaryExpression, its Accept method will call the 
VisitBinary method on the visitor. And the VisitBinary method is where the logic resides for visiting a 
binary expression’s child expressions. 

 

Expression Visitor Examples 
Let’s take a look at two examples of walking and visiting expressions. The first example is a trivial case 
that doesn’t involve visiting child expressions. I think it’s helpful to use this simpler example to lead into 
the second example, which involves visiting child expressions. Both examples will use the 
PrintExpression class we built earlier.  

Listing 2-29 shows the visitor class for the PrintExpression class we saw earlier. The 
PrintExpression class doesn’t have any child expressions. Because PrintExpression is an extension 
expression (i.e., its NodeType property returns ExpressionType.Extension), we override the 
VisitExtension method in PrintExpressionVisitor. The overridden VisitExtension method checks 
whether the node argument, the currently visited node, is an instance of PrintExpression. If so, the 
method creates a new PrintExpression instance whose text is the text of the original PrintExpression 
instance with “Hello” appended to the beginning. 

Listing 2-29. PrintExpressionVisitor.cs 

public class PrintExpressionVisitor : ExpressionVisitor 
{ 
    protected override Expression VisitExtension(Expression node) 
    { 
        if (!(node is PrintExpression)) 
            return base.VisitExtension(node); 
 
        PrintExpression printExpression = (PrintExpression) node; 
        return new PrintExpression("Hello " + printExpression.Text); 
    } 
} 

 
Listing 2-30 shows the client code that uses PrintExpressionVisitor to modify an instance of 

PrintExpression. The PrintExpression instance has the text “Bob” at the beginning. After the visitor 
visits it, the text becomes “Hello Bob”, which is the text you’ll see on the screen when you run the 
example code. 



CHAPTER 2  DLR EXPRESSION 

60 

Listing 2-30. Using ExpressionVisitor to Modify a PrintExpression Instance 

(ExpressionVisitorExamples.cs) 

public static void RunExpressionVisitorExample() 
{ 
    PrintExpressionVisitor visitor = new PrintExpressionVisitor(); 
    Expression bob = ExpressionEx.Print("Bob"); 
    Expression visitedBob = visitor.Visit(bob); 
    Action visitedBobDelegate = Expression.Lambda<Action>(visitedBob).Compile(); 
    visitedBobDelegate(); 
} 
 

This example shows how expression visitors work without the complexity of child expressions. In 
reality, that rarely happens. More often than not, we need to deal with expressions that have child 
expressions while we walk and visit expression trees. So let’s see an example of this. 

First, we need an expression class that has at least one child expression. For that, let’s define a new 
PrintExpression2 class based on PrintExpression. Listing 2-31 shows the PrintExpression2 class. As you 
can see, the code is largely the same as the code of PrintExpression. The only difference is that 
PrintExpression stores the text to print directly as a string whereas PrintExpression2 stores a 
ConstantExpression that in turn stores the string text. The ConstantExpression instance is the child 
expression of PrintExpression2.  

Because PrintExpression2 has a child expression, we override the VisitChildren method that 
PrintExpression2 inherits from the Expression class. In the VisitChildren method, we need to specify 
how we would like to visit the child expression(s). In this example, there is only one child expression and 
we don’t need to do anything special other than having the visitor visit it. To have the visitor visit the 
child expression, the VisitChildren method in Listing 2-31 simply calls the Visit method on the visitor 
variable and passes textExpression, the child expression, as an input argument to the Visit method.  

Listing 2-31. PrintExpression2.cs 

public class PrintExpression2 : Expression 
{ 
    private ConstantExpression textExpression; 
     
    private static MethodInfo _METHOD = typeof(Console).GetMethod( 
        "WriteLine", new Type[] { typeof(String) }); 
     
    public PrintExpression2(ConstantExpression textExpression) 
    { 
        this.textExpression = textExpression; 
    } 
 
    public override bool CanReduce 
    { 
        get { return true; } 
    } 
 
    public override Expression Reduce() 
    { 
        return Expression.Call( 



 CHAPTER 2  DLR EXPRESSION 

61 

                    null, 
                    _METHOD, 
                    textExpression); 
    } 
 
    public override ExpressionType NodeType 
    { 
        get { return ExpressionType.Extension; } 
    } 
 
    public override Type Type 
    { 
        get { return _METHOD.ReturnType; } 
    } 
 
    protected override Expression VisitChildren(ExpressionVisitor visitor) 
    { 
        return visitor.Visit(textExpression); 
    } 
 
    public override string ToString() 
    { 
        return "print " + textExpression.Value; 
    } 
} 

 
Now that we have an expression that has a child expression, let’s see how to visit and modify it. 

Listing 2-32 shows the visitor class for PrintExpression2. The visitor class overrides not only the 
VisitExtension method but also the VisitConstant method. This is because PrintExpression2 is an 
extension expression and the child of PrintExpression2 is a constant expression (i.e., an instance of 
ConstantExpression). Notice also that the visitor class has a state, withinPrintExpression, to track 
whether a constant expression it encounters is a child of a PrintExpression2 expression. There might be 
other constant expressions in a tree that are not children of PrintExpression2 expressions and we don’t 
want to modify those. States like withinPrintExpression are common in detecting relationships between 
nodes in a tree. The relationship between a PrintExpression2 expression and its child constant 
expression is a tree pattern we want to match in our example. We achieve that by using the 
withinPrintExpression member variable of PrintExpressionVisitor2.  

In Listing 2-32, the VisitConstant method uses withinPrintExpression to check whether the 
currently visited node is a child expression of a PrintExpression2 expression. If so, it creates a new 
constant expression whose text is the text of the currently visited node prefixed with “Hello ”. The 
VisitExtension method in Listing 2-32 checks whether the currently visited node is an instance of 
PrintExpression2. If so, it sets withinPrintExpression to true and calls base.VisitExtension(node). The 
call to base.VisitExtension(node) will in turn call PrintExpression2’s VisitChildren, which will call the 
VisitConstant method of PrintExpressionVisitor2. Finally, when all those calls return, we get back a 
new child constant expression whose text is prefixed with “Hello ”. The new child constant expression is 
assigned to the variable modifiedTextExpression. Because the child constant expression has changed, 
the parent needs to change too. That’s why the code in line 16 creates a new instance of 
PrintExpression2 with modifiedTextExpression as its child expression.  

 



CHAPTER 2  DLR EXPRESSION 

62 

Listing 2-32. PrintExpressionVisitor2.cs 

1) public class PrintExpressionVisitor2 : ExpressionVisitor 
2) { 
3)     private bool withinPrintExpression = false; 
4)  
5)     protected override Expression VisitExtension(Expression node) 
6)     { 
7)         if (!(node is PrintExpression2)) 
8)             return base.VisitExtension(node); 
9)  
10)         withinPrintExpression = true; 
11)  
12)         ConstantExpression modifiedTextExpression =  
13) (ConstantExpression) base.VisitExtension(node); 
14)  
15)       //need to change the parent when the child is changed. 
16)         PrintExpression2 newExpression = new  
17)               PrintExpression2(modifiedTextExpression); 
18)  
19)         withinPrintExpression = false; 
20)  
21)         return newExpression; 
22)     } 
23)  
24)     protected override Expression VisitConstant(ConstantExpression node) 
25)     { 
26)         if (!withinPrintExpression) 
27)             return base.VisitConstant(node); 
28)  
29)         return Expression.Constant("Hello " + node.Value); 
30)     } 
31) } 

With this example, it should be clear why the DLR defines methods like VisitConstant, VisitBinary,
and so on in the ExpressionVisitor class for the built-in expression classes. Had the DLR not done that,
we would not be able to visit the constant expressions the way we do in this example without changing
the ConstantExpression class. That would be a real mess.  

Listing 2-33 shows the client code that uses PrintExpressionVisitor2 to visit and modify a
PrintExpression2 instance. The code is largely the same as the client code we saw in the previous
example (Listing 2-30). If you run the code, you will see “Hello Bob” printed to the screen. 

Listing 2-33. Using ExpressionVisitor to Modify a PrintExpression2 Instance 

(ExpressionVisitorExamples.cs) 

public static void RunExpressionVisitor2Example()
{ 
    PrintExpressionVisitor2 visitor = new PrintExpressionVisitor2(); 
    Expression bob = new PrintExpression2(Expression.Constant(text)); 
    Expression visitedBob = visitor.Visit(bob); 



 CHAPTER 2  DLR EXPRESSION 

63 

    Action visitedBobDelegate = Expression.Lambda<Action>(visitedBob).Compile(); 
    visitedBobDelegate(); 
} 

Summary 
DLR Expression is the foundation that higher-level DLR features are based on. This chapter begins with a 
comparison between DLR Expression and a typical programming language. In that part of the chapter, I 
highlighted some interesting and important characteristics of DLR Expression as a programming 
language. Then we went through a spate of examples showing how to use the various DLR expression 
classes. In the last part of this chapter, we looked at the important topic of modifying immutable 
expression trees using the Visitor design pattern.  

This chapter is not intended to be a comprehensive reference for all expression classes that the DLR 
defines, and so it doesn’t cover all DLR expression classes. The chapter covers expression classes such as 
DynamicExpression and GotoExpression because (a) they are important, (b) they are harder to 
understand than other expression classes, and (c) they show up more frequently in the rest of the book. 
For the DLR expression classes not covered in this chapter, you can refer to the MSDN documentation 
and use what you learn in this chapter to help you figure out how to use them. 

After reading this chapter, you are in a good position to explore fascinating DLR features such as 
binders and dynamic objects in the next three chapters. As you will see in those chapters, we will be 
using DLR expressions a lot.  

 





C H A P T E R  3 
    
 

65 

Late Binding and Caching 

Late binding is binding that happens at run time, and it is the essence of what makes a language 
dynamic. When binding happens at run time as opposed to compile time, it’s usually several orders of 
magnitude slower. And that’s why the DLR has a mechanism to cache the late-binding results. The 
caching mechanism is as vital as air to a framework like the DLR, and it’s based on an optimization 
technique called polymorphic inline caching. Although caching is not a feature you would normally use 
directly, it is always there working for you behind the scenes. The DLR uses what are called binders to do 
late binding. These binders have two main responsibilities—caching and language interoperability. In 
this chapter, we are going to look at the caching aspect of binders. The next chapter will explore their 
role in language interoperability.  

Binders mostly concern only language implementers. As you’ll see in Chapter 5, if you are 
implementing just some library based on the DLR’s dynamic object mechanism, not a programming 
language, you will have little exposure to binders. When you read through this chapter and the next, it 
will help your understanding of binders if you put yourself in the shoes of a language implementer. 

We saw binders and late binding in Chapter 2. In that chapter, when we looked at DLR expressions, 
the DynamicExpression class stands out among the other expression classes because of its late-binding 
capability. The late-binding capability of DynamicExpression actually comes from binders. That’s why, 
when we created an instance of DynamicExpression using the Expression.Dynamic method back in Listing 
2-25, we needed to pass in a binder object. How DynamicExpression uses a binder object internally will 
become clear after you read through this chapter.  

This chapter will discuss the general concept of binding and the two flavors of it—static binding and 
dynamic binding. Related to the concept of binding are things like call sites, binders, rules, and call site 
caching, and I’ll explain these terms and provide code examples. Along the way, I’ll show you how to 
write DLR-based code that works on both .NET 2.0 and .NET 4.0. Once we are able to run DLR-based 
code on .NET 2.0, I’ll show you how to debug into the DLR source code. Being able to do this helped me 
a lot in learning and understanding how the DLR works and I’m sure it will help you too.  

This chapter follows nicely from the previous chapter. It will use the concepts and knowledge you 
learned from your study of DLR expressions. Call sites and binders are important components of the 
DLR, and you’ll see how the infrastructure of these components builds on DLR expressions and 
leverages the “code as data”’ concept. But first, let’s begin with a look at the fundamental concept of 
binding. 

Binding 
To introduce binding, I’ll start with the static method invocation we are all familiar with in C#. The idea 
is to use the familiarity we have with C# to provide a context for easing our way into the concepts of call 
sites and bindings.  

In a very broad sense, binding means associating or linking one thing with another. In 
programming, binding is the association between names (i.e., identifiers) and the targets they refer to. 



CHAPTER 3  LATE BINDING AND CACHING 

66 

For example, in the code snippet below, the words in bold are all names. The word String is the name of 
a class; the words bob and lowercaseBob are variable names. The word ToLower is the name of a method. 

 
String bob = "Bob"; 
String lowercaseBob = bob.ToLower(); 

 
Because binding is the association between names and the targets they refer to, it is also often called 

name binding. There are many approaches for determining how binding is done. We can categorize 
those different approaches using two aspects of binding—scope and time, as shown in Table 3-1. In 
terms of scope, binding can be lexical or dynamic. Lexical scoping is also called static scoping. We saw 
these in Chapter 2 when we looked at the DLR Expression scoping rules. To recap, scopes provide 
contexts for binding names. A name might refer to different objects, variables, classes, or other things 
when it occurs in different scopes.   

If you think of scope as the spatial dimension of bindings, then the time aspect is the temporal 
dimension. In terms of time, binding can be early or late. As noted earlier, early binding is also called 
compile-time binding, because the resolution of a name to its target happens at compile time. That’s 
when the compiler determines what a name refers to. In contrast, late binding is often called run-time 
binding. In this case, binding of a name to its target happens at run time. As we discussed in Chapter 1, 
late binding is a key characteristic of dynamic languages.  

One thing I want to emphasize in Table 3-1 is that the two aspects are largely orthogonal, yet they 
aren’t completely uncorrelated. They are orthogonal in the sense that lexical scoping rules can be 
applied to bind names at either compile time or run time. It doesn’t matter when (compile time or run 
time) and who (compiler or language runtime) apply those rules. Those rules can be the same rules and 
the results of name bindings can be the same regardless of the when and who. 

However, though the scope and time aspects are largely orthogonal, there is a little correlation 
between them and that is the cell marked with X in Table 3-1. If a language uses dynamic scoping rules 
for name binding, those rules, due to their dynamic nature, require some run-time information when 
they are applied to bind names. Because of that, it’s not possible to design a compiler that applies those 
rules at compile-time. That’s why the cell is marked with X—to indicate that no language falls into that 
category. 

Table 3-1. Categorization of Binding Approaches by Scope and Time 

Scope \ Time Compile-time (early) Run-time (late) 

Lexical (static) C# IronPython 

Dynamic X Lisp 

 

Call Sites and Early Binding 
One concept related to binding is that of the call site, which refers to the location in your code that 
invokes a method. How the binding and the call site are related is best explained with an example. The 
following C# code snippet should be familiar. I used it to explain binding and I use it again to explain call 
sites. 
 
String bob = “Bob”; 
String lowercaseBob = bob.ToLower(); 



 CHAPTER 3  LATE BINDING AND CACHING 

67 

What we are interested here is the method invocation in the second line of the code. This is the 
place (the site) that calls the method. So we say it's a call site.  

The second line of code has a call site that calls the ToLower method of the String class. The word 
ToLower here is just a name. Something needs to link that name to the real ToLower method of the String 
class. In this case, that something is the C# compiler. This is the name binding we talked about in the 
previous section. In the case of a static language like C#, the compiler does the name binding. The 
linkage between the call site and the ToLower method is resolved at compile time and burned into the 
generated IL. Listing 3-1 shows what that IL code looks like. Don’t be scared away by the code listing. 
Most people, including me, don’t write code at the IL level and therefore are not familiar with IL code. 
The IL code shown here is not much and should be straightforward to understand. You don't need any 
knowledge or experience with IL to follow along.  

Listing 3-1. IL Code That Shows Compile Time Name Binding 

locals  init ( 
 [0] string bob,    //local variable 0 is bob. 
 [1] string lowercaseBob) //local variable 1 is lowercaseBob.  
ldstr “Bob” 
stloc.0   //sets local variable 0. 
ldloc.0   //load local variable 0. 
callvirt instance string [mscorlib] System.String::ToLower() 
stloc.1   //sets local variable 1.  

 
The line most important to our current discussion is the one in bold, which shows that the name 

ToLower in the C# code is bound to the ToLower method of the System.String class in the mscorlib.dll 
assembly. The binding is done at compile time and is burned into IL.  

Call Sites and Late Binding 
The last section showed a simple C# code snippet and its early binding behavior when compiled into IL. 
Now let’s look at the other half of the subject—call sites and late binding. Here’s a C# code snippet that 
has a call site and does late binding: 

 
dynamic bob = “Bob”; 
String lowercaseBob = bob.ToLower(); 

 
There is only one word that’s different between this code snippet and the previous one, and that’s the 
dynamic keyword in bold. Instead of declaring the type of variable bob to be String, the code here 
declares the type to be dynamic. Because of that, the code is very different. The second line of the code 
still has a call site that calls the ToLower method. But it also has another call site that calls something that 
converts the result of ToLower to a String object. The conversion is necessary because the type of 
variable bob is dynamic and there is nothing to tell the C# compiler what the return type of the ToLower 
method is. The C# compiler can’t even be sure that the ToLower method is defined for the variable bob. 

Without knowing the type of variable bob, what does the C# compiler do in compiling the code 
snippet above? Since it does not know the type of variable bob, it can’t simply bind the name ToLower to 
the ToLower method of the String class; it can only do that when it knows that the type of bob is String. 
So it compiles the code into something that has objects that know how to do the binding at run time. 
Those objects are called binders. Methods of those binders have the logic for carrying out the necessary 
late binding given the run-time type of the variable bob. Of course, for this simple code snippet, we know 
by looking at the code that the run-time type of variable bob is System.String. Unlike us, the binder in 



CHAPTER 3  LATE BINDING AND CACHING 

68 

this case only knows at run time that the type of variable bob is System.String. When the binder gets that 
type information, it starts the binding by finding out whether System.String has a ToLower method that 
does not take any arguments. If the binder finds such a method, the binding is successful and program 
execution continues. Otherwise, the binding fails and an exception is thrown. 

It is too abstract to just mention the binders and describe what they do at a conceptual level. So the 
next few sections will look at the DLR’s implementations of the binders and show some code examples 
of how those binders perform late binding. 

DLR Binders 
The DLR defines several classes for representing different kinds of binders. Figure 3-1 shows the class 
hierarchy of the DLR binder classes. The base DLR class that represents binders is CallSiteBinder; all 
other binder classes derive directly or indirectly from it. The main responsibility of the CallSiteBinder 
class, as we will soon examine in detail, is caching late binding results. Caching is what boosts the 
performance of DLR-based languages and libraries. It is one of the most important features that make 
the DLR a practical platform for running dynamic language code.  

 
 

CallSiteBinder

CreatelnstanceBinder

DynamicMetaObjectBinder

abstract Bind(target : DynamicMetaObject, args : DynamicMetaObject[]) : DynamicMetaObject

abstract Bind(args : object[], parameters : ReadOnlyCollection<ParameterExpression>, returnLabel : LabelTarget) : Expression

internal Cache : Dictionary<Type, object>

DeleteIndexBinder InvokeMemberBinder UnaryOperationBinder

SetlndexBinder ConvertBinderGetlndexBinderlnvokeBinderDeleteMemberBinderGetMemberBinderSetMemberBinder

BinaryOperationBinder
 

Figure 3-1. Class hierarchy of DLR binder classes 

 
All the subclasses of CallSiteBinder shown in Figure 3-1 are designed for the purpose of language 

interoperability. As I mentioned earlier, DLR binders have two main responsibilities—caching and 
language interoperability. The class hierarchy in Figure 3-1 shows good software design on the DLR 
team’s part, which separated those two binder responsibilities into separate classes. Because of that 
good design, we can use only the caching capability of DLR binders if we like, and that’s what we’ll do in 
this chapter. I will focus this discussion on the caching mechanism of DLR binders and hence on the 
CallSiteBinder class only. None of the code examples in this chapter will involve anything related to the 
subclasses of CallSiteBinder. That’s what we’ll cover in the next chapter. We’ll take a dive deep into 
those subclasses and see how they enable different languages to interoperate with one another. 



 CHAPTER 3  LATE BINDING AND CACHING 

69 

Set Up Code Examples 
The setup of this chapter’s code examples is the same as that of the other chapters, except that I want to 
use this chapter’s examples to show you how to (a) develop DLR-based code that targets both .NET 2.0 
and .NET 4.0, and (b) debug the DLR source code. I didn’t call out .NET 3.5 explicitly here because if your 
code runs on .NET 2.0, it should be straightforward to make it run on .NET 3.5. In principle, you can 
apply the steps I will be showing here to the code examples of other chapters and make those code 
examples run on .NET 2.0. 

Making a Debug Build of the DLR for .NET 2.0 
Normally we write DLR-based code that targets .NET 2.0 because there’s a business need for doing so. 
Maybe we are developing a library and we want the library to be accessible to developers who remain on 
the .NET 2.0 platform. Another reason for running DLR-based code on .NET 2.0 is it allows us to debug 
into the DLR source code. This is because in .NET 4.0, a great portion of the DLR source code is 
packaged into the System.Core.dll assembly. I searched the Web and there does not seem to be a debug 
build of that assembly. So the solution I came up with is to develop the code examples in such a way that 
they run on both .NET 2.0 and .NET 4.0. That way, when I need to debug into the DLR source code, I’ll 
run the examples that target .NET 2.0 in debug mode. Here are the steps to follow if you want to set up 
the environment so you can debug into the DLR source code. 

1. Download the DLR source code from the DLR CodePlex website. Unzip the 
downloaded file to a folder of your choice. I’ll assume the folder you choose is 
C:\Codeplex-DLR-1.0. 

2. Open the solution file C:\Codeplex-DLR-1.0\src\Codeplex-DLR-VSExpress.sln in 
Visual Studio C# 2010 Express. The solution file is for Visual Studio 2008. When 
you open it in Visual Studio C# 2010 Express, a wizard dialog will pop up and it will 
take you through the process of converting the solution file to the new Visual 
Studio 2010 format. 

3. After the conversion is done, make sure all the projects’ configuration is set to 
Debug. That way, when you build the solution, Visual Studio will generate debug 
builds of those projects. When you build the whole solution, you will get some 
compilation errors for the Sympl35 and sympl35cponly projects. Those projects 
are for an exemplary DLR-based language called Sympl. You can ignore those 
errors.  

4. Copy the files in the C:\Codeplex-DLR-1.0\Bin\Debug folder to 
C:\ProDLR\lib\DLR20\debug. The files are the binaries generated by the previous 
step. 

Developing for Both .NET 2.0 and .NET 4.0 
If you follow the steps outlined in the previous section, you should be able to open this chapter’s 
solution file C:\ProDLR\src\Examples\Chapter3\Chapter3.sln in Visual Studio C# 2010 Express and 
build the code examples. The solution contains two projects—CallSiteBinderExamples and 
CallSiteBinderExamples20. The CallSiteBinderExamples project requires .NET 4.0. The 
CallSiteBinderExamples20 project requires.NET 2.0. Here are the important things to note about how 
the projects are configured to target different .NET versions. 

 



CHAPTER 3  LATE BINDING AND CACHING 

70 

First, notice that the CallSiteBinderExamples project does not reference any .NET assemblies. This is 
because the System.Core.dll assembly is implicitly referenced by default. And because the part of the 
DLR used in the CallSiteBinderExamples project is already packaged into System.Core.dll, the project 
does not need any additional references to other .NET assemblies. On the other hand, the 
CallSiteBinderExamples20 references some of the assemblies you built in the previous section. Those are 
debug version assemblies of the DLR for .NET 2.0. 

Next, notice that all the C# source files in CallSiteBinderExamples20 are links to corresponding files 
in CallSiteBinderExamples. This way, whenever we change a file in one project, the other project will 
automatically pick up the changes.  

Now look at the properties of the CallSiteBinderExamples20 project. If you right-click on the 
CallSiteBinderExamples20 project and select Properties in the context menu, you’ll see a screen that 
looks like Figure 3-2. To make a project target .Net 2.0 as the runtime platform, you need to set the 
“Target framework” dropdown option to “NET Framework 2.0,” as highlighted with a red box in Figure 
3-2. 

 

 

Figure 3-2. Setting the target .NET version of a project 



 CHAPTER 3  LATE BINDING AND CACHING 

71 

The last thing to take note of is a conditional compilation flag. Because CallSiteBinderExamples and 
CallSiteBinderExamples20 share the C# source files, we need a flag to compile different parts of the code 
depending on the target .NET version. If you select the Build tab on the left of the screen shown in Figure 
3-2, you’ll see a screen that says “Conditional compilation symbols” near the top. For the 
CallSiteBinderExamples20 project, the conditional compilation symbol “CLR2” is defined. For the 
CallSiteBinderExamples project, “CLR2” is not defined.  

So those are the things I did in order to make the chapter’s code examples run on both .NET 2.0 and 
.NET 4.0. With the environment setup out of the way, let’s now look at the CallSiteBinder class, the 
focus of this chapter. 

The CallSiteBinder Class 
The C# language runtime has classes that derive from CallSiteBinder. Those classes implement the run-
time late binding logic C# needs. Instances of those classes are binders that know how to do late binding 
for operations such as method invocation. To show you the essence of binders, let’s imagine that, for 
some reason, you want to redefine C#’s late-binding behavior so that all dynamic code like the 
bob.ToLower() we saw earlier will return integer 3.  

Listing 3-2 shows the binder class with the needed binding logic. The class derives from 
CallSiteBinder and overrides CallSiteBinder’s Bind method. You’ll see later that, more often than not, 
you would derive from the class DynamicCallSiteBinder or one of its derivatives rather than 
CallSiteBinder when implementing your own late-binding logic. For now, let’s stay the course and 
focus on the code example. 

The Bind method is where the binding logic resides. In the DLR, the result of all late binding is an 
instance of the Expression class. That’s why the return type of the Bind method is Expression. It’s also a 
sign indicating that DLR Expression is the backbone of the DLR. As the requirement demands, the Bind 
method in Listing 3-2 returns a constant expression whose value is integer 3. It doesn’t matter what is in 
the args array or the parameters collection. It doesn’t matter whether the dynamic code is a method 
invocation or a property setter/getter invocation. Regardless of all of these, ConstantBinder will always 
return integer 3 as the binding result.  

Listing 3-2. ConstantBinder.cs 

public class ConstantBinder : CallSiteBinder 
{ 
    public override Expression Bind(object[] args,  

ReadOnlyCollection<ParameterExpression> parameters, LabelTarget returnLabel) 
    { 
        return Expression.Return( 

   returnLabel, 
                   Expression.Constant(3) 
               ); 
    } 
} 
 

Although to meet the stated requirement the Bind method in ConstantBinder disregards the args 
and parameters arguments, it can’t disregard the returnLabel argument. If you recall our discussion 
about GotoExpression in Chapter 2, you know returnLabel, as an instance of LabelTarget, marks a 
location in code that we can jump to. In this case, the returnLabel argument marks the location at which 
the program should continue its execution after the late binding finishes. Figure 3-3 shows a pictorial 
view of this. 



CHAPTER 3  LATE BINDING AND CACHING 

72 

constantBinder.Bind(...) {

 ....

}

returnLabel

Figure 3-3. Return label and program flow 

Figure 3-3 shows that somewhere during program execution, a call to constantBinder.Bind is made.
Here constantBinder is an instance of the ConstantBinder class. The figure shows that after the Bind
method finishes, the program is supposed to continue its execution at the location marked by
returnLabel. The trick here is that program execution will not jump to the location marked by
returnLabel unless we tell it to do so. That’s why in Listing 3-2, the code calls the Expression.Return
factory method and passes it returnLabel. That creates an instance of GotoExpression that jumps to the
location marked by returnLabel. If the code does not do this jump, the Bind method, once called, will be
called again and again endlessly. 

DLR Call Sites 
The last section showed the code for a binder that returns a constant value for all late binding
operations. Earlier I explained the relation between binding and call site. Basically, a call site is a place in
code that invokes an operation that needs to be bound. So, in order to use the ConstantBinder class
developed in the previous section, we need a call site that invokes some late-bound operation. Because
the operation is late bound, the DLR will need us to pass it a binder that knows how to do the late
binding. And the binder we will use in this case is an instance of the ConstantBinder class. With this high-
level understanding of all the pieces involved, let’s see how they are put together in code.  

Listing 3-3 shows the code that uses ConstantBinder to perform late binding. The code first creates
an instance of ConstantBinder called binder. Then it creates an instance of CallSite<T> by calling
CallSite<T>.Create. When calling CallSite<T>.Create, the code passes binder as the input parameter.
This is how the code tells the DLR which binder to use for performing late binding. At this point, the
example code has the variable site that represents the call site and the variable binder that contains the
late-binding logic. The variable site knows to delegate to binder when it comes time to do late binding.
And that time comes when the example code calls the Target delegate on the variable site. After the late
binding is done, the Target delegate returns and the result of late binding is assigned to the variable
result. If you run the code in Listing 3-3, you’ll see the text “Result is 3” printed on the screen. 



 CHAPTER 3  LATE BINDING AND CACHING 

73 

Listing 3-3. Program.cs 

private static void RunConstantBinderExample() 
{ 
    CallSiteBinder binder = new ConstantBinder(); 
      
    CallSite<Func<CallSite, object, object, int>> site = 
      CallSite<Func<CallSite, object, object, int>>.Create(binder); 
 
    //This will invoke the binder to do the binding. 
    int result = site.Target(site, 5, 6); 
    Console.WriteLine("Result is {0}", result);  
} 

 
The generic type T in CallSite<T> deserves some explanation. Recall that the main purpose of a DLR 

call site is to invoke some late-bound operation. The invocation of the late-bound operation is triggered 
by calling the Target delegate on a call site. And the type of the Target delegate is the generic type 
parameter T. Because Target represents some callable operation, T has to be a delegate type. Besides 
that, the DLR further requires the Target delegate’s first parameter to be of type CallSite. In summary, 
the generic type parameter T can’t be just any type. It has to meet the following two requirements: 

• It must be a delegate type. 

• The type of the delegate’s first parameter must be CallSite. 

In our example code, T is Func<CallSite, object, object, int>. That means the late-bound 
operation takes three input parameters and returns a value of type int. The types of the three 
parameters are CallSite, object and object respectively. Because T is the type of the Target delegate, in 
Listing 3-3 when the code calls Target on the variable site, the input parameters it passes to the call 
need to meet the method signature of the Target delegate.  

Binding Restrictions and Rules 
We saw in Listing 3-2 that a binding result is expressed in the form of an expression that represents the 
number 3. However, the example we saw there is a special case of a more generic way to represent 
binding results. Recall that the goal of the code in Listing 3-2 is to have a binder whose binding logic will 
make all dynamic (i.e., late binding) code return integer 3. In that requirement statement, one not so 
obvious condition is the bolded word  “all.” We can imagine a similar requirement that requires a binder 
that makes dynamic code to return 3 only when, say, the type of some xyz variable is System.Int32.  

Having a binding result that is valid without any condition is a special case of having a binding 
result that is valid only under certain conditions. It is a special case because we can regard it as having a 
condition that always evaluates to true. This section extends the example in Listing 3-2 and handles the 
generic case. Listing 3-4 shows the new code example, the ConstantWithRuleBinder class. The binder 
class implements the binding logic that returns integer 10 only when the value of the first input 
parameter is greater than or equal to 5; otherwise, it returns integer 1.  

The example code gets the value of the first parameter from the args array (line 8). For each input 
parameter, in addition to receiving its value, the Bind method also receives a representation of that 
parameter in the form of a ParameterExpression object. The example code gets the ParameterExpression 
object of the first input parameter from the parameters collection (line 9). The first input parameter’s 
value, firstParameterValue, and its ParameterExpression object, firstParameterExpression, are used to 



CHAPTER 3  LATE BINDING AND CACHING 

74 

construct the expression that represents the binding result according to the requirement we’d like to 
meet. 

In this example, the binding result is not just expressed in the form of any expression. It is expressed 
in the form of a conditional expression. The conditional expression that represents the late binding 
result returned by a binder is called a rule. A rule consists of two parts—restrictions and the binding 
result. The restrictions are the conditions under which the binding result is valid. The need for restrictions 
has to do with something called call site caching, which I’ll explain in the next section.  

In Listing 3-4, for the case where the value of the first parameter is greater than or equal to 5, the 
example code calls Expression.GreaterThanOrEqual to create the restrictions (line 14). It creates the 
binding result similar to the example code in Listing 3-2. It calls Expression.IfThen to combine the 
restrictions and binding result into a rule. The rule is the final expression that the Bind method returns. 

Similarly, for the case where the value of the first parameter is less than 5, the example code calls 
Expression.LessThan to create the restrictions (line 25). It also calls Expression.IfThen to combine the 
restrictions and binding result (line 24). 

Listing 3-4. ConstantWithRuleBinder.cs 

1) public class ConstantWithRuleBinder : CallSiteBinder 
2) { 
3)     public override Expression Bind(object[] args,  
4)         ReadOnlyCollection<ParameterExpression> parameters, LabelTarget returnLabel) 
5)     { 
6)         Console.WriteLine("cache miss"); //This will be explained later in the chapter. 
7)  
8)         int firstParameterValue = (int) args[0]; 
9)         ParameterExpression firstParameterExpression = parameters.First(); 
10)  
11)         if (firstParameterValue >= 5) 
12)         { 
13)             return Expression.IfThen(    //rule 
14)                         Expression.GreaterThanOrEqual(  //restrictions 
15)                                 firstParameterExpression, 
16)                                 Expression.Constant(5)), 
17)                         Expression.Return(   //binding result 
18)                                 returnLabel, 
19)                                 Expression.Constant(10)) 
20)                    ); 
21)         } 
22)         else 
23)         { 
24)             return Expression.IfThen(   //rule 
25)                     Expression.LessThan(  //restrictions 
26)                             firstParameterExpression, 
27)                             Expression.Constant(5)), 
28)                     Expression.Return(   //binding result 
29)                             returnLabel, 
30)                             Expression.Constant(1)) 
31)                ); 
32)         } 
33)     } 
34) } 



 CHAPTER 3  LATE BINDING AND CACHING 

75 

Now let’s see what happens when we use ConstantWithRuleBinder to do late binding. Listing 3-5 
shows the client code that uses ConstantWithRuleBinder. The code creates an instance of 
ConstantWithRuleBinder called binder. It creates a call site object and assigns the call site object to the 
variable site, then it calls the Target delegate on the variable site. All of this is similar to what we saw in 
Listing 3-3. The main difference is that in this example the client code calls the Target delegate on the 
object site twice. The first call to the Target delegate has integer 8 as the value of the second input 
parameter. That value becomes the value of the first input parameter when it gets to the Bind method of 
the binder object. Because the value is greater than 5, the result of the late binding is 10. The second call 
to the Target delegate has integer 3 as the value of the second input parameter. Because of that, the 
result of the late binding is 1. 

Listing 3-5. Program.cs 

private static void RunConstantWithRuleBinderExample() 
{ 
    CallSiteBinder binder = new ConstantWithRuleBinder(); 
 
    CallSite<Func<CallSite, int, int>> site = 
      CallSite<Func<CallSite, int, int>>.Create(binder); 
 
    int result = site.Target(site, 8); 
    Console.WriteLine("Late binding result is {0}", result); 
 
    result = site.Target(site, 3); 
    Console.WriteLine("Late binding result is {0}", result); 
} 

 
If you run the code in Listing 3-5, you should see output like the following: 
 

cache miss 
Late binding result is 10 
cache miss 
Late binding result is 1 

Checking Binding Rules in Debug Mode 
In the previous examples, we saw how binders and call sites work together to perform late binding. Next 
I want to show you how the rules that represent binding results are cached. But before I get into that, I’d 
like to show you a useful debugging technique that helped me a lot in learning the DLR. The Visual 
Studio debugger comes with a tool called Text Visualizer that you can use to visualize expression trees. 
In this section, we’ll debug into the DLR source code and use the Text Visualizer to view the binding 
rules returned by the code example in Listing 3-5.  

If you open the ConstantWithRuleBinder.cs file in this chapter’s code download, you’ll see the 
following code snippet: 

 
#if CLR2 
   using Microsoft.Scripting.Ast; 
#else 
   using System.Linq.Expressions; 
#endif 



CHAPTER 3  LATE BINDING AND CACHING 

76 

This code snippet uses the conditional compilation symbol CLR2 that we saw in the “Developing for 
Both .NET 2.0 and .NET 4.0” section. The compilation symbol is needed because when we compile the 
example code to run on .NET 2.0, some DLR classes used in the example code are in the 
Microsoft.Scripting.Ast namespace. However, those DLR classes are in the System.Linq.Expressions 
namespace when we compile the example code to run on .NET 4.0. The reason for the namespace 
difference is because in .NET 4.0, some DLR code is put into namespaces like System.Linq.Expressions 
and packaged into the System.Core.dll assembly. 

If you run the code in Listing 3-5 from the CallSiteBinderExamples20 project in debug mode, you 
should be able to debug into the DLR source code. Figure 3-4 shows the screen capture of a debug 
session I ran. In this session, I set a break point at the line right after the call to the Bind method. The 
break point is in the BindCore<T> method of the CallSiteBinder class, and we have debugged into the 
DLR source code. The value returned by the call to the Bind method is assigned to the binding variable 
(the line of code is marked with a red box in Figure 3-4) and it is essentially the rule that represents the 
late-binding result.   

 

 

Figure 3-4. Debug view of running the code in Listing 3-5 in debug mode. 

If we expand the binding variable in the bottom half of Figure 3-4 and look at its contents, we can 
see that under the binding variable, there is a DebugView entry. To the right of the DebugView entry, 



 CHAPTER 3  LATE BINDING AND CACHING 

77 

you’ll see a magnifier icon with a down arrow. If you right-click on the arrow and select Text Visualizer, a 
dialog window pops up that will display the textual visualization of the binding rule that 
ConstantWithRuleBinder returns. Listing 3-6 shows the textual visualization of the binding rule when the 
first argument is greater than or equal to 5. 

Listing 3-6. Textual Visualization When the First Argument Is Greater Than or Equal to 5 

.If ($$arg0 >= 5) { 
    .Return #Label1 { 10 } 
} .Else { 
    .Default(System.Void) 
} 
 

The rule shown in Listing 3-6 basically says “if the first argument (arg0) is greater or equal to 5, then 
return 10; otherwise, return some void value to indicate that a rebinding is required.” The rule matches 
the code logic in the ConstantWithRuleBinder class. Now, if we let the debug session continue from the 
break point, the program execution will stop at the break point again because, in Listing 3-5, the code 
calls the Target delegate to do late binding again with a different input parameter. This time, the Text 
Visualizer displays the textual visualization of the binding rule as Listing 3-7 shows. And you can see that 
the rule shown in Listing 3-7 matches the code logic we have in the ConstantWithRuleBinder class for the 
case where the first input argument is less than 5.  

Listing 3-7. Textual Visualization When the First Argument Is Less Than 5 

.If ($$arg0 < 5) { 
    .Return #Label1 { 1 } 
} .Else { 
    .Default(System.Void) 
} 
 

In summary, the code in Listing 3-5 calls the Target delegate on the call site twice, and we saw the 
binding rules for those two late-binding operations in Text Visualizer. When the code in Listing 3-5 calls 
the Target delegate for the first time, a late-binding process takes place and the rule in Listing 3-6 is 
produced and cached. When the code in Listing 3-5 calls the Target delegate for the second time, 
another late-binding process takes place because the cached rule returns a value that indicates the need 
for a rebinding. So the Bind method of ConstantWithRuleBinder is called again and the rule in Listing 3-7 
is produced and cached. At this point, you may notice that the two rules in Listing 3-6 and Listing 3-7 
can actually be combined into one single rule like this: 

 
.If ($$arg0 >= 5) { 
    .Return #Label1 { 10 } 
} .Else { 
    .Return #Label1 { 1 } 
} 

 
The new rule is more economic and efficient because it requires only one late-binding operation for 

the code in Listing 3-5. Here’s why. When the code in Listing 3-5 calls the Target delegate for the first 
time, a late-binding process takes place. If the new rule is produced and cached as the result of the late 
binding, then the second time the Target delegate is called, the new rule will return integer 1 instead of a 
value that indicates the need for a rebinding. In order to make the binder produce the new binding rule, 



CHAPTER 3  LATE BINDING AND CACHING 

78 

you need to change the implementation of ConstantWithRuleBinder in Listing 3-4 to the code in Listing 
3-8, which calls the Expression.IfThenElse factory method to create a ConditionalExpression instance 
whose if-branch returns integer 10 and else-branch integer 1. 

Listing 3-8. A More Efficient Implemenation of the Binding Logic 

public override Expression Bind(object[] args, 
    ReadOnlyCollection<ParameterExpression> parameters, LabelTarget returnLabel) 
{ 
    Console.WriteLine("cache miss"); 
    ParameterExpression firstParameterExpression = parameters[0]; 
    int firstParameterValue = (int)args[0]; 
             
    return Expression.IfThenElse( //rule 
                Expression.GreaterThanOrEqual( //restrictions 
                        firstParameterExpression, 
                        Expression.Constant(5)), 
                Expression.Return( //binding result 
                        returnLabel, 
                        Expression.Constant(10)), 
                Expression.Return( //binding result 
                    returnLabel, 
                    Expression.Constant(1)) 
            ); 
} 
 

Before we make the code change in Listing 3-8, we see two lines of “cache miss” printed on the 
screen when we run the example. After the code change in Listing 3-8, when we run the example we see 
only one line of “cache miss.” So what is “cache miss” about? That’s the topic of the next section. 

Caching 
Late binding is expensive because it needs to make several methods calls to get the Expression instance 
that represents the rule, i.e., restrictions plus binding result. Then the rule needs to be interpreted or 
compiled into executable IL code by the DLR. The whole late-binding process usually makes the code 
run much slower than early-bound code. Because of that, caching the result of late binding is crucial to 
the success of a framework like the DLR. The previous section previewed the DLR’s caching functionality 
but didn’t explain the details. Now we’ll look at this important feature of the DLR and use examples to 
show how the caching works.  

Three Cache Levels 
There is not just one cache for storing late-binding results, but three. The Target delegate we saw earlier 
is a cache. There’s also a cache maintained in a call site, and another cache in a binder. The way they 
work in the late binding process is illustrated in Figure 3-5. 

 



 CHAPTER 3  LATE BINDING AND CACHING 

79 

Target

delegate

no

no

return

return

yes

yes

cache

miss?

cache

miss?

cache

miss?

Call Update delegate, which will

check the second level cache

The Update delegate checks

 the third level cache

Call binder’s Bind method.

Update caches and return.

return

yes

cache

miss?

no
return

yes

return

yes

 

Figure 3-5. The three cache levels and the late binding process 

When client code invokes the Target delegate on a call site for the first time to perform late binding, 
the DLR will first check whether there is any rule in the three caches that can serve as the result of the 
late binding. Because this is the first invocation of the Target delegate, the Target delegate, as a first-
level  (L0) cache, doesn’t have anything cached yet. So the Target delegate proceeds to the second-level  
(L1) cache, which is the call site’s cache, by calling the call site’s Update delegate. The second-level cache 
doesn’t have any rules in it because no client call has invoked the site to do late binding. The Update 
delegate therefore proceeds to the third and last (L2) cache, which is the binder’s cache. The binder 
might or might not have a suitable rule in its cache for the late binding. If it does, that rule is returned to 
the call site and the expensive late-binding operation is avoided. The returned rule is put into the 
second-level cache as well as the first-level cache. On the other hand, if the binder does not have a 
suitable rule in its cache for the late binding, the binder’s Bind method is called to do the expensive late 
binding. When a binder’s Bind method returns a rule expression to a call site, the rule is put into level 3 
and level 2 caches and is also assigned to the call site’s Target delegate.  



CHAPTER 3  LATE BINDING AND CACHING 

80 

If client code performs subsequent invocations of the Target delegate on the same call site, since the 
Target delegate has been invoked, the rule the Target delegate caches might happen to be the right rule 
for the late binding. A rule is the right rule if its restrictions evaluate to true in the late binding context. For 
example, assuming the suboptimal implementation of the ConstantWithRuleBinder class shown in 
Listing 3-4 is used, the following line in Listing 3-5 does not pass the restrictions of the Target delegate’s 
cached rule.   

  
    result = site.Target(site, 3); 

 
Prior to this line of code, Listing 3-5 calls the Target delegate and passes it integer 8. Because of that, 

the Target delegate’s cached rule has the restrictions shown in the following in bold. The restrictions test 
whether the first parameter of the late-binding operation is greater than or equal to 5. This is the same 
code you see in the suboptimal version of the ConstantWithRuleBinder class’s Bind method.  

 
Expression.IfThen(     
    Expression.GreaterThanOrEqual(   
        firstParameterExpression, 
        Expression.Constant(5)), 
    ... //binding result omitted 
); 

 
When we call the Target delegate on the same call site the second time, with integer 3 as the input 

parameter, that integer 3 is part of the late-binding context. The rule cached in the Target delegate has 
restrictions that test whether the first input parameter is greater than or equal to 5. So the cached rule is 
not the right rule because its restrictions evaluate to false in the late binding context. In that situation, 
the Target delegate invokes the call site’s Update delegate and proceeds to the second-level cache. 

It should be clear now how important rules and their restrictions are to the DLR’s cache 
mechanism. Without them, the cache mechanism would be useless because there would be no 
information for determining whether a cached result is suitable in a late-binding context or whether an 
expensive call to the binder’s Bind method is needed. 

Late-Binding Context 
The previous paragraphs mentioned the term late-binding context. What is it? And what’s in it? A late-
binding context represents the environment (i.e., the context) in which a late binding takes place. In the 
previous example, we saw that integer 3, the first parameter of the late-binding operation, is part of the 
context in which the late binding takes place. In fact, all the input parameters of a late-binding operation 
are in the context. Besides the input parameters, each parameter’s name and type are part of the 
context. The order of the input parameters is also included in the context. What’s more, the return type 
of the late-binding operation is part of the context as well. Every late-binding operation has a return type 
because DLR binders use DLR expressions to represent binding results and, as Chapter 2 mentioned, 
DLR expressions, unlike statements, always have a return type. 

The information in a late-binding context can be categorized into two kinds—compile-time and 
run-time. For a late-binding operation, all the input parameters’ types and the return type are run-time 
information because they are generally not known at compile time; otherwise, it would be an early-
bound operation, not late bound. For compile-time information in a context, the DLR doesn’t limit what 
you can put there. A good example of compile-time information in a late-binding context is the name of 
the invoked method. The C# code snippet invokes the ToLower method on the dynamic object hello. The 
method invocation is late bound and the C# compiler will compile the method invocation into a call site 
and a binder. The binder will have the method name ToLower stored in it so that when the binder needs 



 CHAPTER 3  LATE BINDING AND CACHING 

81 

to perform late binding, it knows the name of the method to bind. The method name ToLower is available 
at compile time and is a piece of information in the late-binding context. 

 
dynamic hello = "Hello"; 
String helloInLowerCase = hello.ToLower(); 

 
It might seem redundant to include a parameter’s type in the context when the parameter (i.e., the 

parameter value, the integer 3 in our example) itself is already in the context. You can simply use 
reflection to get the type of a parameter value. As it turns out, a parameter’s type might not be the same 
as the type of the parameter’s value. For example, a late-binding operation might expect a parameter of 
some base class and the type of the parameter might be a derived class.  

All of the information in a late-binding context is accessible to a binder for performing late binding. 
When no suitable rule is in the L0, L1, or L2 caches for a late-binding operation, the call site will prepare 
all the information that makes up the late-binding context and passes that to the binder’s Bind method, 
which has the following method signature: 

 
public override Expression Bind( 
    object[] args,       //parameter values 
    ReadOnlyCollection<ParameterExpression> parameters, //paramter names, types and order 

LabelTarget returnLabel)   //return type and name 
         
As you can see from the Bind method’s signature, there is a correspondence between the pieces of 

run-time information in a late-binding context and the Bind method’s input parameters. The second 
input parameter of the Bind method is of type ReadOnlyCollection<ParameterExpression>. The class 
ReadOnlyCollection<T> implements IList<T>. The order of the elements in 
ReadOnlyCollection<ParameterExpression> is the order of a late binding operation’s input parameters. 
The Name and Type properties of the ParameterExpression class represent an input parameter’s name and 
type in the late-binding context. The Name and Type properties of the LabelTarget class represent the 
return value’s name and type in the late-binding context. 

Table 3-2 summarizes each piece of the run-time information in a late-binding context and its 
corresponding input parameter in the Bind method’s signature. The last column of the table uses the line 
result = site.Target(site, 3) in Listing 3-5 as an example and shows the value of each piece of the 
run-time information in the late-binding context.  

Table 3-2. Late-Binding Context 

Information in Context Bind Method’s Input Parameter Example 

Parameter values object[] args This array has integer 3 as the 
only element. 

Parameter types, 
names and order 

ReadOnlyCollection<Parame
terExpression> parameters 

This collection has only one 
instance of 
ParameterExpression whose 
Type property is System.Int32 
and whose Name property is 
not explicitly set. 



CHAPTER 3  LATE BINDING AND CACHING 

82 

Information in Context Bind Method’s Input Parameter Example 

Return type and
name 

LabelTarget returnLabel The LabelTarget instance’s
Type property is System.Int32.
Its Name property is not
explicitly set.  

This section explains the three cache levels and how they play a part in the late binding process.
Let’s see some examples of these cache levels in action in the next few sections. For the purpose of
demonstration, all the examples in the rest of this chapter will use the suboptimal implementation of the
ConstantWithRuleBinder class shown in Listing 3-4. 

L0 Cache Example 
This section demonstrates how the L0 cache works. Listing 3-9 shows the client code that uses the
ConstantWithRuleBinder class we saw earlier for the late-binding logic. The code is similar to the code in
Listing 3-5. In this example, the code calls site.Target twice. When the code first calls site.Target, the
Target delegate does not have any rule in the L0 cache. There isn’t any rule in the L1 and L2 caches
either. So the binder’s Bind method is invoked to perform the late binding. Every time the binder’s Bind
method is invoked, the text  “cache miss” will be printed to the screen so that we can clearly see when a
cache miss happens and when a cache match is found.  

After the first call to site.Target, all three caches will contain the rule returned by the binder’s Bind
method. Then the client code calls site.Target the second time and passes it integer 9. Because integer
9 is greater than 5, the restrictions of the rule in L0 cache evaluate to true and no expensive late binding
is needed. 

Listing 3-9. L0 Cache Example 

private static void L0CachExample()
{ 
    CallSiteBinder binder = new ConstantWithRuleBinder(); 

    CallSite<Func<CallSite, int, int>> site = 
      CallSite<Func<CallSite, int, int>>.Create(binder); 

    //This will invoke the binder to do the binding. 
    int result = site.Target(site, 8); 
    Console.WriteLine("Late binding result is {0}", result); 

    //This will not invoke the binder to do the binding because of L0 cache match. 
    result = site.Target(site, 9); 
    Console.WriteLine("Late binding result is {0}", result);
} 

If you run the code in Listing 3-9, you’ll see the following output on the screen. Notice that there is
only one cache miss. 



 CHAPTER 3  LATE BINDING AND CACHING 

83 

cache miss 
Late binding result is 10 
Late binding result is 10 

L1 Cache Example 
This section demonstrates how the L1 cache works. Like Listing 3-9, the client code in Listing 3-10 uses 
the ConstantWithRuleBinder class we saw earlier in Listing 3-4 for the late-binding logic. In this example, 
the code calls site.Target three times. When the code first calls site.Target, the Target delegate 
doesn’t have any rule in the L0 cache. There isn’t any rule in the L1 and L2 caches either. So the binder’s 
Bind method is invoked to perform the late binding. So far everything is the same as in the preceding 
example. 

After the first call to site.Target, all three caches will contain the rule returned by the binder’s Bind 
method. To ease our discussion, let’s call this rule 1. The client code calls site.Target a second time and 
passes it integer 3. Because integer 3 is neither greater than nor equal to 5, the restrictions of the rule the 
in L0 cache evaluate to false. The restrictions of the same rule in the L1 and L2 caches also evaluate to 
false. So the binder’s Bind method is invoked to perform late binding. Let’s call the rule returned this 
time rule 2. Rule 2 is cached together with rule 1 in the L1 and L2 caches. The L1 cache can hold up to 10 
rules while the L2 cache can hold up to 128 rules per delegate type. Don’t worry about the L2 cache and 
its cache size for now. I’ll explain that in detail in the next section. The important thing to note here is 
that rule 1 and rule 2 are both in the L1 and L2 caches. But only rule 2 is in the L0 cache.  

Because of this, when the client code calls site.Target the third time and passes it integer 9, and 9 is 
not less than 5, the restrictions of rule 2 in L0 cache evaluate to false. The Target delegate thus calls the 
Update delegate to proceed to the L1 cache. The L1 cache contains both rule 1 and rule 2. In this case, 
rule 1 is suitable for the late binding and therefore no call to the binder’s Bind method is necessary. 

Listing 3-10. L1 Cache Example 

private static void L1CachExample() 
{ 
    CallSiteBinder binder = new ConstantWithRuleBinder(); 
 
    CallSite<Func<CallSite, int, int>> site = 
      CallSite<Func<CallSite, int, int>>.Create(binder); 
 
    //This will invoke the binder to do the binding. 
    int result = site.Target(site, 8); 
    Console.WriteLine("Late binding result is {0}", result); 
 
    //This will invoke the binder to do the binding. 
    result = site.Target(site, 3); 
    Console.WriteLine("Late binding result is {0}", result); 
 
    //This will not invoke the binder to do the binding because of L1 cache match. 
    result = site.Target(site, 9); 
    Console.WriteLine("Late binding result is {0}", result); 
} 
 

If you run the code in Listing 3-10, you’ll see the following output on the screen: 
 



CHAPTER 3  LATE BINDING AND CACHING 

84 

cache miss 
Late binding result is 10 
cache miss 
Late binding result is 1 
Late binding result is 10 

L2 Cache Example 
The L2 cache example in this section is a bit more complex than those in the previous sections. The 
reason for the complexity is that the same binder may be shared by multiple call sites. This will be easier 
to understand with some examples.  

In the previous sections, we call the Target delegate on the same call site instance. This usually 
happens when you have C# code that looks like the following: 
 
void Foo(dynamic name) {  
    name.ToLower(); //call site is here. 
} 
 
Foo(“Bob”); 
Foo(“Rob”); 
 

There’s only one call site instance in the Foo method. In the code snippet, the Foo method is called 
twice. Each time Foo is called, the same L0 and L1 caches of the one and the only call site in the Foo 
method are searched for a suitable rule.  

Now let’s see a slightly different example. If the Foo method looks like the one in the code snippet 
below, there will be two separate call sites, i.e., two instances of CallSite<T>. The two call sites are totally 
independent of each other. Each of the two call sites has its own L0 and L1 cache. Those caches are not 
shared across call sites. 
 
void Foo(dynamic name) {  
    name.ToLower(); //call site is here. 
    name.ToLower(); //another call site is here. 
} 

 
To share cached rules across call sites, you share binders. By sharing a binder across call sites, rules 

in the binder’s cache are shared. The code in Listing 3-11 demonstrates the sharing of an L2 cache across 
two call sites. The example code creates one instance of ConstantWithRuleBinder and two call sites, site1 
and site2. The binder is shared between the two call sites. When the example code calls site1.Target, 
the binder’s Bind method is invoked to do the late binding. The result of the late binding is cached in 
site1’s L0 and L1 caches. It is also cached in the binder’s L2 cache. So when site2.Target is invoked, 
even though site2’s L0 and L1 caches don’t have a suitable rule for the late binding, the binder’s L2 
cache has one. Therefore, the binder’s Bind method is again not invoked.  

Listing 3-11. L2 Cache Example 

private static void L2CachExample() 
{ 
    CallSiteBinder binder = new ConstantWithRuleBinder(); 
 
    CallSite<Func<CallSite, int, int>> site1 = 



 CHAPTER 3  LATE BINDING AND CACHING 

85 

      CallSite<Func<CallSite, int, int>>.Create(binder); 
 
    CallSite<Func<CallSite, int, int>> site2 = 
      CallSite<Func<CallSite, int, int>>.Create(binder); 
 
    //This will invoke the binder to do the binding. 
    int result = site1.Target(site1, 8); 
    Console.WriteLine("Late binding result is {0}", result); 
 
    //This will not invoke the binder to do the binding because of L2 cache match. 
    result = site2.Target(site2, 9); 
    Console.WriteLine("Late binding result is {0}", result); 
} 
 

If you run the code in Listing 3-11, you’ll see the following output on the screen. Notice that there is 
only one cache miss. 

 
cache miss 
Late binding result is 10 
Late binding result is 10 
 

Now, for comparison, Listing 3-12 shows the same example, except this time each site uses its own 
binder. The object site1 uses binder1 and site2 uses binder2.  

Listing 3-12. Not Sharing the L2 Cache 

private static void L2CachNoSharingExample() 
{ 
    CallSiteBinder binder1 = new ConstantWithRuleBinder(); 
    CallSiteBinder binder2 = new ConstantWithRuleBinder(); 
 
    CallSite<Func<CallSite, int, int>> site1 = 
      CallSite<Func<CallSite, int, int>>.Create(binder1); 
 
    CallSite<Func<CallSite, int, int>> site2 = 
      CallSite<Func<CallSite, int, int>>.Create(binder2); 
 
    //This will invoke the binder to do the binding. 
    int result = site1.Target(site1, 8); 
    Console.WriteLine("Late binding result is {0}", result); 
 
    //This will invoke the binder to do the binding because of no L2 cache match. 
    result = site2.Target(site2, 9); 
    Console.WriteLine("Late binding result is {0}", result); 
} 
 

If you run the code in Listing 3-12, you’ll see the following output on the screen. Notice that there 
are two cache misses in the output. 

 
cache miss 
Late binding result is 10 



CHAPTER 3  LATE BINDING AND CACHING 

86 

cache miss 
Late binding result is 10 

Creating Canonical Binders 
It should be clear that sharing binders across call sites is important to the performance of a DLR-based 
language. However, that doesn’t mean a language implementer should use one binder for all call sites. 
The proper criterion for sharing a binder across multiple call sites is when those call sites have the same 
compile-time information in their late binding context. A binder shared across multiple call sites that 
have the same compile-time information in their late-binding context is called a canonical binder.  

Listing 3-13 shows an example of when to use a canonical binder. The listing shows a C# code 
snippet that involves some late-binding operations. The code assigns a string literal to the variable x and 
another string literal to the variable y. Then it invokes the ToLower method on x in line 3 and on y in line 
4. The two method invocations are late bound. In lines 5 and 6, the example code accesses the Length 
property of x and y respectively. The two property-access operations are also late bound. The question 
is, for the two method invocations and the two property access operations, how many binders should we 
use if we are implementing something like the C# compiler? Because the two method invocations are of 
the same kind of late-binding operations (i.e., the method invocation operation) and because they 
invoke the same method name ToLower (i.e., their compile-time information in their late-binding context 
is the same), the two method invocations should share the same canonical binder for their late binding. 
Similarly, because the two property-access operations are of the same kind of late-binding operations 
(i.e., the property get-access operation) and because they access the same property name Length (i.e., 
their compile-time information in their late binding context is the same), the two property-access 
operations should share one canonical binder for their late binding.  

Listing 3-13. An Example of When to Use a Canonical Binder 

1) dynamic x = “foo”; 
2) dynamic y = “bar”; 
3) dynamic z = x.ToLower(); //call site is here. 
4) z = y.ToLower(); //another call site is here. 
5) z = x.Length; 
6) z = y.Length; 

 

Summary 
In this chapter, we looked at the caching mechanism of DLR binders. We saw code examples of the three 
cache levels in action, showing when a cache miss occurs and when a cached rule is reused. I also 
introduced canonical binders, and described when to share binders across multiple call sites. Along the 
way, I showed how to build debug versions of the DLR assemblies for .NET 2.0, how to write DLR-based 
code that targets both .NET 2.0 and .NET 4.0, and how to debug into the DLR source code to see the rules 
that represent binding results in Text Visualizer. We have covered a lot in this chapter about DLR binders 
and caching. The next chapter will examine how DLR binders enable language interoperability.  

 

 



C H A P T E R  4 
    
 

87 

Late Binding and Interoperability 

DLR binders have two key responsibilities. One is the caching mechanism we looked at in the previous 
chapter. The other is language interoperability, and that’s the main topic of this chapter. Binders alone 
do not language interoperability make. The key elements in the DLR that make language interoperability 
possible are: a common type system that consists of twelve operations, binders, dynamic objects, and an 
interoperability protocol between binders and dynamic objects. In the DLR, binders and dynamic objects 
work together by adhering to a mutual protocol to ensure that objects from different languages 
interoperate seamlessly. This chapter will cover all of the key elements in the DLR that enable language 
interoperability. You’ll see examples that fetch dynamic objects from Ruby code and pass them to 
Python code. However, I won’t yet show you how to implement dynamic objects from the ground up; 
that will be the topic of the next chapter. For this chapter, it is enough to just use dynamic objects that 
come from Python or Ruby code.  

Binders, dynamic objects, and the interoperability protocol they participate in are crucial to a solid 
understanding of how the DLR works. Let’s begin the journey by first looking at what language 
interoperability means.  

Language Interoperability 
There are different levels of interoperability between languages. You can view web services as one way to 
enable language interoperability. A web service can be written in one language while a client of the web 
service can be written in a different language. The two languages interoperate by sending well-defined 
XML payloads to each other.  

For our purposes, language interoperability means the ability to take something like a class or a 
function written in one language and use it in another language. For example, we may take a C# class, 
create an instance of it, and pass the instance to IronPython. Or we could take the same C# class, pass it 
directly to some IronPython code, and let the IronPython code create an instance of that class. The 
IronPython code can call methods on the C# object, or access its member properties. Not only can we 
pass C# classes or objects to IronPython, we can do the same in the other direction. We can pass 
IronPython classes, functions, or objects to C#. Furthermore, not only do we have this interoperability 
between a static language like C# and a dynamic language like IronPython, we also have it between two 
dynamic languages. For example, we can pass IronRuby classes or objects to IronPython and vice versa.  

As an example, let’s define a class in IronRuby and create an instance of it in C#. Listing 4-1 shows 
the IronRuby class. You can find all of this chapter’s code examples in the Chapter4 solution of this 
book’s download. If you open the Chapter4 solution in Visual Studio C# 2010 Express, you’ll see that it 
has a project called InteropBinderExamples. Because we use IronPython and IronRuby in these code 
examples, the InteropBinderExamples project has references to the IronPython and IronRuby 
assemblies, such as IronPython.dll, IronPython.Modules.dll, IronRuby.dll, and 
IronRuby.Libraries.dll, and it also has references to DLR assemblies, such as Microsoft.Dynamic.dll 
and MicrosoftScripting.dll. 



CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

88 

Listing 4-1. The RubyProduct Class in RubyProduct.rb 

class RubyProduct 
  attr_accessor :name 
  attr_accessor :price 
   
  def initialize(name, price) 
     @name = name 
     @price = price 
  end 
end 
 

The code in Listing 4-1 defines a Ruby class called RubyProduct that has two member variables—
name and price. The method initialize is a constructor method that gets called when new instances of 
the RubyProduct class are created. In this example, the constructor method takes a name and a price as 
input and sets them to the member variables. With RubyProduct in place, the next thing we want to do is 
to create an instance of it in C#. Listing 4-2 shows the code for doing that. 

Listing 4-2. The Method for Creating Instances of the RubyProduct Class 

1) class RubyExampleCode 
2) { 
3)     private static dynamic productClass; 
4)     private static ScriptEngine rbEngine; 
5)  
6)     static RubyExampleCode() 
7)     { 
8)         rbEngine = IronRuby.Ruby.CreateEngine(); 
9)         ScriptScope scope = rbEngine.ExecuteFile("RubyProduct.rb"); 
10)         productClass = rbEngine.Runtime.Globals.GetVariable("RubyProduct"); 
11)     } 
12)  
13)     public static dynamic CreateRubyProduct(String name, int price) 
14)     { 
15)         return rbEngine.Operations.CreateInstance(productClass, name, price); 
16)     } 
17) } 
 

The method CreateRubyProduct in Listing 4-2 creates an instance of the RubyProduct class. It does 
that by using the DLR’s Hosting API. I won’t get into the details of the DLR Hosting API for now as it’s not 
the focus of the current discussion. I’ll explain what the code does at a high level and will defer the 
detailed discussion of DLR’s Hosting API to Chapter 6.  

The static constructor of the RubyExampleCode class first creates a ScriptEngine instance for running 
Ruby code (line 8). The Ruby code in this example is the code in Listing 4-1 and it’s in the 
RubyProduct.rb file. Once the Ruby code is run, an object representing the RubyProduct class is available 
(a class is an object in Ruby). The code in Listing 4-2 fetches that class object and assigns it to the 
variable productClass (line 10). The code in the CreateRubyProduct method passes productClass to some 
CreateInstance method to create an instance of RubyProduct. Again, don’t worry too much yet if you 
don’t feel you have a good understanding of the code. For now, it’s enough to know that the 
CreateRubyProduct method creates an instance of RubyProduct every time it’s called. 



 CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

89 

At this point, we have a Ruby class and a method that creates instances of the Ruby class in C#. Let’s 
put them together in Listing 4-3 and see how it looks.  

Listing 4-3. Client Code That Uses RubyExampleCode to Create Ruby Objects 

static void Main(string[] args) 
{ 
    RunRubyClassInstantiationExample(); 
    Console.ReadLine(); 
} 
 
private static void RunRubyClassInstantiationExample() 
{ 
    dynamic stretchString = RubyExampleCode.CreateRubyProduct("Stretch String", 7); 
    Console.WriteLine("Product {0} is {1} dollars.",  
              stretchString.name, stretchString.price); 
} 
 

The Main method in Listing 4-3 calls the RunRubyClassInstantiationExample method to run the 
example. This method creates an instance of the RubyProduct class by calling the static 
CreateRubyProduct method of the RubyExampleCode class. Once an instance of the RubyProduct class is 
created, the code in Listing 4-3 prints out the name and price properties of the RubyProduct instance to 
the console. If you run the code, you’ll see output that looks like this: 

 
Product Stretch String is 7 dollars. 
 

The example so far shows some interoperability between C# and IronRuby. Let’s crank it up a notch 
by throwing in a C# class and an IronPython function. What the next example will show you is the 
passing of both a Ruby object and a C# object to an IronPython function. The IronPython function will 
do some calculation with the two objects and return the result. Listing 4-4 shows the C# class, which is 
called CSharpProduct. Like the RubyProduct class, the CSharpProduct class has the two properties name and 
price. Listing 4-5 shows a Python function called addPrice that we’ll use to do some calculation on both 
a Ruby object and a C# object. The function addPrice takes two parameters as input and adds up their 
price properties. The Python code is stored in the pythonExampleCode.py file.  

Listing 4-4. CSharpProduct.cs. 

public class CSharpProduct  
{ 
    public String name { get; set; } 
    public int price { get; set; } 
 
    public CSharpProduct(String name, int price) 
    { 
        this.name = name; 
        this.price = price; 
    } 
} 



CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

90 

Listing 4-5. The addPrice Function in pythonExampleCode.py 

def addPrice(x, y):  
 return x.price + y.price 
 

Just as the previous example used a ScriptEngine instance to run the Ruby code, this example needs 
a ScriptEngine to run the Python code. Listing 4-6 shows the class PythonExampleCode that acts as a 
helper class for running the Python code in Listing 4-5. Like before, the code in Listing 4-6 uses DLR’s 
Hosting API, which is the topic of Chapter 6. For now, it is enough to know that the code in Listing 4-6 
uses a ScriptEngine instance to run the Python code in the pythonExampleCode.py file. After running 
the Python code, the addPrice method we saw in Listing 4-5 is available as an object. So the code in 
Listing 4-6 fetches the object that represents the addPrice Python function and assigns it to the static 
AddPriceDelegate variable. 

Listing 4-6. PythonExampleCode.cs 

class PythonExampleCode 
{ 
    public static Func<dynamic, dynamic, int> AddPriceDelegate; 
 
    static PythonExampleCode() 
    { 
        ScriptEngine pyEngine = IronPython.Hosting.Python.CreateEngine(); 
        ScriptScope scope = pyEngine.ExecuteFile("pythonExampleCode.py"); 
        AddPriceDelegate = scope.GetVariable("addPrice"); 
    } 
} 
 

What we have so far is a C# class, a Ruby class, and a Python function. Let’s put them together and 
have some fun. The code in Listing 4-7 passes a Ruby object (i.e., an object of a Ruby class) and a C# 
object (i.e., an object of a C# class) to the addPrice Python function. The example code in Listing 4-7 first 
creates a Ruby object and assigns it to the stretchString variable. The price of stretch string is 7 dollars. 
The code then creates a C# object and assigns it to the handClapper variable. The price of a hand clapper 
is 6 dollars. Finally, the example code passes the Ruby object and the C# object to the IronPython 
function. The function adds up the two prices and, sure enough, the total of stretch string and hand 
clapper is 13 dollars. 

Listing 4-7. Passing a Ruby Object and a C# Object to a Python Function 

static void Main(string[] args) 
{ 
    RunAddPriceExample(); 
    Console.ReadLine(); 
} 
 
private static void RunAddPriceExample() 
{ 
    dynamic stretchString = RubyExampleCode.CreateRubyProduct("Stretch String", 7); 



 CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

91 

    dynamic handClapper = new CSharpProduct("Hand Clapper", 6); 
    int total = PythonExampleCode.AddPriceDelegate(stretchString, handClapper); 
    Console.WriteLine("Total is {0}.", total); 
} 
 

The example does not look very complex. After all, it’s just a few lines of code. Underneath the code, 
however, there’s actually a lot happening. The DLR does great work in hiding the complexity and making 
the integration between languages look almost effortless. The rest of this chapter is going to take you to 
backstage and show you the secrets behind the curtain.  

Static and Dynamic Objects 
One important thing to note in the preceding example is how static objects are treated as dynamic 
objects. By static objects I mean objects that don’t have their own late-binding logic. In contrast, 
dynamic objects are objects that have their own late-binding logic. In the example, instances of the 
CSharpProduct class are static objects while instances of the RubyProduct class are dynamic objects. A 
static object’s class can be defined in one language while the object itself is used in another language. 
And the same goes for dynamic objects. A dynamic object’s class can be defined in one language while 
the dynamic object itself is used in another language. When talking about static or dynamic objects, it 
helps to distinguish the source language in which an object’s class is defined and the target language in 
which the object is being used. In the example, the source language of the RubyProduct instances is 
always Ruby. When the RubyProduct instances are used in C#, then C# is the target language that hosts 
them. Similarly when they are passed to the addPrice method of IronPython, the target language is 
IronPython. 

Even though instances of the CSharpProduct are static objects, the example code treats them as 
dynamic objects by using the C# dynamic keyword. Sometimes in this book, the term  “dynamic object” 
means a truly dynamic object like one in Python or Ruby. Sometimes, the term refers to a static object 
that’s treated as a dynamic object. Usually the context makes it clear which case it is. When there’s a 
chance of confusion, I’ll clarify what I mean.  

Because static objects don’t have their own late-binding logic, when they are treated as dynamic 
objects, who is responsible for deciding their late-binding behavior? What actually happens is that, by 
default, the DLR wraps static objects with instances of the DynamicMetaObject class. This wrapping 
effectively turns static objects into dynamic objects. However, there is no late-binding behavior 
implemented in DynamicMetaObject. Instead, DynamicMetaObject delegates the job of late binding to the 
target language’s binders. So long story short, by default, it is the target language’s binders that handle 
the late-binding behavior of static objects.  

