Pro Full-Text Search in
SQL Server 2008

Michael Coles with
Hilary Cotter

Apress’

MWw.al | itebooks.cogl

http://www.allitebooks.org

Pro Full-Text Search in SQL Server 2008
Copyright © 2009 by Michael Coles and Hilary Cotter

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1594-3
ISBN-13 (electronic): 978-1-4302-1595-0
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick

Technical Reviewer: Steve Jones

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,
Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Denise Santoro Lincoln

Copy Editor: Benjamin Berg

Associate Production Director: Kari Brooks-Copony

Production Editor: Laura Esterman

Compositor/Artist: Octal Publishing, Inc.

Proofreader: Patrick Vincent

Indexer: Broccoli Information Management

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

Ij_vww.al | itebooks.cogl

http://www.allitebooks.org

For Devoné and Rebecca
—Michael

WWW.aI | itebooks.cogl

http://www.allitebooks.org

Contents at a Glance

About the AULNOTSo xiii
About the Technical ReVIEWEr i XV
ACKNOWIBAgMENTS. . ..ot e Xvii
INtrOdUCHION e xix
CHAPTER 1 SQL Server Full-TextSearch 1
CHAPTER2 Administration....................... ... i, 19
CHAPTER 3 Basic and Advanced Queries................................. 45
CHAPTER 4 Client Applications, 75
CHAPTER5 Multilingual Searching, 99
CHAPTERG6 IndexingBLOBSccccoiiiiiiiiiinnnns 119
CHAPTER7 Stoplists...............coiiii 145
CHAPTER8 Thesaurusescoviiriiiiiiiiieiannnnnnnnn. 165
CHAPTER9 iFTS Dynamic Management Views and Functions............ 185
CHAPTER10 Filters........... ..o 207
CHAPTER 11 Advanced Search Techniques............................... 239
APPENDIX A GIOSSArYccoiriiiiiii i 257
APPENDIX B iFTS_Books Databasecoouue. 265
APPENDIX C Vector-Space Searches..............................cooune. 269
INDEX ... 275

mww.al | itebooks.cogl

http://www.allitebooks.org

Contents

Aboutthe AUTNOIS e Xiii
About the Technical REVIBWETot e e i XV
ACKNOWIBAGMENTS.o Xvii
IMrOAUCHION . et e Xix
CHAPTER1 SQL Server Full-TextSearch 1
Welcome to Full-TextSearch ...t 1

History of SQL Server FTS. 4

Goals 0f Searchcoiii i e 6

Mechanicsof Search........... ... i 8

IFTS Architectureoovii i e e i 9

INdexing ProCess.cvviii e 11

QUENY PrOCESS. . v ot e 11

Search Qualityo e 12

Measuring Quality. ... 13

Synonymy and Polysemy. ... 15

SUMMAIY .. e i e e e 16

CHAPTER2 Administration... 19
Initial Setup and Configuration.................ccoiiiiiiiint.,. 19

Enabling Database Full-Text Supportcoviviiiiinn.. 21

Creating Full-Text Catalogsc.coieviiiiiiiiiian, 21

The New Full-Text Catalog Wizard 21

The CREATE FULLTEXT CATALOG Statement 23

Upgrading Full-Text Catalogs............c.ooviiiiiii i, 24

Creating Full-Text INdexescovviiiiiiii it 25

The Full-Text Indexing Wizard.ccoii. 25

The DocldMap ..o e 33

The CREATE FULLTEXT INDEX Statement 33

MWw.al | itebooks.cogl

vii

http://www.allitebooks.org

viii

CONTENTS

CHAPTER 3

CHAPTER 4

Full-Text Index Populationcccoiiiiiiiii ... 35
Full Population. ... e 35
Incremental Population ..., 36
Update Population.............. ..o 37
Additional Index Population Options.......................... 37
Catalog Rebuild and Reorganization.......................... 37
Scheduling Populationso 38

Management e 39
BaCKUDS. . .o e 39
L0gS ettt 40
SQL Profiler Events. ... M
System Procedures.ooviii i e 42

SUMMaAIY .. e i e e e e 43

Basic and Advanced Queries.............................. 45

iFTS Predicates and Functions. ...t 45
FREETEXT and FREETEXTTABLE.ccovivinen.... 47
Adding a Language Specification............................ 51
Returningthe Top Nby RANK 56

CONTAINS . . e e et e 58
Phrase Searches. ...ttt 59
Boolean Searches. ... 60
Prefix Searches.......... ... 63
Generational Searches.............. ..o i, 64
Proximity Searches. ... 65
Weighted Searches. ..o 67
CONTAINSTABLE Searchescovviiiiiniinninnnnns 69

Advanced Search TOpICS. v v i i 71
Using XQuery contains() Function............................ 71
Column Rank-Multiplier Searches 71
Taxonomy Search and Text Mining 73

QUMM ..t e e e e 74

Client Applications .. 75

Hit Highlighting. 75
The Procedure. e e 75
Callingthe Procedure.c.cooveviiiie i 82

Search Engine-Style Search ...t 84
Defininga Grammar. ... 85

Ij_vww.al | itebooks.cogl

http://www.allitebooks.org

CHAPTER 5

CHAPTER 6

CONTENTS
Extended Backus-Naur Form ol 87
Implementing the Grammar with Irony........................ 88
Generating the IFTSQuery. ..o 91
Converting a Google-Style Queryccooviiinn. 94
Querying with the New Grammar............................ 94

QUMM oot e e e e e e 96

Multilingual Searching 99

A Brief History of Written Language.oooia... 100

iFTS and Language Complexitycccoviiiiiiinnin.. 101
Writing Symbols and Alphabets 102
Bidirectional Writing and Capitalization 103
Hyphenation and Compound Words 104
Nonalphanumeric Characters and AccentMarks 105
Token Position Context. ..., 105
Generational Formsc i 106
GeNAEr .. e e 106

Storing Multilingual Data. 107
Storing Plain Text 108
Storing XML. . ..o e 108
Storing HTML Documents 11
Storing Microsoft Office Documents......................... 112
Storing Other Document TypesS.vvvvvi it 112
Detecting Content Language..............c.coviievnia... 112

Designing Tables to Store Multilingual Content.................... 112

QUMM .ot i e i e i i 118

Indexing BLOBS....................... . 119

LOB Data.t e 120

Character LOBData............ccovvieii it 120

XMLLOBDAtAovvt it 122

Binary LOBData.........coovviiiii i 127

FILESTREAMBLOB Data........cvvvriieiiii i i i ieeanns 130
Efficiency Advantages ...t 130
FILESTREAM Requirements.c.ovviiieeii i 132
T-SOL ACCESS . vt v it it i i e it 135
Storage Considerationscccoiiiiiiiiiian., 137

OpenSqlFilestream APlcoi e 139

SUMMANY ..ot i e e et i e 144

Ij_vww.al | itebooks.cogl

http://www.allitebooks.org

CONTENTS

CHAPTER 7

CHAPTER 8

CHAPTER 9

Stoplistsoo 145
System Stoplists ... 145
Creating Custom Stoplists.cooviii e 147
Managing Stoplists 150
Upgrading Noise Word Lists to Stoplists.......................... 157
Stoplist BEhavior ..ot e e 161
Stoplistsand Indexing ... 161
Stoplistsand Queriest 162
QUMM .t e i e i i i 164
Thesauruses...................oiiiiiiiiiiiiiiin... 165
Thesaurus Fileso e 165
Editing and Loading Thesaurus Files 167
EXpansion SetSt e 173
Replacement Sets 175
Global and Local Thesaurusesc.oovviviiiiie e, 176
APractical Example. e 177
Translation. ... e 179
WordBags o v e 180
Additional Considerations.c.ccoviiiiiiiiiinea... 180
Accent and Case Sensitivitycccoiiiiiiiiiii . 180
NONFBCUISION. . . .ttt e it et ie i aaa s 181
Overlapping Rules. oo i 182
StOPliStS. .o 182
General Recommendations......................oooilll 183
QUMM .ot i e i e i i i 183
iFTS Dynamic Management Views and Functions....... 185
IFTS and TranSparenCyovve v eie it ei e 185
DMVs and DMFS. e i i 186
Looking Inside the Full-TextIndex 186
Parsing Text. ..o e 188
Accessing Full-Text Index Entries..................... 189
Retrieving Population Information. 191
Services and Memory Usage.cccovviiiiiiniinnnnn.. 195

Ij_vww.al | itebooks.cogl

http://www.allitebooks.org

CHAPTER 10

CHAPTER 11

CONTENTS
Catalog VIEWS.o e 197
Listing Full-Text Catalogsccooviiiiinnnn... 197
Retrieving Full-Text Index Metadata. 198
Revealing Stoplists. 202
Viewing Supported Languages and Document Types 204
QUMM .t e e i i 205
Filters............... 207
Introducing Filterso 207
Standard Filters. 207
Third-Party Filters. ... e 208
Custom Filters. e i 209
Custom Filter Development ..., 210
Filter Interfaces. ... 211
Custom Filter Designt 214
Filter Class Factory. ... 215
Filter Class.ovvei e 220
Compiling and Installing the Filter 229
Testingthe Filter. 232
Gatherer and Protocol Handler......................ccooivinns. 235
Word Breakers and Stemmers. ..., 236
SUMMANY ..t i e e et i i 237
Advanced Search Techniques............................ 239
Spelling Suggestion and Correction...............cccovviiean... 239
Hamming Distance............ ... 240
Spelling Suggestion Implementation 241
Name Searching.ooviiiii ittt enss 243
Phonetic Search......... ... e 244
SOUNOBX. ..ttt e i e e e 244
NYSIS. . 245
String Similarity Metrics 247
Longest Common SubsSequence.c.ovvveienvnnannn.. 247
EditDistance. ... e e 249
N-GramS .ot e 250
SUMMANY ..ot i i i et i e 256

Ij_vww.al | itebooks.cogl

Xi

http://www.allitebooks.org

Xii

CONTENTS

APPENDIX A

APPENDIX B

APPENDIX C

GlOSSANY ... 257
iFTS Books Database 265
Installing the Sample Database oot 267
Installing the Phonetic Samples............ccooviiiiiiinst. 268
SamPle COUB ...ttt e 268
Vector-Space Searches 269
Documents ASVectors ... 269
... 275

Ij_vww.al | itebooks.cogl

http://www.allitebooks.org

About the Authors

MICHAEL COLES is a Microsoft MVP with nearly 15 years’ experience in
SQL database design, T-SQL development, and client-server application
programming. He has consulted in a wide range of industries, including
the insurance, financial, retail, and manufacturing sectors, among others.
Michael’s specialty is developing and performance-tuning high-profile
SQL Server-based database solutions. He currently works as a consultant
for a business intelligence consulting firm. He holds a degree in infor-
mation technology and multiple Microsoft and other certifications.

Michael has published dozens of technical articles online and in print magazines,
including SQL Server Central, ASPToday, and SQL Server Standard. Michael is the author of
the books Pro SQL Server 2008 XML (Apress, 2008) and Pro T-SQL 2008 Programmer’s Guide
(Apress, 2008), and he is a contributor to Accelerated SQL Server 2008 (Apress, 2008). His current
projects include speaking engagements and researching new SQL Server 2008 encryption and
security functionality.

HILARY COTTER is a SQL Server MVP with more than 20 years’ IT experi-
ence working for Fortune 500 clients. He graduated from University of
Toronto in applied science and engineering. He is the author of a book
on SQL Server replication and has written numerous white papers and
articles on SQL Server and databases.

xiii

About the Technical Reviewer

STEVE JONES, a Microsoft MVP, is the founder and editor of SQLServer-
Central, the largest SQL Server community on the Internet. He has been
working with SQL Server since 1991 and has published numerous books
and articles on all aspects of the platform. He lives in Denver with his
wife, three kids, three dogs, three horses, and lots of chores.

Xv

Acknowledgments

There are several people without whom this book would not be a reality. We’d like to start by
thanking our editor, Jonathan Gennick. Thanks to Steve Jones, our technical reviewer and fellow
MVP, for keeping us honest. Thank you to project manager Denise Santoro Lincoln for managing
this project and keeping the lines of communication open between the team members. Also
thanks to Sofia Marchant for assisting with project management. We’d also like to thank
Benjamin Berg and Laura Esterman for making this book print-ready.

Special thanks go to Roman Ivantsov, inventor of the Irony.NET compiler construction kit,
for assisting us in the development of the Irony.NET code sample. And special thanks also to
Jonathan de Halleux, creator of the .NET ternary search tree code that’s the basis for our spelling
suggestion code samples.

We'd also like to thank the good folks at Microsoft who provided answers to all our questions
and additional guidance: Alison Brooks, Arun Krishnamoorthy, Denis Churin, Fernando Azpeitia
Lopez, Jacky Chen, Jingwei Lu, Josh Teitelbaum, Margi Showman, Ramanathan Somasundaram,
Somakala Jagannathan, and Venkatraman Parameswaran.

Michael Coles would also like to thank Gayle and Eric Richardson; Donna Meehan; Chris,
Jennifer, Desmond, and Deja Coles; Linda Sadr and family; Rob and Laura Whitlock and family;
Vitaliy Vorona; and Igor Yeliseyev. Most of all, I would like to thank my little angels, Devoné and
Rebecca.

Xvii

Introduction

Begin at the beginning and go on till you come to theend. . . .

—Alice in Wonderland

Linguistic (language-based) searching has long been a staple of web search engines such as
Google and high-end document management systems. Many developers have created custom
utilities and third-party applications that implement complex search functionality similar to
that provided by the most popular search engines. What many people don’t realize immedi-
ately is that SQL Server provides this advanced linguistic search capability out-of-the-box. Full-
Text Search (FTS) has been included with SQL Server since the SQL Server 7 release. FTS allows
you to perform linguistic searches of documents and text content stored in SQL Server data-
bases using standard T-SQL queries. FTS is a powerful tool that can be used to implement
enterprise-class linguistic database searches.

SQL Server 2008 increases the power of FTS by adding a variety of new features that make
it easier than ever to administer, troubleshoot, and generally use SQL Server’s built-in linguistic
search functionality in your own applications. In this book, we’ll provide an in-depth tour of
SQL Server 2008’s FTS features and functionality, from both the server and client perspective.

Who This Book Is For

This book is intended for SQL Server developers and DBAs who want to get the most out of SQL
Server 2008 Integrated Full-Text Search (iFTS). To get the most out of this book, you should
have a working knowledge of T-SQL, as most of the sample code in the book is written in SQL
Server 2008 T-SQL. Sample code is also provided in C# and C++, where appropriate. Although
knowledge of these programming languages is not required, basic knowledge of procedural
programming will help in understanding the code samples.

How This Book Is Structured

This book is designed to address the needs of T-SQL developers who develop SQL Server-based
search applications and DBAs who support full-text search on SQL Server. For both types of
readers, this book was written to act as a tutorial, describing basic full-text search functionality
available through SQL Server, and as a reference to the new full-text search features and func-
tionality available in SQL Server 2008. The following sections provide a chapter-by-chapter
overview of the book’s content.

Xix

XX

INTRODUCTION

Chapter 1

Chapter 1 begins by putting full-text search functionality in context. We discuss the history of
SQL Server full-text search as well as the goals and purpose of full-text search, and provide an
overview of SQL Server 2008 Integrated Full-Text Search (iFTS) architecture. We also define the
concept of search quality and how it relates to iFTS.

Chapter 2

In Chapter 2, we discuss iFTS administration, setup, and configuration. In this chapter, we
show how to set up and populate full-text indexes and full-text catalogs. We discuss full-text
index change-tracking options and administration via SQL Server Management Studio (SSMS)
wizards and T-SQL statements.

Chapter 3

Chapter 3 introduces iFTS basic and advanced query techniques. We use this chapter to
demonstrate simple FREETEXT-style queries and more advanced CONTAINS-style query options. We
look at the full range of iFTS query styles in this chapter, including Boolean search options,
proximity search, prefix search, generational search, weighted search, phrase search, and other
iFTS search options.

Chapter 4

Chapter 4 builds on the search techniques demonstrated in Chapter 3 and provides demon-
strations of client interaction with the database via iFTS. This chapter will show you how to
implement simple iFTS-based hit highlighting utilities and search engine-style search
interfaces.

Chapter 5

SQL Server iFTS supports nearly 50 different languages right out of the box. In Chapter 5, we
explore iFTS support for multilingual searching. We describe the factors that affect representa-
tion of international character sets and multilingual searches. We also provide best practices
around multilingual searching.

Chapter 6

SQL Server 2008 provides greater flexibility and more options for storing large object (LOB)
data in your databases. Chapter 6 discusses the options available for storing, managing, and
indexing LOB data in your database. In this chapter, we take a look at how SQL Server indexes
LOB data, including use of the new FILESTREAM option for efficient storage and streaming
retrieval of documents from SQL Server and the NTES file system.

Chapter 7

In Chapter 7, we discuss iFTS stoplists, which help you eliminate useless words from your
searches. We discuss word frequency theory, system stoplists, and creating and managing
custom stoplists.

INTRODUCTION

Chapter 8

Chapter 8 provides insight into iFTS thesauruses, with examples of the types of functionality
that can be built using thesaurus expansion and replacement sets, including “word bag” searches,
translation, and error correction. We also discuss factors affecting thesaurus expansion and
replacement, including diacritics sensitivity, nonrecursion, and overlapping rules.

Chapter 9

SQL Server 2008 iFTS provides greater transparency than any prior release of SQL Server FTS.
Chapter 9 explores the new catalog views and dynamic management views and functions, all of
which allow you to explore, manage, and troubleshoot your iFTS installations, full-text indexes,
and full-text queries with greater insight, flexibility, and power than ever before.

Chapter 10

As with prior versions of SQL Server FTS, SQL Server 2008 iFTS depends on external components
known as filters, word breakers, and stemmers. These components are critical to proper indexing
and querying in iFTS. Chapter 10 discusses iFTS filters and other components, including custom
filter creation. In this chapter, we explore creating a sample custom iFTS filter.

Chapter 11

SQL Server iFTS is a great tool for linguistic searches against documents and textual data, but
it’s not optimized for other types of common database searches, such as name-based searching.
In Chapter 11, we explore the world beyond iFTS and introduce fuzzy search technologies, such
as phonetic search and n-grams, which fill the void between exact matches and linguistic full-
text search.

Appendix A

In this book, we introduce several iFTS-related terms that may be unfamiliar to the uninitiated.
We define these words in the body of the text where appropriate, and have included a quick
reference glossary of iFTS-related search terms in Appendix A.

Appendix B

To provide more interesting examples than would be possible using the standard Adventure-
Works sample database, we’ve decided to implement our own database known as iFTS_Books.
This sample database includes the full text of dozens of public domain books in several
languages, and provides concrete examples of the best practices we introduce in this book.
Appendix B describes the structure and design of the iFTS Books sample database.

Appendix C

Appendix C includes additional information about the mathematics and theory behind vector-
space search, which is implemented in iFTS via weighted full-text searches.

XXi

XXxii

INTRODUCTION

Conventions

To make reading this book an enjoyable experience, and to help readers get the most out of the
text, we've adopted standardized formatting conventions throughout.

C#and C++ code is shown in code font. Note that these languages are case sensitive. Here’s
an example of a line of C# code:

while (i < 10)

T-SQL source code is also shown in code font. Though T-SQL is not case sensitive, we've
consistently capitalized keywords for readability. Also note that, for readability purposes,
we’ve lowercased data type names in T-SQL code. Finally, following Microsoft’s best practices,
we consistently use the semicolon T-SQL statement terminator. The following demonstrates a
line of T-SQL code:

DECLARE @x xml;

XML code is shown in code font with attribute and element content shown in bold for
readability. Note that some XML code samples and results may have been reformatted in this
book for easier reading. Because XML ignores insignificant whitespace, the significant content
of the XML has not been altered. Here’s an example:

<book published = "Apress">Pro T-SQL 2008 Programmer8apos;s Guide</book>

Note Notes, tips, and warnings are displayed like this, in a special font with solid bars placed over and
under the content.

SIDEBARS

Sidebars include additional information relevant to the current discussion and other interesting facts. Sidebars
are shown on a gray background.

Prerequisites

This book requires an installation of SQL Server 2008 in order to run the T-SQL code samples
provided. Note that the code in this book has been designed specifically to take advantage of
SQL Server 2008 features, and most of the code in the book will either not run on prior versions
of SQL Server, or will require significant modification to work on prior releases. The code samples
provided in the book are designed specifically to run against the iFTS_Books sample database,
available for download from the Apress web site at www.apress. com (see the following section).
We describe the iFTS _Books database and provide installation instructions in Appendix B.

INTRODUCTION Xxiii

Other code samples provided in the book were written in C# (and C++ where appropriate)
using Visual Studio 2008. If you're interested in compiling and executing the SQL CLR, client code,
and other sample code provided, we highly recommend an installation of Visual Studio 2008
(with Service Pack 1 installed). Although you can compile the code from the command line, we
find that the Visual Studio IDE provides a much more enjoyable and productive experience.

Some of the code samples may have additional requirements specified in order to use
them; we will identify these special requirements as the code is presented.

Downloading the Code

The iFTS_Books sample database and all of the code samples presented in this book are avail-
able in a single Zip file from the Downloads section of the Apress web site at waw.apress.com.
The Zip file is structured so that each subdirectory contains a set of installation scripts or
code samples presented in the book. Installation instructions for the iFTS_Books database
and code samples are provided in Appendix B.

Contacting the Authors

The Apress team and the authors have made every effort to ensure that this book is free from
errors and defects. Unfortunately, the occasional error does slip past us, despite our best efforts.
In the event that you find an error in the book, please let us know! You can submit errors directly
to Apress by visiting www.apress.com, locating the page for this book, and clicking on Submit
Errata. Alternatively, feel free to drop a line directly to the authors at michaelco@optonline.net.

CHAPTER 1

SQL Server Full-Text Search

... but I still haven’t found what I'm looking for.

—Bono Vox, U2

Full-text search encompasses techniques for searching text-based data and documents. This
is an increasingly important function of modern databases. SQL Server has had full-text search
capability built into it since SQL Server 7.0. SQL Server 2008 integrated full-text search (iFTS)
represents a significant improvement in full-text search functionality, a new level of full-text
search integration into the database engine over prior releases. In this chapter, we’ll discuss
full-text search theory and then give a high-level overview of SQL Server 2008 iFTS function-
ality and architecture.

Welcome to Full-Text Search

Full-text search is designed to allow you to perform linguistic (language-based) searches against
text and documents stored in your databases. With options such as word and phrase-based
searches, language features, the ability to index documents in their native formats (for example,
Office documents and PDFs stored in the database can be indexed), inflectional and thesaurus
generational terms, ranking, and elimination of noise words, full-text search provides a
powerful set of tools for searching your data. Full-text search functionality is an increasingly
important function in modern databases. There are many reasons for this increase in popu-
larity, including the following:

* Databases are increasingly being used as document repositories. In SQL Server 2000 and
prior, storage and manipulation of large object (LOB) data (textual data and documents
larger than 8,000 bytes) was difficult to say the least, leading to many interesting (and
often complicated) alternatives for storing and manipulating LOB data outside the data-
base while storing metadata within the database. With the release of SQL Server 2005,
storage and manipulation of LOB text and documents was improved significantly. SQL
Server 2008 provides additional performance enhancements for LOB data, making
storage of all types of documents in the database much more palatable. We’'ll discuss
these improvements in later chapters in this book.

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

* Many databases are public facing. In the not too distant past, computers were only used
by a handful of technical professionals: computer scientists, engineers, and academics.
Today, almost everyone owns a computer, and businesses, always conscious of the
bottom dollar, have taken advantage of this fact to save money by providing self-service
options to customers. As an example, instead of going to a brick-and-mortar store to
make a purchase, you can shop online; instead of calling customer service, you check
your orders online; instead of calling your broker to place a stock trade, you can research
it and then make the trade online. Search functionality in public-facing databases is a
key technology that makes online self-service work.

* Storage is cheap. Even as hard drive prices have dropped, the storage requirements of
the average user have ballooned. It’s not uncommon to find a half terabyte (or more)
of storage on the average user’s personal computer. According to the Enterprise
Strategy Group Inc., worldwide total private storage capacity will reach 27,000 petabytes
(27 billion gigabytes) of storage by 2010. Documents are born digitally, live digitally,
and die digitally, many times never having a paper existence, or at most a short tran-
sient hard-copy life.

* New document types are constantly introduced, and there are increasing requirements
to store documents in their native format. XML and formats based on or derived from
XML have changed the way we store documents. XML-based documents include XHTML
and Office Open XML (OOXML) documents. Businesses are increasingly abandoning
paper in the normal course of transactions. Businesses send electronic documents such
as purchase orders, invoices, contracts, and ship notices back and forth. Regulatory and
legal requirements often necessitate storing exact copies of the business documents
when no hard copies exist. For example, a pharmaceutical company assembles medica-
tions for drug trials. This involves sending purchase orders, change orders, requisition
orders, and other business documents back and forth. The format for many of these
documents is XML, and the documents are frequently stored in their native formats in
the database. While all of this documentation has to be stored and archived, users need
the ability to search for specific documents pertaining to certain transactions, vendors,
and so on, quickly and easily. Full-text search provides this capability.

* Researching and analyzing documents and textual data requires data to be stored in a
database with full-text search capabilities. Business analysts have two main issues to
deal with during the course of research and analysis for business projects:

¢ Incomplete or dirty data can cripple business analysis projects, resulting in inaccu-
rate analyses and less than optimal decision making.

¢ Too much data can result in information overload, causing “analysis paralysis,”
slowing business projects to a crawl.

¢ Full-text search helps by allowing analysts to perform contextual searches that allow
relevant data to reveal itself to business users. Full-text search also serves as a solid foun-
dation for more advanced analysis techniques, such as extending classic data mining to
text mining.

Ij_vww.al | itebooks.cogl

http://www.allitebooks.org

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

Developers want a single standardized interface for searching documents and textual
data stored in their databases. Prior to the advent of full-text search in the database, it
was not uncommon for developers to come up with a wide variety of inventive and
sometimes kludgy methods of searching documents and textual data. These custom-
built search routines achieved varying degrees of success. SQL Server full-text search
was designed to meet developer demand for a standard toolset to search documents and
textual data stored in any SQL Server database.

SQL Server iFTS represents the next generation of SQL Server-based full-text search. The
iFTS functionality in SQL Server provides significant advantages over other alternatives, such
as the LIKE predicate with wild cards or custom-built solutions. The tasks you can perform with
iFTS include the following:

You can perform linguistic searches of textual data and documents. A linguistic searchis
a word- or phrase-based search that accounts for various language-specific settings,
such as the source language of the data being searched, inflectional word forms like verb
conjugations, and diacritic mark handling, among others. Unlike the LIKE predicate,
when used with wild cards, full-text search is optimized to take full advantage of an
efficient specialized indexing structure to obtain results.

You can automate removal of extraneous and unimportant words (stopwords) from
your search criteria. Words that don’t lend themselves well to search and don’t add value
to search results, such as and, an, and the, are automatically stripped from full-text
indexes and ignored during full-text searches. The system predefines lists of stopwords
(stoplists) in dozens of languages for you. Doing this on your own would require a signif-
icant amount of custom coding and knowledge of foreign languages.

You can apply weight values to your search terms to indicate that some words or phrases
should be treated as more important than others in the same full-text search query. This
allows you to normalize your results or change the ranking values of your results to indi-
cate that those matching certain terms are more relevant than others.

You can rank full-text search results to allow your users to choose those documents that
are most relevant to their search criteria. Again, it’s not necessarily a trivial task to create
custom code that ranks search results obtained through custom search algorithms.

You can index and search an extremely wide array of document types with iFTS. SQL
Server full-text search understands how to tokenize and extract text and properties from
dozens of different document types, including word-processing documents, spread-
sheets, ZIP files, image files, electronic documents, and more. SQL Server iFTS also
provides an extensible model that allows you to create custom components to handle
any document type in any language you choose. As examples, there are third-party
components readily available for additional file formats such as AutoCAD drawings,
PDF files, PostScript files, and more.

It’s a good bet that a large amount of the data stored by your organization is
unstructured—word processing documents, spreadsheets, presentations, electronic docu-
ments, and so on. Over the years, many companies have created lucrative business models based
on managing unstructured content, including storing, searching, and retrieving this type of

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

content. Some rely on SQL Server’s native full-text search capabilities to help provide the back-
end functionality for their products. The good news is that you can use this same functionality
in your own applications.

The advantage of allowing efficient searches of unstructured content is that your users can
create documents and content using the tools they know and love—Word, Acrobat, Excel—and
you can manage and share the content they generate from a centralized repository on an
enterprise-class database management system (DBMS).

History of SQL Server FTS

Full-text search has been a part of SQL Server since version 7.0. The initial design of SQL
Server full-text search provided for reuse of Microsoft Indexing Service components. Indexing
Service is Microsoft’s core product for indexing and searching files and documents in the file
system. The idea was that FTS could easily reuse systemwide components such as word breakers,
stemmers, and filters. This legacy can be seen in FTS’s dependence on components that imple-
ment Indexing Service’s programming interfaces. For instance, in SQL Server, document-specific
filters are tied to filename extensions.

Though powerful for its day, the initial implementations of FTS in SQL Server 7.0 and 2000
proved to have certain limitations, including the following:

* The DBMS itself made storing, manipulating, searching, and retrieving large object data
particularly difficult.

¢ The fact that only systemwide shared components could be used for FTS indexing
caused issues with component version control. This made side-by-side implementa-
tions with different component versions difficult.