DynamicMetaObject is the most important class in the whole discussion about dynamic objects in the 
next chapter. You will also run into this class a few times in this chapter, so it helps to explain at a high 
level what it is. In DLR, late-binding logic can be in one of two places. It can be in binders as we have seen 
so far. It can also be in dynamic objects. The late-binding logic of a dynamic object is not in the dynamic 
object itself. Rather, the logic is in the meta-object associated with the dynamic object. The meta-object 
has to be an instance of DynamicMetaObject or one of its derived classes. In other words, instances of 
DynamicMetaObject or its derivatives are objects that contain the late-binding logic of dynamic objects. 
The next chapter will show you how to implement custom late-binding logic in classes that derive from 
DynamicMetaObject. For now, it’s enough to understand DynamicMetaObject as the base class of all classes 
that implement late-binding logic of dynamic objects.  



CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

92 

Late-Binding Logic in Two Places 
One question you might have is why late-binding logic resides in two places (binders and dynamic
objects)? What’s the difference between the late-binding logic in those places? How do you decide
whether to put your custom late-binding logic in binders or in dynamic objects? The next two sections
take a detailed look at these two places. After the discussion, you’ll know the answers to these questions.
First, let’s look at the late-binding logic in binders. 

Late Binding Logic in Binders 
The late-binding logic in binders pertains to a target language. For example, C# implements its own set of
binder classes. Those binder classes have late-binding logic that pertains to C#. Similarly, IronPython
implements its own set of binder classes that have late-binding logic pertaining to IronPython. Why does
each language need its own binders? Here’s an example. In IronPython, you can access the __class__
field of any object to get the object’s class. It doesn’t matter what the object’s source language is. It also
doesn’t matter whether the object is a static object or dynamic object. As long as we use the object in
IronPython, we can expect a seamless interoperability that allows us to access the __class__ field of the
object just as we can any native Python object. Clearly, if an object’s source language is not Python, it
won’t have any clue about the Python-specific __class__ field. Even if the object happens to have a field
with the name __class__, the semantics of that field might not be the same as Python’s. So when we
access the __class__ field of an object in some Python code, the late-binding logic pertaining to the
IronPython language will kick in and perform the binding no matter whether the object is static or
dynamic. If it’s a static object, the IronPython language binders will be invoked anyway since the object
itself does not know how to do its own late binding. If it’s a dynamic object, the DLR has a mechanism
that falls back to the IronPython language binders when the object does not know how to bind things
like __class__. I will describe more about that fallback mechanism in a bit. First, let’s look at an example
that shows how the late binding logic in IronPython’s binders allows us to access the __class__ field on a
static .NET object. 

The IronPython code snippet below adds a reference to the System.Windows.Forms.dll assembly
and then creates an instance of the Form class in the System.Windows.Forms namespace. The Form class is
a static .NET class and does not have a property called __class__ defined. However, the IronPython code
snippet is able to access the __class__ property on the form object because, in this example, IronPython
is the target language and IronPython’s binders will perform the late binding when the example code
tries to access the __class__ property on the form object.    

import clr
clr.AddReference(“System.Windows.Forms”)
from System.Windows.Forms import Form 

form = Form() 
print form.__class__ 

Determining the target language of an object is not always as straightforward as this. Here’s another
example that’s slightly more complicated. This example accesses the __class__ property on a dynamic
Ruby object and a static C# object within an IronPython function. For this example, I added a new
Python function in the pythonExampleCode.py file. The new function is called printClassName and it is
shown in Listing 4-8. The function is very simple. It takes an input parameter and prints the parameter’s
__class__ attribute.  



 CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

93 

Listing 4-8. The printClassName Function in pythonExampleCode.py 

def addPrice(x, y):  
 return x.price + y.price 
 
def printClassName(x): 
 print x.__class__ 
 

In order to make it easy to call the printClassName function in C#, I added a new static variable 
called PrintClassNameDelegate in the PythonExampleCode class (which we saw earlier in this chapter). 
Listing 4-9 shows the code I added for this example in bold. The new static variable 
PrintClassNameDelegate in Listing 4-9 is a reference to the printClassName Python function shown in 
Listing 4-8. 

Listing 4-9. PythonExampleCode.cs 

class PythonExampleCode 
{ 
    public static Func<dynamic, dynamic, int> AddPriceDelegate; 
    public static Action<dynamic> PrintClassNameDelegate; 
 
    static PythonExampleCode () 
    { 
        ScriptEngine pyEngine = IronPython.Hosting.Python.CreateEngine(); 
        ScriptScope scope = pyEngine.ExecuteFile("pythonExampleCode.py"); 
        AddPriceDelegate = scope.GetVariable("addPrice"); 
        PrintClassNameDelegate = scope.GetVariable("printClassName"); 
    } 
} 
 

At this point, everything is in place and we are ready to see what the example intends to 
demonstrate. The code in Listing 4-10 creates a Ruby object and passes the object to the printClassName 
Python function. What’s significant here is that the Ruby object does not have any clue about the 
__class__ attribute. The __class__ attribute is a Python-specific thing. When the C# code in Listing 4-10 
calls the Python function and passes it the Ruby object, the target language of the Ruby object changes 
from C# to IronPython. The source language of the Ruby object is still Ruby, of course, and will never 
change. Inside the printClassName function, the target language of the Ruby object is IronPython, and 
thus IronPython’s binders will call the shots. In this case, the Ruby object is a dynamic object. It does not 
know how to bind the __class__ attribute. So the binding process falls back to IronPython’s binders. 
Because the binders have late-binding logic that pertains to the Python language, they know how to bind 
the __class__ attribute. So the binding is successful and the class name is printed on the screen. The key 
point to note about this example is that an object’s target language can change from one to another. 

The code in Listing 4-10 goes on to show that the Python function can work with a static object too. 
The example creates an instance of the CSharpProduct class and passes it to the printClassName Python 
function.  Because the C# object is a static object, it does not know how to do any late binding. Within 
the printClassName Python function, the IronPython language binders are called upon to do the late 
binding for the C# object. And again, the binding is successful because the binders have late binding 
logic that pertains to the Python language, and they know how to bind the __class__ attribute. 



CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

94 

Listing 4-10. C# Client Code That Calls a Python Function  

private static void RunPrintClassNameExample() 
{ 
    dynamic stretchString = RubyExampleCode.CreateRubyProduct("Stretch String", 7); 
    PythonExampleCode.PrintClassNameDelegate (stretchString); 
     
    dynamic handClapper = new CSharpProduct("Hand Clapper", 6); 
    PythonExampleCode.PrintClassNameDelegate (handClapper); 
} 
 

If you run the example code, you’ll see the following output on the screen: 
 

<type ‘RubyObject’> 
<type ‘CSharpProduct’> 

Late-Binding Logic in Dynamic Objects 
The key takeaway of the previous section is that the late-binding logic in binders pertains to a target 
language. In contrast, the late-binding logic in a dynamic object pertains to that object itself. The idea is 
that by letting the late-binding logic in a dynamic object pertain to that object itself, no matter where the 
dynamic object is used, its late-binding behavior is the same and will support the semantic of the 
dynamic object’s source language. For example, instances of RubyProduct are dynamic objects and they 
carry their own late-binding logic with them. So they have the same late-binding behavior you’d expect a 
Ruby object to have, no matter if they are used by C# code, IronPython code, or some other language’s 
code. Chapter 5 discusses late-binding logic in dynamic objects in detail. You’ll see in Chapter 5 how to 
implement classes that derive from the DynamicMetaObject class and also how to make use of those 
classes. Until then, I’ll focus the discussion on binders and language interoperability. 

Late-Bound Actions 
So far, we’ve talked about late-binding logic in binders and dynamic objects, but we haven’t said what 
exactly can be bound late. The DLR defines twelve actions that can be bound by both binders and 
dynamic objects at run time. Let’s first look at some examples of those late-bound actions, then I’ll 
present the twelve late-bound actions and show you the DLR’s binder class hierarchy that corresponds 
to those twelve actions.   

Examples 
The following line of code, extracted from Listing 4-3, shows two actions that can be bound late:  

 
Console.WriteLine("Product {0} is {1} dollars.", stretchString.name, stretchString.price); 

 
First, it shows that accessing a member property can be late bound. In this code, the two operations 

that access the name and price properties of the stretchString variable are late bound. The variable 
stretchString is a dynamic object created from a Ruby class. Because of that, the C# compiler does not 
have the static type information to bind the two operations that access stretchString’s member 
properties at compile time.  

Another not so obvious operation that is bound late in the code is member method invocation. 
Because stretchString is a dynamic object, the return values of stretchString.name and 



 CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

95 

stretchString.price are also dynamic objects. When the code passes stretchString.name and 
stretchString.price as parameters to Console.WriteLine, the invocation of the Console.WriteLine 
method also becomes late bound. This is because at compile time, without knowing the actual types of 
all the input parameters, the C# compiler can’t decide how to bind the method invocation. 

If you compile the code in Listing 4-3 and disassemble the generated assembly, you can verify that 
indeed the stretchstring.name, stretchString.price, and Console.WriteLine in the code are late 
bound. Listing 4-11 shows at a conceptual level what you’ll see if you disassemble the code in Listing 4-3. 
The code in Listing 4-11 should look familiar because it’s essentially the same kind of code as in the last 
chapter. The difference is that in Chapter 3, the examples create their own call sites and binders and 
here the call sites and binders are created by the C# compiler. 

Listing 4-11. A Conceptual Illustration of the Code Generated by the C# Compiler  

if (Site4 == null) 
{ 
    Site4 = CallSite<Action<CallSite, Type, string, object, object>> 

.Create(Binder.InvokeMember(..., "WriteLine", ...)); 
} 
 
if (Site5 == null) 
{ 
    Site5 = CallSite<Func<CallSite, object, object>> 

.Create(Binder.GetMember(..., "name", ...)); 
} 
 
if (Site6 == null) 
{ 
    Site6 = CallSite<Func<CallSite, object, object>> 

.Create(Binder.GetMember(..., "price", ...)); 
} 
     
Site4.Target.Invoke(Site4, typeof(Console), "Product {0} is {1} dollars.",  

Site5.Target.Invoke(Site5, stretchString),  
Site6.Target.Invoke(Site6, stretchString)); 
 
Listing 4-11 includes three call sites and three binders, one binder and one call site for each of the 

three late-bound operations—stretchstring.name, stretchString.price, and Console.WriteLine. 
Before creating each call site, the code generated by the C# compiler checks whether the call site is null. 
If it’s not null, the call site has been created already and the code will not create it again. That’s why you 
see those if conditions in Listing 4-11. This is a good idea because if the method 
RunRubyClassInstantiationExample is called multiple times, the code won’t create three new call sites 
every time the method is called. Not only that, the code in Listing 4-11 also won’t create three new 
binders every time the RunRubyClassInstantiationExample is called. That’s because the code calls the 
InvokeMember and GetMember methods of the Binder class to get the C# language’s binders. These 
methods ensure that the same canonical binders are returned when the method 
RunRubyClassInstantiationExample is called multiple times. As you can see, the code generated by the 
C# compiler avoids unnecessary creation of call sites and binders. This saves memory, of course. But 
more importantly, because the code reuses the same call sites and binders, the caches in those call sites 
and binders will also be leveraged to help improve performance.  



CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

96 

In Listing 4-11, the variable Site4 is the call site for the late binding of the Console.WriteLine 
method invocation. The binder passed to Site4 contains the method name “WriteLine” to be late 
bound. Similarly, the variable Site5 is the call site for the late binding of the stretchString.name 
property access. The binder passed to Site5 contains the property name “name” to be late bound. The 
variable Site6 is for the late binding of the stretchString.price property access.  

With the three call sites and binders in place, the code in Listing 4-11 invokes the Target delegate on 
Site5 and Site6. The binding results of Site5.Target and Site6.Target represent the results of 
stretchString.name and stretchString.price. Those results are then passed to Site4.Target, which 
eventually prints the text on the screen.     

Our discussion in this section shows that member property get–access operations and member 
method invocations are two kinds of operations that can be late bound. It turns out that the DLR defines 
in total twelve kinds operations that can be late bound, and those operations make up what’s called the 
Common Type System of the DLR. Let’s see what that means.  

Common Type System 
Most languages have their own type systems, and those type systems need to be considered if the 
languages are going to interoperate. For example, say we have a Java string object in a JVM and we want 
to bring it over to a .NET CLR runtime. There is more than one way to achieve this. One common 
approach is marshalling and unmarshalling objects. The idea of this approach is to serialize the Java 
string object to 0s and 1s, send the bits over to the CLR runtime, and then create a CLR string object by 
deserializing the bits. However, this approach is often cumbersome and not very efficient, mainly 
because we need to deal with two separate runtimes and two separate type systems. With this approach, 
types in one system are unrelated to types in the other system. To bridge the systems and make them 
interoperate, we have to do the mapping between the types. Nonetheless, it is an approach to consider 
when you have no control over the two languages you are trying to bridge.  

So how does the DLR achieve language interoperability with regard to type systems? The DLR 
facilitates language interoperability by defining a common type system for DLR-based languages. This is 
essentially the same tactic used by the CLR, which defines the Common Type System (CTS) for static 
.NET languages. If two languages share the same type system, then types defined in one language will be 
understood by the other language without any need for mapping or translation. For example, say we 
have an abstract C# class. When the C# class is compiled, the fact that it is abstract is mapped to the 
equivalent “abstract class” construct in the Common Type System. So if we have some VB.NET code that 
uses the compiled C# class, the VB.NET code will know that the class is an abstract class. VB.NET code 
does not understand C# code directly; it knows the C# class is abstract only because the C# class has 
been compiled to IL (.NET Intermediate Language) based on the CTS, which VB.NET understands.  

Because a common type system has to meet the needs of multiple languages so that those languages 
can map to it, the common type system has to be a superset of the type systems of the languages it 
intends to support. The challenge here is to find a superset that’s sufficient and also compact. For 
dynamic languages, the DLR identified twelve actions/operations that together are sufficient to meet the 
needs of most dynamic languages. Table 4-1 summaries those twelve actions.  



 CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

97 

Table 4-1. Twelve Operations/Actions That Can Be Bound Late 

Operation/Action Description 

GetMember This action, when triggered on a dynamic object, will have the effect 
of getting a property of the object. You saw an example of this earlier 
in the chapter with stretchString.name. stretchString is a dynamic 
object and stretchString.name triggers the GetMember action on 
stretchString in order to get the name property of stretchString.  

SetMember This action sets the value of a dynamic object’s property. In this table, 
dynamic objects mean both truly dynamic objects as well as static 
objects that are treated as dynamic objects. An example of the 
SetMember operation is stretchString.name = “stretch string,” as 
we saw earlier. 

DeleteMember This action removes a property from a dynamic object. C# doesn’t 
have syntax for expressing this action. In Python, an example of this 
action looks like this: del baz.Foo, which deletes the Foo property 
(attribute) from the baz object.  

Invoke This late-bound action occurs when you invoke a callable entity such 
as a delegate. The printClassName Python function we saw in Listing 
4-8 is an example of a callable object. If we have some object foo, 
then the code printClassName(foo) in Python will trigger a late bound 
Invoke action.) 

InvokeMember This late-bound action happens when you invoke a method on a 
dynamic object. For example, if baz is a dynamic object, baz.Foo() 
will trigger a late-bound InvokeMember action. 

BinaryOperation This late-bound action will take place when you apply a binary 
operator on a dynamic object. For example, if baz is a dynamic 
object, baz + 2 will trigger a late-bound BinaryOperation action. 

UnaryOperation This late-bound action is triggered when you apply a unary operator 
on a dynamic object. For example, if baz is a dynamic object, ++ baz 
will trigger a late-bound UnaryOperation action. 

GetIndex This action returns the element at the specified index of a collection. 
For example, if baz is a dynamic object, baz[3] will trigger a late-
bound GetIndex action. 

SetIndex This action sets the element at the specified index of a collection. For 
example, if baz is a dynamic object, baz[3] = “hello” will trigger a 
late-bound SetIndex action. 



CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

98 

Operation/Action Description 

DeleteIndex This action removes the element at the specified index of a collection. 
C# does not have syntax for expressing this action. In Python, an 
example of this action looks like this: del baz[3]. The Python code 
means deleting the fourth element from the collection baz.  

CreateInstance This late-bound action happens when you create a new instance of a 
class. For example, if Baz is a class, the code Baz() in Python will 
trigger a late-bound CreateInstance action. Currently, C# does not 
have syntax for triggering this late-bound action. The C# code new 
Baz() will create an instance of Baz in a static fashion instead of 
triggering a late-bound CreateInstance action. 

Convert This late-bound action will take place when you try to type cast a 
dynamic object. For example, if baz is a dynamic object, (String) baz 
will trigger a late-bound Convert action. IronPython and IronRuby 
don’t have syntax for triggering this action.  

 
 
After seeing the twelve actions that make up the DLR’s common type system, let’s see why this 

system is the key to enabling interoperability between dynamic languages. Let’s begin with the familiar 
static language code. In the C# code snippet below, the type information of the String class is accessible 
to the C# code snippet regardless of which language the String class was written in. The type 
information is expressed in terms of the .NET Common Type System.  

 
String bob =  "Bob"; 
String lowercaseBob = bob.ToLower(); 

 
Now if we change that code to the following, what difference does it make in terms of type systems?  
 

dynamic bob =  "Bob"; 
dynamic lowercaseBob = bob.ToLower(); 

 
The most noticeable difference is that the second code snippet no longer uses the type information 

of the String class. Instead, it uses the DLR’s common type system. In the previous case, it doesn’t 
matter which language the String class was written in. In the latter case, it doesn’t matter which 
language the class of the variable bob is written in. The class of the variable bob can be written in C#, 
VB.NET, IronPython, or some other .NET language—it doesn’t matter and the example code doesn’t 
need access to that class’s type information. Instead, the example code only requires that the class of the 
variable bob knows how to bind and handle the method invocation when it calls the ToLower method on 
bob. Binding and handling method invocation is one of the twelve actions defined by DLR’s common 
type system.  

As the two examples in this section show, when we use an object, we need to know something about 
it. In the static case, we need to know the object’s static type information. In the dynamic case, we 
assume that the object supports some of the twelve actions that make up the DLR’s common type 
system.  



 CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

99 

Class Hierarchy of Binders 
To recap a little, so far in this chapter you’ve learned two key concepts: (a) late binding logic can be 
implemented in binders and dynamic objects, and (b) the DLR defines twelve operations that can be late 
bound. Given these concepts, we can deduce that there is late-binding logic for each of the twelve 
operations in binders as well as in dynamic objects. I will save the explanation of the link between 
dynamic objects and the twelve operations for the next chapter. For now, let’s see how binders and the 
twelve operations are related.  

For each of the twelve late-bound operations in Table 4-1, the DLR defines a binder class to contain 
the late-binding logic for the operation. Figure 4-1 shows the class hierarchy of DLR binder classes. We 
have seen the class hierarchy in Chapter 3, but  Chapter 3 covers only the CallSiteBinder class in the 
class hierarchy. This chapter will introduce you to the rest of the classes. As Figure 4-1 shows, there is a 
binder class for each of the twelve late-bound operations. For the SetMember late-bound operation, the 
corresponding binder class is SetMemberBinder. For the GetMember late-bound operation, the 
corresponding binder class is GetMemberBinder and so on.  

 

 

Figure 4-1. Class hierarchy of DLR binder classes 

Each time a late-bound operation is encountered in the target language, the target language’s 
binder class corresponding to the late-bound operation will be used. For example, in the previous 
section when we looked at the disassembled C# code, C# is the target language. When the C# compiler 
sees the code stretchString.name, it emits code that creates an instance of GetMemberBinder by calling 
the Binder.GetMember method as shown in Listing 4-11. The binder instance returned by the 
Binder.GetMember method is actually an instance of the CSharpGetMemberBinder class, which derives from 
GetMemberBinder. Of course, all of these C#-specific binders are the internal implementation details of C# 
and are well-hidden from the outside.  

As you can see, the typical practice with regard to binders is that if you are implementing a new 
language and you want the language to interoperate with other DLR-based languages, you likely need to 
implement binder classes for the late-bound operations your language intends to support. When you 
implement your language’s binder classes, you will likely do so by subclassing the twelve binder classes 
shown at the bottom of Figure 4-1. The binder classes you implement will contain the late-binding logic 
that pertains to your language. As with C#, your language does not need to be a dynamic language. It can 
have a mix of dynamic and static language features. Your language doesn’t necessarily need to support 
all twelve late-bound operations by having twelve binder classes. For example, C# doesn’t support the 



CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

100 

“delete member” and “delete index” late-bound operations because the C# language syntax simply 
doesn’t allow that. It’s not possible to write C# code like this: 

 
String bob = “Bob”; 
del bob.Length; 

 
The C# compiler will show a compilation error that says del is not a valid keyword. There is no 

language keyword in C# for deleting a member of an object. Therefore, the C# language does not need a 
binder class for the DeleteMember late-bound operation. Python, on the other hand, supports deleting 
members of an object. The code in Listing 4-12 shows an example. The code defines a class called 
Customer. The class has two member properties—Name and Age. After the class is defined, the code 
creates an instance bob of the Customer class. Then it prints the Name property of bob in line 8. The result is 
the text “Bob” printed on the screen. The code in line 9 deletes the Name property of bob. After that, when 
it prints the Name property of bob again in line 10, the IronPython runtime will throw an error because the 
Name property of bob has been deleted. 

Listing 4-12. A Python Example That Deletes a Member of an Object   

1) class Customer(object): 
2)    def __init__(self, name, age): 
3)       self.Name = name 
4)       self.Age = age 
5)  
6) bob = Customer("Bob", 30) 
7)  
8) print bob.Name 
9) del bob.Name 
10) print bob.Name  # This will throw an error. 

Implement a Custom Binder Class 
We’ve looked at the twelve late-bound actions that make up the DLR’s common type system and the 
corresponding binder classes in DLR’s binder class hierarchy. This section is going to show you how to 
implement a custom binder class for the GetMember late-bound action. We will use the binder class to get 
a member property of a Python object. 

Our example will consist of a Python class, a binder class that inherits from GetMemberBinder, and 
some client C# code that puts everything together. The Python class is the Customer class you saw in 
Listing 4-12. So that part is taken care of. Here is the complete code for the Customer class and the bob 
object we will use in this  example. The code is in the pythonExampleCode.py file. 

 
class Customer(object): 
   def __init__(self, name, age): 
      self.Name = name 
      self.Age = age 
 
bob = Customer("Bob", 30) 



 CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

101 

In order to expose the bob object to C# code, we need to add the following two bolded lines of code 
in the PythonExampleCode class. 

 
class PythonExampleCode 
{ 
    public static Func<dynamic, dynamic, int> AddPriceDelegate; 
    public static Action<dynamic> PrintClassName; 
    public static dynamic Bob; 
 
    static PythonExampleCode() 
    { 
        ScriptEngine pyEngine = IronPython.Hosting.Python.CreateEngine(); 
        ScriptScope scope = pyEngine.ExecuteFile("pythonExampleCode.py"); 
        AddPriceDelegate = scope.GetVariable("addPrice"); 
        PrintClassName = scope.GetVariable("printClassName"); 
        Bob = scope.GetVariable("bob"); 
    } 
} 

 
The code for our custom binder class is shown in Listing 4-13. This code is the main focus of the 

example. The binder class in Listing 4-13 inherits from GetMemberBinder and is called 
SimpleGetMemberBinder. It contains the late-binding logic that always returns the constant number 3. 
The constructor of SimpleGetMemberBinder takes two parameters—name and ignoreCase. The parameter 
name is the name of the member property to late bind. In this example, the member property to late bind 
will be the Name property (Python calls it attribute, but when there is no risk of confusion, I’ll just call it 
property.). So in this example, the name parameter will be the string “Name”. The ignoreCase parameter 
indicates whether to treat the name of the member property in a case-sensitive manner when doing late 
binding. As to the FallbackGetMember method in Listing 4-13, I will have more to explain about it later. 
For the time being, let’s move on to the C# client code and see how things work together. 

Listing 4-13. A Custom Binder Class for the GetMember Action  

class SimpleGetMemberBinder : GetMemberBinder 
{ 
    public SimpleGetMemberBinder(string name, bool ignoreCase) 
        : base(name, ignoreCase) 
    { } 
 
    public override DynamicMetaObject FallbackGetMember(DynamicMetaObject target, 
        DynamicMetaObject errorSuggestion) 
    { 
        Console.WriteLine("Doing late binding in SimpleGetMemberBinder."); 
 
        //The binding has no restrictions. It returns a constant number. 
        return errorSuggestion ?? new DynamicMetaObject( 
            Expression.Convert(Expression.Constant(3), typeof(object)), 
            BindingRestrictions.GetTypeRestriction(target.Expression, 
                                                       target.LimitType) 
        ); 
    } 
} 



CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

102 

Listing 4-14 shows the C# client code. As before, even though the code is in C#, it is not using C#’s
binders. It uses the binder class in Listing 4-13 instead. You can think of this as simulating the late-
binding behavior of some custom language of our own. The code in Listing 4-14 looks very similar to the
code we saw in Chapter 3. It first creates an instance of SimpleGetMemberBinder and passes it the string
“Name” and the Boolean value false. That tells the binder that the name of the member property to late
bind is “Name” and the name of the member property should be bound in a case-sensitive manner. Next
the code creates a call site. The type of the call site’s Target delegate is Func<CallSite, object, object>.
That means it’s a delegate that takes an instance of CallSite and an instance of object as input
parameters and returns an instance of object as result. The input object instance is the Python object
bob. A reference to the Python object bob is available as a static member of the PythonExampleCode class.
So the code in line 8 of Listing 4-14 just gets the Python object bob from the static member of the
PythonExampleCode class and passes it to the Target delegate. The invocation of the Target delegate will
trigger the late-binding process. After the late-binding process finishes, the result of the late binding is
assigned to the variable name and printed to the screen. 

Listing 4-14. C# Code That Uses SimpleGetMemberBinder for a Late-Bound GetMember Action  

1) private static void RunGetMemberBinderAndDynamicObjectExample() 
2) { 
3)     CallSiteBinder binder = new SimpleGetMemberBinder("Name", false); 
4)  
5)     CallSite<Func<CallSite, object, object>> site = 
6)       CallSite<Func<CallSite, object, object>>.Create(binder); 
7)  
8)     object name = site.Target(site, PythonExampleCode.Bob); 
9)     Console.WriteLine("Customer name is {0}.", name); 
10) } 

If you run the code in listing 4-14, you should see the following output: 

Doing late binding in SimpleGetMemberBinder.
Customer name is Bob. 

At this point, we’ve seen an implementation of a rather trivial custom binder class that always
returns the number 3 as the binding result. Although the example and its implementation look trivial,
there are a lot of activities going on behind the scenes between the Python object bob and our custom
binder. Those activities follow a well-defined interoperability protocol, which the next section explains.  

Interoperability Protocol 
This section will use the example in Listing 4-14 to explain the interoperability protocol that’s used
between binders and dynamic objects. The whole late-binding process in Listing 4-14 begins with the
call to the Target delegate of the call site. As I explained in the previous chapter, the L0, L1, and L2
caches will be checked to see if there is already a rule that’s suitable for the late-binding operation. In
this case, since this is the first time the call site and binder are called upon to do the late binding, there’s
nothing in the three caches. The details of the cache searching process are described in the previous
chapter, so I’ll spare those details here.  

If there’s a cache hit, the whole late-binding process is finished. Upon a cache miss, the Bind
method that SimpleGetMemberBinder indirectly inherits from CallSiteBinder is invoked. The method’s
signature is shown below. The elements in the args array and the elements in the parameters collection 



 CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

103 

pair up. The nth element in the parameters collection carries some information about the nth element in 
the args array. The first pair is special. The first element of the args array and the first element of the 
parameters collection represent the target object of the late-binding operation. In our example, the 
target object is the Python object bob. In our example, there are no more elements in the args array and 
the parameters collection because it is a GetMember late-bound operation. A GetMember operation does 
not have additional input arguments to go along with the target object.  

 
public  abstract Expression Bind(object[] args, ReadOnlyCollection<ParameterExpression> 
parameters, LabelTarget returnLabel); 
 

The abstract Bind method defined in CallSiteBinder is implemented in DynamicMetaObjectBinder. 
SimpleGetMemberBinder derives from DynamicMetaObjectBinder and therefore inherits that 
implementation. The implementation basically takes each pair of the args array and the parameters 
collection and turns it into an instance of DynamicMetaObject. If you recall from the earlier discussion in 
this chapter, this is a key step in enabling language interoperability. In this step, all the objects in the args 
array, no matter if they are static or dynamic, will be turned into instances of DynamicMetaObject. And the 
defining characteristic of DynamicMetaObject instances is that they contain the late-binding logic 
pertaining to the objects they are associated with.  

For each pair of the args array and the parameters collection, the implementation calls the static 
method Create of DynamicMetaObject. The Create method checks if the object from the args array is a 
dynamic object. In the DLR, an object is dynamic if it implements the IDynamicMetaObjectProvider 
interface, which I will explain in detail in the next chapter. In our example, the only element in the args 
array is a dynamic Python object. So the Create method simply gets the meta-object associated with the 
dynamic Python object. If the object were a static object, the Create method would wrap it up into an 
instance of DynamicMetaObject. If you take a look at the source code of DynamicMetaObject, you’ll see that 
DynamicMetaObject doesn’t really implement any late-binding logic. Instead, DynamicMetaObject 
delegates the job of late binding to the target language’s binders, as I’ve mentioned before.   

Once all the DynamicMetaObject instances are ready, the Bind method implementation in 
DynamicMetaObjectBinder calls the following overloaded abstract Bind method. The overloaded Bind 
method is defined in DynamicMetaObjectBinder and it takes the DynamicMetaObject instances as input 
and returns as result an instance of DynamicMetaObject. 

 
public abstract DynamicMetaObject Bind(DynamicMetaObject target, DynamicMetaObject[] args); 

 
As you can see, all the inputs and output of this overloaded method are of type DynamicMetaObject. 

From this point on in the late-binding process, the level of abstraction is elevated from objects and 
expressions in the original Bind method (i.e., the Bind method defined in CallSiteBinder) to instances of 
DynamicMetaObject. The objects and expressions in the original Bind method know nothing about 
language interoperability, whereas the instances of DynamicMetaObject are part of the interoperability 
protocol. Let’s continue tracing the late-binding process and see how that protocol works. 

The Bind method that takes DynamicMetaObject instances is an abstract method. Each of the twelve 
binder classes that inherit from DynamicMetaObjectBinder has its own implementation of that Bind 
method. The code in the twelve binder classes shares the same pattern. Here I’ll go through the 
implementation of the Bind method in the GetMemberBinder class and show you that pattern. As the code 
excerpt from GetMemberBinder in Listing 4-15 shows, the implementation of the Bind method simply calls 
the BindGetMember method on the target meta-object and passes the binder itself to the call. The args 
input parameter of the Bind method is of no use because, as I mentioned earlier, the GetMember late-
bound operation does not have any extra arguments. Even though the implementation of the Bind 
method is essentially just one line of code, it’s one of the most important parts of the interoperability 
protocol. First, it shows that the binder is passing the control of late binding to the target object. If the 



CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

104 

target meta-object (i.e., the target input parameter of the Bind method) is the meta-object of a true 
dynamic object, such as the Python object in our example, then the line of code means the binding logic 
pertaining to the dynamic object will take over. This ensures that no matter which target language is 
using the dynamic object, the dynamic object’s late-binding logic will be honored.  

Listing 4-15. Excerpt from the DLR’s GetMemberBinder Class 

public sealed override DynamicMetaObject Bind(DynamicMetaObject target,  
params DynamicMetaObject[] args)  

{ 
    //code omitted              
    return target.BindGetMember(this); 
} 

 
public abstract DynamicMetaObject FallbackGetMember(DynamicMetaObject target, 
DynamicMetaObject errorSuggestion); 

 
Passing the binder object itself to the call of the BindGetMember is also a crucial part of the 

interoperability protocol. It’s crucial because it allows the target meta-object to call back the binder. In 
the code excerpt, there’s a very important abstract method called FallbackGetMember. This is the callback 
method the target meta-object will invoke if it wants to pass the late-binding control back to the binder. 
And that’s the method the SimpleGetMemberBinder in our example overrides and implements. The 
FallbackGetMember method is the method that contains the binder’s late-binding logic. In summary, this 
part of the interoperability protocol is that the binder calls the target meta-object’s BindGetMember 
method, and the target meta-object at its discretion may or may not choose to call back the binder. So 
far so good! Now if the target meta-object does call back the binder, there are basically two cases in 
which that callback happens. The first is when the target meta-object utterly, completely has no clue 
how to perform the late binding. In this case, the target meta-object can choose to pass null as the value 
for the errorSuggestion parameter when it calls the FallbackGetMember method on the binder. The target 
meta-object can also pass a DynamicMetaObject instance that contains an Expression instance that 
represents an exception. In the other case, the target meta-object is able to perform a portion but not all 
of the late binding and it relies on the binder to finish the rest. In such case, the target meta-object will 
pass its partial binding result as the value for the errorSuggestion parameter when it calls back the 
FallbackGetMember method on the binder.   

So far, this is just half of the story where the target meta-object is a true dynamic object. The other 
half is the case where the target meta-object is the wrapper meta-object of a static object. In this case, as 
I described earlier, the line of code in Listing 4-15 that calls the BindGetMember method on the input 
parameter target will result in a call back to the FallbackGetMember on the binder itself. This is because 
the BindGetMember method implemented in DynamicMetaObject simply calls the FallbackGetMember on 
the binder object it receives.  

That’s it for the interoperability protocol between binders and dynamic/static objects. I just 
described the interoperability protocol for GetMemberBinder. For the other eleven binder classes, the 
mechanism is the same. Like GetMemberBinder, each of the other eleven binder classes implements the 
overloaded abstract Bind method defined in DynamicMetaObjectBinder. Each binder class calls the 
Bind[Operation] method on the target meta-object in its implementation of the Bind method similar to 
what Listing 4-15 shows. Here [Operation] is the late bound operation the binder class is for. For 
example, the SetMemberBinder class is for the SetMember late-bound operation. The Bind method 
implementation in BindSetMember calls the BindSetMember method on the target meta-object. The Bind 
method implementation in InvokeMemberBinder calls the BindInvokeMember method on the target meta-
object and so on. Like GetMemberBinder, each binder class defines an abstract Fallback[Operation] 



 CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

105 

method. For example, SetMemberBinder defines an abstract FallbackSetMember method. 
InvokeMemberBinder defines an abstract FallbackInvokeMember method. 

This description of the interoperability protocol is true only if the target language’s binders choose 
to participate in the protocol. If you are implementing a language that does not need to interoperate 
with other DLR- based languages, you can derive your binder classes from just CallSiteBinder to take 
advantage of only the caching mechanism. This section covered a whole lot about the interoperability 
protocol. To help solidify your understanding of the protocol, let’s see some more examples by 
extending the example we saw in Listing 4-14.  

In Listing 4-14, the code passes a Python dynamic object to the binder. The binder is an instance of 
the SimpleGetMemberBinder class. Instead of a Python dynamic object, let’s pass a static object to the 
binder and see what will happen. Listing 4-16 shows this example. The code is the same as the code in 
Listing 4-14, except that this time it creates an instance of the CSharpProduct class we saw earlier in this 
chapter. The instance is a static object and is referenced by the handClapper variable. The example code 
calls the Target delegate on the call site and passes it the handClapper variable.  

Listing 4-16. Using an Instance of SimpleGetMemberBinder to Perform Late Binding for a Static Object 

private static void RunGetMemberBinderAndStaticObjectExample() 
{ 
    CallSiteBinder binder = new SimpleGetMemberBinder("name", false); 
 
    CallSite<Func<CallSite, object, object>> site = 
              CallSite<Func<CallSite, object, object>>.Create(binder); 
 
    object handClapper = new CSharpProduct("Hand Clapper", 6); 
    object name = site.Target(site, handClapper); 
    Console.WriteLine("Product name is {0}.", name); 
} 

 
The result of running the example code is shown below. It may be a good exercise to stop reading for 

a moment and see if you can explain why the code prints “Product name is 3” using what you learned so 
far in this chapter. Read on if you are ready to see the answer. The reason it prints “Product name is 3” is 
because handClapper is a static object and is wrapped by a wrapper meta-object. The wrapper meta-
object delegates the job of late binding to the binder. The binder in this example is an instance of our 
SimpleGetMemberBinder class and it returns the constant 3 as the late binding result. Therefore, the text 
“Product name is 3” shows on the screen. 

 
Doing late binding in SimpleGetMemberBinder. 
Product name is 3. 

 
Obviously, in practice we would like to see “Product name is Hand Clapper” printed on the screen. 

The examples in this chapter and in Chapter 3 all show binder classes whose late-binding logic is as 
trivial as returning a constant number. That, of course, is not anywhere close to the real complexity of 
implementing practical classes. The examples so far leave out that complexity in order to demonstrate 
the key points without overwhelming you with details unnecessary to the discussion. But now that we 
are on the subject of implementing realistic late-binding logic, let’s see how to quickly achieve that. 
Listing 4-17 shows the enhanced implementation of SimpleGetMemberBinder’s FallbackGetMember 
method. Here the goal of the implementation is to provide realistic logic for binding to static .NET 
objects so that instead of printing “Product name is 3,” the late-binding logic in our binder class will 
cause the product name of a CSharpProduct object to be displayed. To achieve that, you normally need to 



CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

106 

write code that uses .NET reflection to find the right member property by name. Writing such code is no 
easy task. Just imagine the various cases you need to consider to bind to a method of a static .NET object 
using .NET reflection. The method may be overloaded. If so, you need to write the code that does 
method-overload resolution. If the method is an extension method, you need to figure out how to 
handle that. Some of the method’s input parameters may have default values. Some of them may need 
to be matched by name instead of by position. This list goes on and on. Fortunately, since much of the 
code that deals with .NET reflection is the same across different languages’ binder classes, the DLR 
provides some utility classes so that we don’t need to do all the hard work. One of the utility classes is 
DefaultBinder and that’s what the code in Listing 4-17 uses to bind to static objects. Using 
DefaultBinder is very easy and painless. The example code in Listing 4-17 simply creates an instance of 
DefaultBinder and calls its GetMember method.  

Listing 4-17. Using DefaultBinder to Bind to Static .NET Objects 

public override DynamicMetaObject FallbackGetMember(DynamicMetaObject target, 
    DynamicMetaObject errorSuggestion) 
{ 
    Console.WriteLine("Doing late binding in SimpleGetMemberBinder."); 
 
    DefaultBinder defaultBinder = new DefaultBinder(); 
    return defaultBinder.GetMember(this.Name, target); 
} 

 
Now after enhancing the binding logic in SimpleGetMemberBinder, if you run the code, you’ll see the 

following output: 
 

Doing late binding in SimpleGetMemberBinder. 
Product name is Hand Clapper. 

Summary 
This chapter has gone a long way from language interoperability in general to the details of the DLR’s 
interoperability protocol. Here is a review of the most important concepts this chapter covers. 

• There are two kinds of objects—static objects and dynamic objects. Static 
objects can be treated as dynamic objects. 

• Binders have two main responsibilities—caching and interoperability. 

• There are two places in DLR where late-binding logic resides—binders and 
dynamic objects. 

• The late-binding logic in binders pertains to a target language. 

• The late-binding logic in dynamic objects pertains to those objects.  

• The key elements in the DLR that makes language interoperability possible are 
binders, dynamic objects, the interoperability protocol between binders and 
dynamic objects, and a common type system that consists of twelve 
operations,. 



 CHAPTER 4  LATE BINDING AND INTEROPERABILITY 

107 

As you’ve seen in the previous chapter and this chapter, the nice thing about the DLR’s design is 
that the various features, such as binders, dynamic objects, and some others that we’ll look at later in the 
book, are well-decoupled and modularized. The two key responsibilities of binders are decoupled and 
implemented in separate classes. Caching is the responsibility of the CallSiteBinder class. Language 
interoperability is the responsibility of the DynamicMetaObjectBinder class and its derivatives.  

For the twelve binder classes that derive from DynamicMetaObjectBinder, this chapter shows 
examples about the GetMemberBinder class. Towards the end of the chapter, we saw an example that uses 
the DefaultBinder utility class to perform late binding for the GetMember operation on a static .NET 
object. Even though we discussed a lot about binders, we haven’t yet covered a number of important 
and advanced topics about binders. For example, other than GetMemberBinder, this chapter does not 
cover in detail the other eleven derivatives of the DynamicMetaObjectBinder class, or topics such as 
deferred binding, and COM interoperability. We’ll discuss those topics in Chapter 11. 

 





C H A P T E R  5 
 
   
 

109 

Dynamic Objects 

Dynamic objects are a very important part of the DLR. So far in this book, when I’ve needed dynamic 
objects in an example, I obtained them from IronPython or IronRuby. Now I’ll show you how you can 
implement your own custom late-binding logic in dynamic objects. Once you’re in control of a dynamic 
object’s late binding behavior, many magical things can happen. As I’ll demonstrate, dynamic objects let 
you provide a fluent API for constructing XML documents. Moreover, the same technique can be applied 
to accessing files, registry entries, and  so forth. In Chapter 7, we’ll use dynamic objects to implement an 
aspect-oriented programming framework that works across both static and dynamic languages. And 
Chapter 8 will show you how to use dynamic objects to do meta-programming in C#, much like meta-
classes work in languages like Python, Ruby and Groovy. 

Expressions are the backbone of the DLR, and dynamic objects are the heart and soul. The heart and 
soul, of course, depend on the backbone. In the previous two chapters, you saw how we use expressions 
to express the late-binding logic in binders. Now you’ll see how we use them to express the late-binding 
logic in dynamic objects. As we go through this chapter, we will not only get to know dynamic objects, 
we’ll also put to good use what we learned about expressions in Chapter 3. Let’s start with a review of 
what it means for an object to be dynamic, and how such an object differs from a static object. 

What is a Dynamic Object? 
Here, dynamic, as always, means doing things at run time. I explained run time vs. compile time as well 
as dynamic vs. static in Chapter 1. Now the key question is, what is it that dynamic objects do at run 
time? The answer is late binding. Dynamic objects are essentially objects that know how to do their own 
late binding. I already mentioned this and we saw some examples in the previous chapter. Furthermore, 
I also mentioned that the DLR defines twelve actions, such as InvokeMember and GetMember, that can 
be late bound. So, for example, if some client code calls a method on a dynamic object, the dynamic 
object has the logic in it that knows how to bind the method call at run time. If some client code tries to 
access a property on a dynamic object, the dynamic object knows how to bind the property access at run 
time. All of this just recaps what we discussed in the previous chapter. 

If we compare a dynamic object to a static object, the difference is obvious. In C#, when you call a 
method on a static object, the object itself does not know how to bind the method call; the C# compiler 
does. The C# compiler at compile time knows the types of all the parameters that flow into the method 
call and uses that information to find out which method of which class to bind the method call to. If the 
method is overloaded, the C# compiler will perform method overload resolution. If the method is an 
extension method, the C# compiler will do the job of locating the right extension method.  

You’ll find it easier to understand the details about dynamic objects once you’ve seen one in action. 
So let’s look at the C# example of a dynamic object in Listing 5-1. The dynamic object’s late binding logic 
is trivial—always returning the constant number 3. Let’s see the effects of using the dynamic object, then 
I’ll show you how to implement its late-binding logic.  

The dynamic object is an instance of a class called Customer. The customer name in this example is 
Bob and he is 30 years old. Because the code declares the type of the variable bob as dynamic, the variable 



CHAPTER 5  DYNAMIC OBJECTS 

110 

bob is treated as a dynamic object by the C# compiler. When the code accesses the Age property of bob, 
the custom late binding logic of the dynamic object bob kicks in and the number 3 is returned as the 
result. In this example, I purposely make the late binding logic return the number 3 as the age of a 
customer, no matter what value the customer’s Age property has so that when we print out a customer’s 
age, it’s apparent whether that age comes from the customer’s Age property or from the late-binding 
logic. You won’t see the late-binding logic in Listing 5-1. You’re looking at just the tip of the iceberg now. 
Keep reading. Listings 5-2 and 5-3 (a little further on) fill out the example. It is in Listing 5-3 that you’ll 
eventually see the code that returns the value 3. You can find the code for the complete example in the 
DynamicObjectExamples project of this chapter’s code download.  

Even though the Customer class implements its late-binding logic, nothing stops us from referring to 
a Customer object as static object. That’s what the code does with the variable bill in Listing 5-1. The 
example creates an instance of Customer and assigns it to the variable bill. The point here is that the 
type of the variable bill is Customer, not dynamic. Because of that, the C# compiler will not generate IL 
code that has call sites and binders for any action on bill. The variable bill (I mean the object the 
variable bill points to, but for brevity, I’ll just say the variable bill) is treated as a static object, just like 
any static object we see in C# code. So when the code gets the Age property of bill, there is no late 
binding in play and the result is that Bill is 30 years old. 

Listing 5-1. Using a Dynamic Object  

static void Main(string[] args) 
{ 
    RunDynamicObjectAsStaticAndDynamicExample(); 
    Console.ReadLine(); 
} 
 
private void RunDynamicObjectAsStaticAndDynamicExample()  
{ 
    dynamic bob = new Customer("Bob", 30); 
    Console.WriteLine("Bob is {0} years old.", bob.Age); 
 
    Customer bill = new Customer("Bill", 30); 
    Console.WriteLine("Bill is {0} years old.", bill.Age); 
} 
 

By itself, the code in Listing 5-1 will not compile. You need the code in Listings 5-2 and 5-3 to 
complete the example. If you’ve downloaded this chapter’s code and want to run the whole example 
now, you can open the Visual Studio solution file Chapter5.sln and run the DynamicObjectExamples 
project in debug mode. The Main method in the Program.cs file of the DynamicObjectExamples project 
will call the RunDynamicObjectAsStaticAndDynamicExample method in Listing 5-1 and you should see 
output that looks like this: 
 
Getting member Age 
Bob is 3 years old. 
Bill is 30 years old. 

 
 
Listing 5-1 shows the effects of using a dynamic object as is. It also shows the effects of using a 

dynamic object as a static object. In previous chapters, we saw examples of static objects being treated 
as is and as dynamic objects. Table 5-1 summarizes all of the four cases using examples.  



 CHAPTER 5  DYNAMIC OBJECTS 

111 

Table 5-1. Dynamic and Static Objects and Their Uses 

 Used as Static Object Used as Dynamic Object 

Static object  String hello = “hello”; dynamic hello = “hello”; 

Dynamic object Customer bill = new Customer("Bill", 
30); 

dynamic bob = new Customer("Bob", 
30); 

 
The next section will explain the DLR machinery for implementing dynamic objects and show how 

the Customer class we used in Listing 5-1 is implemented. 

IDynamicMetaObjectProvider Interface 
A dynamic object is an object that knows how to do its own late binding. Under the hood, a dynamic 
object does not itself carry the weight of performing late binding. Instead, it has a big brother, a meta-
object, that does the heavy lifting. From a software-design perspective, the distinction between dynamic 
object and meta-object is nice because it decouples the late-binding logic of a dynamic object from the 
dynamic object itself. With that distinction, a class like Customer can still focus on the logic that’s specific 
to the application domain without being cluttered with other responsibilities like the late-binding logic. 
In other words, the code in the Customer class will not be mixed with the code that implements late-
binding logic. 

The DLR defines an interface called IDynamicMetaObjectProvider. It’s that interface that provides 
the meta-object. If a class implements the IDynamicMetaObjectProvider interface, instances of the class 
are dynamic objects. IDynamicMetaObjectProvider defines only the following method: 

 
DynamicMetaObject GetMetaObject(Experssion parameter); 

 
This is the method that returns the “big brother” of a dynamic object. When client code needs a 

dynamic object to do some sort of late binding, at some point in the whole late-binding process, the call 
site binder will call the GetMetaObject method on the dynamic object and get back a meta-object. The 
call site binder will then ask the meta-object to do the real work of late binding. This is the 
interoperability protocol described in the previous chapter. The return type of the GetMetaObject 
method is DynamicMetaObject, which is the base class of all meta-objects in the DLR. In the DLR, a 
meta-object must be an instance of DynamicMetaObject or of a class that directly or indirectly inherits 
DynamicMetaObject. 

As an example, let’s see an implementation of the IDynamicMetaObjectProvider interface. Listing 5-2 
shows the code for the Customer class, which implements the IDynamicMetaObjectProvider interface. 
This effectively makes all instances of the Customer class dynamic objects. The Customer class defines a 
Name and an Age property. It has a constructor that takes a customer’s name and age as input. The focus 
here is of course the GetMetaObject method. The method simply creates an instance of 
ConstantMetaObject and returns it. The class ConstantMetaObject is where all the late-binding logic 
resides. As you can see, the Customer class only has things like customer name and age that are relevant 
to its application domain. The binding logic is decoupled and isolated into the ConstantMetaObject class. 



CHAPTER 5  DYNAMIC OBJECTS 

112 

Listing 5-2. Customer.cs 

public class Customer : IDynamicMetaObjectProvider
{ 
    public Customer(String name, int age) 
    { 
        this.Name = name; 
        this.Age = age; 
    } 

    public String Name { get; set; } 
    public int Age { get; set; } 

    #region IDynamicMetaObjectProvider Members 

    public DynamicMetaObject GetMetaObject(Expression parameter) 
    { 
        return new ConstantMetaObject (parameter, this); 
    } 

    #endregion
} 

ConstantMetaObject is the class that implements the late-binding logic and, obviously, that’s where
the meat as well as the complexity is. Let’s see next what ConstantMetaObject looks like.   

Dynamic Meta Objects 
To be a class of meta-objects, ConstantMetaObject must inherit directly or indirectly from the
DynamicMetaObject class. In Listing 5-3, ConstantMetaObject inherits directly from DynamicMetaObject
and overrides the BindGetMember method it inherits from DynamicMetaObject. ConstantMetaObject
overrides BindGetMember so it can provide its own late binding logic for the GetMember action, one of the
twelve actions DLR defines in its common type system. The custom late-binding logic
ConstantMetaObject provides for the GetMember action is to always return the constant number 3. This is
an introductory example and the implementation is trivial. We will get to more realistic examples later
when we will look at a fluent API that implements the late-binding logic for constructing XML
documents. 

Listing 5-3 shows the code for ConstantMetaObject. As you can see from the code listing,
BindGetMember calls the ReturnConstant helper method. The ReturnConstant method calls the
constructor of DynamicMetaObject and passes it two things—a DLR expression that represents the
number 3 and a binding restriction that always evaluates to true. There are several important points to
note about that code, in particular the use of a DynamicMetaObject instance as the return value of
ReturnConstant and hence the return value of BindGetMember. At the beginning of this section, I
described DynamicMetaObject as the base class that all classes of meta-objects must inherit from directly
or indirectly. Now the code is showing you the use of DynamicMetaObject as the result of late binding. It
turns out that DynamicMetaObject has two responsibilities. The first is to serve as the base class of the
classes that implement custom late-binding logic of meta-objects. The second is to carry the result of late
binding.  



 CHAPTER 5  DYNAMIC OBJECTS 

113 

In the code example, the BindGetMember method being overridden is evidence of 
DynamicMetaObject’s first responsibility. The fact that BindGetMember’s return type is DynamicMetaObject is 
evidence of DynamicMetaObject’s second responsibility. If you recall, in Chapter 3 I said that the overall 
result of late binding is called a rule and that a rule consists of two parts—the raw late-binding result and 
the conditions (i.e. restrictions) under which the raw result is valid. That’s exactly why here in the 
ReturnConstant method you see that when DynamicMetaObject is used to carry the overall result of late 
binding, the code needs to pass not only the raw late-binding result (i.e., the DLR expression that 
represents the number 3) but also a restriction to the constructor of DynamicMetaObject.  

Listing 5-3. ConstantMetaObject.cs 

public class ConstantMetaObject  : DynamicMetaObject 
{ 
    public ConstantMetaObject (Expression expression, object obj) 
        : base(expression, BindingRestrictions.Empty, obj) 
    { } 
 
    private DynamicMetaObject ReturnConstant() 
    { 
        //returns constant 3 
        return new DynamicMetaObject( 

    Expression.Convert(Expression.Constant(3), typeof(object)), 
            BindingRestrictions.GetExpressionRestriction(Expression.Constant(true))); 
    } 
 
    public override DynamicMetaObject BindGetMember(GetMemberBinder binder) 
    { 
        Console.WriteLine("Getting member {0}", binder.Name); 

return ReturnConstant(); 
    }} 
 

Now you’ve seen the three parts that make up the introductory example—the Customer class, the 
ConstantMetaObject class, and the client code that puts everything together. The next few sections will 
look at the DynamicMetaObject class and its two responsibilities in more detail. 

DynamicMetaObject and Binding Logic 
Chapter 4 describes the DLR common type system and its twelve late-binding actions. For each late-
binding action, a language implementer needs to implement a binder class that contains the language’s 
custom late-binding logic for that action. As a result, there are twelve binder classes a language 
implementer needs to provide if the language is to support all twelve actions. Each binder class deals 
with only one action. The story on the dynamic object side is a little different. Like binders, a dynamic 
object’s meta-object also needs to have its custom late-binding logic for the twelve actions. However, 
unlike a binder class, the class of a meta-object deals with all twelve actions. When we pick a binder to 
use, we know a priori which late-binding action the binder is for. The examples in the previous chapter 
demonstrate that. On the other hand, when we pass a dynamic object around, the same dynamic object 
can be used in different late-binding actions. Therefore, it makes sense for a meta-object to have late-
binding logic for all twelve actions. 

The class DynamicMetaObject defines twelve virtual methods that correspond to the twelve actions. 
Figure 5-1 shows the class diagram of DynamicMetaObject. As you can see, the names of the twelve 



CHAPTER 5  DYNAMIC OBJECTS 

114 

methods all begin with Bind followed by the late binding action the method is for. I will use the notation 
Bind[Operation] to refer to these methods. Each Bind[Operation] method takes a binder and optionally 
some instances of DynamicMetaObject as input parameters. The return type of the twelve methods is also 
DynamicMetaObject. The twelve virtual methods are implemented in DynamicMetaObject to provide the 
default late-binding behaviors for dynamic objects. The default late-binding behaviors implemented in 
DynamicMetaObject simply fall back to the binder, the first input parameter of each method, for 
performing the late binding. Subclasses of DynamicMetaObject are supposed to override the twelve 
methods and implement their own custom binding logic. 

 
 

 

Figure 5-1. Class diagram of the DynamicMetaObject class 

A language doesn’t need to have binders that support all twelve late-binding actions. Likewise, a 
meta-object doesn’t need to have late-binding logic for all twelve actions. As you’ll see in the XmlBuilder 
example later, the subclasses of DynamicMetaObject in that example have late-binding logic only for some 
of the twelve actions. If a Bind[Operation] method of DynamicMetaObject is not overridden in a subclass, 
the default behavior of that Bind[Operation] method is to fall back to the host language’s binder and let 
the binder do the binding, as we saw in the previous chapter. If you recall, during the late-binding 
process, static objects are wrapped by instances of DynamicMetaObject and the default binding behavior 
of those wrapper objects is to fall back to the host language’s binders.  

 
 

DynamicMetaObject and Binding Result 
The previous section described the DynamicMetaObject class as the ultimate base class of all classes that 
implement custom the late-binding logic of meta-objects. Now we will delve into DynamicMetaObject as 
the carrier of late-binding results.  



 CHAPTER 5  DYNAMIC OBJECTS 

115 

The class diagram in Figure 5-1 shows six properties in the DynamicMetaObject class. The Expression 
property is the one that stores the raw binding result. The Restrictions property stores the conditions 
under which the raw binding result is valid. Together Expression and Restrictions make up the overall 
binding result. Eventually, those two properties are turned into a rule and the rule is cached in the L0, L1 
and L2 caches we looked at in Chapter 3. The place where the two properties are turned into a rule is in 
the Bind method that DynamicMetaObjectBinder inherits from CallSiteBinder and overrides. Here is a 
code excerpt that shows the conversion from the two properties to a rule. You can download the DLR 
source code and find the complete code of the Bind method in DynamicMetaObjectBinder.cs. 
 
public sealed override Expression Bind(object[] args, ReadOnlyCollection<ParameterExpression> 
parameters, LabelTarget returnLabel) { 
 
    //Skip code that does some checking.  
    //Skip code that converts args and parameters into instances of DynamicMetaObject. 
 
    DynamicMetaObject binding = Bind(target, metaArgs); 
 
    //Skip code that does some checking. 
 
    Expression body = binding.Expression; 
    BindingRestrictions restrictions = binding.Restrictions; 
 
    //Skip code that does some checking and processing of body and restrictions. 
 
    if (restrictions != BindingRestrictions.Empty) { 
        body = Expression.IfThen(restrictions.ToExpression(), body); 
    } 
 
    return body; //This is the rule. 
} 
Understanding the overridden Bind method in DynamicMetaObject is very important to a solid 
understanding of how the DLR works. The code excerpt highlights the key steps the overridden Bind 
method performs. First, it converts args and parameters into instances of DynamicMetaObject, as detailed 
in the previous chapter. Next, it calls the abstract Bind method, which subclasses of 
DynamicMetaObjectBinder, like GetMemberBinder and InvokeMemberBinder, implement. The overall result 
of the late binding is represented by an instance of DynamicMetaObject, and that instance is assigned to a 
variable called binding. Then the code takes the Expression and Restrictions properties of the binding 
variable and assigns them to the variables body and restrictions respectively. After some checking and 
processing of the body and restrictions variables, the code calls the static Expression.IfThen method to 
turn body and restrictions into a DLR expression that represents a rule. The call to Expression.IfThen 
basically creates a new expression that says “if the restrictions are true, then the body is the valid binding 
result”.  
 

Interoperability 
The ConstantMetaObject class so far only provides logic that governs the late binding of the GetMember 
action. There are eleven other operations whose late-binding behavior we can define. Let’s extend the 
ConstantMetaObject to cover those actions and then have some fun with it in C# and IronPython. Listing 
5-4 shows the code for the extended ConstantMetaObject. As you can see, the class ConstantMetaObject 

overrides all of the twelve Bind[Operation] methods it inherits from DynamicMetaObject. Except for the 



CHAPTER 5  DYNAMIC OBJECTS 

116 

BindConvert method, the code in each overridden method simply calls the ReturnConstant helper 
method you saw you in Listing 5-3. In the interest of saving trees, Listing 5-4 shows only a couple of 
these methods. BindConvert is a little special because I want it to return the number 3 as an integer, not 
as an object. The ReturnConstant helper method returns the number 3 as an object. So the BindConvert 

method does not call the ReturnConstant method like the others do.  

Listing 5-4. ConstantMetaObject.cs 

public class ConstantMetaObject : DynamicMetaObject 
{ 
    public ConstantMetaObject(Expression expression, object obj) 
        : base(expression, BindingRestrictions.Empty, obj) 
    { } 
 
    public override DynamicMetaObject BindConvert(ConvertBinder binder) 
    { 

Console.WriteLine("BindConvert, binder.Operation: {0}", binder.ReturnType); 
        return new DynamicMetaObject( 

    Expression.Constant(3, typeof(int)), 
            BindingRestrictions.GetExpressionRestriction(Expression.Constant(true))); 
    } 
 
    public override DynamicMetaObject BindInvoke(InvokeBinder binder,  

DynamicMetaObject[] args) 
    { 
        Console.WriteLine("BindInvoke, binder.ReturnType: {0}", binder.ReturnType);  
        return ReturnConstant(); 
    } 
 
    public override DynamicMetaObject BindInvokeMember( 

InvokeMemberBinder binder, DynamicMetaObject[] args) 
    { 
        Console.WriteLine("BindInvokeMember, binder.ReturnType: {0}", binder.ReturnType); 
        return ReturnConstant(); 
    } 
 
    //Other Bind[Action] methods omitted. 
} 
 

Listing 5-5 shows the code that triggers the various late-binding actions on an instance of the 
Customer class. When a late-binding action is triggered, the corresponding Bind[Action] method in 
ConstantMetaObject will be invoked to do the late binding. From the code in Listing 5-5, you can see that 
the code bob.Foo(100) invokes a member method on the dynamic object bob and therefore it triggers the 
InvokeMember action. Similarly the code bob[100] tries to get the 100th index of the dynamic object bob 
and hence triggers the GetIndex action. 



 CHAPTER 5  DYNAMIC OBJECTS 

117 

Listing 5-5. Triggering Late-Binding Actions in C# 

private static void RunCustomerLateBindingInCSharpExamples() 
{ 
    dynamic bob = new Customer("Bob", 30); 
    Console.WriteLine("bob.Foo(100): {0}", bob.Foo(100));       //InvokeMember 
    Console.WriteLine("bob(): {0}", bob());                     //Invoke 
    Console.WriteLine("bob[100]: {0}", bob[100]);               //GetIndex 
    Console.WriteLine("(bob[100] = 10): {0}", (bob[100] = 10)); //SetIndex 
    Console.WriteLine("(int) bob: {0}", (int)bob);              //Convert 
    Console.WriteLine("(bob.Age = 40): {0}", (bob.Age = 40));   //SetMember 
    Console.WriteLine("bob.Age: {0}", bob.Age);                 //GetMember 
    Console.WriteLine("bob + 100: {0}", bob + 100);             //BinaryOperation 
    Console.WriteLine("++bob: {0}", ++bob);                     //UnaryOperation 
} 
 

C#, of course, is not the only language that has access to the Customer class. We can write Python 
code similar to the code in Listing 5-5 and expect to see the same late-binding behavior. Listing 5-6 
shows the Python code that triggers the various late-binding actions on the variable bob. The variable bob 
comes from the C# code shown in Listing 5-7. From the code in Listing 5-6, you can see that the code 
bob() invokes the variable bob as a function and that triggers the Invoke action. As a result, the 
BindInvoke method in ConstantMetaObject is called to do the late binding. Similarly the code del 
bob.Age deletes the member property Age from the dynamic object bob and hence triggers the 
DeleteMember action.           

Listing 5-6. CustomerLateBinding.py 

print bob()     #Invoke 
print bob[100]  #GetIndex 
print bob.Age   #GetMember 
print bob + 100 #BinaryOperation 
print ++bob     #UnaryOperation 
bob[100] = 10   #SetIndex 
bob.Age = 40    #SetMember 
del bob.Age     #DeleteMember 
del bob[100]    #DeleteIndex 
 

If you compare the C# code in Listing 5-5 and the Python code in Listing 5-6, you’ll notice some 
differences between those two listings. In Listing 5-5, we have the C# code bob.Foo(100). When the C# 
code runs, the BindInvokeMember method of ConstantMetaObject will be called to perform the late 
binding for the invocation of the Foo method on the variable bob. However, we can’t write bob.Foo(100) 
in Listing 5-6’s Python code. If we do that, we’ll get an exception that says “int is not callable” because in 
Python, the code bob.Foo(100) will result in a late-bound GetMember action for getting the “Foo” member 
of the variable bob. Whatever is returned by the late-bound GetMember action will then be called like a 
delegate with 100 as an input argument. In our case, the late-bound GetMember action for getting the 
“Foo” member of the variable bob will return the number 3. The IronPython runtime will therefore try to 
invoke the number 3 with 100 as an input argument. Since the number 3 is not callable, we get an 
exception that says “int is not callable”.   

7



CHAPTER 5  DYNAMIC OBJECTS 

118 

The C# and Python code also differ in that in the C# code, we can’t trigger late-bound actions such 
as DeleteMember and DeleteIndex, but in Python code, we can. The reason for that is because the C# 
language does not have syntax for deleting a member of an object, nor does it have syntax for deleting an 
index of an object. This seems like a serious problem because a dynamic object can be passed around 
and used in different languages. The dynamic object might provide late-binding behavior for a late-
bound action like DeleteMember but our ability to trigger that late-bound action depends on which 
language we use. Fortunately there is a solution to this problem. The solution is to use call sites and 
binders. We will go through the details of the solution in Chapter 12 when we discuss some more 
advanced topics of binders. 

Another difference between Listing 5-5 and Listing 5-6 is that code like bob.Age = 40 in Python is a 
statement that does not yield a value. Because the code bob.Age = 40 in Python does not yield a value, 
we can’t write code such as the print bob.Age = 40 in Listing 5-6. On the other hand, the code bob.Age = 
40 in C# is an expression that yields a value. (In our case, the value it yields is the number 3.) Because of 
that, we can have this code Console.WriteLine("(bob.Age = 40): {0}", (bob.Age = 40)); in Listing 5-5 
to print out the value. 

The last difference I want to point out between Listing 5-5 and Listing 5-6 has to do with the order in 
which the late-bound actions are triggered. In Listing 5-5, I purposely trigger the ++ unary operation on 
the variable bob at the end. This is because the ++ unary operation triggered in C# has the effect of 
assigning the result of the unary operation to the variable bob. Because of that, after the ++ unary 
operation is bound and executed, the variable bob will have the value 3 and we can no longer trigger 
other late-binding actions on it. Compare that to the Python code in Listing 5-6 and you will see that the 
++ unary operation triggered in Python does not have the effect of assigning the result of the unary 
operation to the variable bob.  

To run the Python code in Listing 5-6, the example uses the 
RunCustomerLateBindingInPythonExamples method shown in Listing 5-7. The method uses the DLR 
Hosting API to create a script engine for running Python code. The Python code is run in something 
called a scope. The scope is an instance of ScriptScope and it is the execution context in which the 
Python code runs. As an execution context, a scope provides variable name bindings. This is the kind of 
name binding we talked about in Chapter 2 and is not to be confused with late binding. In this example, 
as the bolded line shows, the scope binds the variable name “bob” to the dynamic object referenced by 
the variable bob. Because the variable name is bound in the scope, the Python code in Listing 5-6 can use 
that variable name directly. That’s as much as I have to say about the DLR Hosting API for now. The DLR 
Hosting API is a big topic and Chapter 6 will cover it in detail.  

Listing 5-7. Triggering Late Binding Actions in IronPython  

private static void RunCustomerLateBindingInPythonExamples() 
{ 
    dynamic bob = new Customer("Bob", 30); 
    ScriptEngine pyEngine = IronPython.Hosting.Python.CreateEngine(); 
    ScriptSource source = pyEngine.CreateScriptSourceFromFile("CustomerLateBinding.py"); 
    ScriptScope scope = pyEngine.CreateScope(); 
    scope.SetVariable("bob", bob);  
    source.Execute(scope); 
} 



 CHAPTER 5  DYNAMIC OBJECTS 

119 

META OBJECT PROTOCOL (MOP) 

There is a generic concept behind dynamic objects and meta-objects, and the connections between them. 

The concept is the Meta-Object Protocol, or MOP. If you ask different people what MOP is, you are very 
likely to get different answers. Perhaps that’s because MOP as a concept is generic and some people 

might have a broader interpretation of its scope than others. Or it could be because there are many 

implementations of MOP in different programming languages and some of those implementations differ in 
substantial ways. One of the most well-known MOP implementations is the one in CLOS (Common Lisp 

Object System), which people often use as a point of reference. In this section, I’ll offer my view of what 

MOP is and how it relates to the DLR based on the CLOS MOP. 

In MOP land, there are two types of citizens: objects (aka base objects) and meta-objects. Meta-objects 

do things about base objects. In the DLR’s MOP implementation, dynamic objects are the base objects. 

Instances of DynamicMetaObject and its derivatives are meta-objects. The things that meta-objects do 
about base objects in the DLR’s MOP are the late-binding actions.  

Besides base objects and meta-objects, the third important pillar of a MOP implementation is the protocol 

between meta-objects, which is what gives MOP its name. The MOP protocol in CLOS involves things like 
generic functions and methods in the Lisp language. The way generic functions and methods work is a 

little complicated because Lisp is a functional language and CLOS is a component that tries to add object-

oriented programming support to Lisp in as elegant a way as possible. In the DLR MOP, things are simpler 
because it’s based on the object-oriented programming system of .NET. The protocol part of the DLR MOP 

is pretty much the class inheritance and method overriding mechanisms provided by the object-oriented 

programming system of .NET.  

Okay, enough of MOP and back to our main topic. DynamicMetaObject is the lowest-level class to inherit 

from when you want to have the most flexibility in implementing the late-binding logic of your dynamic 

objects. With flexibility comes complexity. Sometimes, you need the ultimate flexibility. Other times, you 
just want to inherit some basic late-binding behavior and do some customization based on that. For that, 

DLR provides two useful classes—DynamicObject and ExpandoObject. The next section will describe the 

DynamicObject class and then show an example that leverages DynamicObject to implement a fluent API 
for constructing XML documents. Through the example, you’ll see that when it fits the bill, leveraging 

DynamicObject saves a lot of work compared with working from the ground up with DynamicMetaObject.    

DynamicObject Class 
DynamicObject is essentially a wrapper around the twelve methods in DynamicMetaObject. For each of 
those twelve methods, there is a corresponding virtual method in DynamicObject. For example, for the 
BindSetMember method in DynamicMetaObject, there is a method called TrySetMember in DynamicObject. I 
will use the notation Try[Operation] to refer to the twelve virtual methods in DynamicObject that 
correspond to the twelve Bind[Operation] methods in DynamicMetaObject. The key to understanding how 
DynamicObject works is the relation between those two sets of methods. Let’s see how the two sets of 
methods are related. 

You use DynamicObject by deriving a class from it. In the derived class, you override some or all of 
the twelve Try[Operation] methods defined by the DynamicObject class. In each overridden method, you 
implement the late-binding logic you want your dynamic object to have. For example, Listing 5-8 shows 



CHAPTER 5  DYNAMIC OBJECTS 

120 

a class that inherits from DynamicObject. The class is called Employee and it overrides only the 
TryGetMember method. The overridden TryGetMember method has the custom binding logic for the 
GetMember action. Like other introductory examples in this book, the binding logic is to return the 
constant number 3 as the result. So inside the overridden TryGetMember method, the code assigns 
number 3 to the parameter result and returns true to signal that the binding is successful. The code 
looks much simpler than the code in ConstantMetaObject. Because ConstantMetaObject inherits from 
DynamicMetaObject directly, the code there needs to deal with DLR expressions and DynamicMetaObject 
instances. Here in the TryGetMember method, the code looks like ordinary C# code. Instead of creating a 
ConstantExpression instance to represent the number 3 as ConstantMetaObject does, the code in Listing 
5-8 simply uses the number 3 as is. 

Listing 5-8. Employee.cs 

class Employee : DynamicObject 
{ 
    public override bool TryGetMember(GetMemberBinder binder, out object result) 
    { 
        result = 3; 
        return true; 
    } 
 
    public int Salary { get { return 500; } } 
 
    public double calculateBonus(int performanceRating)  
    {  
        return 1000d;  
    } 
} 
 

Listing 5-9 shows the code that uses the Employee class from Listing 5-8. The Employee class defines a 
Salary property, but not an Age property. When the code in Listing 5-9 accesses the Salary property of 
the employee variable, because of the way the late-binding logic of DynamicObject is implemented, the 
Salary property getter of the Employee class will be called and the number 500 will be returned. But when 
the code in Listing 5-9 accesses a property like Age that is not defined in the Employee class, the 
TryGetMember method will be called and the number 3 will be returned.  

Listing 5-9. Using the Employee Class 

private static void RunDynamicObjectExample() 
{ 
    dynamic employee = new Employee(); 
    Console.WriteLine("Employee's salary is {0} dollars.", employee.Salary); 
    Console.WriteLine("Employee is {0} years old.", employee.Age); 
    Console.WriteLine("Employee's bonus is {0} dollars.", employee.calculateBonus(2)); 
} 

 
If you run the code in Listing 5-9, you’ll see output like the following: 
 



 CHAPTER 5  DYNAMIC OBJECTS 

121 

Employee’s salary is 500 dollars. 
Employee is 3 years old. 
Employee’s bonus is 1000 dollars. 

 
Now let’s dive a little deeper and see how the late-binding logic of DynamicObject is implemented. 

DynamicObject implements IDynamicMetaObjectProvider. That’s no different from the Customer class we 
saw in Listing 5-2, and it also means instances of DynamicObject are base objects that have 
accompanying meta-objects. Whereas the Customer class uses ConstantMetaObject to hold the real late 
binding logic, DynamicObject uses a private class called MetaDynamic. MetaDynamic inherits from 
DynamicMetaObject and overrides the Bind[Operation] methods defined in DynamicMetaObject. So far, 
everything is business as usual. The trick is in the overridden Bind[Operation] methods.  

A Bind[Operation] method in MetaDynamic checks if the corresponding Try[Operation] method in 
DynamicObject is overridden. If not, it falls back to the host language’s binder and let the binder do the 
binding. If the binder is able to do the binding, that’s fine. If the binder is unable to do the binding, then 
whatever error the binder throws will surface up to the client code. On the other hand, if the 
corresponding Try[Operation] method is overridden, the Bind[Operation] method falls back to the host 
language’s binder to see if the binder is able to do the binding. If the binder is able to do the binding, 
again that’s fine. The binding result of the binder will be returned. In the code example in Listing 5-9, 
this is the case when the code tries to get the Salary property of employee. In that case, because the 
Salary property is defined in the Employee class, the C# language’s binder is able to do the late binding 
for the code employee.Salary. And since the C# language’s binder can do the binding, the TryGetMember 
method we override in the Employee class will not be invoked to do the late binding.  

The following code shows the actual expression that represents the binding result of this case. The 
expression will be wrapped by a LambdaExpression object that will be compiled into IL and cached in L0, 
L1 and L2 caches. Essentially, you can view the expression below as the rule that represents the late-
binding result. Here the rule has one restriction—the if condition. The restriction checks whether the 
dynamic object ($$arg0) is an instance of the Employee class. In our example, $$arg0 refers to the 
employee variable and hence is an instance of the Employee class. Since the condition is met, the if-true 
branch in the expression will be executed. This expression is a GotoExpression (the .Return) that 
contains a BlockExpression (the .Block). The BlockExpression contains a child expression that contains 
other child expressions and so on. Leaving all those details aside, the part in the BlockExpression that’s 
of interest to us is the MethodCallExpression (the .Call). It contains a ConstantExpression that holds a 
MethodInfo object for the get_Salary method. The MethodCallExpression basically represents a call of 
the Salary property’s get method on the Employee instance referenced by $$arg0.  

 
.If ( 
    $$arg0 .TypeEqual DynamicObjectExamples.Employee 
) { 
    .Return #Label1 { .Block() { 
        (System.Object)((System.Int32).Call  

    .Constant<System.Reflection.MethodInfo>(Int32 get_Salary()) 
     .Invoke( 
               $$arg0, 
               .NewArray System.Object[] {} 
     )) 
  }} 
} .Else { 
    .Default(System.Void) 
} 

 



CHAPTER 5  DYNAMIC OBJECTS 

122 

So far we looked at the case where the host language’s binder was able to do the binding and the
Try[Operation] method overridden in Employee was not invoked. Now let’s see what happens when the
host language’s binder is unable to do the late binding. If the corresponding Try[Operation] method is
overridden, and the host language’s binder is unable to do the binding, the Bind[Operation] method
implemented in DynamicObject will produce a rule like the following. The part of interest to us is in bold.
As you can see, the bolded part is a ConditionalExpression (.If). The if-condition is a
MethodCallExpression that represents a call to the TryGetMember method on the Employee instance
referenced by $$arg0. And if the TryGetMember returns true, the if-true part will return $var1. What is
$var1? $var1 is the out parameter result of TryGetMember. If you now look back at the code in
TryGetMember in Listing 5-8, you will see why the method sets the result parameter to 3 and returns true. 

.If ( 
    $$arg0 .TypeEqual DynamicObjectExamples.Employee
) { 
    .Return #Label1 { .Block() { 
        .Block(System.Object $var1) { 
            .If ( 

.Call ((System.Dynamic.DynamicObject)$$arg0).TryGetMember(                     
     .Constant<System.Dynamic.GetMemberBinder>(...),  

                    $var1) 
            ) { 
                $var1 
            } .Else { 
                .Block() { 
                    .Block() { 
                        .Throw .New System.MissingMemberException("Age"); 
                        .Default(System.Object) 
                    } 
                } 
            } 
        } 
    } } 
} .Else { 
    .Default(System.Void)
} 

XML Builder 
The examples so far in this chapter are somewhat trivial. It’s nice to use simple examples to explain
concepts and occasionally look at the binding rules to see how things work under the hood. It’s also
important to see some practical examples and not lose sight of the forest for the trees, and that’s the
purpose of this section. Our practical example will implement a fluent API for building XML documents.
The next few chapters will demonstrate more applications of what you learn in this chapter. You can find
all of the code for this part of the chapter in the DynamicBuilder project of this chapter’s code download. 

Before I show you how the API is implemented, let’s see first how the API makes it easy to build XML
documents. Listing 5-10 shows code that uses the API to build an XML document. The XML document it
builds is this: 

<Customer> 
    <Name FirstName=”John” LastName=”Smith”>John Smith</Name> 
    <Phone>555-8765</Phone> 



 CHAPTER 5  DYNAMIC OBJECTS 

123 

    <Address> 
 <Street>123 Main Street</Street> 
 <City>Fremont</City> 
 <Zip>55555</Zip> 
    </Address> 
</Customer> 
 

As you can see, the code in the RunXmlBuilderExample method in Listing 5-10 is pretty much the 
same in structure as the XML file it generates. That’s the selling point of the API. If you’ve used classes 
like XmlDocument, XmlElement, and friends in the .NET Class Library, you know the fluent API 
demonstrated in Listing 5-10 offers a more intuitive, domain-specific programming interface to XML 
document construction. That said, the API shown here is very limited in its capabilities and is for the 
purpose of illustration only. Also, the idea of the fluent API for building XML documents is not 
something new. Groovy, a dynamic language that runs on the Java virtual machine, has fluent APIs for 
building XML as well as other things.  

The design of the API uses only three late binding actions—GetMember, Invoke, and InvokeMember. 
The design uses two special properties—b and d— to mark the beginning and the end of a block of child 
XML elements. For example, Street, City, and Zip are three child elements of Address because they are 
within the block marked by the b and d that belong to Address. Some might prefer using curly braces 
instead of b and d. Although that makes the syntax of the API better, the downside is you can’t use the 
API in languages that don’t support that syntax. For example, if we replace b and d with curly braces in 
the example, the C# compiler will report compilation errors. While developing the XML builder example, 
I tried to strike a balance so that the API can be used in as many languages as possible and at the same 
time its syntax remains reasonably fluent.  

Listing 5-10. Using the Fluent API to Build an XML Document 

static void Main(string[] args) 
{ 
    RunXmlBuilderExample(); 
    Console.ReadLine(); 
} 
 
private static void RunXmlBuilderExample() 
{ 
    String xml = XmlBuilder.Create() 
            .Customer.b 
                .Name("FirstName", "John", "LastName", "Smith", "John Smith") 
                .Phone("555-8765") 
                .Address.b 
                    .Street("123 Main Street") 
                    .City("Fremont") 
                    .Zip("55555") 
                .d 
            .d 
            .Build(); 
 
    Console.WriteLine(xml); 
} 
 



CHAPTER 5  DYNAMIC OBJECTS 

124 

Because the API uses the GetMember, Invoke, and InvokeMember actions, any language whose syntax 
supports those three actions can use the API. Listing 5-11 is an example of using the API in Ruby. The 
Ruby code is pretty self-explanatory, except perhaps for the many occurrences of to_clr_string, which 
are there because Ruby strings are not the same as normal .NET strings. For one thing, Ruby strings are 
mutable while normal .NET strings are not. Our fluent XML API expects normal .NET strings and, 
therefore, in the Ruby code, we use to_clr_string to convert a Ruby string to a normal .NET string. In 
some versions of IronRuby, the conversion might happen automatically, but I put to_clr_string in the 
Ruby code just to be safe. To run the Ruby code, I use the same technique as in the code in Listing 5-7. 
Listing 5-12 shows the C# code that uses an IronRuby script engine to run the Ruby code in Listing 5-11. 
I’ll skip the explanation of the code in Listing 5-12 since it’s the same as the explanation for the code in 
listing 5-7.   

Listing 5-11. XmlBuilder.rb 

xml = xmlBuilder. 
 Customer.b. 
     Name("FirstName".to_clr_string, "John".to_clr_string,  

"LastName".to_clr_string, "Smith".to_clr_string, "John Smith".to_clr_string). 
     Phone("555-8765".to_clr_string). 
     Address.b. 
         Street("123 Main Street".to_clr_string). 
         City("Fremont".to_clr_string). 
         Zip("55555".to_clr_string). 
     d. 
 d. 
 Build() 
 
puts xml 

Listing 5-12. Running the Ruby code in XmlBuilder.rb 

private static void RunXmlBuilderInRubyExample() 
{ 
    ScriptEngine rbEngine = IronRuby.Ruby.CreateEngine(); 
    ScriptSource source = rbEngine.CreateScriptSourceFromFile("XmlBuilder.rb"); 
    ScriptScope scope = rbEngine.CreateScope(); 
    scope.SetVariable("xmlBuilder", XmlBuilder.Create()); 
    source.Execute(scope); 
} 
 

You can also use the API in Python to build XML documents. Listing 5-13 shows an example. The 
Python code in Listing 5-13 is very close to the XML it constructs. The one annoying thing in the Python 
code is the backslash characters. Because white space and new line characters in Python play a role in 
the language’s syntax, we need the backslash characters to tell the Python parser to treat those multiple 
lines as one logical line of code.  

Listing 5-13. XmlBuilder.py. 

xml = xmlBuilder. \ 
  Customer.b. \ 



 CHAPTER 5  DYNAMIC OBJECTS 

125 

    Name("FirstName", "John", "LastName", "Smith", "John Smith"). \ 
    Phone("555-8765"). \ 
    Address.b. \ 
      Street("123 Main Street"). \ 
      City("Fremont"). \ 
      Zip("55555"). \ 
    d. \ 
  d. \ 
  Build() 
 
print xml 
 

To run the Python code in Listing 5-13, you can use the code in Listing 5-14, which uses the DLR 
Hosting API to run Python code and is very similar to the code in Listing 5-12. Chapter 6 will cover the 
DLR Hosting API in detail. 

Listing 5-14. Running the Python Code in XmlBuilder.py. 

private static void RunXmlBuilderInPythonExample() 
{ 
    ScriptEngine engine = IronPython.Hosting.Python.CreateEngine(); 
    ScriptSource source = engine.CreateScriptSourceFromFile("XmlBuilder.py"); 
    ScriptScope scope = engine.CreateScope(); 
    scope.SetVariable("xmlBuilder", XmlBuilder.Create()); 
    source.Execute(scope); 
} 

 
The implementation of the XML builder API consists of four classes—XmlBuilder, NodeBuilder, 

ChildNodesBuilder, and XmlBuilderHelper. Most of the real work is done in NodeBuilder and 
ChildNodesBuilder. The class NodeBuilder corresponds to an XML element. The class ChildNodesBuilder 
corresponds to a block of child elements. Listing 5-15 shows the code for NodeBuilder. An XML element 
has a tag name, and optionally a body, some attributes, or some child elements. Therefore, the 
NodeBuilder class defines the private member variables—name, body, attributes and childNodes—to 
represent the various parts of an XML element. Notice that the type of the childNodes member variable 
is ChildNodesBuilder. That’s because the API implementation uses ChildNodesBuilder as a container for 
a list of child XML elements. Each child XML element in ChildNodesBuilder is an instance of 
NodeBuilder. When a ChildNodesBuilder object contains a NodeBuilder object as a child XML element, 
the ChildNodesBuilder object is set as the parent of the NodeBuilder object. 

NodeBuilder inherits from DynamicObject. It overrides TryGetMember, TryInvoke, and 
TryInvokeMember. The code Phone("555-8765").Address will cause the TryGetMember method to be called 
because it means getting the Address member property of the NodeBuilder object that represents the 
Phone("555-8765") XML element. The C# code Street("123 Main Street").City("Fremont") will cause 
the TryInvokeMember method to be called because it means calling the City method with the string 
“Fremont” as the argument on the NodeBuilder object that represents the Street("123 Main Street") 
element.  

The Python code .Phone("555-8765") in XmlBuilder.py will cause the TryInvoke method of 
NodeBuilder to be called. What happens is the code .Phone("555-8765") is invoked on an instance of 
ChildNodesBuilder. As a result, the TryGetMember method of ChildNodesBuilder will be called and the 
TryGetMember method will return the NodeBuilder instance that represents the Phone XML element. The 
NodeBuilder instance that represents the Phone XML element will be treated as a callable object by 



CHAPTER 5  DYNAMIC OBJECTS 

126 

Python. Python will call the NodeBuilder instance because the NodeBuilder instance is a delegate and the 
TryInvoke method of NodeBuilder will be invoked to handle the late binding.  

Besides overriding TryGetMember, TryInvoke, and TryInvokeMember, NodeBuilder defines two property 
getters—b and d. Because of the way the late-binding logic of DynamicObject is implemented, code like 
Address.b will cause the property getter b, not TryGetMember, to be called.  

Listing 5-15. NodeBuilder.cs 

public class NodeBuilder : DynamicObject 
{ 
    private string name;  //tag name of the Xml element this node builder represents 
    private string body; 
    private ChildNodesBuilder childNodes; 
    private IDictionary<object, object> attributes; 
    private ChildNodesBuilder parent; 
 
    internal NodeBuilder(ChildNodesBuilder parentNode, string name, string body = null, 
        IDictionary<object, object> attributes = null) 
    { 
        this.parent = parentNode; 
        this.name = name; 
        this.body = body; 
        this.attributes = attributes; 
    } 
 
    public ChildNodesBuilder b 
    { 
        get 
        { 
            this.childNodes = new ChildNodesBuilder(parent); 
            return childNodes; 
        } 
    } 
 
    public ChildNodesBuilder d 
    { 
        get { return parent.Parent; } 
    } 
 
    public override bool TryGetMember(GetMemberBinder binder, out object result) 
    { 
        NodeBuilder newNode = new NodeBuilder(parent, binder.Name); 
        parent.addChild(newNode); 
        result = newNode; 
        return true; 
    } 
 
    public override bool TryInvokeMember(InvokeMemberBinder binder, 
        object[] args, out object result) 
    { 
        NodeBuilder newNode = XmlBuilderHelper.CreateNodeBuilder(parent, binder.Name, args); 



 CHAPTER 5  DYNAMIC OBJECTS 

127 

        parent.addChild(newNode); 
        result = newNode; 
        return true; 
    } 
 
    public override bool TryInvoke(InvokeBinder binder, object[] args, 
        out object result) 
    { 
        XmlBodyAttributes bodyAttributes = XmlBuilderHelper.ParseArgs(args); 
        this.body = bodyAttributes.TagBody; 
        this.attributes = bodyAttributes.Attributes; 
        result = this; 
        return true; 
    } 
 
    internal void Build(StringBuilder stringBuilder) 
    { 
        stringBuilder.AppendLine(); 
        stringBuilder.Append("<" + this.name); 
        if (this.attributes != null) 
        { 
            foreach (var keyValuePair in attributes) 
                stringBuilder.AppendFormat(" {0}={1}",  

keyValuePair.Key, keyValuePair.Value); 
        } 
 
        if (body != null) 
        { 
            stringBuilder.AppendFormat(">{0}</{1}>", body, this.name); 
            return; 
        } 
 
        if (childNodes == null) 
        { 
            stringBuilder.Append(" />"); 
            return; 
        } 
 
        stringBuilder.Append(">"); 
        childNodes.Build(stringBuilder); 
        stringBuilder.AppendLine(); 
        stringBuilder.AppendLine("</" + this.name + ">"); 
    } 
} 

 
 

Listing 5-16 shows the code for ChildNodesBuilder, which inherits from DynamicObject. It overrides 
TryInvokeMember and TryGetMember. C# code like b.Street("123 Main Street") will cause the 
TryInvokeMember method of ChildNodesBuilder to be called. That is because the property getter b of 
NodeBuilder returns an instance of ChildNodesBuilder. After the property getter b of NodeBuilder returns 
a ChildNodesBuilder instance, the C# code b.Street("123 Main Street") calls the Street method with 
the string “123 Main Street” as the argument on that ChildNodesBuilder instance. Because the Street 



CHAPTER 5  DYNAMIC OBJECTS 

128 

method is not defined in the ChildNodesBuilder class, the TryInvokeMember method of 
ChildNodesBuilder is called to handle the late binding. As for the TryGetMember of ChildNodesBuilder, it 
will be called, for example, when we execute Ruby code such as .Address in the XmlBuilder.rb file shown 
in Listing 5-11. This is because.Address is called on an instance of ChildNodesBuilder. Because the 
ChildNodesBuilder class does not define a property called Address, the TryGetMember method of 
ChildNodesBuilder is invoked to do the late binding. Let’s look at the implementation of the 
TryGetMember and TryInvokeMember methods in Listing 5-16. 

Every time TryGetMember is invoked, it means we have a new XML node to create. For example, the 
Ruby code .Address means we need to create a new XML node whose name is “Address”. Once the new 
XML node is created, we need to add it to the parent XML node that contains it. As mentioned earlier, in 
our API design, every parent XML node uses an instance of ChildNodesBuilder to contain its child XML 
nodes. That’s why you see that in the TryGetMember method in Listing 5-16, after creating a new instance 
of NodeBuilder that represents the new XML node, we add the new NodeBuilder instance as a child of the 
current ChildNodesBuilder instance. 

     

Listing 5-16. ChildNodesBuilder.cs 

public class ChildNodesBuilder : DynamicObject 
{ 
    private List<NodeBuilder> childNodes = new List<NodeBuilder>(); 
    private ChildNodesBuilder parent; 
 
    internal ChildNodesBuilder(ChildNodesBuilder parent) 
    { 
        this.parent = parent; 
    } 
 
    public ChildNodesBuilder d 
    { 
        get { return parent; } 
    } 
 
    public override bool TryGetMember(GetMemberBinder binder, out object result) 
    { 
        NodeBuilder newNode = new NodeBuilder(this, binder.Name); 
        this.addChild(newNode); 
        result = newNode; 
        return true; 
    } 
 
    public override bool TryInvokeMember(InvokeMemberBinder binder, 
       object[] args, out object result) 
    { 
        NodeBuilder newNode = XmlBuilderHelper.CreateNodeBuilder(this, binder.Name, args); 
        this.addChild(newNode); 
        result = newNode; 
        return true; 
    } 
 
    public String Build() 



 CHAPTER 5  DYNAMIC OBJECTS 

129 

    { 
        StringBuilder stringBuilder = new StringBuilder(); 
        Build(stringBuilder); 
        return stringBuilder.ToString(); 
    } 
 
    internal ChildNodesBuilder Parent 
    { 
        get { return parent; } 
    } 
 
    internal void addChild(NodeBuilder nodeBuilder) 
    { 
        childNodes.Add(nodeBuilder); 
    } 
 
    internal void Build(StringBuilder stringBuilder) 
    { 
        foreach (var item in childNodes) 
            item.Build(stringBuilder); 
    } 
} 
 

 
The implementation of the TryInvokeMember method in Listing 5-16 is very similar to that of 

TryGetMember. When the TryInvokeMember method is invoked, it means we have a new XML node to 
create. For example, the C# code .Street(“123 Main Street”) means we need to create a new XML node 
whose name is “Street” and whose body is “123 Main Street”. The difference between TryGetMember and 
TryInvokeMember is that TryInvokeMember might take input arguments that represent the attributes and 
body of the new XML node. In order to handle the input arguments that represent the attributes and 
body of an XML node, I wrote a small helper class called XmlBuilderHelper and used it in the 
TryInvokeMember method of ChildNodesBuilder. Listing 5-17 shows the code of the XmlBuilderHelper 
class. 

The XmlBuilderHelper provides a helper method called ParseArgs for parsing the arguments that 
represent an XML node’s attributes and body. The way XmlBuilderHelper parses arguments is to see first 
if the total number of arguments is an even number. If there is an even number of arguments, the XML 
node does not have a body and all of the arguments are attributes. The arguments are grouped into 
name-value pairs. The first argument is the name of the first attribute, the second argument the value of 
the first attribute, the third argument the name of the second attribute, the fourth argument the value of 
the second attribute, and so on. For example, the C# code .Name("FirstName", "John", "LastName", 
"Smith") has an even number of arguments. The first argument is “FirstName” and that will become the 
name of the first attribute of the XML node we create. The second argument is “John” and that will 
become the value of the first attribute of the XML node we create. The XML node created by the C# code 
.Name("FirstName", "John", "LastName", "Smith") will hence be <Name FirstName=”John” 
LastName=”Smith” />.  

If there are an odd number of arguments passed to the ParseArgs method of XmlBuilderHelper, the 
last argument will become the body and the rest of the arguments will become the attributes of the XML 
node being created. So for example, the C# code .Name("FirstName", "John", "LastName", "Smith", 
“John Smith”) has an odd number of arguments. The XML node created by that C# code will hence be 
<Name FirstName=”John” LastName=”Smith”>John Smith</Name>. 



CHAPTER 5  DYNAMIC OBJECTS 

130 

Listing 5-17. XmlBuilderHelper.cs 

internal static class XmlBuilderHelper 
{ 
    public static NodeBuilder CreateNodeBuilder(ChildNodesBuilder parent, string name, 
        object[] args) 
    { 
        XmlBodyAttributes bodyAttributes = ParseArgs(args); 
        return new NodeBuilder(parent, name, bodyAttributes.TagBody,  

bodyAttributes.Attributes); 
    } 
 
    public static XmlBodyAttributes ParseArgs(object[] args) 
    { 
        String newTagBody = null; 
        int attrLength = args.Length; 
        if ((args.Length % 2) == 1) //the element has only body 
        { 
            newTagBody = args[args.Length - 1].ToString(); 
            --attrLength; 
        } 
 
        Dictionary<object, object> attributes = (attrLength > 0) ?  

new Dictionary<object, object>() : null; 
         

for (int i = 0; i < attrLength; i++) 
            attributes.Add(args[i], args[++i]); 
 
        return new XmlBodyAttributes(newTagBody, attributes); 
    } 
} 
 
internal class XmlBodyAttributes 
{ 
    public String TagBody; 
    public Dictionary<object, object> Attributes; 
 
    public XmlBodyAttributes(String tagBody, Dictionary<object, object> attributes) 
    { 
        this.TagBody = tagBody; 
        this.Attributes = attributes; 
    } 
} 

Summary 
This chapter focused on the IDynamicMetaObjectProvider interface and the DynamicMetaObject class. If a 
class implements the IDynamicMetaObjectProvider interface, then instances of the class will have 
associated meta-objects. Those meta-objects will be instances of DynamicMetaObject or its derivatives. If 
those meta-objects are instances of a class that derives from DynamicMetaObject, they can have late 
binding behaviors that are different from the default late-binding behaviors implemented in 



 CHAPTER 5  DYNAMIC OBJECTS 

131 

DynamicMetaObject. We discussed what the default late-binding behaviors implemented in 
DynamicMetaObject are, and showed how to customize those default late-binding behaviors by 
implementing the ConstantMetaObject class. We then looked at how to trigger the various late-binding 
actions on instances of the ConstantMetaObject class. 

Next we looked at the DynamicObject class of the DLR and explored its late-binding behaviors. Based 
on that understanding, we saw how to use the DynamicObject class to build a fluent API for constructing 
XML documents. There are many interesting ways you can use what you learned in this chapter. For 
example, in Chapter 8, you’ll see how to leverage the DynamicObject class to implement a 
metaprogramming component that lets you add or remove methods and properties to or from classes or 
class instances at run time in C#. A static language like C# does not typically allow adding and removing 
methods and properties to or from classes or class instances at run time. But as you will see in Chapter 8, 
with DLR, that becomes possible.  

 





C H A P T E R  6 
    
 

133 

DLR Hosting API 

The DLR Hosting API is a programming interface that allows one language’s code to execute in another 
language. For ease of discussion, I’ll refer to the language whose code is executed in another language as 
the guest language. The language that executes a guest language’s code will be  the host language.   

The biggest source of complexity in executing a guest language’s code is the need for sharing data 
between the host language and the guest language. For example, when we execute Python code in C#, 
we often want to pass some objects as input to the Python code. The objects might represent the object 
model of the software system we are developing. If that software system is a bank application, the 
objects we pass to the Python code might be customer accounts and the Python code might have 
functions that can operate on those customer accounts to print out monthly statements. You’ll see in 
this chapter the mechanism used by the DLR Hosting API for sharing data between host and guest 
languages. 

To demonstrate the value of the DLR Hosting API, we’ll first take a look at how different languages 
host one another without the DLR Hosting API. You’ll see from these examples that without the DLR 
Hosting API, developers need to learn each language’s proprietary programming interface for hosting 
other languages. Given N languages, there can be as many as N x (N-1) ways for them to host one 
another. That’s quite a heavy burden for us developers to manage even a small portion of the possible 
combinations. To mitigate that, DLR provides a common API for hosting languages.  

In this chapter, you’ll see that when you work with the DLR Hosting API, you always program to the 
same set of interfaces and classes defined by the API. The details specific to a guest or host language are 
well-encapsulated, and you don’t need to concern yourself with them. And the DLR Hosting API helps 
not only consumers, but also producers of programming languages. If you have designed and 
implemented a new programming language, you can reach out to a broader audience and make your 
software friendlier to use by plugging your language into the DLR Hosting API. That way, users of your 
language can use the DLR Hosting API to host your language in C#, IronPython, or any other .NET 
languages.  

The DLR Hosting API consists of two smaller sets of APIs, one for language consumers and the other 
for language producers. The part for language producers allows new languages to be plugged into the 
DLR Hosting API. We will focus on the language-consumer side of the DLR Hosting API here and look at 
the language-producer side in more detail in Chapter 9 when we go through the design and 
implementation of a domain-specific language called Stitch. In that chapter, you’ll see how to 
implement the language producer side in order to plug the Stitch language into the DLR Hosting API.  

 

Life Without the DLR Hosting API 
First I want to demonstrate the key value of the DLR Hosting API by showing you what life is like without 
it. You’ll see examples for the following scenarios related to language interoperability. Some of the 
examples will not use the DLR Hosting API at all. Others will use it only to a limited extent. 



CHAPTER 6  DLR HOSTING API 

134 

• Using a static language’s code in another static language. We will use VB.NET code 
in C#. 

• Using a static language’s code in a dynamic language. We will use C# code in 
IronPython and IronRuby. 

• Using a dynamic language’s code in a static language. We will use IronPython and 
IronRuby code in C#. 

• Using a dynamic language’s code in another dynamic language. We will use 
IronPython code in IronRuby. 

You’ll find all of the code examples in this section in the LanguageSpecificHosting project in this 
chapter’s code download. The examples will give you a real feel for how cumbersome it quickly gets 
using proprietary APIs to host other languages. After that, you’ll see how the DLR Hosting API simplifies 
language hosting by providing a uniform and language-neutral API. 

Using a Static Language’s Code in Another Static Language 
As the first step in our exploration, let's begin by reviewing how static languages such as C# and VB.NET 
interoperate. Imagine there's some VB.NET code we want to use in C# code. To do this, we need to 
compile the VB.NET code into a .NET assembly, then, we need to (a) reference the assembly in the C# 
project, and (b) add using statements to import the namespaces and classes defined in the VB.NET code 
into the C# code. For example, if the VB.NET code defines a class called Customer in the Com.Xyz 
namespace, to use that class in C#, the C# code needs to have a using statement like this:  

 
using Com.Xyz; 

 
Without the using statement, we would have to use the fully qualified class name Com.xyz.Customer 

wherever we use the Customer class in the C# code. As previous chapters have mentioned, language 
interoperability between static .NET languages such as VB.NET and C# is possible because all the static 
language code is compiled into the same underlying intermediate language code that shares a common 
type system (CTS). 

Using a Static Language’s Code in a Dynamic Language 
Now, how about using a static language’s code in a dynamic language? Let's take a look. Listing 6-1 
shows what’s needed for IronPython code to access C# code. The C# code, of course, needs to be 
compiled into a .NET assembly before it can be used by anybody. Let's assume the C# code is compiled 
into an assembly called Xyz.dll. Line 2 in Listing 6-1 shows that to get a hold of the C# code, the 
IronPython code needs to reference the Xyz.dll assembly. Referencing that assembly is equivalent to 
adding a reference to a VB.NET assembly in a C# project when using VB.NET code in C#. Line 3 imports 
the Customer class into the IronPython code, which is equivalent to importing namespaces and classes 
defined in VB.NET code into C#.  

You can see that the two steps needed for IronPython code to get a hold of C# code are equivalent to 
those needed for C# code to get a hold of VB.NET code. However, even though the steps are by and large 
equivalent, they are not exactly the same. C# and IronPython each define their own ways for referencing 
assemblies and for importing classes.     



 CHAPTER 6  DLR HOSTING API 

135 

Listing 6-1. Using C# Code in IronPython 

import clr 
clr.AddReference("xyz.dll") 
from com.xyz import Customer 
# ... code that uses the Customer class.  
# You can use fully qualified name com.xyz.Customer too. 

 
Listing 6-2 shows the IronRuby way of accessing C# (or VB.NET) code. This is again a two-step 

process. First we need to add a reference to the compiled assembly, Xyz.dll. Next we need to import the 
namespaces or classes we want to use into the IronRuby code space. As Listing 6-2 shows, IronRuby uses 
the require keyword for adding references to compiled .NET assemblies and the include keyword for 
importing a namespace. Once again, even though the two steps for using other language’s code in 
IronRuby are equivalent, they are not exactly the same and, as IronRuby developers, we have to learn 
IronRuby’s specific keywords to use C# code in IronRuby. 

Listing 6-2. Using C# Code in IronRuby 

require 'Xyz.dll' 
include Com.Xyz 
# ... code that uses the Customer class 

Using a Dynamic Language’s Code in a Static Language 
We just looked at using a static language’s code in a dynamic language, now we’ll look at the reverse—
using a dynamic language’s code in a static language. One major difference between this scenario and 
the previous is that dynamic language code does not need to be compiled until run time. Because 
dynamic language code is not compiled into an assembly at compile time, we don’t get a hold of the 
code by adding an assembly reference to our C# project. Instead, the C# code directly references the 
dynamic language source code, as in Listing 6-3.  

The example in Listing 6-3 makes use of the DLR Hosting API only to a limited extent. It calls the 
CreateEngine static method of the IronPython.Hosting.Python class to create a script engine for running 
IronPython code. IronPython.Hosting.Python is an IronPython-specific class in the IronPython.dll 
assembly. In order for the code in Listing 6-3 to compile, we need to add a reference to the 
IronPython.dll assembly. Had we used the language-neutral DLR Hosting API to create the script engine, 
we wouldn’t need to add the reference to the C# project. The type of the script engine instance is 
ScriptEngine, which is a class in the DLR Hosting API. The example in Listing 6-3 uses some features of 
the DLR Hosting API and some features specific to the IronPython implementation. Later in this chapter, 
you’ll see examples that use only the DLR Hosting API.  

Listing 6-3. Running IronPython Code in C#  

private static void CSHostsIronPython() 
{ 
    ScriptEngine engine = Python.CreateEngine(); 
    engine.Execute("print \"hello\""); 
} 
 



CHAPTER 6  DLR HOSTING API 

136 

Listing 6-4 shows the same example but for the Ruby language. The code calls the CreateEngine 
static method of the IronRuby.Ruby class to get a script engine that is capable of running IronRuby code. 
IronRuby.Ruby is an IronRuby-specific class in the IronRuby.dll assembly. 

Listing 6-4. Running IronRuby Code in C# 

private static void CSHostsIronRuby() 
{ 
    ScriptEngine engine = Ruby.CreateEngine(); 
    engine.Execute("puts \"hello\""); 
} 

Using a Dynamic Language’s Code in Another Dynamic Language 
Now let’s look at an example in which a dynamic language hosts another dynamic language. Listing 6-5 
shows how to host IronPython code in IronRuby using IronRuby’s specific mechanism. The IronRuby 
code in Listing 6-5 calls the require method of the IronRuby module to load the Python code in 
helloFunc.py. The Python code in helloFunc.py defines a hello function and is shown in Listing 6-6.  

The IronRuby module used in Listing 6-5 is a built-in module available to all IronRuby code. If you 
look at the DLR source code, you can find a class called LibraryInitializer in the IronRuby project. 
LibraryInitializer is derived by many generated classes that take care of loading various built-in 
IronRuby modules and functions. All those generated classes are placed in the Initializers.Generated.cs 
file under the IronRuby.Libraries project. One of those generated classes is BuiltinsLibraryInitializer. 
If you look into the LoadModules method of BuiltinsLibraryInitializer, you will find that one of the 
default modules it loads is named IronRuby. The LoadModules method of BuiltinsLibraryInitializer 
uses the LoadIronRuby_Class method of the same BuiltinsLibraryInitializer class to define the 
methods belonging to the IronRuby module. One of those methods is require and from the code in the 
LoadIronRuby_Class method you can see that the require method is actually backed by the Require 
method in the IronRubyOps class. The use of the IronRuby module in Listing 6-5 is specific to the 
IronRuby implementation and is not language neutral. You will see that instead of using the IronRuby 
module to load Python code, we can use the DLR Hosting API to load one dynamic language’s code into 
another dynamic language.  

Listing 6-5. Ruby Code Usings the hello Function Defined in helloFunc.py 

pythonHello = IronRuby.require('Python/helloFunc.py') 
pythonHello.hello 

Listing 6-6. Python Code That Defines a hello Function.  

def hello(): 
    """This function prints Hello."""  
    print "Hello" 

Overview of the DLR Hosting API 
So far we’ve seen the various ways of hosting one language in another in different scenarios. Now I’ll give 
you an overview of the DLR Hosting API and point out the scenarios for which the DLR Hosting API 
provides value—only two of the four scenarios described earlier: using a dynamic language’s code in a 



 CHAPTER 6  DLR HOSTING API 

137 

static language and using a dynamic language’s code in another dynamic language. The DLR Hosting 
API doesn’t provide any feature for using a static language in another static language or for using static 
language code in a dynamic language. For those, you need to compile the static language code and add a 
reference to the compiled assembly file as illustrated in previous sections.  

Major Classes in the API 
The DLR Hosting API consists of two smaller sets of APIs, one for language consumers and the other for 
language providers. The classes and interfaces that make up the Hosting API are packaged into the 
Microsoft.Scripting.dll assembly. Some of the major classes that make up the consumer side of the DLR 
Hosting API are ScriptRuntime, ScriptScope, ScriptEngine, ScriptSource, and CompiledCode, all of which 
are in the Microsoft.Scripting.Hosting namespace. Here’s a brief description of each. 

ScriptRuntime: This is the class defined by the DLR Hosting API to model the runtime that dynamic 
code runs on. Just like C# or VB.NET code runs on the CLR runtime, dynamic code also needs a 
runtime. The CLR runtime can run C#, VB.NET, and other language code. Similarly, a ScriptRuntime 
instance can run code written in different dynamic languages. 

ScriptEngine: This is what ScriptRuntime uses to run code written in different dynamic languages. At 
run time, for each dynamic language, there needs to be a ScriptEngine instance that knows how to 
execute code written in that language. A script runtime (i.e., an instance of the ScriptRuntime class) 
usually holds a reference to a ScriptEngine instance for each dynamic language the script runtime 
supports. For example, if a script runtime is capable of running IronPython and IronRuby code, the 
script runtime must internally hold a reference to a ScriptEngine instance that’s capable of running 
IronPython code and a reference to another ScriptEngine instance that’s capable of running 
IronRuby code.  

ScriptScope: This is the class that allows data sharing between guest and host languages. Earlier in 
this chapter, I indicated that the biggest source of complexity in executing a guest language’s code is 
the need for sharing data between the host language and the guest language. The ScriptScope class 
is defined to facilitate data sharing between different languages. You can think of a ScriptScope 
instance as a bag that holds named objects that can be passed around from one language to 
another. Different language code fetches a particular object from the bag by the object’s name and 
does something useful with the fetched object. 

ScriptSource: This is the class defined by the DLR Hosting API to model the source code of a DLR-
based language. We can call the Compile method of ScriptSource on a ScriptSource instance to 
compile the source code the ScriptSource instance represents. The Compile method will return an 
instance of CompiledCode to represent the compiled source code. 

CompiledCode: This is the class defined by the DLR Hosting API to model the compiled source code 
of a DLR-based language. We can call the Execute method on a CompiledCode instance to execute the 
compiled source code. 
 
The documentation area of the DLR CodePlex web site has a document called dlr-spec-hosting.doc 

that contains a wealth of information about the consumer side of the DLR Hosting API. It divides the way 
you can use the Hosting API into three levels. Level One is the simplest and uses the fewest features of 
the Hosting API. Level Two is the middle level and Level Three, the most advanced, uses the full power of 
the API. Although the division seems somewhat artificial, the levels are by and large a very good measure 
for deciding how much of the Hosting API you’d like to use in your application. To make it easy for 
readers who have read or will read that document to follow along, this chapter will indicate which level 
of the DLR Hosting API an example uses when appropriate. As you read through this chapter, please 



CHAPTER 6  DLR HOSTING API 

138 

keep in mind that the three levels are just a way to gauge how much of the Hosting API is being used. 
They are not reflected in any way in the Hosting API itself. There is nothing in the Hosting API that 
restricts you to a certain level or indicates anything about the levels. If you find yourself unsure at which 
level you’re using the Hosting API, don’t worry. It really doesn’t matter much because the levels are just 
a conceptual categorization that does not have any concrete implementation behind it. 

All the code examples for these levels are in the HostingExamples project. All Level One examples 
are in the LevelOneExamples.cs file. Similarly, all Level Two examples are in LevelTwoExamples.cs and 
Level Three examples in LevelThreeExamples.cs. One indication that the Hosting API is indeed language 
neutral is the assembly files referenced by the HostingExamples project. The project does not reference 
any of the IronPython or IronRuby assemblies. Those assemblies are not needed to compile the 
HostingExamples project because all the examples in the project are language neutral.  

The Tale of Two APIs 

Previously I mentioned that the DLR Hosting API consists of one API for language consumers and 
another API for language developers. The provider-side API is for language implementers to plug a new 
language into the DLR Hosting API so that consumers of the language can run code written in the 
language via the consumer side of the DLR Hosting API. We saw an example of implementing the 
provider-side API in Chapter 1 when we plugged in the Hello language into the DLR Hosting API by 
implementing a class that derives from LanguageContext and a class that derives from ScriptCode. For an 
API like the DLR Hosting API that allows new providers to be plugged in, it is not uncommon to see the 
existence of a provider API and a consumer API. For example, the Java Naming and Directory Interface 
(JNDI) defines a provider API called service provider interface (SPI). There are vendors who have 
implemented the SPI to provide naming and directory service for LDAP servers, database servers, DNS 
servers, and so forth. Consumers of JNDI will interact with the various naming and directory services via 
the consumer-side API and be kept unaware of whether the underlying provider is an LDAP server, 
database server, or DNS server.   

The classes in the provider side and the consumer side of the DLR Hosting API have a nice 
correspondence. Table 6-1 shows which consumer-side class corresponds to which provider-side class. 
The consumer-side classes in the DLR Hosting API are really just a thin wrapper around the provider-
side classes. We’ll discuss only the consumer-side API now. You can find examples that implement the 
provider-side API in Chapters 9 and 11. 

Table 6-1. Correspondence Between Provider-Side Classes and Consumer-Side Classes 

Consumer-side Class Provider-side Class 

ScriptRuntime ScriptDomainManager 

ScriptEngine LanguageContext 

CompiledCode ScriptCode 

ScriptSource SourceUnit 

ScriptScope Scope 

 



 CHAPTER 6  DLR HOSTING API 

139 

The DLR Hosting API in Relation to Binders and Dynamic Objects 
As part of the overview of the DLR Hosting API, I want to touch on the relation between the DLR Hosting 
API and language interoperability. We looked at language interoperability in the previous two chapters, 
where we saw that language interoperability in the DLR is made possible with binders and dynamic 
objects. Those two chapters and their code examples show that once the binders and dynamic objects 
are in place, they follow a well-established protocol in their interactions in order to enable language 
interoperability.  

What's not really explained in those chapters is how the binders and dynamic objects come together 
in the first place. For example, Chapter 4 uses Python objects in C# code and explains how the Python 
objects interoperate with C# code. (In such scenarios, we call C# the host language and IronPython the 
source language). Once the C# code obtains a reference to a Python object, the C# code can call methods 
on the Python object and those methods can return other Python objects for the C# code to use.  

But how does the C# code obtain a reference to the first Python object? The first reference doesn’t 
need to be a reference to a Python object. It can be a reference to a Python class or a Python function. In 
that case, the C# code can use the Python class to create the first Python object or invoke the Python 
function to get back a Python object as the return value. Regardless of whether the initial item is a 
Python object, class, or function, the C# code needs a way to get it.  

If Python were like VB.NET, the C# code would get that initial Python object, class, or function by 
referencing the assembly the VB.NET is compiled into. Because Python code is not compiled at compile 
time, instead of referencing a compiled assembly, the C# code has to reference the Python source code 
and be able to compile the source code at run time. That is where the DLR Hosting API comes into the 
picture. 

You’ll learn through this chapter how to use the DLR Hosting API to get a hold of, say Python objects 
in C# code.  You can combine that knowledge with what you learned in the previous two chapters and 
get the whole picture of how languages interoperate.  

Using Script Runtime to Execute Code 
With that high-level overview of the DLR Hosting API under your belt, let’s start to use the DLR Hosting 
API. This section will show you how to use the script runtime to execute DLR-based language code. The 
examples in this section will make Level One use of the DLR Hosting API and are in the 
LevelOneExamples.cs file. At this level, we use ScriptRuntime to execute dynamic language code stored 
in source files. The code can be IronPython, IronRuby, or other DLR-based language code. As long as the 
language implements the provider part of the Hosting API, we can use ScriptRuntime to execute its code. 
Let’s look at some examples. Listing 6-7 shows how to use ScriptRuntime to run an IronPython source 
file, which is the helloFunc.py in Listing 6-6.  

Listing 6-7. Using ScriptRuntime to Load and Interpret Python Code 

1) public static void GetPythonFunctionUsingScriptRuntime() 
2) { 
3)     ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration(); 
4)     ScriptScope scope = scriptRuntime.ExecuteFile(@"Python\helloFunc.py"); 
5)     Action hello = scope.GetVariable<Action>("hello"); 
6)     hello(); 
7)     scriptRuntime.Shutdown(); 
8) }   

 



CHAPTER 6  DLR HOSTING API 

140 

The code in Listing 6-7 creates a script runtime in line 3 based on the information in the App.config 
file. We will look at the App.config file in detail shortly. For now, let’s just think of it as a black box that 
has in it the information needed for creating a script runtime. In Listing 6-7, the code calls the 
ExecuteFile method on the script runtime and passes in the name of the Python source file as the input 
parameter. That causes the Python code in the helloFunc.py file to be parsed and evaluated. The result 
of running the Python code is stored in the return value of the ExecuteFile method call. 

The return value of the ExecuteFile method call is a script scope, an instance of the ScriptScope 
class. As described earlier in this chapter, a script scope is a container that holds objects we want to 
share across different languages. In this case, it is anticipated that the reason we call the ExecuteFile 
method is to get the result of the Python code execution. So the ExecuteFile method puts the result of 
executing the Python code into a script scope and returns that script scope back to the caller. Because 
the file helloFunc.py contains only the definition of a Python function called hello, the result of 
executing helloFunc.py is an instance of IronPython.Runtime.PythonFunction stored in the script scope 
against the name “hello”. That’s why line 5 in Listing 6-7 retrieves the Python function by its name 
“hello”. Line 5 also converts the Python function of type IronPython.Runtime.PythonFunction to a .NET 
delegate of type Action. Because of the type conversion, line 6 can invoke the Python function like 
calling a normal .NET delegate.   

One interesting thing to note about the ScriptScope class is that it implements the 
IDynamicMetaObjectProvider interface. If you’ve read Chapter 5, you know that means instances of 
ScriptScope are dynamic objects. The late binding logic for ScriptScope is implemented in such a way 
that we can fish out a variable as if the variable’s name is a property of the scope. Listing 6-8 shows an 
example of this use of ScriptScope. If you compare the bolded code in Listing 6-8 to line 5 in Listing 6-7, 
you’ll see the difference. The code in Listing 6-8 is more succinct and readable and that’s the purpose of 
having ScriptScope implement the IDynamicMetaObjectProvider interface.  

Listing 6-8. Fish Out a Variable as if the Variable’s Name is a Property of the Scope  

public static void UseScriptScopeAsDynamicObject() 
{ 
    ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration(); 
    dynamic scope = scriptRuntime.ExecuteFile(@"Python\helloFunc.py"); 
    Action hello = scope.hello; 
    hello(); 
    scriptRuntime.Shutdown(); 
} 

Configuring the Languages You Want to Speak 
In the previous section, the code examples use the CreateFromConfiguration static method of the 
ScriptRuntime class to create a script runtime. Behind the scenes, CreateFromConfiguration will read the 
configurations in the application’s App.config file and use them to create the script runtime. The DLR-
related configurations in an App.config file determine which dynamic languages will be supported by 
the script runtime. There are two ways to configure which languages will be supported by a script 
runtime. One way is to use App.config and the CreateFromConfiguration static method, as we’ve been 
discussing. This approach is declarative and does not require us to recompile our application should we 
want to support a new language in the script runtime. The other approach is to use classes such as 
ScriptRuntimeSetup and LanguageSetup to programmatically configure which languages will be 
supported in the script runtime under construction. Let’s look at the two approaches in turn.  



 CHAPTER 6  DLR HOSTING API 

141 

Configuring Script Runtime Declaratively 
Let’s start with the declarative approach for configuring which languages are supported in a script 
runtime. Listing 6-9 shows what the DLR-related configurations in App.config look like. App.config is 
.NET’s mechanism for configuring an application in general. There can be different kinds of 
configurations in App.config for different parts of an application. For example, an App.config for a 
distributed application built on .NET Remoting might contain configurations related to .NET Remoting.  

Each kind of configurations in an App.config file is specific to a particular aspect of the application 
and needs to be interpreted accordingly. The way to specify how to interpret a certain kind of 
configuration is by using a <section> element. In our case, the App.config file shown in Listing 9-6 
contains information specific to the DLR Hosting API. So we have a <section> entry under the 
<configSections> element that specifies that the class Section in the 
Microsoft.Scripting.Hosting.Configuration namespace should be used to interpret the DLR Hosting 
API related configurations. The type attribute of the section element specifies the assembly-qualified 
name of the Section class in the Microsoft.Scripting.Hosting.Configuration namespace. The 
configurations shown in Listing 6-9 are only valid if you use the version 1.0.0.0 release bits of the 
Microsoft.Scripting.dll assembly. If you use a debug version of Microsoft.Scripting.dll that you build 
yourself, you’ll have to adjust the configurations by typing in the correct assembly-qualified name of the 
Section class. 

The configurations the Microsoft.Scripting.Hosting.Configuration.Section class will interpret are 
all lines enclosed by <microsoft.scripting> and </microsoft.scripting>. Those lines basically specify 
that we want the script runtime created by the CreateFromConfiguration static method of the 
ScriptRuntime class to support two languages—IronPython and IronRuby. For each language, we need 
to tell the DLR Hosting API the language’s name, file extension, display name, and most importantly, the 
assembly-qualified name of a class that derives from the LanguageContext class in the 
Microsoft.Scripting.Runtime namespace. For IronPython, the class that derives from the 
LanguageContext class is PythonContext. For IronRuby, the class that derives from the LanguageContext 
class is RubyContext. LanguageContext is an important class on the provider side of the DLR Hosting API. 
A language implementer needs to derive a class from LanguageContext and provide language-specific 
behaviors in the derived class if he or she wants to plug the language into the DLR Hosting API. Again, 
the configurations shown in Listing 6-9 for IronPython and IronRuby are valid only if you use the release 
bits of IronPython 2.6.1 and IronRuby 1.0. If you use different versions or if you build the binaries 
yourself, you will have to adjust the configurations by typing in the correct assembly-qualified names of 
the PythonContext and RubyContext classes. 

Listing 6-9. DLR-Related Configurations in App.config 

<?xml version="1.0" encoding="utf-8" ?> 
<configuration> 
  <configSections> 
    <section name="microsoft.scripting" 
type="Microsoft.Scripting.Hosting.Configuration.Section,  
 Microsoft.Scripting, Version=1.0.0.0, Culture=neutral, 
PublicKeyToken=31bf3856ad364e35" /> 
  </configSections> 
 
  <microsoft.scripting> 
    <languages> 
      <language names="IronPython,Python,py" 
                extensions=".py" 



CHAPTER 6  DLR HOSTING API 

142 

                displayName="IronPython 2.6.1" 
                type="IronPython.Runtime.PythonContext,IronPython, Version=2.6.10920.0,  

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

      <language names="IronRuby;Ruby,rb" 
                extensions=".rb" 
                displayName="IronRuby 1.0" 
                type="IronRuby.Runtime.RubyContext, IronRuby, Version=1.0.0.0,  

Culture=neutral, PublicKeyToken=31bf3856ad364e35"/> 
    </languages> 
  </microsoft.scripting>
</configuration> 

Configuring Script Runtime Programmatically 
After seeing the declarative approach for configuring which languages are supported in a script runtime,
let’s look at the programmatic approach that achieves the same thing. As a matter of fact, the declarative
approach discussed in the previous section is built on top of the programmatic approach. Once you
know how the programmatic approach works, you know how the declarative approach works behind the
scenes. 

Listing 6-10 shows a code example (in LevelThreeExamples.cs) that uses the ScriptRuntimeSetup
and LanguageSetup classes to construct a script runtime. The example first creates an instance of
LanguageSetup for the IronPython language. The input parameters passed to the constructor of
LanguageSetup are essentially the same pieces of information we saw in the App.config file shown in
Listing 6-9. Once the LanguageSetup instance is ready, we add it to an instance of ScriptRuntimeSetup
and then pass the ScriptRuntimeSetup instance to the constructor of ScriptRuntime. The constructor of
ScriptRuntime will use the ScriptRuntimeSetup instance we pass to it to create a script runtime that
supports the IronPython language. Therefore, we can use the script runtime to execute the Python code
in hello.py as the example in Listing 6-10 shows. 

Listing 6-10. An Example That Creates a Script Runtime Programmatically  

public static void RunScriptRuntimeSetupExample()
{ 
    LanguageSetup pythonSetup = new LanguageSetup( 
        typeName: "IronPython.Runtime.PythonContext,IronPython, Version=2.6.10920.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35", 
        displayName: "IronPython", 
        names: new String[] { "IronPython", "Python", "py" }, 
        fileExtensions: new String[] { ".py" }); 

    ScriptRuntimeSetup setup = new ScriptRuntimeSetup(); 
    setup.LanguageSetups.Add(pythonSetup); 
    ScriptRuntime scriptRuntime = new ScriptRuntime(setup); 
    ScriptScope scope = scriptRuntime.ExecuteFile(@"Python\hello.py");
} 

The code in Listing 6-10 shows the information for creating a LanguageSetup instance for the
IronPython 2.6.1 release version. If you want to create a LanguageSetup instance for the IronRuby 1.0
release version, use the following code: 



 CHAPTER 6  DLR HOSTING API 

143 

LanguageSetup rubySetup = new LanguageSetup( 
    typeName: "IronRuby.Runtime.RubyContext, IronRuby,  

Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35",  
    displayName: "IronRuby",  
    names: new String[]{"IronRuby", "Ruby", "rb"},  
    fileExtensions: new String[]{".rb"}); 
     

Like Listing 6-9, the code in Listing 6-10 does not require any reference to IronPython assemblies at 
compile time. Another way to create a LanguageSetup instance for IronPython is to call the 
CreateLanguageSetup static method of the IronPython.Hosting.Python class like this: 
 
LanguageSetup pythonSetup = Python.CreateLanguageSetup(new Dictionary<string, object>()); 
 

As you can see, using the CreateLanguageSetup static method to create a LanguageSetup instance 
doesn’t require us to find out the assembly-qualified name of the PythonContext class. No matter which 
version of the IronPython.dll assembly we use, the CreateLanguageSetup static method will return the 
correct LanguageSetup instance for that IronPython.dll assembly. The empty dictionary object passed to 
the CreateLanguageSetup method in the code snippet above is supposed to contain IronPython-specific 
options for controlling the IronPython script engine you create with the pythonSetup variable. Similar to 
IronPython, IronRuby comes with the IronRuby.Ruby class that provides a static method 
CreateRubySetup. The CreateRubySetup method returns a LanguageSetup instance for the IronRuby.dll 
assembly you reference in your project. Using IronRuby.Ruby and IronPython.Hosting.Python to create 
LanguageSetup instances requires adding references to the IronPython.dll and IronRuby.dll assemblies at 
compile time. Once you get those LanguageSetup instances, you can call their TypeName property to get 
the assembly-qualified names of the PythonContext and RubyContext classes. 

Scripting an Object Model 
So far we have seen examples that use the ScriptRuntime class to execute Python code in a C# 
application. Those examples are simple and don’t involve the host language passing data to the guest 
language code. The main usage scenario that the designers of the DLR have for Level One use of the 
Hosting API is to have the host language pass an object model to the guest language code. The idea is to 
let the guest language code do something useful with the object model. To show a more realistic 
example, Listing 6-11 demonstrates this main Level One usage scenario. In this example, I use a simple 
Customer class to represent the object model. In reality, the object model can be something as complex 
as the domain model of a banking system containing classes such as Customer, Account, BankStatement, 
etc.  

The example in Listing 6-11 first creates an instance of the Customer class. The Customer class is 
implemented in C# and its code is shown in Listing 6-12. There are several ways to pass the Customer 
instance to the guest language code. A script runtime maintains a global script scope. The example in 
Listing 6-11 uses that to pass objects from a host language to a guest language. Besides using a script 
runtime’s global script scope, we can use a language-neutral script scope or a language-specific script 
scope to pass objects from one language to another. You will see examples of these in later sections.  

The ScriptRuntime class defines a member property called Globals whose type is ScriptScope and 
represents the global script scope of a ScriptRuntime instance. The example in Listing 6-11 puts the 
Customer instance into the script runtime’s global script by calling the SetVariable method of 
ScriptScope. The Customer instance is associated with the name “customer” in the global script scope. 
Later, when we need to retrieve the Customer instance out from the global script scope, we need to get it 
by the name “customer”. 



CHAPTER 6  DLR HOSTING API 

144 

Listing 6-11. Passing an Object Model to Guest Language Code Using the Script Runtime’s Global Scope 

public static void PassObjectModelToScript() 
{ 
    Customer customer = new Customer("Bob", 30); 
    ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration(); 
    scriptRuntime.Globals.SetVariable("customer", customer); 
    ScriptScope scope = scriptRuntime.ExecuteFile(@"Python\simpleWpf2.py"); 
}  

Listing 6-12. The Customer Class 

public class Customer 
{ 
    public int Age { get; set; } 
    public String Name { get; set; } 
 
    public Customer(String name, int age) 
    { 
        this.Name = name; 
        this.Age = age; 
    } 
 
    public override string ToString() 
    { 
        return Name + " is " + Age + " years old."; 
    } 
} 
 

Let’s now see how the guest language code uses the Customer instance that we put into the script 
runtime’s global scope. The guest language code in this example is the IronPython code stored in 
simpleWpf2.py and shown in Listing 6-13. The IronPython code basically retrieves the Customer instance 
from the script runtime’s global scope and displays the customer’s information in a WPF (Windows 
Presentation Foundation) application. Don’t worry if you aren’t familiar with WPF. My choice of WPF as 
the UI framework for this example is simply because I want to show something different from the 
console applications we’ve been using so far.  

The key line of code in Listing 6-13 is bolded. The code import customer is how we retrieve an object 
associated with the name “customer” from a script runtime’s global scope. After this code, the variable 
customer becomes available in the Python code and we simply display the customer’s information by 
setting the result of customer.ToString() to a WPF label’s Content property. 

Listing 6-13. IronPython Code in simpleWpf2.py 

import clr 
import customer 
clr.AddReference("PresentationFramework") 
clr.AddReference("PresentationCore") 
 
from System.Windows import (Application, Window) 
from System.Windows.Controls import (Label, StackPanel) 



 CHAPTER 6  DLR HOSTING API 

145 

window = Window() 
window.Title = "Simple Python WPF Example" 
window.Width = 400 
window.Height = 300 
 
stackPanel = StackPanel() 
window.Content = stackPanel 
 
customerLabel = Label() 
customerLabel.Content = customer.ToString() 
customerLabel.FontSize = 20 
stackPanel.Children.Add(customerLabel) 
 
app = Application() 
app.Run(window) 
 

This example passed objects from a host language to a guest language using the script runtime’s 
global scope. Next we’ll look at script scopes in more detail. 

Script Scopes 
There are different kinds of script scopes, but they’re all instances of the ScriptScope class. ScriptScope 
has a property called Engine. If a script scope’s Engine property is set to a particular language’s script 
engine, the script scope is bound to that particular language and I’ll refer to such script scope as engine 
scope. On the other hand, if a script scope’s Engine property is not set to a particular language’s script 
engine, then the script scope is said to be language neutral and I’ll refer to such script scope as language-
neutral scope. Why is the distinction between language-neutral scopes and engine scopes important? 
Let me show you some examples that demonstrate the difference between language-neutral scopes and 
engine scopes. After the examples, I’ll explain how script scopes retrieve objects by name.  

Listing 6-14 shows an example (in LevelTwoExamples.cs) that creates a script scope by calling the 
CreateScope method on a script runtime. The script scope created this way is language neutral. So when 
the code in Listing 6-14 asks the script scope whether it contains an object by the name “__doc__”, the 
script scope will say no. If you run the code in Listing 6-14, you will see the string “scope does not 
contain __doc__ variable” printed on the screen. 

Listing 6-14. Example of a Language-Neutral Scope  

public static void RunLanguageNeutralScopeExample() 
{ 
    ScriptRuntime runtime = ScriptRuntime.CreateFromConfiguration(); 
    ScriptScope scope = runtime.CreateScope(); 
    if (!scope.ContainsVariable("__doc__")) 
        Console.WriteLine("scope does not contain __doc__ variable."); 
} 
 

Now, for comparison, let’s see an example of a language-bound scope. Listing 6-15 shows such an 
example, which you can find in LevelTwoExamples.cs. The code in Listing 6-15 does not use the script 
runtime to create a script scope. Instead, it uses the script runtime to get the IronPython script engine 
and then calls the CreateScope method on the script engine to create a script scope bound to the 



CHAPTER 6  DLR HOSTING API 

146 

IronPython script engine. Because the script scope is bound to the IronPython script engine, when we 
asks the script scope whether it contains an object by the name “__doc__”, the script scope will say yes.  

Listing 6-15. Example of a Language-Bound Scope  

public static void RunPythonEngineScopeExample() 
{ 
    ScriptRuntime runtime = ScriptRuntime.CreateFromConfiguration(); 
    ScriptEngine pyEngine = runtime.GetEngine("python"); 
    ScriptScope scope = pyEngine.CreateScope(); 
 
    if (scope.ContainsVariable("__doc__")) 
        Console.WriteLine("scope contains __doc__ variable."); 
 
    String docString = scope.GetVariable("__doc__"); 
    Console.WriteLine("doc string is {0}", docString); 
} 

 
So why does a script scope behave differently depending on whether and which language’s script 

engine it is bound to? Recall that the major responsibility of a script scope is to serve as a container that 
carries objects from one language to another language. When we try to retrieve an object from a script 
scope by name, the script scope if language-bound will use the language’s binders to bind the name we 
request to an object in the scope. In the example in Listing 6-15, because the script scope is bound to 
IronPython’s script engine, when we ask for “__doc__”, the script scope will internally create a call site 
and use IronPython’s GetMember binder to bind the name “__doc__”. Because the Python language 
associates the __doc__ attribute with every object, IronPython’s GetMember binder will bind the name 
“__doc__” to the __doc__ attribute of the script scope.  

The global scope of a script runtime we looked at in the previous section is a language-neutral 
scope. To prove that to yourself, you can run the following code in debug mode: 

 
ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration(); 

             
In the debugger, if you examine scriptRuntime.Globals.Engine, you’ll see that the value of its 

LanguageContext property is an instance of the Microsoft.Scripting.Runtime.InvariantContext class. 
That shows that a script runtime’s global scope is not bound to any particular language’s script engine. 

So far in this chapter, you have learned the different kinds of script scopes. Next, let’s see what 
differences it makes when we use those different kinds of script scopes to pass objects by value or by 
reference from one language to another.  

Value and Reference Variables  
One important thing to pay attention to when using script scopes to pass objects from one language to 
another is whether the objects are passed by value or by reference. Passing objects from one language to 
another is in a way like passing objects to a method. When passing objects to a method, you need to 
know whether the method has any chance of mutating those objects. If the objects are passed by value 
to a method, the objects will not be mutated no matter what the method does with those objects inside 
its method scope. On the other hand, if the objects are passed by reference, they will be mutated if the 
method assigns new values to the objects’ properties. The distinction between passing an object by 
value and by reference turns out to be important too in the case of script scopes. And with script scopes, 
the distinction between passing objects by value and by reference is slightly more complicated because 



 CHAPTER 6  DLR HOSTING API 

147 

there are different types of script scopes. In this section we will look at the different scopes and see the 
effects they have on the objects passed from one language to another.  

Global Scope and Variable Passing 
Let’s first see an example that passes an integer and a Customer instance from C# code to Python code 
using a global scope. Listing 6-16 shows a C# example that puts a Customer instance and the integer 2 
into the script runtime’s global scope (in LevelOneExamples.cs). In the global scope, the Customer 
instance is associated with the name “customer” and the integer is associated with the name “x”. Those 
two objects “customer” and “x” are used by the Python code in the simply2.py file, shown in Listing 6-17.  

Listing 6-16. Passing a Customer Object and an Integer to Python Code Using a Global Scope 

public static void PassObjectsToPythonViaGlobals() 
{ 
    ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration(); 
    Customer customer = new Customer("Bob", 30); 
    scriptRuntime.Globals.SetVariable("x", 2); 
    scriptRuntime.Globals.SetVariable("customer", customer); 
 
    //Changing the value of x in Python code will not change the x in Globals. 
    //This is because x is a value type and also the new x in Python code  
    //is not put back into Globals. 
    ScriptScope resultScope = scriptRuntime.ExecuteFile(@"Python\simple2.py"); 
 
    int x = scriptRuntime.Globals.GetVariable("x"); 
    Console.WriteLine("x is {0}", x); 
    Console.WriteLine("Bob's age is {0}", customer.Age); 
 
    Console.WriteLine("Items in global scope: "); 
    DumpScriptScope(scriptRuntime.Globals); 
             
    Console.WriteLine("Items in the returned scope: "); 
    DumpScriptScope(resultScope); 
    scriptRuntime.Shutdown(); 
} 
 
private static void DumpScriptScope(ScriptScope scope) 
{ 
    foreach (var item in scope.GetItems()) 
        Console.WriteLine("{0} : {1}", item.Key, item.Value); 
} 

Listing 6-17. Python Code Using Instances of Customer and Integer in the Script Runtime’s Global Scope  

import x 
import customer 
 
print x 
customer.Age = 20 



CHAPTER 6  DLR HOSTING API 

148 

x = 8 
print x 
 

As you can see from Listing 6-17, the Python code retrieves the “customer” and “x” objects from the 
script runtime’s global scope, prints the value of x and then mutates the Age property of the customer as 
well as the value of x. The original value of x in the Python code is 2. After the mutation, the value of x 
becomes 8. Now here’s the interesting question. What do you think the value of x and the customer’s age 
would be in the global scope after the Python code finishes execution? To show you the answer to the 
question, the code in Listing 6-16 prints out the value of x and the customer’s age property in the global 
scope after the execution of the Python code. It turns out that the value of x in the global scope is still 2 
and the customer’s age is changed to 20. Now if you notice, in Listing 6-16, the method ExecuteFile of 
ScriptRuntime returns a script scope, which is assigned to the variable resultScope. The code in Listing 
6-16 calls the DumpScriptScope method to print out all the objects contained in resultScope. If you run 
the code in Listing 6-16, you’ll see that resultScope contains an object whose name is “x” and value is 8. 
You will also see that resultScope contains an object whose name is “customer” and value is the same 
Customer instance contained in the global scope. 

Because the type of x is a .NET value type, the x in the global scope is passed by value to the Python 
code. So when we mutate the x in Python code, we are mutating a copy of the original x in the global 
scope. After the Python code finishes execution, the x is not put back into the script runtime’s global 
scope but into the new script scope returned by the ExecuteFile method. So the global scope still binds 
the name “x” to the original integer value 2 while the new script scope returned by the ExecuteFile 
method binds the name “x” to 8. In the next section you’ll see an example where we use a different script 
scope from the global scope and the x mutated in Python code is automatically put back into the script 
scope by the DLR Hosting API. If the object we pass to the Python code is an object whose type is a 
reference type like the customer object in our example, the object is passed by reference. So when we 
mutate the object in the Python code, we will see those changes made to the original object in the global 
scope after the Python code finishes execution. 

Language Neutral Scope and Variable Passing 
The previous example shows what happens when using a global scope to pass variables by value and by 
reference. Now let’s see what happens when we use a language-neutral scope to pass variables by value 
and by reference. Listing 6-18 shows the code example of this section (located in LevelTwoExamples.cs). 
The code example creates a language-neutral scope in line 6 and assigns it to the neutralScope variable. 
Then in lines 8 and 9, the code example puts a Customer instance and the integer 2 into the language-
neutral scope. I purposely kept the code in Listing 6-18 similar to the code in Listing 6-16 so you can 
easily compare them. In line 11 of Listing 6-18, we create an IronPython script engine. In line 16, we use 
that script engine to execute the Python code stored in the simple1.py file, shown in Listing 6-19. Notice 
that in line 16, we tell the script engine to use the language-neutral scope when it executes the Python 
code. Also note that in line 16, after the execution of Python code finishes, ExecuteFile returns a script 
scope, which we assign to the resultScope variable. An interesting thing happens in line 19 where we 
compare the object identities of resultScope and neutralScope. It turns out that resultScope and 
neutralScope point to the same object in the managed heap. In other words, resultScope and 
neutralScope are one and the same. This is different from the example we saw in Listing 6-16. In Listing 
6-16, the script scope returned by the ExecuteFile method of the script runtime is not the same object as 
the script runtime’s global scope. 

Now if we print out the contents of the language neutral-scope as line 23 and 24 in Listing 6-18 do, 
we will see that the language-neutral scope’s customer variable has its Age property set to 20 and the x 
variable in the language-neutral scope is set to 8. This is another place where this example is different 
from the example in Listing 6-16. In this example, even though the variable x in the language-neutral 



 CHAPTER 6  DLR HOSTING API 

149 

scope has a value type and is passed to the Python code by value, in the end the variable x in the 
language-neutral scope is mutated by the Python code because after the Python code finishes execution, 
the new value of x is put back into the language-neutral scope. 

Listing 6-18. Passing a Customer Object and an Integer to Python Code Using a Language-Neutral Scope 

1) public static void PassObjectsToPythonViaLanguageNeutralScope() 
2) { 
3)     Customer customer = new Customer("Bob", 30); 
4)  
5)     ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration(); 
6)     ScriptScope neutralScope = scriptRuntime.CreateScope(); 
7)  
8)     neutralScope.SetVariable("x", 2); 
9)     neutralScope.SetVariable("customer", customer); 
10)  
11)     ScriptEngine scriptEngine = scriptRuntime.GetEngine("python"); 
12)  
13)     //Changing the value of x in Python code will change the x in the neutral scope 
14)     //even if x is a value type object. This is because x is put back into the  
15)     //neutral scope. 
16)     ScriptScope resultScope = scriptEngine.ExecuteFile( 
17)                                    @"Python\simple1.py", neutralScope); 
18)  
19)     if (resultScope == neutralScope) 
20)         Console.WriteLine("Result scope and neutral scope are the same object.");  
21)  
22)     Console.WriteLine("Items in the neutral scope: "); 
23)     foreach (var item in neutralScope.GetItems()) 
24)         Console.WriteLine("{0} : {1}", item.Key, item.Value); 
25) } 

Listing 6-19. Python Code That Uses the Customer Instance and an Integer in a Language-Neutral Scope 

print x 
customer.Age = 20 
 
x = 8 
print x 

 
There is one more difference between using a global scope and using a language-neutral scope. 

When we use a global scope to pass objects to Python code, the Python code needs to use import 
statements like import customer to retrieve those objects. In contrast, when we use a language-neutral 
scope to pass objects to Python code, the Python code can use those objects directly with no need for the 
import statements, as Listing 6-19 shows.  

You might notice that we discussed the effects of using a global scope and a language-neutral scope 
on variable passing, but I didn’t say anything about engine scopes. That’s because engine scope is the 
same as language-neutral scope with regard to variable passing.  

In summary, when passing an object using a script scope, it matters whether the object’s type is a 
value type or a reference type. It also matters whether the script scope is global or language-neutral. 



CHAPTER 6  DLR HOSTING API 

150 

Here is a summary of the important facts the code examples in Listing 6-16, Listing 6-17, Listing 6-18 and 
Listing 6-19 demonstrate: 

• When we call the ExecuteFile method on a script runtime to execute guest 
language code, the script runtime’s global scope is used to pass objects to the 
guest language code. The script scope returned by the ExecuteFile method is a 
different object from the global scope. 

• When we call the ExecuteFile method on a script engine and pass in a language-
neutral scope to execute guest language code, we get back a result script scope. 
The result script scope and the language-neutral scope are one and the same. 

• If the type of an object is a reference type, it does not matter whether we use a 
global scope or a language-neutral scope to pass the object to the guest language 
code. Changes made to the object by the guest language code will be available in 
the script scope.  

• If the type of an object is a value type and we use a global scope to pass the object 
to the guest language code, changes made to the object by the guest language 
code will not be put back into the global scope. 

• If the type of an object is a value type and we use a language-neutral scope to pass 
the object to the guest language code, changes made to the object by the guest 
language code will be put back into the language-neutral scope. 