¢ Because FTS was implemented as a completely separate service from the SQL Server
query engine, efficiency and scalability were definite issues. As a matter of fact, SQL
Server 7.0 FTS was at one point considered as an option for the eBay search engine;
however, it was determined that it wasn’t scalable enough for the job at that time.

¢ The fact that SQL Server had to store indexes, noise word lists, and other data outside of
the database itself made even the most mundane administration tasks (such as backups
and restores) tricky at best.

¢ Finally, prior versions of FTS provided no transparency into the process. Trouble-
shooting essentially involved a sometimes complicated guess-and-fail approach.

The new version of SQL Server integrated FTS provides much greater integration with the
SQL query engine. SQL Server 2008 large object data storage, manipulation, and retrieval has
been greatly simplified with the new large object max data types (varchar (max), varbinary(max)).
Although you can still use systemwide FTS components, iFTS allows you to use instance-
specific installations of FTS components to more easily create side-by-side implementations.
FTS efficiency and scalability has been greatly improved by implementing the FTS query
engine directly within the SQL Server service instead of as a separate service. Administration
has been improved by storing most FTS data within the database instead of in the file system.
Noise word lists (now stopword lists) and the full-text catalogs and indexes themselves are now

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

stored directly in the database, easing the burden placed on administrators. In addition, the
newest release of FTS provides several dynamic management views and functions to provide
insight into the FTS process. This makes troubleshooting issues a much simpler exercise.

MORE ON TEXT-BASED SEARCHING

Text-based searching is not exclusively the domain of SQL Server iFTS. There are many common applications
and systems that implement text-based searching algorithms to retrieve relevant documents and data.
Consider MS Outlook—users commonly store documents in their Outlook Personal Storage Table (PST) files
or in their MS Exchange folders. Frequently, Outlook users will email documents to themselves, adding rele-
vant phrases to the email (mushroom duxelles recipe or notes from accounting meeting, for example) to make
searching easier later. What we see here is users storing all sorts of data (email messages, images, MS Office
documents, PDF files, and so on) somewhere on the network in a database, tagging it with information that
will help them to find relevant documents later, and sometimes categorizing documents by putting them in
subfolders. The key to this model is being able to find the data once it’s been stored. Users may rely on MS
Outlook Search, Windows Desktop Search, or a third-party search product (such as Google Desktop) to find
relevant documents in the future.

Searching the Web requires the use of text-based search algorithms as well. Search engines such as
Google go out and scrape tens of millions of web pages, indexing their textual content and attributes (like
META tags) for efficient retrieval by users. These text-based search algorithms are often proprietary in nature
and custom-built by the search provider, but the concepts are similar to those utilized by other full-text search
products such as SQL Server iFTS.

Microsoft has being going back and forth for nearly two decades over the idea of hosting the entire file
system in a SQL Server database or keeping it in the existing file system database structure (such as NTFS
[New Technology File System]). Microsoft Exchange is an example of an application with its own file system
(called ESE—pronounced “easy”) that's able to store data in rectangular (table-like) structures and nonrectangular
data (any file format which contains more properties than a simple file name, size, path, creation date, and so
forth). In short, it can store anything that shows up when you view any documents using Windows Explorer.
Microsoft has been trying to decide whether to port ESE to SQL Server. What's clear is that SQL Server is
extensible enough to hold a file system such as NTFS or Exchange, and in the future might house these two
file systems, allowing SQL FTS to index content for even more applications.

Microsoft has been working on other search technologies since the days of Windows NT 3.5. Many of
their concepts essentially extend the Windows NT File System (NTFS) to include schemas. In a schema-based
system, all document types stored in the file system would have an associated schema detailing the properties
and metadata associated with the files. An MS Word document would have its own schema, while an Adobe
PDF file would also have its own schema. Some of the technologies that Microsoft has worked on over the
years promise to host the file system in a database. These technologies include OFS (Object File System), RFS
(Relational File System, originally intended to ship with SQL 2000), and WinFS (Windows Future Storage, but
also less frequently called Windows File System). All of these technologies hold great promise in the search
space, but so far none have been delivered in Microsoft’s flagship OS yet.

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

Goals of Search

As we mentioned, the primary function of full-text search is to optimize linguistic searches

of unstructured content. This section is designed to get you thinking about search in general.
We'll present some of the common problems faced by search engineers (or as they’re more
formally known, information retrieval scientists), some of the theory behind search engines,
and some of the search algorithms used by Microsoft. The goals of search engines are (in order
of importance):

1. To return a list of documents, or a list of links to documents, that match a given search
phrase. The results returned are commonly referred to as a list of hits or search results.

2. To control the inputs and provide users with feedback as to the accuracy of their search.
Normally this feedback takes the form of a ratio of the total number of hits out of the
number of documents indexed. Another more subtle measure is how long the search
engine churns away before returning a response. As Michael Berry points out in his
book Understanding Search Engines- Mathematical Models and Text Retrieval (SIAM,
ISBN 0-89871-437-0), an instantaneous response of “No documents matched your
query” leaves the user wondering if the search engine did any searching at all.

3. To allow the users to refine the search, possibly to search within the results retrieved
from the first search.

4. To present the users with a search interface that’s intuitive and easy to navigate.

5. To provide users a measure of confidence to indicate that their search was both
exhaustive and complete.

6. To provide snippets of document text from the search results (or document abstracts),
allowing users to quickly determine whether the documents in the search results are
relevant to their needs.

The overall goal of search is to maximize user experience in all domains. You must give
your users accurate results as quickly as possible. This can be accomplished by not only giving
users what they’re looking for, but delivering it quickly and accurately, and by providing options
to make searches as flexible as possible.

On one hand, you don’t want to overwhelm them with search results, forcing them to
wade through tens of thousands of results to find the handful of relevant documents they really
need. On the other hand, you do want to present them with a flexible search interface so they
can control their searching without sacrificing user experience.

There are many factors that affect your search solution: hardware, layout and design,
search engine, bandwidth, competitors, and so on. You can control most of these to some
extent, and with luck you can minimize their impact. But what about your users? How do you
cater to them?

Search architects planning a search solution must consider their interface (or search page)
and their users. No matter how sophisticated or powerful your search server, there may be
environmental factors that can limit the success of your search solution. Fortunately, most of
these factors are within your control. The following problems can make your users unhappy:

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

* Sometimes your users don’t know what they're looking for and are making best guesses,
hoping to get the right answers. In other words, unsophisticated searchers rely on a hit-
or-miss approach, blind luck, or serendipity. You can help your users by offering training
in corporate environments, providing online help, and instituting other methods of
educating them. Good search engineers will institute some form oflogging to determine
what their users are searching for, create their own “best bets” pages, and tag content
with keywords to help users find relevant content efficiently. User search requirements
and results from the log can be further analyzed by research and development to improve
search results, or those results can be directed to management as a guide in focusing
development dollars on hot areas of interest.

* Sometimes users make spelling mistakes in their search phrases. There are several inge-
nious solutions for dealing with this. Google and the Amazon.com search engine run a
spell check and make suggestions for other search terms when the number of hits is
relatively low. In the case of Amazon.com, the search engine can recommend best-
selling products that you might be interested in that are relevant to your search.

¢ Sometimes users are presented with results in an overwhelming format. This can quickly
lead frustrated users to simply give up on continuing to search with your application. A
cluttered interface (such as a poorly designed web page) can overwhelm even the most
advanced user. A well-designed search page can overcome this. Take a tip from the most
popular search engine in the world—Google provides a minimalist main page with lots
of white space.

¢ Sometimes the user finds it too difficult to navigate a search interface and gives up.
Again, a well designed web site with intuitive navigation helps alleviate this.

* Sometimes the user is searching for a topic and using incorrect terminology. This can be
addressed on SQL Server, to some degree, through the use of inflectional forms and
thesaurus searches.

In this chapter, we're going to consider the search site Google.com. We’ll contrast Google
against some of Microsoft’s search sites, and against Microsoft.com. We’ll be surveying search
solutions from across the spectrum of possible configurations.

GOOGLE

Google, started as a research project at Stanford University in California, is currently the world’s most popular
search engine. For years, http://google. stanford.edu used to redirectto http://www.google. com;
it now redirects to their Google mini search appliance (http://www.stanford.edu/services/
websearch/Google/). Google is powered by tens of thousands of Linux machines—termed bricks—that
index pages, perform searches, and serve up cached pages. The Google ranking algorithm differs from most
search algorithms in that it relies on inbound page links to rank pages and determine result relevance. For
instance, if your web site is the world’s ultimate resource for diabetes information, the odds are high that many
other web sites would have links pointing to your site This in turn causes your site to be ranked higher when
users search for diabetes-related topics. Sites that don’t have as many links to them for the word diabetes
would be ranked lower.

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

Mechanics of Search

Modern search solutions such as iFTS rely on precompiled indexes of words that were previ-
ously extracted from searchable content. If you're storing word processing documents, for
instance, the precompiled index will contain all of the words in the documents and references
back to the source documents themselves. The index produced is somewhat similar to an
index at the back of most books. Imagine having to search a book page by page for a topic
you're interested in. Having all key words in an index returns hits substantially faster than
looking through every document you're storing to find the user’s search phrase.

SQL Server uses an inverted index structure to store full-text index data. The inverted
index structure is built by breaking searchable content into word-length tokens (a process
known as tokenizing) and storing each word with relevant metadata in the index. An inverted
index for a document containing the phrase Now is the time for all good men to come to the aid
of the party would be similar to Figure 1-1.

Word Document ID Occurrence
Now 1 1
is 1 2
the 1 3
time 1 4
for 1 5
all 1 6
good 1 7
men 1 8

Figure 1-1. Inverted index of sample phrase (partial)

The key fields in the inverted index include the word being indexed, a reference back to the
source document where the word is found, and an occurrence indicator, which gives a relative
position for each word. SQL Server actually eliminates commonly used stopwords such as the,
and, and of from the index, making it substantially smaller. With system-defined stopwords
removed, the inverted index for the previously given sample phrase looks more like Figure 1-2.

Note The sample inverted index fragments shown are simplified to include only key information. The
actual inverted index structure SQL Server uses contains additional fields not shown.

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

Word Document ID Occurrence
time 1 4
good 1 7
men 1 8
aid 1 13
party 1 16
{End Of File} 1 17

Figure 1-2. Inverted index with stopwords removed

Whenever you perform a full-text search in SQL Server, the full-text query engine tokenizes
your input string and consults the inverted index to locate relevant documents. We’ll discuss
indexing in detail in Chapter 2 and full-text search queries in Chapter 3.

iFTS Architecture

The iFTS architecture consists of several full-text search components working in cooperation
with the SQL Server query engine to perform efficient linguistic searches. We’ve highlighted
some of the more important components involved in iFTS in the simplified diagram shown in
Figure 1-3.

n Client Application

™

A

7o

N J L SQL Server Process
\4
@ @
0 SQL Server Query Processor & Full-Text Engine
SQL Query Compilation Full-Text Query Compilation | -
and Execution and Execution I| dorsy | | 10SAUNUS

@ Indexer

2
SQL Database .Li‘.ﬁﬁit Stoplist
consectet

\« Full-Text Index

Figure 1-3. iFTS architecture (simplified)

10

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

The components we’ve highlighted in Figure 1-3 include the following:

Client application: The client application composes full-text queries and submits them
to the SQL Server query processor. It’s the responsibility of the client application to
ensure that full-text queries conform to the proper syntax. We’ll cover full-text query
syntax in detail in Chapter 3.

SQL Server process: The SQL Server process contains both the SQL Server query processor,
which compiles and executes SQL queries, and the full-text engine, which compiles and
executes full-text queries. This tight integration of the SQL Server and full-text query
processors in SQL Server 2008 is a significant improvement over prior versions of SQL
Server full-text search, allowing SQL Server to generate far more efficient query plans
than was previously possible.

SQL Server query processor: The SQL Server query processor consists of several subcom-
ponents that are responsible for validating SQL queries, compiling queries, generating
query plans, and executing queries in the database.

Full-text query processor- When the SQL Server query processor receives a full-text query
request, it passes the request along to the full-text query processor. It’s the responsibility
of the full-text query processor to parse and validate the query request, consult the full-
text index to fulfill the request, and work with the SQL Server query processor to return
the necessary results.

Indexer: The indexer works in conjunction with other components to retrieve streams of
textual data from documents, tokenize the content, and populate the full-text indexes.
Some of the components with which the indexer works (not shown in the diagram)
include the gatherer, protocol handler, filters, and word breakers. We’ll discuss these
components in greater detail in Chapter 10.

Full-text index: The full-text index is an inverted index structure associated with a given
table. The indexer populates the full-text index and the full-text query processor consults
the index to fulfill search requests. Unlike prior versions of SQL Server the full-text index
in SQL Server 2008 is stored in the database instead of the file system. We will discuss
setup, configuration, and population of full-text indexes in detail in Chapter 2.

Stoplist. The stoplist is simply a list of stopwords, or words that are considered useless
for the purposes of full-text search. The indexer consults the stoplist during the indexing
and querying process in order to eliminate stopwords from the index and search phrase.
Unlike prior versions of SQL Server, which stored their equivalent of stoplists (noise
word lists) in the file system, SQL Server 2008 stores stopword lists in the database. We’ll
talk about stoplists in greater detail in Chapter 7.

Thesaurus: The thesaurus is an XML file (stored in the file system) that defines full-text
query word replacements and expansions. Replacements and expansions allow you to
expand a search to include additional words or completely replace certain words at
query time. As an example, you could use the thesaurus to expand a query for the word
runto also include the words jog and sprint, or you could replace the word maroon with
the word red. Thesauruses are language-specific, and the query processor consults the
thesaurus at query time to perform expansions and replacements. We'll detail the
mechanics and usage of thesauruses in Chapter 8.

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

Note Though the XML thesaurus files are currently stored as files in the file system, the iFTS team is
considering the best way to incorporate the thesaurus files directly into the database, in much the same way
that the stoplists and full-text indexes have been integrated.

Indexing Process

The full-text indexing process is based on the index population, or crawl process. The crawl
can be initiated automatically, based on a schedule, or manually via T-SQL statements. When
a crawl is started, an iFTS component known as the protocol handler connects to the data
source (tables you're full-text indexing) and begins streaming data from the searchable content.
The protocol handler provides the means for iFTS to communicate with the SQL storage
engine. Another component, the filter daemon host, is a service that’s external to the SQL
Server service. This service controls and manages content-type-specific filters, which in turn
invoke language-specific word breakers that tokenize the stream of content provided by the
protocol handler.

The indexing process consults stoplists to eliminate stopwords from the tokenized
content, normalizes the words (for case and accent sensitivity), and adds the indexable words
to inverted index fragments. The last step of the indexing process is the master merge, which
combines all of the index fragments into a single master full-text index. The indexing process
in general and the master merge in particular can be resource- and I/O-intensive. Despite the
intensity of the process, the indexing process doesn’t block queries from occurring. Querying a
full-text index during the indexing process, however, can result in partial and incomplete
results being returned.

Query Process

The full-text query process uses the same language-specific word breakers that the indexer
uses in the indexing process; however, it uses several additional components to fulfill query
requests. The query processor accepts a full-text query predicate, which it tokenizes using
word breakers. During the tokenization process, the query processor creates generational
forms, or alternate forms of words, as follows:

It uses stemmers, components that return language-based alternative word forms, to
generate inflectional word forms. These inflectional word forms include verb conjugations
and plural noun forms for search terms that require them. Stemmers help to maximize
precision and recall, which we’ll discuss later in this chapter. For instance, the English
verb eatis stemmed to return the verb forms eating, eaten, ate, and eatsin addition to the
root form eat.

* Itinvokeslanguage-specific thesaurusesto perform thesaurus replacements and expansions
when required. The thesaurus files contain user-defined rules that allow you to replace
search words with other words or expand searches to automatically include additional
words. You might create a rule that replaces the word maroon with the word red, for
instance; or you might create a rule that automatically expands a search for maroon to
also include red, brick, ruby, and scarlet.

11

12

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

Tip Stemmer components are encapsulated in the word breaker DLL files, but are separate components
(and implement a separate function) from the word breakers themselves. Different language rules are applied
at index time by the word breakers than by the stemmers at query time. Many of the stemmers and word
breakers have been completely rewritten for SQL 2008, which makes a full population necessary for many
full-text indexes upgraded from SQL 2005. We'll discuss full-text index population in detail in Chapter 2.

After creating generational forms of words, the query processor provides input to the SQL
Server query processor to help determine the most efficient query plan through which to retrieve
the required results. The full-text query processor consults the full-text index to locate docu-
ments that qualify based on the search criteria, ranks the results, and works with the SQL
Server query processor to return relevant results back to the user.

The new tighter integration between the full-text query processor and the SQL Server
query processor (both are now hosted together within the SQL Server process) provides the
ability to perform full-text searches that are more highly optimized than in previous versions of
SQL Server. As an example, in SQL Server 2005 a full-text search predicate that returned one
million matching documents had to return the full one-million-row result set to the SQL Server
query processor. At that point, SQL Server could apply additional predicates to narrow down
results as necessary. In SQL Server 2008, the search process has been optimized so that SQL
Server can shortcut the process, limiting the total results that need to be returned by iFTS
without all the overhead of passing around large result sets full of unnecessary data between
separate full-text engine and SQL Server services.

Search Quality

For most intranet sites and other internal search solutions, the search phrases that will hit your
search servers will be a small fraction or subset of the total number of words in the English
language (or any other language for that matter). If you started searching for medical terms or
philosophical terms on the Microsoft web site, for instance, you wouldn’t expect to get many
hits (although we do get hits for existentialist, Plato, and anarchist, we aren’t sure how much
significance, if any, we can apply to this).

Microsoft’s web site deals primarily with technical information—it can be considered a
subset of the total content that’s indexed by Google. Amazon indexes book titles, book descrip-
tions, and other product descriptions. They would cover a much larger range of subjects than
the Microsoft web site, but wouldn’t get into the level of detail that the Microsoft site does, as
Amazon primarily indexes the publisher’s blurb on the book or other sales-related literature
for their products.

As you can see, Google probably contains many entries in its index for each word in the
English language. In fact, for many words or phrases, Google has millions of entries; for example,
the word Internet currently returns over 2.6 billion hits as of Fall 2008. Search engines with a
relatively small volume of content to index, or that are specialized in nature, have fewer entries
for each word and many more words having no entries.

Ij_vww.al | itebooks.cogl

http://www.allitebooks.org

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

BENEFITS OF INTEGRATION

As we mentioned previously, the new level of integration that SQL Server iFTS offers means that the SQL query
optimizer has access to new options to make your queries more efficient than ever. As an example, the
following illustration highlights the SQL Server 2005 Remote Scan query operator that FTS uses to retrieve
results from the full-text engine service. This operator is expensive, and the cost estimates are often inaccurate
because of the reliance on a separate service. In the example query plan, the operator accounts for 47% of the
total cost of the example query plan.

i @ @ @ iy

—— Hemed Loops T Hested Leeps T Hested Leops S Clusnared Index Szan
Imer Toind Inmer Joim) (Irmer Jein) hdrurtus wlarks |, [Produstivnl . [Prod
Cee: 00 Cese: 04 task: 24

SQL Server 2008 iFTS provides the SQL query optimizer with a new and more efficient operator, the
Table Valued Function [FulltextMatch] operator, shown in the following example query plan. This new query
operator allows SQL Server to quickly retrieve results from the integrated full-text engine while providing a
means for the SQL Server query engine to limit the amount of results returned by the full-text engine.

Strean Agoregaze
(hrgsepate]
comzi 04

The new full-text search integration provides significant performance and scalability benefits over
previous releases.

Measuring Quality

The quality of search results can be measured using two primary metrics: precision and recall.
Precision is the number of hits returned that are relevant versus the number of hits that are
irrelevant. If you're having trouble with your car, for instance, and you do a search on Cressida

13

14

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

on Google, you'll get many hits for the Shakespearian play Troilus and Cressida and one of the
moons of Uranus, with later results further down the page referring to the Toyota product.
Precision in this case is poor. Searching for Toyota Cressida gives you only hits related to the
Toyota car, with very good or high precision. Precision can be defined mathematically using
the formula shown in Figure 1-4, where prepresents the precision, nis the number of relevant
retrieved documents, and d is the total number of retrieved documents.

P

Figure 1-4. Formula for calculating precision

Recall is the number of hits that are returned that are relevant versus the number of rele-
vant documents that aren’t returned. That is, it’s a measure of how much relevant information
your searches are missing. Consider a search for the misspelled word mortage (a spelling
mistake for mortgage). You'll get hits for several web sites for mortgage companies. Most web
sites don’t automatically do spell checking and return hits on corrected spelling mistakes or at
least suggest spelling corrections. When you make spelling mistakes, you're missing a lot of
relevant hits, or in the language of search, you're getting poor recall. Figure 1-5 is the mathe-
matical definition of recall, where r represents recall, n is the number of relevant retrieved
documents, and vis the total number of relevant documents.

Figure 1-5. Formula for calculating recall

Figure 1-6 is a visual demonstration of precision and recall as they apply to search. The large
outer box in the figure represents the search space, or database, containing all of the searchable
content. The black dots within the box represent individual searchable documents. The shaded
area on the left side of the figure represents all of the documents relevant to the current search,
while the nonshaded area to the right represents nonrelevant documents.

The complete results of the current search are represented by the documents contained in
the dashed oval inside the box. The precision of this search, represented by the shaded area of
the oval divided by the entire area of the oval, is low in this query. That is, out of all the docu-
ments retrieved, only about half are relevant to the user’s needs.

The recall of this search is represented by the shaded area of the oval divided by the entire
shaded area of the box. For this particular query, recall was low as well, since a very large
number of relevant documents weren’t returned to the user.

Precision and recall are normally used in tandem to measure search quality. They work
well together and are often defined as having an inverse relationship—barring a complete
overhaul of the search algorithm, you can generally raise one of these measures at the expense
of lowering the other.

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

Relevant Nonrelevant
Documents Documents

Figure 1-6. Visual representation of precision and recall in search

There are other calculations based on precision and recall that can be used to measure the
quality of searches. The weighted harmonic mean, or F-measure, combines precision and recall
into a single formula. Figure 1-7 shows the FI measure formula, in which precision and recall
are evenly weighted. In this formula, p represents precision and ris the recall value.

_2«(pr)
P25

Figure 1-7. Evenly weighted harmonic mean formula

The formula can be weighted differently to favor recall or precision by using the weighted
F-measure formula shown in Figure 1-8. In this formula, 3 represents the nonnegative weight
that should be applied. A value of [} greater than 1.0 favors precision, while a value of 3 less
than 1.0 favors recall.

_(1+8) (p-1)
Bp+r

Fp
Figure 1-8. Weighted harmonic mean formula
Synonymy and Polysemy

Precision and recall are complicated by a number of factors. Two of the most significant factors
affecting them are synonymy and polysemy.

15

16 CHAPTER 1 SQL SERVER FULL-TEXT SEARCH

Synonymy: different words that describe the same object or phenomenon. To borrow an
example from Michel W. Berry and Murray Browne’s book, Understanding Search Engines,
a heart attack is normally referred to in the medical community as myocardial infarction.
It is said that Inuit Alaskan natives have no words for war, but 10,000 words for snow

(I suspect most of these words for snow are obscenities).

Polysemy:. words and phrases that are spelled the same but have different meanings. SOAP,
for instance, has a very different meaning to programmers than to the general populace at
large. Tiny Tim has one meaning to the Woodstock generation and a completely different
meaning to members of younger generations who’ve read or seen Dickens’s A Christmas
Carol. Another example: one of the authors met his wife while searching for his favorite
rock band, Rush, on a web site. Her name came up in the search results and her bio
mentioned that she loved Rush. Three years into the marriage, the author discovered that
his wife’s affection was not for the rock group Rush, but for a radio broadcaster of certain
notoriety.

Note For a more complete discussion of the concepts of synonymy and polysemy, please refer
to Understanding Search Engines-Mathematical Modeling and Text Retrieval by Michael W. Berry and
Murray Browne, (SIAM, ISBN 0-89871-437-0).

There are several strategies to deal with polysemy and synonymy. Among these are two
brute force methods, namely:

¢ Employ people to manually categorize content. The Yahoo! search engine is an example.
Yahoo! pays people to surf the Web all day and categorize what they find. Each person
has a specialty and is responsible for categorizing content in that category.

» Tagcontentwith keywords that will be searched on. For instance, in support.microsoft.com,
you can restrict your search to a subset of the knowledge base documents. A search
limited to the SQL Server Knowledge Base will be performed against content pertaining
only to SQL Server Knowledge Base articles. These articles have been tagged as knowledge
base articles to assist you in narrowing your search.

Currently, research is underway to incorporate automated categorization to deal with
polysemy and synonymy in indexing and search algorithms, with particularly interesting work
being done by Susan Dumais of Microsoft Research, Michael W. Berry, and others. Microsoft
SharePoint, for example, ships with a component to categorize the documents it indexes.

Summary

In this chapter, we introduced full-text search. We considered the advantages of using SQL
Server full-text search to search your unstructured content, such as word processing documents,
spreadsheets, and other documents.

CHAPTER 1 SQL SERVER FULL-TEXT SEARCH 17

We gave an overview of the goals and mechanics of full-text search in general, and discussed
the SQL Server iFTS implementation architecture, including the indexing and querying processes.
Asyou can see, there are a lot of components involved in the SQL Server iFTS implementation.
What we explored in this chapter is a simplified and broad overview of iFTS architecture, which
we'll explore further in subsequent chapters.

Finally, we considered search quality concepts and measurements. In this chapter, we
introduced the terms and functions that define quality in terms of results.

In subsequent chapters, we’ll explore all these concepts in greater detail as we describe the
functional characteristics of the SQL Server iFTS implementation.

CHAPTER 2

Administration

Always have a backup plan.

—Miila Kunis (actress, That '70s Show)

SQL Server provides two ways to administer iFTS. You can use the SQL Server Management
Studio (SSMS) GUI wizards to create full-text catalogs and full-text indexes, or you can use T-SQL
DDL statements to manage iFTS. In this chapter, we’ll discuss both methods as well as some
advanced configuration features.

Initial Setup and Configuration

It’s relatively easy to set up and configure iFTS in SQL Server 2008. The first step is to ensure
thatiFTS is installed with your SQL Server instance. In the SQL Server installation wizard, you’ll
see a screen with the iFTS option—make sure this option is checked at install time, as shown in
Figure 2-1.

Install SQL Server 2008

Feature Selection

Select the teatures to install

Features: Description;
Instanice Featues Includes the fulliet search |
Databaze Erigine Sesvices enging, for 155t text search on
[7] SAL Serve Rephcation content stored in SEL Server
Serves Configuration [Fil test seaich
Datsbase Engine Configuration [sinalysis Servicas
Error and Usage Reporting [7] Reporting Senaces
Ready to Irstal Shared Featuies
. [¥] Clierit Toolz
Enstaliation Pr
) i i D Miczosalt Syne Framework.
ERTCES [¥] 5L Sesver Bosks anine

] Business intefigence Development Studio
[Irteneation Setvices

Shared companent directon: E \Program Files\Microsodl SOL Server I D

gock ([Mew>][Concel |[Hep |

Figure 2-1. Choosing the Full text search option during installation

19

20

CHAPTER 2 ADMINISTRATION

Tip Though not required by iFTS, we strongly recommend also installing, at a minimum, the SQL Client
Tools and SQL Server Books Online (BOL). The code samples shown in this book run in SSMS, which is
installed as part of the client tools. BOL is the official Microsoft documentation for SQL Server functionality,
including iFTS.

If you're performing an upgrade of a SQL Server 2005 instance with full-text catalogs
defined on it, the installer migrates your full-text catalogs to the newly installed SQL Server
2008 instance. In prior versions of SQL Server, full-text search functionality was provided by
the full-text engine service, which was external to the SQL Server query engine. In SQL Server
2008, all full-text search functionality is integrated into the query engine. The following items
still operate outside of the query engine, however:

¢ The full-text filter daemon host (fdhost.exe), which manages word breakers, stemmers,
and filters is run as a separate process. SQL Server uses the SQL Full-text Filter Daemon
Launcher service (fdlauncher.exe) to launch the filter daemon host. Both the filter
daemon host process and the launcher service are shown in Figure 2-2.

¢ The iFTS word breakers, stemmers, and filters are external to the query engine. Prior to
SQL Server 2005, full-text search relied on the operating system for these components.
In SQL Server 2008, each instance relies on its own set of word breakers, stemmers,
and filters.

* TheiFTS language-specific thesaurus files are stored in the file system separately. These
XML files are loaded when the server is started, or on request via the sys.sp_fulltext
load_thesaurus_file system stored procedure. We'll discuss thesaurus files in greater
detail in Chapter 8.