Level Two Use of the DLR Hosting API 
So far in this chapter, we’ve seen several examples relating to script scope, script runtime, and script 
engine. Only a few of them are making Level Two use of the DLR Hosting API. At Level Two, we can 
compile the source code of a DLR-based language into an instance of CompiledCode and execute that 
CompiledCode instance multiple times possibly in different script scopes. We can execute a ScriptSource 
instance that represents the source code of a DLR-based language without first compiling that source 
code. We can load assemblies into a script runtime and those assemblies will be available to all the DLR-
based language code snippets that run on the script runtime. We can use a class called ObjectOperations 
to perform various operations, such as object creation and member access on an object. Don’t worry if 
you’re not clear what those Level Two uses of the DLR Hosting API are. In the next few sections, you’ll 
see examples and detailed descriptions. 

Compiling Code 
If you have guest language code that you need to execute multiple times either in the same script scope 
or in different script scopes, it’s far more efficient if you compile the guest language code once and then 
execute the compiled code as many times as you like. The ScriptEngine class provides a method called 
CreateScriptSourceFromFile, which lets you create an instance of ScriptSource that represents the guest 
language code you want to execute repeatedly. You then compile the guest language code by calling the 
Compile method on the ScriptSource instance. The Compile method returns an instance of CompiledCode 
that represents the compiled guest language code. With that instance of CompiledCode, you can call its 
Execute method to execute the compiled guest language code. The Execute method takes a script scope 
as its input parameter, which allows you to execute the compiled guest language code repeatedly in 
different script scopes. Listing 6-20 shows an example that compiles the Python code in simple1.py and 
executes the compiled code in an engine scope. The Python code in simple1.py was shown in Listing 
6-19.  



 CHAPTER 6  DLR HOSTING API 

151 

Listing 6-20. An Example that Executes Compiled Python Code 

public static void RunCompiledCodeExample() 
{ 
    ScriptEngine pyEngine = ScriptRuntime.CreateFromConfiguration().GetEngine("python"); 
    ScriptSource source = pyEngine.CreateScriptSourceFromFile(@"Python\simple1.py"); 
 
    ScriptScope scope = pyEngine.CreateScope(); 
    scope.SetVariable("x", 2); 
    scope.SetVariable("customer", new Customer("Bob", 30)); 
 
    CompiledCode compiledCode = source.Compile(); 
    compiledCode.Execute(scope); 
} 
 

Listing 6-20 uses the CreateScriptSourceFromFile method of ScriptEngine to create a ScriptSource 
instance that represents the code in simple1.py. If the Python code we want to execute is in a string 
object, we can call the CreateScriptSourceFromString method of ScriptEngine and pass in the string 
object to create a ScriptSource instance that represents the Python code. Listing 6-21 shows such an 
example. The Python code in Listing 6-21 is in the pyFunc string object. The Python code defines a 
function that takes a number and returns true if the number is odd. The example in Listing 6-21 
compiles the Python code and executes the compiled code in an engine scope. The result of the 
execution is fetched from the engine scope and converted to a delegate of type Func<int, bool> called 
IsOdd. Finally the code prints out the result of invoking IsOdd with the number 3. 

Listing 6-21. Compile and Invoke a Python Function in C# 

public static void CallPythonFunctionFromCSharpUsingCompiledCode() 
{ 
    ScriptEngine pyEngine = ScriptRuntime.CreateFromConfiguration().GetEngine("python"); 
    string pyFunc = @"def isodd(n): return 1 == n % 2;"; 
    ScriptSource source = pyEngine.CreateScriptSourceFromString(pyFunc, 
        SourceCodeKind.Statements); 
    CompiledCode compiledCode = source.Compile(); 
     
    ScriptScope scope = pyEngine.CreateScope(); 
    compiledCode.Execute(scope); 
    Func<int, bool> IsOdd = scope.GetVariable<Func<int, bool>>("isodd"); 
    bool result = IsOdd(3); 
    Console.WriteLine("Is 3 an odd number? {0}", result); 
} 
 

After we create a ScriptSource instance in Listing 6-21, we don’t necessarily need to call the Compile 
method on the ScriptSource instance in order to execute the Python code. The ScriptSource class 
defines an Execute method that we can call to execute the source code represented by a ScriptSource 
instance without compiling the source code first. The Execute method takes a script scope as input so 
that we can execute the source code represented by a ScriptSource instance in the script scope we want. 
Listing 6-22 shows an example that uses the Execute method of ScriptSource to run a Python code 
snippet.  



CHAPTER 6  DLR HOSTING API 

152 

Listing 6-22. Using the Execute Method of ScriptSource to Run a Python Code Snippet  

public static void CallPythonFunctionFromCSharpUsingScriptSource()
{ 
    ScriptEngine pyEngine = ScriptRuntime.CreateFromConfiguration().GetEngine("python"); 
    string pyFunc = @"def isodd(n): return 1 == n % 2;"; 
    ScriptSource source = pyEngine.CreateScriptSourceFromString(pyFunc, 
        SourceCodeKind.Statements); 
    ScriptScope scope = pyEngine.CreateScope(); 
    source.Execute(scope); 
    Func<int, bool> IsOdd = scope.GetVariable<Func<int, bool>>("isodd"); 
    bool result = IsOdd(3); 
    Console.WriteLine("Is 3 an odd number? {0}", result);
} 

Loading Assemblies into Script Runtime 
Earlier in this chapter, we saw the code in simpleWpf2.py, in Listing 6-13. The code contains the
following two lines in order to reference the PresentationFramework.dll and PresentationCore.dll
assemblies. 

clr.AddReference("PresentationFramework")
clr.AddReference("PresentationCore") 

If we have many source code files that need to reference those two WPF assemblies, instead of
having each file add the assembly references, we can load the assemblies into a script runtime and use
the script runtime to execute the source code files. The assemblies loaded into the script runtime will be
available to all the source code files and, therefore, they won’t need to add the assembly references.
Listing 6-23 shows how to load assemblies into a script runtime.  

To load the PresentationCore.dll assembly into a script runtime, the example in Listing 6-23 calls
the static Load method of the Assembly class to create an Assembly instance that represents the
PresentationCore.dll assembly. The example calls the LoadAssembly method on the script runtime with
the Assembly instance to load the PresentationCore.dll assembly into the script runtime. The example
then repeats the same steps to load the PresentationFramework.dll assembly into the script runtime.
Finally, the example uses the script runtime to execute the Python code in simpleWpf.py, which is
shown in Listing 6-24. Note that in Listing 6-24, the Python code does not need to have any of the
clr.AddReference("PresentationCore") and clr.AddReference("PresentationFramework") statements
for adding references to PresentationCore.dll and PresentationFramework.dll. 

Listing 6-23. Load WPF Assemblies into a Script Runtime 

public static void LoadAssembliesIntoScriptRuntime()
{ 
    ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration(); 
    scriptRuntime.LoadAssembly(Assembly.Load("PresentationCore, Version=3.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35")); 
    scriptRuntime.LoadAssembly(Assembly.Load("PresentationFramework, Version=3.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35")); 
    ScriptScope scope = scriptRuntime.ExecuteFile(@"Python\simpleWpf.py");
} 



 CHAPTER 6  DLR HOSTING API 

153 

Listing 6-24. simpleWpf.py   

import clr 
from System.Windows import (Application, Window) 
from System.Windows.Controls import (Label, StackPanel) 
 
window = Window() 
window.Title = "Simple Python WPF Example" 
window.Width = 400 
window.Height = 300 
 
stackPanel = StackPanel() 
window.Content = stackPanel 
 
helloLabel = Label() 
helloLabel.Content = "Hello" 
helloLabel.FontSize = 50 
stackPanel.Children.Add(helloLabel) 
 
app = Application() 
app.Run(window) 

Creating Python Class Instances Using Object Operations 
The DLR Hosting API provides a class called ObjectOperations that we can use to perform various 
operations on an object. For example, we can use the overloaded GetMember methods of 
ObjectOperations to get a member property of an object. If an object is callable, we can use the 
overloaded Invoke methods of ObjectOperations to invoke the object. If an object is a class, we can use 
the CreateInstance method of ObjectOperations to create an instance of the class.   

Listing 6-25 shows an example that uses the CreateInstance method of ObjectOperations to create 
an instance of a Python class. The Python code in Listing 6-25 is in the pyCode string object. The Python 
code defines a Python class called ClassA that has no attributes. The example executes the Python code, 
and the result is stored in the script scope against the variable name “ClassA”. The example fetches that 
variable from the script scope and assigns it to the ClassA variable, then it shows two ways to use the 
ClassA variable to create an instance of the ClassA Python class. The first way uses the CreateInstance 
method of ObjectOperations. The code in Listing 6-25 obtains an instance of ObjectOperations for the 
Python language from the Operations property of the pyEngine variable, and then calls the 
CreateInstance method on the ObjectOperations instance to create an instance of the ClassA Python 
class. The second way of creating an instance of the ClassA Python class is simply invoking the ClassA 
variable as if it were a callable object. 



CHAPTER 6  DLR HOSTING API 

154 

Listing 6-25. Create an Instance of a Python Class in C# 

public static void CreateInstanceOfPythonClassInCSharp() 
{ 
    ScriptEngine pyEngine = ScriptRuntime.CreateFromConfiguration().GetEngine("python"); 
    string pyCode = @"class ClassA(object): pass"; 
    ScriptSource source = pyEngine.CreateScriptSourceFromString(pyCode, 
        SourceCodeKind.Statements); 
    ScriptScope scope = pyEngine.CreateScope(); 
    source.Execute(scope); 
    dynamic ClassA = scope.GetVariable("ClassA"); 
    object objectA1 = pyEngine.Operations.CreateInstance(ClassA); 
    object objectA2 = ClassA(); 
} 

Level Three Use of the DLR Hosting API 
We saw a few Level Three uses of the DLR Hosting API in earlier sections. In this section, we will look at 
some more examples of using the DLR Hosting API at this level. We will see what a script host is and how 
to implement a custom script host, how to use ObjectOperations to get the documentation of a Python 
function, and how to create a script runtime in a separate .NET application domain. 

Script Host 
A script host in the DLR is an instance of the Microsoft.Scripting.Hosting.ScriptHost class and represents 
the host platform of a script runtime. Because the DLR can run not only on the usual .NET CLR runtime 
but also in Web environments such as the Silverlight runtime, the DLR Hosting API defines the 
ScriptHost class to abstract away the specifics of the platforms. For example, given the file path of a 
Python source code file, the Silverlight runtime and the usual .NET CLR runtime resolve the file path 
differently. The file path is an example of the platform specifics that are abstracted into the ScriptHost 
class and a related class called PlatformAdaptationLayer. For good software design, the DLR team 
isolated those platform specifics into these two classes. The rest of the DLR Hosting API is kept unaware 
of whether a script runtime runs on the Silverlight platform or the usual .NET CLR platform. If you’re 
interested in knowing more about running the DLR in the Silverlight runtime, Chapter 11 has an in-
depth discussion on that subject.  

To show you how ScriptHost and PlatformAdaptationLayer work and how you can use them if you 
want to run a script runtime on a custom host platform, the example in Listings 6-26 and 6-27 shows 
how to implement a ScriptHost derived class and a PlatformAdaptationLayer derived class to resolve file 
paths differently. Listing 6-26 shows the ScriptHost derived class called SimpleHostType. The 
SimpleHostType overrides the get method of the PlatformAdaptationLayer property it inherits from the 
base class. The overridden get method returns an instance of the SimplePlatformAdaptationLayer class, 
whose code is shown in Listing 6-27. 

Listing 6-26. SimpleHostType.cs 

public class SimpleHostType : ScriptHost 
{ 
    public override Microsoft.Scripting.PlatformAdaptationLayer PlatformAdaptationLayer 



 CHAPTER 6  DLR HOSTING API 

155 

    { 
        get 
        { 
            return SimplePlatformAdaptationLayer.INSTANCE; 
        } 
    } 
} 
 

The implementation of SimplePlatformAdaptationLayer overrides the OpenInputFileStream method 
inherited from the base PlatformAdaptationLayer class. The overridden OpenInputFileStream method 
resolves a file path by appending “Python\” to the path and then passing the modified path the 
OpenInputFileStream method of the base class. The implication of this file path resolution is that if we 
want to run the hello.py file in the physical 
C:\ProDLR\src\Examples\Chapter6\HostingExamples\Python folder, we need only specify “hello.py” 
instead of “Python\hello.py” as the file path. Listing 6-28 shows an example of this effect.  

Listing 6-27. SimplePlatformAdaptationLayer.cs 

public class SimplePlatformAdaptationLayer : PlatformAdaptationLayer 
{ 
    public static PlatformAdaptationLayer INSTANCE = new SimplePlatformAdaptationLayer(); 
 
    public override System.IO.Stream OpenInputFileStream(string path) 
    { 
        return base.OpenInputFileStream(@"Python\" + path); 
    } 
} 
 

The code in Listing 6-28 creates an instance of ScriptRuntimeSetup and sets that instance’s HostType 
property to typeof(SimpleHostType). Then the code uses the ScriptRuntimeSetup instance to create a 
script runtime. Because the script host associated with the script runtime is an instance of 
SimpleHostType, we specify the file path of the Python source code we want to execute on the script 
runtime as “hello.py” instead of “Python\hello.py”. Had we not set the HostType property of the 
ScriptRuntimeSetup instance to typeof(SimpleHostType), the ScriptHost class would be used as the 
default class for creating a script host for the script runtime and we would need to specify 
“Python\hello.py” as the file path. 

Listing 6-28. An Example That Uses the SimpleHostType Class to Resolve File Paths 

public static void UseCustomScriptHost() 
{ 
    ScriptRuntimeSetup setup = ScriptRuntimeSetup.ReadConfiguration(); 
    setup.HostType = typeof(SimpleHostType); 
    ScriptRuntime scriptRuntime = new ScriptRuntime(setup); 
    ScriptScope scope = scriptRuntime.ExecuteFile(@"hello.py"); 
} 



CHAPTER 6  DLR HOSTING API 

156 

Object Operations 
We looked at the ObjectOperations class when we discussed the Level Two usage of the DLR Hosting 
API. ObjectOperations defines many methods that we can use to perform various operations on an 
object. Some of the methods belong to Level Two and others belong to Level Three. In this section, I will 
show you a Level Three use of the ObjectOperations class that obtains the documentation string of a 
Python function. This can be useful when you’re building a tool that provides intellisense for Python 
functions, for example. 

Listing 6-29 shows our example, in which we create a script runtime and a script engine as usual for 
running the Python code in helloFunc.py. We already saw the Python code in helloFunc.py earlier in this 
chapter. For your convenience, the Python code is displayed below with the line of code that’s the focus 
of our current discussion in bold: 

 
def hello(): 
    """This function prints Hello.""" 
    print "Hello" 

 
The bolded line is the documentation string of the hello function. It is the string we want to obtain 

using ObjectOperations. In Listing 6-29, after the Python code is run, we fetch the object that represents 
the hello function from the script scope in line 6 and assign it to the helloFunction variable. In lines 8 to 
10, we use the GetMemberNames method of ObjectOperations to print out all the members of the 
helloFunction. One of those members is the __doc__ attribute predefined by the Python language for 
every Python class, function, and object. The __doc__ attribute contains the documentation string of the 
Python hello function, and line 12 in Listing 6-29 uses the GetMember method of ObjectOperations to 
print the documentation string on the screen. If you run the code in Listing 6-29, you’ll see the string 
“This function prints Hello.” printed as the last line on the screen. 

Listing 6-29. Printing the Documentation String of a Python Function to the Screen 

1) public static void GetDocStringOfPythonFunctionUsingObjectOperations() 
2) { 
3)     ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration(); 
4)     ScriptEngine pyEngine = scriptRuntime.GetEngine("python"); 
5)     ScriptScope scope = pyEngine.ExecuteFile(@"Python\helloFunc.py"); 
6)     object helloFunction = scope.GetVariable("hello"); 
7)      
8)     IList<String> helloFuncMembers = pyEngine.Operations.GetMemberNames(helloFunction); 
9)     foreach (var item in helloFuncMembers) 
10)         Console.WriteLine(item); 
11)              
12)     Console.WriteLine(pyEngine.Operations.GetMember(helloFunction, "__doc__")); 
13) } 

Remote Script Runtime 
A Level Three use of the DLR Hosting API is to run one or more script runtimes remotely. The script 
runtimes can run in a different process from the host’s process or they can run in the same process but 
in different application domains. This section will briefly explain what an application domain is and 
show an example of running a script runtime in the same process as the host’s but in a different 



 CHAPTER 6  DLR HOSTING API 

157 

application domain. The next sections will give a quick tour of .NET Remoting and show an example of 
running a script runtime in a process different from the host’s.  

A .NET application domain is like a lightweight process that creates a boundary between software 
components that run in a process. A process can have multiple application domains. Each application 
domain has its own address space for referencing objects in memory. References to objects in one 
address space will make no sense in another address space. Therefore, we can’t pass object references in 
one application domain to another application domain and expect those references to point to the same 
objects. To share objects between two application domains, those objects need to be value objects that 
can be serialized in one application domain and deserialized in another. Or the objects need to be 
instances of classes that inherit directly or indirectly from a .NET Remoting class called 
MarshalByRefObject. The classes ScriptRuntime, ScriptEngine, ScriptScope, ScriptSource and 
CompiledCode all inherit from MarshalByRefObject. Therefore, instances of those classes can live in one 
application domain and be referenced in another application domain. The underlying framework that 
makes it possible to reference objects that live in a different application domain is .NET Remoting.  

One application domain can contain multiple instances of ScriptRuntime. There are many reasons 
for running a script runtime in a separate application domain. For example, it’s common to use the DLR 
to add scripting capability to an application. By providing scripting capability, you allow users of your 
application to extend and automate the application. Users will write code in languages such as 
IronPython and IronRuby and your application will run those code scripts. When your application runs 
code scripts written by users, you often want to protect your application from code errors or malicious 
attacks in those scripts. You will not want your application process to crash when a user script crashes. 
Sometimes you might want to run user scripts with a different security access level (SAL). For those 
reasons, you want to execute user scripts in a script runtime that lives in a separate application domain. 

Let’s see an example that runs a script runtime in a separate application domain within the same 
process. Listing 6-30 shows an example that creates a script runtime in a separate application domain. 
The example creates a new application domain by calling the static CreateDomain method of the 
AppDomain class in line 3. The newly created application domain is different from the application domain 
that runs the code in Listing 6-30. To ease the discussion, let’s refer to the application domain created in 
line 3 as the new application domain and the application domain that runs the code in Listing 6-30 as 
the old application domain. In line 4, the example calls the static CreateRemote method of ScriptRuntime 
with the new application domain created as an input parameter. This effectively creates a remote script 
runtime that lives in the new application domain. The scriptRuntime variable in line 5 points not to the 
real remote script runtime but to a proxy of the remote script runtime. (The next section about .NET 
Remoting will explain more about proxies and remote objects.) When the example code calls the 
GetEngine method on the remote script runtime in line 6, the GetEngine method returns a script engine. 
The script engine is also a proxy of the real script engine object that lives in the new application domain. 
In the old application domain, we are able to reference the script runtime and script engine in the new 
application domain because the ScriptRuntime and ScriptEngine classes inherit from 
MarshalByRefObject. 

Line 7 uses the remote script engine to execute the helloFunc.py file. The result of the execution is 
an object stored in the script scope against the name “hello”. That object lives in the new application 
domain. Because of this, when we fetch that object from the script scope in line 8, we call the 
GetVariableHandle method on the script scope rather than the GetVariable method we saw in previous 
examples. 

Listing 6-30. Executing Python Code in a Remote Script Runtime 

1) public static void CreateRemoteScriptRuntime() 
2) { 
3)     AppDomain appDomain = AppDomain.CreateDomain("ScriptDomain"); 



CHAPTER 6  DLR HOSTING API 

158 

4)     ScriptRuntimeSetup setup = ScriptRuntimeSetup.ReadConfiguration(); 
5)     ScriptRuntime scriptRuntime = ScriptRuntime.CreateRemote(appDomain, setup); 
6)     ScriptEngine pyEngine = scriptRuntime.GetEngine("python"); 
7)     ScriptScope scope = pyEngine.ExecuteFile(@"Python\helloFunc.py"); 
8)     ObjectHandle helloFunction = scope.GetVariableHandle("hello"); 
9)     pyEngine.Operations.Invoke(helloFunction, new object[]{}); 
10) } 

 
The rest of this chapter will dive deeper into the subject of .NET Remoting and how that relates to 

the DLR Hosting API. We’ll start with a quick tour of .NET Remoting in general that includes nothing 
specific to the DLR. After that, I’ll show you an example that runs a script runtime in a different process. 
If you are already familiar with .NET Remoting, you can skip the next section and jump directly to the 
example. 

.NET Remoting Quick Tour 

.NET Remoting is a framework that assists developers in creating applications that are distributed across 
application domains, processes, or physical machines. Like a number of other technologies, such as 
DCOM, Java RMI, and CORBA’s IIOP/GIOP, the aim of .NET Remoting is to help in the development of 
objects or components that can be consumed remotely in an object-oriented way. Figure 6-1 shows the 
relationship between a .NET Remoting server and client, which might be in a different application 
domain within the same process, in different processes, or on different physical machines. 

 

server side

object
object

channel
proxy

client
object

client
object

client side

object

 

Figure 6-1. The architecture of a distributed application based on .NET Remoting  

As Figure 6-1 shows, the server-side component of a .NET Remoting-based application has some 
objects that the client component can interact with through proxies. The proxies communicate with the 
server-side objects they represent through channels. The server-side objects can be remoting objects or 
non-remoting objects. If they are remoting objects, they can be classified into one of three kinds: client-
activated, SingleCall, and Singleton, as follows: 

• A client-activated object is an object that is activated at the client’s request. It can 
hold state information between several method calls triggered by the same client 
on the object. A client-activated object is associated with one client only and does 
not allow you to share state information among several clients. 

• A SingleCall object is a server-activated object. A new SingleCall object is created 
each time one of its methods is called by a client, and the object is destroyed when 
the method call is finished. Consequently, a SingleCall object holds no state 
information between method calls. 



 CHAPTER 6  DLR HOSTING API 

159 

• A Singleton object is also server-activated object. There can be only one instance 
of a Singleton class. The state of a Singleton object is shared among multiple 
clients.  

Communication channels between a .NET Remoting client and server can use network protocols 
such as HTTP, SMTP, and TCP. When using an HTTP channel, the request and response messages can 
be formatted as Simple Object Access Protocol (SOAP) messages. Besides SOAP, there are other 
formatting choices we can use with the HTTP transfer protocol.  

The proxy object in Figure 6-1 is an instance of some type. There are a number of ways for the .NET 
Remoting client to get that type’s information. One way is to compile the server-side code into 
assemblies and let the client-side project reference those assemblies. Because the assemblies contain 
the type information of the server-side classes, by referencing those assemblies, the .NET Remoting 
client is able to create proxy objects for the server-side remoting objects. Another way to make the 
server-side type information available to the .NET Remoting client is to use a utility program called 
soapsuds.exe that ships with the .NET Framework SDK. 

 

Running Script Runtime in a Separate Process 
Now let’s look at an example that runs a script runtime in a different process. You can find the server-
side code of this example in the ScriptServer project of this chapter’s code download. The client-side 
code is in the ScriptClient project. The server side of the example will provide a script runtime as a 
remoting object and the client side will use that script runtime to execute Python code in the process 
that hosts the server side of the example.   

A server-activated object (SAO) such as a Singleton or SingleCall object needs to have a default 
constructor that takes no input parameters. Because ScriptRuntime does not have a default constructor 
that takes no input parameters, its instances can’t be server-activated objects. Therefore, if we want to 
use the same instance of ScriptRuntime across multiple requests from .NET remoting clients, instead of 
making the instance of ScriptRuntime a Singleton SAO, we need to use a factory object to act as the 
Singleton SAO. The factory object will provide clients access to the ScriptRuntime instance. Listing 6-31 
shows a factory class called RemotingFactory. The class derives from MarshalByRefObject so that its 
instances can be remoting objects. RemotingFactory has only one method called GetScriptRuntime, 
which will return the same ScriptRuntime instance every time it’s called. 

Listing 6-31. RemotingFactory.cs 

public class RemotingFactory : MarshalByRefObject 
{ 
    private static ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration(); 
             
    public ScriptRuntime GetScriptRuntime() 
    { 
        return scriptRuntime; 
    } 
} 
 

Now that we have the RemotingFactory class, we need a process to host and expose an instance of 
this class as a Singleton object. Listing 6-32 shows the code that, when run, creates a host process and 
exposes a RemotingFactory instance as a Singleton object. The code in Listing 6-32 creates a channel that 
uses TCP as the transport protocol and a binary formatter for formatting messages. The channel listens 



CHAPTER 6  DLR HOSTING API 

160 

on port 8088. We use the static RegisterWellKnownServiceType method of the RemotingConfiguration 
class to register RemotingFactory as the type of a Singleton object whose name is “RemotingFactory”. At 
this point, the server-side implementation of our example is done. Next, we will look at the client-side 
implementation. 

Listing 6-32. Server Code That Hosts a RemotingFactory Instance as a Singleton Object 

static void Main(string[] args) 
{ 
    BinaryServerFormatterSinkProvider serverProvider =  

new BinaryServerFormatterSinkProvider(); 
    serverProvider.TypeFilterLevel = TypeFilterLevel.Full; 
 
    IDictionary props = new Hashtable(); 
    props["port"] = 8088; 
     
    TcpChannel channel = new TcpChannel(props, clientSinkProvider:null,  

serverSinkProvider:serverProvider); 
    ChannelServices.RegisterChannel(channel, false); 
             
    RemotingConfiguration.RegisterWellKnownServiceType(typeof(RemotingFactory),  
        "RemotingFactory", WellKnownObjectMode.Singleton); 
 
    Console.WriteLine("Server started. Press enter to shut down."); 
    Console.ReadLine(); 
} 
 

Listing 6-33 shows the code that implements the .NET Remoting client. The code gets a hold of the 
server-side Singleton object by calling the static GetObject method of Activator with 
“tcp://localhost:8088/RemotingFactory” as the URI of the server-side Singleton object. We use this URI 
because (a) the server channel uses TCP as the transport protocol, (b) the server channel listens on port 
8088 of localhost, and (c) the server Singleton object is named “RemotingFactory”. Once the client code 
gets the “RemotingFactory” Singleton object, it calls the Singleton object’s GetScriptRuntime method to 
get the remote script runtime.  

The remote script runtime lives in the server process. What the client code gets from calling the 
GetScriptRuntime method is a proxy of the remote script runtime. The code in Listing 6-33 calls the 
GetEngine method on the remote script runtime, which returns a script engine. The script engine is again 
a proxy of the real script engine object that lives in the server process. The code in Listing 6-33 uses the 
remote script engine to execute a Python code snippet that defines a Python function called isodd. The 
result of the execution is an object stored in the script scope against the name “hello”. That object also 
lives in the server process. Because of that, when we fetch that object from the script scope, we call the 
GetVariableHandle method instead of the GetVariable method on the script scope. 

Listing 6-33. The .NET Remoting Client   

static void Main(string[] args) 
{ 
    TcpChannel channel = new TcpChannel(); 
    ChannelServices.RegisterChannel(channel, false); 
 

tcp://localhost:8088/RemotingFactory%E2%80%9D


 CHAPTER 6  DLR HOSTING API 

161 

    RemotingFactory remotingFactory = (RemotingFactory)Activator.GetObject( 
typeof(RemotingFactory), "tcp://localhost:8088/RemotingFactory"); 

     
    ScriptRuntime runtime = remotingFactory.GetScriptRuntime(); 
    ScriptEngine pyEngine = runtime.GetEngine("python"); 
    string pyFunc = @"def isodd(n): return 1 == n % 2;"; 
    ScriptSource source = pyEngine.CreateScriptSourceFromString(pyFunc, 
        SourceCodeKind.Statements); 
    ScriptScope scope = pyEngine.CreateScope(); 
    source.Execute(scope); 
    ObjectHandle IsOddHandle = scope.GetVariableHandle("isodd"); 
 
    ObjectHandle result = pyEngine.Operations.Invoke(IsOddHandle, new object[] { 3 }); 
    bool answer = pyEngine.Operations.Unwrap<bool>(result); 
    Console.WriteLine("Is 3 an odd number? {0}", answer); 
    Console.ReadLine(); 
} 
 

To run the example, you need to first compile the ScriptServer and ScriptClient projects in this 
chapter’s code download. After the compilation, you need to run ScriptServer.exe first and then 
ScriptClient.exe. Running ServerServer.exe causes a command console to pop up and you’ll see the text 
“Server started. Press enter to shut down.” displayed in the command console. Running ScriptClient.exe 
will cause another command console to pop up and display the text “Is 3 an odd number? True”. 

Summary 
The DLR Hosting API offers a lot of value and functionality. In this chapter, we saw examples that 
demonstrate how cumbersome it can be to host one language in another without it. The DLR Hosting 
API consists of a consumer-side API and a provider-side API. We focused here on the consumer side, 
with many code examples that demonstrate how to use this API at different levels. We discussed in detail 
how the various kinds of script scopes pass value objects and reference objects around. We then 
introduced .NET Remoting and looked at an example that runs Python code on a script runtime that 
lives in a separate process. The DLR Hosting API is an interesting component that has many useful 
applications. In Chapter 9, we will look at a programming language called Stitch that extends the 
functionalities of the DLR Hosting API. In Chapter 11, you’ll see how the DLR Hosting API enables DLR-
based language code to be embedded in a Silverlight application. 

 

tcp://localhost:8088/RemotingFactory




 

P  A  R  T     2 

■ ■ ■ 

Applying the DLR 



 



C H A P T E R  7 
    
 

165 

DLR and Aspect-Oriented 
Programming 

Dynamic objects in the DLR provide a foundation that has many applications. In previous chapters, 
we’ve seen some practical examples that leverage this foundation and do interesting things that are 
either awkward or impossible in static languages. In this chapter, we are going to travel further down the 
path and see the fantastic application of dynamic objects in aspect-oriented programming (AOP). AOP is 
a programming paradigm that is very good at solving the problem of cross-cutting concerns. Common 
cross-cutting concerns in a software system are issues like transaction management, security, auditing, 
performance monitoring, logging and tracing, and so on. By virtue of addressing the problem of cross-
cutting concerns in an elegant manner, AOP provides tremendous value in the design and architecture 
of software systems. I’ll begin with an introduction of the basic AOP concepts accompanied by some 
simple examples, then show you how to implement an AOP framework based on dynamic objects. By 
the end of the chapter, you will have an AOP framework that (a) works across both static and dynamic 
objects and (b) is integrated with the widely adopted Spring.NET’s AOP framework. 

Aspect-Oriented Programming 
Let’s go over the important concepts of AOP now to set the stage for the rest of the chapter. After reading 
this section, you will know what AOP is and the problem it solves. You will also learn the meaning of 
terms such as pointcut, join point, and advice. If you are already familiar with these topics, you can skip 
this section and jump ahead. 

Cross-Cutting Concerns 
AOP solves the issue of cross-cutting concerns very well. This is best illustrated with an example. Listing 
7-1 shows some code that logs one message at the beginning and one at the end of the Age property’s get 
method. The real business logic of the property’s get method is represented by the code comment 
//some business logic here. The two lines that write to the console belong to the logging concern. The 
code by itself might not seem to be a problem, but imagine how the code would look if we were to do 
this kind of logging for all property access in 20 other classes. You would quickly notice that the same 
code that writes messages to the console output is duplicated and scattered all over the place. That naïve 
approach violates the DRY (Don’t Repeat Yourself) principle and creates the problem of code scattering. 
Furthermore, the code in listing 7-1 also illustrates the problem of code tangling because the logging 
code and the real business logic are enmeshed.  

The code scattering and tangling are the kinds of problems AOP solves. Logging is just an example of 
a cross-cutting concern we commonly encounter in a software system, and it’s the easiest and simplest 
to demonstrate. From this simple example, you can extrapolate and see that if this were an example of 



CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

166 

transaction management, the two lines of logging code would be replaced by a line of code that starts a 
transaction and another line of code that commits or rolls back the transaction.    

Listing 7-1. Logging Messages Before and After a Property Access 

public class Employee : IEmployee 
{ 
    private int age; 
    private String name; 
 
    public int Age  
    {  
        get  
        { 
            Console.WriteLine("Employee Age getter is called."); 
     //some business logic here. 
            Console.WriteLine("End of Employee Age getter."); 
            return age; 
        } 
 
        set { age = value; } 
    } 
 
    public String Name 
    { 
        get 
        { 
            Console.WriteLine("Employee Name getter is called."); 
            return name; 
        } 
 
        set { name = value; } 
    } 
} 
 
public interface IEmployee 
{ 
    int Age { get; set; } 
    String Name { get; set; } 
} 
 

Advice, Join Points, and Pointcuts 
In AOP terms, the two lines of logging code we saw in the Age property’s get method should be 
modularized into something called advice. Advice is the action you’d like to take to address a cross-
cutting concern. The first logging statement is at the beginning of the property getter. The second 
logging statement is at the end of the property getter before the employee’s age is returned. The 
beginning and the end of the property getter in this case are called join points. Join points are the places 
in code where advice can be applied. A collection of join points is called a pointcut. When you 



 CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

167 

encapsulate pointcuts and advice into a module, you get what’s called an aspect. Figure 7-1 shows a 
pictorial view of all those terms to make it easy to learn them. 

 

aspect

pointcut

Join point

advice

01101

1001..

01101

1001..

 

Figure 7-1. AOP concepts and their relationships 

An Example 
Now that I’ve introduced the concepts of AOP, let’s relate the abstract concepts to concrete code. For 
this example, I’ll use Spring.NET’s AOP framework and apply it to the code in Listing 7-1. The goal here 
is to extract the logging statements into a piece of advice and apply that advice to the right join points. 
To try the example, you will need Spring.NET; I use version 1.3.0 for the examples in this chapter. Here 
are the steps you need to take to set up Spring.NET: 

1. Go to the Spring.NET website (www.springframework.net) and download the 
file Spring.NET-1.3.0.zip. 

2. Unzip Spring.NET-1.3.0.zip to a folder of your choice. Throughout this book, 
I’ll assume that Spring.NET-1.3.0.zip is unzipped to C:\Spring.NET-1.3.0. If 
you choose to unzip the file to a different folder, you need to substitute that 
path with your own whenever I refer to it in the book. 

3. Spring.NET consists of several components, not all of which are needed to run 
the code examples in this chapter. Our examples need only two components—
Spring.Core.dll and Spring.Aop.dll. You need to copy the following files from 
C:\Spring.NET-1.3.0\Spring.NET\bin\net\2.0\release to 
C:\ProDLR\lib\Spring.NET\release: 

• Common.Logging.dll 

• Spring.Aop.dll, Spring.Aop.pdb and Spring.Aop.xml 

• Spring.Core.dll, Spring.Core.pdb and Spring.Core.xml 

The Advice 

Let’s start with the advice portion of the example. Listing 7-2 shows the code for the logging advice, 
which is in a class called SpringBasedLoggingAdvice. The class implements the 
AopAlliance.Intercept.IMethodInterceptor interface. AOP Alliance is a project that defines a standard 
set of Java interfaces that all Java-based AOP frameworks can choose to implement. The idea is that if all 

http://www.springframework.net


CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

168 

AOP frameworks implement those interfaces, we can code against those interfaces and our code will be 
vendor-agnostic. In the ideal situation, we can swap out a particular AOP framework and swap in 
another without any code change because our code depends only on the standard interfaces, not on a 
particular vendor’s implementation. The interfaces AOP Alliance defines are Java interfaces. The 
developers of Spring.NET defined corresponding interfaces in .NET. IMethodInterceptor is one of those 
interfaces.  

A class implements IMethodInterceptor if it wants to provide AOP advice by intercepting method 
calls. That happens to be what our example wants to do. Our example wants to intercept calls to 
property getters and provide some logging-related advice. So the class SpringBasedLoggingAdvice 
implements IMethodInterceptor, which has only an Invoke method. The implementation of the Invoke 
method in SpringBasedLogginAdvice is fairly straightforward. It first calls BeforeInvoke to perform the 
part of the advice logic that we’d like to take place before the property getter is called. In this simple 
example, the BeforeInvoke method simply prints a message to the console. After calling BeforeInvoke, 
the code in the Invoke method calls invocation.Proceed(). This will effectively call the method that is 
intercepted, the property getter in our case. The result of the method call is stored in the returnValue 
variable so that it can be returned by the Invoke method later. Before returning returnValue, the Invoke 
method calls AfterInvoke to perform the part of the advice logic that we’d like to take place after the 
property getter is called. At this point, the implementation of the Spring.NET-based advice class is done. 
Next, let’s see how to specify the pointcut of our example.   

Listing 7-2. Logging Advice Based on Spring.NET 

public class SpringBasedLoggingAdvice : IMethodInterceptor 
{ 
    public object Invoke(IMethodInvocation invocation) 
    { 
        BeforeInvoke(invocation.Method, invocation.Arguments, invocation.Target); 
        object returnValue = invocation.Proceed(); 
        AfterInvoke(returnValue, invocation.Method,  

invocation.Arguments, invocation.Target); 
        return returnValue;  
    } 
 
    private void BeforeInvoke(MethodInfo method, object[] args, object target) 
    { 
        Console.Out.WriteLine("Advice BeforeInvoke is called. Intercepted method is {0}.", 

method.Name); 
    } 
 
    private void AfterInvoke(object returnValue, MethodInfo method,  

object[] args, object target) 
    { 
        Console.Out.WriteLine("Advice AfterInvoke is called. Intercepted method is {0}.",  

method.Name); 
    } 
} 



 CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

169 

The Pointcut 

Listing 7-3 shows the XML that specifies the pointcut of the example. Since this is not a chapter about 
Spring.NET, I won’t get into too much detail about the XML file. If you want to learn more, Spring.NET 
has excellent online documentation you can refer to. Here, I’ll only explain the XML in Listing 7-3 at a 
high level. A typical Spring.NET XML file consists mainly of a collection of <object> elements. In Listing 
7-3, the object element whose id is getAgeCalls specifies the pointcut of our example. The pointcut is 
specified by the pattern expression .*Age, which matches any property or method whose name ends 
with Age. The object element whose id is loggingAdvice represents an instance of the 
SpringBasedLoggingAdvice class we saw in the previous section. The <aop:advisor> element represents 
something similar to an aspect. As mentioned earlier, an aspect encapsulates pointcuts and advice. 
That’s why the <aop:advisor> element references the getAgeCalls pointcut and the loggingAdvice 
advice in order to indicate which pointcuts and advice it encapsulates. Finally, in order to apply the 
advisor to a target object, the XML defines the object element whose id is employeeBob. The object 
element employeeBob represents an instance of the Employee class we saw in Listing 7-1.  

Listing 7-3. Application-config.xml 

<?xml version="1.0" encoding="utf-8" ?> 
<objects xmlns="http://www.springframework.net" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xmlns:aop="http://www.springframework.net/aop"> 
 
  <aop:config> 
 
    <aop:advisor id="getAgeAdvisor" pointcut-ref="getAgeCalls"  
                 advice-ref="loggingAdvice"/> 
 
  </aop:config> 
   
  <object id="getAgeCalls"  

type="Spring.Aop.Support.SdkRegularExpressionMethodPointcut, Spring.Aop"> 
    <property name="patterns"> 
      <list> 
        <value>.*Age</value> 
      </list> 
    </property> 
  </object> 
 
  <object id="loggingAdvice" type="Aop1.SpringBasedLoggingAdvice, Aop1"/> 
 
  <object id="employeeBob" type="Aop1.Employee, Aop1"> 
    <property name="Name" value="Bob"/> 
    <property name="Age" value="30"/> 
  </object> 
   
</objects> 

http://www.springframework.net
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.net/aop


CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

170 

A Test Run 
The example so far has defined a pointcut, an advice class, and an advisor. Listing 7-4 shows the client 
code that demonstrates how all the pieces work together. The code first creates a Spring.NET application 
context from the application-config.xml file. A Spring.NET application context is basically a container of 
the objects defined by the <object> elements in files like application-config.xml. The objects usually 
have dependencies on one another. When Spring.NET creates an application context, it will make sure 
that the dependencies among the objects are properly wired up.  

From the application context, the code in RunSimpleStaticObjectExample retrieves the object 
employeeBob by its object id and assigns the object to the employee variable. The last line of code calls the 
getter method of the Age property on the employee variable and prints the employee’s age to the screen. 
Because the Employee class’s Age property matches the pattern expression of the pointcut, the call to the 
Age property’s getter method will be intercepted and the advice logic implemented in 
SpringBasedLoggingAdvice will be applied.     

Listing 7-4.  Example Code That Demonstrates How Advice is Applied to a Target Object. 

private static void RunSimpleStaticObjectExample() 
{ 
    IApplicationContext context = new XmlApplicationContext("application-config.xml"); 
    IEmployee employee = (IEmployee)context["employeeBob"]; 
    Console.WriteLine("Employee is {0} years old.", employee.Age); 
} 
 

The output you’ll see when running the code looks like the following: 
 

Advice BeforeInvoke is called. Intercepted method is get_Age. 
Employee Age getter is called. 
End of Employee Age getter. 
Advice AfterInvoke is called. Intercepted method is get_Age. 
Employee is 30 years old. 

 
What happens behind the scene is that at runtime, Spring.NET creates a proxy object that wraps the 

employeeBob object when it sees that calls to employeeBob need to be intercepted. The employee variable 
actually references the proxy object, not the employeeBob object. The code employee.Age in our example 
therefore calls the Age property’s getter method on the proxy object, and that’s how method interception 
works. The proxy object Spring.NET creates is not just any proxy object; it is an instance of a dynamically 
generated class that implements the IEmployee interface. The generated class overrides the Age 
property’s getter method. The overridden method will call the Invoke method on the advice object, and 
thus the logging logic is woven into the Employee class. This is called runtime weaving because it weaves 
the logic of advice into an object at runtime. There are techniques other than runtime weaving for 
implementing an AOP framework. For example, compile-time weaving, as its name suggests, weaves one 
piece of code with another at compile time. Load-time weaving does the code weaving at the time 
classes are loaded into a runtime such as CLR or JVM.  

Of all the different techniques for implementing an AOP framework, the one of most interest to us is 
runtime weaving. This is because the runtime-weaving AOP and its method interception mechanism 
smells and tastes a lot like what dynamic objects do. Late-binding actions on dynamic objects are 
“intercepted” and handled by the Bind[Action] methods in DynamicMetaObject. A proxy object to a target 
object in AOP is like a meta-object to a base object in DLR. With this analogy between runtime-weaving 



 CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

171 

AOP and DLR dynamic objects in mind, let’s take the natural next step and see how to implement a DLR-
based AOP framework for dynamic objects.   

AOP for Dynamic Objects 
The Spring.NET aspect-oriented programming you saw in the previous section works for static .NET 
objects only. Now let’s implement a DLR-based AOP framework that works for dynamic objects. If you 
open the C:\ProDLR\src\Examples\Chapter7\Chapter7.sln file in Visual Studio 2010, you can find the 
source code for this section in the Aop1 project. The last part of this chapter will integrate our AOP 
framework with the Spring.NET AOP so that the same advice objects and pointcuts can work across both 
static and dynamic objects. 

Understanding the Framework 
Before looking at how the DLR-based AOP framework is implemented, let’s see how to use it and what 
functionalities it provides. Listing 7-5 shows the familiar Customer class I’ve been using in many of the 
examples in earlier chapters. There is not much new to say about the Customer class. What’s important 
about this class is that (a) it implements IDynamicMetaObjectProvider and (b) it defines an Age property 
getter method. The meta-object class that contains the late-binding logic for Customer instances is the 
AopMetaObject class.  

Listing 7-5. Customer.cs 

public class Customer : IDynamicMetaObjectProvider 
{ 
    public int Age  
    {  
        get  
        {  
            Console.WriteLine("Customer Age getter is called.");  
            return 3;  
        } 
    } 
 
    public DynamicMetaObject GetMetaObject(System.Linq.Expressions.Expression parameter) 
    { 
        return new AopMetaObject(parameter, this); 
    } 
} 
 
 

As you’ll see shortly, the AopMetaObject class is where aspect weaving happens. For the moment, 
let’s write some code that uses the Customer class and see the effects. Listing 7-6 shows the client code 
that creates an instance of Customer and accesses its Age property.  

Listing 7-6. Client Code That Demonstrates Effects of Using the Customer Class. 

private static void RunDynamicObjectExample() 
{ 
    dynamic customer = new Customer(); 



CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

172 

    Console.WriteLine("Customer is {0} years old.", customer.Age);
} 

The result of running the code in Listing 7-6 will look like the following:  

Advice BeforeInvoke is called.
Customer Age getter is called.
Advice AfterInvoke is called.
Customer is 3 years old. 

The two lines in bold are spit out by the advice logic in a class called SimpleLoggingAdvice. Listing 7-7 in
the next section will show the code for SimpleLoggingAdvice. The point to stress here is that the advice
logic you’ll see in Listing 7-7 and the code in Customer’s Age property are “woven” together by the
AopMetaObject class. That’s why when the code in Listing 7-6 accesses the Age property of the customer
variable, the program first prints the result of calling SimpleLoggingAdvice’s BeforeInvoke method,
followed by the result of calling the Age property getter method, and finally the result of calling
SimpleLoggingAdvice’s AfterInvoke method. 

Implementing the Framework 
Now that I’ve shown you what using the AOP framework is like, let’s see how that framework is
implemented. The implementation of the AOP framework consists of two classes, SimpleLoggingAdvice
and AopMetaObject. Listing 7-7 shows the SimpleLoggingAdvice class. The code in
SimpleLoggingAdvice.cs is fairly simple. The only thing of importance here is the method signatures of
BeforeInvoke and AfterInvoke. Both methods take no input parameters and have System.Object as the
return type. To be honest, the method signatures are not practical. Usually methods like BeforeInvoke
and AfterInvoke have input parameters that give them some information about the target method—i.e.,
the method being intercepted. If you look back at the code in Listing 7-2, you’ll see that the Invoke
method of IMethodInterceptor takes an instance of IMethodInvocation as an input parameter. The
IMethodInvocation instance contains information about the intercepted method. Practically, the
BeforeInvoke and AfterInvoke methods should take some input parameters like what
IMethodInterceptor’s Invoke method does. However, for this example I simplify things a bit because, as
you’ll see, the method signatures of BeforeInvoke and AfterInvoke will influence the implementation
complexity of the AopMetaObject class. I’ll tackle that complexity later and show you a more practical
example when we integrate our AOP framework with Spring.NET AOP. 

Listing 7-7. SimpleLoggingAdvice.cs  

public class SimpleLoggingAdvice
{ 
    //For simplicity, this method does not have any input parameter. 
    public void BeforeInvoke() 
    { 
        Console.Out.WriteLine("Advice BeforeInvoke is called."); 
    } 

    //For simplicity, this method does not have any input parameter. 
    public void AfterInvoke() 
    { 
        Console.Out.WriteLine("Advice AfterInvoke is called."); 



 CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

173 

    } 
} 
 

The only piece of the AOP framework we haven’t looked at is the AopMetaObject class. 
AopMetaObject is the meta-object class for the Customer class. It is also the class that weaves together the 
advice logic and the code in Customer’s Age property. Listing 7-8 shows the implementation of 
AopMetaObject. To qualify as a meta-object class, AopMetaObject inherits from DynamicMetaObject. Since 
our example only triggers the GetMember action on instances of the Customer class, AopMetaObject 
overrides only the BindGetMember method. A more complete implementation of the AOP framework 
should also override the other Bind[Action] of DynamicMetaObject. The overridden BindGetMember 
method in Listing 7-8 delegates the late binding to the host language’s binder by calling the 
BindGetMember method of DynamicMetaObject. The binder in this case is C#’s binder. When the code 
customer.Age in Listing 7-6 is executed, C#’s binder will ask the customer object for its meta-object. Then 
the C# binder will call the BindGetMember on the meta-object. The meta-object in this case is an instance 
of AopMetaObject and it will delegate the late binding back to the C# binder. The C# binder’s binding 
logic will check if the Customer class has a property called Age with a getter method. If the Customer class 
has such a property, the C# binder will bind the GetMember action to that property. Otherwise it will 
return an error.  

When the C# binder returns the binding result, we want to wrap the result with expressions that 
represent calls to both the BeforeInvoke method and the AfterInvoke method of SimpleLoggingAdvice. 
That’s why the BindGetMember method in Listing 7-8 passes the result from the C# binder to the 
WeaveAspect method in line 12. The WeaveAspect method pretty much does the same thing as the Invoke 
method in Listing 7-2. The difference is that WeaveAspect needs to turn the code in the Invoke method we 
saw in Listing 7-2 into DLR expressions. Lines 25 to 28 create a DLR expression that represents a call to 
the BeforeInvoke method on the member variable advice declared in line 4. Line 30 assigns the late-
binding result returned by the C# binder to the returnValue parameter expression. In our example, when 
this expression is compiled into IL, it has the effect of executing customer.Age and assigning the result to 
a variable. Lines 32 to 35 create a DLR expression that represents a call to the AfterInvoke method on the 
member variable advice. Line 37 makes returnValue the return value of the whole block expression that 
spans from lines 22 to 39. If you compare the block expression to the Invoke method in Listing 7-2, the 
similarity should be obvious. When the code in lines 25 to 28 creates the method call expression, it needs 
to pass in expressions that represent the input parameters to the method call. Because the BeforeInvoke 
method of SimpleLoggingAdvice takes no input parameters, the code in lines 25 to 28 simply passes in an 
empty array, i.e., the args variable, to the Expression.Call method. Similarly, because AfterInvoke takes 
no input parameters, the code in lines 32 to 35 also passes in the args variable to the Expression.Call 
method. The example in the next section will improve this and make it more practical. 

Notice that in this example, for simplicity, the AOP advice is hard-coded to an instance of 
SimpleLoggingAdvice in line 4. In a practical situation, which advice to use should be configurable, not 
hard-coded. Another issue with the example is that it does not apply advice based on pointcuts. Every 
GetMember action handled by AopMetaObject will have the SimpleLoggingAdvice applied to it. The next 
section will fix those issues. 

Listing 7-8. AopMetaObject.cs 

1) public class AopMetaObject : DynamicMetaObject 
2) { 
3)     //For simplicity, which advice we use is not dependent on configuration.  
4)     private SimpleLoggingAdvice advice = new SimpleLoggingAdvice();  
5)  
6)     public AopMetaObject(Expression expression, object obj) 



CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

174 

7)         : base(expression, BindingRestrictions.Empty, obj) 
8)     { } 
9)  
10)     public override DynamicMetaObject BindGetMember(GetMemberBinder binder) 
11)     { 
12)         return WeaveAspect(base.BindGetMember(binder)); 
13)     } 
14)  
15)     private DynamicMetaObject WeaveAspect(DynamicMetaObject originalObject) 
16)     { 
17)         Expression originalExpression = originalObject.Expression; 
18)         var args = new Expression[0] {}; 
19)         ParameterExpression returnValue = Expression.Parameter(originalExpression.Type); 
20)          
21)         var advisedObject = new DynamicMetaObject( 
22)             Expression.Block( 
23)                 new[] { returnValue }, 
24)                 new Expression[] {  
25)                     Expression.Call( 
26)                         Expression.Constant(this.advice), 
27)                         typeof(SimpleLoggingAdvice).GetMethod("BeforeInvoke"), 
28)                         args), 
29)                      
30)                     Expression.Assign(returnValue, originalExpression), 
31)  
32)                     Expression.Call( 
33)                         Expression.Constant(this.advice), 
34)                         typeof(SimpleLoggingAdvice).GetMethod("AfterInvoke"), 
35)                         args), 
36)  
37)                     returnValue 
38)                 } 
39)             ), 
40)             originalObject.Restrictions 
41)         ); 
42)  
43)         return advisedObject; 
44)     } 
45) } 

Integration with Spring.NET AOP 
The example in the previous section cuts some corners and shows a primitive implementation of an AOP 
framework for dynamic objects. Let’s fix those shortcuts and make the AOP framework more practical. 
As the first step, let’s modify the example so that it reads from the application-config.xml file to find out 
the advice to apply, and to find out the corresponding pointcuts. If you open the 
C:\ProDLR\src\Examples\Chapter7\Chapter7.sln file in Visual Studio 2010, you can find the source code 
for this section in the Aop project. 



 CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

175 

Getting the AOP Advisors 
Listing 7-9 shows the code of the helper class that reads advice and pointcuts from a configuration file. 
The class is called AdvisorChainFactory. It has a property called Context. Client code that uses 
AdvisorChainFactory is supposed to read the application-config.xml file and create a Spring.NET 
application context. Once that context is created, the client code should assign the application code to 
AdvisorChainFactory’s Context property. When we get to the client code later in this section, you’ll see 
the part of the client code that sets AdvisorChainFactory’s Context property.  

The GetInterceptors method of AdvisorChainFactory returns a list of AOP advice. The method takes 
two input parameters—method and targetType. It uses those parameters to find the matching pointcuts 
(line 20). For each matched pointcut, GetInterceptors puts the advice associated with the pointcut into 
the adviceList variable (line 21). The method parameter has information about the method that you want 
GetInterceptors to match against pointcuts. Similarly, the targetType parameter represents the class 
that you want GetInterceptors to match against pointcuts. In this case, there is only one pointcut 
defined in the application context, and that pointcut matches any method of any class as long as the 
method’s name ends with  “Age”.  

Listing 7-9. AdvisorChainFactory.cs 

1) class AdvisorChainFactory 
2) { 
3)     private static IApplicationContext context; 
4)  
5)     public static IApplicationContext Context  
6)     { 
7)         set { context = value; } 
8)     } 
9)  
10)     public static IList<IAdvice> GetInterceptors(MethodInfo method, Type targetType) 
11)     { 
12)         IList<IAdvice> adviceList = new List<IAdvice>(); 
13)         IDictionary advisors = context.GetObjectsOfType(typeof(IPointcutAdvisor)); 
14)  
15)         ArrayList advisorList = new ArrayList(advisors.Values); 
16)         advisorList.Sort(new OrderComparator()); 
17)  
18)         foreach (IPointcutAdvisor advisor in advisorList) 
19)         { 
20)             if (advisor.Pointcut.MethodMatcher.Matches(method, targetType)) 
21)                 adviceList.Add(advisor.Advice); 
22)         } 
23)  
24)         return adviceList; 
25)     }     
26) } 
 

Notice that GetInterceptors returns a list of IAdvice objects. Every Spring.NET advice class must 
implement the IAdvice interface. The fact that GetInterceptors returns a list of advice objects indicates 
that (a) we can have more than one advice object applied to a late-binding action and (b) the advice 
objects have an order (because a list contains ordered elements). As a matter of fact, Spring.NET 
provides a way for us to specify the order in which to apply multiple advice objects in XML configuration 



CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

176 

files. That’s why we have line 16 in Listing 7-9 to sort the advisor objects according to their order. By 
doing the sorting, the code honors the order of advisor objects specified in a configuration file such as 
application-config.xml. I’ll show you some examples of applying multiple advice objects in different 
orders using our AOP framework in a moment.  

Before we move on to the rest of the AOP framework’s implementation, let’s take a look at the code 
in Listing 7-10 that tests whether the AdvisorChainFactory class works correctly. Listing 7-10 has a 
method called RunAdvisorChainFactoryExample that demonstrates how the GetInterceptors method of 
the AdvisorChainFactory class works. In RunAdvisorChainFactoryExample, the target type is the Customer 
class (line 20) and the method is the Age property’s getter method (line 21). Given that target type and 
method, GetInterceptors will look for pointcuts that match them (lines 22 and 23). GetInterceptors will 
return the advice objects associated with the matched pointcuts. Finally, 
RunAdvisorChainFactoryExample prints out the class names of those advice objects. As you can see, with 
just a few lines of code, we can now easily find out from an application context which advice should 
apply to which method of which class. Notice that the init method in Listing 7-10 sets 
AdvisorChainFactory’s Context property (line 15). This ensures that the Context property is properly set 
before the AdvisorChainFactory.GetInterceptors method is called.  

Listing 7-10. An Example in Program.cs That Shows How RunAdvisorChainFactory Works 

1) class Program 
2) { 
3)     private static IApplicationContext context; 
4)      
5)     static void Main(string[] args) 
6)     { 
7)         init(); 
8)         RunAdvisorChainFactoryExample(); 
9)         Console.ReadLine(); 
10)     } 
11)  
12)     private static void init() 
13)     { 
14)         context = new XmlApplicationContext("application-config.xml"); 
15)         AdvisorChainFactory.Context = context; 
16)     } 
17)  
18)     private static void RunAdvisorChainFactoryExample() 
19)     { 
20)         Type targetType = typeof(Customer); 
21)         MethodInfo method = targetType.GetProperty("Age").GetGetMethod(); 
22)         IList<IAdvice> interceptors =  
23)              AdvisorChainFactory.GetInterceptors(method, targetType); 
24)          
25)         foreach (var interceptor in interceptors) 
26)             Console.WriteLine("type of matching interceptor is {0}",  
27)                  interceptor.GetType().Name); 
28)     } 
29) } 
 



 CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

177 

Implementing Advice 
Because we are not going to hard-code the advice to use in the AopMetaObject class, we need an interface 
to serve as the baseline of all the advice classes our AOP framework understands. Listing 7-11 shows that 
baseline interface’s definition. The interface is called IDynamicAdvice. Any advice class that would like to 
“advise” dynamic objects needs to implement IDynamicAdvice. Notice that the BeforeInvoke and 
AfterInvoke methods defined in IDynamicAdvice now take input parameters. BeforeInvoke takes three 
parameters—method, args, and target. The method parameter has information about the method being 
late-bound. The args parameter represents the arguments to the method being late-bound. The target 
parameter is the object on which the late-bound method is invoked. The AfterInvoke method takes all 
the three parameters that BeforeInvoke takes plus the returnValue parameter that represents the return 
value of the late-bound method.  

Listing 7-11 also shows the modified advice class. The class is called LoggingAdvice and it 
implements both IDynamicAdvice and IMethodInterceptor. By implementing both of those interfaces, 
LoggingAdvice instances can advise both dynamic and static objects. The code in LoggingAdvice is by 
and large the same as the code in SpringBasedLoggingAdvice that we saw earlier.  

Listing 7-11. IDynamicAdvice and LoggingAdvice. 

interface IDynamicAdvice : IAdvice 
{ 
    void BeforeInvoke(MethodInfo method, object[] args, object target); 
    void AfterInvoke(object returnValue, MethodInfo method, object[] args, object target); 
} 
 
public class LoggingAdvice : IDynamicAdvice, IMethodInterceptor 
{ 
    public object Invoke(IMethodInvocation invocation) 
    { 
        BeforeInvoke(invocation.Method, invocation.Arguments, invocation.Target); 
        object returnValue = invocation.Proceed(); 
        AfterInvoke(returnValue, invocation.Method,  

invocation.Arguments, invocation.Target); 
        return returnValue;  
    } 
 
    #region IDynamicAdvice Members 
 
    public void BeforeInvoke(MethodInfo method, object[] args, object target) 
    { 
        Console.Out.WriteLine("Advice BeforeInvoke is called. Intercepted method is {0}.",  

method.Name); 
    } 
 
    public void AfterInvoke(object returnValue, MethodInfo method,  

object[] args, object target) 
    { 
        Console.Out.WriteLine("Advice AfterInvoke is called. Intercepted method is {0}.",  

method.Name); 
    } 
 



CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

178 

    #endregion 
} 

Applying Advice 
The last file we need to modify in order to complete the whole example is AopMetaObject.cs. Listing 7-
12 shows the modified code.  

Listing 7-12. AopMetaObject.cs 

1) public class AopMetaObject : DynamicMetaObject 
2) { 
3)     public AopMetaObject(Expression expression, object obj) 
4)         : base(expression, BindingRestrictions.Empty, obj) 
5)     { } 
6)  
7)     public override DynamicMetaObject BindGetMember(GetMemberBinder binder) 
8)     { 
9)         return WeaveAspect(binder.Name, base.BindGetMember(binder)); 
10)     } 
11)  
12)     private DynamicMetaObject WeaveAspect(String name, DynamicMetaObject  
13)         originalObject) 
14)     { 
15)         Expression originalExpression = originalObject.Expression; 
16)         Type targetType = this.Value.GetType(); 
17)         PropertyInfo property = targetType.GetProperty(name); 
18)         MethodInfo method = property.GetGetMethod(); 
19)          
20)         Expression nullExp = Expression.Constant(null); 
21)         Expression targetExp = Expression.Constant(this.Value); 
22)         Expression arrayExp = Expression.Constant(new Object[] { }); 
23)         Expression methodExp = Expression.Constant(method); 
24)  
25)         IList<IAdvice> adviceList = AdvisorChainFactory 
26)                           .GetInterceptors(method, targetType); 
27)  
28)         List<Expression> calls = new List<Expression>(); 
29)         List<Expression> afterCalls = new List<Expression>(); 
30)         foreach (var advice in adviceList) 
31)         { 
32)             If (!(advice is IDynamicAdvice)) continue; 
33)  
34)             calls.Add(Expression.Call( 
35)                     Expression.Constant(advice), 
36)                     typeof(IDynamicAdvice).GetMethod("BeforeInvoke"), 
37)                     new Expression[] { methodExp, arrayExp, targetExp })); 
38)  
39)             afterCalls.Add(Expression.Call( 
40)                     Expression.Constant(advice), 
41)                     typeof(IDynamicAdvice).GetMethod("AfterInvoke"), 



 CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

179 

42)                     new Expression[] { nullExp, methodExp, arrayExp, targetExp })); 
43)         } 
44)  
45)         ParameterExpression returnValue = Expression 
46)                          .Parameter(originalExpression.Type); 
47)         calls.Add(Expression.Assign(returnValue, originalExpression)); 
48)         afterCalls.Reverse(); 
49)         calls.AddRange(afterCalls); 
50)         calls.Add(returnValue); 
51)  
52)         var advisedObject = new DynamicMetaObject( 
53)             Expression.Block( 
54)                 new[] { returnValue }, 
55)                 calls.ToArray() 
56)             ), 
57)             originalObject.Restrictions 
58)         ); 
59)  
60)         return advisedObject; 
61)     } 
62) } 

 
First, notice that, unlike line 4 in Listing 7-8, the code in Listing 7-12 no longer calls the constructor 

of an advice class. Instead, it calls the GetInterceptors method of AdvisorChainFactory in line 69 to get a 
list of advice objects based on pointcut matches. With this change, our example no longer hard-codes 
the advice objects it applies to dynamic objects. The WeaveAspect method is still the workhorse here. It’s 
more complex than earlier because it now needs to prepare the proper expressions that satisfy the 
method signatures of IDynamicAdvice’s BeforeInvoke and AfterInvoke. It also needs to handle not just 
one advice object but a list of them. Lines 16 to 23 shows the code that prepares the expressions that 
represent the input parameters needed for calling BeforeInvoke and AfterInvoke. Lines 30 to 43 iterate 
through the advice objects returned by GetInterceptors. For each advice object, the code creates a 
method call expression that represents a call to the advice object’s BeforeInvoke method and a method 
call expression that represents a call to the advice object’s AfterInvoke method. The expressions created 
in lines 20 to 23 are passed to the Expression.Call method to create the method call expressions. 

After the method call expressions are created, we need to put them into a block expression like we 
did in Listing 7-8. The block expression that holds all the method call expressions is referenced by the 
calls variable in Listing 7-12. In Listing 7-8, there is only one advice object and therefore only one call 
expression for calling BeforeInvoke and only one call expression for calling AfterInvoke. Here we have a 
list of ordered advice objects. Because the advice objects have order, the call expressions we put into the 
block expression also need to be in order. Figure 7-2 shows how the call expressions should be ordered. 
In Spring.NET, we can assign a number to an advice object to denote the advice object’s precedence. 
The lower the number is, the higher the precedence. In Figure 7-2, there are two advice objects; advice 1 
has higher precedence than advice 2 and therefore it’s put at the front of the advice chain in the figure. 
When program execution enters the advice chain, the first method that’s executed is the BeforeInvoke 
method of advice 1. Then the BeforeInvoke method of advice 2 is executed. Then the intercepted 
method of the target object will be executed. In this case, the execution of the intercepted method on the 
target method is represented by the assignment expression created in line 47 of Listing 7-12. The 
execution of the program will then exit out the advice chain. On exit, the first method that’s executed is 
the AfterInvoke method of advice 2. Then the AfterInvoke method of advice 1 is executed. That’s why in 
line 48, all the expressions that represent calls to AfterInvoke methods are reversed before they are 
added to the block expression in line 49.  



CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

180 

BeforeInvoke

advice 1 advice 2
Expression.Assign(returnValue,

originalExpression)

AfterInvoke AfterInvoke

BeforeInvoke

 

Figure 7-2. Order of advice objects 

 
For the purpose of this chapter, the AOP framework implementation at this point is finished. 

Obviously, there are many things the framework does not support. The AopMetaObject class only 
overrides the BindGetMember method. A more complete implementation will override other 
Bind[Operation] methods and weave in the advice logic in those overridden methods. The AOP 
framework supports the order of advisor objects. Spring.NET provides a way for specifying the order of 
advice objects and our AOP framework does not account for that. Nonetheless, the AOP framework lays 
the groundwork for further enhancements. It also demonstrates one important scenario (i.e., the AOP 
programming paradigm) in which the DLR dynamic object infrastructure can be leveraged. To celebrate, 
let’s take a break and have some fun with the AOP framework. 

Cutting Across Dynamic and Static Objects 
In this section, you will harvest the results of the AOP framework built in the previous sections. To use 
the AOP framework, I wrote a method called RunAopExample and put it in Program.cs. Listing 7-13 shows 
its code.    

Listing 7-13. An Example in Program.cs That Uses the AOP Framework 

1) private static void RunAopExample() 
2) { 
3)     dynamic customer = new Customer("John", 5); 
4)     Console.WriteLine("Customer {0} is {1} years old.\n",  
5)         customer.Name, customer.Age); 
6)  
7)     IEmployee employee = (IEmployee)context["employeeBob"]; 
8)     Console.WriteLine("Employee {0} is {1} years old.",  
9)         employee.Name, employee.Age); 
10) } 

 
The RunAopExample method creates a Customer instance in line 3 and fetches an IEmployee instance 

from the Spring.NET application context in line 7. Method calls to those two instances’ property getters 
will be intercepted, matched against the pointcuts specified in application-config.xml, and then advised 
as appropriate. You’ll see the following output when you run the example: 

 
Customer Name getter is called. 
Advice BeforeInvoke is called. Intercepted method is get_Age. 
Customer Age getter is called. 
Advice AfterInvoke is called. Intercepted method is get_Age. 
Customer John is 5 years old. 
 
Employee Name getter is called. 
Advice BeforeInvoke is called. Intercepted method is get_Age. 



 CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

181 

Employee Age getter is called. 
Advice AfterInvoke is called. Intercepted method is get_Age. 
Employee Bob is 30 years old. 

 
Next, let’s turn it up a notch by throwing in a second advice object. By having a second advice 

object, we’ll be able to order the two advice objects in different ways and see the effects. To make the 
demonstration clear, I created a new advice class by copying the LoggingAdvice class and renaming it to 
LoggingAdvice2. Listing 7-14 shows the code of LoggingAdvice2 with differences from LoggingAdvice in 
bold. As you can see, LoggingAdvice2 differs from LoggingAdvice only in the messages it prints to the 
console. Because the messages are different, it will be easy to see which advice object is in front of which 
in the advice chain later when we run the example. 

Listing 7-14. LoggingAdvice2.cs 

public class LoggingAdvice2 : IDynamicAdvice, IMethodInterceptor 
{ 
    //Invoke method is omitted. 
 
    public void BeforeInvoke(MethodInfo method, object[] args, object target) 
    { 
        Console.Out.WriteLine("Advice2 BeforeInvoke is called. Intercepted method is {0}.",  

method.Name); 
    } 
 
    public void AfterInvoke(object returnValue, MethodInfo method, object[] args,  

object target) 
    { 
        Console.Out.WriteLine("Advice2 AfterInvoke is called. Intercepted method is {0}.", 

method.Name); 
    } 
} 
 

With LoggingAdvice2 in place, all that remains is to configure new advice and advisor objects in 
application-config.xml. Listing 7-15 shows the contents of application-config.xml after the 
modifications. The differences from the earlier version of application-config.xml are highlighted in bold. 
As you can see, a new advice object with id loggingAdvice2 and a new advisor object with id 
getAgeAdvisor2 are added. The object loggingAdvice2 is an instance of LoggingAdvice2. As for the 
getAgeAdvisor2 object, notice that its order attribute is assigned the number 2. In comparison, the order 
attribute of the getAgeAdvisor object is set to 5. That means in the advice chain, loggingAdvice2 will be 
in front of loggingAdvice. So we should expect the BeforeInvoke method of loggingAdvice2 to be called 
before the BeforeInvoke method of loggingAdvice when program execution enters the advice chain. 
When program execution exits the advice chain, we should expect the AfterInvoke method of 
loggingAdvice to be called first and the AfterInvoke method of loggingAdvice2 to be called second. 
Notice also that I changed the pointcut pattern to match not only all methods that end with Age but also 
the ones that end with Name.  



CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

182 

Listing 7-15. Adding a Second Advice Object in Application-config.xml. 

<?xml version="1.0" encoding="utf-8" ?>
<objects xmlns="http://www.springframework.net" 
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xmlns:aop="http://www.springframework.net/aop"> 

  <aop:config> 
    <aop:advisor id="getAgeAdvisor" pointcut-ref="getAgeCalls"  
                 advice-ref="loggingAdvice" order="5" /> 

    <aop:advisor id="getAgeAdvisor2" pointcut-ref="getAgeCalls" 
                 advice-ref="loggingAdvice2" order="2" /> 
  </aop:config> 

  <object id="getAgeCalls" 
type="Spring.Aop.Support.SdkRegularExpressionMethodPointcut, Spring.Aop"> 

    <property name="patterns"> 
      <list> 
        <value>.*Age</value> 
        <value>.*Name</value> 
      </list> 
    </property> 
  </object> 

  <object id="loggingAdvice" type="Aop.LoggingAdvice, Aop"/> 
  <object id="loggingAdvice2" type="Aop.LoggingAdvice2, Aop"/> 

<!-- The object employeeBob is the same as before and omitted -->
</objects> 

If you run the example with the configuration in Listing 7-15, you’ll see the following output:  

Advice2 BeforeInvoke is called. Intercepted method is get_Name.
Advice BeforeInvoke is called. Intercepted method is get_Name.
Customer Name getter is called. 
Advice AfterInvoke is called. Intercepted method is get_Name.
Advice2 AfterInvoke is called. Intercepted method is get_Name.
Advice2 BeforeInvoke is called. Intercepted method is get_Age.
Advice BeforeInvoke is called. Intercepted method is get_Age.
Customer Age getter is called. 
Advice AfterInvoke is called. Intercepted method is get_Age.
Advice2 AfterInvoke is called. Intercepted method is get_Age.
Customer John is 5 years old. 

Advice2 BeforeInvoke is called. Intercepted method is get_Name.
Advice BeforeInvoke is called. Intercepted method is get_Name.
Employee Name getter is called. 
Advice AfterInvoke is called. Intercepted method is get_Name.
Advice2 AfterInvoke is called. Intercepted method is get_Name. 

http://www.springframework.net
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.net/aop


 CHAPTER 7  DLR AND ASPECT-ORIENTED PROGRAMMING 

183 

Advice2 BeforeInvoke is called. Intercepted method is get_Age. 
Advice BeforeInvoke is called. Intercepted method is get_Age. 
Employee Age getter is called. 
Advice AfterInvoke is called. Intercepted method is get_Age. 
Advice2 AfterInvoke is called. Intercepted method is get_Age. 
Employee Bob is 30 years old. 

 
Try changing the order attribute of getAgeAdvisor in application-config.xml from 5 to 1. Then run the 
example again and see what the output is. 
 

Summary 
This chapter begins with an introduction to aspect-oriented programming, explaining the basic 
concepts of AOP as well as terms such as join point, pointcut, advice, and aspect. We briefly touched 
upon three approaches for implementing an AOP framework—runtime, load-time and compile-time 
weaving. We talked about how Spring.NET’s runtime weaving is achieved by using proxy objects. Our 
AOP framework and Spring.NET’s AOP framework both take the runtime weaving approach. Unlike 
Spring.NET’s AOP framework, ours leverages DLR’s dynamic object infrastructure instead of using proxy 
objects. We went through the first iteration of our AOP framework’s implementation, which works only 
for dynamic objects. We continued, integrating the AOP framework with Spring.NET AOP. The result is 
an AOP system that reads aspect-related settings from one single configuration file and works across 
static as well as dynamic objects.  

This chapter scratches only the surface of many topics it covers. The implementation of the AOP 
framework leaves many things to be desired. To more fully realize the potential of the underlying iceberg 
whose tip we saw in this chapter, I created a project up on Google Code at 
http://code.google.com/p/dpier/. You are welcome to visit the project web site for updates on the 
development of the AOP framework. 

http://code.google.com/p/dpier




C H A P T E R  8 
    
 

133 

Metaprogramming 

Metaprogramming is everywhere in the DLR. All the LINQ Expression examples you saw in Chapter 2 
and all the DLR Hosting API examples you saw in Chapter 6 are metaprograms. Because 
metaprogramming plays such a pervasive role in the DLR, we’re going to dive deeper into the subject 
and show you some advanced and marvelous uses of metaprogramming.  

We will begin with an overview of metaprogramming. The overview will discuss what 
metaprogramming is and where it is used in the DLR, then we’ll look at one type of metaprogramming 
that adds and removes methods or properties to or from a class or an instance of a class. We will 
illustrate the metaprogramming technique in Ruby and Python, then write some infrastructure code that 
enables us to use the same kind of metaprogramming technique in C# through the DLR. The 
infrastructure code will consist of two classes called ClassMetaObject and ExpandoClass. 

We will then take a detour and build a custom LINQ query provider. The purpose of this exercise is 
to illustrate a typical use of DLR Expression as a metaprogramming technique. The exciting thing about 
the custom LINQ query provider is that we are going to gradually evolve it into a code-generation 
framework that utilizes the ClassMetaObject and ExpandoClass classes. At the end, we will arrive at a 
code-generation framework that is in spirit similar to frameworks such as the popular Ruby on Rails.  

Overview of Metaprogramming 
Metaprograms are programs that generate or manipulate other programs, and metaprogramming is, of 
course, the writing of metaprograms. Based on these definitions, you can see why the LINQ Expression 
examples in Chapter 2 are metaprograms. They are metaprograms because, in those examples, we 
construct LINQ expression trees and use those trees to generate executable IL code. The code we write to 
construct and compile LINQ expression trees is a metaprogram. The programs manipulated by the 
metaprograms consist of code represented by the LINQ expression tree. Similarly, the DLR Hosting API 
examples in Chapter 6 are metaprograms because those examples take Python code or Ruby code as 
input and manipulate the code by running it and interacting with it. The DLR Hosting API examples are 
metaprograms and the Python code and Ruby code are the programs manipulated by the 
metaprograms.  

It’s common to see the concept of code as data in metaprograms. In the case of the LINQ Expression 
examples in Chapter 2, the LINQ expression trees are data that represent code elements, such as if 
conditions and while loops. Once code is in the form of data (i.e., expression trees), we can write 
metaprograms that manipulate the code as data. In the case of the DLR Hosting API examples, the 
Python and Ruby code is data. Once that code is in the form of data, we can write metaprograms that 
manipulate the code via the DLR Hosting API. 

 Metaprograms can generate or manipulate programs at compile time or at runtime. An example of 
a metaprogram that manipulates a program at compile time is code generation. If you are a C++ 
programmer and you use C++ macros in your code, you are doing compile-time metaprogramming. 
That’s because, when you compile the C++ code, the macros are processed by the preprocessor to 
generate code that then gets compiled together with the rest of your code by the C++ compiler. The 



CHAPTER 8  METAPROGRAMMING 

186 

preprocessor is the metaprogram in this case and the C++ macros in your code are the programs being 
manipulated by the metaprogram.  

Another example of compile-time metaprogramming is a compiler. A compiler is a metaprogram 
that manipulates the code it compiles. All of the metaprogramming we do with the DLR happens at 
runtime. For example, when we use the DLR Hosting API to run Python or Ruby code, we do that at 
runtime. When we use an expression visitor to modify an expression tree or when we compile a lambda 
expression into an invocable delegate, we do that at runtime. However, that’s not to say that we can’t do 
compile-time metaprogramming with the DLR. If we use an expression visitor to modify an expression 
tree and use that modified tree to generate some C# code at compile time, that would be compile-time 
metaprogramming.  

One common type of metaprogramming is the adding and removing of methods or properties to 
and from a class at runtime. In static languages like C#, this is in general not supported because classes 
are compiled at compile time and can’t be modified when a program runs.  

There are ways to create the illusion that a compiled C# class is modified at runtime. For example, 
Spring.NET AOP (Aspect Oriented Programming), a library for doing aspect-oriented programming on 
the .NET platform, generates proxy classes of compiled C# classes at runtime. The proxy classes add 
aspect-related behavior to the original C# classes and create the illusion that the original C# classes are 
modified to behave differently. The truth is the original C# classes are not still kept intact. They are just 
proxied.  

 Note  For the sake of thoroughness, I’ll point out that there is, in fact, a library that can really modify a compiled 

Java class as the class is being loaded by a class loader.  However, that library is an exceptional case that does 

not invalidate my main line of discussion in this chapter. 

Even though you might be able to modify a compiled Java or C# class at runtime if you are 
determined, doing so is generally not supported. On the other hand, many dynamic languages naturally 
support the addition and removal of methods and properties to and from a class at runtime. Moreover, 
we can also add or remove methods and properties to and from a particular instance of a class without 
affecting the other instances of the same class. The next part of this chapter will show you how to modify 
a class and its instances by adding methods or properties at runtime in Ruby, in Python, and, last but not 
least, in C# through the DLR.  

Changing Class Definitions 
Now we are going to write some metaprograms that manipulate programs by adding methods or 
properties to a class or to an instance of a class. We will do the same exercise three times for three 
different languages—first Ruby, then Python, and finally C# through DLR. Even though C# does not in 
general support the kind of metaprogramming we discuss in this section, you will see that with the DLR, 
C# as well as VB.NET developers can benefit the metaprogramming techniques that Ruby and Python 
developers enjoy. The metaprogramming technique we discuss in this section is the foundation that 
enables many marvelous applications. As you’ll see later in this chapter, we will take what we build in 
this section to add methods and properties to a C# class or its instances and use it to facilitate runtime 
code generation.  



 CHAPTER 8  METAPROGRAMMING 

187 

Ruby 
Now we’ll see how to define a class in Ruby and then dynamically modify the class. The examples will 
show you how to add methods to a class so that all instances of the class support those methods. You 
can also add methods only to a specific instance. In that case, only that specific instance will support 
those methods and all other instances of the same class will not.  

You can try out this section’s Ruby code by typing it in an interactive Ruby console. Alternatively, 
since I have put all the code for this section in the metaExamples.rb file in the MetaExamples project of 
this chapter’s code download, you can simply run the MetaExamples project in debug mode. The 
MetaExamples project is a .NET console application. The entry point Main method of the console 
application calls the RunRubyMetaExamples method shown in Listing 8-1 to run the Ruby code in 
metaExamples.rb. The RunRubyMetaExamples method uses the DLR Hosting API to run the Ruby code. We 
discussed the DLR Hosting API in detail in Chapter 6, so I won’t duplicate that discussion here and 
explain the code in Listing 8-1.  

Listing 8-1. C# Method That Runs the Ruby Code in metaExamples.rb  

private static void RunRubyMetaExamples() 
{ 
    ScriptEngine engine = IronRuby.Ruby.CreateEngine(); 
    engine.ExecuteFile(@"Ruby\metaExamples.rb"); 
} 

 
To begin, let’s define a Ruby class called Customer as in Listing 8-2. 

Listing 8-2. Define a Ruby Class Called Customer 

class Customer 
  
  def initialize(name, age) 
    @name = name 
    @age = age 
  end 
   
  def to_s() 
    @name 
  end 
end 
 

The Customer class defines two methods: initialize and to_s. The initialize method will be 
called by the Ruby runtime when an instance of the Customer class is created. The initialize method 
takes two input parameters and stores them in two class member variables, @name and @age. In Ruby, the 
naming convention requires the name of a class member variable begin with @. The to_s method of the 
Customer class will be called when a Customer instance is converted to a string object, for example, when 
we print a Customer instance to the console. 

With the Customer class defined, let’s create a couple of instances of it and see how they work. 
Listing 8-3 shows this part of the example’s code. 



CHAPTER 8  METAPROGRAMMING 

188 

Listing 8-3. Create Instances of the Customer Class  

bob = Customer.new("Bob", 26) 
mary = Customer.new("Mary", 30) 
 
puts bob 
puts mary 
 

In Listing 8-3, we create two instances of Customer. In Ruby, a class is an object. The name of a class 
is a constant that points to the class object. To create an instance of a Ruby class, you call the new 
method on the name of the class, as the code Customer.new(“Bob”, 26) in Listing 8-3 shows. Because the 
name of the class is a reference to the class object, what you are effectively doing is calling the new 
method on the class object, which causes the initialize method of that class to be called. After two 
instances of Customer are created, we print those two instances to the screen by calling the puts method. 
The method puts is Ruby’s built-in method for printing objects to the screen. Internally, puts calls the 
to_s method of the Customer class to print out the names of Bob and Mary, our two Customer instances.  

To demonstrate the metaprogramming capability Ruby provides, let’s suppose we want to modify 
the Customer class so that we can set Bob and Mary as each other’s spouse. To achieve this, we simply 
use line 2 to add a spouse attribute accessor to the Customer class. The code in line 2 will add two 
accessor methods, spouse and spouse=, to the Customer class. A class member variable in a Ruby class is 
by default private and not accessible to the world outside of the class. In order to make the @spouse class 
member variable accessible to the world outside of the Customer class, we need the code in line 2 that 
adds the spouse and spouse= accessor methods to the Customer class. With those accessor methods, we 
can set Mary as Bob’s spouse, as line 12 shows. When line 12 assigns the variable mary to the spouse 
attribute of bob, the spouse= method of bob will be invoked. The spouse= method in Listing 8-4 is 
implemented in such a way that if Mary is Bob’s spouse, then Bob is also set as Mary’s spouse. Notice 
that the code in Listing 8-4 is executed after Listings 8-3 and 8-2. That means even after instances of the 
Customer class are created in Listing 8-3, we can still modify the class and the instances will just pick up 
the new spouse and spouse= accessor methods we added. Because the spouse and spouse= accessor 
methods are added to the Customer class, all the instances of the Customer class will support those two 
accessor methods.  

Listing 8-4. Modify the Customer Class in Ruby 

1) class Customer 
2)   attr_accessor :spouse 
3)  
4)   def spouse=(spouse) 
5)     if @spouse != spouse 
6)    @spouse = spouse 
7)    spouse.spouse = self 
8)     end 
9)   end 
10) end 
11)  
12) bob.spouse = mary 
13)  
14) puts "Bob's spouse is " + bob.spouse.to_s 
15) puts "Mary's spouse is " + mary.spouse.to_s 



 CHAPTER 8  METAPROGRAMMING 

189 

Listing 8-4 shows how to add methods to a class so that all instances of the class will support those 
methods. Listing 8-5 shows how to add a method to a particular Customer instance, not to the Customer 
class. The code in adds a calculate_late_fee method to customer Bob and a different 
calculate_late_fee method to customer Mary. Bob’s late fee is 200 while Mary’s is 100. Because the 
calculate_late_fee method is associated with a particular instance, we can have one implementation of 
the method for Bob that returns 200 and another for Mary that returns 100.   

Listing 8-5. Add Methods at the Instance Level 

def bob.calculate_late_fee() 
    200 
end 
 
def mary.calculate_late_fee() 
    100 
end 
 
puts "Bob's late fee is " + bob.calculate_late_fee.to_s 
puts "Mary's late fee is " + mary.calculate_late_fee.to_s 

Python 
We just saw how to add methods to a class as well as to an instance of a class in Ruby. Now we’ll look at 
the same example in the Python language. You can run this section’s Python code listings in sequence by 
typing them in a Python interactive console. Alternatively, because I have put all the Python code for this 
section in the metaExamples.py file in the MetaExamples project of this chapter’s code download, you 
can run the MetaExamples project’s entry point Main method. This calls the RunPythonMetaExamples 
method in MetaExamples’ Program.cs file to execute the Python code in metaExamples.py.  

As in the previous example, our first step is to define the Customer class in Python, as Listing 8-6 
shows. The code in Listing 8-6 defines the Customer class as a subclass of the object class. The Customer 
class contains two methods: __init__ and __str__. The method __init__ is the constructor that will be 
called when new instances of the Customer class are created. The method __str__ will be called when we 
convert a Customer instance to a string representation. Methods of a class must take an explicit self 
argument that represents the instance on which the methods are invoked. That’s why both __init__ and 
__str__ have self as an input parameter. The input parameter does not have to be named self. This is 
just a naming convention that most Python programmers follow. You can think of the self parameter as 
sort of Python’s equivalent of the this variable in C#. The body of the __init__ method assigns the name 
and age of a customer to the name and age attributes of the self parameter. Attributes in a Python class 
like the ones in our example are like class member variables in a C# class. But unlike class member 
variables in C#, attributes in a Python class don’t need to be explicitly declared. That’s why you don’t see 
the name and age attributes declared anywhere in Listing 8-6, yet the __init__ method can assign the 
name and age of a customer to the name and age attributes of the self parameter. 

Listing 8-6. Define the Customer Class in Python 

class Customer(object): 
  def __init__(self, name, age): 
    self.name = name 
    self.age = age 
   



CHAPTER 8  METAPROGRAMMING 

190 

  def __str__(self): 
    return self.name 
 

If we now create instances of the Python Customer class, as Listing 8-7 shows, we can print the string 
representations of those instances and expect to see the names Bob and Mary show up on the screen. 

Listing 8-7. Create Instances of the Customer Class in Python 

bob = Customer("Bob", 26) 
mary = Customer("Mary", 30) 
 
print bob 
print mary 
 

Now here’s the part where we add the method for setting a customer’s spouse to the Customer class. 
Listing 8-8 shows how to do that in Python. To add a method to an already defined class in Python, we 
first define a Python function by itself. In Listing 8-8, we define the set_spouse function alone in lines 1 
to 3. The body of the function ensures that if Bob is Mary’s spouse, then Mary is also Bob’s spouse. After 
the set_spouse function is defined, we add it to the Customer class as the set_spouse method of the 
Customer class in line 5. Because the set_spouse method is added to the Customer class, all instances of 
the Customer class will support that method. In line 7, we test our modification to the Customer class by 
calling the set_spouse method on the variable bob. When we do this, the set_spouse function is called 
with the self parameter set to the variable bob. As a matter fact, we can replace line 7 in Listing 8-8 with 
this equivalent code set_spouse(bob, mary) and everything will work the same. Lines 9 and 10 print out 
Bob’s spouse and Mary’s spouse to show that the testing we do in line 7 works correctly. 

Listing 8-8. Modify the Customer Class in Python 

1) def set_spouse(self, spouse): 
2)   self.spouse = spouse 
3)   spouse.spouse = self 
4)    
5) Customer.set_spouse = set_spouse 
6)  
7) bob.set_spouse(mary) 
8)  
9) print "Bob's spouse is " + str(bob.spouse) 
10) print "Mary's spouse is " + str(mary.spouse) 
 

Next we will add methods to individual Customer instances. To do so in Python, we make use of a 
standard Python module called types. Before we can use that module, we need to do a few things so that 
the IronPython runtime will be able to locate the module. First, the types module is not included as part 
of the DLR source code. In order to run the code in Listing 8-9, you need to download IronPython from 
http://ironpython.codeplex.com and install it. I downloaded IronPython 2.6.1 for .NET 4.0 and installed 
it in C:\Program Files (x86)\IronPython 2.6 for .NET 4.0. If you install it in a different folder, you’ll need 
to modify the path in line 2 of Listing 8-9 accordingly. The installation of IronPython places the standard 
Python types module in C:\Program Files (x86)\IronPython 2.6 for .NET 4.0\Lib. That’s the path we need 
to add to Python’s system path so that the IronPython runtime knows to look there for modules we want 
to import. So in line 2 of Listing 8-9, we add the path to Python’s system path. In line 3 we import the 

http://ironpython.codeplex.com


 CHAPTER 8  METAPROGRAMMING 

191 

types module. Without installing IronPython and without the code in line 2, importing the types module 
in line 3 would fail. 

After the types module is successfully imported, the rest of the code is pretty similar to the Ruby 
example we saw earlier. We first define a function called bob_late_fee in lines 5 and 6. Then we call the 
MethodType function of the types module to associate the bob_late_fee function with the variable bob. 
Similarly for the variable mary, we define a function called mary_late_fee and use the MethodType 
function of the types module to associate the mary_late_fee function with the variable mary. If you run 
the code in Listing 8-9, you should see on the screen that Bob’s late fee is 200 and Mary’s late fee is 100. 
This shows that in Python, as in Ruby, we can add a method to a particular instance without affecting 
other instances of the same class. 

Listing 8-9. Add Methods to Instances of the Customer Class in Python 

1) import sys 
2) sys.path.append(r'C:\Program Files (x86)\IronPython 2.6 for .NET 4.0\Lib') 
3) import types 
4)  
5) def bob_late_fee(self): 
6)   return 200 
7)  
8) bob.calculate_late_fee = types.MethodType(bob_late_fee, bob) 
9)  
10) def mary_late_fee(self): 
11)   return 100 
12)  
13) mary.calculate_late_fee = types.MethodType(mary_late_fee, mary) 
14)  
15) print "Bob's late fee is " + str(bob.calculate_late_fee()) 
16) print "Mary's late fee is " + str(mary.calculate_late_fee()) 

DLR 
So far you’ve seen how to add methods to a class as well as to an instance of a class in both Ruby and 
Python. Many other dynamic languages, such as Groovy, also provide the means for modifying a class’s 
or an object’s behavior at runtime. With the advent of the DLR, the good news is we don’t have to code 
in a dynamic language like Ruby or Python to benefit from the metaprogramming capabilities those 
languages provide. With a little bit of work, we can define a class in C# and be able to add methods to the 
class and also to instances of the class. Let’s see how that is done. 

In this section, we will define two main classes: ClassMetaObject and ExpandoClass. The purpose of 
ClassMetaObject is to hold the methods we add to individual objects, and the purpose of ExpandoClass is 
to hold the methods we add to a class. As an example of how you can use these methods, we will define a 
Customer class that derives from ClassMetaObject. When we create an instance of the Customer class and 
add methods to that instance, those methods will be stored in an instance of ClassMetaObject. When we 
add methods to the Customer class, those methods will be stored in an instance of ExpandoClass.  

The Customer class code is shown in Listing 8-10. As you can see, the C# Customer class mimics the 
Ruby and Python Customer classes we saw in the previous sections. The C# Customer class defines a 
constructor that takes the name and age of a customer. The ToString method is overridden to return the 
name of a customer. One important thing to note about the C# Customer class is that it derives from 
ClassMetaObject so that instances of the Customer class can be associated with new properties and 
methods. Furthermore, the Customer class contains a private static member variable _class that points 



CHAPTER 8  METAPROGRAMMING 

192 

to an instance of ExpandoClass. This is so that new properties and methods can be added to the Customer
class. I made the member variable _class a static variable because I want all instances of the Customer
class to share one single ExpandoClass instance that holds all the properties and methods we add to the
Customer class. We will look at how ClassMetaObject and ExpandoClass are implemented in a minute.
First, however, I’d like to repeat the Ruby and Python examples we saw in the previous sections and
show how the same example works in C# using the Customer class. 

Listing 8-10. Define the Customer Class in C# 

public class Customer : ClassMetaObject
{ 
    private static ExpandoClass _class = new ExpandoClass(); 

    public static dynamic CLASS 
    { 
        get { return _class; } 
    } 

    private string name; 
    private int age; 

    public Customer(string name, int age) 
    { 
        this.name = name; 
        this.age = age; 
    } 

    public override string ToString() 
    { 
        return this.name; 
    } 

    protected override ExpandoClass Class 
    { 
        get { return _class; } 
    }
}  

Like the Ruby and Python examples in the previous sections, the code in Listing 8-11 creates two
instances of the Customer class. After the two Customer instances are created, we want to define a method
for setting a customer’s spouse and a method for retrieving a customer’s spouse. The method we define
for setting a customer’s spouse is the SetSpouse delegate in Listing 8-11. The delegate takes two input
parameters that represent the two parties in a marital relationship. The method body of the SetSpouse
delegate enforces the rule that if Bob is Mary’s spouse, then Mary must also be Bob’s spouse. Notice that
the two input parameters of SetSpouse are of the type dynamic. Within the method body of the SetSpouse
delegate, the code accesses the Spouse property of the input parameter self. The Spouse property is not
defined originally in the C# Customer class. But that’s okay because we add the Spouse property to the
Customer class in line 16. In line 17, we add the SetSpouse delegate as the SetSpouse method to the
Customer class. As you can see from lines 16 and 17, to add a property or method to the Customer class,
we add it to the customerClass variable, which is obtained from the static CLASS property of the Customer
class. Recall from the code in Listing 8-10 that the static CLASS property of the Customer class returns the 



 CHAPTER 8  METAPROGRAMMING 

193 

single ExpandoClass instance that’s shared among all Customer instances and that’s meant to store all 
new properties and methods added to the Customer class. 

After adding the Spouse property and the SetSpouse method to the Customer class, we call the 
SetSpouse method on the variable bob in line 18, just as we did in the previous Ruby and Python 
examples. When we print out Bob’s spouse and Mary’s spouse in lines 20 and 21, we can verify that 
things do work as expected and that we have dutifully officiated at the matrimony. And just as what 
happens to newlyweds who simply go on a honeymoon and forget to pay their wedding expenses on 
time, Bob and Mary incurred late fees on their credit card accounts. To reflect that irresponsibility on the 
part of Bob and Mary, the code in lines 23 and 24 assigns one anonymous delegate as the 
CalculateLateFee method to the variable bob and another anonymous delegate as the CalculateLateFee 
method to the variable mary. When you print out Bob’s and Mary’s late fees, sure enough you will see 
that Bob has a late fee of 200 and Mary has a late fee of 100 dollars. 

Listing 8-11. An Example of Adding Methods at the Class and Instance Levels in C#   

1) private static void RunMetaLibExample() 
2) { 
3)     dynamic customerClass = Customer.CLASS; 
4)     dynamic bob = new Customer("Bob", 26); 
5)     dynamic mary = new Customer("Mary", 30); 
6)  
7)     Action<dynamic, dynamic> SetSpouse = (self, spouse) => 
8)     { 
9)         if (self.Spouse != spouse) 
10)         { 
11)             self.Spouse = spouse; 
12)             spouse.Spouse = self; 
13)         } 
14)     }; 
15)  
16)     customerClass.Spouse = null; 
17)     customerClass.SetSpouse = SetSpouse; 
18)     bob.SetSpouse(bob, mary); 
19)  
20)     Console.WriteLine("Bob's spouse is {0}.", bob.Spouse); 
21)     Console.WriteLine("Mary's spouse is {0}.", mary.Spouse); 
22)  
23)     bob.CalculateLateFee = (Func<int>) (() => { return 200; }); 
24)     mary.CalculateLateFee = (Func<int>)(() => { return 100; }); 
25)  
26)     Console.WriteLine("Bob's late fee is {0}.", bob.CalculateLateFee()); 
27)     Console.WriteLine("Mary's late fee is {0}.", mary.CalculateLateFee()); 
28) } 
 

Let’s see how ClassMetaObject and ExpandoClass are implemented. Listing 8-12 shows the 
ClassMetaObject code. ClassMetaObject derives from the System.Dynamic.DynamicObject class that the 
DLR provides. We discussed DynamicObject in Chapter 5.  

Basically, the class DynamicObject defines some methods that you can override in a derived class to 
define the late-binding behavior of the derived class’s instances. Here in ClassMetaObject we override 
the TryGetMember and TrySetMember methods inherited from DynamicObject. The TryGetMember method of 



CHAPTER 8  METAPROGRAMMING 

194 

ClassMetaObject will be called when we try to access a property or call a method on an instance of 
ClassMetaObject or a class that derives from ClassMetaObject.  

For example, in Listing 8-11, when the code bob.Spouse is executed, because the Spouse property is 
not defined in the C# Customer class, the TryGetMember method that the Customer class inherits from 
ClassMetaObject will be called to perform the late binding of the Spouse property. The logic of the 
TryGetMember method implemented in ClassMetaObject first checks if the requested property or method 
is available at the instance level by looking up the property or method name in the items dictionary. The 
items dictionary is a private member variable in ClassMetaObject that holds dynamic properties and 
methods at the instance level. If the requested property or method is not found at the instance level, the 
TryGetMember method in ClassMetaObject proceeds to perform the class-level lookup by calling the 
TryGetMember method on the Class property.  

As Listing 8-12 shows, the Class property is a reference to an ExpandoClass instance. The job of the 
Class property is to hold the dynamic properties and methods at the class level. Because every subclass 
of ClassMetaObject will have its own class-level dynamic properties and methods, I make the Class 
property an abstract property. Every subclass of ClassMetaObject should implement the abstract Class 
property by returning its own ExpandoClass instance in the Class property’s get method. That’s what the 
Customer class does, and you can see that if you take a look at how the Class property is implemented in 
the Customer class in Listing 8-10. 

The TrySetMember in ClassMetaObject is implemented a little differently from the TryGetMember. The 
code in the TrySetMember sets a property or method at the instance level by putting an entry in the items 
dictionary. Unlike the TryGetMember method, the code does not bother with setting properties and 
methods at the class level. This is because the TrySetMember method is called when code like self.Spouse 
= spouse in Listing 8-11 is executed. As you can see, when such code is executed, we want to set the 
Spouse property of the instance referenced by self. In other words, we want to set the Spouse property at 
the instance level. If the client code wants to set a property at the class level, then instead of doing 
something like self.Spouse = spouse, the client code should set the property by using code like the 
customerClass.Spouse = null in Listing 8-11. This code will cause the TrySetMember method of 
ExpandoClass, which you will see in a minute, to be called.  

In summary, an important point to keep in mind when using the ClassMetaObject and ExpandoClass 
classes is that when setting a dynamic property or method at the instance level, you need to set it to an 
instance of ClassMetaObject. If you want to set a dynamic property or method at the class level, you need 
to set it to an instance of ExpandoClass. However, you can retrieve an instance-level or class-level 
dynamic property or method by getting it from a ClassMetaObject instance. 

Listing 8-12. The ClassMetaObject Class 

public abstract class ClassMetaObject : DynamicObject 
{ 
    protected abstract ExpandoClass Class 
    { 
        get; 
    } 
 
    private Dictionary<string, object> items = new Dictionary<string, object>(); 
 
    public override bool TryGetMember( 
        GetMemberBinder binder, out object result) 
    { 
        if (items.TryGetValue(binder.Name, out result)) 
            return true; 



 CHAPTER 8  METAPROGRAMMING 

195 

        else 
            return Class.TryGetMember(binder, out result); 
    } 
 
    public override bool TrySetMember( 
        SetMemberBinder binder, object value) 
    { 
        items[binder.Name] = value; 
        return true; 
    } 
} 
 

The ExpandoClass code is similar to that of ClassMetaObject, only simpler. Listing 8-13 shows how 
the ExpandoClass class is implemented. Like ClassMetaObject, ExpandoClass also derives from 
DynamicObject and overrides the TryGetMember and TrySetMember methods. ExpandoClass defines a 
private member variable called items to hold class-level dynamic properties and methods.  

Listing 8-13. The ExpandoClass Class 

public class ExpandoClass : DynamicObject 
{ 
    Dictionary<string, object> items = new Dictionary<string, object>(); 
 
    public override bool TryGetMember( 
        GetMemberBinder binder, out object result) 
    { 
        return items.TryGetValue(binder.Name, out result); 
    } 
 
    public override bool TrySetMember( 
        SetMemberBinder binder, object value) 
    { 
        items[binder.Name] = value; 
        return true; 
    } 
} 
 

To illustrate how ExpandoClass works in concert with ClassMetaObject, I’ll trace how the SetSpouse 
method is added to the Customer class and then later invoked on a Customer instance. Recall the 
following code snippet in Listing 8-11: 

 
customerClass.SetSpouse = SetSpouse; 
bob.SetSpouse(bob, mary); 
 

In the code snippet, when we assign the SetSpouse delegate to the SetSpouse member of 
customerClass, because customerClass is an instance of ExpandoClass, the TrySetMember method of 
ExpandoClass will be invoked and the SetSpouse method will be added to the C# Customer class at the 
class level. When we call the SetSpouse method on bob, because bob is an instance of ClassMetaObject, 
the TryGetMember method of ClassMetaObject will be invoked. The TryGetMember method of 
ClassMetaObject will not find a method by the name SetSpouse because the SetSpouse method was 
added to bob at the instance level. So the TryGetMember method of ClassMetaObject will proceed to call 



CHAPTER 8  METAPROGRAMMING 

196 

the TryGetMember method of ExpandoClass and the SetSpouse method we added to the C# Customer class 
will be retrieved and eventually called. 

LINQ Query Provider 
So far in this chapter, I have shown how we can add methods to a class and to a particular instance of a 
class dynamically, completely in C# without any use of a dynamic language such as Ruby or Python. 
Now we are going to take a detour and look at another kind of metaprogramming technique that is made 
possible by the DLR. The metaprogramming technique I’ll show you is based on DLR Expression, and I 
will demonstrate it by implementing a custom LINQ query provider. The exciting thing about doing this 
is that we are going to gradually evolve the custom LINQ query provider into a code-generation 
framework that utilizes the ClassMetaObject and ExpandoClass classes we built in the previous section. At 
the end, we’ll arrive at a code-generation framework that is in spirit similar to frameworks such as the 
popular Ruby on Rails.  

Understanding the End Goal 
In this section we’ll build a LINQ query provider. However, our true goal is to understand not the LINQ 
query provider itself, but rather the DLR Expression metaprogramming the LINQ query provider is based 
on. As you’ll see, DLR Expression allows us to represent code as data. The data is in the form of 
expression trees that we can easily manipulate using the Visitor design pattern we looked at in Chapter 
2. We saw many examples of DLR Expression in Chapter 2. The code here will be similar, except that this 
time our DLR Expression example is framed in the context of LINQ query providers.  

LINQ is a component of the .NET Framework that allows writing code like the following to query a 
data source: 

 
IEnumerable<Customer> selectedCustomers =  

from c in customers  
where c.FirstName.Equals(“Bob”) select c; 
 

In the code snippet, the variable customers is the data source from which we want to select 
customers whose first name is Bob. The variable customers might represent data in database, 
information in XML files, or a collection of objects in memory. As far as the query is concerned, it doesn’t 
matter whether the underlying data store is a database or an XML file. As long as there is a LINQ query 
provider that knows how to take our LINQ query and fetch the right data from the underlying data store, 
our LINQ query will run just fine.  

From this little explanation of LINQ, you can see that the two major players in LINQ are queries and 
query providers. Queries are decoupled from the actual data store. The only link between queries and 
the actual store is a query provider. A query provider knows how to take queries and execute them 
against a particular data store. In this section, the custom query provider we will implement is one that 
executes queries against a collection of in-memory objects. 

Implementing the Query Class 
The implementation of the custom query provider consists of three main classes: Query<T>, 
QueryProvider<T>, and QueryExpressionVisitor<T>. The Query<T> class represents the queries that will 
be processed by our custom query provider as DLR expression trees. The QueryProvider<T> class 
implements the logic of our custom query provider. QueryProvider<T> is the class that contains the logic 
for executing instances of the Query<T> class. When a QueryProvider<T> instance executes instances of 
the Query<T> class, it uses instances of the QueryExpressionVisitor<T> class to manipulate the DLR 



 CHAPTER 8  METAPROGRAMMING 

197 

expression trees of the Query<T> instances. We will now go over the code of the three classes, Query<T>, 
QueryProvider<T>, and QueryExpressionVisitor<T>. You will see as an example a typical use of DLR 
Expression as a metaprogramming technique. 

Listing 8-14 shows the Query<T> class. To be a class that represents LINQ queries, Query<T> must 
implement the IQueryable<T> interface. Of the property accessors and interface methods we must 
implement in order to implement the IQueryable<T> interface, the two most important ones are the 
Expression property get accessor and the Provider property get accessor. As mentioned previously, the 
Query<T> class represents queries as DLR expression trees. The Expression property is the evidence of 
that. The property holds a DLR expression that can have child expressions. Those child expressions can 
have child expressions, and so on. All together, the expressions form an expression tree that represents a 
query. As to the Provider property, it’s there in Query<T> to decouple queries from the actual data store. 
It is the link between queries and the actual store.       

Listing 8-14. The Query<T> Class 

public class Query<T> : IQueryable<T> 
{ 
    private IQueryProvider provider; 
    private Expression expression; 
 
    public Query(IQueryProvider provider) 
    { 
        this.provider = provider; 
        this.expression = Expression.Constant(this); 
    } 
 
    public Query(IQueryProvider provider, Expression expression) 
    { 
        if (!typeof(IQueryable<T>).IsAssignableFrom(expression.Type)) 
            throw new ArgumentException("expression"); 
 
        this.provider = provider; 
        this.expression = expression; 
    } 
 
    Expression IQueryable.Expression 
    { 
        get { return expression; } 
    } 
 
    Type IQueryable.ElementType 
    { 
        get { return typeof(T); } 
    } 
 
    IQueryProvider IQueryable.Provider 
    { 
        get { return provider; } 
    } 
 
    public IEnumerator<T> GetEnumerator() 



CHAPTER 8  METAPROGRAMMING 

198 

    { 
        return ((IEnumerable<T>)provider.Execute(expression)).GetEnumerator(); 
    } 
 
    IEnumerator IEnumerable.GetEnumerator() 
    { 
        return ((IEnumerable)provider.Execute(expression)).GetEnumerator(); 
    } 
} 

Implementing the QueryProvider Class 
Listing 8-15 shows the QueryProvider<T> class. To be a class that represents LINQ query providers, 
QueryProvider<T> must implement the IQueryProvider interface. The constructor of QueryProvider<T> 
takes a list of objects as input and assigns that list to the class member variable records. This variable 
represents the data store our custom query provider works against. I chose to use a list of objects as the 
data store for the sake of simplicity without losing any generality. Had I chosen a database as the data 
store, we would need to go through the extra work of setting up a database.  

The IQueryProvider interface defines four methods and we implement all of them in 
QueryProvider<T>. The four methods are the two CreateQuery methods and the two Execute methods. 
Our implementation of the generic version of the CreateQuery method simply creates an instance of 
Query<T> and returns it. The non-generic version of the CreateQuery method is implemented to throw a 
NotImplementedException because the method is not needed in our example. The generic version of the 
Execute method delegates its work to the non-generic version of the Execute method, which is where the 
interesting things happen. The non-generic version of the Execute method takes an expression tree that 
represents a LINQ query as input and executes that query against the data store records. The expression 
tree that represents a LINQ query can be very complex and can contain expressions that represent where 
clauses, order-by clauses, group-by clauses, and so on. A practical implementation of the Execute 
method would need to be able to handle most of those different clauses. For the purpose of our example, 
it’s enough to just handle the where clauses. In fact, all I want the query provider to be able to handle is 
the following query: 

 
Query<Customer> customers = new Query<Customer>(provider); 
from c in customers where c.FirstName.Equals(“Bob”) select c; 
 

The variable provider in the query is an instance of QueryProvider<T>. The query uses the Customer 
class that we haven’t introduced yet. But, basically, the query invokes our custom query provider to fetch 
customers whose first name is Bob. The query is constructed using the keywords from, in, where, and 
select that the C# language provides. Those keywords are just syntactic sugar over a set of underlying 
methods defined in the System.Linq.Queryable class. When the C# compiler sees those keywords, it 
translates them into calls to the underlying methods in System.Linq.Queryable. If we don’t use the 
syntactic sugar, we can equivalently express our query with the following code: 

 
Query<Customer> customers = new Query<Customer>(provider); 
Queryable.Where<Customer>(customers, c => c.FirstName.Equals(firstName)); 

 
The return value of Queryable’s Where<T> method is IQueryable<T>. The first input parameter of the 

Where<T> method is also of type IQueryable<T>. What the Where<T> does internally is very simple. It 
constructs a MethodCallExpression instance that represents a call to the Where<T> method. The 
MethodCallExpression instance has two input arguments that are made child expressions of the 
MethodCallExpression instance. The two input arguments are expressions that represent the first and 



 CHAPTER 8  METAPROGRAMMING 

199 

second input parameters of the Where<T> method. After constructing the MethodCallExpression instance, 
the Where<T> method creates a new instance of Query<T>. Then it sets the new Query<T> instance’s 
Expression property to the MethodCallExpression instance. Once you understand how our query is 
represented as a MethodCallExpression instance, it should be easy to understand why the non-generic 
version of the Execute method is implemented the way it is in Listing 8-15. 

In the Execute method, we first check if the input expression that represents the query to execute is 
a MethodCallExpression. If so, we further check if the MethodCallExpression represents a call to the 
Where<T> method of the Queryable class. If that’s not the case, then the query is outside the scope of what 
we want our custom query provider to support and therefore we throw a NotSupportedException. If the 
input expression parameter of the Execute method does represent a call to the Where<T> method of the 
Queryable class, we use an expression visitor to visit the MethodCallExpression and its descendant 
expressions. The expression visitor is an instance of QueryExpressionVisitor<T>, whose code is shown 
Listing 8-16. The expression visitor’s job is to retrieve the lambda function that makes up the where 
clause of our query. In our query, that lambda function is c => c.FirstName.Equals(firstName) and it is 
stored as a descendant expression under the MethodCallExpression. Once the visitor retrieves the 
expression representing the lambda function, in line 39 of Listing 8-15 we get that expression from the 
visitor’s Predicate property and use the expression to find matching objects in the class member 
variable records. Because the LINQ component of the .NET Framework comes with a LINQ query 
provider called LINQ to Objects for executing LINQ queries against IEnumerable<T> collections such as 
the class member variable records, line 39 simply uses the LINQ to Objects query provider to find the 
matching objects. This might strike you as a little absurd because we could have used the LINQ to 
Objects query provider directly without building a custom query provider that uses the LINQ to Objects 
provider internally. That’s true, except that if we had used the LINQ to Objects query provider directly, I 
wouldn’t be able to use our custom query provider as a typical example of how DLR Expression is used 
as a metaprogramming technique. Besides, you can think of this use of the LINQ to Objects provider as 
simplification of a more practical case where we would have more complex logic for querying the data 
store. Next, let’s take a look at how to implement the QueryExpressionVisitor<T> class to retrieve the 
expression that represents the lambda function in a where clause.  

Listing 8-15. The QueryProvider<T> Class 

1) public class QueryProvider<T> : IQueryProvider 
2) { 
3)     private IList<T> records; 
4)  
5)     public QueryProvider(IList<T> records) 
6)     { 
7)         this. records = records; 
8)     } 
9)  
10)     public IQueryable<T> CreateQuery<T>(Expression expression) 
11)     { 
12)         if (expression == null) 
13)             return new Query<T>(this); 
14)         else 
15)             return new Query<T>(this, expression); 
16)     } 
17)  
18)     public IQueryable CreateQuery(Expression expression) 
19)     { 



CHAPTER 8  METAPROGRAMMING 

200 

20)         throw new NotImplementedException(); 
21)     } 
22)  
23)     public TResult Execute<TResult>(Expression expression) 
24)     { 
25)         return (TResult)this.Execute(expression); 
26)     } 
27)  
28)     public object Execute(Expression expression) 
29)     { 
30)         if (!(expression is MethodCallExpression)) 
31)             throw new NotSupportedException("The expression needs to be a 

MethodCallExpression"); 
32)  
33)         MethodCallExpression methodCallExpression = (MethodCallExpression) expression; 
34)         if (methodCallExpression.Method.DeclaringType == typeof(Queryable) 
35)             && methodCallExpression.Method.Name == "Where") 
36)         { 
37)             QueryExpressionVisitor<T> visitor = new QueryExpressionVisitor<T>(); 
38)             visitor.Visit(methodCallExpression); 
39)             return records.Where<T>(visitor.Predicate); 
40)         } 
41)         else 
42)             throw new NotSupportedException( 
43)                       "The expression needs to be a call to the Where method of 

Queryable"); 
44)     } 
45) } 
 

Implementing QueryExpressionVisitor 
To qualify as a DLR expression visitor class, a class must derive from 
System.Linq.Expressions.ExpressionVisitor. The class ExpressionVisitor defines methods for 
different expression classes. A subclass of ExpressionVisitor will inherit those methods and override the 
ones that it wants to provide custom logic for.  

In the case of our example, QueryExpressionVisitor<T> overrides the VisitMethodCall method it 
inherits from ExpressionVisitor. The overridden VisitMethodCall method will be called for every 
MethodCallExpression node in the expression tree being traversed. Because the lambda expression we 
want QueryExpressionVisitor<T> to retrieve is a child expression of a MethodCallExpression, we override 
the VisitMethodCall method in QueryExpressionVisitor<T>. In the overridden VisitMethodCall 
method, we check whether the method call expression node being visited represents a method call to 
the Where<T> method of the Queryable class. If so, we proceed to get the second argument of the method 
call expression because that second argument is the expression that represents the lambda function in a 
where clause.  

One little thing to be mindful of is that the lambda expression we want to retrieve might be wrapped 
by unary expressions whose node type is ExpressionType.Quote. The reason for quoting a lambda 
expression is so that when the quoted expression is compiled, it will compile into an expression instead 
of a lambda function, as would be the case without the quoting. Because of the possible quoting of the 
lambda expression, the code in Listing 8-16 uses a method called GetPastQuotes to get past the unary 
expressions to the lambda expression we are interested in. When we get a hold of the lambda expression, 



 CHAPTER 8  METAPROGRAMMING 

201 

we assign it to the Predicate field of QueryExpressionVisitor<T> so that we can use it in the Execute 
method of QueryProvider<T>. 

Listing 8-16. The QueryExpressionVisitor<T> Class 

internal class QueryExpressionVisitor<T> : ExpressionVisitor 
{ 
    public Func<T, bool> Predicate; 
         
    internal QueryExpressionVisitor() 
    {  } 
 
    protected override Expression VisitMethodCall(MethodCallExpression m) 
    { 
        if (m.Method.DeclaringType == typeof(Queryable) && m.Method.Name == "Where") 
        { 
            //The second argument of the method call expression is a lambda expression that 
serves  
            //as the predicate for the 'Where' clause. 
            LambdaExpression lambda = (LambdaExpression)GetPastQuotes(m.Arguments[1]); 
            Predicate = (Func<T, bool>) lambda.Compile(); 
        } 
 
        return base.VisitMethodCall(m); 
    } 
 
    private Expression GetPastQuotes(Expression expression) 
    { 
        while (expression.NodeType == ExpressionType.Quote) 
            expression = ((UnaryExpression) expression).Operand; 
 
        return expression; 
    } 
} 
 

This section uses the implementation of a custom query provider to demonstrate the use of DLR 
Expression as a metaprogramming technique. We saw that queries written in code end up being 
represented by DLR expressions. This is the concept of code as data in action. The code in this case is the 
query code from c in customers where c.FirstName.Equals(“Bob”) select c; and the data is the 
MethodCallExpression and its descendant expressions that represent the query code. We also saw how 
the DLR expressions are interpreted and executed by a query provider. This is the concept of data as 
code in action. The data in this case is the DLR expressions and that data is used as code by our custom 
query provider. The code we write to interpret and execute DLR expressions is a metaprogram. The 
program that the metaprogram acts on is the code represented by the DLR expressions. 

Data Access 
Now that we have gone through the implementation of a custom query provider, I am going to show you 
three ways of using that query provider, as well as the pros and cons of each approach. At the end of this 



CHAPTER 8  METAPROGRAMMING 

202 

part of the chapter, you will arrive at a primitive code-generation prototype that is in spirit similar to
frameworks like Ruby on Rails. 

Before we start to look at the three different ways of using our custom query provider, there is some
preparation work to do. First, let’s define a Customer class like the one in Listing 8-17. The Customer class
is straightforward. We will use it as the type of the objects we query.    

Listing 8-17. The Customer Class for Trying Out Our Custom Query Provider 

public class Customer
{ 
    public string FirstName { get; set; } 
    public string LastName { get; set; } 

    public override string ToString() 
    { 
        return FirstName + " " + LastName; 
    }
} 

Next we need some instances of the Customer class to serve as the data source of our LINQ queries.
For that, let’s create the DataStore class shown in Listing 8-18. The code in Listing 8-18 is pretty simple.
It creates a list of Customer instances and uses that list to create an instance of QueryProvider<Customer>
whenever the static GetQueryProvider method is called.  

Listing 8-18.The DataStore Class That Contains the Data We Will Query Against 

public class DataStore
{ 
    private static IList<Customer> customers = new List<Customer>(new Customer[] { 
                        new Customer {FirstName="Bob", LastName="Smith"},  
                        new Customer {FirstName="John", LastName="Smith"}, 
                        new Customer {FirstName="Bill", LastName="Jones"}, 
                        new Customer {FirstName="Mary", LastName="Jones"}, 
                        new Customer {FirstName="Bob", LastName="Jones"}}); 

    public static IQueryProvider GetCustomerQueryProvider() 
    { 
        return new QueryProvider<Customer>(customers); 
    }
} 

We have now completed the preparation work and we are ready to see the three ways to use our
custom query provider. The first approach does not involve any late binding and therefore will be
familiar to those who have worked with LINQ queries before. Let’s take a look. 

Static Data Access 
Because this approach to using our custom query provider does not involve any late binding, I’ll refer to
it as the static data access approach. In the architecture of a software system, it is not uncommon to
have a layer that handles data access. The responsibility of the data access layer is to (a) handle the 



 CHAPTER 8  METAPROGRAMMING 

203 

interactions with data stores such as a database, and (b) decouple the rest of the software system from 
the specifics of the data stores. For the purpose of our example, let’s imagine that we are building the 
data access layer of a software system. The data access layer will interact with our custom query 
provider. We want the data access layer to abstract away the fact that we are using a LINQ query provider 
so that if we ever need to swap out the LINQ query provider and replace it with, say, an object-relational 
mapping component like NHibernate, the rest of the software system can stay the same. 

To achieve the data-access abstraction we want, we can define the interface ICustomerDao shown in 
Listing 8-19. The interface defines the signature of the FindByFirstName and FindByLastName methods 
and does not dictate what data store we should use in implementing the interface. We might have a 
concrete implementation of the ICustomerDao interface that uses a database as the backing data store. 
We might have another concrete implementation of the ICustomerDao interface that uses in-memory 
objects as the backing data store. Because the rest of our software system works with the data-store-
agnostic ICustomerDao interface, we can swap out one concrete implementation and swap in another 
and the rest of our software system won’t be affected.    

Listing 8-19. The ICustomerDao Interface 

public interface ICustomerDao 
{ 
    IEnumerable<Customer> FindByFirstName(string firstName); 
    IEnumerable<Customer> FindByLastName(string lastName); 
}  
 

Listing 8-20 shows the CustomerDao class that implements the ICustomerDao interface by using a 
LINQ query provider internally. As you can see, the implementation of the FindByFirstName method uses 
the from, where, in, and select C# language syntactic sugar to construct and return an instance of 
IQueryable<Customer> as an instance of IEnumerable<Customer>. This is okay because IQueryable<T> 
derives from the IEnumerable<T> interface. The implementation of the FindByLastName method is similar 
to that of the FindByFirstName method. 

Listing 8-20. The CustomerDao Class 

public class CustomerDao : ICustomerDao 
{ 
    private IQueryProvider provider; 
 
    public CustomerDao(IQueryProvider provider) 
    { 
        this.provider = provider; 
    } 
 
    public IEnumerable<Customer> FindByFirstName(string firstName) 
    { 
        return from c in provider.CreateQuery<Customer>(null)  
                where c.FirstName.Equals(firstName)  

  select c; 
    } 
 
    public IEnumerable<Customer> FindByLastName(string lastName) 
    { 



CHAPTER 8  METAPROGRAMMING 

204 

        return from c in provider.CreateQuery<Customer>(null) 
                where c.LastName.Equals(lastName) 
                select c; 
    } 
} 
 

The code in the CustomerDao class does not run by itself. Listing 8-21 shows an example that creates 
an instance of CustomerDao and calls the FindByFirstName and FindByLastName methods on the instance. 
The example is pretty self-explanatory. One thing to note is that when FindByFirstName or 
FindByLastName returns an IQueryable<Customer> type cast as an IEnumerable<Customer> instance, the 
LINQ query represented by the IEnumerable<Customer> instance is not executed yet. The LINQ query is 
executed when the code in Listing 8-21 starts iterating through the IEnumerable<Customer> instance. This 
is because when that happens, the GetEnumerator method of the Query class will be called. If you look at 
the code in the GetEnumerator method of the Query class, you will see that there the LINQ query is 
executed by a query provider.  

Listing 8-21. An Example of Using the CustomerDao Class 

private static void RunCustomerDaoExample() 
{ 
    CustomerDao customerDao = new CustomerDao(DataStore.GetCustomerQueryProvider()); 
    IEnumerable<Customer> customers = customerDao.FindByFirstName("Bob"); 
 
    foreach (var item in customers) 
        Console.WriteLine(item); 
 
    customers = customerDao.FindByLastName("Jones"); 
 
    foreach (var item in customers) 
        Console.WriteLine(item); 
} 
 

Even though the ICustomerDao interface and the CustomerDao class provide a nice abstraction of the 
underlying data access details to the rest of our software system, one downside of this approach is the 
amount of boilerplate code we need to write. For each property, such as FirstName in the Customer class, 
we need to define a method like FindByFirstName method in ICustomerDao and implement that method 
in CustomerDao. It would be nice if we could freely define properties like FirstName and LastName in 
Customer and the rest of the data access code, such as the FindByFirstName and FindByLastName methods, 
would just be there automatically. Well, that’s what our next approach is going to do.  

Dynamic Data Access 
Let’s look at the second approach for using our custom query provider in the data access layer. In this 
approach, we will leverage the metaprogramming facilities made possible by DLR Expression and 
dynamic objects so that methods like FindByFirstName and FindByLastName don’t need to be manually 
coded. Because the approach we are going to look at uses the late-binding capability of the DLR, I’ll refer 
to it as the dynamic data access approach. Listing 8-22 shows the data access layer class, DynamicDao<T>, 
that has the logic for responding to invocations of the FindByFirstName and FindByLastName methods, 
without us needing to write those methods manually. The idea of the dynamic data access approach is 
that we don’t define and implement methods like FindbyFirstName and FindByLastName in 



 CHAPTER 8  METAPROGRAMMING 

205 

DynamicDao<T>. Instead we make DynamicDao<T> a subclass of DynamicObject. So when the methods 
FindbyFirstName and FindByLastName are invoked on an instance of DynamicDao<T>, the TryInvokeMember 
method of DynamicDao<T> will be invoked to handle the late binding of those method invocations. In the 
body of the TryInvokeMember method, we implement the late-binding logic in such a way that if the 
method invoked is FindByFirstName or FindByLastName, we return an IQueryable<Customer> instance. 
The IQueryable<Customer> instance when executed will return only customers whose first name (or last 
name) matches the queried first name (or last name).       

In Listing 8-22, the code in the TryInvokeMember method first gets the invoked method name from 
the Name property of the binder parameter. If the invoked method is FindByFirstName, the Name property 
of the binder parameter will be the string “FindByFirstName”. So we strip out “FindBy” and obtain the 
property name “FirstName”. If the invoked method is FindByFirstName, we want the TryInvokeMember 
method to return as the result an IQueryable<Customer> instance equivalent to the IQueryable<Customer> 
instance returned by the FindByFirstName method of the CustomerDao class we saw in the previous 
section. The bulk of the code in the TryInvokeMember method is to construct a DLR expression that 
represents the predicate lambda function to use in the where clause of the query object we aim to 
construct. The predicate lambda function expressed in C# code will look something like this:  

 
(T x) => x.[propertyName].Equals(arg); 
 

In this C# code, if the TryInvokeMember function is invoked to find customers whose first name is 
“Bob”, then T will be the type Customer, [propertyName] will be FirstName and arg will be “Bob”. The 
predicate lambda function in C# maps very nicely to the predicate expression we try to construct in 
Listing 8-22. The x.[propertyName] part in the C# lambda function above is a property member access 
and it maps to the Expression.MakeMemberAccess method call in line 18. In the body of the C# lambda 
function, the call to the Equals method maps to the Expression.Call method call in line 17. The whole 
C# lambda function maps to the Expression.Lambda method call in line 16. The C# lambda function has 
one input parameter x,  which maps to the parameter variable created in line 14.  

Once the predicate expression is constructed, we pass it as the input parameter to the Where<T> 
method call in line 26 so that the query we return as the late-binding result will have a where clause with 
the desired predicate for matching customers.   

Listing 8-22. The DynamicDao<T> Class 

1) public class DynamicDao<T> : DynamicObject 
2) { 
3)     private IQueryProvider provider; 
4)  
5)     public DynamicDao(IQueryProvider provider) 
6)     { 
7)         this.provider = provider; 
8)     } 
9)  
10)     public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args,  
11)         out object result) 
12)     { 
13)         String propertyName = binder.Name.Substring(6); //6 is the length of 'FindBy' 
14)         ParameterExpression parameter = Expression.Parameter(typeof(T)); 
15)         PropertyInfo propertyInfo = typeof(T).GetProperty(propertyName); 
16)         Expression<Func<T, bool>> predicate = Expression.Lambda<Func<T, bool>>( 
17)             Expression.Call( 



CHAPTER 8  METAPROGRAMMING 

206 

18)                 Expression.MakeMemberAccess( 
19)                     parameter,  
20)                     propertyInfo), 
21)                 propertyInfo.PropertyType.GetMethod("Equals", new Type[] 

{typeof(object)}), 
22)                 Expression.Constant(args[0])), 
23)             parameter); 
24)  
25)         Query<T> query = new Query<T>(provider); 
26)         result = query.Where<T>(predicate); 
27)         return true; 
28)     } 
29) } 
 

Listing 8-23 shows an example that creates an instance of DynamicDao<Customer> and calls the 
FindByFirstName and FindByLastName methods on the instance. You can run the code and verify that 
everything works as expected.  

Listing 8-23. An Example of Using the DynamicDao<T> Class 

private static void RunDynamicDaoExample() 
{ 
    dynamic customerDao = new DynamicDao<Customer>(DataStore.GetCustomerQueryProvider()); 
    IEnumerable<Customer> customers = customerDao.FindByFirstName("Bob"); 
 
    foreach (var item in customers) 
        Console.WriteLine(item); 
 
    customers = customerDao.FindByLastName("Jones"); 
 
    foreach (var item in customers) 
        Console.WriteLine(item); 
} 
 

The dynamic data access approach shown in this section frees us from having to define and 
implement methods like FindByFirstName and FindByLastName for each property in the Customer class. 
However, the code in the TryInvokeMember method of DynamicDao<T> looks pretty ad hoc to me. The code 
works for our simple example, but in practical cases, we could have different kinds of methods than the 
“FindBy” methods we want to bind late. If we handle those practical cases the way we do in 
DynamicDao<T>, we will have to parse those different kinds of method names and use those names to 
guide the program’s execution path. We would need to refactor the code in DynamicDao<T> substantially 
so that we don’t put all the late-binding logic in the TryInvokeMember method. Essentially, the problem 
with DynamicDao<T> as it is implemented is the lack of a well-structured mechanism for routing a method 
invocation to the right late-binding logic. One way to amend the issue is to refactor the code in 
DynamicDao<T>. Another way is to leverage the ClassMetaObject and ExpandoClass classes we built earlier 
in this chapter. The next section shows how to do that. 

Generated Data Access 
We will now show the third approach for using our custom query provider in the data access layer. In 
this approach, we will leverage the metaprogramming features of the ClassMetaObject and ExpandoClass 



 CHAPTER 8  METAPROGRAMMING 

207 

classes we built earlier so that we have a well-structured mechanism for routing a method invocation to 
the right late-binding logic. The idea of this approach is to generate methods like FindByFirstName and 
FindByLastName at runtime and add those methods to a data access layer class. With this approach, we 
no longer need to parse method names and use those names to pick the right late-binding logic, as we 
did in the DynamicDao<T> class. Because the approach demonstrated in this section is based on the 
concept of code generation, I will refer to it as the generated data access approach. 

Listing 8-24 shows the class GeneratedDao<T> to which we will add the FindByFirstName and 
FindByLastName methods. The code in Listing 8-24 might look complicated at first, but it’s actually quite 
simple once you understand the code structure. First, the class GeneratedDao<T> derives from 
ClassMetaObject. That means we can add new methods to GeneratedDao<T> at the class level or instance 
level. New methods added to GeneratedDao<T> at the class level are added to the static _class variable. 
Our goal is to add a “FindBy” method for each property in type T to GeneratedDao<T> at the class level. 
To achieve that, in Listing 8-24 we define the AddMethods method that loops through all the properties of 
T and calls the AddMethodForProperty method for each property. AddMethodForProperty calls the 
CreateNewMethodExpression method to get an expression that represents the new method to be added for 
a property. Using FindByFirstName as an example, the expression returned by 
CreateNewMethodExpression when compiled will be equivalent to the following C# code: 

 
Func<String, IEnumerable<Customer>> FindByFirstName = 
    (firstName) => 
    { 
        IQueryable<Customer> query = provider.CreateQuery<Customer>(null); 
        return query.Where(c => c.FirstName.Equals(firstName)); 
    }; 

 
The equivalent C# code is the same as the FindByFirstName method we saw in CustomerDao. Here we 

are just implementing the same method in terms of DLR expressions. The CreateNewMethodExpression 
method internally calls the GetWhereMethodInfo method to get a System.Reflection.MethodInfo instance 
for the Where method of the Queryable class. CreateNewMethodExpression calls the 
CreatePredicateExpression to get the expression that represents the predicate (the c => 
c.FirstName.Equals(firstName) in the above code snippet) in the query’s where clause. Once 
AddMethodForProperty gets the lambda expression returned by the CreateNewMethodExpression method, 
it constructs an expression that adds the lambda expression as a new method to _class by calling the 
TrySetMember method on _class.  

Listing 8-24. The GeneratedDao<T> Class 

public class GeneratedDao<T> : ClassMetaObject 
{ 
    private static ExpandoClass _class = new ExpandoClass(); 
     
    protected override ExpandoClass Class 
    { 
        get { return _class; } 
    } 
 
    private IQueryProvider provider; 
    private MethodInfo whereMethod = null; 
 
    public GeneratedDao(IQueryProvider provider) 



CHAPTER 8  METAPROGRAMMING 

208 

    { 
        this.provider = provider; 
        AddMethods(); 
    } 
 
    private void AddMethods() 
    { 
        PropertyInfo[] properties = typeof(T).GetProperties(); 
        foreach (PropertyInfo propertyInfo in properties) 
            AddMethodForProperty(propertyInfo); 
    } 
 
    private void AddMethodForProperty(PropertyInfo propertyInfo) 
    { 
        LambdaExpression newMethod = CreateNewMethodExpression(propertyInfo); 
 
        SetMemberBinder binder = new SimpleSetMemberBinder("FindBy" + propertyInfo.Name, 
false); 
        Expression addMethodExpression = Expression.Call( 
            Expression.Constant(_class), 
            _class.GetType().GetMethod("TrySetMember"), 
            Expression.Constant(binder), newMethod 
        ); 
 
        Func<bool> func = Expression.Lambda<Func<bool>>(addMethodExpression).Compile(); 
        func(); 
    } 
 
    private Expression<Func<T, bool>> CreatePredicateExpression( 
        PropertyInfo propertyInfo, ParameterExpression argExpression) 
    { 
        //predicate = (T x) => 
        //{ 
        //   x.propertyName.Equals(arg); 
        //} 
             
        ParameterExpression parameter = Expression.Parameter(typeof(T)); 
        return Expression.Lambda<Func<T, bool>>( 
            Expression.Call( 
                Expression.MakeMemberAccess( 
                    parameter, 
                    propertyInfo), 
                propertyInfo.PropertyType.GetMethod("Equals", new Type[] { typeof(object) }), 
                argExpression), 
            parameter); 
    } 
 
    private MethodInfo GetWhereMethodInfo() 
    { 
        if (whereMethod != null) 
            return whereMethod; 
         



 CHAPTER 8  METAPROGRAMMING 

209 

        MethodInfo[] allMethods = typeof(Queryable).GetMethods( 
BindingFlags.Public | BindingFlags.Static); 

        foreach (var method in allMethods) 
        { 
            if (method.Name.Equals("Where")) 
            { 
                ParameterInfo[] parameters = method.GetParameters(); 
                Type[] genericTypes = parameters[1].ParameterType.GetGenericArguments(); 
                if (genericTypes[0].GetGenericArguments().Length == 2) 
                    whereMethod = method; 
            } 
        } 
 
        whereMethod = whereMethod.MakeGenericMethod(new Type[] { typeof(T) }); 
        return whereMethod; 
    } 
 
    private LambdaExpression CreateNewMethodExpression(PropertyInfo propertyInfo) 
    { 
        ParameterExpression argExpression = Expression.Parameter(propertyInfo.PropertyType); 
        Expression<Func<T, bool>> predicate = CreatePredicateExpression(propertyInfo, 
argExpression); 
 
        //provider.CreateQuery<Customer>(null); 
        Expression queryExpression = Expression.Call( 
            Expression.Constant(provider), "CreateQuery", 
            new Type[] { typeof(T) }, Expression.Constant(null, typeof(Expression))); 
 
        //query.Where(c => c.FirstName.Equals(firstName)); 
        Expression body = Expression.Call(null, 
            GetWhereMethodInfo(), queryExpression, 
            predicate); 
         
        return Expression.Lambda(body, argExpression); 
    } 
} 
 

To try out the GeneratedDao<T> class, you can run the code in Listing 8-25. This code creates an 
instance of GeneratedDao<Customer> and calls the FindByFirstName and FindByLastName methods on the 
instance.  

Listing 8-25. An Example of Using the GeneratedDao<T> Class 

private static void RunGeneratedDaoExample() 
{ 
    dynamic customerDao = new GeneratedDao<Customer>(DataStore.GetCustomerQueryProvider()); 
 
    IEnumerable<Customer> customers = customerDao.FindByFirstName("Bob"); 
    foreach (var item in customers) 
        Console.WriteLine(item); 
 



CHAPTER 8  METAPROGRAMMING 

210 

    customers = customerDao.FindByLastName("Jones"); 
    foreach (var item in customers) 
        Console.WriteLine(item); 
} 

Summary 
This chapter gives an overview of metaprogramming and then shows some exciting ways you can use 
metaprogramming in your .NET applications. Thanks to the DLR, your applications don’t need to use 
dynamic languages in order to benefit from the metaprogramming techniques traditionally available 
only in dynamic languages. In particular, this chapter implements two classes, ClassMetaObject and 
ExpandoClass, that serve as the foundation of other marvelous applications of metaprogramming. As an 
example of the wonderful things you can do with ClassMetaObject and ExpandoClass, we use those 
classes in building a code-generation framework that is in spirit similar to frameworks such as the 
popular Ruby on Rails. Because the code-generation framework is just an example, it omits a lot of 
details and shows only the concept. Though I can’t promise, I have plans in my mind to continue the 
development of the code-generation example shown in this chapter, and to experiment with model-
driven development and domain-specific language development with it. You are welcome to head over 
the dpier project web site at http://code.google.com/p/dpier/ and check out the progress. 
 

 

http://code.google.com/p/dpier


C H A P T E R  9 
    
 

211 

Stitch — A DSL for 
Hosting Languages 

Back in Chapter 6, we looked at the DLR Hosting API. In that chapter, we saw that the Hosting API 
provides a uniform way for a host language like C# to embed languages like IronPython and IronRuby. 
Although the Hosting API provides a good layer of abstraction between host and hosted languages, 
there’s still room for pushing the level of abstraction even higher—and that’s the topic of this chapter. 
We’ll go through the design and implementation of a domain specific language (DSL) called Stitch that I 
developed for language hosting. Using Stitch, we can host not just DLR-based languages but also 
languages like Windows PowerShell—uniformly and declaratively. The set of languages Stitch is capable 
of hosting is extensible. Moreover, the runtime of the Stitch language provides execution modes for 
running code sequentially or in parallel.  

The Stitch language is so named because it is built to make it easy and painless to stitch together 
other languages. It’s a DSL, not a general purpose language, because it is designed to solve only the 
issues encountered in language hosting and nothing else.  

The Need for Stitch 
In Chapter 6, we saw examples like the one in Listing 9-1 that use the DLR Hosting API to host 
IronPython code in C#. The nice thing about these examples is that if we change the language we’re 
hosting from IronPython to IronRuby, we don’t need to code against a different hosting API. Our code 
will still use the ScriptRuntime class to get an instance of ScriptEngine. It will still use an instance of the 
ScriptScope to pass information to the IronRuby code.  

Listing 9-1. Uusing the DLR Hosting API to Host IronPython Code 

ScriptEngine engine = ScriptRuntime.CreateFromConfiguration().GetEngine("python"); 
ScriptSource source = engine.CreateScriptSourceFromFile(@"Python\simple1.py"); 
 
ScriptScope scope = engine.CreateScope(); 
scope.SetVariable("x", 2); 
scope.SetVariable("y", 3); 
 
CompiledCode compiledCode = source.Compile(); 
compiledCode.Execute(scope); 

 
Although the DLR Hosting API provides a language-agnostic API for hosting multiple languages, 

there are some issues in the Listing 9-1 code, as the following list describes.    



CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

212 

The DLR Hosting API is imperative: It’s very imperative because the code we write
instructs how to run IronRuby or IronPython code by creating instances of
ScriptRuntime and ScriptEngine, calling methods on those instances, fishing out
objects from script scopes, and so on and so forth. Instead of doing all of this, it
would be nice if we could be declarative and avoid having to tell the Hosting API
how to execute IronPython or IronRuby code every step of the way.  

The DLR Hosting API is platform-dependent: The code examples we saw in
Chapter 6 can run only on .NET using the DLR runtime. The Hosting API can’t be
used to run the same Python, Ruby or other dynamic language scripts on a
different platform, such as the JVM. It would be nice if we could write the code
once and run it on different platforms. 

The DLR Hosting API serves only DLR-based languages: It can’t host languages
such as PowerShell, Ant, Maven, etc. Developers still need to know how to use
PowerShell from IronPython or how to use IronPython from PowerShell, or how to
use PowerShell from Ruby or vice versa. We don’t want to learn the different ways
of using one language within another. We want a generic approach that works for
all scenarios.  

The DLR Hosting API provides no high level support for parallel execution of
scripts: We can use Parallel Extensions. But it would be nice if there were a higher
level of abstraction for hosting languages. 

The design goal of the Stitch DSL is to address these four issues. Let’s see the solution Stitch provides. 

Syntax of the Stitch Language 
Let’s look at the Stitch language syntax now and see how it addresses the four issues we just mentioned.
When I started out designing Stitch’s syntax, I wrote down something like this:  

<Python> 
… Python code… 

<Ruby> 
… Ruby code… 

The syntax prototype uses <Python> to introduce a block of Python code and <Ruby> a block of Ruby
code. With the syntax prototype, you can stitch together multiple pieces of Python code and Ruby code
in any order you like. The syntax is declarative because it does not specify how to run the Python or Ruby
code. It only indicates which block is Python code and which block is Ruby code. With this syntax
prototype, how to run the Python and Ruby code becomes the job of the Stitch language runtime, not
the job of developers who write Stitch code.  

The syntax prototype is not only declarative, it’s also platform-independent. It’s not tied to anything
.NET or DLR-specific. If we implement a Stitch runtime that runs on the Java virtual machine, then any
Stitch code we write can also run on the Java virtual machine. 

To run code written in languages that are not DLR-based, such as PowerShell, I extended the syntax
prototype to something like the following: 

<Python> 
… Python code… 



 CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

213 

<Ruby> 
… Ruby code… 
 
<PowerShell> 
… PowerShell code… 
 

So far, everything seems pretty simple. The devil, of course, is in the details. The different language 
code snippets we stitch together are not islands. To do interesting things, they often need to send 
information to each other like this: 

  
<Python> 
x = 5 
z = 3 
 
<Ruby> 
y = x + 2 

 
This syntax prototype conveys the idea that the variables x and z defined in the Python code are 

accessible to the Ruby code that follows. The syntax looks good except for a couple of issues. First, the 
Ruby code has a dependency on the Python code because it uses the variable x from the Python code. 
The dependency is not very explicit. To find the dependency, we have to scan through all the lines of 
code and analyze them. Another issue with the syntax prototype is that the variable z in the Python is 
accessible to but not used in the Ruby code. This is not desirable because the Ruby code might 
unknowingly define a variable by the same name z and accidentally change the value of the Python 
variable z. To solve those two issues, I changed the syntax prototype to something like this: 

 
<Python()> 
x = 5 
z = 3 
<return(x, z)> 
 
<Ruby(x)> 
y = x + 2 
<return()> 

 
This syntax prototype basically says that the Python code takes no input parameters and returns x 

and z as results. The Ruby code takes x as an input parameter and returns no results. With this syntax, 
the variable z defined in the Python code will not be accessible to the Ruby code because the Ruby code 
does not declare z to be its input parameter. The syntax also makes the dependency between the Ruby 
code and Python code explicit. To find the dependency, we only need to see which variables the Python 
code returns and which input parameters the Ruby code requires. Once the dependencies between 
different language code snippets are explicit, the Stitch language runtime can easily tell which code 
snippets can run in parallel. For example, if the Ruby code did not require the variable x as an input 
parameter, the Stitch runtime would detect no dependency between the Ruby code and the Python code 
and it would therefore run the two code snippets in parallel.  

At this point, the design of Stitch’s syntax solves all of the four issues I set out to address. One last 
thing I want to do is to make the syntax look as natural as possible to developers who write Stitch code. 
To that end, I changed the syntax to something like this:  

 
<foo () Python> 
x = 5 



CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

214 

<return(x)> 
 
<bar () include baz.py> 
<return(y)> 

 
Instead of <Python()>, the new syntax uses <foo () Python>. The word foo is a unique identifier we 

attribute to a language code snippet. The language name Python is moved from before the input 
parameter list to after the list. This change makes the syntax look more like a C# method definition. In 
Stitch terms, a language code block is called a function. In the previous code example, there are two 
functions—foo and bar. The foo function is a Python code block that takes no input parameters and 
returns the variable x as the result. The bar function is a Python code block that takes no input 
parameters and returns the variable y as the result. Another change is the new include syntax keyword 
for including code from a file. In the example above, the include keyword will include the code in the file 
baz.py. The Stitch code example declares that the code in baz.py takes no input parameters and returns 
the variable y as result. When using the include keyword, we don’t need to specify which language the 
included code is written in because the file extension of baz.py already indicates that the language is 
Python. 