El windows Task Manager
Fie Cptions View ShutDown Help

|Appl_icaum;_: Processes | Parfiormanica | Natworking | Users |

|

Image Narma Liser Marna CPRU

alg.ene LOCAL SERVICE oo
Carss.ene SYSTEM o1
ctfran.exe Michael oo
dexplore,axe Michae! oo

dexplre.aw Michae| oo
fichae!
NETWOR

Michae!

e Bxe Michae| oo

MeDteSrvr ane NETWORK SERVICE oo 13,148 K
EErYiCas ane SYSTEM oo 3,368 K
SMes.ene SYSTEM ao K
spanky.exe SYSTEM oo 4,520k
SCLAGENT.EXE NETWORK SERVICE oo 1,536 K
sqlbrowser exe LOCAL SERVICE oo 2,236 K
solservr.gne RETWORK SERVICE oo 187,048 K
sohwriter exe SYSTEM oo 3429k

[lshow pracesses fram all users

Frocesses; 35 CPU Lsage; 11% Commit Charge: 490M / 1E

Figure 2-2. Full-text daemon host process

CHAPTER 2 ADMINISTRATION 21

In SQL Server 2005, full-text catalogs contained full-text indexes and weren’t created in the
database, but rather in a user-specified file path on the local hard drive. Beginning with SQL
Server 2008, full-text catalogs are logical constructs that are created in the database to act as
containers for full-text indexes, which are also created in the database. Because of this change,
the upgrade process will create a new filegroup on the local hard drive and migrate the full-text
catalog and its indexes to the SQL Server 2008 instance.

Enabling Database Full-Text Support

In previous versions of SQL Server, it was necessary to explicitly enable and disable full-text
search in the database with the sp_fulltext database system stored procedure. While this
stored procedure is still available in SQL Server 2008, it’s use is no longer required; in fact, the
procedure is deprecated. In SQL Server 2008, all user databases are full-text enabled by default,
and full-text support can’t be disabled on a per-database basis.

Another backward-compatibility feature is the IsFulltextEnabled database property,
exposed through the DATABASEPROPERTYEX function. This database property returns 1 if the
database is full-text enabled and 0 if not. This feature is also deprecated, since all user data-
bases on SQL Server 2008 are always full-text enabled. Because of this, you can’t rely on the
return value of the IsFulltextEnabled database property.

Caution Avoid using deprecated features such as sp_fulltext database and DATABASEPROPERTYEX
('your_database', 'IsFulltextEnabled") in your development work, since these and other depre-
cated features will be removed in a future version of SQL Server.

Creating Full-Text Catalogs

Full-text catalogs have changed in SQL Server 2008. While previous versions of SQL Server
stored full-text catalogs in the file system, SQL Server 2008 virtualizes the concept of the full-
text catalog. A full-text catalog is now simply a logical container for full-text indexes, to make
administration and management of groups of full-text indexes easier. You create new full-text
catalogs in two ways. The first option is to create a full-text catalog through the SSMS GUI.

Note You can’t create full-text catalogs in the tempdb, model, and master system databases.

The New Full-Text Catalog Wizard

The following three steps are required to create a full-text catalog in SSMS:

1. Expand the Storage folder under the target database in the Object Explorer window.

2. Once the Storage folder is expanded, right click on its Full Text Catalogs folder and
select New Full-Text Catalog... from the context menu, as shown in Figure 2-3.

22

CHAPTER 2

r
Connect~ | 38 & m T (2]

ADMINISTRATION

= C@ Storage

® C@ Programmabiity =
@ C3 Service Broker

=l] Mew FUl-Text Catalog. ..

2 [
2] : 5
Rebuid Al

@ oa b

® Ca Se Start PowerShel
@ (@ Repol Reports ,
& [J Repo
@ (@ test Refresh

Figure 2-3. Selecting the New Full-Text Catalog... menu option in SSMS

3. After you select New Full-Text Catalog... from the context menu, SSMS presents you
with the New Full-Text Catalog window, as shown in Figure 2-4.

Seled o page
2 General

&z New Full-Text Catalog - iFTS_Books

B Senpt = M Help

Server
SQLZ008

Connection
S0OL2008WMichas!

2! \View connection properties

Feady

Fulk-text catalog name,
Owner
Options -
et as default catalog

Accent sensitivity:

() Sensitive

@) Insensitive

|Book_car

[dba

I [Cancal

Figure 2-4. Filling out the New Full-Text Catalog window

As shown in Figure 2-4, we’ve specified the following options:

¢ The Full-text catalog name has been set to Book_Cat. This name must be a valid SQL

identifier.

* The Owner has been set to dbo, the user specified in the db_owner role for this database.
This owner must be a valid database user or role.

CHAPTER 2 ADMINISTRATION 23

* The Set as default catalog option has been checked in the example. When checked, this
option indicates that anytime a full-text index is created in the database without a target
full-text catalog explicitly specified in the CREATE FULLTEXT INDEX statement, the full-text
index will be created in this catalog.

* The Accent sensitivity setting has been set to Insensitive, indicating that full-text
indexing should be insensitive to accents. This means that words such as resumé and
resume, which differ only in their accent marks, will be treated as equivalent by full-text
search. Turning off search accent sensitivity returns accent-insensitive matches. Basically
any diacritic marks in the search term and indexed word are stripped out, so accent-
insensitivity doesn’t necessarily return expected results for languages that are heavy on
diacritic marks.

The CREATE FULLTEXT CATALOG Statement

The second way to create a full-text catalog is through the T-SQL CREATE FULLTEXT CATALOG
statement. Listing 2-1 shows the T-SQL statement that creates a full-text catalog using all the
same options as in the previous SSMS GUI example.

Listing 2-1. Creating a Full-Text Index with T-SQL

CREATE FULLTEXT CATALOG Book_ Cat
WITH ACCENT_SENSITIVITY = OFF

AS DEFAULT

AUTHORIZATION dbo;

In addition to the options shown, you can also specify a filegroup on which to create the
full-text catalog with the ON FILEGROUP clause. You might want to create a separate filegroup on
a separate hard drive for improved performance.

Tip While you can still specify the IN PATH clause of the CREATE FULLTEXT CATALOG statement for
backward compatibility, SQL Server 2008 ignores this clause.

SQL Server provides the ALTER FULLTEXT CATALOG statement. This allows you to mark an
existing full-text catalog as the default with the AS DEFAULT option, rebuild an entire full-text
catalog with the REBUILD clause (optionally changing the accent-sensitivity settings), or initiate
a master merge and optimization of indexes in the full-text catalog with the REORGANIZE clause.
A master mergeis the process by which SQL Server merges smaller index fragments into a
single large index. A rebuild or master merge of a full-text catalog may take a considerable
amount of time depending on the amount of indexed data. Listing 2-2 initiates a rebuild of the
full-text catalog created in Listing 2-1.

Listing 2-2. Rebuilding a Full-Text Catalog

ALTER FULLTEXT CATALOG Book Cat
REBUILD WITH ACCENT SENSITIVITY = OFF;

Ij_vww.al | itebooks.cogl

http://www.allitebooks.org

24

CHAPTER 2 ADMINISTRATION

The DROP FULLTEXT CATALOG statement deletes an existing full-text catalog. You can’t drop
a full-text catalog that contains any full-text indexes.

Upgrading Full-Text Catalogs

Since full-text catalogs in prior versions of SQL Server were stored in the file system, not in the
database itself, upgrading an existing full-text catalog involves essentially moving the full-text
catalog data from the file system into the database. An full-text catalog upgrade is required if
you do any of the following:

* Perform an upgrade of a SQL Server instance

¢ Back up a SQL Server 2000 or 2005 database and restore it to a SQL Server 2008 instance
» Detach an existing database and attach it to a SQL Server 2008 instance

* Copy a database with the SQL Server Copy Database wizard

All of these SQL Server upgrade methods are detailed in BOL.
The iFTS team has given us a number of options for upgrading SQL Server 2000 and 2005
full-text catalogs, including the following:

e Import full-text indexed data: This option directly imports the data from your existing
full-text catalog into your SQL Server 2008 full-text indexes. This is the default option
and will normally be the fastest upgrade path. However, there have been improvements
to several of the SQL Server 2008 word breakers and stemmers, and they may generate
different output than their SQL Server 2005 counterparts. Table 2-1 lists the languages
that use the same word breakers as SQL Server 2005. If your existing full-text catalogs use
only the languages listed in Table 2-1, you can safely import your full-text indexed data.

Table 2-1. Languages with Identical Word Breakers in SQL Server 2005 and 2008

Language LCID
Chinese (Hong Kong) 3076
Chinese (Macau) 5124
Chinese (Singapore) 4100
Danish 1030
English 1033
Korean 1042
Polish 1045
Simplified Chinese 2052
Thai 1054
Traditional Chinese 1028
Turkish 1055

UK (International) English 2057

CHAPTER 2 ADMINISTRATION

* Reset your full-text catalogs: This option deletes the existing full-text catalogs for the
database you're upgrading. This method turns off change tracking and automatic popu-
lation for your full-text catalog. Use this when you want to schedule a full population of
an upgraded full-text catalog for off-peak hours.

» Perform full population: This option rebuilds your full-text catalog, kicking off a full
population of the full-text catalog after the upgrade. Although this method guarantees
that all your full-text data will be indexed using the most current SQL Server 2008 word
breakers you have installed, full population can be resource-intensive for large full-text
catalogs.

Creating Full-Text Indexes

The full-text index is the basis of iFTS. When you perform a SQL Server iFTS query, the query
engine uses the full-text index to quickly locate relevant rows. SQL Server uses a word-level,
inverted index data structure that stores information about the indexed word, the location of
the word within the indexed data, and the primary key referencing the proper row in the source
table. As with full-text catalogs, SQL Server 2008 provides two options for creating full-text
indexes: an SSMS GUI wizard and T-SQL statements. Words are stored in the index in Unicode
format, in lowercase. The decision to store them in lowercase is for display reasons, because
lowercase words are easier to read than all-uppercase words.

The Full-Text Indexing Wizard

To use the SSMS GUI to create a full-text index, expand the Tables folder under your database
in the Object Explorer and right-click on the target table. To access the Full-Text Indexing
Wizard, choose the Full-Text index » Define Full-Text Index... option from the pop-up context
menu, as shown in Figure 2-5.

9.t' FEa TE

= [§ FT5_Books ~
@ @ Database Diagrams
= @ Tables
& @ Svystem Tables
@3
sa@d | NewTabke..,
aad § Diesign

@3 I Sedect Top 1000 Rows Define Ful-Taxt Irdex.h_ _]
#3d 3 Edt Top 200 Rows ST
e | Serpt Tabe s ' Tesh e
— Wiew Dependencies
@ 3 d Ful-Textindex »
CR=He i r—
Storage v
@ 3d |

@ =d Poilicies 3

Start Powershel

Reports 3

Renarme !
Delete Anply Tracked Change
Refresh Start PowerShel

| Properties Fraperte

Figure 2-5. Accessing the Create Full-Text Index Wizard in SSMS

25

26

CHAPTER 2 ADMINISTRATION

A splash screen appears, welcoming you to the Full-Text Indexing Wizard, as shown in
Figure 2-6. You can disable the splash screen for future invocations of the wizard by checking
the appropriate box.

F Full-Text Indexing Wizard

* Welcome to the SQL Server Full-Text

a Indexing Wizard
p z This wizard helps you create a full-text indexing catalog for your
database, With this wizard you can

»’5-" Select a table or view to be indexed.

Select the columns 1o be indexed
Add database table or views to an existing catalog

You must be an owner of the table or view to be indexed to complete
this wizard,

El Do not show this stanting page again

Figure 2-6. Full-Text Indexing Wizard splash screen

Click Next to move past the splash screen, and follow the wizard’s instructions:

1. Select a single-column unique index defined on the table. The unique index is used by
the full-text index to relate index entries back to the source table. It’s best to select an
int primary key or unique index to fulfill this function, as we've done in Figure 2-7.

2. Next, select the columns from the table that you want to add to the full-text index, as
shown in Figure 2-8. All eligible columns are listed, including character, Unicode,
binary, and large object (LOB) data type columns.

3. In Figure 2-8, we've chosen to add the Book_Content and Book_Name columns to the full-
text index. The Book_Content column is defined as a varbinary(max) column. When you
use avarbinary column to hold your indexed content, you must also define a type column
that declares the type of content held in the varbinary column. In this example, we've
chosen the Book_File Ext column as the type column. This column contains the file
extensions associated with the documents in the full-text indexed varbinary column
(in this case, Book_Content). The Book File Ext column contains entries such as .doc for
Microsoft Word documents, . txt for plain text documents, and . xm1 for XML documents,
among others.

4. On this screen, we've also chosen the English language word breaker. All the columns
you add to the full-text index must use the same language word breaker or your full-text
queries will return errors.

CHAPTER 2

E Full-Text Indexing Wizard

Select an Index
You must select a unigue

index for this table.

Unigue Index:

This index poses a unigue constraint on a single tableAvdew column and is used to paricipata
in joins using the S0L Servar Ouery Processor

i) Only valid indexes are available

F Full-Text Indexing Wizard

Select Table Columns

ful-text querias

Awvailable Columns 4
Book Class_Code
Book_Caontent
Book_File_Ext
Book_Image
Book_Image_MName
Book_Mame

OROOOoEO

Book_Subclass_Code

Select the character-based or image-based columns you want to be eligible for

Language for Word Breaker Type Column

English Book_File_Ext

English v

Franch o~

German
Traditional Chinese
Catalan

Bulganan
Arabic
MNeutral

il

[< Back][et = I Finigh =>|

Figure 2-8. Selecting table columns for the full-text index

ADMINISTRATION

27

28

CHAPTER 2 ADMINISTRATION

5. Figure 2-9 shows the next step in the wizard—selecting a change tracking option. The

choices include the following:

* Automatically: Changes are tracked automatically and the full-text index is updated

automatically. The automatic updating of the full-text index isn’t necessarily imme-
diate, and there may be a delay between when a change is made and when the full-
text index is updated. This option is useful for situations in which you don’t expect a
large volume of changes.

* Manually: Changes are tracked automatically by SQL Server, but no changes are

applied to the full-text index until you start index population with the appropriate
ALTER FULLTEXT INDEX statement. Manual change tracking allows SQL Server to track
changes, even during peak server usage periods, while allowing you to schedule
regular updates for off-peak hours.

Do not track changes: SQL Server doesn’t track changes and doesn’t update the full-
text index. You must manually start a population with the ALTER FULLTEXT INDEX state-
ment to update your full-text index. This option is best used when the majority of your
data changes at discrete intervals, for example if you have an online store that changes
its product descriptions once a month.

6. For this example, we've chosen to let SQL Server automatically track changes and apply

updates to the full-text index.

Select Change Tracking

Choose how updates to tables and views are tracked

Track changes on this table/view as they occur:

@ Altomatically
O Manusally

O Do not track changes

start full populstion wher index s crested

E Full-Text Indexing Wizard |:"E_i|g|

i) ‘When vou define sutomatic or manual change tracking. & full population of the index occurs. To
avoid 8 population atthe end of this wizard, select tha Do Not Track Changes option, and clear
the Start Full Fopulation When Index |s Created checkbox.

T [

Figure 2-9. Selecting the change tracking option in the Full-Text Indexing wizard

CHAPTER 2 ADMINISTRATION 29

7. The wizard asks you to select a full-text catalog in which to create the index, a filegroup,
and a stoplist (see Figure 2-10). If you don't have an existing full-text catalog, the wizard
allows you to create one in this step. Unless you choose another filegroup to contain
your full-text index, the wizard uses the default filegroup.

8. The wizard also defaults to the system stoplist, which is a list of words ignored by word
breakers. The system stoplist contains many simple words that are normally considered
unhelpful to full-text search, such as a, the, and and.

E Full-Text Indexing Wizard |:|[E"Z|

Select Catalog, Index Filegroup, and Stoplist -

“ou must select an existing full-text catalog or create one for this database

If this is & large table or view, or if the chosen full-text catalog has indexed or other large tables,
consider assigning this table or view its own full-text catalog

Select fulFtext catalog.

[[] Create a new catalag
Jew cataleg

Accant ssnsitiaty, sensitive

Select index filegroup <default> v

Sealact full-text stoplist: | ¢systam> -

(o) |

Figure 2-10. Choosing a catalog, filegroup, and stoplist in the wizard

9. The next screen of the wizard, shown in Figure 2-11, allows you to define a population
schedule for your full-text catalog or index. This step is only necessary if you aren’t
using change tracking (the Do not track changes option). We'll describe this feature in
greater detail in the “Scheduling Population” section later in this chapter.

10. The wizard gives you a summary screen that allows you to view all the options you've
selected. This gives you a chance to hit the Back button to change your full-text indexing
wizard options, or confirm your index creation options and build the full-text index by
pressing the Next button. The summary screen is shown in Figure 2-12.

11. The final screen of the wizard shows the progress of the full-text index creation,
including a final success or failure notice at the end of the creation attempt. Figure 2-13
shows the final Full-Text Indexing Wizard progress and status screen.

30

CHAPTER 2 ADMINISTRATION

F Full-Text Indexing Wizard

Define Population Schedules {Optional)
Create or modify the population schedule for this full-text catalog 1
i A
MName Population Type Enabled Description
[MNew Table Scheduls] [MNew Catalog Schedule] Ediit alste
(oo J[o>]| Fmen>

Figure 2-11. Defining population schedules in the wizard

F Full-Text Indexing Wizard

Full-Text Indexing Wizard Desecription =
Summary description of work to be parformed by the Full-Text Indexing VWizard. [

The following actions will be performed:

& Full-Text Indexing Wizard Description
& Selected table or view
Database iIFTS_Books
Table: Book
Selected unigque ndex
Unigue index: PE__Texs_ 4FEZCIF4117FI094
& Selectedtable columns
Book_Content
Book_MNeame
Selected change tracking options
Automatically rack changes on this tablefview as they occur
= Selected catalog, index filegroup, and stoplist
Existing catalog: Book_Cat
Existing indexfilegroup: <default»
Exsting stoplist <system»
Population schedules

i

i

Figure 2-12. Full-Text Indexing wizard summary screen

F Full-Text Indexing Wizard

CHAPTER 2

Full-Text Indexing Wizard Progress
Click Stop to interrupt the operation.

@ 1 Total 0 Error
SuECRss 1 Success 0 ‘Warning
Datails:

| Adtion Status Message |
|a Create full-taxt index on iIFTS_Books Book Success

Close

Figure 2-13. Final wizard progress and status screen

ADMINISTRATION

When the wizard progress screen indicates success with a green checkmark icon, your
full-text index has been successfully created. You can verify this by expanding the Storage »
Full-Text Catalogs folder under the target database and right-clicking on the chosen full-text
catalog. When the pop-up context menu appears, choose Properties and look at the Tables/
Views page in the Full-Text Catalog Properties window. This window shows all full-text indexes
that are in the full-text catalog, with additional details about the full-text indexes. Figure 2-14
shows the Book Cat full-text catalog properties, featuring details about the full-text index just

created on the Book table.

i Full-Text Catalog Properties - Book_Cat
ekt o egn et + Citop
£ Gnomsl |

& Tablésiaws

& Populatan Schedule

Oigject Hame 4
BE dih Cont

tor_[irth_Place

ter_Information
o _Finle
oo Date_Type
| k3 dooFils Ex
| Commucion [i
Senmr) i o
SOLH0E Selected objocy propertios
Connechosn i Inlwe
SOLIB0MMichas!
% \igw connaction properiiag Eligila cohumns:

All gzl tabilehtew objscts i s detabaie

Tablafnew objeds assgned to the
ooy

&| | Dbp.nu. Mame) |
IE]i.IMh-:]

(=]
|

[l Tatlo iy fulkten onsblod

| Auilably Columns 4 Languag for Word Br_| Dt Typs Column E|
e 2 S =
Fieady m 1 E |
Track changes
&) Muaimatic () Manual () O not track changes

Figure 2-14. Full-Text Catalog Properties for Book_Cat catalog

31

32

CHAPTER 2 ADMINISTRATION

The DROP FULLTEXT INDEX statement drops a specified full-text index from the database.

FULL-TEXT METADATA

SQL Server creates and stores a lot of metadata around your full-text indexes in several internal tables. You
can’t directly query these internal tables, as they’re exclusively for SQL Server’s use. There are two main
internal tables that are specific to iFTS metadata:

e The sys.fulltext index_map internal table stores the mappings between full-text key columns
and internal document IDs that uniquely identify documents.

e The sys.fulltext_catalog_freelist internal table stores unused document IDs.

In addition, SQL Server creates several more internal data structures to support individual full-text
indexes. You can view the metadata for these internal data structures in tabular format with a query like the
following that uses the sys.internal tables catalog view:

SELECT
SCHEMA NAME(t.schema_id) AS user table schema,
OBJECT_NAME(fti.object id) AS user table,
fti.object id AS user table name,
it.name AS internal table name,
it.object _id AS internal table id,
it.internal type desc

FROM sys.internal tables AS it

INNER JOIN sys.fulltext indexes AS fti
ON it.parent id = fti.object id

INNER JOIN sys.tables t
ON t.object id = fti.object id

WHERE it.internal type desc LIKE 'FULLTEXT%'

ORDER BY user table;

The results might resemble the following figure:

As you can see, SQL Server creates several types of iFTS-specific internal tables. The name of each
internal table has the object id of the user table it’s associated with appended to it. We’ll discuss DMVs,
DMFs, catalog views, and other methods of accessing iFTS-specific metadata in greater detail in Chapter 9.

CHAPTER 2 ADMINISTRATION

The Docld Map

You can use most any indexable data type as the unique index on your full-text indexed table.
You can use a uniqueidentifier or varchar column, for instance. However, when you define
the unique index using a non-int data type, SQL Server has to create a document ID (DocId)
map that maps your unique index values to internally managed int values. This translates into
an additional step that the query engine must perform in your full-text search queries, making
them less efficient than they could be. If you define the unique index on an int column, SQL
Server can use the column value as the DocId directly without an intermediate mapping step.
This can result in a significant increase in efficiency, particularly when you're indexing a table
with a large number of rows. We strongly recommend using an int column as your unique
index for purposes of full-text indexing.

The CREATE FULLTEXT INDEX Statement

You can also create full-text indexes on tables or indexed views via T-SQL with the CREATE
FULLTEXT INDEX statement. Scripting allows you to automate full-text index creation and gives
you the ability to apply the same full-text index across multiple databases and environments.
For instance, it's not uncommon to create a full-text index in a development environment, test
it, and then re-create the same full-text index in a user acceptance testing (UAT) environment.
Once the full-text index has been tested in UAT, it can be recreated in a production environ-
ment. Listing 2-3 shows a T-SQL script that creates and enables the same full-text index on the
Book table that we previously demonstrated with the Full-Text Indexing Wizard.

Listing 2-3. Scripting Full-Text Index Creation

CREATE FULLTEXT INDEX ON dbo.Book

(
Book Content TYPE COLUMN Book File Ext LANGUAGE English,
Book Name LANGUAGE English

)

KEY INDEX PK_Book

ON

(
Book Cat

)
WITH

(
CHANGE_TRACKING = AUTO,
STOPLIST = SYSTEM

);

Go

ALTER FULLTEXT INDEX
ON dbo.Book ENABLE;
GO0

Ij_vww.al | itebooks.cogl

33

http://www.allitebooks.org

34

CHAPTER 2 ADMINISTRATION

The CREATE FULLTEXT INDEX statement shown in Listing 2-3 begins by indicating the table
you wish to create the index on, followed by the columns to index in parentheses.

CREATE FULLTEXT INDEX ON dbo.Book

(
Book_Content TYPE COLUMN Book File Ext LANGUAGE English,

Book_Name LANGUAGE English
)

Note You can use language keywords (such as Eng1ish) or LCIDs in some situations, for example in the
CREATE FULLTEXT INDEX statement LANGUAGE clauses. The LCID equivalent for English is 1033.

The Book_Content column definition in the example uses the TYPE COLUMN clause to define
the type of data stored in each corresponding row of the Book table. The Book_File Ext column
contains a filename extension to indicate the type of content in the Book_Content column. The
value of the Book_File Ext column determines which filter iFTS applies to the content. A value
of .docintheBook File Ext column, forinstance, means that the Book Content column contains
a Microsoft Word document, while a value of .xml indicates an XML document.

Tip You can retrieve the entire list of document types supported by an instance of SQL Server 2008 by
querying the sys.fulltext document types catalog view.

The LANGUAGE clause of the column definitions specifies English, or Language Code Identifier
(LCID) 1033, as the language to be used. You can retrieve the entire listing of supported full-text
languages and LCID codes by querying the sys.fulltext languages catalog view.

The KEY INDEX clause specifies which unique index on the Book table iFTS will use to relate
full-text index entries back to the source table. In this instance, we’ve chosen to use the int
primary key. The ON clause that follows specifies which full-text catalog this full-text index will
be created on—in this example the Book_Cat catalog:

KEY INDEX PK Book
ON

(
)

Book Cat

The WITH clause in the example sets the change-tracking mode for the full-text index. In
this case, we've set it to AUTO. The STOPLIST option has also been set to SYSTEM in the example:

WITH

(

CHANGE _TRACKING = AUTO,
STOPLIST = SYSTEM

)

CHAPTER 2 ADMINISTRATION

The available options for CHANGE_TRACKING are AUTO, MANUAL, and OFF, each corresponding
to the similarly named options in the Full-Text Indexing Wizard. The OFF mode has an optional
NO POPULATION clause, which indicates that the full-text index shouldn’t be populated after
creation. While your index will be queryable, no results will be returned in your queries, as
nothing has been indexed yet. If you set change tracking to OFF with the NO POPULATION clause,
you must manually start population of your full-text index with the ALTER FULLTEXT INDEX
statement.

The STOPLIST option can be set to one of SYSTEM, OFF, or the name of a user-created stoplist,
indicating the system stoplist, no stoplist, or a user-defined stoplist, respectively.

The final ALTER FULLTEXT INDEX statement includes the ENABLE clause to enable the full-
text index after it’s created:

ALTER FULLTEXT INDEX
ON dbo.Book ENABLE;

Full-Text Index Population

Once full-text indexes are created, there’s the small matter of populating them. When full-text
indexes are created, they're automatically populated unless you create them with the CHANGE _
TRACKING = OFF, NO POPULATION option. Even after a full-text index is created and initially
populated, however, it still needs to be updated from time to time. We’ll discuss full-text index
population in this section.

If you create a full-text index with change tracking set to AUTO, as we did in our example,
SQL Server handles the details of tracking changes to the base table and updating the full-text
index on an as-needed basis. You may determine that the overhead associated with automatic
change tracking is too costly for your system. You can reach this decision for a variety of reasons—
if you expect full-text index change tracking to consume too many server resources during peak
periods of server activity, for instance. In that case, you can set the CHANGE_TRACKING option to OFF
or MANUAL and begin full-text index populations with the ALTER FULLTEXT INDEX statement.

SQL Server provides three types of full-text index populations through the ALTER FULLTEXT
INDEX statement: full population, incremental population, and update population.

Tip Ifa full-text index population is in progress when you try to start a new population, SQL Server returns
a warning message and doesn’t start the new population. The population that is currently in process continues
unaffected though.

Full Population

The START FULL POPULATION clause of the ALTER FULLTEXT INDEX statement starts a full popula-
tion of your index. When you start a full population on a full-text index, SQL Server retrieves
every row of the source table or indexed view and adds all entries to the index. A full population
can cause excessive locking during the index process, which might conflict with user queries
and DML statements, since the full-text engine must access every row of the source table to
populate the index. Normally, a full population is run immediately after full-text index creation

35

36

CHAPTER 2 ADMINISTRATION

and might be scheduled at regular intervals (normally off-peak hours) if you've chosen to set
change tracking to MANUAL or OFF. A full population on a table that already has a populated full-
text index won’t break the existing full-text index—it will still be queryable while the new full
population is in process. Listing 2-4 demonstrates how to start a full population on a full-text
index.

Listing 2-4. Starting Full Population of a Full-Text Index

ALTER FULLTEXT INDEX ON dbo.Book
START FULL POPULATION;

Incremental Population

When you start an incremental population with the START INCREMENTAL POPULATION clause of
the ALTER FULLTEXT INDEX statement, the population process retrieves only the rows modified
since the last full-text index population completed. It then has to enumerate all rows in the
table to determine which rows have been deleted and remove references to these rows from
the full-text index. If a large percentage of your data has changed, incremental populations are
generally faster than full populations, as they only make one pass of the base table. If you encounter
excessive server resource usage or user query and DML statement locking, you might decide to
schedule full populations or update populations for off-peak hours instead of using incremental
populations with AUTO change tracking.

To use the incremental population option, the source table must have a rowversion data
type column. If the table doesn’t have a rowversion column and you specify incremental popu-
lation, SQL Server will start a full population. Note that when you initially start change tracking,
a full population will be done. If you subsequently kick off change tracking on a table, an incre-
mental population may be done instead of a full-population if the table has a rowversion
column and a prior full population has completed.

Tip The rowversion data type is a synonym for the timestamp data type. The name timestamp for
this data type is deprecated. You should use the name rowversion in future development.

When you start an incremental population, SQL Server uses the rowversion column of the
base table or indexed view to determine which rows have changed since the last population. In
the incremental population strategy, SQL Server only considers rows that have changed since
the last population when updating the full-text index. Listing 2-5 shows how to start an incre-
mental population.

Listing 2-5. Starting Incremental Population of a Full-Text Index

ALTER FULLTEXT INDEX ON dbo.Book
START INCREMENTAL POPULATION;

CHAPTER 2 ADMINISTRATION

Update Population

You can start an update population with the START UPDATE POPULATION clause of the ALTER
FULLTEXT INDEX statement. An update population (formerly called a change-tracking population
in prior releases of SQL Server) relies on a record of the updates, inserts, and deletes to the base
table or indexed view, which is maintained by SQL Server between populations. These changes
are maintained by SQL Server in a change-tracking index. When you start an update popula-
tion, SQL Server applies all the changes in the change-tracking index to the full-text index. In
order to use update populations, your full-text index needs to be set to MANUAL change tracking.
Update populations don’t require a rowversion column like incremental populations do. Again,
if you're using an update population and are encountering excessive locking or resource prob-
lems, you may decide to schedule your populations for off-peak hours. Listing 2-6 demonstrates
how to start an update population.

Listing 2-6. Starting Update Population of a Full-Text Index

ALTER FULLTEXT INDEX ON dbo.Book
START UPDATE POPULATION;

Additional Index Population Options

You can also stop, pause, or resume a population with the STOP POPULATION, PAUSE POPULATION,
and RESUME POPULATION clauses of the ALTER FULLTEXT INDEX statement. The STOP POPULATION
clause stops any population in progress, but allows auto change tracking to continue. (To stop
change tracking, you must use the SET CHANGE_TRACKING OFF option.) PAUSE POPULATION pauses
a full population, and RESUME POPULATION resumes a previously paused full population. The
index will remain queryable while the full-text population has been stored or paused. These
two options are only applicable to a full population.

The ALTER FULLTEXT INDEX statement also allows you to alter the change-tracking mode for
your full-text index with the SET CHANGE_TRACKING clause. If your full-text index has change
tracking turned off, for instance, you can change it to AUTO or MANUAL with this clause.

ALTER FULLTEXT INDEX also provides the ENABLE and DISABLE clauses to enable or disable a
full-text index, respectively. You can change the full-text stoplist via the SET STOPLIST clause,
and can add columns to an index via the ADD clause or drop columns with the DROP clause.

Catalog Rebuild and Reorganization

In addition to managing full-text index populations on an individual basis with the ALTER
FULLTEXT INDEX statement, you can use ALTER FULLTEXT CATALOG to rebuild or reorganize an
entire full-text catalog. Rebuilding a full-text catalog repopulates every full-text index that the
catalog contains. Listing 2-7 shows how to rebuild a full-text catalog.

Listing 2-7. Rebuilding a Full-Text Catalog

ALTER FULLTEXT CATALOG Book Cat
REBUILD WITH ACCENT_SENSITIVITY = OFF;

37

38

CHAPTER 2 ADMINISTRATION

In this example, the optional WITH ACCENT_SENSITIVITY clause of the REBUILD clause sets
the accent sensitivity for the catalog to OFF. You can use this option to change the accent sensi-
tivity of your full-text catalog.

During the process of populating a full-text index, SQL Server can generate multiple small
indexes, which it subsequently combines into one large index—a process known as a master
merge, or index reorganization. You can tell SQL Server to perform a master merge to optimize
internal full-text index and catalog structures. Periodic reorganization can improve full-text
index performance, particularly if your catalog changes frequently. Listing 2-8 demonstrates
reorganization of a full-text catalog.

Listing 2-8. Reorganizing a Full-Text Catalog

ALTER FULLTEXT CATALOG Book Cat
REORGANIZE;

Scheduling Populations

You can schedule full-text index populations using the Full-Text Indexing Wizard, as we
previously mentioned in this chapter. When you use the Full-Text Indexing Wizard to create a
schedule, it creates a SQL Server Agent job to perform full-text index population according to
the schedule you define. Figure 2-15 shows the wizard schedule window, in which we’ve
defined a recurring population task that will kick off every day at 1 a.m.

EE New Full-Text indexing Table Schedule

Mamea. EBOOK FulkTesxt Index Fopulation | s in Sehedils

Schedule fype; | Ricuming et | [¥] Enabled

Fragueancy

Clocurs: | Daily v:|

Fecurs every ‘ _:i dels)

Daily frag

(@ Oceurs onca at | 1:00:00 &AM -

O Oceurs evary f tiour(s) Starting at

Ending at:

Duration
Stant date: | & 7/z008 ¥ (O En date:

@ Mo end date

Summary

[Ok H Carcal ” Helg]

Figure 2-15. Full-Text Indexing Wizard schedule wizard

CHAPTER 2 ADMINISTRATION

Note Since the Full-Text Indexing Wizard schedules jobs via SQL Server Agent, you need to ensure that
the SQL Server Agent service is turned on. You can verify this with the SQL Server Configuration Manager
utility or in the Control Panel under Services.

If you've already created your full-text indexes, you can schedule your own SQL Server
Agent jobs to execute ALTER FULLTEXT INDEX statements to populate them without going
through the Full-Text Indexing wizard GUI.

Management

SQL Server 2008 provides several tools to help you manage your full-text indexes and catalogs.
In this section, we’ll look at backing up SQL Server full-text catalogs and indexes, as well as
SQL Server Profiler events that are useful for iFTS management, performance tuning, and
troubleshooting.

Backups

Prior to SQL Server 2008, full-text catalogs and indexes were stored in the file system, separate
from their associated databases. In SQL Server 2000, you needed a separate strategy to back up
your full-text indexes separately from your databases. SQL Server 2005 also stored full-text
catalogs in the file system, but improved backups by allowing you to back up your catalogs with
the database.

SQL Server 2008 ups the ante by creating your full-text indexes and catalogs in the data-
base. This simplifies backing them up, since they’'re automatically backed up during normal
database backups. Listing 2-9 shows a simple BACKUP DATABASE statement that performs a full
database backup, including full-text catalogs.

Listing 2-9. Full Database Backup

BACKUP DATABASE iFTS_Books
TO DISK = N'C:\iFTS_Books\iFTS_ Books.bak'
WITH DESCRIPTION = N'iFTS Books backup example including full-text catalogs',

NOFORMAT,
INIT,
NAME = N'iFTS_Books-Full Database Backup',
SKIP,
NOREWIND,
NOUNLOAD,
STATS = 10;

You can restore your database, including full-text catalogs and indexes, with the RESTORE
DATABASE statement, as shown in Listing 2-10.

39

40

CHAPTER 2 ADMINISTRATION

Listing 2-10. Full Database Restore

RESTORE DATABASE iFTS Books
FROM DISK = N'C:\iFTS Books\iFTS Books.bak'
WITH FILE = 1,
NOUNLOAD,
REPLACE,
STATS = 10;

If you created your full-text indexes on a different filegroup, or if you have multiple full-
text indexes on separate filegroups, you can identify the filegroups that contain your full-text
indexes to perform filegroup backups and restores.

Tip Your first backup for a filegroup has to be a full file backup; subsequent backups of the filegroup can
be differential file backups.

Logs

The iFTS crawler keeps crawl logs in the MSSQOL\Log directory for each SQL Server instance.
These are text log files with names that begin with sqlft* and end with the extension .1log. The
crawl logs contain entries that give you information about full-text population start events,
stop events, and errors. The following are some sample crawl log entries:

2008-06-02 23:29:48.94 spid26s Informational: Full-text Full population
initialized for table or indexed view '[iFTS Books].[dbo].[Book]'

(table or indexed view ID '706101556', database ID '11'). Population
sub-tasks: 1.

2008-06-02 23:30:17.97 spid26s Warning: No appropriate filter was found
during full-text index population for table or indexed view
'[iFTS_Books].[dbo].[Book]"' (table or indexed view ID '706101556",
database ID '11'), full-text key value 0x34. Some columns of the row were not
indexed.

2008-06-02 23:30:18.01 spid32s Informational: Full-text Full population
completed for table or indexed view '[iFTS Books].[dbo].[Book]' (table

or indexed view ID '706101556', database ID '11'). Number of documents
processed: 25. Number of documents failed: 0. Number of documents that were
retried: 0.

This sample shows the initialization and completion of a full-text population. In between
is a warning that no appropriate filter was found for a specific entry (in this case an Adobe
Acrobat PDF file), so the indexer skipped it. The crawl logs are a useful tool for locating infor-
mation about specific iFTS population and indexing problems.

CHAPTER 2 ADMINISTRATION

SQL Profiler Events

SQL Profiler contains three full-text search events that you can view in the Trace Properties, as
shown in Figure 2-16.

Trace Properties er

General Events Selection]

Review selacted svents and event colmns o race. To see & complete list select the "Show all evenits® and “Show all columine”® options.

Events | Applicationta . | CfieniProces.. | Datohas | Datobaseba. | Dursti | EndTi.. | EvertSegue.. | Filsh &
Full tat
F FT.Craw Abonsd F =
W FT-Craw Stened ¥ =3
FF FT Crawt Stoppod W [
+ Locks
i k|
E | 2
-~ Broker — =
Inchides ewnint clasaes that are proccnd by Siervicn Broker. [+ Stanw &l gverits

[Sherw all gokirmees

—EwmtEp ATy i
The sequerce ol a gven event within the reguest. Column Eliters...
Al Organize Cokimns. ..
| Rusi I Canonl | (o |

Figure 2-16. Full-text events in SQL Profiler

The events you can trace in SQL Profiler are related to full-text index population, namely
the process known as the full-text index crawl. The crawl process performs the following iFTS
tasks:

1. The crawl first retrieves rows from the base table or indexed view.

2. Once rows are retrieved, a binary stream is sent to the IFilters, which extract text and
properties.

3. The IFilters send data to the word breakers, which tokenize the words in the columns
covered by the index.

4. Finally, the full-text index is populated with the tokenized words.

SQL Profiler can capture the following events that are useful for troubleshooting full-text
population issues:

* The FT:Crawl Started event is fired whenever a full-text population begins.

e The FT:Crawl Stopped event is fired whenever a full-text population stops because of a
successful completion or a fatal error.

e The FT:Crawl Aborted event is fired when there’s an error (usually a fatal error) during a
full-text population.

You can access these same events in Windows System Monitor (perfmon.exe) under the
SQLServer:Trace Event Statistics performance object.

41

42

CHAPTER 2 ADMINISTRATION

Tip In the event of a full-text population error, the SQL Server log, the crawl log, and the Windows Event
Log will contain additional information about the cause of the error.

System Procedures

SQL Server 2008 deprecates many of the FTS-specific system stored procedures that were used
in previous versions. Most have been replaced by catalog views and dynamic management
views and functions. In fact, there are only a handful of system stored procedures specific to
iFTS that aren’t deprecated in SQL Server 2008. The sp_fulltext service procedure changes
server properties related to full-text search on SQL Server. There are several properties that can
be changed or retrieved with the sp_fulltext service procedure, as shown in Table 2-2.

Table 2-2. The sp_fulltext_service Properties

Property

Description

load_os_resources

pause_indexing

update_languages

upgrade_option

verify signature

Determines whether SQL Server uses instance-specific or operating
systemwide word breakers, stemmers, and filters. This property can be
set to one of the following values:

0 = SQL Server uses only word breakers, stemmers, and filters specific to
the server instance. This is the default setting.

1=SQL Server uses operating system word breakers, stemmers, and filters.
This allows the use of Microsoft Indexing Service resources and language
types that don’t have instance-specific resources.

Allows you to pause or resume full-text indexing operations on a SQL
Server instance. This property can be set to one of the following values:

0 = Resume full-text indexing operations for the instance.
1 = Pause full-text indexing operations for the instance.
Updates the list of languages registered with iFTS.

Controls how full-text indexes are migrated during an upgrade from SQL
Server 2000 or SQL Server 2005. This property can be set to one of the
following values:

0 = Causes full-text catalogs to be rebuilt using SQL Server 2008 word
breakers.

1 = Resets full-text catalogs, causing the catalog contents to be emptied
and the full-text indexes to be disabled.

2 = Imports full-text catalogs without rebuilding them using SQL Server
2008 word breakers.

Enables or disables whether unsigned binaries (such as word breakers)
can be loaded by the full-text search engine. This property can be set to
one of the following values:

0 = Do not verify whether binaries are signed.

1 = Load only signed, trusted binaries. This is the default.

CHAPTER 2 ADMINISTRATION

The clean_up, connect_timeout, data_timeout, and resource_usage properties of the
sp_fulltext service procedure are all provided for backward compatibility, but they don’t
perform any function in SQL Server 2008. The values for these properties are always 0 in SQL
Server 2008. Avoid using these properties in SQL Server 2008. In addition, SQL Server provides
the system stored procedures listed in Table 2-3.

Table 2-3. Full-Text Search System Stored Procedures

Procedure Description

sp_fulltext_key mappings Returns the internal mappings between document identi-
fiers (DocIds) and full-text key values.

sp_help fulltext system components Returnsinformation about registered word breakers,
filters, and protocol handlers.

sp_fulltext load thesaurus file Loads language-specific iFTS thesaurus file.

sp_fulltext_pending_changes Returns unprocessed changes for a table that’s full-text
indexed using change tracking.

sp_fulltext service Sets full-text service properties for the SQL Server instance.

The remaining full-text search system stored procedures are deprecated. You should avoid
using them in future development work and instead use the catalog views and data manage-
ment views provided by SQL Server 2008.

Note we'll discuss full-text search-specific catalog views and dynamic management views in detail in
Chapter 9.

Summary

In this chapter, we covered several topics specific to the creation and management of full-text
catalogs and indexes. We talked about selecting full-text search in the SQL Server installation
wizard and some of the tasks the installation wizard takes during an upgrade from SQL Server
2000 or 2005. We then talked about how to create full-text catalogs and full-text indexes using
the SSMS wizards and scripted T-SQL statements.

Then we discussed full-text index population methods, including full population, update
population, and incremental population. We also presented catalog rebuild and reorganiza-
tion options and discussed scheduling population jobs with SQL Server Agent.

We rounded out this chapter with a discussion of some of the administration tools avail-
able for full-text search management. We discussed database backups, crawl logs, SQL Profiler
events, and system stored procedures. Many of the iFTS-specific system stored procedures
have been deprecated in SQL Server 2008 in favor of catalog views and dynamic management
views, which we’ll detail in Chapter 9. In the next chapter, we’ll discuss basic and advanced
full-text queries on SQL Server 2008.

Ij_vww.al | itebooks.cogl

43

http://www.allitebooks.org

CHAPTER 3

Basic and Advanced Queries

I did not look for any specific thing. I only hoped to find, and find I have, all that there
was, only some letters and a few memoranda . . .

—Bram Stoker’s Dracula

Once you've built and populated full-text indexes in your database, you can begin querying
them to retrieve relevant data. This chapter is designed to provide an introduction to the features
available through full-text search predicates and functions, and as a guide to the powerful
search query grammar of SQL Server iFTS. SQL Server provides powerful full-text search
querying capabilities, from the most basic phrase search to extremely complex searches
involving Boolean operators, proximity searches, and weighted search terms. We begin our
discussion of SQL Server iFTS with an introduction to the two available SQL Server search
predicates, CONTAINS and FREETEXT.

iFTS Predicates and Functions

SQL Server iFTS provides two search predicates, both based on SearchSQL, which is an exten-
sion to the SQL language promoted by the ISO and ANSI committees. These predicates are the
following:

e The CONTAINS predicate provides access to phrase search, proximity search, strict search,
and advanced query capability.

e The FREETEXT predicate provides fuzzy search and basic query capabilities.

Tip These two search predicates are supported by all Microsoft Search products, including Microsoft Index
Server as well as most other search engines.

45

46

CHAPTER 3 BASIC AND ADVANCED QUERIES

What is a predicate? Simply put, a predicate is a comparison operator in the WHERE clause of
a SQL statement. In SQL Server iFTS, predicates take a format similar to the SQL EXISTS predi-
cate, with no explicit comparison operators required, as shown in Listing 3-1.

Listing 3-1. Simple iFTS Queries

USE iFTS Books;
GO

SELECT b.Book_ID
FROM dbo.Book b
WHERE CONTAINS

(

*
)

N'fish and chips'
)5

SELECT b.Book_ID
FROM dbo.Book b
WHERE FREETEXT

(

*
)

N'love''s or money'

);

Tip The queries in Listing 3-1 work in the sample iFTS Books database available from the downloads
section of the Apress web site (www.apress.com).

As with other SQL statements, single quotation marks in search phrase strings must be
doubled up. Single quotes don’t need to be doubled if they’re coming from client applications
that pass search phrase strings as parameters to stored procedures and parameterized queries.
Take care when writing query phrases containing single quotation marks, as they’ll cause your
query to bomb with an error message similar to the following:

Msg 102, Level 15, State 1, Line 1

Incorrect syntax near 'm'.

Msg 105, Level 15, State 1, Line 1

Unclosed quotation mark after the character string ')

CHAPTER 3 BASIC AND ADVANCED QUERIES

UNICODE SEARCH PHRASES

Your search phrases should always be declared as Unicode (nvarchar, nchar). When you don’t declare them
as Unicode, SQL Server implicitly converts them to Unicode, so it’s a good idea to explicitly declare them as
Unicode from a performance perspective. Declaring them as Unicode also helps prevent parameter sniffing.
Furthermore, with the trend toward globalization, restricting your full-text-indexed columns to specific non-
Unicode collations can prove short-sighted and result in the need for a drastic and expensive system overhaul
down the line. We’ve used Unicode throughout the iFTS Books sample database to support the international
character sets used to store the documents and book metadata.

The functionality of the FREETEXT and CONTAINS predicates are also exposed by the rowset
functions, FREETEXTTABLE and CONTAINSTABLE. These are complementary functions that accept
parameters including a search phrase. Unlike their predicate counterparts, however, these
functions return rowsets consisting of two columns—a key column appropriately named KEY
and a rank column named RANK. The rowsets returned by these functions can be returned to the
client application or used server-side to join against the source table (or another related table).
You can sort the results in descending order to push the most relevant results to the top of the
result set. We'll explore the details of how these predicates work and the algorithms they use in
this chapter. We'll cover the FREETEXT predicate and FREETEXTTABLE function first, as they're the
simplest. We’ll then tackle the more advanced options available via the CONTAINS predicate and
CONTAINSTABLE function.

FREETEXT and FREETEXTTABLE

One of the most common problems DBAs have when deploying search applications is low
recall (the searches miss relevant results). The most common causes for this are that either the
content hasn’t been indexed correctly or the search phrase hasn’t been constructed appropriately.

The most common reason a searcher can’t find what she’s looking for is because the search
is being too strict—for example, the user’s searching for documents containing the word book
and frustrated when documents containing the word books aren’t returned, or when searching
for jog and the results don’t return documents containing the word jogging.

The FREETEXT predicate and FREETEXTTABLE function searches automatically expand your
search terms to include all noun conjugations (including plurals, gender, and case) and declen-
sions (verb forms) of the root of the original search term. So a search for the word jog is expanded
to a search for the following:

> jog
* jogging
* jogged

47

48 CHAPTER 3 BASIC AND ADVANCED QUERIES

A search for the word book is expanded to include the following:

* books
* booked
¢ booking
* book

In the case of the word book, both verb and noun forms are included. FREETEXT queries also
automatically apply all thesaurus expansions and replacements for the language being used in
the query, as well as the global thesaurus entries for all languages. As an example, you might
include thesaurus entries to expand the word jog to include the words run and sprint as well.
We’ll discuss thesaurus expansions and replacements in detail in Chapter 8.

Another feature of a FREETEXT query is that nearness, or separation distance, is factored
into rank. Nearness is a measure of how close individual search tokens are to one another in
the matching content. By default, a multitoken search using the CONTAINS predicate will only
return rows where the tokens or words are adjacent to one another—that is, there are no words
in between tokens. You can override this behavior with the NEAR operator or by including a
Boolean operator (AND, OR, or AND NOT) between search tokens. As an example, a default
CONTAINS search for University of California won’t match with University California, but in a
FREETEXT search it will match.

NEARNESS AND RANK

With regard to nearness and rank, the behavior of SQL Server 2008 iFTS has changed somewhat from SQL
Server 2005 FTS. In SQL Server 2008, the closer any two search terms are to one another, the higher the
ranking. As an example, the phrase dollar is not a sign has a three-word separation distance between the
terms dollar and sign. In SQL Server 2005, if the search token separation distance was greater than 3,978
words, the rows weren’t returned in search results. In SQL Server 2008, as long as all search tokens are in the
content, they will be returned in searches and nearness is factored into rank. We tested separation distances
up to one million words and confirmed this to be true.

FREETEXT is sometimes referred to as the “natural way to search”; however, many users
complain about FREETEXT, as it often returns far too many irrelevant results, and result retrieval
can be relatively slow. In actuality, FREETEXT is only marginally slower than CONTAINS searches,
and the perceived slowness of FREETEXT tends to be a result of the large number of documents
returned by a FREETEXT search.

Note Microsoft switched the default search type in its Indexing Service product from CONTAINS to
FREETEXT in version 2.0. That switch reportedly raised an inordinate number of support incidents reported
to PSS (Product Support Services, now called Customer Support Services) in which users complained about
irrelevant results. Before you implement a search solution using FREETEXT, ensure that it will be appropriate
for your users.

CHAPTER 3 BASIC AND ADVANCED QUERIES 49

In general, we don’t recommend using FREETEXT in search applications that serve up tech-
nical documentation or knowledge base articles where the keywords are generally technical
terms or nouns that don’t have verb forms. In other words, avoid using FREETEXT for keyword-
based searches. For catalogs or news service applications, FREETEXT is the recommended
method, as the searches tend to be phrase-based as opposed to keyword-based. As an example,
Google uses a FREETEXT-type algorithm for default searches. (Note that Google doesn’t use SQL
iFTS to power its searches, but rather a proprietary search engine.)

A FREETEXT search accepts up to three arguments. They are, in order:

e The first argument is a column list.
* You can qualify columns using two-part names.

* You can use the wildcard * character to indicate that all full-text-indexed columns
should be included in the search.

* You can use parentheses to enclose a comma-separated list containing multiple
column names.

¢ The second argument is the search phrase, which should be a Unicode string using the
appropriate iFTS FREETEXT or CONTAINS search predicate syntax.

e The third argument is an optional language setting specifier preceded by the LANGUAGE
keyword.

Listing 3-2 demonstrates a simple FREETEXT search on a single column of the dbo.Book
table, with results shown in Figure 3-1.

Listing 3-2. FREETEXT Search on a Single Column

SELECT b.Book_ID
FROM dbo.Book b
WHERE FREETEXT

(

*
)

N'mutton’

);

B Results
Book_ID

Figure 3-1. Results of FREETEXT single-column search

Alternatively, you can search on multiple specific columns as shown in Listing 3-3, with
results shown in Figure 3-2.

50

CHAPTER 3 BASIC AND ADVANCED QUERIES

Listing 3-3. FREETEXT Search on Multiple Columns

SELECT *

FROM dbo.Commentary c

WHERE FREETEXT

(
(c.Commentary, c.Article Content),
N'Aristotle’

);

[Resulls

Commentary_ID | Commentary Article_Cantent
1 ‘S : Hamlet is a tragedy by William Shekespeare, beli, <article><source><name>Wikipedia</n,
2 28 The Republic is a Socratic dislogue by Flato, writt. <article><sourca><name>\Wikipadia</n.

Figure 3-2. Result of multiple column FREETEXT search

In Listing 3-3, we specified the exact columns that we wanted to search. Note that we also
qualified columns using their two-part names: c.Commentary and c.Article Content. Though
this isn’t strictly necessary in our example, it’s useful to eliminate ambiguity when your queries
are joining multiple tables.

When you full-text index a table, as described in Chapter 2, only the columns that you
specify are actually included in the index. If you specify a column that isn’t part of the full-text
index in your search predicate, SQL Server will raise an error similar to the following:

Msg 7601, Level 16, State 3, Line 1
Cannot use a CONTAINS or FREETEXT predicate on column 'NonIndexedColumn' because
it is not full-text indexed.

Another option is to use the wildcard * symbol to search all full-text-indexed columns on
atable, as shown in Listing 3-4. Results are shown in Figure 3-3.

Listing 3-4. FREETEXT Query on All Indexed Columns

SELECT b.Book_ID
FROM dbo.Book b
WHERE FREETEXT

(

*
)

N'geometry'
);

CHAPTER 3 BASIC AND ADVANCED QUERIES

B Results
Book D

Figure 3-3. Result of FREETEXT query on all indexed columns

MULTIPLE LANGUAGE CODE ERRORS

Take care with language specifications when indexing your content. Normally, you’ll want to index all of the
columns in a table using a single language identifier or LCID. If you specify multiple LCIDs across different
columns of a single table, you can’t search them all in a single full-text search predicate. If your search query
and target table meet all of the following conditions, your query will fail:

e There are multiple full-text indexed columns in a query.
¢ The full-text indexed columns are defined to be indexed by different language word breakers.
e Alanguage is not specified in your query.

A query that fails for these reasons will generate an error message like the following:

Msg 7525, Level 16, State 1, Line 1
Full-text table or indexed view has more than one LCID among its
full-text indexed columns.

Chapter 5 delves into the concept of multilingual searches and explains how to circumvent this problem
and search in multiple languages.

Adding a Language Specification

The optional language argument consists of the LANGUAGE keyword followed by an LCID or
language name in single quotes. The language argument proves to be a common conceptual
stumbling block. This argument is intended to be used when you're storing multilingual
content in your full-text index columns and want to search the columns using a specific
language. The common assumption is that if you search in English (LCID 1033), only documents
written in English will be returned. The expectation among search users (and many developers)
is that SQL Server iFTS is clever enough to figure out the language of your query and only return
documents written in the language you specify. This is not the case.

51

52

CHAPTER 3 BASIC AND ADVANCED QUERIES

The results returned are actually documents that contain any of the stemmed versions of
your search phrase. A search on multilingual content will return all rows containing the search
phrase (and any thesaurus expansions or substitutions as well as any conjugations and declen-
sions of the search phrase).

As an example, if you search for gift, you'll get rows that contain the words gifted, gift, gifts,
and gifting. Giftin German, however, means poison. This means you'll get rows with English
content containing the word gift, but also rows in German that refer to the German word for
poison. Listing 3-5 demonstrates a FREETEXT search for books containing the word gift, specifying
English (LCID 1033) as the query language. Figure 3-4 shows that the results include German
(LCID 1031) content containing the word gift as well.

Listing 3-5. FREETEXT Search for “Gift”, with English Language Specified

SELECT b.Book_ID,
b.Book_LCID
FROM dbo.Book b

WHERE FREETEXT

(
b.Book_Content,
N'gift',
LANGUAGE 1033

)s

B Results

Book_|ID | Book_LCID

1 £ 1033
z 1033
3 1033
4 1033
5 g 1033
B 10 1033
7 11 1033
g 13 1033
g 15 1033
0 14 1031
il [P 1031
12 2B 1033
15 27 1033
14 28 1033
15 31 1033
16 32 1033
17 34 1033

Figure 3-4. English and German content returned by a
FREETEXT query with English language specified

CHAPTER 3 BASIC AND ADVANCED QUERIES

In the example, you’ll get some results that are exact word matches, but are completely
irrelevant and probably not in alanguage the searcher understands. The name for these classes
of words are false friends or false conjugates, not to be confused with wanderworts, which are
words that are spelled the same (or pronounced the same) in different languages and have the
same meaning (for example wine). We'll discuss false friends and wanderworts in greater detail
in Chapter 5.

Using the language parameter is the best option when you're forced to store multilingual
content in the same column, even though rows will be returned in a different language than
what the user is searching in. Note that you can add an LCID column to specify the language of
each row’s content, as we've done in the dbo.Book table. To return only German content, you
canadd aBook LCID = 1031 predicate to your WHERE clause in addition to specifying the language
argument.

The key to understanding the language argument is the fact that language rules are applied
during index time as well as at query time. These language rules are applied by the word breakers
that tokenize content. When you specify the language you want your content indexed by, the
appropriate language-specific word breaker is invoked at index time. You can specify this in
the wizard or by using the LANGUAGE clause of the CREATE FULLTEXT INDEX statement. If you don’t
use the LANGUAGE clause, the default full-text language setting for your server is used. You can
retrieve this setting via the sp_configure system stored procedure, as shown in Listing 3-6.

Listing 3-6. Retrieving the Server Default Full-Text Language
EXECUTE sp_configure 'default full-text language';

Keep in mind that certain filters override these settings if your content is stored in
varbinary(max) or xml columns. The word breakers for Microsoft Office documents, XML
documents, and HTML documents will override the default server settings and query-specific
options, and will instead defer to language-specific settings stored within these documents.
The word breakers for these types of documents apply language rules while extracting the
content, also performing some expansion of words. The simple expansion that’s performed at
index time is not as comprehensive as the word stemming that’s performed at query time. As
an example, the types of index expansions that are performed on English content can be
grouped into four categories, as follows:

1. Hyphenation: Words with hyphens are indexed as the base words, and then the base
words are concatenated. For example, the word data-basewill be indexed as data, base,
and database. (This hyphenated spelling of the word databasewas prevalent in academic
papers of the mid-to-late 20th century.)

2. Acronyms: Capitalized acronyms are indexed as the individual letters and as a unit. For
example, the acronym EB.I. is indexed as fbi, and f.b.i. On the other hand, fbiis indexed
only as fbi. The lowercase acronym f.b.i. is only indexed as the individual letters f, b, and
i. A search for the uppercase acronym EB.I finds documents containing EB.L, f.b.i., fbi,
and FBI A search for fb.i. will locate only documents containing fb.i. and EB.I

53

54

CHAPTER 3 BASIC AND ADVANCED QUERIES

3. Currency and numbers: Currencies are stored as the currency value and also using a
special nnCurrency format. The value $1.001is indexed as $1.00 and also as nnl$;
$1,23.45is indexed as $1,234.56 and nn1,234dd56. Non-currency numbers are indexed
as the number and also using a format known as nnNumber. The number 3.14159is
indexed as both 3.14158 and nn3dd14159. This indexing scheme helps maintain con-
sistency with other Microsoft search products that index numbers, to allow you to
perform value-based searches on them. In other Microsoft search products, you could
search for Word documents with a page count property greater than 100 pages. In SQL
Server, all indexed properties are treated as strings in your searches.