That’s all for the syntax of the Stitch language. Next I’ll explain how to set up the software 
components required for running the code examples in this chapter. After that, we’ll look at four 
examples of Stitch code that demonstrate the core features of the Stitch language.  

Requirements for the Example 
To follow along with the code examples in this chapter, you’ll need to install some software. You’ll also 
need to understand how I’ve organized the code for this chapter in the example download for this book.  

Software Requirements 
To follow along this chapter’s code examples, you’ll need to download and install Windows PowerShell 
and the C# runtime of ANTLR. Here’s what to do: 

1. Download and install PowerShell. The version I use is 1.0. Instructions 
for downloading are available from: 
www.microsoft.com/windowsserver2003/technologies/management/power
shell/download.mspx. 

2. Download the C# runtime of ANTLR from 
www.antlr.org/download/CSharp. The file I downloaded is DOT-NET-
runtime-3.1.3.zip. Unzip the file into C:\ProDLR\lib\Antlr.  

After completing these steps, you should have the following two assemblies on your hard disk: 

• C:\ProDLR\lib\Antlr\bin\net-2.0\Antlr3.Runtime.dll 

• C:\Program Files\Reference 
Assemblies\Microsoft\WindowsPowerShell\v1.0\System.Management.Automatio
n.dll 

These will be the only assemblies you need for the examples in this chapter.  

Organization of the Code 
The code for this chapter is organized into four projects: 

http://www.microsoft.com/windowsserver2003/technologies/management/power
http://www.antlr.org/download/CSharp


 CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

215 

The Eclipse Stitch project—this project has only a file called Stitch.g. The file 
defines the grammar of the Stitch language. I wrote the grammar definitions in the 
ANTLR grammar language and used ANTLR to generate the lexer and parser (in C# 
code) for Stitch. ANTLR is a popular software component for defining language 
grammars and for generating lexers and parsers. The lexer and parser generated by 
the grammar file are put into the C# Stitch project. 

The C# Stitch project—this project has the implementation of the Stitch language’s 
runtime as well as Stitch’s language plug-in framework. 

The PowerShellStitchPlugin project—this project implements the Stitch language 
plug-in for the PowerShell language.  

The StitchDemoApplication project—this project is the client program that hooks 
up the PowerShell plug-in with the Stitch language runtime. The project contains 
the test Stitch scripts you saw earlier in this chapter. 

In the sections that follow, we will begin to explore the Stitch language implementation by first 
looking at some examples of how Stitch is used. Then we’ll look at the language grammar. After that, 
we’ll examine the language plug-in framework and the core Stitch language runtime. 

Stitch in Use 
Now that you’ve set up the required software components for this chapter, let’s run some examples to 
get a feel for Stitch’s language features. We are going to look at four examples. In this chapter’s Visual 
Studio solution, you’ll find the code for all four examples in the Scripts folder of the 
StitchDemoApplication project. The first example, testScript1.st, demonstrates the declarative aspect of 
the Stitch language. The second example, testScript2.st, shows that Stitch is capable of hosting non-DLR 
based languages. The third example, testScript3.st, shows that Stitch scripts can be hosted within other 
Stitch scripts. The fourth example, testScript4.st, hosts several Python scripts and executes them both 
sequentially and in parallel. Let’s begin.   

Being Declarative 
Stitch is a declarative language, not an imperative one. When writing Stitch code, you express what you 
want to get done, not how you want it to get done. Listing 9-2 shows the code for our first Stitch example, 
which demonstrates the declarative nature of the Stitch language. The code consists of three Stitch 
functions—arithmetic, addition, and calculation. The arithmetic function is a Python code block that 
defines the myadd Python function. The addition function includes the add3.py script file. If you open 
add3.py, you’ll see that it has only one line of Python code that defines a function called add3: def 
add3(x): return x + 3. The calculation function takes the myadd and add3 functions as input and uses 
them to do some simple calculations. As you can see, the code in Listing 9-2 is declarative, exactly what I 
want to demonstrate. 

Listing 9-2. A Stitch Script Showing Stitch’s Declarative Nature 

1) <arithmetic () Python> 
2) def myadd(x, y): return x + y 
3) <return(myadd)> 
4)  
5) <addition () include Scripts\\add3.py> 
6) <return(add3)> 



CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

216 

7)  
8) <calculation (myadd, add3) Ruby> 
9) puts myadd.call(5, 2) 
10) puts add3.call(2) 
11) <return()> 
 

To run the code in Listing 9-2, you can use the C# code in Listing 9-3, which you’ll find in the 
Program.cs file of the StitchDemoApplication project. The C# code creates an instance of the 
StitchScriptEngine class and tells the Stitch script engine that we want to run the Stitch code in the 
sequential mode. Later in this chapter, we’ll see the different modes for executing Stitch code and how 
they are implemented. In Listing 9-3, the code passes a PowerShellPlugin instance to the constructor of 
StitchScriptEngine so that the Stitch script knows how to stitch PowerShell code with other language 
code blocks. Later in the chapter we’ll see the plug-in framework of the Stitch language and how you can 
use it to add support for new languages into Stitch. When you run the code in Listing 9-3, you’ll see two 
numbers, 7 and 5, printed on the screen.   

Listing 9-3. The C# Program That Runs the Stitch Code in testScript1.st  

private static void RunTestScript1() 
        { 
            StitchScriptEngine engine = new StitchScriptEngine( 
                ExecutionMode.Sequential, new ILanguagePlugin[] { new PowerShellPlugin() }); 
 
            engine.RunScriptFile(@"Scripts\testScript1.st"); 
        } 

Hosting DLR- and Non-DLR-Based Languages 
Unlike the DLR Hosting API, the Stitch language allows you to host both DLR and non-DLR-based 
languages. The code in Listing 9-4 shows a Stitch example that hosts a PowerShell code block and a 
Python code block. The PowerShell code block is the function called getServiceA. It contains one line of 
PowerShell code that returns all Windows services whose name begins with “A”. The Python code block 
is the printServiceA function, which takes the Windows services returned by the getServiceA function 
and prints the names of those Windows services to the screen. 

As in the previous example, we will use some C# code to run the Stitch script in Listing 9-4. Since the 
C# code is almost the same as the code in Listing 9-3, I won’t show it here, but you can find it in the 
RunTestScript2 method inside the Program.cs file of the StitchDemoApplication project. When you run 
the code, you’ll see the names of the Windows services that are installed on your machine whose name 
begins with “A”. 

Listing 9-4. Stitching Together a PowerShell Script and a Python Script 

<getServiceA () PowerShell> 
get-service A* 
<return(serviceAList)> 
 
<printServiceA (serviceAList) Python> 
for item in serviceAList: 
  print item.Members["ServiceName"].Value 
<return()> 



 CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

217 

Hosting Stitch Itself 
When we stitch pieces of cloth into larger pieces, it seems perfectly natural that we can further stitch 
those larger pieces into even larger pieces. The Stitch language allows us to stitch code just as we’d stitch 
pieces of cloth. The code in Listing 9-5 shows a Stitch example that stitches the two Stitch scripts, 
testScript1.st and testScript2.st, from the previous two sections. 

To run the code in Listing 9-5, you can use the C# code in the RunTestScript3 method inside the 
Program.cs file of the StitchDemoApplication project. When you run the code, you’ll see the combined 
results of the previous two examples printed on the screen.  

Listing 9-5. Hosting Two Stitch Scripts in a Larger Stitch Script   

<addition () include Scripts\\testScript1.st> 
<return()> 
 
<addition () include Scripts\\testScript2.st> 
<return()> 
 

Executing in Parallel 
The Stitch language runtime provides execution modes for running Stitch code in either a sequential 
manner or in parallel. Later in this chapter, you will see that the implementation of the Stitch language 
runtime uses .NET Parallel Extension to run Stitch code in parallel. For now, let’s just see an example 
that shows the parallel execution feature of Stitch in action. The code in Listing 9-6 has three Stitch 
functions—task1, task2, and task3. Each of the functions consists of a block of Python code that prints a 
message to the screen and calls Thread.SpinWait to simulate some busy work. The three Stitch functions 
don’t have any dependency among them and therefore are perfectly ideal for parallel execution. 

Listing 9-6. Three Python Scripts with no Dependency among Themselves 

<task1 () Python> 
import clr 
from System.Threading import Thread 
print "Task1 runs on thread id " + Thread.CurrentThread.ManagedThreadId.ToString() 
Thread.SpinWait(1000000000) 
<return()> 
 
<task2 () Python> 
import clr 
from System.Threading import Thread 
print "Task2 runs on thread id " + Thread.CurrentThread.ManagedThreadId.ToString() 
Thread.SpinWait(1000000000) 
<return()> 
 
<task3 () Python> 
import clr 
from System.Threading import Thread 
print "Task3 runs on thread id " + Thread.CurrentThread.ManagedThreadId.ToString() 
Thread.SpinWait(1000000000) 
<return()> 



CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

218 

The C# code in Listing 9-7 runs the Stitch script in Listing 9-6 twice, first in a sequential manner and 
then in a parallel manner. To run a Stitch script sequentially, you specify the execution mode to be 
ExecutionMode.Sequential when you create the StitchScriptEngine instance. To run a Stitch script in 
parallel, you specify the execution mode to be either ExecutionMode.ParallelNoWait or 
ExecutionModel.ParallelWaitAll. If you specify ExecutionMode.ParallelNoWait, the thread executing the 
RunTestScript4 method will continue to run without waiting for the three Stitch functions in Listing 9-6 
to finish. On the other hand, if you specify ExecutionMode.ParallelWaitAll, the thread executing the 
RunTestScript4 method will be suspended until all three of the Stitch functions complete. We will see 
the implementation details of the three execution modes later in the chapter. If you run the code in 
Listing 9-7 on a multi-core CPU machine, you’ll see that in the first run of testScript4.st, all of the three 
Stitch functions task1, task2, and task3 run on the same thread (the same thread id is printed on the 
screen). The second run of the Stitch script is much faster as the three Stitch functions run on different 
threads (different thread ids are printed on the screen). 

Listing 9-7. Using the Stitch Runtime to Run Stitch Code Sequentially and in Parallel 

private static void RunTestScript4() 
{ 
    StitchScriptEngine engine = new StitchScriptEngine( 
           ExecutionMode.Sequential, new ILanguagePlugin[] { new PowerShellPlugin() }); 
 
    Stopwatch stopwatch = Stopwatch.StartNew(); 
    engine.RunScriptFile(@"Scripts\testScript4.st"); 
    stopwatch.Stop(); 
 
    Console.WriteLine("Sequential runner takes {0} milliseconds.",  

stopwatch.ElapsedMilliseconds); 
 
    engine = new StitchScriptEngine( 
           ExecutionMode.ParallelWaitAll, new ILanguagePlugin[] { new PowerShellPlugin() }); 
 
    stopwatch = Stopwatch.StartNew(); 
    engine.RunScriptFile(@"Scripts\testScript4.st"); 
    stopwatch.Stop(); 
 
    Console.WriteLine("Parallel runner takes {0} milliseconds.",  

stopwatch.ElapsedMilliseconds); 
} 

Stitch Language Grammar 
We saw the Stitch language syntax in the “Syntax of the Stitch Language” section. Now we are going to 
formally define the grammar of the Stitch syntax and use the grammar to generate the lexer and parser 
for the Stitch language. Because I wrote the grammar in the ANTLR grammar language and used Eclipse 
as the IDE for writing the grammar, if you want to follow along this part of the Stitch language 
implementation, you’ll need to set up some software components. ANTLR is a popular lexer/parser 
generator and more. There are many lexer/parser generators out there and people often prefer certain 
ones over others. Because of that and also because I want to keep this chapter’s focus on the DLR 
Hosting API, I won’t dive too deeply into how ANTLR works. A fair coverage of a lexer/parser generator 
can easily grow into several chapters and that’s really beyond the scope of what I’m aiming to cover 
here.  



 CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

219 

If you want, you can completely skip all the ANTLR-related parts and simply take the generated 
lexer/parser C# code as given. For those who would like to follow this chapter’s code from the very 
beginning, I’ll describe the software components you need to install. 

Setting Up Eclipse and ANTLR 
I used the following software components to develop the ANTLR-based grammar for the Stitch language.  

• Java Development Kit (JDK) 6. 

• Eclipse 3.6.0.  

• ANTLR 3.2 

• ANTLR IDE 2.1.0 

You should already have Java and Eclipse installed, or know how to get them. Here are the steps to 
follow to install the two ANTLR components: 

1. Download the complete ANTLR 3.2 jar file (antlr-3.2.jar) from 
www.antlr.org and place it in the C:\antlr-3.2\lib folder. If you put it in a 
different folder, you’ll need to substitute the file path with your own 
when I refer to C:\antlr-3.2.  

2. Install ANTLR IDE 2.1.0 and its prerequisites. You can download it from 
the ANTLR IDE project web site at 
http://antlrv3ide.sourceforge.net/. According to the download page 
of the web site, ANTLR IDE 2.1.0 requires GEF 3.6.0 or above, Zest 1.2.0 
or above, and Dynamic Language Toolkit (DLTK) Core 2.0.0. 
 

After you’ve downloaded and installed all of these components, you need to set them up properly by 
configuring the Eclipse IDE to use the ANTLR 3.2 jar file. To do so, launch Eclipse and select Window-
>Preferences in the menu. In the Preferences dialog that pops up, expand the ANTLR node in the tree on 
the left and select the Builder node under the ANTLR node. In the right panel, click the Add… button 
and you’ll see a dialog like the one in Figure 9-1. All of the fields in the second dialog will be blank at this 
point, because you haven’t told Eclipse about the ANTLR 3.2 jar file you want to use. In the second 
dialog, click the Directory… button and another dialog will pop up. Select C:\antlr-3.2 as the folder and 
click OK. At this point, you should see something that what’s shown in Figure 9-1. 

 

http://www.antlr.org
http://antlrv3ide.sourceforge.net


CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

220 

 

Figure 9-1. The dialog for telling Eclipse which ANTLR.jar file to use   

Once you’ve told Eclipse which ANTLR jar file to use, you can write ANTLR-based language 
grammars. For the Stitch language, I created a Java project called Stitch in Eclipse, then I converted the 
project into an ANTLR project. To do that, right-click on the Stitch project in Eclipse and select 
Configure->Convert to ANTLR Project… in the context menu. With the Stitch project in place, the next 
step is to create a grammar file.  

Defining the Grammar 
To create a grammar file, right-click on the src folder in the Stitch project and select New->Other… in 
the context menu. A dialog will pop up. This is the wizard for creating a new file in Eclipse. The first step 
is to select the type of file you want to create, in this case an ANTLR combined grammar file as shown in 
Figure 9-2. 

 



 CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

221 

 

Figure 9-2. The Eclipse new-file creation wizard 

Click Next and select CSharp2 as the language. This causes ANTLR to generate the lexer/parser code 
in C# later. Name the grammar file Stitch.g. Once Stitch.g is created, open it in the Eclipse IDE and paste 
the contents of C:\ProDLR\src\Examples\Chapter9\Eclipse\Stitch\src\Stitch.g into the Stitch.g file you 
just created. The code you pasted is the ANTLR-based grammar that defines the syntax of the Stitch 
language. Listing 9-8 shows an abbreviated version of this code. A detailed explanation of the grammar is 
beyond the scope of this chapter, so I’ll only explain the code briefly. 

Stitch.g contains what is known as a context-free grammar. Context-free grammars are 
mathematically well-defined and explored, with the same level of expressiveness as the pushdown 
automata. If you want to learn more about the theoretical foundation of context-free grammars and 
pushdown automata, you can refer to books about automata theory or compiler construction. To learn 
more about ANTLR in particular, I recommend the books written by Terence Parr, the creator of ANTLR.   

Listing 9-8. The Grammar Definition of the Stitch DSL  

1) grammar Stitch; 
2)  
3) options { 
4)   language = CSharp2; 
5) } 
6)  
7) @header { 
8) using System.Collections.Generic; 
9) using Stitch.Ast; 



CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

222 

10) } 
11)  
12) @namespace { Stitch } 
13)  
14) //program rule  
15) //func rule 
16) //parameters rule  
17) //funcCode  
18) //include  
19) //CODEBLOCK : '>' .* '<'; 
20)  
21) ... other rules omitted ... 

Before we look more closely at the code in Listing 9-8, let’s briefly go over what a context-free
grammar is made up of. It consists of production rules, each of which has a left-hand side and a right-
hand side. In ANTLR’s notation, a rule’s left-hand side and right-hand side are separated by a colon and
therefore look like this:  

A : B C    

In this example, A is the left-hand side of a production rule and it’s called a non-terminal. B C is the
right-hand side, and B or C can be non-terminals or terminals. The difference between terminals and
non-terminals is that terminals don’t show up on the left-hand side of a production rule. Besides
terminals and non-terminals, ANTLR allows us to have some C# code in a production rule. The C# code
needs to be placed in curly braces, like this: 

A : {…} B {…} C {…} 

That’s the one-minute introduction to context-free grammars and some of ANTLR’s notations.
There are many details that I omitted. I’ll explain some of the details as we go over the code in Listing 9-
8.  

In Listing 9-8, line 1 declares the name of our grammar. Line 4 tells ANTLR to generate the lexer and
parser code in C#. Lines 7 through 10 declare a @header block, which is the place where we can add extra
C# using statements that the generated C# parser code will need. Everything in the @header block will
show up in the generated parser code before the generated C# parser class. Line 12 tells ANTLR that we
want the generated C# parser class to be in the Stitch namespace. 

The real grammar of the Stitch language begins at line 14 and continues to the end of the file. The
grammar basically consists of eight production rules. Listing 9-8 does not show the complete definition
of each rule. We will see the complete definition of the program rule in the next few paragraphs. Because
the rule definitions all follow the same pattern, after the program rule is explained in detail, I will go over
the other rules only briefly.  

The complete definition of the program rule in Stitch.g is like this: 

program returns [IList<IFunction> result]  
   : { result = new List<IFunction>(); }  
   (func { $result.Add($func.result); } )* 
   ; 

If we strip out the C# code and some extra stuff (i.e. the returns declaration after program) that’s
mixed into the rule, the rule becomes this: 



 CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

223 

program  : (func)* ; 
 
This much simpler form of the program rule basically says that the program non-terminal is made up 

of zero or more func (the asterisk means zero or more) non-terminals. Here the program non-terminal 
represents a Stitch script and the func non-terminal represents a Stitch function. We saw earlier in the 
“Stitch in Use” section that a Stitch script is made up of zero or more Stitch functions. So this rule is in 
line with the Stitch syntax we saw earlier.  

Now let’s look at the C# code and the returns declaration in the program rule. Both are in the 
production rule to serve the purpose of creating an abstract syntax tree (AST) from source code parsing. 
The C# code will obtain the result of the func rule and put it in an IList instance. If a Stitch script is 
made up of three Stitch functions, during source code parsing, the func rule will be applied three 
times and the IList instance that holds the results of the func rule will have three elements in it. We 
haven’t explained the func rule yet but suffice it to say that the func rule returns an IFunction instance as 
the result. The IFunction interface is one of the Stitch AST classes defined in the C# Stitch project. Given 
the program rule, what happens when ANTLR generates the parser code is that ANTLR will generate a 
method whose name is also program in the generated C# parser class. The return type of the program 
method will be IList<IFunction>.   

The program non-terminal is defined in terms of the func non-terminal. The func non-terminal is in 
turn defined in terms of some terminals and non-terminals. The non-terminals are defined in terms of 
other terminals or non-terminals and so on. If we strip out the C# code and the returns declaration that 
are mixed into each rule, like we did to the program rule, we get the simpler form of the rules as Table 9-
1 shows.  

Table 9-1. The Simpler Form of the Production Rules That Define the Syntax of the Stitch DSL. 

Rule name Rule definition 

program rule program  : (func)* ; 

func rule func : '<' IDENT '(' parameters? ')' funcCode ‘return(' parameters? ')>'; 

parameters rule parameters : IDENT (',' IDENT)*; 

funcCode rule funcCode: (include | IDENT) CODEBLOCK; 

include rule include : 'include' FILEPATH; 

CODEBLOCK rule CODEBLOCK : '>' .* '<'; 

FILEPATH rule FILEPATH : (LETTER | DIGIT) (LETTER | DIGIT | '.' | '\\' | '/')* '.' (LETTER | 
DIGIT)+; 

IDENT rule IDENT : LETTER (LETTER | DIGIT)*; 

 



CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

224 

Test-Driving the Grammar 
There are two ways to test drive the grammar defined in the last section. One way is to use the nice GUI 
feature that ANTLR IDE 2.1.0 provides. The other is to write some C# code that exercises the generated 
lexer and parser files. We will look at both approaches. 

Figure 9-3 shows you how the GUI for testing a grammar looks in Eclipse. To try out the GUI feature, 
you need to first make Stitch.g the active file in the Eclipse IDE. Once Stitch.g is the active file, you’ll see 
three tabs at the bottom of the code editor. The Grammar tab is for writing the grammar we saw in 
Listing 9-8. The Interpreter tab is for testing the grammar. After you select the Interpreter tab, you’ll see a 
list of all parser and lexer rules defined in Stitch.g in the upper left area. The screen capture in Figure 9-3 
shows that the rule “program” is selected. There are two panes that take up most of the screen in Figure 
9-3. The upper pane shows the test script I typed in for testing the grammar. You can save the test script 
by pressing the Save icon in the upper right corner. To run the test script, you press the Run icon close to 
the Save icon. When you run a test script, you’ll see the result as a tree in the lower pane. You can 
examine the tree to see if the grammar you defined parses the test script as expected.  

 

 

Figure 9-3. Using the ANTLR IDE plug-in to debug a grammar 

Another way to test a grammar is to write some code that exercises the generated lexer and parser 
code. Listing 9-9 shows the C# code that test-drives the StitchParser class and the StitchLexer class 



 CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

225 

generated from Stitch.g. You’ll find the code in Listing 9-9 in Program.cs of the StitchDemoApplication 
project. 

This code example uses the file testScript1.st as the test script. The code in line 3 opens testScript1.st 
as a file stream. The file stream is passed to the lexer object in line 4. The code in line 5 creates a token 
stream out of the lexer object.  The token stream is passed to a parser object in line 6. And in line 7, the 
code calls the program method on the parser object. The program method represents the grammar rule 
program defined in Stitch.g. The program method returns a list of IFunction objects because in Stitch.g, 
the program rule is specified to return a list of IFunction objects as the result. 

Listing 9-9. A C# Example That Excercises the Generated Lexer and Parser Code  

1) static void RunParserExample() 
2) { 
3)     ICharStream input = new ANTLRFileStream(@"Scripts\testScript1.st"); 
4)     StitchLexer lexer = new StitchLexer(input); 
5)     ITokenStream tokenStream = new CommonTokenStream(lexer); 
6)     StitchParser parser = new StitchParser(tokenStream); 
7)     IList<IFunction> functions = parser.program(); 
8)     Console.WriteLine("There are {0} scripts in the source file.", functions.Count); 
9) } 

 
It’s good to test-drive a grammar using the two techniques illustrated in this section and make sure 

that the grammar works as expected. Normally I use the GUI approach when I experiment with the 
grammar under creation. Once the grammar is stable, I use the C# approach to write unit tests that I can 
run to quickly and automatically check the correctness of the grammar.  

Lexer and parser alone are not enough for executing Stitch code. The program method of the 
StitchParser class returns a list of IFunction objects. Each IFunction object represents a block of script 
code written in Python, Ruby, or some other language. We need to take those IFunction objects and 
figure out how to execute them. In the next section, we’ll look at the Stitch runtime, which does exactly 
that. 

The Stitch Runtime 
The Stitch runtime is the component that executes Stitch code. This section and the next will give an 
overview of how the Stitch runtime performs its job. Subsequent sections will dive deeper into the 
details. Figure 9-4 shows the Stitch runtime (the Stitch box in the middle) in relation to the components 
it interacts with. The Stitch runtime interacts with two kinds of components—client applications and 
language plug-ins. For language plug-ins, the Stitch runtime provides two interfaces that serve as the 
contract for interactions. The two interfaces are ILanguagePlugin and IScript. If you want to extend the 
Stitch runtime by adding support for a new language, you need to implement those two interfaces. We 
will look at how to implement a Stitch language plug-in for Windows PowerShell later in the chapter.  

Besides language plug-ins, the Stitch runtime interacts with client applications. A client application 
uses the Stitch runtime to run Stitch code, in one of two ways. One way is to use the StitchScriptEngine 
class in the C# Stitch project directly. The other way is to use the StitchScriptEngine indirectly via the 
DLR Hosting API. The Stitch runtime provides the StitchContext class and the StitchScriptCode class to 
support invoking the StitchScriptEngine via the DLR Hosting API.  

 
 
 



CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

226 

Demo App

(StitchDemoApplication)

StitchScriptEngine

DLR

Hosting API

StitchContext

StitchScriptCode

Stitch

Generates

lexer/parser

Stitch grammar

(Stitch.g)

IScript

lLanguagePlugin

PowerShell

Script Plugin

 

Figure 9-4. The Script runtime in relation to the components it interacts with. 

Overview of the Runtime 
I’d like to give an overview of the Stitch runtime first. If you take the Stitch rectangle in Figure 9-4 and 
enlarge it, you’ll see the subparts that make up the Stitch runtime and how they work together, as shown 
in Figure 9-5.  Figure 9-5 shows the flow of activities that take place when the Stitch runtime executes a 
Stitch script file. To execute Stitch code, the Stitch runtime uses a lexer to translate textual Stitch source 
code into a stream of tokens. The tokens are fed into a parser that turns the tokens into an abstract 
syntax tree, which is made up of instances of the classes in the Stitch.Ast namespace. We saw the lexer 
and parser in action when we looked at the code in Listing 9-9. The most interesting part of the abstract 
syntax tree is the list of IFunction objects returned by StitchParser’s program method. The Stitch 
runtime uses a function execution coordinator to coordinate the execution of the list of IFunction 
objects. The Stitch runtime provides both a parallel coordinator and a sequential coordinator that you 
can use to coordinate the execution of Stitch functions.  

At a very high level, a coordinator takes as input a list of IFunction objects and a registry of the 
languages supported by the Stitch runtime. For the Stitch runtime to support a language like PowerShell, 
you need to register the language’s plug-in with the runtime. We will look at the language plug-in 
mechanism of Stitch in a later section. For now, let’s focus on the overall flow of executing a Stitch script. 
Once a coordinator has the inputs it needs, it creates a script runner for each IFunction object. A script 
runner, as its name suggests, runs a block of script code. It does so by calling the Execute method of an 
IScript instance, which encapsulates the actual logic for executing a function. We will begin our 
exploration of the Stitch runtime by first looking at the script engine in the next section. 

 

Lexer

(StitchLexer.cs)

Stitch

source code

<foo () Python>

...

<return()>

tokens Parser

(StitchParser.cs)

Stitch functions

(IFunction.cs)

Function
execution

coordinator

Registry of

language plugins

Script runner

(IScriptRunner.cs)
IScript.Execute(...)

IScript.Execute(...)
Script runner

(IScriptRunner.cs)

 

Figure 9-5. The flow of activities that take place when the Stitch runtime executes a Stitch script. 

s



 CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

227 

The Script Engine 
We saw earlier how StitchScriptEngine is used to execute Stitch code. Using StitchScriptEngine to 
execute Stitch code is a two-step process. First you call StitchScriptEngine’s constructor to create an 
instance of the class. Then you call either the RunScriptFile method or the RunScriptCode method to 
execute the Stitch code. When you call the StitchScriptEngine constructor, you need to pass in an 
execution mode and a collection of language plug-ins. The execution mode tells the Stitch runtime 
whether you want to execute Stitch code sequentially or in parallel. The collection of language plug-ins 
represents the languages you want to plug into the Stitch runtime. Listing 9-10 shows the code of the 
StitchScriptEngine’s constructor. The important thing to note about the code in Listing 9-10 is that, 
depending on the execution mode, the StitchScriptEngine constructor will create either an instance of 
ParallelFunctionExecutionCoordinator or an instance of SequentialFunctionExecutionCoordinator. We 
will see an explanation of those coordinator classes in a minute. 

Listing 9-10. The Constructor of the StitchScriptEngine Class 

public StitchScriptEngine(ExecutionMode executionOption,  
    ICollection<ILanguagePlugin> plugins) 
{ 
    switch (executionOption) 
    { 
        case ExecutionMode.ParallelNoWait: 
            this.coordinator = new ParallelFunctionExecutionCoordinator(false); 
            break; 
        case ExecutionMode.ParallelWaitAll: 
            this.coordinator = new ParallelFunctionExecutionCoordinator(true); 
            break; 
        case ExecutionMode.Sequential: 
            this.coordinator = new SequentialFunctionExecutionCoordinator(); 
            break; 
    } 
 
    … language plugin related code omitted … 
} 
 

StitchScriptEngine provides one method called RunScriptFile for executing Stitch code in a file 
and another method called RunScriptCode for executing Stitch code as a string. The implementations of 
the two methods are similar. Listing 9-11 shows the code inside the RunScriptCode method. This code is 
almost the same as the code in Listing 9-9. The only difference is that the RunScriptCode method takes 
the list of IFunction objects returned by the parser and passes it to the RunScripts method of a function 
execution coordinator, which is the topic of the next couple of sections. 

Listing 9-11. The RunScriptCode Method in StitchScriptEngine.cs. 

public void RunScriptCode(String code) 
{ 
    ICharStream input = new ANTLRStringStream(code); 
    StitchLexer lexer = new StitchLexer(input); 
    ITokenStream tokenStream = new CommonTokenStream(lexer); 
    StitchParser parser = new StitchParser(tokenStream); 
    IList<IFunction> functions = parser.program(); 



CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

228 

    coordinator.RunScripts(functions, registry); 
} 

Function Execution Coordinator 
A Stitch script can have multiple Stitch functions. Some functions might depend on the output of other 
functions. Because of the dependencies among functions, the Stitch runtime uses a coordinator to 
manage the execution of functions. (This coordinator is illustrated in Figure 9-5.) The concept of 
function execution coordinators is defined as the IFunctionExecutionCoordinator interface in the C# 
Stitch project. Listing 9-12 shows the interface definition. The interface has only one method called 
RunScripts that takes as input a list of IFunction objects and a registry of languages supported by the 
Stitch runtime. 

Listing 9-12. The IFunctionExecutionCoordinator Interface 

interface IFunctionExecutionCoordinator 
{ 
    void RunScripts(IList<IFunction> functions, ILanguageRegistry registry); 
} 
 

The C# Stitch project has two classes that implement the IFunctionExecutionCoordinator interface. 
Those two classes are ParallelFunctionExecutionCoordinator and 
SequentialFunctionExecutionCoordinator. ParallelFunctionExecutionCoordinator is used when we run 
Stitch code in parallel (i.e., when the execution mode is ExecutionMode.ParallelWaitAll or 
ExecutionMode.ParallelNoWait). SequentialFunctionExecutionCoordinator is used when we run Stitch 
code sequentially (i.e, when the execution mode is ExecutionMode.Sequential). When implementing the 
C# Stitch project, I thought about opening up the coordinator-related stuff so that new coordination 
logic could be plugged into the Stitch language runtime. For the sake of simplicity, I decided to leave that 
feature out of this chapter. The feature will be implemented in the dPier open source project at 
http://code.google.com/p/dpier/. In this section, we are going to look at only the 
ParallelFunctionExecutionCoordinator class. The implementation in the 
SequentialFunctionExecutionCoordinator class is much simpler and less interesting than 
ParallelFunctionExecutionCoordinator.  

Listing 9-13 shows the RunScripts method implemented in ParallelFunctionExecutionCoordinator. 
The RunScripts method takes two parameters—functions and registry—as input. It calls the 
CreateScriptRunners method in the same class. The CreateScriptRunners method returns a 
ParallelScriptRunner instance for each IFunction object in the functions parameter. The idea of 
creating script runners here is that the coordinator class will concern only the coordination of executing 
multiple functions. It will not concern how each individual function is executed. The execution of a 
single, individual function is handled by a script runner, not by the coordinator. That’s why the code in 
Listing 9-13 calls the CreateScriptRunners method to create a parallel script runner for each IFunction 
object. Once the script runners are created, the code in Listing 9-13 calls the Run method on those script 
runners to start the execution of Stitch functions.  

Listing 9-13. The RunScripts Method in ParallelFunctionExecutionCoordinator.cs.   

public void RunScripts(IList<IFunction> functions, ILanguageRegistry registry) 
{ 
    IList<ParallelScriptRunner> scriptRunners =  

this.CreateScriptRunners(functions, registry); 
 

http://code.google.com/p/dpier


 CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

229 

    foreach (var scriptRunner in scriptRunners) 
        scriptRunner.Run(); 
 
    … code omitted … 
} 
 

Creating script runners for running Stitch functions in parallel requires some work. A parallel script 
runner can be created for running Python code, Ruby code, or another language’s code. So, following 
good software design principles, the language-specific part (the part specific to how Python, Ruby, and 
other languages execute their code) of running a Stitch function is separated from the 
ParallelScriptRunner class and abstracted into the IScript interface. The IScript interface will be 
implemented by language plug-ins, which we’ll see in a later section. With the IScript interface and 
Stitch’s plug-in mechanism, we can use one single ParallelScriptRunner class to run different language 
code in parallel. ParallelScriptRunner keeps a reference to an IScript instance in its script field and 
delegates the execution of a Stitch function to that IScript instance. 

When creating a parallel script runner for a Stitch function, we need to get an IScript instance that 
knows how to execute the language-specific code in a Stitch function. Listing 9-14 shows how to achieve 
that. Listing 9-14 shows the code in the CreateScriptRunners method of 
ParallelFunctionExecutionCoordinator. In line 10, the code calls the CreateScript method on the 
registry parameter to get an IScript instance that knows how to execute the language-specific code in a 
function. 

Other than delegating the job of executing a Stitch function to an IScript instance, another main 
responsibility of the ParallelScriptRunner class is to keep track of a Stitch function’s dependencies. If a 
Stitch function A depends on the return values of Stitch functions B and C, the parallel script runner for 
function A will keep in its prerequisites field a reference to each of B’s and C’s parallel script runners. 
That’s why the code in line 26 calls the AddPrerequisite method on the scriptRunner object to track a 
Stitch function’s dependencies. 

Listing 9-14. The CreateScriptRunners Method in ParallelFunctionExecutionCoordinator.cs. 

1) private IList<ParallelScriptRunner> CreateScriptRunners( 
2)                     IList<Ast.IFunction> functions, ILanguageRegistry registry) 
3) { 
4)     IDictionary<String, ParallelScriptRunner> returnValueToRunnerDict =  
5)                         new Dictionary<String, ParallelScriptRunner>(); 
6)     IList<ParallelScriptRunner> scriptRunners = new List<ParallelScriptRunner>(); 
7)  
8)     foreach (var function in functions) 
9)     { 
10)         IScript script = registry.CreateScript(function); 
11)         ParallelScriptRunner scriptRunner = new ParallelScriptRunner( 
12)                          script, function.InputParameters); 
13)         scriptRunners.Add(scriptRunner); 
14)         foreach (var returnValue in function.ReturnValues) 
15)         { 
16)             returnValueToRunnerDict.Add(returnValue, scriptRunner); 
17)         } 
18)     } 
19)  
20)     for (int i = 0; i < functions.Count; i++) 
21)     { 



CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

230 

22)         ParallelScriptRunner scriptRunner = scriptRunners[i]; 
23)         foreach (var item in functions[i].InputParameters) 
24)         { 
25)             if (returnValueToRunnerDict.ContainsKey(item)) 
26)                 scriptRunner.AddPrerequisite(returnValueToRunnerDict [item]); 
27)         } 
28)     } 
29)  
30)     return scriptRunners; 
31) } 

Parallel Extensions for .NET 
Because the parallel script runner we’ll look at in the next section leverages the .NET Task Parallel 
Library (TPL) to do parallel programming, we will take a little detour and introduce the parts of TPL that 
are needed for our later discussion. TPL is a library within a larger component called Parallel Extensions. 
Before Parallel Extensions was released, I used to write code to deal with .NET thread pools. Thread 
pools in .NET are not friendly at all to developers. In those dark days, I lost a lot of brain cells, only to end 
up with code that was a headache to maintain. I can say from experience that TPL makes multithreaded 
programming much easier than thread pools do. Even though with TPL, writing parallel programs is 
simpler, it is still a very difficult thing to do correctly. That’s why I’m attempting to make it easier to run 
scripts in parallel by implementing the Stitch language.  

Listing 9-15 shows the TPL example we will look at in this section. The example creates in total eight 
TPL tasks. A TPL task is a unit of work that runs on a single thread. Multiple tasks can run on different 
threads in parallel if those tasks can be parallelized. One scenario in which two tasks can’t be 
parallelized is when one task depends on the other. The eight TPL tasks in Listing 9-15 illustrate how task 
dependency affects parallel execution of tasks. In Listing 9-15, task1, task2, and task3 don’t depend on 
anyone else. We create those tasks by calling the static Task.Factory.StartNew method and passing in a 
delegate that represents the actions we want the task to perform. Because we use the StartNew method 
to create those tasks, the tasks will start running after they are created.  

task4 depends on task1. When we create task4, we use the static Task.Factory.ContinueWhenAll 
method. The first parameter to the ContinueWhenAll method is an array of tasks that task4 depends on. 
The second parameter is the delegate that represents the actions we want task4 to perform. Because we 
use the ContinueWhenAll method to create task4, task4 won’t start executing until task1 is done. 
Similarly, task5 depends on task2; task6 on task4; task 7 on task2, task4 and task5; and finally task8 on 
task3 and task5. Every time you run the code in Listing 9-15, you will likely see “task 1”, “task 2”, “task 
3”, and so on printed on the screen in different order. One thing you can count on is that “task 4” will 
never be printed before “task 1” because task4 won’t start to run until task1 is done. 

Listing 9-15. Tasks That Have Dependencies among Them 

private static void RunTaskDependencyExample() 
{ 
    Task task1 = Task.Factory.StartNew(() => { Console.WriteLine("task 1"); }); 
    Task task2 = Task.Factory.StartNew(() => { Console.WriteLine("task 2"); }); 
    Task task3 = Task.Factory.StartNew(() => { Console.WriteLine("task 3"); }); 
 
    Task task4 = Task.Factory.ContinueWhenAll(new[] {task1},  
        tasks => { Console.WriteLine("task 4"); }); 
    Task task5 = Task.Factory.ContinueWhenAll(new[] { task2 },  
        tasks => { Console.WriteLine("task 5"); }); 



 CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

231 

    Task task6 = Task.Factory.ContinueWhenAll(new[] { task4 },  
        tasks => { Console.WriteLine("task 6"); }); 
    Task task7 = Task.Factory.ContinueWhenAll(new[] { task2, task4, task5 },  
        tasks => { Console.WriteLine("task 7"); }); 
    Task task8 = Task.Factory.ContinueWhenAll(new[] { task3, task5 },  
        tasks => { Console.WriteLine("task 8"); }); 
} 

Script Runner 
We will now use what we discussed about the Task Parallel Library to explain how the parallel script 
runner is implemented. A script runner is an object that knows how to run a script. As mentioned earlier, 
a script runner does not execute a Python script or Ruby script directly. Instead, it delegates that job to 
an IScript instance so that the script runner can remain language neutral. The concept of script runner 
is defined as the IScriptRunner interface in the C# Stitch project. Listing 9-16 shows the interface 
definition of IScriptRunner.  

Listing 9-16. The Interface Definition of IScriptRunner 

interface IScriptRunner 
{ 
    void Run(); 
} 
 

The IScriptRunner interface does not look very interesting. It has only a Run method that takes no 
input and returns no result. Let’s see how the IScriptRunner interface is implemented by the 
ParallelScriptRunner class. The other class that implements the IScriptRunner interface is 
SequentialScriptRunner. SequentialScriptRunner is used by SequentialFunctionExecutionCoordinator 
whereas ParallelScriptRunner is used by ParallelFunctionExecutionCoordinator. Since the code in 
SequentialScriptRunner is relatively simple and straightforward, I will skip its explanation.  

 Listing 9-17 shows the StartTask method in the ParallelScriptRunner class. If a script runner does 
not have any prerequisites (line 6), then it can run immediately without waiting for other script runners 
to finish. So the code in line 8 calls the Task.Factory.StartNew method to start a new task immediately. 
The new task will run the lambda delegate that’s passed to the TaskFactory.StartNew method call. The 
code in line 10 creates a dictionary object to hold the variables that are required by the language-specific 
code as input. Because the script runner does not have any prerequisites, the language-specific code 
does not require any input variables. That’s why the dictionary object created in line 10 is an empty 
dictionary. The role the dictionary object plays is analogous to the role a ScriptScope instance plays in 
the DLR Hosting API. I chose to use a dictionary object as the carrier of the variables required by 
language-specific code because the Stitch language needs to support not only DLR-based languages but 
also non-DLR-based ones. So instead of using the DLR-specific ScriptScope class, I use 
IDictionary<String, Object>.  

If a script runner has prerequisites, we need to run those prerequisites and wait for them to finish 
before we can kick off the script runner. The code in lines 19 and 20 loops through a script runner’s 
prerequisites and starts them running. For each prerequisite, the code puts its task object (an instance of 
Task<IDictionary<String, Object>>) in the taskList variable. Then in line 22, the code calls the 
Task.Factory.ContinueWhenAll method to create a task object that will start to run only when all the 
tasks in taskList are finished. The task created in line 22 will run the lambda delegate defined in Listing 
9-17 from line 23 to line 37. The lambda delegate prepares a dictionary object to hold the input variables 
needed by the language-specific code. This time, because the script runner has prerequisites, the 
dictionary object can’t be empty. It needs to contain the results of the prerequisites’ tasks. The code 



CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

232 

from line 25 to line 34 puts the results of the prerequisites’ tasks into a dictionary object. Then, in line 36,
the code calls the Execute method on the script variable, passing it the dictionary object to kick off the
execution of language-specific code. 

Listing 9-17. The StartTask Method in ParallelScriptRunner.cs  

1) Task<IDictionary<String, Object>> StartTask() 
2) { 
3)     if (task != null) 
4)         return task; 
5)  
6)     if (prerequisites.Count == 0) 
7)     { 
8)         task = Task.Factory.StartNew<IDictionary<String, Object>>(() => 
9)         { 
10)             IDictionary<String, object> scope = new Dictionary<String, object>(); 
11)             return this.script.Execute(scope); 
12)         }); 
13)  
14)         return task; 
15)     } 
16)  
17)     List<Task<IDictionary<String, Object>>> taskList =  
18)                                     new List<Task<IDictionary<string, object>>>(); 
19)     foreach (var prerequisite in prerequisites) 
20)         taskList.Add(prerequisite.StartTask()); 
21)  
22)     task = Task.Factory.ContinueWhenAll(taskList.ToArray(), 
23)             (tasks) => 
24)             { 
25)                 IDictionary<String, object> scope = new Dictionary<String, object>(); 
26)                 foreach (var prerequisiteTask in tasks) 
27)                 { 
28)                     foreach (var item in prerequisiteTask.Result) 
29)                     { 
30)                         if (!scope.ContainsKey(item.Key) && 
31)                         this.inputParameters.Contains(item.Key)) 
32)                             scope.Add(item); 
33)                     } 
34)                 } 
35)  
36)                 return this.script.Execute(scope); 
37)             }); 
38)  
39)     return task; 
40) } 

So far, we have looked at the function execution coordinator and script runner of the Stitch runtime.
We saw how the coordinator coordinates and the runner runs. I mentioned that it’s the IScript
interface, not the IScriptRunner interface, that actually runs a Stitch function’s language-specific code.
The Stitch runtime comes with a built-in class DlrScript that implements the IScript interface for all
DLR-based languages. For non-DLR-based languages like PowerShell, we can extend the Stitch runtime 



 CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

233 

to support them by implementing the IScript interface and another interface called ILanguagePlugin. 
The two interfaces, IScript and ILanguagePlugin, make up the contract between the Stitch runtime and 
language plug-ins. Let’s see the built-in DlrScript class in the next section. After that, we’ll look at how 
the language plug-in mechanism works using the PowerShell plug-in as an example. 

Running DLR-based Language Code 
The IScript interface is meant to be implemented for each language that can be plugged into the Stitch 
runtime. Listing 9-18 shows the interface definition of IScript. 

Listing 9-18. The IScript Interface 

public interface IScript 
{ 
    IDictionary<String, object> Execute(IDictionary<String, object> scope); 
} 

 
It turns out that for DLR-based languages like IronPython and IronRuby, because the DLR Hosting 

API provides a uniform way for executing those languages’ code, we only need one implementation of 
the IScript interface for plugging all those languages into the Stitch runtime. The Stitch runtime comes 
with a built-in class, DlrScript, that implements the IScript interface for all DLR-based languages. 
Listing 9-19 shows the Execute method in DlrScript.  

The Execute method takes a dictionary object as input. As explained in the previous section, the 
dictionary object carries the variables that are required by the language-specific code. The code in 
Listing 9-19 first creates an instance of ScriptScope and then copies the variables in the dictionary object 
to the ScriptScope object. Once the ScriptScope instance is ready, the Execute method uses the DLR 
Hosting API to get a ScriptEngine instance. The Execute method then uses the ScriptEngine instance to 
run the DLR-based language code. The results of this are in the ScriptScope instance the Execute 
method created earlier. Those results are copied into a dictionary object and returned to the caller of the 
Execute method. 

Creating a new instance of ScriptScope in the Execute method means that we are not sharing a 
single ScriptScope object among the execution of multiple Stitch functions. This is important because 
Stitch functions can run in parallel and the ScriptScope class is not thread safe. We would have a lot of 
locking and thread synchronization to worry about if we shared a ScriptScope object in the concurrent 
execution of multiple Stitch functions. 

One important thing to note about the code in Listing 9-19 is that the copying of variables from the 
dictionary object to the ScriptScope object is a shallow copying, meaning that the copying only copies 
object references and doesn’t create new instances of those variables. That means even though the 
ScriptScope object is not shared among multiple Stitch functions, the variables contained in the 
ScriptScope object might be shared. And that seems to put us back to the thread synchronization issue 
we wanted to avoid. The reason I didn’t implement a deep copying of the variables in the dictionary is 
because I expect the variables to be read-only. The design of the Stitch language adopts the functional 
programming paradigm and requires that if we intend to run Stitch functions in parallel, those Stitch 
functions should only produce new results and not alter their input variables. If all Stitch functions in a 
Stitch script don’t alter their input variables, those variables are read-only and therefore are safe to be 
shared among multiple threads. 



CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

234 

Listing 9-19. The Execute Method in DlrScript.cs 

public IDictionary<String, object> Execute(IDictionary<String, object> dictionary) 
{ 
    ScriptScope scope = runtime.CreateScope(); 
    foreach (var item in dictionary) 
        scope.SetVariable(item.Key, item.Value); 
 
    ScriptEngine engine; 
    lock (runtime) 
    { 
        engine = runtime.GetEngine(lang); 
    } 
    ScriptSource source = engine.CreateScriptSourceFromString(code, 
        SourceCodeKind.Statements); 
    source.Execute(scope); 
    IDictionary<String, object> result = new Dictionary<String, object>(); 
    foreach (var item in scope.GetItems()) 
     result.Add(item.Key, item.Value); 
 
    return result; 
} 

Language Plug-In 
The last section shows the built-in support for executing DLR-based languages in the Stitch runtime. 
The Stitch runtime can be extended to support non-DLR-based languages if we provide Stitch plug-ins 
for those languages. The next few of sections will show how to develop a Stitch plug-in for the 
PowerShell language and how the plug-in mechanism works. 

Develop a Stitch Plug-In for PowerShell 
Developing a Stitch plug-in means implementing two interfaces: ILanguagePlugin and IScript. In this 
section, we are going to look at the implementation of those two interfaces for the PowerShell language. 
The implementation of the IScript interface will contain the logic for running PowerShell code. The 
implementation of the ILanguagePlugin will contain some information about the PowerShell language 
needed by the Stitch runtime. You can find those implementations in the PowerShellStitchPlugin project 
in this chapter’s code download.  

We have seen the IScript interface in the previous section. Listing 9-20 shows the code of the 
PowerShellScript class that implements the IScript interface for the PowerShell language. The logic for 
running PowerShell code is in the Execute method. I won’t go into the details of how PowerShell works. 
For our purpose, it’s enough to know that PowerShell uses something called a pipeline to execute 
PowerShell commands (i.e., PowerShell code) in a Runspace instance. The Runspace instance provides an 
execution context for the pipeline. The Execute method shown in Listing 9-20 creates a Runspace 
instance and a pipeline, puts PowerShell code as commands into the pipeline, and calls the pipeline’s 
Invoke method to execute PowerShell code. The results returned by Invoke are the results of running 
PowerShell code. Those results are put into a dictionary object and returned to the caller of the Execute 
method. The code in the Execute method is for demonstration purposes. It does not use the Execute 
method’s input parameter to set the input of the pipeline. That means the PowerShell code we write or 
include in a Stitch script can’t take any input variables.  



 CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

235 

Listing 9-20. The PowerShellScript Class That Implements the IScript Interface for the PowerShell 

Language 

class PowerShellScript : IScript 
{ 
    private string code; 
    private string returnValue; 
 
    public PowerShellScript(string code, string returnValue) 
    { 
        this.code = code; 
        this.returnValue = returnValue; 
    } 
 
    public IDictionary<String, object> Execute(IDictionary<String, object> scope) 
    { 
        Runspace runspace = RunspaceFactory.CreateRunspace(); 
        runspace.Open(); 
        Pipeline pipeline = runspace.CreatePipeline(); 
        pipeline.Commands.AddScript(code); 
        Collection<PSObject> results = pipeline.Invoke(); 
        runspace.Close(); 
        IDictionary<String, object> result = new Dictionary<String, object>(); 
        result.Add(returnValue, results); 
        return result; 
    } 
} 
 

The other interface we need to implement for supporting PowerShell in the Stitch runtime is 
ILanguagePlugin. Listing 9-21 shows the interface definition of ILanguagePlugin, which defines a 
FileExtensions property for returning the file extensions of a language as a list of String objects. It also 
defines a LanguageNames property for returning the names of a language. When a language plug-in is 
hooked up (i.e., registered) with the Stitch runtime, the Stitch runtime will record the file extensions and 
language names so that the runtime can look up the right language plug-in by file extension or language 
name later.  

Listing 9-21. The ILanguagePlugin Interface 

public interface ILanguagePlugin 
{ 
    IList<string> FileExtensions { get; } 
    IList<string> LanguageNames { get; } 
    IScript CreateScript(Ast.IFunction function); 
} 
 

For example, say we have the following Stitch code: 
 

<getServiceA () PowerShell> 
get-service A* 
<return(serviceAList)> 
 



CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

236 

The language name in this case is “PowerShell.” When the Stitch runtime executes the code, it 
parses it into an IFunction instance. The IFunction instance has a String property called LanguageName, 
whose value in this case is “PowerShell”. The Stitch runtime queries a registry that contains information 
about language plug-ins. The registry keeps one dictionary that maps a language name to the 
corresponding ILanguagePlugin instance and another dictionary that maps a language’s file extension to 
the corresponding ILanguagePlugin instance. The registry is an instance of the ILanguageRegistry 
interface, which is shown in Listing 9-22. The ILanguageRegistry interface defines a Register method for 
registering new language plug-ins and a CreateScript method that creates an IScript object for an 
IFunction object. The Stitch runtime queries a registry by calling the registry’s CreateScript method and 
passing it an IFunction object. The CreateScript method of ILanguageRegistry, in our example, will get 
the “PowerShell” language name from the IFunction object and use that name to look up the 
corresponding language plug-in. The CreateScript method of ILanguageRegistry will then call the 
CreateScript method of ILanguagePlugin on the looked-up language plug-in. The IScript object 
returned by the CreateScript method of ILanguagePlugin will eventually be wrapped with either a 
parallel script runner or a sequential script runner so that the PowerShell code can run in parallel or in 
sequence with other Stitch functions. 

Listing 9-22. The ILanguageRegistry Interface  

interface ILanguageRegistry 
{ 
    IScript CreateScript(Ast.IFunction function);         
    void Register(ILanguagePlugin plugin);         
} 
 

Now that we’ve seen the ILanguagePlugin interface, let’s see the PowerShellPlugin class that 
implements the ILanguagePlugin interface for the PowerShell language in Listing 9-23. The 
implementation is fairly straightforward. For ILanguagePlugin’s FileExtensions property, the code 
simply returns “.sp”. For the LanguageNames property, the code returns “PowerShell”. The 
implementation of ILanguagePlugin’s CreateScript method in Listing 9-23 simply creates and returns an 
instance of the PowerShellScript class we saw in Listing 9-20.   

Listing 9-23. The PowerShellPlugin Class That Implements the ILanguagePlugin Interface for the 

PowerShell Language 

public class PowerShellPlugin : ILanguagePlugin 
{ 
    private IList<string> fileExtensions = new List<string>(new string[] { ".ps" }); 
    private IList<string> languageNames = new List<string>(new string[] { "PowerShell" }); 
 
    public IList<string> FileExtensions 
    { 
        get { return fileExtensions; } 
    } 
 
    public IList<string> LanguageNames 
    { 
        get { return languageNames; } 
    } 
 
    public IScript CreateScript(IFunction function) 



 CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

237 

    { 
        String returnValue = null; 
        if (function.ReturnValues.Count > 0) 
            returnValue = function.ReturnValues[0]; 
 
        return new PowerShellScript(function.Code, returnValue); 
    } 
} 

Configuring a Plug-In 
Now that we have the PowerShell plug-in in hand, we need to register it with the Stitch runtime in order 
to use it. There are two ways to achieve this. One way is to pass an instance of PowerShellPlugin to the 
constructor of StitchScriptEngine as in the following code snippet: 

 
StitchScriptEngine engine = new StitchScriptEngine( 
    ExecutionMode.Sequential, new ILanguagePlugin[] { new PowerShellPlugin() }); 

 
The other way to register a language plug-in with the Stitch runtime is by configuration. Listing 9-24 

shows what the configuration looks like in the App.config file. The configuration is based on the fact that 
Stitch is integrated with the DLR Hosting API. Because of this, we have the code from lines 5 through 8 to 
let the DLR Hosting API know about the Stitch language. And the code from lines 11 to 16 are the way the 
DLR Hosting API provides for passing custom information in the form of key-value pairs to a DLR 
Hosting API-enabled language. In this case, the custom information passed to the Stitch language 
runtime is two key-value pairs. The first pair has “plugin” as the key and the assembly-qualified type 
name of the PowerShellPlugin class as the value. This key-value pair will cause the PowerShellPlugin to 
be registered with the Stitch runtime. The second key-value pair has “executionMode” as the key and 
“ParallelNoWait” as the value. This key-value pair declares which execution mode we want the Stitch 
runtime to operate in. 

Listing 9-24. Configuration That Registers the PowerShell Plug-in with the Stitch Runtime 

1) <microsoft.scripting> 
2)   <languages> 
3)      … 
4)                  
5)     <language names="Stitch" 
6)               extensions=".st" 
7)               displayName="Stitch 1.0" 
8)               type="Stitch.StitchContext, Stitch, Version=1.0.0.0, Culture=neutral" 

/> 
9)  
10)   </languages> 
11)   <options> 
12)     <set option="plugin" language="Stitch"  
13)          value="PowerShellStitchPlugin.PowerShellPlugin,  
14)                    PowerShellStitchPlugin, Version=1.0.0.0, Culture=neutral" /> 
15)     <set option="executionMode" language="Stitch" value="ParallelNoWait" /> 
16)   </options> 
17) </microsoft.scripting> 



CHAPTER 9  STITCH — A DSL FOR HOSTING LANGUAGES 

238 

Summary 
In this chapter, we started with a list of abstractions that could be built on top the DLR Hosting API to 
make language hosting more declarative and less tied to the underlying .NET and DLR platform. We 
then went through the uses and implementations of the Stitch domain specific language that provide 
those abstractions. The Stitch language is declarative and platform-independent, and it can run both 
DLR-based and non-DLR based-language code in sequence or in parallel. We looked at the design and 
grammar definition of Stitch’s syntax, and at the key components, such as the function execution 
coordinator and script runner, in the Stitch runtime. Finally, we saw how to implement a Stitch plug-in 
for the PowerShell language, and how to register the plug-in with the Stitch runtime.   

There are many features and improvements that could be added to the Stitch language as presented 
in this chapter. For example, we could implement language plug-ins for running Ant, Maven, or other 
language scripts. The Stitch language can make the execution modes extensible and allow language 
scripts to run in different ways. I created the dpier project up on Google Code at 
http://code.google.com/p/dpier/ for the continuous development of the Stitch language. You can visit 
the project web site to get the latest updates and give feedback. 

 

 

http://code.google.com/p/dpier


C H A P T E R  10 
    
 

239 

Application Scripting 

One of the most common uses of the DLR and dynamic languages is in the area of application scripting. 
Application scripting allows users to control an application’s behavior by writing scripts. For example, 
users might write scripts to automate routine tasks. They might use scripts to add new features or to 
customize existing functionalities. They might write scripts that integrate an application with other 
applications. The usage scenarios are many and the benefits are real. In this chapter, we will look at this 
important use of the DLR and dynamic languages. Specifically, we will develop a fun application that has 
balls bouncing around, and we will open up part of the application for users to customize. The way we 
open up the application is by exposing its object model for users to script. Users or third-party vendors 
can write custom IronPython code to script the object model. Our application will use the DLR Hosting 
API to load and run those custom IronPython scripts.  

Ball World 
The application we will build in this chapter is called Ball World. You can find the complete source code 
in the BallWorld project of this chapter’s code download. Figure 10-1 shows a snapshot of what Ball 
World looks like when it runs. 

The Ball World application is a simple, standalone program that simulates a world of balls with 
different colors and sizes. The world is two-dimensional and is bounded by four invisible walls. The 
world has an initial state that determines what balls are in the world and specifies the colors, sizes, 
speed, and positions of the balls. It is the initial state that we will open up for users and third-party 
vendors to script. Unlike the world we live in, the world of balls does not have gravity that constantly 
pulls the balls downward. A ball in our simulated world moves in a straight line until it hits one of the 
four bounding walls or another ball. When a ball hits any of the four walls, it bounces back. When two 
balls collide, they assert a force on each other and hence change each other’s direction of movement. 
The mass of a ball is proportional to its size. So when a big ball collides with a smaller ball, the bigger one 
will have a less dramatic change in its direction of movement than the smaller one. 



CHAPTER 10  APPLICATION SCRIPTING 

240 

 

Figure 10-1. The Ball World Application 

Ball World is a WPF (Windows Presentation Foundation) application. Don’t worry if you have little 
or no experience with WPF. The focus of this chapter is on application scripting, and WPF just happens 
to be the underlying framework our example application is built on. We will stay focused on application 
scripting and will only get into the specifics of the WPF part of the Ball World application as necessary.  

Besides WPF, the other component the Ball World application is built on is an open source project 
called Farseer Physics. Farseer Physics is a library that provides many cool features people normally 
need when they develop game applications that need to simulate the physical world. In our case, we will 
use only a very limited subset of the features Farseer Physics provides for detecting the collisions 
between two balls or between a ball and a wall. You don’t need to have any prior experience with Farseer 
Physics or in game development. This chapter will not have too detailed a discussion on those subjects. 
Our focus is on application scripting and I chose to use the Farseer Physics library only to make Ball 
World more fun to play with. 

Software Requirements 
To run the Ball World application you need the compiled binaries of the Farseer Physics library. Here are 
the steps for setting up the Farseer Physics library for Ball World. 

 

1. Download the Farseer Physics source code from the CodePlex web site at 
http://farseerphysics.codeplex.com/. The version of Farseer Physics I used for 
developing the Ball World application is 2.1.3. The later version 3.0 is different 
from version 2.1.3 in substantial ways and is not backward-compatible. Be 
sure to download version 2.1.3 to follow along this chapter’s code examples. 
For each version of Farseer Physics, there are different packages you can 
download for different runtime environments. Because our runtime 

http://farseerphysics.codeplex.com


 CHAPTER 10  APPLICATION SCRIPTING 

241 

environment is WPF, you should download the package called Farseer Physics 
2.1.3 Class Library. I will assume that you unzip the downloaded package into 
the folder C:\Farseer Physics 2.1.3 Class Library. If you use a different folder, 
you’ll need to adjust the rest of the setup steps in this section accordingly. 

2. Open the FarseerPhysics.csproj file in Visual Studio C# 2010 Express. Because 
this file is for an older version of Visual Studio, you’ll be prompted to convert it 
to a format that Visual Studio C# 2010 Express understands. Simply go through 
that conversion wizard and have the FarseerPhysics.csproj file converted. After 
the conversion is done, you’ll see a project called FarseerPhysics in the 
Solution Explorer of Visual Studio. 

3. Build the FarseerPhysics project. The compiled binaries will be placed in 
C:\Farseer Physics 2.1.3 Class Library\bin\Debug. Copy all the files in that 
folder to C:\ProDLR\lib\FaseerPhysics\Debug and you are done. 

Application Architecture 
As mentioned earlier, Ball World is a WPF application. In the world of WPF, there is a popular pattern 
called MVVM (Model-View-ViewModel) for architecturing applications. A detailed discussion of the 
MVVM pattern is beyond the scope of this chapter and might not be of interest to readers who don’t 
base their application’s user interface on WPF. I’ll cover MVVM just enough here so you know how the 
Ball World application is structured in the context of the MVVM pattern. 

MVVM is a design pattern for structuring the user interface layer of an application. If you’ve built UI 
applications, you are most likely familiar with the MVC (Model-View-Controller) pattern used in many 
non-WPF UI applications. The MVVM pattern is similar. For WPF applications, people use MVVM 
instead of the more traditional MVC design pattern because MVVM takes advantage of capabilities such 
as data binding that WPF provides. As its name suggests, the MVVM pattern basically consists of three 
parts: model, view, and viewmodel. Model is made up of classes that represent the objects of the 
application’s domain. View defines the look and feel of the application. ViewModel is the part that uses 
WPF data binding to bridge the view and the model. If you compare MVVM to the MVC pattern, you’ll 
see the similarities. The MVC pattern also consists of three parts: model, view, and controller. The model 
part of MVVM corresponds to the model part of MVC. The view part of MVVM corresponds to the view 
part of MVC. And the viewmodel part of MVVM corresponds to the controller part of MVC. 

For our Ball World application, I adopted the MVVM pattern but simplified things by combining the 
model and viewmodel into a single object model. This is okay for a simple application like Ball World. 
For a more complex application, the general practice would be to implement the full MVVM pattern. The 
single object model we have for Ball World contains classes that represent balls and the world of balls. It 
is the model that the view (i.e., the UI) will reflect. It is also the model that users of our application will 
script against. Let’s begin our exploration of the Ball World application’s implementation by looking at 
the object model. 

Application Object Model 
At the core of the Ball World application is an object model that includes classes for representing balls 
and the world of balls. Of those classes, the BallWorldViewModel class shown in Listing 10-1 is the most 
important to our discussion. The BallWorldViewModel class models the world of balls. Because of that, it 
has a private member variable called balls for containing the balls in a ball world. Each ball is an 
instance of the BallViewModel class. The Balls property in the BallWorldViewModel class is defined so 
that code outside of that class can access the balls contained in the private member variable balls. 
Notice that the type of the private member variable balls is ObservableCollection<BallViewModel>. The 



CHAPTER 10  APPLICATION SCRIPTING 

242 

class ObservableCollection is WPF-specific and it’s there to assist data binding. As you’ll see later when
we get to the view part of the Ball World application, the XAML code we write to define the look and feel
of Ball World will use WPF data binding to bind a UI element to the Balls property of
BallWorldViewModel. The way WPF data binding works is that it needs some kind of notification for
updating the UI element every time the Balls property is changed. The need for notification is met by
using the ObservableCollection class in Listing 10-1. Besides the Balls property and the balls member
variable, other important things about the BallWorldViewModel class are the private physicsEngine
member variable, the AddBall method, and the RunInitScript method. The private physicsEngine
member variable is an instance of BallWorldPhysicsEngine, which we will talk about in “The Physics
Engine” section later when we discuss the use of the Farseer Physics library in our application. For now,
let’s focus the discussion on AddBall and RunInitScript. 

AddBall and RunInitScript are the methods in our application that enable application scripting.
Rather than hard-coding the balls we’d like to put into a ball world, we externalize that part of the
application logic into a Python script file called InitScript.py. Users can customize the Ball World
application by writing their Python code in the InitScript.py file to define the balls and their colors,
positions, and speed in a ball world. The RunInitScript method uses the DLR Hosting API (discussed in
Chapter 6) to load the InitScript.py file. RunInitScript runs the Python code in a script scope where the
variable name “world” is bound to the BallWorldViewModel instance that represents the ball world.
Because the BallWorldViewModel instance that represents the ball world is in the script scope, as you will
see in the next section, the Python code of InitScript.py can add balls to the ball world by calling the
AddBall method on the BallWorldViewModel instance. AddBall creates an instance of BallViewModel to
represent the new ball to be added to the ball world. Then it adds the new BallViewModel instance to two
places. First, it adds the new BallViewModel instance to the private balls member variable so that the
new ball will show up in the user interface. When this occurs, thanks to the ObservableCollection class,
a property-change notification is triggered and the WPF data binding takes care of showing the new ball
in the user interface automatically. 

The second place where the AddBall method adds the new BallViewModel instance is the physics
engine, represented by the physicsEngine member variable of the BallWorldViewModel class. This is so
the physics engine knows about the new ball and can detect the collisions when the new ball collides
with other balls. You’ll see more code and explanations about the physics engine and collision detection
in “The Physics Engine” section later in the chapter.  

Listing 10-1. BallWorldViewModel.cs 

public class BallWorldViewModel
{ 
    private BallWorldPhysicsEngine physicsEngine = new BallWorldPhysicsEngine(); 
    private ObservableCollection<BallViewModel> balls; 
         
    public BallWorldViewModel() 
    { 
        balls = new ObservableCollection<BallViewModel>(); 
        BorderViewModel border = new BorderViewModel( 

720f, 520f, 60, new Vector2(400f, 300f)); 
        physicsEngine.AddBorder(border); 
        physicsEngine.Start(); 
        RunInitScript(); 
    } 



 CHAPTER 10  APPLICATION SCRIPTING 

243 

    public ObservableCollection<BallViewModel> Balls 
    { 
        get { return balls; } 
    } 
 
    public void AddBall(Color color, float radius,  

float x, float y, float speedx, float speedy) 
    { 
        BallViewModel ball = new BallViewModel(color, radius,  
            new Vector2D(x, y), new Vector2D(speedx, speedy)); 
        balls.Add(ball); 
        physicsEngine.AddBall(ball); 
    } 
 
    private void RunInitScript() 
    { 
        ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration(); 
        scriptRuntime.Globals.SetVariable("world", this); 
        ScriptScope scope = scriptRuntime.ExecuteFile(@"Script\InitScript.py"); 
    } 
} 
 

I’ll spare you the details of the BallViewModel class since it has nothing related to the DLR, nor to 
application scripting. If you want to see how the BallViewModel class is implemented, you can find its 
code in this chapter’s code download.  

One last thing to note about the code in Listing 10-1 is the use of the DLR Hosting API in the 
RunInitScript method. In RunInitScript we call the static CreateFromConfiguration method of the 
ScriptRuntime class. As we discussed in Chapter 6, behind the scenes, CreateFromConfiguration reads 
the configurations in the application’s App.config file and uses them to create the script runtime. The 
DLR-related configurations in an App.config file determine which dynamic languages will be supported 
by the script runtime that CreateFromConfiguration creates. For the script runtime to support 
IronPython, we need to put the code in Listing 10-2 into the App.config file of the BallWorld project. 
Chapter 6 has a detailed explanation of the DLR-related configurations in an App.config file. If you are 
unfamiliar with the code in Listing 10-2, refer to Chapter 6 for more information. 

Listing 10-2. App.config  

<?xml version="1.0" encoding="utf-8" ?> 
<configuration> 
  <configSections> 
    <section name="microsoft.scripting" 
        type="Microsoft.Scripting.Hosting.Configuration.Section, Microsoft.Scripting,  
        Version=1.0.0.0, Culture=neutral" /> 
  </configSections> 
  <microsoft.scripting> 
    <languages> 
      <language names="IronPython,Python,py" 
                extensions=".py" 
                displayName="IronPython 2.6.1" 
                type="IronPython.Runtime.PythonContext,IronPython,  

Version=2.6.10920.0, Culture=neutral" /> 



CHAPTER 10  APPLICATION SCRIPTING 

244 

    </languages> 
  </microsoft.scripting> 
</configuration> 

Application Scripting 
Now let’s see how to script the Ball World application by writing some Python code in the InitScript.py 
file, which, as you saw in the previous section, is loaded and executed by the Ball World application. The 
script code in InitScript.py controls the initial state of the ball world. Users can modify the Python code 
in InitScript.py to create a ball world that has a custom initial state without recompiling the Ball World 
application. Listing 10-3 shows a sample InitScript.py file. If you unzip this chapter’s code download, 
you can find the InitScript.py file in the Chapter10\BallWorld\Script folder. When you open the 
chapter’s Visual Studio solution in Visual Studio C# 2010 Express and compile the source code, the Ball 
World application’s executable file—BallWorld.exe—will be generated in the 
Chapter10\BallWorld\bin\Debug folder and the InitScript.py file will be copied over to the 
Chapter10\BallWorld\bin\Debug\Script folder. Run BallWorld.exe to launch the Ball World application. 
When you want to change the initial state of the Ball World application without recompiling the Ball 
World source code, change the InitScript.py file in the Chapter10\BallWorld\bin\Debug\Script folder, 
not the InitScript.py file in the Chapter10\BallWorld\Script folder. The InitScript.py file in the 
Chapter10\BallWorld\bin\Debug\Script folder will be refreshed with the contents you put in the 
InitScript.py file in the Chapter10\BallWorld\Script folder when you recompile the chapter’s source 
code. 

The Python code in Listing 10-3 is fairly straightforward.  First we have the line import clr because 
we are going to use some .NET assemblies. The line import world brings the object associated with the 
name “world” in the script runtime’s global scope into the scope of the Python script. The script runtime 
has the name “world” in its global scope bound to a BallWorldViewModel instance that represents the ball 
world because we established that binding in the RunInitScript method of the BallWorldViewModel 
class. As you can see in Listing 10-3, once the variable world is in the scope of the Python script, we can 
define the initial state of a ball world by calling the AddBall method on the variable world. When we call 
the AddBall method, we specify the color, size, initial x-axis position, initial y-axis position, initial x-axis 
speed, and initial y-axis speed of the new ball we are creating. The coordinate system of our Ball World 
application has an x-axis going from left to right and a y-axis going from top to bottom. The (0, 0) origin 
of the coordinate system is at the very top-left corner of our application’s UI. So the line 
world.AddBall(Colors.Blue, 50, 250, 200, -50, 50); creates a ball whose color is blue, size is 50, 
initial x-axis position 250, initial y-axis position 200, initial x-axis speed –50 (meaning that the ball will 
move to the left in the x-axis direction), and initial y-axis speed 50.  