4. Date: If a date to be indexed follows the format MM/DD/YYYY or any variant of that
format (with the exception of dates with month names spelled out such as January 31,
2008), the date will be indexed in both a string format and a special ddDateformat. The
date 01/31/2008, for example, is indexed as both 01/31/2008 and dd20080131.

Notalllanguages follow the same rules for hyphenation and acronyms, however. For some
languages, compound words are indexed alongside alternate word forms. Indexing the German
word Haftzugsfestigkeitspriifungsprotokoll causes no less than six alternate word forms to be
indexed. The query in Listing 3-7 uses the sys.dm fts_parser DMF to display the alternate
words for Haftzugsfestigkeitspriifungsprotokoll. Results are shown in Figure 3-5. We’ll explore
the sys.dm_fts_parser DMF, and other useful views and functions, in Chapter 9.

Listing 3-7. Parsing a German Search Term with a German Word Breaker

SELECT *
FROM sys.dm fts parser
(

N'Haftzugsfestigkeitspriifungsprotokoll',

1031,

O)

0
);
B

special_term \display_term source_term OCCUMTEncE

1 | haftzugsfestigkeitsprufungsprotokoll | Haftzugsfestigkeitsprifungsprotokall 1
2 Exact tatch ;haft Haftzugsfestigkeitsprifungsprotokall 1
& Exact Match zugs Haftzugsfestigkeitsprifungsprotokall 2
4 Exact Match festigkeit Haftzugsfestigkeitsprifungsprotokall 3
& Exact Match prufung Haftzugsfestigkeitsprifungsprotokall 4
B Exact Match protokoll Haftzugsfestigkeitsprifungsprotokall 5

Figure 3-5. Alternate word forms of a single German word

Ij_vww.al | itebooks.cogl

http://www.allitebooks.org

CHAPTER 3 BASIC AND ADVANCED QUERIES

When you search for one of the alternate word forms shown in Figure 3-5, the source term
will be matched as well. Compound words aren’t exclusive to German,; they also exist in
Finnish, Swedish, and other languages. Each language may have different rules concerning
hyphenation and other specific word-breaking details.

The Dutch language, for instance, treats hyphenation differently than most other languages.
In mostlanguages, a hyphen implies that a word should be treated as a single unit, and the unit will
sometimes appear unhyphenated. As we described previously, the English word data-base is
indexed as data, base, and database. In Dutch, hyphenation is for the most part preserved, so
that kop-van-jutis indexed as three separate words: kop, van, and jut. There are some exceptions,
though, such as the word kop-hals-rompboerderij, which is indexed as kop-hals-rompboerderij,
kop-hals-romp, boerderij, kop-hals-rompboerderij, and kophalsrompboerderij. Listing 3-8
contains a few sample queries to illustrate Dutch hyphenation, with results shown in Figure 3-6.

Listing 3-8. Dutch Word Breaker Hyphenation in Action

SELECT
special term,
display term,
source_term,
occurrence
FROM sys.dm fts_parser
(
N'kop-van-jut',
1043,
OJ
0
)s
Go

SELECT
special term,
display term,
source_term,
occurrence

FROM sys.dm fts_parser

(
N'pianiste-componiste’,
1043,
0,
0

)s

GO

-- The above are indexed as separate words. The following demonstrates how
-- the entire token is indexed as a unit, both with and without hyphens in place

55

56

CHAPTER 3 BASIC AND ADVANCED QUERIES

SELECT
special term,
display term,
source_term,

occurrence
FROM sys.dm fts_parser
N'kop-hals-rompboerderij’,
1043,
0,
0
)5
GO
B Results
special_term | display_term source_term OCCUMrEncE
1 kop kop-van-jut 1
2 MNoise Word wan kop-wvan-jut 2
& Exact Match jut kop-wvan-jut 3
special_te display_term source_term OCCUMTEnce
1 : | pianiste pianiste-componiste 1
2 Exact Match companiste pianiste-componiste 2
special_term | display_term source_term OCCUMTEncE
1 kop-hals-rompboerderij = kop-hals-romphoerderij 1
2 Exact Match kop-hals-romp kop-hals-rompboerderij 1
& Exact Match boerderij kop-hals-rompboerderij 2
4 Exact Match kop-hals-romphoerderij kop-hals-rompboerderij 3
& Exact Match kophalsromphoerderij kop-hals-rompboerderij 3

Figure 3-6. Results of Dutch word-breaker hyphenation

Because of differences in how various word breakers handle hyphenation and index
hyphenated words, we advise against stripping hyphens out of your search queries.

Keep in mind that when querying, you should specify the same language settings you used
to create the index. If you indexed your content in Dutch and you search for the word data-base
using the English language word breaker, the search will attempt to locate the words data and
base, you won't find content containing the word database. If your content was indexed using
the US English word breaker, however, you would find content containing the word database.

Returning the Top N by RANK

In many search applications, only a small percentage of search results are returned. This is done
mainly for performance reasons, and it works well because users tend to find what they’re
looking for in the first page of results. If the first page of results doesn’t contain the required
results, users will generally refine their search and try again. Although most users don’t check
secondary pages of search results, there are some search applications where users have a
greater probability of reading beyond the first page. For example, in most job search applica-
tions, users can be counted on to view several pages.

When large numbers of search results are returned, it may not be practical to transfer the
entire result set to the client for client-side paging. You can use the top_n_by_rankargument to
limit results in such cases. The top_n_by_rank argument is a fourth optional argument avail-
able only with the FREETEXTTABLE and CONTAINSTABLE functions. Listing 3-9 illustrates how this

CHAPTER 3 BASIC AND ADVANCED QUERIES

works, with the results shown in Figure 3-7.

Listing 3-9. Retrieving the Top Five Search Results by Rank

SELECT
t.*,
k. [RANK]
FROM dbo.Book b

INNER JOIN dbo.Book Title bt
ON b.Book_ID = bt.Book_ID
INNER JOIN dbo.Title t
ON bt.Title ID = t.Title ID
INNER JOIN FREETEXTTABLE

(
dbo.Book,

*
J)

N'fish',
5
) AS k

ON k.[KEY] = b.Book_ID
WHERE t.Is Primary Title
ORDER BY k.[RANK] DESC;

T Resulls

i £ 1033
2 1033
3 21 1033
4 10 1033
5 40 1033

Titke ID ' Title_LCID | Is_Primary_Ti...
P 4

1

1
1
1
1

| Title

Legends of the Gods, The Egyptian Texts, Edited With Translation
The Amencan Standard Yersion of the Hoky Bible

The "aldine" Edition of the Arabian Nights Entertainments
Bulfinch's Mythology: The Age of Fable

Alica's Advantures In Waonderland

RANK
877
973
981
945
B44

Figure 3-7. Top N by Rank FREETEXT query results

In this example, the top_n_by_rank argument is set to 5, ensuring that only the first five

results in descending order of RANK are returned.

Note In SQL Server 2005, there was an additional setting for “precompute rank” that gave a performance
boost for FREETEXTTABLE queries in which the top_n_by_rank argument was used. This setting is depre-
cated in SQL 2008 and is not operational—it doesn’t do anything. This feature is no longer required, as the

iFTS query engine is now fully integrated with SQL Server.

57

58

CHAPTER 3 BASIC AND ADVANCED QUERIES

CONTAINS

CONTAINS returns exact or literal matches for a search phrase. Queries for the word run, for
instance, will only match content containing the exact word run and not runs or runt. Only
content containing character-for-character matches is returned. However, you can select the
degree of imprecision, closeness, or fuzziness in your search using additional query string
options. Taken to its extreme, you can make CONTAINS functionally equivalent to FREETEXT.
Listing 3-10 demonstrates a simple CONTAINS query, with the result shown in Figure 3-8.

Listing 3-10. Simple CONTAINS Query

SELECT b.Book_ ID
FROM dbo.Book b
WHERE CONTAINS

P I = = R N xR ok 3 IS o B L B

[}
™
o

Figure 3-8. Result of simple CONTAINS query

As with the FREETEXT search, the CONTAINS predicate supports the ability to specify whether
to search a single column, multiple columns, or all columns. The CONTAINS predicate supports
several types of modifiers, including the following:

e Phrase

* Boolean

e Prefix

¢ Generational
¢ Proximity

* Weighted

We’ll describe each of these search modifiers in turn in the following sections.

CHAPTER 3 BASIC AND ADVANCED QUERIES 59

Phrase Searches

You can search for phrases as opposed to a single word. To specify a phrase in a CONTAINS search,
you have to wrap the entire phrase in double quotes. Listing 3-11 is a simple CONTAINS search for
the phrase “cats and dogs”. The result is shown in Figure 3-9.

Listing 3-11. Simple CONTAINS Phrase Search

SELECT b.Book_ID
FROM dbo.Book b
WHERE CONTAINS

(

*
)

N'"cats and dogs"'

);

B Results

Figure 3-9. Result of simple CONTAINS phrase search

If you look at the Messages tab in SSMS after running this query, you’ll notice that SQL
Server returned an informational warning message because the search phrase in Listing 3-11
contains the noise word and. The warning message looks like the following:

Informational: The full-text search condition contained noise word(s).

The issue of full-text search conditions that contain noise words can be problematic when
one token in a Boolean search is a stopword, as shown in Listing 3-12, which is a slightly modi-
fied version of the query in Listing 3-11.

Listing 3-12. Boolean Search with a Stopword

SELECT b.Book_ID
FROM dbo.Book b
WHERE CONTAINS

(

*
)

N'"cats" and "and"'

);

60

CHAPTER 3 BASIC AND ADVANCED QUERIES

By default this query returns no results, even though there are documents that contain the
word cats. This is because the word and is on the English stoplist, so no documents will ever
match the Boolean condition "cats" and "and". You have three possible options to get around
this behavior, as listed following:

1. Strip stopwords out of search conditions before submitting them to the server. This
could be done in a client application prior to performing the SQL iFTS query.

2. Remove stopwords you want to include in searches from the stopword list. In SQL
Server 2008, you could create a custom stoplist (possibly based on an existing system
stoplist), remove the stopwords you want to include in queries, and assign the newly
created stoplist to a full-text index. We discuss stoplists in depth in Chapter 7.

3. Enable stopword transformations via server settings. Note that SQL Server 2008 still
refers to this as “noise word” transformations. You can change this setting via sp_configure:

EXECUTE sp_configure 'show advanced options', 1;
RECONFIGURE WITH OVERRIDE;
GO

EXECUTE sp_configure 'transform noise words', 1;
RECONFIGURE WITH OVERRIDE;
GO

After you change the transform noise words server option, SQL Server replaces stopwords
with a wildcard asterisk (*) in search conditions. This means the search condition shown in
Listing 3-11 is transformed to ' "cats" and "*"', and will return results.

Boolean Searches

As we discussed briefly in the previous section, you can use Boolean operators in your search
condition (such as AND, AND NOT, and OR for each term of your search condition). In this book
we’ll capitalize Boolean operators; however, they're treated as case-insensitive. Boolean oper-
ators allow you to search for combinations of multiple search tokens and phrases that might
not be contiguous (right next to each other), as Listing 3-13 demonstrates. The results include
documents that contain both the words sword and shield, regardless of where they occur in the
document content, as shown in Figure 3-10.

Listing 3-13. Searching for Phrases with the AND Boolean Operator

SELECT b.Book_ID
FROM dbo.Book b
WHERE CONTAINS

(

*
)

N'"sword" and "shield"'

);

CHAPTER 3 BASIC AND ADVANCED QUERIES

Fesults

— 0 m - 3D O s M=
o

Figure 3-10. Results of Boolean AND search

Tip You can also use symbolic abbreviated forms of the Boolean operators: & for AND, | for OR, and &! for
AND NOT. The Boolean operator combination OR NOT has no significance in iFTS and is not supported.

In some cases, you may wish to search for multiple variants of a single word; for example,
centeris sometimes spelled centre, so a search for center won’t return content that uses the
alternate spelling centre. Listing 3-14 shows how you can use a Boolean OR operator to search
for documents containing either spelling. Results are shown in Figure 3-11.

Listing 3-14. Using OR to Search for Phrases with Different Spellings

SELECT Book_ID
FROM dbo.Book
WHERE CONTAINS

(

*
)

N'"center" OR "centre"'
)5

You can also combine search terms using multiple Boolean expressions and group them
with parentheses. Listing 3-15 combines the phrases performing, center, and centre using the
Boolean AND and OR operators, with results shown in Figure 3-12.

61

62 CHAPTER 3 BASIC AND ADVANCED QUERIES

B Results
1

2

& 5]

4 10
] 32
B 3

7 14
3 27
) 3

10 22
11 15
12 16
38 3
14 2B
& 7

16 20
17 24
15 28

Figure 3-11. Results of Boolean OR search

Listing 3-15. Searching with Multiple Boolean Expressions

SELECT Book ID
FROM dbo.Book
WHERE CONTAINS

(

*
)

N'"performing” AND ("center" OR "centre")'

)

B Results

L B e
m

Figure 3-12. Results of search with multiple Boolean expressions

In some cases, you may need to filter your search to exclude a given term. For example, in
asearch for fish, you might not want to see any references to hook. In this case, you can use the
Boolean AND NOT operator to filter out any results containing the term hook. This particular
search would look like Listing 3-16. Although the sample database contains 16 books with the
word fish in them, only four of those don’t contain the word hook, as shown in Figure 3-13.

CHAPTER 3

Listing 3-16. Using AND NOT to Exclude Search Terms

SELECT Book_ID
FROM dbo.Book
WHERE CONTAINS

(

*
)

N'"fish" AND NOT "hook"'
);

B Results
___Elook D

27
20

B s S

Figure 3-13. Results of Boolean AND NOT search

Prefix Searches

BASIC AND ADVANCED QUERIES

The CONTAINS predicate also allows you to do basic wildcard prefix searches. This is indicated
by the wildcard asterisk (*) operator. A wildcard prefix search for the term run*returns docu-
ments containing the words run, runs, runt, running, runner—in short, anything that matches
the first part of the search argument up to the *. No stemming is done in a prefix search, so that
a search on mice* doesn’t return content containing the word mouse, for instance. The query
shown in Listing 3-17 returns matches for all words that begin with the prefix chl*, such as
chlorophyll, chlorine, and chloride. Results are shown in Figure 3-14.

Listing 3-17. Prefix Search Example

SELECT Book_ID
FROM dbo.Book
WHERE CONTAINS

(

*
)

N chT*n
)5

B Results

B s S
o

Figure 3-14. Results of prefix search

63

64

CHAPTER 3 BASIC AND ADVANCED QUERIES

Note For wildcard searches to work, you must wrap the terms in double quotes. If you don’t include the
search term in double quotes, SQL Server treats the trailing asterisk as part of the search term and attempts
to match the search term exactly, trailing asterisk included. Also note that if your search phrase includes
multiple words, all of the words in the phrase are treated as wildcard prefixes. That is, a search for “al* anon"
performs a prefix search for words that begin with a/* followed immediately by words that begin with anon?,
including Al Anon, alcoholics anonymous, Allan Anonymous, and many others.

One commonly requested wildcard feature is suffix searches—using the wildcard character
at the start of a search term like *ingto match all words ending in the suffix ing. SQLiFTS doesn’t
allow this type of search. If you absolutely need this type of search functionality, one approach
is to store all of your content in reverse, so “The rain in Spain stays mainly in the plain” could
be stored as “nialp eht ni ylniam syats niap$ ni niar ehT”. Then if you wanted to search for
words ending in ain, you could simply reverse the search suffix and append the wildcard char-
acter to the end like this: nia* It’s not clear why the FTS engine doesn’t support suffix-based
wildcard searching, as some other RDBMS search components do (including both DB2 and
Oracle).

Generational Searches

Generational searches are searches in which either, or all, of the following occur:

* Words are stemmed, which simply means that additional forms of the words are gener-
ated and matched, including plural nouns and verb forms. This is known as inflectional
term generation.

* Search terms are replaced via language-specific thesaurus replacement sets. This is
included in thesaurus term generation.

* Search terms are expanded via language-specific thesaurus expansion sets. This is also
part of thesaurus term generation.

Though the FREETEXT predicate that we discussed previously will automatically perform
word stemming and thesaurus expansions and replacements, the CONTAINS predicate does not.
In order to perform generational searches with CONTAINS, you have to use the FORMSOF operator
and indicate whether you want to use INFLECTIONAL or THESAURUS forms. Listing 3-18 uses the
CONTAINS inflectional term generation to match inflectional forms of the word punch, including
punch, punches, punched, and punching. Results are shown in Figure 3-15.

Listing 3-18. Inflectional Term Generation with CONTAINS

SELECT Book_ID
FROM dbo.Book
WHERE CONTAINS

(

*
)

N' FORMSOF (INFLECTIONAL, punch)’
)s

B Results

CHAPTER 3 BASIC AND ADVANCED QUERIES

| | N —

16
20
31

Book_ID

Figure 3-15. CONTAINS inflectional term generation search

Proximity Searches

SQL Server iFTS also allows you to perform searches that require search terms to be in close
proximity to one another. Suppose you want to locate books about the presidential role of
commander-in-chief of the armed forces. You might choose to search for the words president
and army, as shown in Listing 3-19. As you can see in Figure 3-16, the results include several
books that probably have little or nothing to do with your topic of choice. Instead, most of the
books probably refer to your keywords in passing at some point in their text.

Listing 3-19. Searching for the Phrases “president” and “army”

SELECT

ct.[KEY],
ct. [RANK],
t.Title

FROM CONTAINSTABLE

(

*
J)

dbo.Book,

N'"president" AND "army"'

) ct

INNER JOIN dbo.Book Title bt
ON ct.[KEY] = bt.Book_ID
INNER JOIN dbo.Title t
ON bt.Title ID = t.Title ID
WHERE t.Is Primary Title = 1;

[l Results |

1o
13
14

16
28
31

3z

0o i~ N s M=

(ORI - S S g i

| =

KEY RANK Title

A Cannecticut Yankee in King Arthur's Court

Bulfinch's Mythology: The Age of Fable

The "Aldine® Edition of the Arabian Mights Entertainments

Antany and Cleopatra

Big Dummy's Guide to the Intermet, v. 2.2

The Campaigns of the British Army &t Washington and New Orieans 1814-1815
Legends of the Gaods, The Egyptian Texts, Edited With Translation

Mathers' Remedies

Life and Public Serices of John Quincy Adams

Figure 3-16. Results of search for “president” and “army”

65

66

CHAPTER 3 BASIC AND ADVANCED QUERIES

As you can imagine, Mothers’ Remedies (a book about home health) is not exactly the type
of book that addresses the chief executive’s role in relation to the armed forces. You can use
proximity searches, via the NEAR operator, to return more relevant results. The theory behind
proximity search is that documents with search terms that are close to one another (like presi-
dent and army used in the example) are probably more relevant to the search topic. The NEAR
operator returns a higher RANK for matching documents when the search terms are in close
proximity to one another, and a lower RANK when the search terms are far apart. When the
search terms are separated by more than 50 words, the RANK drops to 0. Listing 3-20 performs
a proximity search and restricts the results to those with a RANK greater than 0. The results, in
Figure 3-17, show the more relevant documents found.

Listing 3-20. NEAR Proximity Search for “president” and “army”

SELECT
ct.[KEY],
ct. [RANK],
t.Title

FROM CONTAINSTABLE

(

dbo.Book,

*
)

N'"president" NEAR "army"'
) ct
INNER JOIN dbo.Book Title bt
ON ct.[KEY] = bt.Book_ID
INNER JOIN dbo.Title t
ON bt.Title ID = t.Title ID
WHERE t.Is Primary Title = 1
AND ct.[RANK] > 0;

EH Fesults

FAME | Title
1 The Campaigns of the British Army at Washington and New Orleans 1814-1815
1 Life and Public Services of John Quincy Adams

Figure 3-17. Books about the president and the army

The two titles returned by the query in Listing 3-20 are more likely to be relevant to the role
of president as civilian leader of the military than most of the other previous results.

Tip As an alternative, you can use the ~ operator instead of the NEAR keyword to perform a proximity search.

CHAPTER 3 BASIC AND ADVANCED QUERIES

Proximity search in iFTS has some limitations, including the following:

» The NEAR operator is internally mapped to the AND operator. The further apart your search
terms are from one another, the lower the ranking of matches returned by your proximity
search. This has a big implication for your proximity searches: the NEAR operator is
basically useless with the iFTS CONTAINS and FREETEXT predicates (it’s no different from
using the AND operator). To get a true proximity search, you need to use CONTAINSTABLE or
FREETEXTTABLE and restrict the results with a WHERE clause. Your WHERE clause predicate
should specify that the RANK column returned by the iFTS function needs to be greater
than 0 (for any proximity search match), or greater than some other value for a higher
quality match.

* The CONTAINS and FREETEXT predicate proximity operators operate differently from the
CONTAINSTABLE and the FREETEXTTABLE proximity operators. In the iFTS functions, prox-
imity is calculated into the rank. In other words, with CONTAINSTABLE and FREETEXTTABLE,
the closer your search terms are to one another, the higher the rank (all other things
being equal). By contrast, the order in which CONTAINS and FREETEXT results are returned
does not in any way reflect the separation distance of the search terms. You may find the
first row of results returned by the iFTS predicates has the search terms farthest apart,
and the next row has the search terms closest together.

* There’s no way to change the definition of “closeness” that proximity search uses. The
iFTS team worked hard to include a method to define distance separation by word,
sentence, paragraph, and so on. This functionality would’ve let you search documents
for the search phrase Dick Cheney within five words of Halliburton, for instance.
Unfortunately, due to time constraints, this feature was cut late in the SQL Server 2008
development cycle. The authors are hopeful that this much-needed feature will ship in a
service pack, or in the next version of SQL Server.

Additionally, if you use the same search term twice in a proximity search, as in "africa"
NEAR "africa", iFTS looks for two distinct instances of the search term (in this case "africa")
in close proximity to one another in the searched content. Documents containing only one
instance of the search term are not returned by the proximity search.

Weighted Searches

Sometimes you need to do a search in which two topics are hopelessly intertwined, and yet you
want to search for one topic alone. Using a Boolean AND NOT operator isn’t an option, because
it will filter out some relevant hits. What you need is a way to maximize the impact of the term
you want to include while minimizing the contribution of the term you want to exclude. In iFTS
terms, what you want is a weighted search. In this type of search, you apply weights to your
tokens to make some tokens more relevant than others.

Let's consider a search for Ike Turner (Tina’s ex-husband). Tke was a prominent musician
and producer in his own right, but Internet searches on him return results that are mostly about
his more famous ex-wife Tina Turner (a Google search, for example, returns about 1.3 million
hits). Excluding Tinareturns almost 1/2 million hits. However, these results are primarily about
Ike’s life after Tina, leaving out a lot of relevant information. In other words, you don't want to
exclude Tina Turner from the search completely.

67

68

CHAPTER 3 BASIC AND ADVANCED QUERIES

For our purposes, we’ll locate books about Caesar, the Roman emperor. There are several
books that mention Caesar in passing (Caesar not being the topic of the book). For instance,
Shakespeare’s Hamlet mentions Caesar: “Imperious Caesar, dead and turn'd to clay.” You can
add additional search terms such as Rome to the search and apply a weight to each term to
increase the relevance of the results. Listing 3-21 demonstrates. The results are shown in
Figure 3-18.

Listing 3-21. Weighted ISABOUT Search for Caesar and Rome

SELECT
ct. [KEY],
ct. [RANK],
t.Title
FROM CONTAINSTABLE
(

dbo.Book,

*
)

N'ISABOUT("Caesar" WEIGHT(1), "Rome" WEIGHT(.1))'
) ct
INNER JOIN dbo.Book Title bt
ON ct.[KEY] = bt.Book ID
INNER JOIN dbo.Title t
ON bt.Title ID = t.Title ID
WHERE t.Is Primary Title = 1
ORDER BY ct.[RANK] DESC;

B Results
KEY | RANEK | Title
1 Antony and Cleopatra
2 25 417 Julius Caesar
& 12 376 Antorny and Cleopatra,
4 38 34 The American Standard “ersion of the Holy Bible
& 24 10 Julius Caesar
B 3 3 Bulfinch's Mythology: The Age of Fable
7 9 3 Harmlet
8 3z 3 Life and Public Services of John Quincy Adams
g 27 2 BTEZE
10 31 0 Mothers' Remedies
11 11 0 All's Well That Ends Well
12 3 0 A Connecticut Yankee in King Arthur's Court
8 16 0 The Campaigns of the British Army at Washingt. ..
14 20 0 Alice's Adventures In Wonderland
15 21 0 Hamlet
16 22 0 Hamlet

Figure 3-18. Results of search for books about Caesar of Rome

CHAPTER 3 BASIC AND ADVANCED QUERIES

As you can see, the weighted values ensure that the documents returned contain the
keywords with weights applied to them. The weighted terms are factored into the final RANK,
with the higher RANK values representing better quality matches. Shakespeare’s Antony and
Cleopatra, for instance, is a much better match than Alice’s Adventures in Wonderland, even
though both documents mention Caesar or Rome.

The WEIGHT value ranges from 0 to 1, with 1 being the highest. The weights you assign to
your search terms also affect the result rankings generated by the CONTAINSTABLE function.
Weighted terms are also valuable when you're doing a taxonomy-based search. SQL Server
iFTS doesn’t natively support such advanced taxonomy searches, but they can be imple-
mented via third-party software in data mining and client search applications.

CONTAINSTABLE Searches

The CONTAINS and FREETEXT predicates don’t give you any method of limiting the number of
rows returned in your result sets. This has two implications: First, you may get more results
than you need, which will degrade performance on your system, and second, the results aren’t
returned in any particular order. CONTAINSTABLE and FREETEXTTABLE help alleviate this problem
by assigning a rank to each result and giving you the ability to use the fop_n_by_rank argument
to only return the top n results. Listing 3-22 shows a typical usage of the CONTAINSTABLE func-
tion. Note that the results are joined back to relevant tables using the KEY column of the result
set, and the results are ordered in descending order by the RANK column. Results are shown in
Figure 3-19.

Listing 3-22. Simple CONTAINSTABLE Function Usage

SELECT

c.[KEY],

c. [RANK],

t.Title
FROM dbo.Book_Title bt
INNER JOIN dbo.Title t

ON bt.Title ID = t.Title ID
INNER JOIN CONTAINSTABLE
(

dbo.Book,

Book Content,

N'monster'
) ¢

ON bt.Book ID = c.[KEY]
WHERE t.Is Primary Title = 1
ORDER BY c.[RANK] DESC;

69

70 CHAPTER 3 BASIC AND ADVANCED QUERIES

B Results
KEY | RAMNK | Title
1 | The Golden Fleece and the Heroes Who Lived Before Achilles
2 Bulfinch's Mythology: The Age of Fable
& 10 28 The "Aldine" Edition of the Arabian Nights Entertainments
4 28 7 Motreio
5 26 B Legends of the Gods, The Egyptian Texts, Edited With Translation
B B 4 The Odyssey of Homer Done Into English Prose
7 38 4 The American Standard “ersion of the Holy Bible
g 31 1 tMothers' Remedies
9 3z 1 Life and Public Services of John Quincy Adams
10 3 1 A Connecticut Yankee in King Arthur's Court
1l 13 1 Antony and Cleopatra,
12 14 1 Big Dummy's Guide to the Internet, v. 2.2
& 16 1 The Campaigns of the British Army at Washington and New Orleans 1814-1815

Figure 3-19. Results of CONTAINSTABLE search

You can also add the optional top_n_by_rank argument, as shown in Listing 3-23. In this
example, only the top five rows from the results in Figure 3-19 are returned. The results are also
sorted in descending order by rank.

Listing 3-23. CONTAINSTABLE with the top n by rank Argument

SELECT
c.[KEY],
c.[RANK],
t.Title
FROM dbo.Book Title bt
INNER JOIN dbo.Title t
ON bt.Title ID = t.Title ID
INNER JOIN CONTAINSTABLE
(
dbo.Book,
Book_Content,
N'monster’,
5
) ¢
ON bt.Book ID = c.[KEY]
WHERE t.Is Primary Title = 1;

If you return the rank, you'll see that it’s a value between 0 and 1000. The rank value is
derived from a statistical method that attempts to assign a value to the relevance of each result.
The higher the rank, the more relevant your result; 1000 indicates a perfect match. SQL Server
iFTS uses a formula known as the Jaccard coefficient in the rank calculation.

CHAPTER 3 BASIC AND ADVANCED QUERIES

Advanced Search Topics

In this section, we’ll discuss advanced search topics, including how to use the XQuery contains()
function in conjunction with iFTS and weighted column searches. In addition, we’ll introduce
taxonomy-based search and text mining concepts.

Using XQuery contains() Function

You can use the iFTS CONTAINS and FREETEXT predicates in conjunction with the XQuery contains()
function when searching XML data. One important fact to remember is that, while iFTS is case
insensitive, the XQuery contains() function is case sensitive. Ideally, you’d use contains() to
determine precisely which node of your XML document holds the matching text. Consider the
query in Listing 3-24.

Listing 3-24. Using the XQuery contains() Function

SELECT Article Content
FROM dbo.Commentary
WHERE CONTAINS
(
Article Content,
N'Bible’
)
AND Article Content.exist(N'/article/title[contains(., "Bible")]') = 1;

The dbo.Commentary table has three XML articles in the Article Content column that
contain the word Bible. In this example, we use the iFTS CONTAINS predicate to retrieve the
initial result set of all XML commentary entries that contain the word Bible. We then use the xml
data type exist() method in conjunction with the XQuery contains () function to further narrow
down the results to only those that have the word Biblein their title element.

Column Rank-Multiplier Searches

A frequent request on the newsgroups is the ability to search a table and return documents
with different columns weighted differently. For example, one of the authors was approached
by a web site designed to allow users to search publications by location.

The requirement the web site was struggling with was that a search for England (for example)
should return rows ranked high where the hit occurred in the City column, slightly less in
the Publication Name column, and finally the Description column should be ranked low. The
particular formula they came up with was that a hit coming from the City should have a rank
multiplier of 5, a Publication Name hit would be assigned a rank multiplier of 2, and a multi-
plier of 1 would be applied to hits coming from the Description column.

Listing 3-25 is a simple example of how to conduct such a search against the content in the
iFTS_Books database. For this example, we’re using a hit multiplier of 10 for hits anywhere in
the dbo.Contributor Birth Place table, a multiplier of 5 for hits in the Commentary column of
the dbo.Commentary table, and a multiplier of 1 for hits in the Article_Content column of the
same table. Results are shown in Figure 3-20.

71

72

CHAPTER 3 BASIC AND ADVANCED QUERIES

Listing 3-25. Sample Column Rank-Multiplier Search

SELECT *
FROM
(
SELECT
Commentary ID,
SUM([Rank]) AS Rank
FROM
(

SELECT
bc.Commentary ID,
c.[RANK] * 10 AS [Rank]

FROM FREETEXTTABLE

(

dbo.Contributor Birth Place,

*
’

N'England’
) ¢
INNER JOIN dbo.Contributor Book cb
ON c.[KEY] = cb.Contributor ID
INNER JOIN dbo.Book_Commentary bc
ON cb.Book ID = bc.Book ID
UNION ALL
SELECT
c.[KEY],
c.[RANK] * 5
FROM FREETEXTTABLE
(
dbo.Commentary,
Commentary,
N'England’
) ¢
UNION ALL
SELECT
ac.[KEY],
ac. [RANK]
FROM FREETEXTTABLE
(
dbo.Commentary,
Article Content,
N'England’
) ac
) s
GROUP BY Commentary ID
) s1
INNER JOIN dbo.Commentary ci
ON c1.Commentary ID = si.Commentary ID
ORDER BY [Rank] DESC;

CHAPTER 3

BASIC AND ADVANCED QUERIES

& Results

Fiank
1 4714
2 | 2520
3 19 2284
4 15 2100
5 20 1100
B 12 1100
7 27 1086
B 16 743
] 3 94
10 1 550
11 26 550

Commentary 1D Commentany

4
8

19
15
20
12
27
18
3

11
26

The Authonzed King James Version is an English
Hamlat iz & tragedy by Wiliam Shakespeare, belis
Julius Ceesar is a tragech by William Shakezpear
The Hound of the Baskervlles is a crime novel by
Alice's Adventures in Wonderland {1865) 1= awor
Antory and Cleopatra is a play by William Shakes
The Art of War is a Chinese military treatize that w
The histary of the British Army spans over three &,
A Connecticut “Yankee in King Arthur's Court is an
All's Wall That Ends Wall is a play by William Shak.

Ancient Egyptian religion encompasses the religio

Article_Content
carticle> <sourcer <name*YWikipedin</name= <url>htt
Zaricle><source*<name=YWikipedia</name=<url=hit. .
“article><zource> <name*\Wikipediat/narme> <url>hit
Zaricle><source*<name=Yikipedia</name=<url=htt. .
carticle> <sourcer <name*YWikipedin</name= <url>htt
Zaricle><source*<name=YWikipedia</name=<url=htt. .
carticle> <sourcer <name*YWikipedin</name= <url>htt
Zaricle><source*<name=YWikipedia</name=<url=htt. .
carticle® <sourcer <name*YWikipedin</name= <url>htt
Zaricle><source*<name=YWikipedia</name=<url=hit. .
carticle® <source* <name*YWikipedin</name= <url>htt

Figure 3-20. Results of column rank-multiplier search

Taxonomy Search and Text Mining

Third-party providers sell taxonomies and thesauruses that define vectors for search terms. A
vector for the search term cholesterol might look like the following.

{

Cholesterol, 10),

milligrams, 3),
reducing, 2),

lipoprotein, 3),

prevents,2),

cholesterol levels, 3),

narrowing, 2),
fats, 3),

hdl cholesterol, 3),

1d1 receptors, 3),

fatty,3),

1d1 cholesterol, 6),

deciliter, 3),

heart disease, 7),

risk of heart attack, 3),

risk, 8),
saturated 3),

(

(

(

(

(

(

(

(

(
(factors, 4),
(

(

(

(

(

(

(

(

(lipid, 3)

The numbers in this sample vector are called signatures. If the relative frequencies of
occurrence of these terms in a given body of text are close to the relative weights in this vector,
the body of text (or a portion of it) is about cholesterol. This sample vector comes from Intelli-
sophic (intellisophic.com), a vendor of taxonomies. Given a body of text, a user can do a
weighted search using this vector (normalized for a max weight of 1) and the results would

likely be about cholesterol.

Another company, Triplehop (triplehop.com, now part of Oracle), offers technology to
generate vectors that can help achieve higher relevance in search results. As an example, if
someone searches for the word bank, are they actually searching for a financial institution, a

73

74

CHAPTER 3 BASIC AND ADVANCED QUERIES

river bank, a blood bank, an aircraft maneuver, or an expression of trust? Triplehop can run
search results through their vectors to understand the context of the search term in the search
results and subsequently categorize the search results.

Taxonomies and vectors such as these are used in text-mining operations. Text mining
operates on the principal that a topic can be reduced to a set of features, and then this set of
features can be compared to documents to see which documents meet these features. The
probability is higher that documents that closely match the features are about the given topic.

In text mining, we collect vectors or features of a topic (for example, women). These features
are derived from a known training set (for example, a body of documents written by or about
women). Once we’ve derived a training set, we run the training set against a document collec-
tion and score it for accuracy. If we get a high degree of accuracy (over 90% for example), we
believe our vector is good and can use this vector in searches to find documents about the
topic.

Using vector-based searches to determine context or features is sometimes referred to as
a bag of words approach. Demographics can be inferred by searching for terms that are exclu-
sive to females (for example, my husband, my breasts, and so on), and then determining other
features that are exclusive to women from a document collection. After this, vectors can be
created to do weighted searches to determine gender. To continue our example, research has
been done that indicates women use more adverbs and adjectives in their writing than men.
This information can be used to create additional training sets to generate vectors.

Summary

In this chapter, we looked at using the CONTAINS and FREETEXT predicates, and the CONTAINSTABLE
and FREETEXTTABLE rowset functions. For keyword-type searches, use CONTAINS and CONSTAINSTABLE.
For other types of searches, use FREETEXT and FREETEXTTABLE. If you want ranked results, you
have to use the CONTAINSTABLE and FREETEXTTABLE rowset functions. CONTAINS and CONTAINSTABLE
have many parameters that allow you to control how strict or fuzzy you want your searches to
be. In general, CONTAINS and CONTAINSTABLE are faster than FREETEXT and FREETEXTTABLE, as the
algorithm is marginally faster and CONTAINS searches generally return fewer rows.

CHAPTER 4

Client Applications

Everything should be made as simple as possible, but not simpler.

——Albert Einstein (attributed)

One of the challenges you’ll face when designing iFTS-enabled applications is making them
as simple as possible for your end users to access the full power of full-text search. While it's a
relatively simple matter to perform a basic FREETEXT or CONTAINS query for user-supplied search
terms or phrases, Web-based search engines have had a huge impact on the level of user sophis-
tication. Users of search applications now demand features above and beyond basic term or
phrase searches, including hit highlighting and access to advanced options through a simple
interface. In this chapter, we’ll discuss some methods to make your IFTS-enabled client appli-
cations simple yet powerful.

Hit Highlighting

Hit highlighting is standard fare for search applications. Simply put, hit highlighting is the
process of highlighting key words or phrases in search results to make it apparent to your users
that there was in fact a good match, along with an indication where one or more matches
occurred in the results. With the new sys.dm_fts_parser dynamic management function (DMF),
you can add simple SQL Server-based hit highlighting functionality to your applications, to
provide additional context to your iFTS results.

The Procedure

Hit highlighting can be performed through stored procedures, client-side SQL code, or client-
side or middle-tier client code (using .NET for example). Listing 4-1 is a simple stored procedure
that performs hit highlighting using T-SQL on the server. The advantage to this method is that
the hit highlighting logic, which must access the raw document data, is physically located close
to the data. This eliminates the overhead associated with transferring large documents between
the server and middle-tier or client-side applications.

75

76

CHAPTER 4 CLIENT APPLICATIONS

Listing 4-1. Simple Hit Highlighting Procedure

CREATE PROCEDURE SimpleCommentaryHighlight
@SearchTerm nvarchar(100),
@Style nvarchar(200)

AS

BEGIN
CREATE TABLE #match_docs

(
doc_id bigint NOT NULL PRIMARY KEY

)s

INSERT INTO #match_docs

(
doc_id

)

SELECT DISTINCT
Commentary_ID

FROM Commentary

WHERE FREETEXT

(
Commentary,
@SearchTerm,
LANGUAGE N'English'

)s

DECLARE @db_id int = DB_ID(),
@table_id int = OBJECT_ID(N'Commentary'),
@column_id int =
(
SELECT
column_id
FROM sys.columns
WHERE object id = OBJECT ID(N'Commentary')
AND name = N'Commentary'

);

SELECT
s.Commentary_ID,
t.Title,
MIN
(
N'..." + SUBSTRING
(
REPLACE
(
c.Commentary,
s.Display Term,

CHAPTER 4 CLIENT APPLICATIONS

N'<span style="
)J
s.Pos - 512,
s.Length + 1024
) + N
) AS Snippet
FROM

(

SELECT DISTINCT
c.Commentary ID,
w.Display Term,
PATINDEX

(
N'%[*a-z]' + w.Display Term + N'["a-z]%",
c.Commentary

) AS Pos,

LEN(w.Display Term) AS Length

FROM sys.dm_fts_index_keywords by document
(

@db_id,

@table id

) w

INNER JOIN dbo.Commentary c
ON w.document_id = c.Commentary_ID

WHERE w.column_id = @column_id
AND EXISTS

(

SELECT 1
FROM #match_docs m
WHERE m.doc_id = w.document_id
)
AND EXISTS
(
SELECT 1
FROM sys.dm_fts_parser
(
N'FORMSOF (FREETEXT, "' + @SearchTerm + N'")"',
1033,
0,
1
) p
WHERE p.Display Term = w.Display Term

)

+ @Style + '">' + s.Display Term + ''

) s
INNER JOIN dbo.Commentary c
ON s.Commentary ID = c.Commentary ID

77

78 CHAPTER 4

CLIENT APPLICATIONS

INNER JOIN dbo.Book Commentary bc

ON c.Commentary ID = bc.Commentary ID
INNER JOIN dbo.Book_Title bt

ON bc.Book ID = bt.Book ID

INNER JOIN dbo.Title t

ON bt.Title ID = t.Title ID
WHERE t.Is Primary Title = 1

GROUP BY

s.Commentary_ID,

t.Title;

DROP TABLE #match_docs;

END;

Note Although this procedure focuses on searching the dbo.Commentary table, it can be modified to

search other tables as well. This procedure exists in the 1FTS Books sample database.

The SimpleCommentaryHighlight procedure accepts two parameters: a search term and an
HTML style to use in highlighting matches. Listing 4-2 shows a simple example of how to call
the stored procedure from Listing 4-1 to search for the term write. The results are shown in
Figure 4-1.

Listing 4-2. Calling the Hit Highlighting Stored Procedure

EXECUTE SimpleCommentaryHighlight N'write',
N'background-color:yellow; font-weight:bold';

0 Results

11
14
33
36

19

28

27

Title P
Alice's Advertures In Wonderland
All's ‘Well That Ends Wall

Big Dummy’s Guide to the Intermst
Elemantare Arithmetik und Algabra
Grimm's Fairy Talas

Hamiet

Julus Ceesar

The Cdyssey of Homer Done Into ..
The Small Catechism of Martin Lut
Monmeia

ITonElo

wTRZ

Snippet SN - =
Alice's Advantures in Wondarand (1865) iz a work of Iterany nonsense <span styl
All's Wall That Ends Well is & play by Willlam Shakespesre, oniginally classified as
oject in September of 1831 The idea was to write & guide to the Internet for folks
Algebra is a branch of mathematics concaming the study of structure, relation and.
In 1803, the Grimms met the Ramantics Clemens Brentano and Ludwig Achim van
Hamlat is & tragedy by William Shakespears, balieved 1o hawa been <span styla=".
Julius Caesar iz & tragedy by William Shakespeare, believed to have been <span
The Odyssey is one of twe major ancien! Greek epic poems aliribuled 1o Homer
Luther's Small Catechism was <span style="background-color;yellow; foni-weight:b
The Fepublic is a Socratic dialogue by Plato, <span style="background-colaryello...
Euciid's Elements is a mathematical and geometric treatise consisting of 13 books
The Arl of War 15 & Chinese militany ireatise that was <span style="background-col.

Figure 4-1. Results of hit highlighting procedure

CHAPTER 4 CLIENT APPLICATIONS 79

The procedure in Listing 4-1 performs a full-text search against the Commentary column
of the dbo.Commentary table for the search terms you supply, storing the IDs of the matching
documents in a temporary table:

CREATE TABLE #match_docs

(
doc_id bigint NOT NULL PRIMARY KEY
)5
INSERT INTO #match_docs
(
doc_id
)

SELECT DISTINCT
Commentary_ID

FROM Commentary

WHERE FREETEXT

(
Commentary,
@SearchTerm,
LANGUAGE N'English'

);

The procedure then retrieves the current database ID, the object ID for the dbo. Commentary
table, and the column ID of the Commentary column. All of this information will be used later in
the procedure by the DMFs:

DECLARE @db_id int = DB _ID(),
@table_id int = OBJECT_ID(N'Commentary'),
@column_id int =
(
SELECT
column_id
FROM sys.columns
WHERE object_id = OBJECT_ID(N'Commentary"')
AND name = N'Commentary'

)s

The final query—shown next—retrieves information about the match and a 1KB snippet
of the text that contains matching terms. The SELECT clause of the query returns information
about the match, including the ID of the commentary entry, the title of the book that the
commentary item relates to, and a snippet of text from the matching commentary. The HTML tag with the specified style is added to the matching terms:

SELECT
s.Commentary ID,
t.Title,

MIN

80 CHAPTER 4 CLIENT APPLICATIONS

(
N'..." + SUBSTRING

(
REPLACE

(
c.Commentary,
s.Display Term,
N'' + s.Display Term + ''
))
s.Pos - 512,
s.Length + 1024
) + N
) AS Snippet

The FROM clause uses the sys.dm_fts_index_keywords by document DMF to retrieve matching
terms directly from the full-text index. The query uses sys.dm_fts_parser to grab all the inflec-
tional and thesaurus forms of the search term to ensure that inflectional forms are matched.
The PATINDEX function is used to locate matches for the inflectional forms within the text of
the Commentary column. Finally, the query joins to other tables as necessary to retrieve book
title information. The following is the FROM clause showing the logic just described, as well as
the joins:

FROM
(
SELECT DISTINCT
c.Commentary_ID,
w.Display_Term,
PATINDEX
(
N'%[~a-z]' + w.Display Term + N'[*a-z]%",
c.Commentary
) AS Pos,
LEN(w.Display Term) AS Length
FROM sys.dm_fts_index_keywords by document
(
@db_id,
@table_id
) w
INNER JOIN dbo.Commentary c
ON w.document_id = c.Commentary ID
WHERE w.column id = @column_id
AND EXISTS
(
SELECT 1
FROM #fmatch docs m
WHERE m.doc_id = w.document id

)
AND EXISTS

CHAPTER 4

SELECT 1
FROM sys.dm_fts_parser
(
N'FORMSOF (FREETEXT, "' + @SearchTerm + N'")',
1033,
O)
1
) p
WHERE p.Display Term = w.Display Term
)
) s
INNER JOIN dbo.Commentary c
ON s.Commentary ID = c.Commentary ID
INNER JOIN dbo.Book_Commentary bc
ON c.Commentary_ID = bc.Commentary ID
INNER JOIN dbo.Book Title bt
ON bc.Book_ID = bt.Book_ID
INNER JOIN dbo.Title t
ON bt.Title ID = t.Title ID
WHERE t.Is Primary Title = 1
GROUP BY
s.Commentary_ID,
t.Title;

HIT HIGHLIGHTING EFFICIENCY

CLIENT APPLICATIONS

Microsoft Index Server, through which SQL Server iFTS’s lineage can be traced, provides built-in hit high-
lighting functionality that can be accessed through Internet Information Server (IIS) extensions. Surprisingly
enough, this hit highlighting functionality is very similar to the methods presented here. Essentially, Index
Server reparses matching documents using the relevant word breakers and stemmers to find hits. It then adds
HTML tags to matching terms and returns the result. As you can imagine, this isn’t the most efficient solution,
particularly for large documents. A much more efficient solution for hit highlighting would be to store the exact
character position of the matching term in the full-text index and expose it to your developers. This would
eliminate the need to reprocess complete documents just to find hit locations. The tradeoff, of course, is the
additional storage space required to save this additional information. You could, however, create your own
inverted index on top of SQL Server 2008’s to store the character positions of matching terms. But this would
result in the storage of a not insignificant amount of duplicate information, as well as duplicated effort. The
authors hold out the hope that the iFTS team will see the wisdom of exposing the start character position of
matching terms in documents to make hit highlighting faster, more efficient, and more precise. We hope that
this functionality, or similar functionality, will be added to a future version of SQL Server.

81

82

CHAPTER 4 CLIENT APPLICATIONS

Calling the Procedure

On the client side, you can use the .NET SqlClient, SqlCommand, and SqlDataReader to perform
hit highlighting queries and display results. The simple Windows Forms hit highlighting appli-
cation we included in the sample downloads uses the stored procedure in Listing 4-1 to return
hit highlighted results. Listing 4-3 is the heart of the procedure—it calls the hit highlighting
procedure and displays the results. After a client query, the results are formatted in HTML and
displayed in a Windows Forms WebBrowser control. Figure 4-2 shows the hit-highlighted results
of a search for the term write.

Listing 4-3. Client Call to Hit Highlighting Procedure

string sqlConString = "SERVER=SQL2008;" +
"INITIAL CATALOG=iFTS Books;" +
"INTEGRATED SECURITY=SSPI;";

private void SearchButton Click(object sender, EventArgs e)
{

SqlConnection sqlCon = null;

SqlCommand sqlCmd = null;

SqlDataReader sqlDr = null;

try
{
sqlCon = new SqlConnection(sqlConString);
sqlCon.Open();
sqlCmd = new SqlCommand
(
"dbo.SimpleCommentaryHighlight",
sqlCon

)5
sqlCmd.CommandType = CommandType.StoredProcedure;

sqlCmd.Parameters.Add

(
"@SearchTerm",
SqlDbType.NVarChar,
100

).Value = SearchText.Text;

sqlCmd.Parameters.Add
(
"@Style",
SqlDbType.NVarChar,
200
).Value = "background-color:yellow; font-weight:bold;";

CHAPTER 4 CLIENT APPLICATIONS 83

sqlDr = sqlCmd.ExecuteReader();
string Results = "";
int RowCount = 0;

while (sqlDr.Read())
{
RowCount++;
if (RowCount % 2 == 1)
Results += "<p style='background-color:#ffffff'>";
else
Results += "<p style="background-color:#CoCoCo'>";
Results += "" + sqlDr["Title"].ToString() + "
";
Results += sqlDr["Snippet"].ToString() + "</p>";
}

Results = "<html><body>" +

String.Format

(
"<p style="background-color:#FBB917'>" +
"Total Results Found: {0}</p>",
RowCount

)+

Results +

"</body></html>";

ResultWebBrowser.DocumentText = Results;

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);
}
finally
{
if (sqlDr != null)
sqlDr.Dispose();
if (sqlCmd != null)
sqlCmd.Dispose();
if (sqlCon != null)
sqlCon.Dispose();

84 CHAPTER 4 CLIENT APPLICATIONS

® Hit Highlight Example

Alice's Adventeres In Woaderlasd
Alice's Advestures in Woederland (186%) is n work of lesary norsense writtea by English auibior Charles [utwidge Dodgson under the paendonym Lewis Carroll,
considered a classic sxample of the genre and of English Berature in general, It tells the story of a gl passed Alice who Salls down o rabbit bole inte 2 fsseastic rasiny
by precaibiar and antbropomeonpbic creatizes The tale i Bled with allesions 10 Dodgsen's fiends (and enemies), med o the lessoes that Britih schoolchildm
were expected 1o memoriz.

Big Dummy's Guide fv the Interned, v. 2.2

ject in September of 1991 The iden was to write & guide 1o the Internet for folles wh kad ile or no expesience with network comsmnicssions. We imtended o post
this Cuicle 1o the Net' i ASCT] ancl HyperCard formats and to give it away o disk, 25 well a5 huve 3 print eciion svailsble for 3 nonsinal charge. With the
consolidation of cur offices to Washington, DU, we were abie to put the Gusde on a fast track. You're kooking at the realzation of our dreams - - version oee of the
{Crusdle. AL the tane [im writing this, we're s fsking svound fin 2 book pubisdes, 0 the hard-copy version has not yet been prisged. We're boping o update thes Guide
on & sepular basis, so please feel free to sond s your commments and cosrections. .

Grimm's Fairy Tales

I 1803, the Grinues met the Romantics Clemens Brentano and Ladvwig Ackim voa Arnim a the University of Marbarg. These two me stirred in the brothers an
inberest in ancient foiry toles. They started to coliect and wrife davwn takes tha they alleged had been handed down for gencrtions. Amang thes somces were Dorothen
Viehunann, aed twwo Hugienot Fsnbies, Hassenpfig and Wikd, who introduced thens to saveral taks of French origin. On December 20, 1512 they poblished the st

Figure 4-2. Sample query with hit-highlighted results

The concept of hit highlighting is simplified in this example, and you’ll undoubtedly find
situations in which the highlighted text returned is not the actual text that matched the search
term (though it will be similar). An example is the search term men, which highlights Clemens
in the commentary for the book Grimm’s Fairy Tales. An actual match for the term men also
exists in this particular commentary, and it is this match that’s returned by iFTS queries. The
hit highlighting procedure, however, uses a simple method of locating matches that can result
in some nonmatching terms being partially highlighted.

Search Engine-Style Search

You have three main options when designing a front-end interface for your iFTS-based search
applications:

1. You can ignore SQL Server’s advanced iFTS search features and instead allow only
simple FREETEXT or basic CONTAINS searches of lists of keywords entered by your users.
This option doesn’t allow users to perform searches that exclude words or phrases,
return proximity-based matches, or use other advanced iFTS search features. Many
front-end search applications for SQL Server full-text search implement this type of
simplistic search functionality because it’s quick and easy to implement, with little
support required.

2. You can force users to learn advanced iFTS search clause features. This option allows
users to perform more advanced searches, but also introduces a greater possibility for
errors and higher support costs. The problem is that users have to learn a new search
syntax, loaded down with additional keywords and a somewhat strict grammar. Con-
sider the following simple query, which searches for inflectional forms of the words fish
and hook:

CONTAINS(*, ' FORMSOF(INFLECTIONAL, fish) & FORMSOF(INFLECTIONAL, hook) '

CHAPTER 4 CLIENT APPLICATIONS

In addition to getting the somewhat complex syntax exactly right, your users have to
learn all the new keywords and a whole new method of searching for content with this
option.

3. Youcan build on the knowledge that your users already have. In other words, allow your
users to enter search queries in the syntax of their favorite search engine and program-
matically convert it to the more complex iFTS CONTAINS syntax required by SQL Server
behind the scenes. This option makes for an intuitive and simple user interface, making
amore pleasurable overall user experience. You also gain greater control over user input,
while allowing users to take advantage of whatever advanced functionality you deem
necessary. The downside to this is that you have to do some development work, although
the development work can be greatly simplified with the proper tools.

Thanks to Internet search engines such as Yahoo! and Google, search application users are
more sophisticated and demanding than ever. Modern users have a wealth of search knowledge,
and they know how search should work. By implementing option 3 from the prior list, you can
put that knowledge of search to use within your organization. You'll save on training and support
costs and create easy-to-use search applications your users will be able to sit down and use
right out of the box. In this section, we’ll discuss how to create your own search engine style
interface.

The key to a successful search engine-style interface is to make the syntax simple but
full-featured. Consider the Google search box for a moment. This search box is the essence of
simplicity, using very few operators. Google’s operators are intuitive. The preceding - unary
operator, for instance, excludes a term from the search, while the OR keyword allows you to find
pages containing either of the search terms on both sides of the operator. Our goal in designing
a search engine style interface for iFTS will be to implement the same type of intuitive search
syntax and operators.

We’'ll actually be creating a small toy language for defining Google-style queries. There are
two important aspects to language: syntax, or the rules of language construction, and semantics,
or what the components of the language actually do. We’'ll describe the language, including
both syntax and semantics, in the following sections.

Defining a Grammar

A grammaris simply a set of rules that define the syntax of a language, whether it’s a computer
language or natural (human) language. The syntax doesn’t have any inherent implied meaning
or perform any actions by itself; that’s the domain of semantics, which we’ll cover later in this
chapter. Fortunately for us, computer language grammars tend to be more rigid in their rules
and construction than human language. You can actually define an explicit syntax for even the
most complex Google-style queries, quite simply, using standard notations. We’ll build that
grammar here and use it as the building block for our Google-style query engine.

The first step in defining our grammar is to decide the operators and constructs we’ll
allow. To keep in line with our goal of making the interface simple to use, we’ll use the popular
Google search engine query syntax as the basis for our query engine. We’ll support all of the
operators in Table 4-1.

85

CHAPTER 4 CLIENT APPLICATIONS

Table 4-1. Custom Search Engine Operators

Operator Description

term A search term is a single word. Search terms will be searched for using the iFTS
inflectional search option.

term* The trailing asterisk wildcard character on a term will perform a prefix search.

"phrase" A phrase is one or more words enclosed in quotes. A phrase will be searched for

using an iFTS phrase search.

+ A term or phrase prefixed with the plus operator performs an exact search; no
inflectional or thesaurus forms will be found.

- A term or phrase prefixed with the minus operator excludes the term or phrase
from the search. This is equivalent to the iFTS AND NOT operator.

A term prefixed with the tilde operator performs a thesaurus synonym search.

<oud> Multiple terms or phrases can be included in angle brackets. The query engine
will generate iFTS proximity searches using the NEAR operator for these terms and
phrases.

and The and keyword, or the symbol &, can be used between terms and phrases to

indicate a logical AND operation. If you don’t include a logical operator between
terms and phrases, and will be the default.

or The or keyword, or the symbol |, can be used between terms and phrases to indi-
cate a logical OR operation. The logical AND operator takes precedence over
logical OR.

(...) Parentheses can be used to group expressions and to change the order of prece-

dence of operators.

This simple set of operators and constructs includes most of the basic operators available
via the Google search engine, with a few slight changes and additions to take advantage of
additional iFTS functionality. For example, we’ve made the following changes to Google’s
basic syntax:

¢ The<...> syntax takes advantage of iFTS proximity search functionality.

¢ The (...) syntax is an intuitive syntax for changing the order of precedence of logical
operators.

¢ The | and & symbols, in addition to the and and or keywords, give the user additional
simple options based on their personal preferences.

¢ The wildcard * character has a slightly modified behavior compared to the Google
wildcard.

Tip The Google Help: Cheat Sheet, which describes the Google search query syntax that we used as a
basis for our grammar, is located at http://www.google.com/help/cheatsheet.html.

CHAPTER 4 CLIENT APPLICATIONS 87

Note that in our example we won’t override or circumvent normal SQL iFTS behavior in
our query engine to make it operate in a more Google-like fashion—all iFTS query rules and
behaviors still apply. We will, however, supplement the interface by providing end users with a
syntax that is simpler and more intuitive than the standard iFTS syntax.

Extended Backus-Naur Form

After we define our operators, the next step is to explicitly define the syntax of the grammar.
The standard method for defining a grammar is Extended Backus-Naur Form (EBNF). In EBNF,
named productions are shown to the left of a : : = operator, while the components that make
up those productions are shown to the right. You can think of the : : = operator in the EBNF
form as meaning “is composed of,” where the nonterminal symbol on the left side is composed
of the symbols on the right side. We’ll use a simplified variation of EBNF to express our
grammar here:

Query ::= OrExpression
OrExpression ::= AndExpression
| OrExpression ('or' | '|') AndExpression
AndExpression ::= PrimaryExpression
| AndExpression { 'and' | '&" } PrimaryExpression

PrimaryExpression ::= Term

| '~' Term

| Phrase

| "(' OrExpression ')’

| '<' (Term | Phrase)+ '>'
ExactExpression ::= '+' Term

| '+" Phrase

TeI’m::: (lAl...lzl|Iol'..lgl|l!l|I@l|I#l|I$l|l%l|l/\l|l*l|l_l|lll|l'l|l?l)+
Phrase ::= '"' (string characters)+ '"'

The following details apply to this grammar representation:

 The pipe symbol | is used on the right side of the : := symbol to indicate that the non-
terminal on the left side can be any of the items on the right side. This symbol can be
read to represent “or.”

e Parentheses () are used to group choices on the right side, indicating that one of the
items in parentheses should be selected to complete the production.

e Braces{ } are used to indicate optional items on the right side.