Because we use color constants like Blue, Red, and Green defined in the 
System.Windows.Media.Colors class to specify the color of a ball, we need to bring the Colors class into 
the scope of the Python script. To do so, we first use the line clr.AddReference("PresentationCore") to 
create a reference to the PresentationCore.dll WPF assembly because the System.Windows.Media.Colors 
class is packaged into that WPF assembly. Then we use the line from System.Windows.Media import 
(Colors) to bring the Colors class into the scope of the Python script. 

Listing 10-3. A Sample InitScript.py file 

import clr 
import world 
clr.AddReference("PresentationCore") 
from System.Windows.Media import (Colors) 
 



 CHAPTER 10  APPLICATION SCRIPTING 

245 

world.AddBall(Colors.Blue, 50, 250, 200, -50, 50); 
world.AddBall(Colors.Red, 30, 200, 400, 50, 50); 
world.AddBall(Colors.Black, 30, 100, 400, 20, 40); 
world.AddBall(Colors.Green, 40, 250, 300, -30, 50); 
world.AddBall(Colors.Purple, 35, 320, 270, 40, -40); 
 

There are many ways to enable scripting for an application. Loading and executing script files like 
the Ball World application does is one way. Another way to enable scripting for the Ball World 
application might be to have a text box in the user interface where users can type in the script code. 
There could be a button by the text box that users can click to execute the script code. The Ball World 
application could be easily extended to support languages other than IronPython that users could write 
their script code in. We could open up more of the application’s behaviors for users to script by exposing 
more methods and objects in the application’s object model. Those additional methods and objects 
would be like the AddBall method of the BallWorldViewModel class that users can script in their Python 
code. No matter which way we use to enable scripting for the Ball World application, no matter which 
languages we support for users to write their script code in, and no matter which parts of our application 
we open up for scripting, the basic scripting mechanism of using the DLR Hosting API to execute 
dynamic language code as demonstrated in Listing 10-2 and Listing 10-3 remains the same.  

Besides allowing users to change the behavior of a certain part of an application, the basic scripting 
mechanism demonstrated in this chapter can also be used as a plug-in infrastructure for an application. 
Users can use the plug-in infrastructure to extend an application by plugging in new functionalities. For 
example, say we are developing an image-processing application and we want to allow the image files to 
be saved in different file formats. Not only do we want to support the set of file formats we are aware of, 
we also want to allow users to plug in support for a file format that is beyond our reach. For this scenario, 
we could build our application in such a way that it loads a user script file containing the logic for saving 
the object model representing an image in our application to the user’s specific file format. 

If you have experience in building a plug-in infrastructure or in enabling scripting for an application 
using a static language like C#, you can tell how the approach demonstrated in this chapter is different. 
With a static language, you would need to define some classes or interfaces as the contract between your 
plug-in (or scripting) infrastructure and users’ extensions (or scripts). When users implement their 
extensions to be plugged into your application, their code would need to reference the .NET assembly 
that contains the contract classes or interfaces in order for their code to compile. Using the DLR Hosting 
API to build a plug-in infrastructure or to enable application scripting, on the other hand, does not 
require a.NET assembly shared between you, the application creator, and people who wish to extend 
your application by providing plug-ins or scripts. Even though no shared .NET assembly is required to 
serve as the programming contract between you and people who extend your application, that doesn’t 
mean there is no programming contract at all. In the case of the Ball World application, the contract is 
that the variable by the name world is accessible to script code and that the script code can invoke a 
method called AddBall on the variable world. The contract between the Ball World application and the 
InitScript.py file is checked and enforced at runtime. The contract packaged in a .NET assembly and 
referenced by people who extend your application is checked and enforced at compile time. A major 
benefit of delaying to runtime the checking and enforcement of the contract between you and users who 
extend your application is that users can just type in their code and have the code executed while your 
application is up and running. There is no need to reference contract assemblies, no need to compile 
code, no need to deploy the compiled code, and no need to restart the application for it to load the new 
version of a user’s compiled code.  

So far in this chapter, we have looked at how the Ball World application uses the DLR Hosting API to 
enable application scripting. The next section will cover the physics engine that detects ball collisions in 
the Ball World application. After that, we will look at the XAML code that defines the user interface of the 
Ball World application. The physics engine and the XAML code are not really related to application 



CHAPTER 10  APPLICATION SCRIPTING 

246 

scripting. Because of that, I will go through those two components of the Ball World application only 
briefly and skip the details. 

The Physics Engine 
The Ball World application uses the Farseer Physics engine to simulate the movements of balls in a 
physical world. Farseer Physics is a library that provides a ton of cool features, but we’re using only the 
collision detection feature to detect collisions between two balls or between a ball and a wall. When such 
a collision happens, the Farseer Physics library triggers an event that we can subscribe to and handle.  

In order for the Farseer Physics engine to detect object collisions, we need to describe the walls and 
balls in our simulated world to the engine first. The way collision detection works in Farseer Physics 
version 2.1.3 is that for every object like a ball or a wall, we need to create two things in the engine: a 
body and the body’s geometries. The body represents the object in the engine and the geometries define 
the object’s shape. The physics engine uses objects’ shapes to detect collisions among objects.  

In the Ball World application, I centralized all use of the Farseer Physics engine into a class called 
BallWorldPhysicsEngine. Listing 10-4 shows that class’s code. The three important methods of the 
BallWorldPhysicsEngine class are: AddBall, AddBorder, and OnCollision. The AddBall method adds a 
body and its geometry in the physics engine for a ball. The AddBorder method adds a body that 
represents the border of a ball world. The body’s shape is defined by four geometries, one for each wall 
of the ball world. The OnCollsion method is the event handler for the OnCollision event that the Farseer 
Physics library triggers when two objects collide. In Listing 10-4, the OnCollision method is registered to 
the OnCollision event of a ball’s geometry by the bolded line in the AddBall method.  

The Farseer Physics engine simulates a physical world by constantly calculating the positions of 
bodies. The engine runs in a loop and calculates the positions of bodies in each iteration of the loop. 
Every time a body’s position takes on a new value as determined by the physics engine’s calculation, we 
need to be informed so we can update the Position property of the corresponding BallViewModel 
instance accordingly. That’s why in Listing 10-4 the code in the AddBall method registers an event 
handler for the Updated event of the body that represents a ball in the physics engine. The physics engine 
will trigger the Updated event when a body’s position takes on a new value, and our event handler will be 
called with the new position value. Inside the event handler, we update the Position property of the 
BallViewModel instance that corresponds to the body whose Updated event was triggered. 

Listing 10-4. BallWorldPhysicsEngine.cs  

public class BallWorldPhysicsEngine 
{ 
    private PhysicsEngineLoop physicsEngineLoop; 
    private PhysicsEngine physicsEngine; 
    private PhysicsSimulator physicsSimulator; 
 
    public BallWorldPhysicsEngine() 
    { 
        physicsEngineLoop = new PhysicsEngineLoop(); 
        physicsEngineLoop.IsRunningChanged += IsRunningChangedEventHandler; 
 
        physicsEngine = new PhysicsEngine(new Vector2(0f, 0f)); 
        physicsSimulator = physicsEngine.PhysicsSimulator; 
        physicsEngine.SetLoop(physicsEngineLoop); 
    } 
 



 CHAPTER 10  APPLICATION SCRIPTING 

247 

    public void Start() 
    { 
        physicsEngineLoop.Start(); 
    } 
 
    public void AddBorder(BorderViewModel border) 
    { 
        //use the body factory to create the physics body 
        Body borderBody = BodyFactory.Instance.CreateRectangleBody( 

physicsSimulator, border.Width, border.Height, 50); 
        borderBody.IsStatic = true; 
        borderBody.Position = border.Position; 
 
        //left border geometry 
        Vector2 geometryOffset = new Vector2( 

-(border.Width * .5f - border.BorderWidth * .5f), 0); 
        CreateBorderGeom(borderBody, border.BorderWidth, border.Height, geometryOffset); 
 
        //right border geometry 
        geometryOffset = new Vector2(border.Width * .5f - border.BorderWidth * .5f, 0); 
        CreateBorderGeom(borderBody, border.BorderWidth, border.Height, geometryOffset); 
             
        //top border geometry 
        geometryOffset = new Vector2(0, -(border.Height * .5f - border.BorderWidth * .5f)); 
        CreateBorderGeom(borderBody, border.Width, border.BorderWidth, geometryOffset); 
 
        //bottom border geometry 
        geometryOffset = new Vector2(0, border.Height * .5f - border.BorderWidth * .5f); 
        CreateBorderGeom(borderBody, border.Width, border.BorderWidth, geometryOffset); 
    } 
 
    private void CreateBorderGeom( 

Body borderBody, float width, float height, Vector2 geometryOffset) 
    { 
        Geom geom = GeomFactory.Instance.CreateRectangleGeom( 
            physicsSimulator, borderBody, width, height, geometryOffset, 0); 
        geom.RestitutionCoefficient = 1f; 
        geom.FrictionCoefficient = 0f; 
        geom.CollisionGroup = 100; 
    } 
 
    public void AddBall(BallViewModel ball) 
    { 
        float bodyMass = ball.Radius; 
        Body body = BodyFactory.Instance.CreateCircleBody(ball.Radius, bodyMass); 
        body.Position = ball.Position.Vector; 
        body.LinearVelocity = ball.Velocity.Vector; 
 
        BodyModelHelper<BallViewModel> helper = new BodyModelHelper<BallViewModel>( 

    ball, body,  
    (UpdateEventHandler<BallViewModel>) delegate( 

BallViewModel ball1, Vector2 position, float rotation) 



CHAPTER 10  APPLICATION SCRIPTING 

248 

            { 
                ball1.Position = new Vector2D(position.X, position.Y); 
                ball1.Velocity = new Vector2D(body.LinearVelocity.X, body.LinearVelocity.Y); 
            }); 
 
        body.Updated += delegate { helper.Update();  }; 
 
        Geom geom = GeomFactory.Instance.CreateCircleGeom(body, ball.Radius, 60, 25); 
        geom.FrictionCoefficient = 0f; 
        geom.RestitutionCoefficient = 1f; 
        geom.OnCollision += OnCollision; 
 
        physicsEngine.AddBody(body); 
        physicsEngine.AddGeom(geom); 
    } 
 
    private bool OnCollision(Geom geom1, Geom geom2, ContactList contactList) 
    { 
        float geom1Speed = geom1.Body.LinearVelocity.Length(); 
        float geom2Speed = geom2.Body.LinearVelocity.Length(); 
 
        if (geom1Speed > 80) 
        { 
            float factor = 50 / geom1Speed; 
            geom1.Body.LinearVelocity.X = geom1.Body.LinearVelocity.X * factor; 
            geom1.Body.LinearVelocity.Y = geom1.Body.LinearVelocity.Y * factor; 
        } 
 
        if (geom2Speed > 80) 
        { 
            float factor = 50 / geom2Speed; 
            geom2.Body.LinearVelocity.X = geom2.Body.LinearVelocity.Y * factor; 
            geom2.Body.LinearVelocity.Y = geom2.Body.LinearVelocity.Y * factor; 
        } 
             
        return true; 
    } 
 
    //other code omitted. 
} 

User Interface 
The only major component of the Ball World application we haven’t looked at is the part that defines the 
application’s user interface. Because Ball World is a WPF application, its user interface is defined 
declaratively in XAML. For a simple application like Ball World, there is not much code we need to write 
to define its user interface, so I put all of the XAML code in a single file called MainView.xaml, as shown 
in Listing 10-5. The code mainly consists of two WPF data templates. In WPF, a data template defines the 
look and feel of instances of a certain class. In our example, one of the WPF data templates defines the 
look and feel of instances of the BallViewModel class. In other words, the data template defines what a 
ball looks like in our application user interface. The other data template defines the look and feel of 



 CHAPTER 10  APPLICATION SCRIPTING 

249 

instances of the BallWorldViewModel class. The two data templates use WPF data binding to bind UI 
elements to properties of the BallViewModel and BallWorldViewModel classes. For example, the data 
template for the BallViewModel class uses an Ellipse instance to represent a ball. The Ellipse instance’s 
color is determined by its Fill property, which is bound by the data template to the Color property of 
the BallViewModel class.  

Listing 10-5. MainView.xaml 

<Window x:Class="BallGames.MainView" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:local="clr-namespace:BallGames.ViewModel"  
    Title="Ball World" Width="800" Height="600"> 
    <Window.Resources> 
        <local:ColorConverter x:Key="colorConverter" /> 
         
        <DataTemplate DataType="{x:Type local:BallViewModel}"> 
            <StackPanel> 
                <Ellipse Fill="{Binding Color, Converter={StaticResource colorConverter}}"  

Width="{Binding Diameter}" Height="{Binding Diameter}" /> 
            </StackPanel> 
        </DataTemplate> 
         
        <DataTemplate DataType="{x:Type local:BallWorldViewModel}"> 
            <ItemsControl ItemsSource="{Binding Path=Balls}"> 
                <ItemsControl.ItemsPanel> 
                    <ItemsPanelTemplate> 
                        <Canvas /> 
                    </ItemsPanelTemplate> 
                </ItemsControl.ItemsPanel> 
                <ItemsControl.ItemContainerStyle> 
                    <Style> 
                        <Setter Property="Canvas.Left"  

Value="{Binding Path=NormalPosition.X}" /> 
                        <Setter Property="Canvas.Top"  

Value="{Binding Path=NormalPosition.Y}" /> 
                    </Style> 
                </ItemsControl.ItemContainerStyle> 
            </ItemsControl> 
        </DataTemplate> 
 
    </Window.Resources> 
     
    <Canvas x:Name="ballWorldCanvas"> 
        <ContentControl x:Name="content" /> 
    </Canvas> 
</Window> 
 

Toward the bottom of Listing 10-5 is a <Canvas> element that serves as the overall container for the 
rest of the Ball World application’s UI elements. The <Canvas> element has only a <ContentControl> as 
the child element it contains. In the code-behind file of MainView.xaml, we set the <ContentControl> 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


CHAPTER 10  APPLICATION SCRIPTING 

250 

element’s Content property to an instance of BallWorldViewModel as the bolded line in Listing 10-6 
shows. The data template for the BallWorldViewModel class is used to render the instance of 
BallWorldViewModel we assign to the <ContentControl> element’s Content property and we end up with 
the <Canvas> element containing the rest of the Ball World application’s UI elements. 

Listing 10-6. The Code-Behind File of MainView.xaml, MainView.xaml.cs 

public partial class MainView : Window 
{ 
    public MainView() 
    { 
        InitializeComponent(); 
        BallWorldViewModel viewModel = new BallWorldViewModel(); 
        content.Content = viewModel; 
    } 
} 

Summary 
This chapter looks at using the DLR and dynamic languages for application scripting—a very powerful 
and quite common use of the DLR. The same concepts that enable application scripting can also be used 
to build a plug-in infrastructure that allows users and third-party vendors to extend an application with 
plug-ins. To add some fun to the topic under discussion, we used a WPF application that simulates a 
physical world of balls to demonstrate how the DLR helps enable application scripting. 

 

 



C H A P T E R  11 
    
 

251 

DLR in Silverlight 

There are many platforms we can run DLR-based applications on. So far, our discussions and code 
examples have focused exclusively on using the DLR in desktop applications. In this chapter, instead of 
having code examples running on the .NET platform, we will look at examples that run on the Silverlight 
platform.  

Silverlight is a client-side Web platform Microsoft developed for running Rich Internet Applications 
(RIAs). The Silverlight runtime runs as a plug-in in a Web browser. When you run a Silverlight 
application, that application runs on the Silverlight runtime. In this chapter, we’ll develop many 
Silverlight applications that make use of the DLR. We will run those applications on the Silverlight 
runtime within the context of a Web browser.  

Besides Silverlight, Microsoft has other Web platforms, such as ASP.NET Web Forms, ASP.NET 
MVC, and ASP.NET AJAX. Unlike Silverlight, which performs most of its processing in the client-side 
browser, the various ASP.NET platforms are server-side frameworks that perform most of their 
processing in the Web server. There are some projects that aim to facilitate the usage of DLR-based 
languages in the various ASP.NET frameworks. For example, ASP.NET Dynamic Language Support is a 
subproject that allows developers to write IronPython or IronRuby code in ASP.NET Web pages. The 
project is hosted at http://aspnet.codeplex.com. There is a project called IronRubyMvc, which 
facilitates the use of IronRuby in ASP.NET MVC applications. You can find the project at 
http://github.com/jschementi/ironrubymvc. We will not cover how to use DLR in the context of the 
various ASP.NET frameworks because, personally, I don’t see a clear roadmap from Microsoft for 
supporting the DLR and dynamic languages on the ASP.NET frameworks. Readers interested in applying 
the DLR to ASP.NET applications can go to the ASP.NET Dynamic Language Support and IronRubyMvc 
web sites to find out more. In this chapter, we will focus on leveraging the DLR in client-side Web 
development based on Silverlight.  

Different Client Side Web Scripting Approaches 
There are a few ways to use dynamic languages in Silverlight applications. One way is to use dynamic 
languages like class libraries. With this approach, we access the dynamic languages via the DLR Hosting 
API. A later section in this chapter will demonstrate this approach. Another way to use dynamic 
languages in Silverlight applications is to use a utility program called Chiron.exe and some Silverlight 
application project templates. This is the first approach released by Microsoft to provide a Web scripting 
experience that allows people to script in Python and Ruby like they do in JavaScript. However, this 
approach fell somewhat out of fashion when the newer  “just text” approach became available, so we’ll 
cover only the “just text” approach.  

The “just text” approach, as its name suggests, allows developers to build a Silverlight application by 
running code as text, without the trouble of compiling and packaging the code. Normally when 
developing a Silverlight application, we have to compile code and package deliverables into specific file 
types, such as XAP or slvx files either manually or by using tools. Every time we make some changes, we 
need to repeat the compilation and packaging steps if we want to manually test those changes. With the 

http://aspnet.codeplex.com
http://github.com/jschementi/ironrubymvc


CHAPTER 11  DLR IN SILVERLIGHT 

252 

“just text” approach, changing and manually testing a Silverlight application that uses the DLR is much
simplified. All we need to do is make the changes to a Web page and reload that Web page in the
browser. You’ll see many examples that take advantage of this approach later in this chapter. If you want
to learn more about the “just text” approach after reading this chapter, one excellent document to read
is Back to “Just Text” with Silverlight, which you can download at
www.ironpython.net/browser/spec.v2.html.  

Apache HTTP Server Configurations 
To use the “just text” approach for hosting DLR-based language code in Silverlight, you need a web
server and a browser that supports Silverlight. For this chapter’s examples, I used Apache HTTP Server 
2.2.16 as the web server and Google Chrome as the browser. You can use other web servers, such as
Microsoft IIS, and other browsers such as FireFox or Internet Explorer to follow along. 

I’ll start by showing you how to set up the Apache HTTP Server for running the examples. The first
thing to do, of course, is to download and install it. Once you have it installed, you need to configure a
virtual host for the examples. To do so, you need to add the following line in
C:\WINDOWS\system32\drivers\etc\hosts:  

127.0.0.1  ProDLR 

Next, open the file C:\Program Files\Apache Software Foundation\Apache2.2\conf\httpd.conf in a
text editor and add the following line at the end of the file: 

Include conf/virtual-hosts.conf 

Last, create the file C:\Program Files\Apache Software Foundation\Apache2.2\conf\virtual-
hosts.conf. Open the file in a text editor. Copy and paste the code in Listing 11-1 into the file. 

Listing 11-1. virtual-hosts.conf 

<Directory "C:\ProDLR\src\Examples\Chapter11"> 
    Order allow,deny 
    Allow from all
</Directory> 

# Use name-based virtual hosting.
NameVirtualHost 127.0.0.1:80 

<VirtualHost 127.0.0.1:80> 
    ServerName ProDLR 
    DocumentRoot "C:\ProDLR\src\Examples\Chapter11" 
    CustomLog logs/ProDLR.access.log combined 
    ErrorLog logs/ProDLR.error.log
</VirtualHost> 

The code in Listing 11-1 sets up a virtual host that will host the web site for this chapter’s examples.
The web site’s name is ProDLR, which means the web site’s URI is http://ProDLR. The physical folder
that stores the web site’s files is C:\ProDLR\src\Examples\Chapter11. If the folder has a file called
xyz.html, you can view the file in the browser if you point the browser to http://ProDLR/xyz.html.  The
<Directory...> entry in Listing 11-1 is to grant necessary permissions for browsers to access the files in 

http://www.ironpython.net/browser/spec.v2.html
http://ProDLR
http://ProDLR/xyz.html


 CHAPTER 11  DLR IN SILVERLIGHT 

253 

C:\ProDLR\src\Examples\Chapter11. Without the <Directory…> entry, you’ll get an error message that 
says you don't have permission to access the files when you later run the code examples.  

After making these changes, remember to restart the Apache HTTP Server. You can verify that the 
Apache HTTP Server is set up properly by loading the page http://ProDLR/index.html. You should see a 
page that says your Apache HTTP Server is all set. Now that the Apache HTTP Server installed and the 
virtual host configured, we’ll look at some examples of the “just text” approach for running DLR-based 
language code in Silverlight applications. 

Using the Hosted Gestalt Components 
The “just text” approach is made possible by a few software components, the product of a project called 
Gestalt whose home page is http://visitmix.com/labs/gestalt/. You can use the Gestalt components 
in two ways. Because the Gestalt components are hosted on http://gestalt.ironpython.net and 
http://gestalt.ironruby.net, the easiest way to use Gestalt is to use those hosted components. The 
other way to use the Gestalt components is to download them and host them ourselves. This requires 
more work but allows for more flexibility. In this section, we will look at how to use the hosted Gestalt 
components. The next section will show you how to download and host those components yourself and 
discuss what benefits that brings you. 

Listing 11-2 shows an example that uses the Gestalt components hosted on 
http://gestalt.ironpython.net to run Python code in a Silverlight application. In Listing 11-2, line 3 
embeds the dlr-latest.js JavaScript file from http://gestalt.ironpython.net into the HTML page. When 
executed, the JavaScript code in dlr-latest.js will create a Silverlight control in the HTML page. A 
Silverlight control created directly in an HTML page typically looks like this: 

 
<html> 
<body> 
... 
  <object data="data:application/x-silverlight-2," type="application/x-silverlight-2"  

width="100%" height="100%"> 
    <param name="source" value="xyz.xap"/> 
    <param name="onError" value="onSilverlightError" /> 
    <param name="autoUpgrade" value="true" /> 
    ...other code omitted... 
  </object> 
</body> 
</html> 
 

As you can see, a Silverlight control in the code snippet above is created and embedded in the 
HTML page using an <object> tag. Within the object tag, there are several <param> tags we can use to 
affect the created Silverlight control. The most important <param> tag is the one whose name attribute is 
source. The source parameter declares the Silverlight application that will run inside the Silverlight 
control. The Silverlight control created by dlr-latest.js has a source parameter set to dlr.xap. The file 
dlr.xap is a Silverlight application that is capable of executing DLR-based language code embedded in 
HTML pages. Currently you don’t see the file dlr.xap anywhere in the code example because that file is 
hosted on the Gestalt web site. I will show you the contents of dlr.xap in the next section when we 
download the Gestalt components and host them ourselves.  

In Listing 11-2, there is a second <script> block from line 10 to line 12. The script block contains 
Python code that uses the HTML DOM API to change the innerHTML property of the HTML element 
whose id is greeting. The Python code is passed to the dlr.xap Silverlight application for interpretation. 

http://ProDLR/index.html
http://visitmix.com/labs/gestalt
http://gestalt.ironpython.net
http://gestalt.ironruby.net
http://gestalt.ironpython.net
http://gestalt.ironpython.net


CHAPTER 11  DLR IN SILVERLIGHT 

254 

Internally, dlr.xap uses the DLR Hosting API to execute the Python code. Listing 11-3 shows the same 
example for the Ruby language. 

Listing 11-2. PythonHtmlDomHostedGestalt.htm 

1) <html> 
2) <head> 
3)   <script src="http://gestalt.ironpython.net/dlr-latest.js" 
4)         type="text/javascript"> 
5)   </script> 
6) </head> 
7)  
8) <body> 
9)   <h1 id="greeting"></h1> 
10)   <script type="text/python"> 
11)     document.greeting.innerHTML = "Hello!!!" 
12)   </script> 
13) </body> 
14) </html> 

Listing 11-3. RubyHtmlDomHostedGestalt.htm 

<html> 
<head> 
  <script src="http://gestalt.ironruby.net/dlr-latest.js" 
        type="text/javascript"> 
  </script> 
</head> 
 
<body> 
  <h1 id="greeting"></h1> 
  <script type="text/ruby"> 
    document.greeting.innerHTML = "Hello World from Ruby in Silverlight!" 
  </script> 
</body> 
</html> 

Hosting the Gestalt Components 
In the previous section we used the hosted Gestalt components to run Python and Ruby code in a 
Silverlight application. Although using the hosted Gestalt components makes it almost effortless to start 
embedding Python and Ruby code in HTML pages, there are times when you would not want your 
Silverlight application to rely on a network connection to the Gestalt web sites or on the Gestalt web sites 
themselves. In such situations, you’d want to download the Gestalt components and host them yourself. 
This section will show you how to do so.  

First you need to download the Gestalt components, which you can do at 
http://visitmix.com/labs/gestalt/downloads/. The file I downloaded is Gestalt-1.0.zip. Once you 
download the file, unzip it to C:\Gestalt1.0, then copy the folder C:\Gestalt1.0\dlr and place it in 
C:\ProDLR\src\Examples\Chapter11. You should now have in your file system the 
C:\ProDLR\src\Examples\Chapter11\dlr folder that contains the following files: dlr.js, dlr.xap, 
gestaltmedia.js, IronPython.slvx, IronRuby.slvx, and Microsoft.Scripting.slvx. As you can see, the dlr.js 

http://gestalt.ironpython.net/dlr-latest.js
http://gestalt.ironruby.net/dlr-latest.js
http://visitmix.com/labs/gestalt/downloads


 CHAPTER 11  DLR IN SILVERLIGHT 

255 

and dlr.xap files mentioned in the previous section’s examples are now sitting in your local file system. 
Let’s see some examples that use those local files instead of the ones hosted on the Gestalt web sites. 
Then we will dissect the file dlr.xap to see how the Gestalt components work together to allow DLR-
based language code to be embedded in HTML pages.  

Listing 11-4 shows basically the same example as Listing 11-2. The only difference between the two 
is that in Listing 11-4, instead of pulling the dlr-latest.js file from http://gestalt.ironpython.net, we 
use the file dlr.js in the dlr folder. Here the dlr folder is a path relative to the HTML file’s location. Our 
example is in C:\ProDLR\src\Examples\Chapter11\PythonHtmlDomLocalGestalt.htm. So to path of the 
file C:\ProDLR\src\Examples\Chapter11\dlr\dlr.js relative to PythonHtmlDomLocalGestalt.htm is 
/dlr/dlr.js. Listing 11-5 shows the same example for the Ruby language. 

Listing 11-4. PythonHtmlDomLocalGestalt.htm 

<html> 
<head> 
  <script src="/dlr/dlr.js" type="text/javascript"></script> 
</head> 
 
<body> 
  <h1 id="greeting"></h1> 
  <script type="text/python"> 
    document.greeting.innerHTML = "Hello World from Python in Silverlight!" 
  </script> 
</body> 
</html> 
 

Listing 11-5. RubyHtmlDomLocalGestalt.htm 

<html> 
<head> 
  <script src="/dlr/dlr.js" type="text/javascript"></script> 
</head> 
 
<body> 
  <h1 id="message"></h1> 
  <script type="text/ruby"> 
    document.message.innerHTML = "Hello World from Ruby in Silverlight!" 
  </script> 
</body> 
</html> 

Dissecting the Gestalt Components 
The Gestalt components we downloaded in the previous section are placed in the 
C:\ProDLR\src\Examples\Chapter11\dlr folder. Let’s go through those components and see how they 
enable DLR-based language code to be embedded in HTML pages. 

The file dlr.js in C:\ProDLR\src\Examples\Chapter11\dlr has JavaScript code that when embedded 
in an HTML page will create a Silverlight control. The Silverlight control’s source parameter, as I 
mentioned earlier, is set to the dlr.xap file in C:\ProDLR\src\Examples\Chapter11\dlr. A xap file is in fact 
a zip file. If you rename dlr.xap to dlr.zip and open it, you will see that dlr.zip has two files: 

http://gestalt.ironpython.net


CHAPTER 11  DLR IN SILVERLIGHT 

256 

AppManifest.xaml and languages.config. The dlr.xap file is a Silverlight application and 
AppManifest.xaml specifies the entry point assembly and entry point type of the Silverlight application. 
The languages.config file configures which languages are supported in the dlr.xap Silverlight application.  

The entry point type of a Silverlight application must be a type that is in the entry point assembly 
and that derives from System.Windows.Application. If you open AppManifest.xaml, you’ll see that the 
entry point assembly of dlr.xap is Microsoft.Scripting.Silverlight.dll and the entry point type is the class 
Microsoft.Scripting.Silverlight.DynamicApplication.  

An instance of the entry point type Microsoft.Scripting.Silverlight.DynamicApplication represents a 
running Silverlight application that is capable of interpreting DLR-based language code. When an 
example HTML page of this chapter is loaded in the browser, the Silverlight control created by dlr.js will 
load the dlr.xap Silverlight application and an instance of the entry point type 
Microsoft.Scripting.Silverlight.DynamicApplication will be created. The source code for building the 
Microsoft.Scripting.Silverlight.dll assembly is part of the DLR source code you can download from the 
DLR Codeplex web site. If you open the C:\Codeple-DLR-1.0\Src\Codeplex-DLR-VSExpress.sln file, 
you’ll see that the Visual Studio solution contains a project called Microsoft.Scripting.Silverlight. That is 
the project that contains the source code for building Microsoft.Scripting.Silverlight.dll. Building the 
assembly is not as straightforward as clicking a button in Visual Studio; we’ll see how to build the 
assembly later. For now, let’s take a look at some important code snippets in the 
Microsoft.Scripting.Silverlight project to see how the whole “just text” works end to end. 

The entry point type of the dlr.xap is Microsoft.Scripting.Silverlight.DynamicApplication and you 
can find its code in the file DynamicApplication.cs of the Microsoft.Scripting.Silverlight project. The 
class DynamicApplication registers an event handler for the Startup event that it inherits from the 
System.Windows.Application base class. The event handler is the method DynamicApplication_Startup 
in DynamicApplication.cs and it will be invoked when the dlr.xap Silverlight application is executed in a 
browser. One fact about Silverlight applications is that they have access to the document object model 
(DOM) of the HTML page that hosts them. The DOM of an HTML page provides access to all of the 
HTML tags and their attributes as objects. The code in the DynamicApplication_Startup method uses the 
DOM of the HTML page that hosts the dlr.xap Silverlight application to scan for all the <script> tags in 
the HTML page. If you take a look at the code in the DynamicApplication_Startup method, you’ll see that 
it creates an instance of a class called DynamicScriptTags and then calls the FetchScriptTags method on 
that instance. The FetchScriptTags method uses the HTML DOM to scan for the <script> tags that 
contain DLR-based language code. For each <script> tag that contains DLR-based language code, the 
code in FetchScriptTags will create an instance of DynamicScriptTags.ScriptCode and put that instance 
in a list. A DynamicScriptTags.ScriptCode instance can represent either DLR-based language code 
inlined in a <script> tag or DLR-based language code included from an external file via a <script> tag. 

The DynamicApplication_Startup method will then create an instance of the DynamicEngine class 
and call the Run method of DynamicScriptTags with the DynamicEngine instance. The Run method uses the 
DLR Hosting API to execute the DLR-based language code snippets stored as 
DynamicScriptTags.ScriptCode instances. One thing to note about the Run method is that it calls the 
CreateScope method of DynamicEngine to get a script scope that’s shared by all the 
DynamicScriptTags.ScriptCode instances that represent code snippets inlined in a <script> tag. A later 
section will show an example HTML page that has two <script> tags, one containing inline Ruby code 
and the other containing inline Python code. You’ll see that the two inlined code snippets are executed 
in the same script scope. If a DynamicScriptTags.ScriptCode instance represents code that is included 
from an external file via a <script> tag, the Run method will call the CreateScope method to create a new 
script scope for executing the external file’s code. 

The CreateScope method of DynamicEngine is of particular interest because it’s where the intrinsic 
objects available to all DLR-based language code are injected into a script scope. This should look 
natural if you’ve read about how the DLR Hosting API works in Chapter 6. The intrinsic objects made 
available by the “just text” approach to all DLR-based language code are the following: 



 CHAPTER 11  DLR IN SILVERLIGHT 

257 

• A variable named document that represents the host HTML document. The type of 
the variable is System.Windows.Browser.HtmlDocument. 

• A variable named window that represents the host HTML window. The type of the 
variable is System.Windows.Browser.HtmlWindow. 

• A variable named me and another variable named xaml. Both of the variables 
represent the root visual element of the associated XAML code if any. The two 
variables point to the same object. The type of the two variables is 
System.Windows.UIElement. 

Don’t worry if you don’t quite understand the intrinsic variables. There will be code examples later 
in the chapter to show how to use those intrinsic variables. 

Scripting HTML 
So far, we have seen examples that use Ruby or Python code to manipulate the DOM of the host HTML 
page by changing the inner text of an HTML element. Now let’s look at some examples that use Ruby or 
Python code as event handlers for HTML events. 

Listing 11-6 defines a Ruby function called onclick_event_handler. The function is registered as the 
event handler for the onclick event of an HTML button. When the HTML button is clicked, 
onclick_event_handler will be invoked and the inner text of the HTML element whose id is message will 
be set to “Hello!!!” Notice that the intrinsic variable document is used in the Ruby code. The intrinsic 
variable document represents the host HTML page, and the example Ruby code uses it to get a hold of 
HTML elements, such as the button whose id is click_me and the element whose id is message.  

Note that in Listing 11-6, there are two <script> tags that contain inlined Ruby code. Because the 
two code snippets are inlined in the <script> tags, they will execute in the same script scope. That is 
important for the example to work. Because the two code snippets execute in the same script scope, the 
Ruby function onclick_event_handler is available and visible in the other <script> tag that registers the 
Ruby function as the event handler for the HTML button’s onclick event. Listing 11-7 shows the same 
example for the Python language. 

Listing 11-6. RubyHtmlEvent1.htm 

<html> 
<head> 
  <script src="/dlr/dlr.js" type="text/javascript"></script> 
</head> 
 
<body> 
  <h1 id="message"></h1> 
  <script type="text/ruby"> 
 def onclick_event_handler(sender, event) 
     document.message.innerHTML = "Hello!!!" 
 end 
  </script> 
 
  <input id="click_me" type="button" value="click me" /> 
  <script type="text/ruby"> 
 document.click_me.attach_event('onclick',  
     System::EventHandler.new(method(:onclick_event_handler)) 



CHAPTER 11  DLR IN SILVERLIGHT 

258 

 ) 
  </script> 
</body> 
</html> 

Listing 11-7. PythonHtmlEvent1.htm 

<html> 
<head> 
 <script src="/dlr/dlr.js" type="text/javascript"></script> 
</head> 
 
<body> 
  <h1 id="message"></h1> 
  <script type="text/python"> 
  def onclick_event_handler(sender, event): 
    document.message.innerHTML = "Hello!!!" 
 
  </script> 
 
  <input id="click_me" type="button" value="click me" /> 
  <script type="text/python"> 
  import System 
  document.click_me.AttachEvent('onclick', System.EventHandler(onclick_event_handler)) 
  </script> 
</body> 
</html> 
 

To emphasize the fact that inlined DLR language code snippets are executed in the same script 
scope, Listing 11-8 shows an example that purposely defines a global Ruby variable called $message in 
one <script> tag and uses the variable in another <script> tag. Because the Ruby code in the two 
<script> tags are inlined, the $message variable defined in one <script> tag is available and visible in the 
other <script> tag. Listing 11-9 shows the same example for Python. 

Listing 11-8. RubyHtmlEvent2.htm 

<html> 
<head> 
 <script src="/dlr/dlr.js" type="text/javascript"></script> 
</head> 
 
<body> 
  <h1 id="message"></h1> 
  <script type="text/ruby"> 
 def onclick_event_handler(sender, event) 
     document.message.innerHTML = $message 
 end 
  </script> 
 
  <input id="click_me" type="button" value="click me" /> 
  <script type="text/ruby"> 



 CHAPTER 11  DLR IN SILVERLIGHT 

259 

 $message = "Hello!!!" 
 
 document.click_me.attach_event('onclick',  
     System::EventHandler.new(method(:onclick_event_handler)) 
 ) 
  </script> 
</body> 
</html> 

Listing 11-9. PythonHtmlEvent2.htm 

<html> 
<head> 
 <script src="/dlr/dlr.js" type="text/javascript"></script> 
</head> 
 
<body> 
  <h1 id="message"></h1> 
  <script type="text/python"> 
  def onclick_event_handler(sender, event): 
    document.message.innerHTML = message 
 
  </script> 
 
  <input id="click_me" type="button" value="click me" /> 
  <script type="text/python"> 
  import System 
  message = "Hello!!!" 
  document.click_me.AttachEvent('onclick', System.EventHandler(onclick_event_handler)) 
  </script> 
</body> 
</html> 
 

The previous examples in this section show how to define a function and register it as an event 
handler for an HTML element’s event. If you like, you can define the function and register it in one go, as 
Listing 11-10 shows. The example in Listing 11-10 defines an anonymous Ruby function that serves as 
the event handler for an HTML button’s onclick event. 

Listing 11-10. RubyHtmlEvent3.htm 

<html> 
<head> 
 <script src="/dlr/dlr.js" type="text/javascript"></script> 
</head> 
 
<body> 
  <h1 id="message"></h1> 
  <script type="text/ruby"> 
 $message = "Hello!!!" 
  </script> 
 



CHAPTER 11  DLR IN SILVERLIGHT 

260 

  <input id="click_me" type="button" value="click me" /> 
  <script type="text/ruby"> 
 document.click_me.onclick do  
     document.message.innerHTML = $message 
 end 
  </script> 
</body> 
</html> 
 

We can define the function in Ruby and register the Ruby function with an HTML button’s event in 
Python. Listing 11-11 mixes Ruby code and Python code in one HTML page. Both the Ruby code and 
Python code are inlined in a <script> tag and hence executed in the same script scope. Therefore, the 
Ruby function is available and visible in the Python code. 

Listing 11-11. PythonRubyHtmlEvent.htm 

<html> 
<head> 
 <script src="/dlr/dlr.js" type="text/javascript"></script> 
</head> 
 
<body> 
  <h1 id="message"></h1> 
  <script type="text/ruby"> 
 def onclick_event_handler(sender, event) 
     document.message.innerHTML = "Hello!!!" 
 end 
  </script> 
 
  <input id="click_me" type="button" value="click me" /> 
  <script type="text/python"> 
  import System 
  document.click_me.AttachEvent('onclick', System.EventHandler(onclick_event_handler)) 
  </script> 
</body> 
</html> 

Scripting XAML 
With the  “just text” approach, not only can we script the HTML DOM in DLR-based languages, we can 
also work with UI markups expressed in XAML. XAML is a .NET object serialization format that can 
serialize .NET objects into XML and vice versa. Listing 11-12 shows an example that displays a green 
rectangle in the browser. The rectangle is expressed in XAML by the <Rectangle> tag within the <Canvas> 
tag. At runtime, the XML tags will be parsed and deserialized into .NET objects that represent a canvas 
and a rectangle.  

Listing 11-12. RectangleXaml.htm 

<html> 
<head> 
  <script src="/dlr/dlr.js" type="text/javascript"></script> 



 CHAPTER 11  DLR IN SILVERLIGHT 

261 

</head> 
     
<body> 
  <script type="application/xml+xaml" width="150" height="150"> 
    <Canvas xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"  
  xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"  
  Width="150" Height="150"> 
       <Rectangle Width="50" Height="50" Canvas.Left="20" Canvas.Top="20" Fill="Green" /> 
    </Canvas> 
  </script> 
</body> 
</html> 
 

The example in Listing 11-12 contains only a XAML code snippet and does not employ any Ruby or 
Python code to script the XAML UI elements. The next example, shown in Listing 11-13, demonstrates 
how to script the XAML rectangle element and change the rectangle’s color from green to red. 

The first important thing to note about the code in Listing 11-13 is that the code id=”rect” is added 
in line 9. The id attribute uniquely identifies the XAML code from line 10 to line 16. In line 19, we refer to 
the XAML code by its unique id. This effectively associates the Python code from line 20 to line 23 with 
the XAML code and makes the intrinsic variable me in line 23 refer to the root UI visual element of the 
XAML code. Because the code in line 14 gives the XAML rectangle a unique name as its identifier, in line 
23 we are able to refer to the XAML rectangle as me.rectangle. In line 23 we create a new instance of the 
SolidColorBrush class that has the red color and assign the SolidColorBrush instance to the Fill 
property of me.rectangle to change the XAML rectangle color to red. Because we use the 
SolidColorBrush class and the Colors class in line 23, we need to import them from the 
System.Windows.Media namespace in line 21. 

Listing 11-13. PythonXamlEvent1.htm  

1) <html> 
2) <head> 
3)   <script src="/dlr/dlr.js" type="text/javascript"></script> 
4) </head> 
5)  
6) <body> 
7)   <h1 id="message"></h1> 
8)  
9)   <script id="rect" type="application/xml+xaml" width="150" height="150"> 
10)     <Canvas xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"  
11)             xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"  
12)      Width="150" Height="150"> 
13)      
14)       <Rectangle x:Name="rectangle" Width="50" Height="50"  
15)                Canvas.Left="20" Canvas.Top="20" Fill="Green" /> 
16)     </Canvas> 
17)   </script> 
18)  
19)   <script class="rect" type="text/python"> 
20)   import clr 
21)   from System.Windows.Media import (SolidColorBrush, Colors) 
22)  

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


CHAPTER 11  DLR IN SILVERLIGHT 

262 

23)   me.rectangle.Fill = SolidColorBrush(Colors.Red) 
24)   </script> 
25) </body> 
26) </html> 

The code in Listing 11-14 shows one more example of manipulating XAML elements in Python code.
What’s new in this example is how to register a Python function as an event handler for a XAML button’s
Click event. This is analogous to the example that registers a Ruby or Python function as an event
handler for an HTML button’s onclick event. The code in Listing 11-14 is largely the same as that in
Listing 11-13. One difference is that Listing 11-14 has a <Button> tag in the XAML UI markup. The unique
name of the <Button> tag is clickMeButton and we refer to it as me.clickMeButton in the embedded
Python code. The <script> tag that contains the Python code defines a Python function called
onclick_event_handler and registers the Python function to the me.clickMeButton.Click event. One
caveat about the code in Listing 11-14 is that while you might think you can register the event handler
like the following, you can’t: 

  <script id="rect" type="application/xml+xaml" width="150" height="150"> 
    <Canvas ...> 
      <Rectangle ... /> 
      <Button x:Name="clickMeButton" Click="onclick_event_handler" .../>  
    </Canvas> 
  </script> 

Registering a Python or Ruby function as the event handler in XAML markup is not yet supported by the
“just text” approach. 

Listing 11-14. PythonXamlEvent2.htm  

<html>
<head> 
  <script src="/dlr/dlr.js" type="text/javascript"></script>
</head> 

<body> 
  <h1 id="message"></h1> 

  <script id="rect" type="application/xml+xaml" width="150" height="150"> 
    <Canvas xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"  
     xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"  

    Width="150" Height="150"> 
    

      <Rectangle x:Name="rectangle" Width="50" Height="50"  
Canvas.Left="20" Canvas.Top="20" Fill="Green" /> 

      <Button x:Name="clickMeButton" Width="70" Height="20"  
Canvas.Left="20" Canvas.Top="90" Content="Click Me" />  

    </Canvas> 
  </script> 

  <script class="rect" type="text/python"> 
  import clr 
  from System.Windows.Media import (SolidColorBrush, Colors) 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


 CHAPTER 11  DLR IN SILVERLIGHT 

263 

  def onclick_event_handler(sender, event): 
    me.rectangle.Fill = SolidColorBrush(Colors.Red) 
 
  me.clickMeButton.Click += onclick_event_handler  
  </script> 
</body> 
</html> 

DLR Settings 
Earlier in this chapter, I mentioned that the dlr.js file contains JavaScript code that when embedded in 
an HTML page creates a Silverlight control. Because we need to be able to create Silverlight controls with 
different behaviors and capabilities, the dlr.js file provides some settings we can configure when we 
embed the file in a host HTML page. In this section, we will look at a setting that causes a language 
console to show up in the host HTML page. The language console will take the code you enter, evaluate 
it, and display the evaluation results, much like the ir.exe command console of IronRuby and the ipy.exe 
command console of IronPython.  

The JavaScript code in dlr.js essentially defines an object called DLR. The object DLR has some 
properties and functions defined for it. Examples of the properties are path, settings, and autoAdd. 
Examples of the functions are createSilverlightObject, getSettings and defaultSettings. The 
settings property of the DLR object can point to an object that can have properties such as width, height, 
console, and id. The console property is the one that controls whether a language console will show up 
in the host HTML page. This section will only cover the console property. A later section will cover the 
path property of the DLR object. You can refer to Back to “Just Text” with Silverlight for details on the 
settings you’re interested in.  

Listing 11-15 shows an example that displays a language console in the host HTML page by setting 
the console property to true. If you run the example by pointing your browser to 
http://prodlr/PythonConsole.htm, you’ll see a language console at the bottom of the web page where 
you can type in Python code after the console prompt and press the Enter key to have the Python code 
evaluated. Note that when assigning values to the DLR object’s properties, we have to do so before the 
dlr.js file is included in the HTML page. Listing 11-16 shows the same example for the Ruby language. 

Listing 11-15. PythonConsole.htm 

<html> 
<head> 
  <script type="text/javascript"> 
    window.DLR = {} 
    DLR.settings = {console: true} 
  </script> 
 
  <script src="/dlr/dlr.js" type="text/javascript"></script> 
</head> 
 
<body> 
  <script type="text/python"></script> 
</body> 
</html> 

http://prodlr/PythonConsole.htm


CHAPTER 11  DLR IN SILVERLIGHT 

264 

Listing 11-16. RubyConsole.htm 

<html> 
<head> 
  <script type="text/javascript"> 
    window.DLR = {} 
    DLR.settings = {console: true} 
  </script> 
   
  <script src="/dlr/dlr.js" type="text/javascript"></script> 
</head> 
 
<body> 
  <script type="text/ruby"></script> 
</body> 
</html> 

Speak Your Own Language in Silverlight 
So far in this chapter, you’ve seen how to use the Gestalt project to host IronPython and IronRuby code 
in Silverlight. You’ve seen examples that use the Gestalt components hosted on 
http://gestalt.ironruby.net and http://gestalt.ironpython.net. You’ve also seen how to download 
the Gestalt code and host the Gestalt components yourself. It’s nice to leverage the Gestalt components 
in a Silverlight application. However, if you ever need to host your custom language code in Silverlight or 
if you want to target different DLR versions for your Silverlight application, you’ll need to build your own 
Gestalt-like components. The rest of this chapter will show you how to do that, from the ground up. 

First, we will build a new custom language—the Hello language you saw in Chapter 1. To host the 
custom language in Silverlight, we need to implement the provider side of the DLR Hosting API for the 
language. Second, we will host the Hello language in Silverlight without using 
Microsoft.Scripting.Silverlight.dll or any Gestalt-like components. In this exercise, you’ll see that hosting 
a custom language in Silverlight is really no different from using a class library. Finally, we will create our 
custom Gestalt-like components and use them to host the Hello language in a Silverlight application. To 
follow these examples, you need to install some software components. You also need to build the 
Microsoft.Scripting.Silverlight project in the DLR source code. Let’s go through those steps for setting up 
the development environment we need for this chapter’s examples. 

Software Requirements 
Here are the software components you need in order to try out the examples in the rest of this chapter. 

• You need to have Visual Web Developer 2010 Express installed.  

• You need to have the Silverlight 4 Toolkit April 2010 Release and Silverlight 4 Tools 
for Visual Studio 2010 installed. The easiest way to install these components is to 
install Microsoft Web Platform Installer 2.0. Once it’s installed, you can use it to 
download and install both components. Alternatively, you can go to the respective 
web sites for Silverlight 4 Toolkit April 2010 Release and Silverlight 4 Tools for 
Visual Studio 2010 to download and install them.  

http://gestalt.ironruby.net
http://gestalt.ironpython.net


 CHAPTER 11  DLR IN SILVERLIGHT 

265 

After installing these software components, some people expressed in various discussion forums 
that they got an error message saying that Silverlight Developer Runtime is not installed. If you happen 
to run into that issue, you can fix it by downloading the Silverlight Developer Runtime at 
http://go.microsoft.com/fwlink/?LinkID=188039 and installing it. 

Build DLR for Silverlight 
Before we start coding, there’s one last bit of preparation work that needs to be done—building the DLR 
source code with Silverlight as the target platform. This is necessary because we will be building 
Silverlight applications and the DLR assemblies we’ve been using so far are for.NET applications. The 
challenge here is that if you open the C:\Codeplex-DLR-1.0\Src\Codeplex-DLR-VSExpress.sln and try to 
build the Microsoft.Scripting.Silverlight project, you will get a bunch of compilation errors. Fortunately, 
a workaround was posted on the DLR Codeplex discussion forum and it works like a charm. Here’s how 
to build the DLR source code for Silverlight.  

1. Open the Visual Studio command prompt. The command prompt seems to be 
installed as part of the installation of Visual Studio C++ 2010 Express.  

2. In the command prompt, navigate to the C:\Codeplex-DLR-1.0\Src folder and 
execute the following command: 

msbuild 
Hosts\SilverLight\Microsoft.Scripting.SilverLight\Microsoft.Scripting.Silverlight.csproj  
/p:Configuration="Silverlight 4 Debug" /p:SilverlightPath="C:\Program Files\Microsoft 
Silverlight\4.0.50826.0" 

 
In the command, the version of Silverlight I used in 4.0.50826.0. If you want to use a different 

version, adjust the command accordingly. After executing the command, the 
Microsoft.Scripting.Silverlight project and its dependencies should all be built successfully. The 
assemblies generated by the build process are in the C:\Codeplex-DLR-
1.0\Src\Hosts\SilverLight\Bin\Debug folder. 

 
3. Copy the files in C:\Codeplex-DLR-1.0\Src\Hosts\SilverLight\Bin\Debug to 

C:\ProDLR\lib\SilverlightDLR\debug.  
 
You now have the DLR binaries needed for building Silverlight applications. You’ll reference those 

binaries in the Silverlight projects you build in the rest of this chapter. 

The Hello Language 
Our goal now is to implement the provider side of the DLR Hosting API for the Hello language. You can 
find all the code presented in this section in the HelloConsole solution of this chapter’s code download. 
If you want to start from scratch, you can fire up Visual Web Developer 2010 Express and create a new 
project. The project is a C# Silverlight class library. I named the project HelloLanguage and the solution 
HelloConsole. You will be prompted to select a version of Silverlight as the target version for the new 
project. For this example, I selected Silverlight 4. The project needs to reference the 
Microsoft.Dynamic.dll and Microsoft.Scripting.dll assemblies located in 
C:\ProDLR\lib\SilverlightDLR\debug. Those are the assemblies you built in the previous section.  

Hello is a language that accepts any code as valid input and returns the string “Hello!!!” as the result 
of evaluating the code. To plug the Hello language into the DLR Hosting API, we need to implement the 
provider side of the DLR Hosting API for the language. For our simple Hello language, that means we 
need to implement a class that derives from LanguageContext and a class that derives from ScriptCode. 

http://go.microsoft.com/fwlink/?LinkID=188039


CHAPTER 11  DLR IN SILVERLIGHT 

266 

The class that derives from LanguageContext is called HelloContext and is shown in Listing 11-17. 
LanguageContext is a class meant to be subclassed by a language implementer. The subclass is supposed 
to provide functionalities such as returning the script engine and compiling and interpreting the source 
code of the custom language. In Listing 11-17, HelloContext provides the functionality of compiling 
Hello language code by overriding the CompileSourceCode method it inherits from LanguageContext. The 
CompileSourceCode method in Listing 11-17 simply creates an instance of HelloScriptCode and returns it. 
Listing 11-18 shows the code of the HelloScriptCode class. 

Listing 11-17. The HelloContext Class  

public class HelloContext : LanguageContext 
{ 
    public HelloContext(ScriptDomainManager domainManager,  

IDictionary<string, object> options) 
        : base(domainManager) 
    { } 
 
    public override ScriptCode CompileSourceCode(SourceUnit sourceUnit,  

CompilerOptions options, ErrorSink errorSink) 
    { 
        return new HelloScriptCode(sourceUnit); 
    } 
} 

Listing 11-18. The HelloScriptCode Class  

public class HelloScriptCode : ScriptCode 
{ 
    public HelloScriptCode(SourceUnit sourceUnit) 
        : base(sourceUnit) 
    { } 
 
    public override object Run(Scope scope) 
    { 
        return "Hello!!!"; 
    } 
} 
 

Now that we have the Hello language plugged into the DLR Hosting API, the next step is to create a 
Silverlight application that makes use of the Hello language. There is more than one way to host a 
custom language in a Silverlight application. No matter which approach we take, the basic 
requirement—that the custom language be plugged into the DLR Hosting API—remains the same. In the 
rest of this chapter, we will look at two different approaches for hosting the Hello language in Silverlight 
applications. One uses the compiled Hello language assembly HelloLanguage.dll as a typical .NET class 
library. The other is the “just text” approach.  

Hello Console in Silverlight 
In this section, we will create a Silverlight application that hosts the Hello language by using the DLR 
Hosting API and the HelloLanguage.dll assembly directly. The Silverlight application will not use the 
Microsoft.Scripting.Silverlight.dll assembly, nor will it use of any of the Gestalt-like files.  



 CHAPTER 11  DLR IN SILVERLIGHT 

267 

To begin, first create a new C# Silverlight application project. If you don’t have the HelloConsole 
solution you created in the previous section open, you need to open it. Once you are in the HelloConsole 

solution, you can select File   New Project… to create this section’s new project. In the New Project 
wizard, expand the Visual C# node on the left and select the Silverlight subnode underneath the Visual 
C# node, as the screen capture in Figure 11-1 shows. Notice that the selected project template in the 
middle of the wizard dialog is Silverlight Application. 

 

 

Figure 11-1. Creating a new Silverlight application project for hosting the Hello language in a Silverlight 

application  

Once you hit OK, the next step in the New Project wizard is the configuration of the Web project that 
will host the new Silverlight application. Figure 11-2 shows the selections you should make in this step. 



CHAPTER 11  DLR IN SILVERLIGHT 

268 

 

Figure 11-2. Configuring the Web project that will be used to host the new Silverlight application  

After you click the OK button, you’ll see two new projects added to the HelloConsole solution. The 
new project HelloConsole is the Silverlight application. The other new project, HelloConsole.Web, is the 
Web project that will host the HelloConsole Silverlight application. The HelloConsole.Web project as 
generated is fine for our purpose and we don’t need to make any changes to it. For the HelloConsole 
project, you need to add to it references to the following: 

• Microsoft.Dynamic.dll and Microsoft.Scripting.dll in 
C:\ProDLR\lib\SilverlightDLR\debug 

• Microsoft.CSharp.dll  

• The HelloLanguage project in the same solution 

Next, open the file MainPage.xaml and replace its contents with the code in Listing 11-19, which 
declares the UI of our Silverlight application in XAML. The UI is a UserControl that uses a StackPanel to 
lay out its child element, a TextBox. The TextBox is the Hello console in which users can type in Hello 
code and see the result of evaluating that code. The name of the TextBox is helloConsole. 

Listing 11-19.  MainPage.xaml 

<UserControl x:Class="HelloConsole.MainPage" 
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 
    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
    mc:Ignorable="d" 
    d:DesignHeight="300" d:DesignWidth="400"> 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


 CHAPTER 11  DLR IN SILVERLIGHT 

269 

    <StackPanel> 
        <TextBox x:Name="helloConsole" KeyUp="TextBox_KeyUp"  
                 Height="200" Margin="10" 
                 TextWrapping="NoWrap" AcceptsReturn="True"  
                 VerticalScrollBarVisibility="Visible" Text=">>>" /> 
    </StackPanel> 
</UserControl> 
 

The UI declarations shown in Listing 11-19 are associated with a code-behind file called 
MainPage.cs. The helloConsole textbox specifies an event handler for the KeyUp event of TextBox. The 
event handler is a C# method and its code is in MainPage.cs. Listing 11-20 shows the code in 
MainPage.cs. The class MainPage declares a member variable scriptEngine in line 3. The scriptEngine 
variable is initialized in the constructor. The initialization of the scriptEngine variable should look 
familiar if you have read Chapter 6. Basically, the code creates an instance of LanguageSetup that 
contains the setup information of the Hello language. Then it puts the LanguageSetup instance into a 
ScriptRuntimeSetup instance and uses the ScriptRuntimeSetup instance to create a script runtime. After 
the script runtime is created, the code obtains a reference to the Hello language’s script engine by calling 
the GetEngine method on the script runtime in line 19. 

The scriptEngine member variable is used in the TextBox_KeyUp method to evaluate the Hello code 
users type in the UI. The Hello code we want to evaluate is whatever users type after the >>> console 
prompt and before the Enter key is pressed. So TextBox_KeyUp checks first if the currently released key is 
the Enter key. If yes, then line 27 extracts the text the user typed after the last >>> console prompt. In line 
28, we use scriptEngine to execute the extracted Hello code and store the execution result in a variable. 
In line 29 we display the execution result in the helloConsole textbox and print out a new >>> console 
prompt. 

Listing 11-20. MainPage.cs 

1) public partial class MainPage : UserControl 
2) { 
3)     private ScriptEngine scriptEngine; 
4)  
5)     public MainPage() 
6)     { 
7)         InitializeComponent(); 
8)              
9)         LanguageSetup langSetup = new LanguageSetup( 
10)             typeName: "HelloLanguage.HelloContext,HelloLanguage,  
11)                   Version=1.0.0.0, Culture=neutral", 
12)             displayName: "Hello", 
13)             names: new String[] { "Hello" }, 
14)             fileExtensions: new String[] { ".hello" }); 
15)  
16)         ScriptRuntimeSetup setup = new ScriptRuntimeSetup(); 
17)         setup.LanguageSetups.Add(langSetup); 
18)         ScriptRuntime scriptRuntime = new ScriptRuntime(setup); 
19)         scriptEngine = scriptRuntime.GetEngine("Hello"); 
20)     } 
21)  
22)     private void TextBox_KeyUp(object sender, KeyEventArgs e) 
23)     { 

i



CHAPTER 11  DLR IN SILVERLIGHT 

270 

24)         if (e.Key == Key.Enter) 
25)         { 
26)             int index = helloConsole.Text.LastIndexOf(">>>"); 
27)             String code = helloConsole.Text.Substring(index + 3); 
28)             String result = scriptEngine.Execute(code); 
29)             helloConsole.Text += result + "\n>>>"; 
30)             helloConsole.SelectionStart = helloConsole.Text.Length; 
31)         } 
32)     } 
33) } 
 

If you run the Silverlight application, you’ll see a textbox with the >>> console prompt showing up in 
the browser. If you type some dummy characters and press enter, you’ll see something that looks like 
Figure 11-3. 

 

 

Figure 11-3. The Silverlight application running in the browser 

Gestalt-like Hello Console on Silverlight 
In the previous section we developed a Silverlight application that displays a console for the Hello 
language. The Silverlight application does not depend on the Microsoft.Scripting.Silverlight.dll assembly 
and does not use any of the Gestalt-like components. Now let’s take the “just text” approach and use the 
Microsoft.Scripting.Silverlight.dll assembly to host the Hello language console in a Silverlight 
application. I will walk you through the steps you need to take to build your own Gestalt-like 
components that support your custom language. The example we’ll build requires creating the 
following: 



 CHAPTER 11  DLR IN SILVERLIGHT 

271 

• dlr.xap 

• Microsoft.Scripting.slvx 

• HelloLanguage.slvx 

• the test HTML page 

We need to create dlr.xap because (a) we want to support only the Hello language in our Silverlight 
application and (b) we want to target Silverlight 4.0 as the runtime for running the Silverlight 
application. For those two reasons we can’t use the dlr.xap downloaded from the Gestalt web site. 

 To create our own dlr.xap, we will copy all files except Microsoft.Scripting.slvx, IronPython.slvx and 
IronRuby.slvx in C:\ProDLR\src\Examples\Chapter11\dlr to 
C:\ProDLR\src\Examples\Chapter11\hellodlr. Rename the file dlr.xap in 
C:\ProDLR\src\Examples\Chapter11\hellodlr to dlr.zip. There are two files in dlr.zip: AppManifest.xaml 
and languages.config. Open AppManifest.xaml and replace the file's contents with the following: 

 
<Deployment xmlns="http://schemas.microsoft.com/client/2007/deployment"  
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
 RuntimeVersion="4.0.50826.0"  
 EntryPointAssembly="Microsoft.Scripting.Silverlight"  
 EntryPointType="Microsoft.Scripting.Silverlight.DynamicApplication" 
 ExternalCallersFromCrossDomain="ScriptableOnly"> 
  <Deployment.Parts> 
  </Deployment.Parts> 
  <Deployment.ExternalParts> 
    <ExtensionPart Source="Microsoft.Scripting.slvx" /> 
  </Deployment.ExternalParts> 
</Deployment> 

 
As you can see, in AppManifest.xaml, we specify that the Silverlight runtime we want to target for 

our Silverlight application is version 4.0.50826.0. If you use a different version of Silverlight, you’ll need 
to adjust the code you put into AppManifest.xaml accordingly. Next you need to modify the 
languages.config file. Open languages.config in a text editor and replace its contents with the following:  

 
<Languages> 
  <Language 
    names="Hello" 
    languageContext="HelloLanguage.HelloContext" 
    extensions=".hello" 
    assemblies="HelloLanguage.dll" 
    external="HelloLanguage.slvx" 
  /> 
</Languages> 

 
Note that in the languages.config file, we configure our Silverlight application to support only the 

Hello language. We also specify that the binaries of the Hello language will be packaged into the 
HelloLanguage.slvx file. Let’s perform the packaging and create the HelloLanguage.slvx file. 

To create HelloLanguage.slvx, you need to build the Chapter11 Visual Studio solution if you haven’t 
done so. Then you need to zip up HelloLanguage.dll in 
C:\ProDLR\src\Examples\Chapter11\HelloConsole\HelloLanguage\Bin\Debug. Name the zip file 

http://schemas.microsoft.com/client/2007/deployment
http://schemas.microsoft.com/winfx/2006/xaml


CHAPTER 11  DLR IN SILVERLIGHT 

272 

HelloLanguage.slvx and place it in C:\ProDLR\src\Examples\Chapter11\hellodlr. That’s it for the
HelloLanguage.slvx file.  

The last file we need to create is Microsoft.Scripting.slvx. We can’t use the Microsoft.Scripting.slvx
file downloaded from the Gestalt web site because we want to use the version of DLR assemblies we built
ourselves in our Silverlight application. To create Microsoft.Scripting.slvx, you need to zip up the three
files Microsoft.Scripting.dll, Microsoft.Scripting.Silverlight.dll, and Microsoft.Dynamic.dll in
C:\ProDLR\lib\SilverlightDLR\debug. Name the zip file Microsoft.Scripting.slvx and place it in
C:\ProDLR\src\Examples\Chapter11\hellodlr. 

At this point, our Silverlight application is complete and we are ready to take it for a test drive. To try
out the Silverlight application, open a Web browser and navigate to http://prodlr/HelloConsole.htm.
Your browser will look like Figure 11-4. At the bottom of the Web page there is a console for the Hello
language. If you type in any code and press the Enter key, the code you type in will be evaluated and the
text “Hello!!!” will be printed out as the result of the code evaluation. 

Figure 11-4. Hello language console powered by a Gestalt-like Silverlight application 

Listing 11-21 shows the HelloConsole.htm code. It’s pretty much the same as the examples we saw
earlier that display a Python or Ruby console in the browser. One thing to note about the code in Listing
11-21 is that it sets the path property of the DLR object to “/hellodlr”. This is necessary because the
default value of the DLR object’s path property is “/dlr”. However, because all the Gestalt-like files that
make up our Silverlight application are placed in the hellodlr folder, we need to overwrite the default
value of the DLR object’s path and set it to “/hellodlr”.  

x

http://prodlr/HelloConsole.htm


 CHAPTER 11  DLR IN SILVERLIGHT 

273 

Listing 11-21. HelloConsole.htm 

<html> 
  <head> 
    <script type="text/javascript"> 
      window.DLR = {} 
      DLR.path = "/hellodlr" 
      DLR.settings = {console: true} 
    </script> 
 
    <script src="/hellodlr/dlr.js" type="text/javascript"></script> 
  </head> 
     
  <body> 
    <script type="text/Hello"> 
   dummy code 
    </script> 
  </body> 
</html> 

Summary 
This chapter begins with an overview of different software projects and components that facilitate the 
use of DLR-based languages in various server-side and client-side Web environments. We then focused 
on the “just text” approach for hosting DLR-based language code in HTML pages. First, we looked at 
several examples that demonstrate the integration between the HTML DOM, XAML code snippets, and 
IronPython and IronRuby code. Some examples show how to use the HTML DOM in IronPython and 
IronRuby code to modify an HTML page. Others show how to register an IronRuby or IronPython 
function as the event handler for a XAML or HTML element’s event.  

Next, we developed a trivial language and used it in a Silverlight application without using any 
Gestalt-like components. Then we took the “just text” approach for hosting our custom language in a 
Silverlight application. We walked through the steps of creating HelloLanguage.slvx and our custom 
dlr.xap and Microsoft.Scripting.slvx. The “just text” approach as well as all of this chapter’s examples are 
fundamentally based on the DLR Hosting API. We saw some excellent applications of the DLR Hosting 
API in earlier chapters of this book, and this chapter shows you one more excellent application of the 
DLR Hosting API. 





C H A P T E R  12 
    
 

275 

Dynamic Languages on JVM 

So far, we’ve been discussing the DLR and its applications. In this chapter, we will look at the framework 
in the Java world that’s equivalent to the DLR. We will see how that Java framework facilitates running 
dynamic language code on the Java virtual machine, how to host dynamic languages in a Java program, 
and what kind of language interoperability the framework supports. When appropriate, we’ll compare 
the Java framework and the DLR. If you have a need to write Java programs that use dynamic languages, 
this chapter will help you quickly get up to speed by leveraging what you’ve learned so far.  

Quick Comparisons 
You’ll find that support for dynamic languages in the .NET and Java worlds corresponds to each other 
quite nicely. Before we compare each feature area in more detail, it’s helpful to have an overall view of 
how the .NET and Java platforms stack up against each in their support for dynamic languages. To that 
end, Table 12-1 shows some quick comparisons. The first column shows dynamic language support on 
the .NET platform, the second shows the corresponding support on the Java platform.   

Table 12-1. Support for Dynamic Languages on .NET and Java 

.NET  Java  

IronPython is an implementation of the Python 
language that runs on .NET CLR. 

Jython is an implementation of the Python 
language that runs on the JVM. 

IronRuby is an implementation of the Ruby 
language that runs on .NET CLR.  

JRuby is an implementation of the Ruby language 
that runs on the JVM. 

DLR Hosting API Java Specification Request (JSR) 223 Scripting for 
the Java Platform is the equivalent API of the DLR 
Hosting API in the Java world. The JSR 223 API 
allows hosting dynamic languages in a Java 
program.  

DLR binders, dynamic objects On the Java side, the closest thing to DLR binders 
and dynamic objects is JSR 292: Supporting 
Dynamically Typed Languages on the Java 
Platform. 

 
In Table 12-1 you can see that the equivalent of the DLR Hosting API on the Java side is the JSR 223 

API. Table 12-2 compares the two APIs. 



CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

276 

Table 12-2. Comparison of DLR Hosting API and JSR 223. 

DLR Hosting API JSR 223 Scripting for the Java Platform 

ScriptRuntime class ScriptEngineManager class 

ScriptEngine class ScriptEngine class 

App.config. DLR Hosting API uses the App.config 
file to discover script engines that are available in a 
deployment environment. 

META-
INF/services/javax.script.ScriptEngineFactory. JSR 
223 uses the javax.script.ScriptEngineFactory file 
to discover script engines that are available in a 
deployment environment. 

ScriptScope class ScriptContext class 

CompiledCode class CompiledScript class 

ScriptSource class N/A. JSR 223 does not define a class that’s 
equivalent to DLR Host API’s ScriptSource class. 

Silverlight. DLR Hosting API makes it possible to 
run dynamic language code not only in a 
standalone application but also in Silverlight 
applications. 

Servlet container. Using JSR 223, one can host 
dynamic language code in not only standalone 
Java applications but also in a Servlet container. 

 
 
This chapter is organized into two parts. The first part will look at some well-known dynamic 

language implementations that run on the JVM and also how to host those languages in Java programs 
using JSR 223. The second part will develop a simple programming language that deals with logic 
operations. We will see how to provide a JSR 223 implementation for the simple language so that it can 
be hosted in Java programs. You will find that almost all of the discussions in this chapter correspond 
nicely to our earlier discussions on DLR.  

Python and Ruby on JVM 
Many dynamic language implementations use the JVM as their runtime. That means those 
implementations will turn their code into Java bytecode at run time and have the JVM execute the 
bytecode. This is analogous to what happens on the .NET side. Like the JVM executing Java bytecode, the 
.NET CLR executes Intermediate Language (IL) instructions. Language implementations such as 
IronPython and IronRuby run on the CLR by eventually translating their code into IL code and having 
the CLR execute the IL code. 

 In this part of the chapter, we will look at Jython and JRuby, two dynamic language 
implementations that run on the JVM. You’ll see how those language implementations provide 
interoperability with Java code, as well as how to use the Java equivalent of the DLR Hosting API to host 
Python and Ruby code in Java programs. You’ll find the code for this in the JavaHostingExamples 
project. In order to run the code, you need the following software components installed: 



 CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

277 

• JDK 6 or above. The version I used for developing the code examples is JDK 1.6.0 
update 14. 

• Eclipse IDE. The version I used is Eclipse 3.6.  

• Jython. I downloaded version 2.5.1 and installed it in C:\jython2.5.1. After the 
installation, you need to copy C:\jython2.5.1\jython.jar to 
C:\ProDLR\src\Examples\Chapter12\JavaScripting\lib\Jython 

• JRuby. I downloaded version 1.5.1 and installed it in C:\jruby-1.5.1. After the 
installation, you need to copy C:\jruby-1.5.1\lib\jruby.jar to 
C:\ProDLR\src\Examples\Chapter12\JavaScripting\lib\JRuby\1.5.1. 

• Normally you would need to download the script engines that implement the JSR 
223 API for the languages we want to host in a Java program. However, in this case, 
we don’t need to bother because the files jruby.jar and jython.jar already contain 
the script engines. If you use a dynamic language implementation that doesn’t 
include a JSR 223 script engine in its binaries, you can go to 
https://scripting.dev.java.net/ and see if a JSR 223 script engine that 
implements the JSR 223 API is available for the language.  