* Apostrophes ' ' are used to enclose character literals, so that '<' indicates that the
literal character < is required to complete the production.

88

CHAPTER 4 CLIENT APPLICATIONS

* The plus sign + is used to indicate that one or more of the preceding items is required
to complete the production. For example, the production (Term | Phrase)+indicates
that one or more combinations of Term and Phrase nonterminals need to be present to
complete the production. You can think of the trailing plus sign as having the same
meaning as the regular expression + (“one or more”) symbol.

* Theabbreviation string characters is used to indicate that any printable characters are
allowed within the production.

As you can see from the EBNF form, the grammar we’re trying to produce here is fairly
simple in nature, containing only seven logical productions. By contrast, the EBNF grammar
specification for the T-SQL language is extremely complex, taking dozens of pages to print out
in full.

Tip For reference, you can view the T-SQL language grammar in BOL. It’s actually spread out over
hundreds of pages, in manageable chunks, in the “Syntax” section at the top of pages in the “Transact-SQL
Reference” section.

Implementing the Grammar with Irony

After we've defined our grammar, it’s time to get into the implementation details. After researching
several alternatives, we decided to use the Irony .NET parser created by .NET guru Roman
Ivantsov. We chose Irony because of its simplicity and because it automatically produces an
abstract syntax tree (AST), which is an in-memory tree structure we’ll need to convert the user’s
input to something intelligible by SQL Server. We’ll talk more about the AST later.

Our first step is to download and compile the Irony .NET library from http://www. codeplex.com/
irony. Then we create a new C# project and add a reference to Irony as shown in Figure 4-3.

_@ SearchQueryConverter

- [Ed| Properties

G- [& References

..... 43

----- =2 Sysktem

----- =2 Syskem, Core

----- =2 Sysktem,Data

----- =2 System,Data,DataSetExtensions
----- «3 System,Deployment

----- =2 Syskem.Drawing

----- «3 System,Windows,Forms
----- « System, Xml

----- « System, ¥ml.Ling

..... [app.config

@Solution Explorer

Figure 4-3. Adding a reference to the Irony library to a C# project

CHAPTER 4 CLIENT APPLICATIONS

After adding a reference to the Irony library, we add a reference to the Irony.Compiler

namespace in the code and then define the query engine grammar in a class named SearchGrammar,
as shown in Listing 4-4. Note that the SearchGrammar class is derived from the Irony Grammar class.

Listing 4-4. Search Grammar in Irony Form

using Irony.Compiler;

public class SearchGrammar : Grammar

{

public SearchGrammar ()

{

// Terminals

var Term = new IdentifierTerminal("Term", "!@#$%"* '.?",
"I@H$%N* . 20123456789");

var Phrase = new Stringliteral("Phrase");

// NonTerminals

var OrExpression = new NonTerminal("OrExpression");

var OrOperator = new NonTerminal('OrOperator");

var AndExpression = new NonTerminal(“AndExpression");

var AndOperator = new NonTerminal("AndOperator");

var ExcludeOperator = new NonTerminal("ExcludeOperator");

var PrimaryExpression = new NonTerminal("PrimaryExpression”);

var ThesaurusExpression = new NonTerminal("ThesaurusExpression");
var ThesaurusOperator = new NonTerminal("ThesaurusOperator");

var ExactOperator = new NonTerminal("ExactOperator");

var ExactExpression = new NonTerminal("ExactExpression");

var ParenthesizedExpression = new NonTerminal("ParenthesizedExpression");
var ProximityExpression = new NonTerminal("ProximityExpression");
var ProximitylList = new NonTerminal("ProximitylList");

this.Root = OrExpression;
OrExpression.Rule = AndExpression
| OrExpression + OrOperator + AndExpression;

OrOperator.Rule = Symbol("or") | "|";
AndExpression.Rule = PrimaryExpression

| AndExpression + AndOperator + PrimaryExpression;
= Empty
| "and"
K3
| ExcludeOperator;
ExcludeOperator.Rule = Symbol("-");

AndOperator.Rule

89

90 CHAPTER 4 CLIENT APPLICATIONS

PrimaryExpression.Rule = Term
| ThesaurusExpression
| ExactExpression
| ParenthesizedExpression
| Phrase
| ProximityExpression;
ThesaurusExpression.Rule = ThesaurusOperator + Term;
ThesaurusOperator.Rule = Symbol("~");
ExactExpression.Rule = ExactOperator + Term

| ExactOperator + Phrase;
ExactOperator.Rule = Symbol("+");
ParenthesizedExpression.Rule = "(" + OrExpression + ")";
ProximityExpression.Rule = "<" + ProximitylList + ">";
MakePlusRule(ProximitylList, Term);

RegisterPunctuation("<", ">", "(", ")");

The Irony grammar follows the EBNF grammar fairly closely; however, to implement some
of the productions the Irony implementation requires more nonterminals.

With the SearchGrammar class in place, Irony can parse our grammar, recognizing and
returning nonterminals and tokens with which it will build an AST. The AST is a treelike data
structure that Irony builds with the tokens you supply. Consider the sample Google-style query
string +fish (sticks or hook) -catfish. The AST produced by this query, after Irony performs
lexical analysis on the string, is shown in Figure 4-4.

Tip The AST shown in Figure 4-4 was produced by the Irony Grammar Explorer, which is also available for
download from http://www.codeplex.com/irony.

Asyou can see in the AST, Irony parses the tokens and symbols out of the input string and
places them in a proper hierarchical structure. It is through this hierarchical tree structure that
we’ll generate the final iFTS CONTAINSTABLE clause to query the database.

CHAPTER 4 CLIENT APPLICATIONS

£® Irony Grammar Explorer

Grammar: | SearchGrammar w | Search [regex]: |

| Terminalz || Mon-Terminals || Productions || Parser States || Grammar Errors| Parsing Test]

Run [Trace Results |Err0rs || Parser Trace || Tokens|

- - - Statistics
+fish (sticks or hook) -catfish . X
Init tirne, ms: 70
Lines: 1
Tokens: 10
Parze Time, m3: 15
Errors: 1]
Run Time, ms: 1]

Output Syntax Tree

E indExpression
E:J-AndExpression
é-ExactExpression
© bt [Symbol]
fizh [Term]

IndOperator (Empty)

E OrExpression

i~sticks [Term]

Clutput cor [Term]
“hook [Term]
= [8ymbol]

~catfish [Term]

Figure 4-4. AST produced by a sample query fed into the new search query grammar

Generating the iFTS Query

The final step in the process is to convert the nodes of the AST into an iFTS CONTAINS clause to
query the database. There are several methods of parsing an AST, including advanced tech-
niques such as implementing the visitor pattern with separate classes for every type of node.

Because our grammar is simple, however, we’ll go the easy route and implement a simple
recursive function that will begin parsing the AST at the root node and will call itself recursively
traversing every node of the tree. Listing 4-5 is the ConvertQuery function, which accepts the
root node of the AST and returns the constructed CONTAINSTABLE search query string. We’ll
show how to call this function and utilize the results in the following sections.

Listing 4-5. Converting a Recursive AST Traversal Function

public static string ConvertQuery(AstNode node, TermType type)
{
string result =
// Note that some nonterminals don't actually get into the AST tree,
// because of some of Irony's optimizations - punctuation stripping and
// node bubbling. For example, in ParenthesizedExpression parentheses
// symbols get stripped off as punctuation, and the child expression node
// (parenthesized content) replaces the parent ParExpr node (the
// child is "bubbled up").
switch (node.Term.Name)

91

92 CHAPTER 4 CLIENT APPLICATIONS

{

case "OrExpression”:
result = "(" + ConvertQuery(node.ChildNodes[0], type) + " OR " +

ConvertQuery(node.ChildNodes[2], type) + ")";
break;

case "AndExpression":
AstNode tmp2 = node.ChildNodes[1];
string opName = tmp2.Term.Name;

string andop = "";
if (opName == "-")
{
andop += " AND NOT ";
}
else
{
andop = " AND ";
}

result = "(" + ConvertQuery(node.ChildNodes[0], type) + andop +
ConvertQuery(node.ChildNodes[2]) + ")";
break;

case "PrimaryExpression”:
result = "(" + ConvertQuery(node.ChildNodes[0], type) + ")";
break;

case "Proximitylist":
string[] tmp = new string[node.ChildNodes.Count];
type = TermType.Exact;
for (int i = 0; i < node.ChildNodes.Count; i++)
{
tmp[i] = ConvertQuery(node.ChildNodes[i], type);
}
result = "(" + string.Join(" NEAR ", tmp) + ")";
type = TermType.Inflectional;
break;

case "Phrase":
result = '"'
break;

+ ((Token)node).ValueString + ;

case "ThesaurusExpression”:
result = " FORMSOF (THESAURUS, " +
((Token)node.ChildNodes[1]).ValueString + ") ";
break;

CHAPTER 4 CLIENT APPLICATIONS

case "ExactExpression”:
result = " \"" + ((Token)node.ChildNodes[1]).ValueString + "\" ";
break;

case "Term":
switch (type)
{
case TermType.Inflectional:
result = ((Token)node).ValueString;
if (result.EndsWith("*"))
result = "\"" + result + "\"";
else
result
break;

" FORMSOF (INFLECTIONAL, " + result + ") ";

case TermType.Exact:
result = ((Token)node).ValueString;
break;

}

break;

// This should never happen, even if input string is garbage
default:
throw new ApplicationException("Converter failed: unexpected term: " +
node.Term.Name + ". Please investigate.");

}

return result;

}

SPECIAL HANDLING IN THE AST

One tradeoff that’s sometimes made in simple grammar implementations is putting special handling in the
AST traversal and parsing routines instead of trying to code everything directly in the grammar itself. As an
example, to keep our grammar implementation simple, we’ve left some rules out of the grammar and instead
handled them in the AST traversal/iFTS query creation function.

In one instance, we decided that special handling for the trailing wildcard * character in search terms
should be handled during AST traversal instead of directly in the grammar definition itself. Differentiating
between the unary - operator and the logical AND operators is also performed in the AST traversal function,
since the unary - operator maps directly to the iFTS AND NOT operator.

93

CHAPTER 4 CLIENT APPLICATIONS

Converting a Google-Style Query

Using the Irony grammar we’ve created is relatively simple. You basically need to create a
couple of object instances and call a few methods of those instances. A simple call to the
ConvertQuery function consists of first creating a SearchGrammar and a LanguageCompiler object:

SearchGrammar _grammar;
LanguageCompiler _compiler;

You then pass the source query to the LanguageCompiler object, which returns a fully
formed AST. Then, assuming no errors occurred, you call the ConvertQuery method of the
SearchGrammar object to convert the AST to a proper iFTS query:

AstNode root = compiler.Parse(SourceQueryText.Text.ToLower());
if (!CheckParseErrors()) return;
FtsQueryTextBox.Text = SearchGrammar.ConvertQuery
(
root,
SearchGrammar.TermType.Inflectional

);

Finally, you call the static ExecuteQuery method of the SearchGrammar class to actually
execute the iFTS query against the target database. In the following sample code, we use the
ExecuteQuery method to populate a DataTable, which we then display in a DataGridView
control:

DataTable dt = SearchGrammar.ExecuteQuery(FtsQueryTextBox.Text);
ResultsDataGridView.DataSource = dt;

Querying with the New Grammar

In the sample download files, we’ve included a sample Windows Forms application that
puts the sample grammar we’ve built in this section to use. The application accepts a search
engine-style query, converts it to an iFTS CONTAINSTABLE query, displays the iFTS version of the
query, and executes the query against dbo.Book table of the iFTS Books database. Results are
returned in a DataGridView control, as shown in Figure 4-5.

Tip We chose to implement a simple Windows application in this example to avoid the set up and config-
uration associated with web applications, but there’s no reason similar .NET code can’t be created using
ASP.NET to provide similar web- or intranet-based search functionality against SQL Server.

CHAPTER 4 CLIENT APPLICATIONS

Search Query Converter

Cuemy

[<tian moaks or (dog -car)
Floinks

| Rk Tl

'a-__ncmmmvm«m:.qw..'. Cout

i | Bfnchis Myghokogr Tre Ape of Tatia

[o g ..l;'lllb".'d'—.'lnlﬂ'

o Mo Yt L] bt s bl

i o 1 A Nt Ereatarinents
Iz e zercen
I g o0 i, T E b ot Eceaton T1amieen
f |Meseln
;Mn—-. Pt

The Aot Standied Varsn of the Holy Bibk

Figure 4-5. Sample search engine—style query converted to iFTS query

The static ExecuteQuery method of the SearchGrammar class is responsible for opening a
database connection, executing the iFTS query against the database, and returning the results
as aDataTable. The CONTAINSTABLE SQL query generated and executed by the ExecuteQuery

method looks like the following:

SELECT ct.[RANK] AS Rank,
t.Title,
b.Book_ID
FROM CONTAINSTABLE
(
dbo.Book,
*)
@ftsQuery
) AS ct
INNER JOIN dbo.Book b
ON ct.[KEY] = b.[Book ID]
INNER JOIN dbo.Book Title bt
ON b.Book ID = bt.Book ID
INNER JOIN dbo.Title t

ON bt.Title ID = t.Title ID

WHERE t.Is Primary Title = 1
AND ct.[RANK] > 0;

Note that we generate a CONTAINSTABLE query and check for RANK > 0. This is important for
the use of the iFTS NEAR operator, since it’s essentially useless with the normal CONTAINS oper-
ator. Also note that the results of the CONTAINSTABLE function are joined back to the dbo.Book
table and other supporting tables to retrieve related information about the results.

The example in Figure 4-5 demonstrates the following simple search engine-style query:

<fish hook> or (dog -cat)

95

96

CHAPTER 4 CLIENT APPLICATIONS

This query indicates the user wants to locate all documents in which either of the following
conditions are true:

* The words fish and hook appear in close proximity to one another.
* The word dog appears but the word cat does not appear.
The resulting iFTS CONTAINS query looks like the following:

((fish NEAR hook) OR (FORMSOF (INFLECTIONAL, dog)
AND NOT FORMSOF (INFLECTIONAL, cat)))

The following are some additional queries that demonstrate the conversion capabilities of
the query conversion engine.

* Trying to find: the exact word love, inflectional forms of the word money, and excluding
the word diamond.

Search query: +1ove money -diamond

iFTS query: (("love" AND FORMSOF (INFLECTIONAL, money)) AND NOT FORMSOF
(INFLECTIONAL, diamond))

e Trying to find: the exact phrase dogs and cats, or the exact phrase cats and dogs.
Search query: "cats and dogs" or "dogs and cats"
iFTS query: ("cats and dogs" OR "dogs and cats")

* Trying to find: all words that begin with fish, excluding the exact word fishing.
Search query: fish* -"fishing"
iFTS Query. ("fish*" AND NOT "fishing")

* Trying to find: all documents with any inflectional form of the word president, and either
of the following: thesaurus forms of the word run or the words election and primary in
close proximity to one another.

Search query. president (~run or <election primary>)

iFTS Query: (FORMSOF (INFLECTIONAL, president) AND (FORMSOF (THESAURUS, run)
OR (election NEAR primary)))

By using Irony and a well-constructed grammar, you can allow your users to generate
complex and intricate queries using a relatively simple syntax that they’re already familiar with.

Summary

In this chapter, we looked at some of the nifty client-side features that you can add to iFTS to
make database searches easier and more intuitive for your end users. This will give you several
benefits. You can minimize end user training, ramp-up time, and ongoing support; and you
can also improve overall productivity by providing your end users with a more intuitive and
easier to use interface.

CHAPTER 4 CLIENT APPLICATIONS 97

First welooked at simple hit highlighting of iFTS results. For data from which the plain text
is accessible, you can easily add this common feature that search users expect. While we demon-
strated this functionality using simple T-SQL statements and functions, more advanced
functionality can be achieved through use of SQL CLR functions. Additionally, other methods
can be employed to optimize hit highlighting functionality for speed (with a tradeoff of more
storage, however).

To round out the chapter, we looked at another bit of commonly requested functionality:
Google-style search queries. For our example, we created a simple Google-based search query
grammar that we implemented in C# with the Irony parser. Adding this type of functionality
adds a whole new level of functionality for your end users, providing them with the right mix of
power and simplicity that they’ve come to expect.

The authors would like to thank Roman Ivantsov, creator of Irony and C# programmer
extraordinaire, for reviewing and advising on our initial Irony grammar and the initial draft of
the AST traversal function.

CHAPTER 5

Multilingual Searching

Drawing on my fine command of the English language, I said nothing.

—Robert Benchley

We’ve focused largely on English as spoken in the United States throughout this book, owing
largely to the fact that it’s the authors’ native tongue. We’ve given some brief examples of queries
in other languages. SQL Server 2008 iFTS natively supports 48 languages (three additional
languages are supported but disabled by default), and can support even more languages
through the use of third-party filters and word breakers.

While it can’t hurt to be a polyglot (someone who speaks many languages), it’s unlikely
that the members of your DBA and development teams are fluent in the 48 languages that
shipped with SQL Server 2008 iFTS. Fortunately for us, knowledge of several different languages
is not essential to developing a multilingual full-text search solution. Instead, having team
members who have an understanding of language fundamentals is probably one of the most
useful tools for taking advantage of SQL Server iFTS multilingual options.

This is not to belittle the advantages of having staff members who are fluent in the languages
your SQL FTS search solution supports. For example, if a Chinese user searches for Chinese
content on your web site and doesn’t find what she’s looking for, she’ll go to a web site that
does. If she’s a customer and doesn’t find the product she’s looking for on your web site, but
finds it somewhere else, the odds are good she won’t return to your site again.

CHINESE LANGUAGE BUG FIXES

In our example at the beginning of this section, we specifically chose to cite the Chinese language not only
because of the large potential customer base, but because there were some bugs in the Chinese word breaker
that shipped with SQL Server 2005. These bugs have been fixed in SQL Server 2008 iFTS. The fact that there
were bugs in the SQL Server 2005 Chinese language word breaker was brought to our attention by a developer
who is a fluent speaker of Chinese. This developer couldn’t retrieve specific content indexed in Chinese on
SQL Server 2005, but with his help we were able to use the new dynamic management functions (DMFs)
in SQL Server 2008 to validate that the situation has been corrected.

99

100

CHAPTER 5 MULTILINGUAL SEARCHING

In this chapter, we’ll dig deeper into the concept of multilingual full-text searching in SQL
Server 2008. After reading this chapter, you'll have a good understanding of how iFTS multilingual
features work and some information you can use to implement your own iFTS-enabled multi-
lingual search solutions. But we begin with a short history of written language to provide
background on some of the issues that iFTS faces when indexing and searching multilingual
content.

A Brief History of Written Language

Wikipedia defines written language as “the representation of a language (symbols of communi-
cation and the elements used to manipulate them) by means of a writing system.” Evolutionary
linguists speculate that the earliest forms of communication consisted of prehistoric pictorial
representations of objects—picture drawings known as pictograms. Cave drawings dating back
to more than 32,000 years ago provide some of the earliest known pictograms. Figure 5-1 is a
prehistoric cave drawing of a horse from the Lascaux cave complex in France. The drawing is
estimated to be more than 16,000 years old.

Figure 5-1. Prehistoric cave painting from Lascaux, France

As man advanced in sophistication, pictogram systems increased in complexity to the
point that they became unwieldy. Pictograms were subsequently replaced with Neolithic
proto-writing systems of the 7th millennium B.C.E. These proto-writing systems replaced
complex pictographic writing systems with simpler logographic systems that utilized ideo-
graphic and mnemonic symbols. The Vinéa signs of southeastern Europe are one of the most
famous examples of a Neolithic proto-writing system. Figure 5-2 is a depiction of a clay vessel
with Vin¢a asigns on it.

QR A Y

Figure 5-2. Depiction of an unearthed clay vessel with
Vinca signs drawn on it

CHAPTER 5 MULTILINGUAL SEARCHING

Over time, even these advancements in written communication proved inadequate. While
ideographic symbols may be adequate to represent physical objects, they aren’t up to the task
of describing abstract concepts such as justice and beauty. Most writing systems, over time,
evolved into using alphabetic characters that were used to represent phonetic sounds, syllables,
or ideas; or in some cases, all three. Egyptian hieroglyphs, for instance, used a phonetic-based
alphabet in which symbols represented sounds. Figure 5-3 shows the name Cleopatra written
in Egyptian hieroglyphs.

(AHNERS)

Figure 5-3. “Cleopatra” written in Egyptian hieroglyphs

The formal Egyptian hieroglyph alphabet was unwieldy; so much so that the Egyptian
scribes used a simpler demotic alphabet for informal correspondence. Modern languages
incorporate a wide range of ideas from ancient languages. Western written languages tend to
consist of alphabets that roughly represent phonemes, the smallest structural units of a language
that have meaning. Eastern languages, such as Traditional Chinese, are logographic in nature;
individual characters represent entire words or ideas. Figure 5-4 shows the Traditional Chinese
symbol for Tree and the English word representing the same.

Tree

Figure 5-4. Traditional Chinese and English words for “Tree”

iIFTS and Language Complexity

In addition to different alphabets and writing systems, iFTS must deal with myriad issues that
increase the complexity of indexing and querying textual content. Every language has rules of
syntax to define the structural relationships between symbols. SQL Server iFTS must first deal
with these syntactical constructs at the symbol level via language-specific word breakers. Word
breakers encapsulate a wide array of complex language-specific rules that are applied to break
textual data into words and tokens. We'll discuss the rules that affect word breaking, tokenization,
and querying in the sections that follow.

101

102

CHAPTER 5 MULTILINGUAL SEARCHING

Writing Symbols and Alphabets

Because of the diversity of languages, the SQL Server iFTS indexer must be able to handle many
different alphabets and writing systems to allow users to find what they’'re looking for. For most
writing systems, this means using whitespace and punctuation to break the text stream into
tokens. In Chinese, and some other Far Eastern alphabets, a single character may express a
complete idea that requires multiple alphabetic characters in a Western language. With Chinese,
the indexer must do more work to extract searchable tokens from character strings. Consider
the following Chinese character string:

XE 11 TH X E 1718 Microsoft SQL Server 2008 I fEE FELE 1L H g 12 R ZHY
EREE, HIFREXRFBEHEAERYEGE AR T EBRREN 2 EHRTE

In English, this translates to the following:

This 11-page paper discusses how Microsoft SQL Server 2008 provides a flexible solu-
tion for storing unstructured data and combining it with relational data to build
comprehensive solutions that encompass the full range of data across an organization.

The whitespace in the Chinese version is sparse and doesn’t map well to indexing the
dozens of words and ideas in the translated English version. In addition, the Chinese word
breaker has to deal with both single-character and multicharacter tokens. The Traditional
Chinese (LCID 1028) word breaker derives 42 tokens from the Chinese text, as shown:

11,2008, microsoft, server, sql, &, i, #%, €W, %, &, R, @&, 1t, &, &, o, 7, F, #,
B OB . B R B XE, FR X 8,53 X 0,8 KX 4,8, 4 8, it,ie,
X, 3F,and W

Asyou can see, the Chinese word breaker handles the concept of word boundaries much
differently than the English word breaker. While the English word breaker can rely heavily on
punctuation and whitespace to define word boundaries, the Chinese language offers no such
luxury.

Languages such as Arabic are at the other extreme. In Arabic, whitespace generally delimits
words, but some letters such as the Arabic A (alifj are nearly always followed by whitespace—even
in the middle of word. The Arabic phrase Allahu akbar (God is greatest) demonstrates the use
of whitespace after the letter alif ().

1dde 1,

In some cases, a word is used to indicate a sentence end in Arabic. For example, the
following two Arabic tokens represent the exact same word, both meaning house in English:

S
Qu—a

The difference between these Arabic words is that the second form is used exclusively at
the end of sentences. Language-specific word breakers must take these word breaking rules
into consideration at both index and query time.

CHAPTER 5 MULTILINGUAL SEARCHING

Bidirectional Writing and Capitalization

While many languages such as Spanish and English are written from left to right, other languages
such as Arabic and Hebrew are written from right to left. Language-specific rules in the word
breaker must deal with these differences in writing direction to ensure that words are read and
tokenized in the same direction that they were written.

Also, for many languages, capitalization doesn’t inherently affect word-breaking activity.
In the English language, the token Marie-Claire generates exactly four inflectional form tokens:
marie, claire, marieclaires, and marieclaire. Likewise, the lowercase form, marie-claire, generates
the same four tokens. To the English word breaker, capitalization is unimportant to the word-
breaking process.

Note Although capitalization is inherently unimportant for word breaking in most languages, we’ll discuss
some instances in which iFTS imposes its own rules on handling capitalization later in this section.

There are exceptions to every rule, however; and in this case the exception is French. The
French word breaker generates six inflectional forms of the token Marie-Claire when the phrase
is capitalized. When the token is not capitalized, as in marie-claire, the French word breaker
generates no less than 49 inflectional forms. Listing 5-1 invokes the French word breaker to break
both the capitalized and noncapitalized forms of the token Marie-Claire, proving once and for all
that the French take their capitals very seriously. Partial results are shown in Figure 5-5.

Listing 5-1. Breaking Marie-Claire in French

SELECT *
FROM sys.dm fts parser
(
N'FORMSOF (FREETEXT, marie-claire)',
1036,
NULL,
0

)s

SELECT *
FROM sys.dm fts parser
(
N'FORMSOF (FREETEXT, Marie-Claire)',
1036,
NULL,
0

)5

103

104

CHAPTER 5 MULTILINGUAL SEARCHING

source term (&

marie-clairg

phrase.. occurren.. | special_tenm
g 1 Exact Match

1 Euact Match
Exact Match ploo
Ewact Melch 1
Ewact Metch
Exact Mazch i

Exact Match mnnarais

Exact Match mamal
Exact Match mesiat
Exact Match manassis

1
1
1
1
1 Exact Mateh mansnt
1
1
1
1

Exnct Match maniasses

R e
| 920800081007 2008R008!]
MLO0BE000E1 0072 10

special tarm | displsy te- spn

o maries

maries

mans]

inires

oo e ::o'§ soeoccosose o
4
=

Figure 5-5. Partial results of breaking the token “Marie-Claire” in French

Although capitalization is unimportant for word-breaking purposes in most languages,
SQL Server iFTS imposes its own rules on capitalization of acronyms. The English word breaker
will tokenize the capitalized acronym F.B.I. as both FBIand F.B.I. This is done to maximize recall,
since users might search for either token when looking for documents related to the Federal
Bureau of Investigation. By contrast, the lowercase version of the acronym, fb.i., indexes only the
individual characters f, b, and i. Similarly, the lowercase token fbiwill only be indexed as fbi.

Tip These capitalization rules are different for different languages. While the English word breaker returns
f, b, and i when breaking £.b.i., the French word breaker returns both £.b.i. and 7bi.

The reasoning behind these somewhat exotic capitalization rules is based in large part on
popular style guide recommendations. The idea is that when a user types in an all-uppercase
acronym, she’s really searching for an acronym; when searching for all-lowercase characters,
the assumption is that she’s searching for a something other than an acronym—a “real word.”
These somewhat complicated rules are designed to help minimize the number of false positives
returned by iFTS. As we pointed out in the preceding tip, these particular rules do vary widely
from one language to another.

Hyphenation and Compound Words

Each word breaker handles hyphenation issues based on the rules of the target language. Some
languages such as Dutch simply break a hyphenated word into its constituent components and
proceed to index the constituent words. The Dutch word breaker will break the token merry-
go-round into three separate words: merry, go, and round. The English word breaker, on the
other hand, generates four tokens: merry, go, round, and merrygoround.

Some languages have intricate rules built in to handle compound and composite word
indexing. Consider the German word Herzkreislaufwiederbelebung (literally “heart cycle revival,”
also known as CPR to the English-speaking world). The German word breaker breaks this word

CHAPTER 5 MULTILINGUAL SEARCHING

into four constituent German words: herzkreislaufwiederbelebung, herz, kreislauf, and wieder-
belebung. The idea is that a search for any of these constituent words should return documents
containing the composite word as well, increasing recall. The English word breaker, on the other
hand, refuses to acknowledge the German rules, and returns only a single token of the full word
for indexing.

Nonalphanumeric Characters and Accent Marks

Language-specific word breakers also defer to the base language in dealing with whitespace
and nonalphabetic characters. In English, the period character is used as a decimal point in
numeric values; however, in some European countries the comma character is used for the
same purpose. As an example, the German word breaker turns the token 3,14 into 3,14 and
nn3d14. The English word breaker, on the other hand, treats the comma as a token separator
and generates four tokens from 3,14; namely 3, nn3, 14, and nnl4. We previously discussed
numeric token indexing in Chapter 3.

The word breakers for most languages break words at whitespace and punctuation. The
English word breaker will break the phrase four score and ten at whitespace and return the tokens
four, score, and, and ten. A token like http://www.microsoft.comis indexed as http, www, microsofft,
and com by the English word breaker. A search for Microsoft will return content containing the
URLhttp://www.microsoft.com, which is a desirable behavior. The English word breaker divides
sergey@google.com into three tokens: sergey, google, and com.

The rules for characters followed by nonalphanumeric characters are somewhat convo-
luted (at least in English). The English word breaker accepts the token C#and returns C#. The
lowercase token c# however, is indexed as c with the # character stripped off. The uppercase
token C++ and lowercase token c++, on the other hand, are both indexed as c++.