Hosting Python Code in Java Programs 
Jython is to JVM as IronPython is to CLR. IronPython is an implementation of the Python language that 
runs on the CLR. Similarly, Jython is an implementation of the Python language that runs on the JVM.  
One key benefit of targeting the CLR or JVM as the runtime is the ability to leverage the enormous assets 
of readily available .NET or Java libraries. IronPython gives Python developers access to .NET libraries 
while Jython gives them access to Java libraries. Earlier we saw examples of Python code that uses classes 
written in C#. Now we’ll look at some examples of Python code that run on JVM and uses classes written 
in Java.  

Listing 12-1 shows an example that uses the JSR 223 API to host Python code in a Java program. If 
you recall in Chapter 6 how we used the DLR Hosting API to host Python code in a C# program, you’ll 
understand the code in Listing 12-1 right away. With the DLR Hosting API, we create an instance of 
ScriptRuntime and use it to get an instance of ScriptEngine for executing Python code. Here in Listing 
12-1 we create an instance of javax.script.ScriptEngineManager and use it to get an instance of 
javax.script.ScriptEngine. To get an instance of javax.script.ScriptEngine that’s capable of running 
Python code, the code in Listing 12-1 calls the getEngineByName method on the ScriptEngineManager 
instance and passes the string “jython” as the argument. In Chapter 6, to get an instance of 
Microsoft.Scripting.Hosting.ScriptEngine that’s capable of running Python code, we call the 
GetEngine method on a ScriptRuntime instance and pass the string “python” as the argument.  

To show the interoperability between Jython and the Java language, the example in Listing 12-1 
creates an instance of a Java class called Product whose code is shown in Listing 12-2. The Product class 
has two fields: name and price. For each field, the Product class provides getter and setter methods for 
getting and setting the field’s value. Once the Product instance is created, the example in Listing 12-1 
calls the put method on the ScriptEngine instance to put the Product instance into the script engine’s 
variable bindings. In this case, the Product instance is bound to the name handClapper. This step is 
equivalent to calling the SetVariable method on a Microsoft.Scripting.Hosting.ScriptEngine 
instance. With the DLR Hosting API, we call the SetVariable method on a 
Microsoft.Scripting.Hosting.ScriptEngine instance to bind an object to a name. Once an object is 
bound to a name, the Python code can retrieve the object by that name and that’s what the Python code 
in Listing 12-1 does. The code is the string “print handClapper.getName()” passed to the eval method of 

https://scripting.dev.java.net


CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

278 

ScriptEngine. This step is equivalent to calling the Execute method on a 
Microsoft.Scripting.Hosting.ScriptEngine instance.    

Listing 12-1. A Java Program That Uses the JSR 223 API to Host Python Code 

private static void printProductNameInPython()  
throws ScriptException, NoSuchMethodException, IOException { 
    ScriptEngineManager manager = new ScriptEngineManager(); 
    ScriptEngine engine = manager.getEngineByName("jython"); 
    Product handClapper = new Product("Hand Clapper", 6); 
    engine.put("handClapper", handClapper); 
    engine.eval("print handClapper.getName()"); 
} 

Listing 12-2. A Java Class Whose Instance Will be Passed to Python Code  

public class Product { 
    private String name; 
    private int price; 
  
    public Product(String name, int price) { 
        this.name = name; 
        this.price = price; 
    } 
  
    public String getName() { 
        return name; 
    } 
     
    public void setName(String name) { 
        this.name = name; 
    } 
 
    public int getPrice() { 
        return price; 
    } 
 
    public void setPrice(int price) { 
        this.price = price; 
    } 
} 
 

As you can see, each line of code in Listing 12-1 has a counterpart in the DLR Hosting API. The 
concept of passing Java objects to Python code is also the same as that in the DLR Hosting API. The 
example in Listing 12-1 prints the name of a product in Python code. The next example in Listing 12-3 
also prints the name of a product in Python code. The difference here is that the Python code is used as 
an invocable function in the Java program. The code in Listing 12-3 is largely the same as the code in 
Listing 12-1 except for lines 6 and 7. In Listing 12-3 at line 6, instead of evaluating Python code as a 
string, the example code reads the Python code from the file printProductName.py in the 
src/main/resources folder. This is analogous to calling the ExecuteFile of DLR Hosting API’s 



 CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

279 

ScriptEngine class to execute Python code in a file. If you open the file printProductName.py, you’ll see 
that it defines a Python function like this: 

 
def printProductName(x): 
  print x.getName()   

 
In line 7 of Listing 12-3, the code casts the type of the engine variable to Invocable and calls the 

invokeFunction method on the type-casted variable. The purpose of this line of code is to invoke the 
printProductName function defined in printProductName.py. As you can see, the syntax here for invoking 
a Python function in Java is not as seamless and intuitive as the syntax we get with the DLR Hosting API. 
Using the DLR Hosting API, we refer to a Python function as a .NET delegate and we directly invoke the 
.NET delegate to execute it. Here in Listing 12-3, we have to invoke the Python function by its name, 
instead of calling it directly as if it were a Java method.  

Listing 12-3. A Java program That Uses the JSR 223 API to Invoke a Python Function 

1) private static void printProductNameByInvokingPythonFunction()  
2) throws ScriptException, NoSuchMethodException, IOException { 
3)     ScriptEngineManager manager = new ScriptEngineManager(); 
4)     ScriptEngine engine = manager.getEngineByName("jython"); 
5)     Product handClapper = new Product("Hand Clapper", 6); 
6)     engine.eval(new FileReader(new File("src/main/resources/printProductName.py"))); 
7)     ((Invocable) engine).invokeFunction("printProductName", handClapper); 
8) } 

Hosting Ruby Code in Java Programs 
The previous examples show how to host Python code in Java programs. Let’s see how to do the same 
thing for Ruby code. The example code in Listing 12-4 uses some Ruby code to calculate the total price of 
two products. The Ruby code is placed in the calculateTotal.rb file in the src/main/resources folder, and 
it looks like this: 

 
def calculateTotal(x, y) 
  return x.getPrice() + y.getPrice()  
end  
 

The Ruby code defines a function called calculateTotal that takes two input parameters. The 
calculateTotal function calls the getPrice method on the two input parameters and returns the sum of 
the two prices. The code in Listing 12-4 is very similar to the code in Listing 12-3. In Listing 12-4, we get a 
script engine that knows how to evaluate Ruby code by calling the getEngineByExtension method of 
ScriptEngineManager. We create two instances of the Java Product class and pass them to the Ruby 
calculateTotal function. In order to call the Ruby calculateTotal function, we need to cast the type of 
the engine variable to Invocable and then we invoke the Ruby function by its name.  

Listing 12-4. A Java Program That Uses the JSR 223 API to Host Ruby Code 

private static void calculateProductTotalInRuby() throws ScriptException, 
NoSuchMethodException, IOException { 
    ScriptEngineManager manager = new ScriptEngineManager(); 
    ScriptEngine engine = manager.getEngineByExtension("rb"); 
    Product handClapper = new Product("Hand Clapper", 6); 



CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

280 

    Product stretchString = new Product("Stretch String", 8); 
    engine.eval(new FileReader(new File("src/main/resources/calculateTotal.rb"))); 
    Long total = (Long) ((Invocable) engine).invokeFunction("calculateTotal", handClapper, 
stretchString); 
    System.out.println("Total is: " + total); 
} 

As we saw in the examples, the JSR 223 API is the equivalent API of the DLR Hosting API. Like the 
DLR Hosting API, the JSR 223 API defines a uniform API for hosting different dynamic languages. Before 
JSR 223, Scripting for the Java Platform, (and its predecessor, the Bean Scripting Framework, or BSF), 
many languages were already communicating with Java. Some languages would take textual code as 
input from a Java program and return the evaluation result back. Others would keep references to 
objects in a Java program, invoke methods on those objects, or create new instances of a Java class. 
Because each language would communicate with Java in its own way, developers would have to learn 
the script engine's proprietary programming interface every time they wanted to use a script engine in 
their Java programs. 

To solve this problem, JSR 223 defines a contract that all script engines conforming to the 
specification must honor. The contract consists of a set of Java interfaces and classes, as well as a 
mechanism for packaging and deploying a script engine. The DLR Hosting API is also designed to solve 
the same problem that JSR 223 addresses. When you work with script engines conforming to JSR 223 or 
the DLR Hosting API, you'll always program to the same set of interfaces defined by the specification. 
The details specific to the script engine are well encapsulated, and you'll never need to concern yourself 
with them. 

JSR 223 and the DLR Hosting API help not only consumers, but also producers of script engines. If 
you have designed and implemented a programming language, you can reach out to a broader audience 
and make your software friendlier to use by wrapping it with a layer that implements the JSR 223 
interfaces or one that supports the DLR Hosting API. 

Overview of the BoolScript Example 
In the rest of this chapter, we’ll play the role of a script-engine producer. The examples so far show how 
to use JSR 223 script engines that others have implemented. In the rest of this chapter, you will learn how 
to implement a JSR 223 script engine for a custom language of your own. Before we look at the JSR 223 
interfaces and an implementation of them, I'd like to point out that though the name of the JSR contains 
the word scripting, that's not to say you’re limited  on the languages that can be integrated with Java the 
JSR 223 way. You can take any language you fancy and wrap it with a layer that conforms to the contract 
laid out in JSR 223. The language can be object-oriented, functional, or in any other programming 
paradigm. The rest of this chapter will implement a simple language and then wrap it with a layer that 
supports the JSR 223 API. Because the language is simple, we can stay focused on the topic of JSR 223 
without the details of a complex language overwhelming us. 

Don't worry whether you have prior experience constructing a programming language of your own. 
This article is not about programming languages; it’s about JSR 223's contract between programming 
languages and Java. 

Figure 12-1 shows all the parties in our example and how they relate to each other. The example 
defines a simple language that I affectionately call BoolScript. I will refer to the program that compiles 
and executes BoolScript code as the BoolScript engine. Besides compiling and executing BoolScript 
code, to qualify as a JSR 223 script engine, the BoolScript engine also implements the contract defined in 
the JSR 223 specification. As depicted in Figure 12-1, all the BoolScript engine's code is packaged into a 
single jar file called boolscript.jar. 

 



 CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

281 

 

BoolScript engine

(boolscript.jar)

JSR 223

framework

J2SE 6.0

Host Java program

(BoolScriptHostApp.java)
BoolScript parser,

abstract syntax model,

compiler, interpreter

Support for

JSR 223

 

Figure 12-1. Overview of the BoolScript example 

JSR 223 is a specification in and of itself. Beginning with version 6.0, the Java Standard Edition (J2SE) 
includes a JSR 223 framework that implements the JSR 223 specification, and that’s the middle box in 
Figure 12-1. In addition to BoolScript.jar and J2SE’s JSR 223 framework, the third component, shown on 
the right, is a Java program that uses the BoolScript engine. The program hosts the BoolScript engine, 
and its code is in BoolScriptHostApp.java. Notice that a host Java program always interacts with a script 
engine indirectly via a JSR 223 framework. 

To run the example, you need Java SE 6.0 or above. You’ll also need the ANTLR runtime component 
because I used ANTLR to develop the lexer and parser of BoolScript. You can download the Java runtime 
of ANTLR at www.antlr.org/download.html. The file I downloaded is antlr-runtime-3.2.jar. Put the jar file 
in the C:\ProDLR\src\Examples\Chapter12\JavaScripting\lib\Antlr\3.2 folder. 

Once you have the software components installed, you’re all set to run this part of the chapter’s 
code example, which is divided into the following two Eclipse projects: 

• BoolScript contains the source code of the BoolScript engine. 

• BoolScriptDemo contains the source code of the host Java program. 

The BoolScript project is already compiled and packaged into a jar file called boolscript.jar, which 
goes in C:\ProDLR\src\Examples\Chapter12\JavaScripting\lib\BoolScript and is referenced by the 
BoolScriptDemo project. 

To run the example, you need only compile the host Java program in BoolScriptHostApp.java and 
run the generated Java .class file. You need to include the two files antlr-runtime-3.2.jar and 
boolscript.jar in the Java classpath when running the host Java program. After running the example, 
you’ll see output like this: 

 
Bool Script Engine 
Mozilla Rhino 
answer of boolean expression is: false 
answer of boolean expression is: false 
answer of boolean expression is: true 
answer of boolean expression is: false 
answer of boolean expression is: true 

BoolScript Language 
Before we delve into the details of JSR 223, let's quickly go over the BoolScript language. BoolScript is so 
simple that all you can do with it is evaluate Boolean expressions. Here's what code written in BoolScript 
looks like: 
 

http://www.antlr.org/download.html


CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

282 

(True | False) & True
(True & x) | y 

As you can see, BoolScript supports two operators: & (logic AND) and | (logic OR). Besides operators, it
supports three operands: True, False, and variables whose values might be either True or False. That's it
for BoolScript. 

You’ll find the ANTLR grammar file that defines the syntax of BoolScript in
C:\ProDLR\src\Examples\Chapter12\JavaScripting\BoolScript\src\main\resources\BoolScript.g 

Listing 12-5 shows the simplified version of BoolScript’s syntax grammar, which essentially defines
that a BoolScript program is zero or more expressions. Each expression is terminated by a semicolon,
and a program is terminated by the EOF (end of file) token. The grammar goes on and defines an
expression as a term followed by either “& or “|”, followed by another term. A term is defined as a
variable identifier (the IDENT token), an expression enclosed by left and right parentheses, and the
keyword “True” or the keyword “False”. During development time, the grammar file BoolScript.g is used
to generate the lexer and parser Java code that knows how to parse BoolScript code at runtime. The
generated lexer and parser Java code is in the BoolScriptLexer.java and BoolScriptParser.java files of the
BoolScript Eclipse project. 

Listing 12-5. Simplified Version of the BoolScript Syntax Grammar 

program : (expression ';')* EOF ; 
expression : term ('&' term | '|' term)*;
term : IDENT  
  | '(' expression ')' 
  | 'True'  
  | 'False';  
     
fragment LETTER : ('a'..'z' | 'A'..'Z') ;
fragment DIGIT : '0'..'9'; 
IDENT : LETTER (LETTER | DIGIT)*;  

Script Engine Factory 
To see what a JSR 223 framework does between a host Java program and a script engine, let's assume
you want to use a script engine in your Java program. First, you'll need to create an instance of the script
engine. Second, you'll need to pass textual code to the engine and have the engine evaluate it.
Alternatively, you might want the engine to compile the code and save the compiled code for later
execution. Let's walk through these steps, bearing in mind that whatever we do, we want to use the
script engine only through the JSR 223 framework. 

To check whether a script engine is available for a certain language in your deployment
environment, you first create an instance of javax.script.ScriptEngineManager and then use it to query
the existence of a script engine. You can query the existence of a script engine by its name, its mime
types, or file extensions. If we store BoolScript code in *.bool files, the file extension in our case would be
bool. The code below queries the existence of the BoolScript engine by file extension: 

ScriptEngineManager engineMgr = new ScriptEngineManager();
ScriptEngine bsEngine = engineMgr.getEngineByExtension("bool"); 

The BoolScript project specifies the file extensions of BoolScript source files in
BoolScriptEngineFactory. The class implements the methods getExtensions, getMimeTypes, and 



 CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

283 

getNames of the javax.script.ScriptEngineFactory interface. And it is in those methods that I declared 
the name, mime types, and file extensions of the BoolScript language. Listing 12-6 shows the code of the 
BoolScriptEngineFactory class. As you can see, the name of the BoolScript engine is declared to be “Bool 
Script Engine” and the version is 1.0.0. The name of the BoolScript language is declared to be “Bool 
Script Language”. The mime type of BoolScript language source code is declared to be “code/bool”. 
 

Listing 12-6. BoolScriptEngineFactory Class 

public class BoolScriptEngineFactory implements ScriptEngineFactory { 
 
 public String getEngineName() { 
  return "Bool Script Engine"; 
 } 
 
 public String getEngineVersion() { 
  return "1.0.0"; 
 } 
 
 public String getLanguageName() { 
  return "Bool Script Language"; 
 } 
 
 public String getLanguageVersion() { 
  return "1.0.0"; 
 } 
 
 public ScriptEngine getScriptEngine() { 
  return new BoolScriptEngine(); 
 } 
 
 @Override 
 public List<String> getNames() { 
  ArrayList<String> extList = new ArrayList<String>(); 
  extList.add("bool script"); 
  return extList; 
 } 
  
 @Override 
 public List<String> getExtensions() { 
  ArrayList<String> extList = new ArrayList<String>(); 
  extList.add("bool"); 
  return extList; 
 } 
 
 @Override 
 public List<String> getMimeTypes() { 
  ArrayList<String> extList = new ArrayList<String>(); 
  extList.add("code/bool"); 
  return extList; 
 } 
 



CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

284 

 //Other methods omitted. 
} 
 
 

Script Engine Discovery Mechanism 
Both the DLR Hosting API and JSR 223 allow us to create a script engine in a language-specific way or in 
a language- agnostic way. For example, with the DLR Hosting API, we can create a Python script engine 
in a language-specific way like this: 

 
ScriptEngine engine = Python.CreateEngine(); 

  
We can achieve the same thing in a language-agnostic way like this: 
 

ScriptRuntime scriptRuntime = ScriptRuntime.CreateFromConfiguration(); 
ScriptEngine scriptEngine = scriptRuntime.GetEngine("python"); 

                
Chapter 6 already covers those two different ways of creating a Python script engine in the DLR 

Hosting API, so I’ll save the explanations here and go straight to showing you the language-specific and -
agnostic ways of creating a script engine in JSR 223. We can create a BoolScript script engine in a 
language-specific way by invoking the BoolScriptEngine constructor like this: 

 
ScriptEngine bsEngine = new BoolScriptEngine(); 

 
We can achieve the same thing in a language-agnostic way like this: 
 

ScriptEngineManager manager = new ScriptEngineManager(); 
ScriptEngine engine = manager.getEngineByExtension("bool"); 

 
 You might wonder, why bother using ScriptEngineManager to create an instance of 

BoolScriptEngine when we can create it ourselves simply by invoking the constructor of 
BoolScriptEngine. Well, you can certainly do that. In fact, I did that a few times for the purpose of quick 
testing when I developed the example code. Creating a script engine directly might be okay for testing a 
script engine, but for a real usage scenario, it violates the principle that a host Java program should 
always interact with a script engine indirectly via a JSR 223 framework. It defeats JSR 223's purpose of 
information hiding. JSR 223 achieves information hiding by using the Factory Method design pattern to 
decouple script engine creation from a host Java program. Another problem with directly instantiating a 
script engine's instance is that it bypasses any initializations that ScriptEngineManager might perform on 
a newly created script engine instance. Are there initializations like that? Read on.  

Given the string bool, how does ScriptEngineManager find BoolScriptEngine and create an instance 
of it? The answer is something called the script engine discovery mechanism in JSR 223. This is the 
mechanism by which ScriptEngineManager finds the BoolScriptEngine class. In the following discussion 
of this mechanism, you’ll see what initializations ScriptEngineManager does to a script engine and why. 

According to the script engine discovery mechanism, a script engine provider needs to package all 
the classes that implement a script engine plus one extra file in a jar file. The extra file must have the 
name javax.script.ScriptEngineFactory. The jar file must have the folder META-INF/services, and the file 
javax.script.ScriptEngineFactory must reside in that folder. If you look at boolscript.jar's contents, you’ll 
see this file and folder structure. 



 CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

285 

The content of the file META-INF/services/javax.script.ScriptEngineFactory must contain the full 
names of the classes that implement ScriptEngineFactory in the script engine. In our example, we have 
only one such class, and the file META-INF/services/javax.script.ScriptEngineFactory looks like this: 

 
net.sf.model4lang.boolscript.engine.BoolScriptEngineFactory 

 
After a script engine provider packages his or her script engine in a jar file and releases it, users 

install the script engine by putting the jar file in the Java classpath. Figure 12-2 shows the events that 
take place when a host Java program asks the JSR 223 framework for a script engine. 
 

engine

engine

engine

<<create>>

<<create>>

: ScriptEngineManager factory : ScriptEngineFactory engine : ScriptEngine

getScriptEngine()

factory

getEngineByXXX()

setBindings(global-bindings, ScriptContext.GLOBAL_SCOPE)

 

Figure 12-2. How JSR 223 discovers a script engine 

When asked to find a particular script engine by name, mime types, or file extensions, a 
ScriptEngineManager will go over the list of ScriptEngineFactory classes (i.e., classes that implement the 
ScriptEngineFactory interface) that it finds in the classpath. If it finds a match, it will create an instance 
of the engine factory and use the engine factory to create an instance of the script engine. A script engine 
factory creates a script engine in its getScriptEngine method. It is the script engine provider's 
responsibility to implement the method. If you look at BoolScriptEngineFactory, you'll see that our 
implementation for getScriptEngine looks like this: 
 
 public ScriptEngine getScriptEngine()  
{ 
   return new BoolScriptEngine(); 
} 
 

The method is very simple. It just creates an instance of our script engine and returns it to 
ScriptEngineManager (or whoever the caller is). What's interesting is after ScriptEngineManager receives 



CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

286 

the script engine instance, and before it returns the engine instance back to the client Java program, it 
initializes the engine instance by calling the engine's setBindings method. This brings us to one of the 
core concepts of JSR 223: variable bindings. After I explain the concepts and constructs of bindings, 
scope, and context, you will know what the setBindings call does to a script engine. 

Bindings, Scope, and Context 
Recall that the BoolScript language allows you to write code like this: 
 
(True & x) | y 
 
But it doesn't have any language construct for you to assign values to the variables x and y. I could have 
designed the language to accept code like this: 
 
x = True 
y = False 
(True & x) | y 
 
But I purposely left out the assignment operator = and require that BoolScript code must execute in a 
context where the values of the variables are defined. This means that when a host Java program passes 
textual code to the BoolScript engine for evaluation, it also needs to pass a context to the script engine, 
or at least tell the script engine which context to use. The idea of using a context to pass objects between 
a host Java program and the hosted script code is the same as the ScriptScope class in the DLR Hosting 
API. The ScriptContext class defined in JSR 223 is equivalent to the ScriptScope class in the DLR Hosting 
API.  

You can think of a script context as a bag that contains data you want to pass back and forth 
between a host Java program and a script engine. The construct that JSR 223 defines to model a script 
context is the interface javax.script.ScriptContext. A bag would be messy if we put a lot of things in it 
without some type of organization. So to be neat and tidy, a script context (i.e., an instance of 
ScriptContext) partitions data it holds into scopes. The construct that JSR 223 defines to model the 
concept of scope is the interface javax.script.Bindings. Figure 12-3 illustrates context, its scopes, and 
data stored therein. 
 
 



 CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

287 

global scope

engine manager
<<create>>

script engine

script context

global scope

engine scope

... scope

... scope

script engine

script context

global scope

engine scope

... scope

... scope

<<create>>

x

y

name

......

name value

value

False

True

<<execute>>

<<execute>>

<<execute>>

<<execute>>

<<execute>>

......

......

......
<<create>>

script

script

script

 

Figure 12-3. Context and scope in script engine managers and script engines  

There are several important things to note in Figure 12-3: 

• A script engine contains a script context. 

• A script engine manager (i.e., an instance of ScriptEngineManager) can be used to 
create multiple script engines. 

• A script engine manager contains a scope called global scope, but it does not 
contain a context. 

• Each scope is basically just a collection of name-value pairs. Figure 12-3 shows 
that one of the scopes contains a slot whose name is x and a slot whose name is y. 
A scope is an instance of javas.script.Bindings. 

• The context in a script engine contains a global scope, an engine scope, and zero 
or more other scopes. 

• A script engine can be used to evaluate multiple scripts (i.e., separated code 
snippets written in the script language). 



CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

288 

What do we mean by the global scope and the engine scope in Figure 12-3 and why do we need 
them? A global scope is a scope shared by multiple script engines. If you want some piece of data to be 
accessible across multiple script engines, a global scope is the place to put the data. Note that a global 
scope is not global to all script engines. It's only global to the script engines created by the script engine 
manager in which the global scope resides. 

An engine scope is a scope shared by multiple scripts. If you want some piece of data to be 
accessible across multiple scripts, an engine scope is the place to put the data. For example, say we have 
two scripts like this: 
 
(True & x) | y      //Script A 
 
(True & x)          //Script B 
 

If we want to share the same value for x across the two scripts, we can put that value in the engine 
scope held by the script engine we will use to evaluate the two scripts. And suppose we want to keep the 
value of y to only Script A. To do that, we can create a scope, remembering that this scope is visible only 
to Script A, and put the value of y in it. 

As an example, Listing 12-7 shows the interpretBoolCodeExample method in 
BoolScriptHostApp.java. The method evaluates the BoolScript code x & y; True | y; using the variable 
bindings that exist in the script engine’s scope.  

Listing 12-7. Evaluating BoolScript Code in a Script Engine’s Scope 

private static void interpretBoolCodeExample() { 
 ScriptEngineManager scriptManager = new ScriptEngineManager(); 
 List<Boolean> boolAnswers = null; 
 ScriptEngine bsEngine = scriptManager.getEngineByExtension("bool"); 
  
 try 
 { 
  bsEngine.put("x", new Boolean(true)); 
  bsEngine.put("y", new Boolean(false)); 
  boolAnswers = (List<Boolean>) bsEngine.eval("x & y; True | y;"); 
  printAnswers(boolAnswers); 
 } 
 catch (Exception ex) 
 { 
  System.out.println(ex.getMessage()); 
 } 
} 
 

The code puts the values of both x and y in the engine scope, then it calls the eval method on the 
engine to evaluate the BoolScript code. If you look at the ScriptEngine interface, you'll see that the eval 
method is overloaded with different parameters. If we call eval with a string as we did in Listing 12-7, the 
script engine will evaluate the code in its context. If we don't want to evaluate the code in the script 
engine's context, we have to supply the context we'd like to use when we call eval. Listing 12-7 shows 
how to use the eval method of the BoolScriptEngine class to evaluate BoolScript code. Next we’ll look at 
how the eval method is implemented. 



 CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

289 

BoolScript Engine 
Listing 12-8 shows the code in the eval method of the BoolScriptEngine class. The BoolScriptEngine 
class is the JSR 223 wrapper around the BoolScript language so that BoolScript language code can be 
hosted in a Java program the JSR 223 way. The eval method implemented in the BoolScriptEngine class 
is responsible for taking in BoolScript code as a string, parsing it, and evaluating it. As you can see from 
Listing 12-8, the eval method calls the static parse method of BoolScriptParser to parse BoolScript code. 
The result of the parsing is a list of BoolExpression instances. This is in line with what I mentioned earlier 
about the syntax of the BoolScript language. In the section where we looked at the grammar definition of 
the BoolScript language, we saw that a BoolScript program consists of zero or more expressions. It 
therefore shouldn’t be surprising that I chose to use a list of BoolExpression instances to represent the 
result of the syntax parsing. Once a BoolScript program is parsed into a list of BoolExpression instances, 
evaluating the program becomes a matter of evaluating each BoolExpression instance. In order to do 
this, the eval method in Listing 12-8 needs a scope that contains necessary variable bindings. In Listing 
12-8, we get a reference to the engine scope by calling the getBindings method on the context that's 
passed to the eval method as a parameter. Because more than one scope might be in a context, we 
indicate that we want to get the engine scope by passing the constant ScriptContex.ENGINE_SCOPE to the 
getBindings method. 

Listing 12-8. The eval Method of the BoolScriptEngine Class  

public Object eval(String script, ScriptContext context) {  
 Bindings bindings = context.getBindings(ScriptContext.ENGINE_SCOPE); 
 List<BoolExpression> expressions = BoolScriptParser.parse(script); 
 List<Boolean> result = new ArrayList<Boolean>(expressions.size()); 
 for (BoolExpression expression : expressions)  
  result.add(expression.eval(bindings)); 
  
 return result; 
} 
 

Listing 12-9 shows the code of the BoolExpression interface. The interface defines an eval method 
that’s supposed to evaluate a BoolScript expression when called. In the BoolScript Eclipse project, you 
can find several classes such as AndExpression, OrExpression and VarExpression that implement the 
BoolExpression interface. Each of those classes will implement its own specific logic for the eval method 
defined in the BoolExpression interface. The eval method implemented in the AndExpression class takes 
the left and right subexpressions of a Boolean AND operator and does the evaluation by performing a 
logical AND operation. Listing 12-10 shows how the eval method is implemented in the AndExpression 
class.  

Listing 12-9. The BoolExpression Interface 

public interface BoolExpression { 
 boolean eval(Map<String, Object> bindings); 
 Set<VarExpression>  getVariables(); 
 String toTargetCode(); 
} 



CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

290 

Listing 12-10. The eval Method Implemented in the AndExpression Class 

public class AndExpression implements BoolExpression { 
 private BoolExpression left; 
 private BoolExpression right; 
  
 public AndExpression(BoolExpression left, BoolExpression right) { 
  this.left = left; 
  this.right = right; 
 } 
  
 @Override 
 public boolean eval(Map<String, Object> bindings) { 
  return left.eval(bindings) & right.eval(bindings); 
 } 
 
 //other methods omitted. 
} 
 

The VarExpression class represents variables in the BoolScript language. Because BoolScript code 
relies on the script context to provide variable binding, evaluating a VarExpression instance means 
retrieving the variable’s value from the script context. Listing 12-11 shows the eval method implemented 
in the VarExpression class. The code in the eval method simply calls the get method on the parameter 
bindings, which represents the variable bindings in the scope of the expression evaluation. The code in 
the eval method looks up the variable's value by the variable's name in the bindings parameter. 

Listing 12-11. The eval Method Implemented in the VarExpression Class 

public class VarExpression implements BoolExpression { 
  
 private String varName; 
 
 public VarExpression(String varName) { 
  this.varName = varName; 
 } 
  
 @Override 
 public boolean eval(Map<String, Object> bindings) { 
  return (Boolean) bindings.get(varName); 
 } 
 
 //other methods omitted. 
} 

 
Finally, I am ready to explain why a script engine manager initializes a script engine by calling the 

engine's setBindings method: When a script engine manager calls an engine's setBindings method, it 
passes its global scope as a parameter to the method. The engine's implementation of the setBinding 
method is expected to store the global scope in the engine's script context. 

Before we leave this section, let's look at a few classes in the scripting API. I said that a 
ScriptEngineManager contains an instance of Bindings that represents a global scope. If you look at the 



 CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

291 

javax.script.ScriptEngineManager class, you'll see that there is a getBindings method for getting the 
bindings and a setBindings method for setting the bindings that represent the global scope in a 
ScriptEngineManager. 

A ScriptEngine contains an instance of ScriptContext. If you look at the javax.script.ScriptEngine 
interface, you'll see the methods getContext and setContext for getting and setting the script context in a 
ScriptEngine. 

So nothing prevents you from sharing a global scope among several script engine managers. To do 
that, you just need to call getBindings on one script engine manager to get its global scope and then call 
setBindings with that global scope on other script engine managers. 

If you look at our example script engine class BoolScriptEngine, you won't see it keeping a reference 
to an instance of ScriptContext explicitly. That’s because BoolScriptEngine inherits from 
AbstractScriptEngine, which already has an instance of ScriptContext as its member. If you ever need 
to implement a script engine from scratch without inheriting from a class such as AbstractScriptEngine, 
you’ll need to keep an instance of ScriptContext in your script engine and implement the getContext 
and setContext methods accordingly. 

Compile BoolScript Code 
By now, we’ve implemented the minimum for our BoolScript engine to qualify as a JSR 223 script engine. 
Every time a Java client program wants to use our script engine, it passes in the BoolScript code as a 
string. Internally, the script engine has a parser that parses the string into a tree of BoolExpression 
instances commonly called an abstract syntax tree, then it calls the eval method on each of 
BoolExpression instances in the tree to evaluate the BoolScript program. This whole process of 
evaluating BoolScript code is called interpretation, as opposed to compilation. And in this role, the 
BoolScript engine is called an interpreter, as opposed to a compiler. To be a compiler, the BoolScript 
engine would need to transform the textual BoolScript code into an intermediate form so that it 
wouldn't have to parse the code into an abstract syntax tree every time it wanted to evaluate it. 

 If you recall, the DLR Hosting API provides functionality for compiling dynamic code. With the DLR 
Hosting API, once the dynamic code is compiled, we can execute it multiple times in different script 
scopes. With JSR 223, once the dynamic code is compiled, we can also execute it multiple times in 
different script contexts. This section will show you how to compile BoolScript code into JVM bytecode 
and execute the bytecode in different script contexts. Java programs are compiled into an intermediate 
form called Java bytecode and stored in .class files. At runtime, .class files are loaded by classloaders, and 
the JVM executes the bytecode. Instead of defining our own intermediate form and implementing our 
own virtual machine, we'll simply stand on the shoulder of Java by compiling BoolScript code into Java 
bytecode. 

The construct JSR 223 defines to model the concept of compilation is javax.script.Compilable, 
which is the interface BoolScriptEngine needs to implement. Figure 12-12 shows the 
runCompiledBoolScriptExample method in BoolScriptHostApp.java that demonstrates how to use the 
compilable BoolScript engine to compile and execute BoolScript code. 

Listing 12-12. Compiling BoolScript Code into Java Bytecode 

private static void runCompiledBoolScriptExample() throws ScriptException, 
NoSuchMethodException { 
 ScriptEngineManager scriptManager = new ScriptEngineManager(); 
 ScriptEngine engine = scriptManager.getEngineByExtension("bool"); 
 CompiledScript compiledScript = ((Compilable) engine).compile("x & y;"); 
 Bindings bindings = new SimpleBindings(); 
 bindings.put("x", true); 



CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

292 

bindings.put("y", false); 
List<Boolean> result = (List<Boolean>) compiledScript.eval(bindings);
for (Boolean boolValue : result)  

System.out.println("answer of boolean expression is: " + boolValue);  
} 

In Listing 12-12, the variable engine is an instance of BoolScriptEngine that we know also
implements the Compilable interface. We cast it to an instance of Compilable and call its compile method
to compile the code x & y. Listing 12-13 shows the implementation of the compile method in
BoolScriptEngine.  

Listing 12-13. The Compile Method of BoolScriptEngine 

public CompiledScript compile(String script) throws ScriptException { 
BoolScriptCompiler compiler = new BoolScriptCompiler(this);
compiledScript = compiler.compileSource(script); 

 return compiledScript;
} 

The compile method of BoolScriptEngine creates an instance of BoolScriptCompiler and calls its
compileSource method. Internally, the compileSource method transforms the BoolScript code x & y into
the following Java code: 

package boolscript.generated;
import java.util.*; 
import java.lang.reflect.*; 

class TempBoolClass { 
  public static List<Boolean> eval(boolean x, boolean y) 
  { 
    List<Boolean> resultList = new ArrayList<Boolean>(); 
    boolean result = false; 
    result = x & y; 
    resultList.add(new Boolean(result)); 
    return resultList; 
  }
} 

The transformation converts BoolScript code into a Java method inside a Java class. The class name
and method name are hard-coded to be TempBoolClass and eval respectively. Each variable in BoolScript
code becomes a parameter in the Java eval method. You can find the code that performs the conversion
from BoolScript code to Java code in the compileBoolCode method of the BoolScriptCompiler class. 

Transforming BoolScript code to Java code is just half the story. The other half is about compiling
the generated Java code into bytecode. I chose to compile the generated Java code in memory using JSR
199, the Java Compiler API, a feature that begins to be available in Java SE 6.0. Details of the Java
Compiler API are beyond the scope of this chapter's discussion.  

The Compilable interface dictates that the compile method must return an instance of
CompiledScript. The class CompiledScript is the construct JSR 223 defines to model the result of a
compilation. No matter how we compile our script code, after all is said and done, we need to package
the compilation result as an instance of CompiledScript. In the example code, I defined a class
CompiledBoolScript and derived it from CompiledScript to store the compiled BoolScript code. Listing 



 CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

293 

12-14 shows the code of the CompiledBoolScript class. Because the purpose of CompiledBoolScript is to 
store the result of compiling BoolScript code, I defined a member variable in CompiledBoolScript called 
generatedClass. The member variable generatedClass references the in-memory Java class generated 
from compiling the input BoolScript code. Besides keeping a reference to the generated in-memory Java 
class, I also defined the varList member variable to keep track of the variable expressions in the input 
BoolScript code. This way, the eval method of the CompiledBoolScript class can retrieve the variables’ 
values from the script context when it is invoked to execute the compiled BoolScript code. The eval 
method of the CompiledBoolScript class uses Java reflection to call the eval method of the generated 
Java class.  

Listing 12-14. CompiledBoolScript Class 

public class CompiledBoolScript extends CompiledScript { 
 
  private BoolScriptEngine engine; 
  private Class generatedClass; 
  private List<VarExpression> varList; 
  
  public CompiledBoolScript(BoolScriptEngine engine,  

Class generatedClass, List<VarExpression> varList) { 
    this.engine = engine; 
    this.generatedClass = generatedClass; 
    this.varList = varList; 
  } 
  
  @Override 
  public List<Boolean> eval(ScriptContext context) throws ScriptException { 
    Class[] parameterTypes = new Class[varList.size()]; 
    Object[] parameters = new Object[varList.size()]; 
    for (int i = 0; i < parameterTypes.length; i++) {  
      parameterTypes[i] = boolean.class; 
      String varName = varList.get(i).getName(); 
      parameters[i] = context.getAttribute(varName); 
    } 
   
    Method evalMethod = getMethod(parameterTypes); 
    Object result = invokeMethod(evalMethod, parameters); 
    return (List<Boolean>) result; 
  } 
 
  private Object invokeMethod(Method evalMethod, Object[] parameters)  
      throws ScriptException { 
    try { 
      return evalMethod.invoke(null, parameters); 
    } catch (…) { 
      //exception handling code omitted. 
    } 
  } 
 
  private Method getMethod(Class[] parameterTypes) throws ScriptException { 
    try { 
      Method evalMethod = generatedClass.getMethod("eval", parameterTypes); 



CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

294 

      evalMethod.setAccessible(true); 
      return evalMethod; 
    } catch (…) { 
      //exception handling code omitted. 
    } 
  } 
 
  //other method omitted. 
} 
 

Once the script code is compiled, the client Java program can repeatedly execute the compiled code 
by calling the eval method on the CompiledBoolScript instance that represents the compilation result of 
the source BoolScript code. When we call the eval method on the CompiledBoolScript instance that 
represents the compiled result of the BoolScript code x & y;, we need to pass in a script context that 
contains the values for variables x and y. 

Run BoolScript Code as Invocable Function 
The eval method of CompiledScript is not the only way to execute compiled script code. If the script 
engine implements the Invocable interface, we can call the invoke method of the Invocable interface to 
execute compiled script code too, much like we used Invocable to invoke Python and Ruby functions 
earlier in this chapter. In our simple example, there might not seem to be any difference between using 
CompiledScript and using Invocable for script execution. However, practically, users of a script engine 
will use CompiledScript to execute a whole script file, and they’ll use Invocable to execute individual 
functions (methods, in Java terms) in a script. And if we look at Invocable's invoke method, 
distinguishing between CompiledScript and Invocable is not difficult. Unlike CompiledScript's eval 
method, which takes an optional script context as a parameter, Invocable’s invoke method takes as a 
parameter the name of the particular function you'd like to invoke in the compiled script. 

Listing 12-15 shows BoolScriptEngine’s very simple implementation of the Invocable interface. The 
code simply uses the member variable compiledScript to keep a reference to the CompiledBoolScript 
instance that represents the result of compiling the source BoolScript code. Then in the invokeFunction 
method, the code creates a script context from the input args parameter and calls the eval method on 
the compiledScript member variable with the script context. The implementation of the Invocable 
interface in Listing 12-15 is very simple because all it does is store the result of compilation and use that 
result when asked to invoke a function. Practically, we should store not only the result of the 
BoolScriptEngine’s compile method but also the result of its eval method. This way, if a host Java 
program calls the eval method, the evaluated BoolScript code can be executed again by calling the 
invokeFunction method of BoolScriptEngine.  

Listing 12-15. BoolScriptEngine’s Implementation of the Invocable Interface 

public class BoolScriptEngine  
 extends AbstractScriptEngine 
 implements Compilable, Invocable { 
 
  private CompiledBoolScript compiledScript = null; 
  
  @Override 
  public CompiledScript compile(String script) throws ScriptException { 
    BoolScriptCompiler compiler = new BoolScriptCompiler(this); 
    compiledScript = compiler.compileSource(script); 



 CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

295 

    return compiledScript; 
  } 
 
  @Override 
  public Object invokeFunction(String name, Object... args) 
 throws ScriptException, NoSuchMethodException { 
  
    List<VarExpression> vars = compiledScript.getVarList(); 
    ScriptContext context = new SimpleScriptContext(); 
    for (int i = 0; i < args.length; i++)  
      context.setAttribute(vars.get(i).getName(), args[i], ScriptContext.ENGINE_SCOPE); 
  
    return compiledScript.eval(context); 
  } 
 
  //other methods omitted. 
} 
 

Once we extend the BoolScriptEngine class to implement the Invocable interface, we can use it to 
execute BoolScript code as if the BoolScript code were an invocable function. Listing 12-16 shows an 
example of such usage of the BoolScriptEngine class.  

In Listing 12-16, the variable engine is an instance of ScriptEngine that we know also implements 
the Compilable and Invocable interfaces. We cast it to be an instance of Compilable and call the compile 
method to compile the BoolScript code “x & y;”. After the compilation, we cast engine to be an instance 
of Invocable and call its invokeFunction method. Invoking a compiled script function is much like 
invoking a Java method using Java reflection. You must tell invokeFunction the name of the function you 
want to invoke, and supply it with the parameters required by the function. We know that in our 
generated Java code, the method name is hard-coded to be eval. So we pass the string “eval” as the first 
parameter to invokeFunction. We also know that generated Java eval method takes two Boolean values 
as its input parameters. So we pass two Boolean values to invokeFunction as well. 

Listing 12-16. Using BoolScriptEngine to Execute BoolScript Code as if It Were an Invocable Function  

private static void invokeCompiledBoolScriptExample() throws ScriptException, 
NoSuchMethodException { 
 ScriptEngineManager scriptManager = new ScriptEngineManager(); 
 ScriptEngine engine = scriptManager.getEngineByExtension("bool"); 
 CompiledScript compiledScript = ((Compilable) engine).compile("x & y;"); 
 List<Boolean> result = (List<Boolean>) ((Invocable) engine).invokeFunction( 

"eval", true, false); 
 

 for (Boolean boolValue : result)  
  System.out.println("answer of boolean expression is: " + boolValue);  
} 

Summary 
This chapter covered several major areas of JSR 223, such as the script engine discovery mechanism, 
variable bindings, and the Compilable and Invocable interfaces. One part of JSR 223 not mentioned in 
this article is Web scripting. If we implemented Web scripting in the BoolScript engine, clients of our 
script engine would be able to use it to generate Web contents in a servlet container. 



CHAPTER 12  DYNAMIC LANGUAGES ON JVM 

296 

We discussed and compared in a general way the dynamic language support provided by .NET and 
JVM, then we focused on a more in-depth discussion and comparison between JSR 223 and the DLR 
Hosting API. We saw that both JSR 223 and the DLR Hosting API have a mechanism for discovering script 
engines in a deployment environment. Both also define an API contract for interpreting or compiling 
dynamic language code. Furthermore, they both have a way to pass objects between a host program and 
the hosted dynamic language code.   

Developing a non-trivial language compiler or interpreter is a huge undertaking, let alone 
integrating it with Java or .NET. Depending on the complexity of the language you want to design, 
developing a compiler or interpreter can remain a daunting task. However, thanks to JSR 223 and the 
DLR Hosting API, the integration between your language and Java or .NET has never been easier. 
 

 



 

297 

Index 

 A 

abstract syntax, DLR Expression and, 29 
abstract syntax trees (ASTs), 14 
Accept method 

Element class, 57, 59 
Expression class, 32 

Add method (Expression class), 34 
advice, AOP and, 166–171, 174–183 
algorithms, Visitor pattern and, 56 
ANTLR, 214, 218–225, 281 
AOP (aspect-oriented programming), 

11, 165–183 
AOP framework, integrating with 

Spring.NET AOP, 174–183 
dynamic objects and, 171–174 

AopMetaObject class, 171, 172, 173 
Apache web server, Silverlight and, 252 
App.config file, 8, 140, 243 
AppDomain class, 157 
application scripting, 10, 239–250 

DLR Hosting API and, 242, 245 
enabling, 244 

arithmetic binary expressions, 34 
ASP.NET platforms, 251 
aspect-oriented programming. See AOP 
aspects, AOP and, 167, 169 
Assembly class, 152 
assignment expressions, 31 
ASTs (abstract syntax trees), 14 

B 

Ball World (sample) application, 239–
250 
architecture of, 241 
ball collisions, Farseer Physics 

engine for detecting, 246–248 
object model of, 241 
user interface of, 248 

base objects, Meta-Object Protocol 
and, 119 

binary expressions, 33 
BinaryExpression class, 32, 34 
BinaryOperation late-bound 

operation/action, 97 
BinaryOperationBinder class, 99 
Bind method 

CallSiteBinder class, 71 
DynamicMetaObject class, 103, 114 
DynamicObject class, 119 

binders, 50, 67, 68 
caching and, 65, 79 
canonical, 86 
classes for, 99–102 
DLR Hosting API and, 139 
interoperability protocol and, 102–

106 
late-binding logic in, 91, 92 
late-bound operations/actions and, 

94–100 
sharing across call sites, 84–86 

BindGetMember method 
(DynamicMetaObject class), 112 

binding, 20, 65–68 
early, 66, 80 
late. See late binding 
restrictions and, 74, 80 
rules for, 73–86 

block expressions, 31, 41 
BoolScript engine (sample), 280–295 

compiling code and, 291–294 
executing code and, 294 

BoolScript language, 280, 281 

C 

C# 
vs. DLR, 22 
IL instructions and, 28 



 INDEX 

298 

C# (cont.) 
language interoperability and, 87–

102 
metaprogramming and, 191–196 

caching, 24, 65, 78–86 
cache misses and, 78, 82, 85 
levels of, 78–86 

Call method (Expression class), 27, 54 
call site binders, 50 
call sites, 24, 50 

early binding and, 66 
late binding and, 67, 72 
restrictions and, 74 
sharing binders and, 84–86 

CallSiteBinder class, 68, 71, 105 
CallSiteBinderExamples, 69 
canonical binders, 86 
CanReduce property  (Expression 

class), 32, 54 
Chrome web browser, Silverlight and, 

252 
class definitions, changing, 186–196 
ClassMetaObject class, 191–196 

generated data access and, 207–210 
implementation of, 193 

CLOS (Common Lisp Object System), 
119 

closures, 44 
CLR (Common Language Runtime), 13, 

28 
CLR2 conditional compilation symbol, 

71, 76 
“code as data,” DLR Expression and, 28, 

196 
code scattering/tangling, as cross-

cutting concerned resolved via AOP, 
165 

code editors, 23 
code samples in this book, 4, 9–13 
CodePlex, 5, 10 
Common Language Runtime (CLR), 13, 

28 
Common Lisp Object System (CLOS), 

119 
Common Type System (CTS), 96 
compilation flags, 71 
compile time, 14–16 

metaprogramming and, 185 
vs. run time, 14 

compile-time binding, 66 
CompiledCode class, 137, 150, 157 

compilers, 14, 23 
dynamic languages vs. static 

languages and, 16 
metaprogramming and, 186 

CompileSourceCode method, 7 
concrete syntax, DLR Expression and, 

29 
conditional compilation symbol CLR2, 

71, 76 
conditional expressions, 31 
conditions, 74, 80, 113 
console property, of DLR object, 264 
ConsoleHost class, 9 
Constant method (Expression class), 34 
context-free grammars, 221 
Convert late-bound operation/action, 

98 
ConvertBinder class, 99 
CPython, 6 
CreateDomain method (AppDomain 

class), 157 
CreateFromConfiguration method 

(ScriptRuntime class), 140 
CreateInstance late-bound 

operation/action, 98 
CreateInstanceBinder class, 99 
CreateScriptSourceFromFile method 

(ScriptEngine class), 150 
cross-cutting concerns, resolving via 

AOP, 165 
CTS (Common Type System), 96 
curly braces ({ }), 40 
custom classes, 53, 59–63 

binder classes and, 100 
Expression class and, 54 

D 

data access, 201–210 
“data as code,” DLR Expression and, 28, 

201 
data structures, Visitor pattern and, 56 
debuggers, 23 
debugging 

debug build for, 69 
viewing binding rules and, 75–78 

Debugging API, 25 
DefaultBinder utility class, 106 
DeleteIndex late-bound 

operation/action, 98 



  INDEX 

299 

DeleteIndexBinder class, 99 
DeleteMember late-bound 

operation/action, 97 
DeleteMemberBinder class, 99 
Divide method (Expression class), 34 
DLR (Dynamic Language Runtime), 3–

25 
application scripting and, 239–250 
vs. C#, 22 
Common Type System of, 96 
components of, 24 
downloading/installing, 5 
Hello language illustrating, 6–8, 

265–274 
Silverlight and, 251–274 

DLR Expression, 27–63 
custom classes and, 53, 59–63 
LINQ query providers and, 196–201 
Visitor pattern of, 57 

DLR Hosting API, 25, 133–161 
Ball World sample application and, 

242, 245 
classes of, 137 
Hello console and, 268 
Hello language and, 266 
vs. JSR 223 API (table), 275 
metaprogramming and, 185 
Stitch domain-specific language 

and, 211 
ways of using (levels), 137, 139, 143, 

150, 154 
DLR object, 264, 273 
dlr.js file, 254, 264 
dlr.xap file, 253–256, 272 
DlrScript class, 233 
dlr-spec-hosting.doc file, 137 
domain-specific languages (DSLs), 10, 

211. See also Stitch domain-specific 
language 

downloads 
ANTLR, 214, 219 
Apache web server, 252 
code samples in this book, 4 
DLR, 5  
Farseer Physics library, 240 
Gestalt components, for Silverlight 

applications, 254 
PowerShell, 214 
software components used in this 

book, 4 

Spring.NET AOP, 167 
tools, 4 

dpier project, 210 
DSLs (domain-specific languages), 10, 

211. See also Stitch domain-specific 
language 

dynamic data access, 204 
dynamic dispatch. See late binding 
dynamic expressions, 49 
dynamic keyword (C#), 18 
Dynamic Language Runtime. See DLR 
dynamic languages, 16–20 

application scripting and, 239–250 
DLR Hosting API and, 134 
Java and, 275–296 
support for, .NET vs. Java (table), 

275 
Dynamic method (Expression class), 51 
dynamic objects, 25, 109–131 

AOP and, 171–174, 177, 180–183 
DLR Hosting API and, 139 
interoperability protocol and, 102–

106 
late-binding logic in, 91, 94, 109–

114, 119 
late-bound operations/actions and, 

94–100 
Meta-Object Protocol and, 119 
static objects and, 91, 109 

dynamic scoping, 41 
DynamicExpression class, 50 
DynamicMetaObject class, 91, 103, 

111–116 
dynamic object late-binding 

behaviors and, 113 
late-binding logic/late-binding 

result and, 112 
properties of, 115 

DynamicMetaObjectBinder class, 103 
DynamicObject class, 119–122, 125 
DynamicObjectExamples, 110 

E 

early binding, 66 
call sites and, 66 
late-binding context and, 80 

Eclipse, 218 
Element class hierarchy (Visitor 

pattern), 56 



 INDEX 

300 

embedding languages, 8 
engine scopes, 145, 151 

context in script engine and, 287 
variable passing and, 149 

Execute method (ScriptSource), 8 
ExpandoClass class, 191–196 

generated data access and, 207–210 
implementation of, 193, 195 

expression abstraction, 53 
Expression class, 27, 31 

custom classes and, 54 
factory methods and, 34 
late binding and, 71 

expression extension, 53, 58 
Expression property 

(DynamicMetaObject class), 115 
expression reduction, 53 
expression trees, 29, 32, 55–63 
expressions, 13, 21, 24, 27–63 

binary, 33 
compiling/interpreting, 16 
custom classes and, 53, 59–63 
dynamic, 49 
flow control, 36–39 
index, 52 
lambda, 44 
metaprogramming and, 185 

ExpressionVisitor class, 58–62, 200 
FallbackGetMember method, 104 

F 

Farseer Physics Engine, 10, 246–248 
Farseer Physics library, 240, 246 
flow control expressions, 36–39 
fluent APIs, 10 
FxCop, 23 

G 

generated data access, 207–210 
Gestalt components, for Silverlight 

applications, 253–257 
downloading, 254 
Hello console sample application 

and, 271 
Gestalt project, 253 
gestaltmedia.js file, 254 
GetIndex late-bound operation/action, 

97 

GetIndexBinder class, 99 
GetMember late-bound 

operation/action, 97, 100, 124 
GetMemberBinder class, 99, 103 
GetMetaObject method, 111 
global scopes, 143 

script engines and, 287–291 
variable passing and, 147 

Goto method (Expression class), 48 
goto statements (C#), 46 
GotoExpression class, 46 
Groovy language, 11, 191 
guest language 

DLR Hosting API and, 133 
scripting an object model and, 143 

H 

Hello console (sample) application, 
268–274 

Hello language, 6–8, 265–274 
Hello World examples, 6–9, 27–31 
host language, 8, 133 
hosting programming languages. See 

DLR Hosting API; Stitch domain-
specific language 

HostingExamples, 138 
HTML scripting, 257–260 

I 

IDE (Integrated Development 
Environment), 23 

IDynamicMetaObjectProvider 
interface, 111, 121, 140, 171 

if statements, 21 
if-then-else expressions, 37 
IfThenElse factory method (Expression 

class), 37 
IL instructions, 28 
IMethodInterceptor interface, 168, 172 
immutability, 55–63 
index expressions, 52 
IndexExpression class, 52 
InteropBinderExamples, 87 
interoperability protocol, 102–106 
interoperability. See language 

interoperability 
intrinsic objects, “just text” approach to 

Web scripting and, 257 



  INDEX 

301 

Invoke late-bound operation/action, 
97, 124 

InvokeBinder class, 99 
InvokeMember late-bound 

operation/action, 97, 124 
InvokeMemberBinder class, 99 
ipy.exe console application 

(IronPython), 6, 264 
IQueryable interface, 197 
IQueryProvider interface, 198 
ir.exe command console (IronRuby), 

264 
IronPython 

compilers and, 15 
downloading/installing, 5 
Hello World sample and, 6 
Jython and, 277 
language interoperability and, 87–

94 
IronPython.slvx file, 254, 272 
IronRuby 

downloading/installing, 5 
JRuby and, 276 
language interoperability and, 87 

IronRuby.slvx file, 254, 272 

J 

Java, dynamic languages and, 275–296 
compiling code and, 291–294 
vs. .NET (table), 275 

JavaHostingExamples, 276 
joint points, AOP and, 166 
JRuby, 276 
JSR 223 API, 275–293 
“just text” approach to Web scripting, 

251, 256–264 
Gestalt components for, 253–257 
Hello console sample application 

and, 271–274 
JVM, Python/Ruby on, 276–280 
Jython, 6, 276 

L 

L0 (first-level) cache, 79, 82 
L1 (second-level) cache, 79, 83 
L2 (third -level) cache, 79, 84 
Label method (Expression class), 47 

lambda calculus (mathematics theory), 
44 

lambda expressions, 44 
Lambda method (Expression class), 44 
language consoles, 264 
language consumers, 133, 137, 138 
language context, Hello language and, 7 
language developers, 138 
language interoperability, 25, 87–91 

Common Type System and, 96 
DLR Hosting API and, 133–136, 139 
dynamic objects and, 115–118 
interoperability protocol for, 102–

107 
Java and, 275, 276 

language-neutral scopes, 143, 145, 148 
language plug-ins, for non-DLR-based 

languages, 234–237 
language producers, 133, 137 
language-specific scopes, 143 
late binding, 20, 25, 50, 65–86 

caching and, 78–86 
call sites and, 67, 72 
CallSiteBinder class for, 71 
canonical binders and, 86 
late-binding context and, 80 
late-bound operations/actions and, 

94–100 
late-binding logic, 91–94 

FallbackGetMember method and, 
104 

in binders, 91, 92 
in dynamic objects, 91, 94, 109–114 

lexer/parser generators, 218 
lexical scoping, 40–44, 66 
LINQ expressions, 21 
LINQ queries, 196 
LINQ query providers, 196–201 

Query class implementation and, 
196 

ways of using, 201–210 
Load method (Assembly class), 152 
logging, 11, 165–171 
LoopExpression class, 48 

M 

MarshalByRefObject class, 157 
member method invocation, 94 



 INDEX 

302 

member property get-access operation, 
94 

Meta-Object Protocol (MOP), 119
meta-objects, 91, 103–105 

late-binding logic of, 111–114
Meta-Object Protocol and, 119 

MetaExamples, 187
metaprogramming, 185–210
methods, adding to/removing from a 

class, 186–196
Microsoft.Scripting.Ast namespace, 76
Microsoft.Scripting.Hosting 

namespace, 137
Model-View-ViewModel (MVVM), 241
MOP (Meta-Object Protocol), 119
mscorlib.dll assembly, 67 
MVVM pattern, 241 

N 

name binding, 39–44, 66
nested scopes, 41 
.NET 2.0, 69 
.NET 3.5, 69 
.NET 4.0, 69 
.NET 4.0 SDK, 4 
.NET CLR, 154 
.NET libraries, 23 
.NET Remoting, 157, 158
NodeType property 

BinaryExpression class, 32
Expression class, 32, 54 

O 

ObjectOperations class, 150
documentation string of Python 

functions obtained via, 156
Python class instances created via, 

153
objects 

meta. See meta-objects
Meta-Object Protocol and, 119
passing by value/by reference, 146–

150 

P 

Parallel Extensions for .NET, 217, 230
ParameterExpression class, 73 

parser generators, 218 
path property, of DLR object, 264, 273
PlatformAdaptationLayer class, 154
pointcuts, AOP and, 166–171, 174–183
polymorphic inline caching, 25, 65
PostIncrementAssign method 

(Expression class), 48
PowerShell, 214, 234–237
PresentationCore.dll assembly, 152
PresentationFramework.dll assembly, 

152 
Print helper method, 36, 43, 53
PrintExpression (custom) class, 53, 59–

63 
production rules, Stitch grammar and, 

222 
programming languages, 21, 22 

DLR Expression and, 27–63
hosting. See DLR Hosting API
language interoperability. See 

language interoperability
properties, adding to/removing from a 

class, 186–196
Python 

application scripting and, 244
class instances created via 

ObjectOperations class, 153
functions of, documentation string 

for obtained via
ObjectOperations class, 156 

Java and, 276 
Jython and, 6, 276
metaprogramming and, 185, 189
Stitch language and, 212 

Q 

Queryable class, 198 

R 

Read-Eval-Print-Loop. See REPL
console 

Reduce method (Expression class), 32, 
54 

REPL console, 6, 23 
for Hello language, 9
for IronPython, 6 

resources for further reading 



  INDEX 

303 

DLR Hosting API, consumer side of, 
137 

“just text” approach to Web 
scripting, 252 

restrictions on binding, 74, 80, 113 
Restrictions property 

(DynamicMetaObject class), 115 
Return method (Expression class), 72 
RIAs (Rich Internet Applications), 251 
Ruby 

Java and, 276, 279 
language interoperability and, 87–

95 
metaprogramming and, 185, 187 
Stitch language and, 212 

Ruby on Rails, 196, 202 
rules for binding, 73–86, 113 

checking in debug mode, 75–78 
parts of, 74 

run time, 14–16 
vs. compile time, 14 
vs. runtime, 14 

run-time binding. See late binding 
runtime weaving, 170 
runtimes, 13–16 

CLR runtime and, 13, 23 
metaprogramming and, 185 

S 

samples, 4, 9–13 
AOP framework, 167–171 
Ball World application, 239–250 
BoolScript engine, 280–295 
CallSiteBinderExamples, 69 
DynamicObjectExamples, 110 
environment setup for, 69–71 
Hello console application, 268–274 
Hello language, 6–8, 265–274 
Hello World, 6–9 
HostingExamples, 138 
InteropBinderExamples, 87 
late-bound operations/actions, 94 
MetaExamples, 187 
Stitch domain-specific language, 

214–218 
XML builder API, 122–130 

SAOs (server-activated objects), 159 
scoping, 39–44, 66 
script code, Hello language and, 7 

script engines, 280–295 
script context for, 286 
script engine discovery mechanism 

for, 284 
script runners, 226, 228, 231–233 
script scopes, 140–161 

passing objects by value/by 
reference, 146–150 

types of, 143, 145 
ScriptEngine class, 8, 135, 150, 157 
ScriptHost class, 154 
scripting 

application, 10, 239–250 
Web, 251, 257–260 
XAML, 260 

Scripting.slvx file, 254, 272 
ScriptRuntime class, 8, 137 

executing code via, 139–143 
loading assemblies via, 152 
MarshalByRefObject class and, 157 
programming language 

configuration and, 140–143 
script runtimes run in separate 

process, 159 
script runtimes run remotely, 156 
scripting an object model via, 143 

ScriptScope class, 137, 140, 145 
ScriptSource class, 137, 150 

Execute method, 8 
MarshalByRefObject class and, 157 

semantics, 21 
serialization, DLR Expression and, 29 
server-activated objects (SAOs), 159 
SetIndex late-bound operation/action, 

97 
SetIndexMember class, 99 
SetMember late-bound 

operation/action, 97 
SetMemberBinder class, 99 
shape-based design, 32 
Silverlight, 154, 251–274 

building DLR source code for, 266 
custom languages and, 265–274 
Gestalt components for, 253–257 
“just text” approach for, 251, 256–

264, 271–274 
SimpleLoggingAdvice class, 172 
Singleton SAO objects, 159 
software components used in this book, 

downloading, 4 
solution files, 69 



 INDEX 

304 

source language, dynamic objects and, 
91 

Spring.NET AOP, 167–170, 174–183 
statements, DLR Expression and, 29 
static data access, 202 
static languages, 16–20, 134 
static objects, 91 

AOP and, 177, 180–183 
vs. dynamic objects, 109 

static scoping, 40–44, 66 
Stitch domain-specific language, 211–

238 
DLR Hosting API and, 211 
examples of, 214–218 
grammar of, 218–225 
hosting DLR/non-DLR-based 

languages and, 216 
parallel execution of, 217, 230 
sequential execution of, 216, 217 
syntax of, 212–214 

Stitch runtime, 225–238 
DlrScript class and, 233 
language plug-ins for, 234–237 
script engine and, 227 
script runners and, 231–233 

StitchDemoApplication project, 215, 
225 

strongly typed languages, 17 
switch expressions, 38 
Switch factory method (Expression 

class), 38 
SwitchCase factory method (Expression 

class), 38 
SwitchExpression class, 38 
syntax, 21, 29 
System.Core.dll assembly, 69 
System.Linq.Expressions namespace, 

76 
Expression class. See Expression 

class 
IndexExpression class, 52 
LoopExpression class, 48 

T 

Target delegate, 72, 77, 78 
target language 

binders and, 92 
dynamic objects and, 91 

Task Parallel Library (TPL), 230 

Text Visualizer tool, 75 
time, binding and, 66 
ToLower method (String class), 67 
tools, 4, 75 
TPL (Task Parallel Library), 230 
Try methods (DynamicObject class), 

119 
type checking/type definition, 17–20 
Type property 

BinaryExpression class, 33 
Expression class, 31, 54 

U 

UnaryOperation late-bound 
operation/action, 97 

UnaryOperationBinder class, 99 
unit test framework, 23 
Update delegate, 79 
user interface 

for Ball World sample application, 
248 

for Hello console sample 
application, 269 

utilities, 4, 75 

V 

variable binders, 50 
variable passing, 147–150 
VB.NET, IL instructions and, 28 
Visit method (Visitor class), 57, 59 
VisitBinary method (ExpressionVisitor 

class), 62 
VisitChildren method (Expression 

class), 58 
VisitConstant method 

(ExpressionVisitor class), 61 
VisitExtension method 

(ExpressionVisitor class), 59, 61 
Visitor class hierarchy (Visitor pattern), 

56 
Visitor design pattern, 32, 55–63 
Visual Studio, Text Visualizer tool and, 

75 
Visual Studio 2010 Express, 5 

W 

web browsers, Silverlight and, 252 



  INDEX 

305 

Web platforms, 251 
Web scripting 

approaches to, 251 
HTML scripting and, 257–260 

web servers, Silverlight and, 252 
while loop, 48 
while statements (C#), 48 
Windows Presentation Foundation 

(WPF), 144, 240 
WPF (Windows Presentation 

Foundation), 144, 240 

WPF assemblies, loading into script 
runtime and, 152 

X, Y, Z 

XAML scripting, 260 
XML builder API (sample), 10, 122– 

130 
XML documents, XML builder API for, 

122–130 

 





 



 




	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	DLR Fundamentals
	Introduction to DLR
	Setting Up Code Examples
	Software Requirements
	Installing the DLR, IronPython, and IronRuby

	Hello World Examples
	Embedding the Hello Language
	Implementing REPL for the Hello Language

	Practical Uses for the DLR
	Application Scripting and DSL
	XML Builder
	Aspect-Oriented Programming

	Runtime
	Runtime vs. Run Time
	Run Time vs. Compile Time

	Dynamic vs. Static
	Dynamic Typing
	Dynamic Dispatch

	Language
	Programming Languages in Practice
	Putting It Together
	Summary

	DLR Expression
	DLR Expression as a Language
	Code as Data
	A Common Denominator like CLR
	Concrete Syntax and Serialization

	Expressions vs. Statements
	Expression Type and Kind
	Binary Expressions
	Flow Control Expressions
	If-Then-Else Expressions
	Switch Expressions

	Scopes and Name Binding
	Lexical vs. Dynamic Scope
	BlockExpression and Lexical Scoping

	Lambda Expressions and Closure
	The GotoExpression Class
	While Loops
	Dynamic Expressions
	Index Expressions
	Expression Abstraction, Reduction and Extension
	Immutability and the Visitor Pattern
	Visitor Pattern in General
	Visitor Pattern in DLR Expression
	Expression Visitor Examples

	Summary

	Late Binding and Caching
	Binding
	Call Sites and Early Binding
	Call Sites and Late Binding
	DLR Binders
	Set Up Code Examples
	Making a Debug Build of the DLR for .NET 2.0
	Developing for Both .NET 2.0 and .NET 4.0

	The CallSiteBinder Class
	DLR Call Sites
	Binding Restrictions and Rules
	Checking Binding Rules in Debug Mode
	Caching
	Three Cache Levels
	Late-Binding Context
	L0 Cache Example
	L1 Cache Example
	L2 Cache Example

	Creating Canonical Binders
	Summary

	Late Binding and Interoperability
	Language Interoperability
	Static and Dynamic Objects
	Late-Binding Logic in Two Places
	Late Binding Logic in Binders
	Late-Binding Logic in Dynamic Objects

	Late-Bound Actions
	Examples
	Common Type System
	Class Hierarchy of Binders

	Implement a Custom Binder Class
	Interoperability Protocol
	Summary

	Dynamic Objects
	What is a Dynamic Object?
	IDynamicMetaObjectProvider Interface
	Dynamic Meta Objects
	DynamicMetaObject and Binding Logic
	DynamicMetaObject and Binding Result

	Interoperability
	DynamicObject Class
	XML Builder
	Summary

	DLR Hosting API
	Life Without the DLR Hosting API
	Using a Static Language’s Code in Another Static Language
	Using a Static Language’s Code in a Dynamic Language
	Using a Dynamic Language’s Code in a Static Language
	Using a Dynamic Language’s Code in Another Dynamic Language

	Overview of the DLR Hosting API
	Major Classes in the API
	The Tale of Two APIs
	The DLR Hosting API in Relation to Binders and Dynamic Objects

	Using Script Runtime to Execute Code
	Configuring the Languages You Want to Speak
	Configuring Script Runtime Declaratively
	Configuring Script Runtime Programmatically

	Scripting an Object Model
	Script Scopes
	Value and Reference Variables
	Global Scope and Variable Passing
	Language Neutral Scope and Variable Passing

	Level Two Use of the DLR Hosting API
	Compiling Code
	Loading Assemblies into Script Runtime
	Creating Python Class Instances Using Object Operations

	Level Three Use of the DLR Hosting API
	Script Host
	Object Operations
	Remote Script Runtime

	.NET Remoting Quick Tour
	Running Script Runtime in a Separate Process
	Summary


	Applying the DLR
	DLR and Aspect-Oriented Programming
	Aspect-Oriented Programming
	Cross-Cutting Concerns
	Advice, Join Points, and Pointcuts
	An Example
	A Test Run

	AOP for Dynamic Objects
	Understanding the Framework
	Implementing the Framework

	Integration with Spring.NET AOP
	Getting the AOP Advisors
	Implementing Advice
	Applying Advice
	Cutting Across Dynamic and Static Objects

	Summary

	Metaprogramming
	Overview of Metaprogramming
	Changing Class Definitions
	Ruby
	Python
	DLR

	LINQ Query Provider
	Understanding the End Goal
	Implementing the Query Class
	Implementing the QueryProvider Class
	Implementing QueryExpressionVisitor

	Data Access
	Static Data Access
	Dynamic Data Access
	Generated Data Access

	Summary

	Stitch — A DSL for Hosting Languages
	The Need for Stitch
	Syntax of the Stitch Language
	Requirements for the Example
	Software Requirements
	Organization of the Code

	Stitch in Use
	Being Declarative
	Hosting DLRand Non-DLR-Based Languages
	Hosting Stitch Itself
	Executing in Parallel

	Stitch Language Grammar
	Setting Up Eclipse and ANTLR
	Defining the Grammar
	Test-Driving the Grammar

	The Stitch Runtime
	Overview of the Runtime
	The Script Engine
	Function Execution Coordinator
	Parallel Extensions for .NET
	Script Runner

	Running DLR-based Language Code
	Language Plug-In
	Develop a Stitch Plug-In for PowerShell
	Configuring a Plug-In

	Summary

	Application Scripting
	Ball World
	Software Requirements
	Application Architecture
	Application Object Model
	Application Scripting
	The Physics Engine
	User Interface
	Summary

	DLR in Silverlight
	Different Client Side Web Scripting Approaches
	Apache HTTP Server Configurations
	Using the Hosted Gestalt Components
	Hosting the Gestalt Components
	Dissecting the Gestalt Components
	Scripting HTML
	Scripting XAML
	DLR Settings
	Speak Your Own Language in Silverlight
	Software Requirements
	Build DLR for Silverlight

	The Hello Language
	Hello Console in Silverlight
	Gestalt-like Hello Console on Silverlight
	Summary

	Dynamic Languages on JVM
	Quick Comparisons
	Python and Ruby on JVM
	Hosting Python Code in Java Programs
	Hosting Ruby Code in Java Programs

	Overview of the BoolScript Example
	BoolScript Language
	Script Engine Factory
	Script Engine Discovery Mechanism
	Bindings, Scope, and Context
	BoolScript Engine
	Compile BoolScript Code
	Run BoolScript Code as Invocable Function
	Summary


	Index
	A
	.
	B
	C
	D
	E
	H
	F I
	G
	J
	L
	M
	N
	O
	Q
	R
	P
	S
	U
	V
	T
	W
	X, Y, Z