Accent and diacritic marks carry varying degrees of significance for different languages. At
one extreme is the English language, in which accents and diacritics are by and large unimportant
and unnecessary. Except for a few imported words used in the occasional Madison Avenue
advertising campaign or as the name for a trendy restaurant, accent marks have fallen out of
favor in the English language. At the other end of the scale is the French language, in which an
accent mark can mean the difference between eating salty peanuts (arachides salés) and eating
dirty peanuts (arachides sales). We highly recommend sticking to the salty peanuts.

Token Position Context

Different languages may apply context to token position in the source text. Consider the
Chinese phrase ##8 H 3R (Traditional Chinese Version in English). This phrase is broken up
by the Chinese word breaker into three separate symbols: #88 , #3Z , and kR . By rearranging
the characters in the phrase to read 3 28+ (a somewhat nonsensical translation of In article
traditional form version), the Chinese word breaker generates four separate symbols: 3 , 888 ,
RR , and # . By contrast, in English the phrase Traditional Chinese Version is broken up into the
words Traditional, Chinese, and Version. Changing the order of tokens in the English phrase
(Chinese Version Traditional, for example) doesn’t change the tokens that are output by the
English word breaker.

105

106

CHAPTER 5 MULTILINGUAL SEARCHING

INDEXING METHODOLOGIES

In passing, we should note that some search engines use various methods to locate and index the stems of
the words it retrieves from the source text. The iFTS team has chosen not to use this method to index words,
as it tends to lower precision. Indexing stems of words, such as the stem interestfor the word interesting, also
introduces additional complexities during the lexical analysis phase of indexing. Other search utilities, such as
Lucene, do provide this type of functionality via add-ons. But even on Lucene and other search engines, this
isn’t the preferred indexing methodology.

Generational Forms

Generational forms encompass both inflectional forms (for example, verb conjugations and
plural nouns) and thesaurus replacements and expansions. Inflectional forms are language-
specific, consisting of potentially thousands of rules for stemming words.

Consider the Arabic language, which has some complex semantics associated with it.
Statistical studies have shown that on average, there are four different concepts expressed in
the derivatives of a single Arabic root. In some cases, Arabic roots such as 3—=Jhave as many as
adozen or more derivatives (in English: accept, okay, subscribe, kiss, and so on). Because Arabic
is a highly derivational and inflectional language, the Arabic word breaker includes additional
logic to group word derivatives and then to limit results returned to only those derivatives that
fall into the same group as the search term itself.

Other languages, such as English, greatly simplify plural noun generation and verb conjuga-
tion through the use of affix (suffix) rules. All languages in general—and English in particular—are
full of exceptions. Consider the infinitive go, one of two suppletive English verbs (the other is be).
While many simple past tense verbs can be created by adding the affix -ed to the infinitive (for
example, fished, cooked, watched), the past simple tense of gois went, a word with no apparent
relationship to the infinitive form. The English word breaker and stemmer must maintain
lists of these types of exceptions and the logic to properly apply them in order to be effective.

Thesaurus replacements and expansions are another story. These types of generational
forms are essentially user-defined, and are useful for implementing custom search functionality.
For instance, if your users tend to search for domain-specific specialized words (such as legal
and medical terms), you can map them to their more mundane equivalents using thesauruses.
Likewise, if you need to add functionality to search for words that aren’t covered by the word
breaker and stemmer for your language (such as slang terms), the thesaurus can help you fulfill
this need. We discuss thesaurus expansion and replacement in Chapter 8.

Gender

Though English largely ignores gender-specificity in words, with the exception of nouns and
pronouns specifically defined to evoke gender-specific ideals, gender plays an important role
in other languages. In English, we see throwbacks to gender-specific idioms, such as the words
fisherman and mailman, and an implicit association of certain ideals with gender (such as
referring to sailing ships with feminine pronouns). In the worst case, these gender-specific
words can be overcome through the use of thesauruses. For instance, you could include an
expansion rule in your thesaurus to automatically expand your search for the word fisherman
to include the word fisherwoman.

CHAPTER 5 MULTILINGUAL SEARCHING

SQL Server iFTS automatically includes stemming logic that accommodates gender rules
for other languages where gender plays a more important role. Consider the word flaco (skinny,
masculine). When the Spanish stemmer sees this word, it generates inflectional forms that
include both the masculine gendered versions of the word (flaco, flacos) and the feminine
gendered versions (flaca, flacas). If you referred to a man with the word flaca, odds are good
that he would take offense at being called a skinny girl.

Gender plays a role in nouns as well. Consider the Spanish words barco and barca, which
both mean ship. If you asked for a barco, you'd get a big ship, whereas a barca would be much
smaller. Though not as important for English (where a shipis a ship), gender plays an impor-
tant role when querying multilingual content in many languages.

Storing Multilingual Data

Now that we have an understanding of the issues and complexities involved in searching multi-
lingual text, it’s time to dive into the details of storage and search. There are several methods
you can use to prepare your database to store multilingual data; in this section, we’ll introduce
the methods and tools at your disposal. SQL Server iFTS supports 48 languages by default (and
three additional languages not installed by default) as listed in Table 5-1.

Table 5-1. SQL Server 2008 iFTS-Supported Languages

Language Name

Arabic Bengali (India) Brazilian

British English! Bulgarian Catalan

Chinese (Hong Kong SAR, PRC)! Chinese (Macau SAR)! Chinese (Singapore)!
Croatian Danish? Dutch

English! French German

Gujarati Hebrew Hindi

Icelandic Indonesian Italian

Japanese Kannada Korean!

Latvian Lithuanian Malay - Malaysia
Malayalam Marathi Neutral

Norwegian (Bokmal) Polish? Portuguese
Punjabi Romanian Russian

Serbian (Cyrillic) Serbian (Latin) Simplified Chinese!
Slovak Slovenian Spanish

Swedish Tamil Telugu

Thail Traditional Chinesel Turkish?

Ukrainian Urdu Vietnamese

Word breaker is unchanged from the SQL Server 2005 version.
2Language is supported in SQL Server 2008, but not installed by default.

107

108

CHAPTER 5 MULTILINGUAL SEARCHING

Storing Plain Text

One of the first tasks you'll need to consider when storing multilingual data is your choice of
character sets. When storing purely textual data, you must choose the correct code page. Code
pages are used to map a specific set of characters to numeric code-point values. Most code pages
support only small 7- or 8-bit code points, allowing you to represent only 128 or 256 characters.
By contrast, the Chinese language Kagnxi dictionary contains more than 49,000 characters
(although it’s estimated that full Chinese language literacy requires a working knowledge of
only three to four thousand characters). When designing multilingual database applications
that store textual data, it’s advantageous to store text as Unicode. Unicode can map more than
1 million characters to its code points, enough to represent every written language known to
man with plenty of room to spare.

SQL provides two data types designed to store Unicode: nchar and nvarchar. These data
types require double the storage space of their non-Unicode counterparts, char and varchar,
but can represent all your multilingual and internationalized text. We’ve demonstrated the use
of nvarchar and nchar in several tables in the iFTS Books sample database. For instance, the
Commentary column of the dbo.Commentary table is defined as nvarchar, so that multilingual text
can be adequately represented. Listing 5-2 shows the CREATE TABLE statement that builds the
dbo.Commentary table.

Listing 5-2. Create dbo.Commentary Table

CREATE TABLE [dbo].[Commentary]

(
Commentary ID int NOT NULL CONSTRAINT PK Commentary PRIMARY KEY CLUSTERED,
Commentary nvarchar(max) NOT NULL,
Article Content xml NULL

)

G0

Storing XML

XML data can be stored in an xml data type column or a varbinary column. We'll cover the details
of storing XML data in Chapter 6. The XML word breaker goes above and beyond the plain-text
word breakers, in that it allows you to store data from multiple languages in the same XML
document. The XML filter actually respects the xml:1ang attribute, which allows you to specify
the language of the content of your XML element. When the XML filter encounters an xml:lang
attribute, it launches the appropriate word breaker for the language indicated. Consider the
XML document in Listing 5-3, which uses the xml:1ang attribute to specify that the XML content
is Japanese.

Listing 5-3. Sample Japanese XML Content

<article xml:lang = "ja">
<date>2008-06-15</date>
<title> I—2) v RIEER </title>

CHAPTER 5 MULTILINGUAL SEARCHING

<section id = "Lead">

<para>
FR&#a (HABA, ZT0 1 X € ia, & :Elements) &, BB 3 HLITAICITT
ROTLOH RUTTEBLLEBEEIDVILATA (HERICE Euclid
(A—=2VY RN ICE>THREEINERZETH D,
ML EBE L TOBRZEOHMNERYLEF VI THEERRTIEE,

</para>

<para>
TORBRRBEE IV Y REMFLELTLEKASNDENDEEATWVWDH,
ERTOEDFLMEDKZERSENDTEHEV, £ 13 F, RNBRRFUTOEY,

</para>
<para>
<list>
1. %: FEARFEOMHE
2. % HBEOER (#EAHREK)
3. %: AoME
4. % BICHE - SETLILAE
5. % : LIk
6. % : HImOREADOILH
7. % B
8. & : B
9. % : B
10. % : |EEWR

1. % : YHRFE
12. & : HHE - (K
13. % : EFZHEE
</list>
</para>
</section>
</article>

The XML filter will recognize the xml:1ang = "ja" attribute in the article tag, and it will
subsequently launch the Japanese language word breaker. There’s currently no comprehensive
list of xm1 : 1ang tags that map to LCIDs available, so we decided to compile one based on currently
available information. Table 5-2 lists the iFTS supported languages and their equivalent xml:lang
attribute values. We also created a table in the iFTS_Books database, called dbo.Xml_Lang_Code,
which includes the xml:1ang to LCID mappings as well.

Tip Most of the codes appended to the end of the xm1 : Lang language codes are two-character country
codes taken from the ISO 3166 standard. There are some exceptions, however. The zh-Hans and zh-Hant
codes, which represent Simplified Chinese and Traditional Chinese alphabets, respectively, are two examples. In
the past, zh-CN was used to indicate Simplified Chinese and zh-TW was used to indicate Traditional Chinese.
These uses have been deprecated in favor of the new tags.

109

110

CHAPTER 5

MULTILINGUAL SEARCHING

Table 5-2. Commonly Used xml:lang Attribute Values and Corresponding LCIDs

xml:lang Value LCID Description xml:lang Value LCID Description

ar 1025 Arabic bg 1026 Bulgarian

bn 1093 Bengali (India) ca 1027 Catalan

de 1031 German en-GB 2057 UK (Interna-

tional) English

en-US 1033 US English es 3082 Spanish

fr 1036 French gu 1095 Gujarati

he 1037 Hebrew hi 1081 Hindi

hr 1050 Croatian id 1057 Indonesian

is 1039 Icelandic it 1040 Italian

ja 1041 Japanese kn 1099 Kannada

ko 1042 Korean 1t 1063 Lithuanian

1v 1062 Latvian ml 1100 Malayalam

my 1102 Marathi ms 1086 Malay (Malaysia)

nl 1043 Dutch no 1044 Norwegian

pa 1094 Punjabi pt 2070 Portugese

pt-BR 1046 Brazilian 10 1048 Romanian

Tu 1049 Russian sk 1051 Slovak

sl 1060 Slovenian sr-Cyrl 3098 Serbian (Cyrillic)

sr-Latn 2074 Serbian (Latin) sv 1053 Swedish

ta 1097 Tamil te 1098 Telugu

th 1054 Thai vi 1066 Vietnamese

uk 1058 Ukranian ur 1056 Urdu

zh-Hans 2052 Simplified zh-Hant 1028 Traditional
Chinese Chinese

zh-HK 3076 Chinese (Hong zh-MO 5124 Chinese (Macau,
Kong, People’s Special Adminis-
Republic of trative Region)
China)

zh-SG 4100 Chinese
(Singapore)

The XML filter can launch the appropriate language-specific word breaker at indexing
time, but it has no effect on breaking and stemming at query time. In other words, if you index
the Japanese language XML in Listing 5-3, the content will be properly indexed according to
the Japanese language word breaking and indexing rules. However, if you attempt to perform

CHAPTER 5 MULTILINGUAL SEARCHING

a search and specify English as the search language, the English language word breaking and
stemming rules will be applied to your query string. This mismatch between indexing language
and query language can result in poor recall of your multilingual documents.

Storing HTML Documents

HTML documents can be stored as varbinary documents with an . html document type identifier.
You can use the MS. LOCALE meta tag to define the language of the entire HTML document. The
downside is that for HTML documents written in multiple languages, the language specifies
that the document is written in only one language. Like the XML filter, the HTML filter launches
the appropriate language-specific word breaker to tokenize your HTML content. Listing 5-4
shows a simple German language HTML document with the MS. LOCALE meta tag.

Listing 5-4. German-Language HTML Document with MS.LOCALE Meta Tag

<html>
<head>
<title>Deutsches Worterbuch</title>
<meta name = "MS.LOCALE" content = "DE"/>
</head>
<body>
<h1>Deutsches Worterbuch</h1>
<p>
Das Deutsche Worterbuch (DWB) oder auch Der Grimm
ist das groBte deutsche Worterbuch, mit insgesamt 33 Bdnden. Es
wurde von den Briidern Grimm begonnen und erst 1960, nach iiber 120
Jahren, vollendet.
</p>
<h2>Aufgabe und Entstehungsgeschichte</h2>
<p>
Die Herausgabe des Deutschen Worterbuchs war das ehrgeizigste
sprachwissenschaftliche Arbeitsvorhaben, dem sich die Briider Grimm,
die deutschen Philologen Jacob und Wilhelm Grimm, stellten.
</p>
<p>
Es handelt sich um ein klassisches Belegworterbuch, das in aller
Griindlichkeit die Herkunft jedes deutschen Wortes und seinen Gebrauch
erldutern will. Das Ziel des DWB, so stellten es sich die Briider vor,
sollte es sein, dass sich der einfache Biirger der nationalen
Gemeinsamkeit in der deutschen Sprache vergewissern konnte, da es zu
Beginn der Arbeit am DWB noch kein politisch vereinigtes Deutschland,
sondern nur viele Kleinstaaten gab.
</p>
</body>
</html>

111

112

CHAPTER 5 MULTILINGUAL SEARCHING

The <meta name = "MS.LOCALE" content = "DE"/> tagspecifies that the content of the HTML
document is written in German. This meta tag causes the HTML filter to launch the German
language word breaker to index this content.

Storing Microsoft Office Documents

Several Microsoft Office documents, most notably MS Word documents, allow you to mark text or
documents as language-specific. Microsoft Office documents are stored in varbinary columns with
a type indicator column that specifies that type of document stored in the content column. We
introduced this in Chapter 3, and we’ll discuss the details of storing binary document data in
Chapter 6. The Microsoft Office document filter respects the language settings you indicate
within your document, and it will launch the appropriate filters during the indexing process.

Storing Other Document Types

Other document types, specifically those that are indexed with third-party filters, have varying
levels of support for indexing multilingual content. The Adobe PDF filter, for instance, is known
to have limited support for indexing multilingual documents. All of these document types are
essentially stored as varbinary content with a type indicator column. If you want to determine
whether third-party filters for specific document types support multilanguage indexing, you’ll
have to check the documentation provided by the manufacturer.

Detecting Content Language

You may not always have the luxury of knowing in advance what language your content is written
in. There are some sophisticated language detection algorithms available for automating the
process of determining the language of your content. Most of these methods involve looking at
the content and detecting words and character fragments that are specific to different languages,
then tagging the content as such. Dale Gerdemann of the University of Tiibingen evaluated
language identification methods in a lecture, available at http://www.sfs.uni-tuebingen.de/
iscl/Theses/kranig.pdf.

A quick and dirty approach that works well for the “big six” western languages (English,
French, German, Italian, Spanish, and Dutch) is to count letter sequences, accents, and noise
word occurrences in the content (or a small portion of it, such as the first 500 or 1,000 characters).
You can analyze text for specific documents, but keep in mind that frequently Web-based content
will contain a large amount of English content, even when the author’s primary language is not
English. For instance, many Taiwanese bloggers post in combinations of both English and
Traditional Chinese. This makes automated language identification more difficult.

Designing Tables to Store Multilingual Content

When iFTS indexes content, it doesn’t store any language-specific metadata with the tokens it
adds to the full-text index. This means that there’s no mechanism for applying language-specific
rules to indexed content after it’s already been indexed. In fact, language-specific rules are
applied at only two distinct times:

CHAPTER 5 MULTILINGUAL SEARCHING

1. Alimited set of language-specific rules (whitespace handling, hyphenation, and so
forth) are applied during the word breaking portion of the population process.

2. The full set of language-specific rules, possibly including stemming and thesaurus
expansions and replacements, are applied to your search phrase at query time.

Each full-text indexed column can only be designated with a single LCID. So how can you
design a table to hold documents and content from multiple languages with different language-
specific indexing rules and different character sets? One obvious approach is to create a separate
table for every language. Listing 5-5 creates three separate tables, one each for English, Spanish,
and German content. Note that we advise against using this method (for reasons we’ll detail
shortly), and these tables don’t exist in the iFTS Books database.

Listing 5-5. Separate Tables for Each Language

CREATE TABLE dbo.Book EN

(
Book ID int NOT NULL PRIMARY KEY,
Content varbinary(max),
File Ext nvarchar(4)

)5

GO

CREATE TABLE dbo.Book ES

(
Book ID int NOT NULL PRIMARY KEY,
Content varbinary(max),
File Ext nvarchar(4)

)5

GO

CREATE TABLE dbo.Book DE

(
Book ID int NOT NULL PRIMARY KEY,
Content varbinary(max),
File Ext nvarchar(4)

);

GO

With this method of breaking content up into separate language-specific tables, you can
ensure that all content will be indexed properly according to the rules of the language, and that
all queries for language-specific content will properly match up with the proper content. However,
this method represents a logistical and maintenance nightmare. Maintaining content in all of
these separate tables is a complex undertaking, and adding support for additional languages is
overly complicated. Even querying can be daunting with this method of storing multilanguage
content.

113

114

CHAPTER 5 MULTILINGUAL SEARCHING

The next method essentially represents the same type of underlying architecture, but
instead of creating language-specific tables, you would create language-specific columns in the
same table. Using this method, your table would contain multiple varbinary(max) columns,
each designated to hold content written in a different language. Listing 5-6 creates a denormal-
ized dbo.Book_Denorm table that uses this method of storing multilanguage content. Again, we
advise against this method of storing multilanguage data, and this table doesn’t exist in the
iFTS Books database.

Listing 5-6. Creating the Denormalized dbo.Book_Denorm Table

CREATE TABLE dbo.Book Denorm

(
Book _ID int NOT NULL CONSTRAINT PK Book Denorm PRIMARY KEY,
Content DE varbinary(max),
File Ext DE nvarchar(4),
Content_EN varbinary(max),
File Ext EN nvarchar(4),
Content_ES varbinary(max),
File Ext ES nvarchar(4)

)

GO

P~ A~~~

This method offers no improvement over the language-specific separate tables architecture.
As with that design, using language-specific columns for content represents a less-than-optimal
design. The problem again is that maintenance and administration are severely complicated
by the fact that your indexed content is stored in multiple places. You also have to contend
with multiple full-text indexes to index the same content, which can cause administrative
headaches.

A better method, and the method we recommend, is to store an LCID with your content.
This LCID can be used to narrow your full-text searches to only the content that’s relevant to
the language you're interested in. Listing 5-7 shows a simplified version of the CREATE TABLE
statement for the dbo.Book table we’ve created in the iFTS Books database. By “simplified,” we
mean to indicate that we’'ve removed the FILESTREAM attribute and some additional columns
that aren’t relevant to demonstrating the concept of marking content with an LCID.

Listing 5-7. Create Simplified dbo.Book Table

CREATE TABLE dbo.Book

(
Book _ID int NOT NULL CONSTRANT PK Book PRIMARY KEY,
Book LCID int NOT NULL,
Book Content varbinary(max) NOT NULL

)

GO

CHAPTER 5 MULTILINGUAL SEARCHING

Using this method, you can use iFTS to search the table in English. You can ensure that
there’s no mismatch between the English search phrase and the English-specific content in the
full-text index by limiting the scope of your search to only that content marked with Book LCID
= 1033. Listing 5-8 is a simple query against the dbo.Book table, searching for the German word
gift (English translation: poison). Seventeen hits are returned, as shown in Figure 5-6.

Listing 5-8. Searching for the German Word “gift”

SELECT
Book_ID,
Book_LCID

FROM dbo.Book

WHERE FREETEXT

(

*J
N'gift',
LANGUAGE 1031
)5
o

bk 1D Sook LD

1033

l1s = 1032
lig_| 32 1033
i3 as 1033

Figure 5-6. Results of search for German word “gift”

You’ll notice in the results shown in Figure 5-6 that several English language documents
were returned. It’s highly unlikely that the English language (LCID 1033) results for gift have
anything to do with the German (LCID 1031) hits for gift. In order to improve the accuracy of
results, we have to narrow the search down to only consider the German-language documents
during the search. We do this in the WHERE clause, as shown in Listing 5-9. The results are shown
in Figure 5-7.

Listing 5-9. Restricting German Word Search to Only German Documents

SELECT
Book_ID,
Book_LCID

FROM dbo.Book

WHERE FREETEXT

115

116

CHAPTER 5 MULTILINGUAL SEARCHING

(

*)
N'gift',
LANGUAGE 1031

)
AND Book_LCID = 1031;
GO

B Results
_B k_ID | Book_LCID

1031

Figure 5-7. Results of German word search against only
German language content

You can retrieve all content from the English and German content stored in the column
that relates to the German word gift and the English equivalent word poison by unioning the
results of two language-specific queries together. This is shown in Listing 5-10. Note that
the individual queries use the language-specific words gift and poison to represent the same
concept differently in each query. The results are shown in Figure 5-8.

Listing 5-10. Combining the Results for an English and German Search in One Result Set

SELECT
Book 1D,
Book_LCID
FROM dbo.Book
WHERE FREETEXT

(

*
)

N'gift',
LANGUAGE 1031

)
AND Book_LCID = 1031

UNION ALL

SELECT
Book 1D,
Book LCID
FROM dbo.Book
WHERE FREETEXT

CHAPTER 5 MULTILINGUAL SEARCHING 117

(

*
)

N'poison',

LANGUAGE 1033
)
AND Book LCID = 1033;
GO

B Results

Book_ID | Book_LCID

Lm e I xR ok B e

=== o
L I e R R e |

I

Figure 5-8. Results of combined multilanguage result set

Likewise, you can add more language-specific terms representing the same concept and
union the results together into a single result set. The downside to storing all of your content in
asingle column is that, during the indexing process, the declared language of the column is the
default language for all content stored in that column. This means that, unless your content is
stored in a format such as HTML or XML that honors language-specific markup, the content
will be broken into tokens using the default column language word breakers.

Tip Note that you can override the default language for the column by storing language-aware content
such as XML or Word documents in the column, as we described previously.

We recommend using a combination of storing LCIDs with your content and storing
language-specific tags or markup in your content (when possible) in order to maximize the
precision and accuracy of your results. By storing this additional metadata with your content,
you can maximize your results and store all of your content in a single column, which greatly
simplifies administration, maintenance, and querying over the alternatives.

118

CHAPTER 5 MULTILINGUAL SEARCHING

Summary

There are several aspects that need to be considered when creating multilanguage full-text
search solutions. In this chapter, we briefly discussed the history of written language and
explored several of the issues that you'll face in implementing your own iFTS-based multi-
language applications. We also talked about how iFTS handles these issues. Finally, we provided
recommendations for multilanguage content storage and optimizing database design. In the
next chapter, we’ll consider the methods that SQL Server provides for storing, manipulating,
managing, indexing, and retrieving large object (LOB) data.

CHAPTER 6

Indexing BLOBs

Now that we have all this useful information, it would be nice to be able to do some-
thing with it.

—Unix User’s Manual

SQL Server 2008 continues the improved support for large object (LOB) data that was intro-
duced in SQL Server 2005. This improvement is driven by Microsoft’s vision for data as well as
customer demand. When SQL Server 2000 was first released, it was estimated that all the digital
data in the world totaled 1 petabyte (1 million terabytes). Estimates done in 2007 revised that
figure to upward of 7 petabytes of digital data stored around the world. Today it appears that
everyone has his own personal terabyte, much of it unstructured data. Documents today are
born digitally, live digitally, and die digitally—they live their entire life inside a database and
sometimes never have a paper representation.

It wasn’t too long ago that data analysis always came up short. Essential data was often not
recorded, not collected, not warehoused, not accessible, sometimes not recoverable, and all
too often not kept (in other words, deleted). Information Technology (IT) has matured and
there’s been a realization that data, and the information that can be derived from it, are the
currency of the kingdom. Business intelligence can now provide actionable insights into data
that simply weren’t possible before. Frequently digital data is stored in its native format in the
database; with the most common format being XML. Today the challenge is not only storing
and managing more data efficiently, but being able to search it and have the data reveal itself
to the searcher.

The improved LOB data type support in SQL Server 2008 is centered around the new
generation of LOB data types, including varchar (max), nvarchar (max), varbinary(max), and
xml. SQL Server 2008 improves on binary large object (BLOB) data type support by providing
FILESTREAM access for varbinary(max) data. SQL Server FILESTREAM allows you to store, manip-
ulate, and stream BLOB data from an NTFS file system using T-SQL statements and the
OpenSgqlFilestream API. The real advantage to FILESTREAM is that you can not only store and
manipulate the LOB data stored in your database using T-SQL commands, you can retrieve it
directly from the file system using ADO.Net without having to read the binary data into the SQL
Server cache. In case you missed it—you can access the varbinary data you stored in the data-
base through the file system!

In this chapter, we’ll discuss indexing varbinary(max) BLOB data, both with and without
FILESTREAM, xml data, and character LOB data.

119

120

CHAPTER 6 INDEXING BLOBS

LOB Data

SQL Server’s storage mechanisms have historically made storing LOB data an interesting (and
frustrating) exercise. SQL Server stores data in 8KB pages and 64KB extents (composed of eight
consecutive pages). In prior versions of SQL Server, the image, text, and ntext data types provided
support for LOB data. Using these data types effectively, however, was kludgy at best. SQL
Server 2008 supports the newer generation of easier-to-use varbinary(max), varchar(max),
and nvarchar(max) data types (first introduced in SQL Server 2005) that replace the old LOB
data types.

Tip The image, text, and ntext data types are deprecated and shouldn’t be used for new development.
Use varbinary(max), varchar(max), and nvarchar(max) instead.

While the non-LOB data types such as varchar (n) and varbinary(n) max out at 8,000 bytes
of storage, the LOB data types in SQL Server 2008 allow you to store up to 2.1GB of datain a
single variable or column instance. This is particularly useful when used in conjunction with
iFTS to index large documents. The 1FTS_Books database has several LOB data type columns
that demonstrate a variety of LOB full-text indexing options:

¢ The dbo.Commentary table has a Commentary column defined as an nvarchar(max). This
column contains additional commentary text describing the books in the database.

e The dbo.Commentary table also has an xml data type column called Article Content that
holds articles about books and book-related topics in XML format.

¢ The dbo.Book table Book _Content column isavarbinary(max) column with the FILESTREAM
attribute. This column contains the actual content of each book stored in the database.

Character LOB Data

The varchar(max) and nvarchar(max) data) and nvarchar(max) data types are used to store
character data. Character large object (CLOB) and national character large object (NCLOB) data
consists of character data stored in varchar(max) and nvarchar(max) type columns, respectively.
The Commentary column of the dbo. Commentary column stores NCLOB data in an nvarchar(max)
column.

Note “National character” is the name given to internationalized character data by the ISO SQL Standard.
SQL Server stores national character data as Unicode in the nchar and nvarchar data types.

You can use SELECT queries and DML statements to query and manipulate your CLOB and
NCLOB data just like any other non-LOB data types. Internally, SQL Server uses Unicode to
store nvarchar (max) data. You need to use nvarchar (max) to support non-ASCII character sets,

CHAPTER 6 INDEXING BLOBS

including Chinese, Russian, Arabic, and Hindi, among many others. In other words, while
Western alphabets can be represented fully using the 7-bit ASCII character set, Unicode can be
used to represent non-Western alphabets. For non-Western alphabets, Unicode represents
each character as a 16-bit (double-byte) code point. The Unicode system encapsulates all
known alphabets.

Note Aithough ASCII requires only 7 bits to represent characters, some collation settings may require use
of the 8th bit in each byte to represent characters with accents or other diacritic marks.

Some restrictions apply to full-text indexing character or national character data in a
varchar (max) or nvarchar(max) column, including the following:

* You can only use the plain text filter on a column, so you can’t properly full-text index
other document types such as word-processing documents and spreadsheets.

* You can only apply a single language/LCID to a column, and only the word-stemmer for
that language will be applied to the column.

These are essentially the same restrictions as on non-LOB character type columns. The
advantage to the varchar(max) and nvarchar(max) data types over non-LOB character data
types is that each row can contain up to 2.1 billion bytes of data.

In the case of the Commentary column, the LCID of the column’s full-text index is 1033
(English). This means that the word breaker and stemmer applied to the column will use
English language rules to perform linguistic analysis when you perform a full-text search
against the column. Consider the search query in Listing 6-1, which looks for inflected forms of
the English word go. The results are shown in Figure 6-1.

Listing 6-1. Full-text Query for “Go”

SELECT
Commentary ID,
Commentary

FROM dbo.Commentary

WHERE FREETEXT

(

Commentary,
N'go'
)s

B Results

Commentary |D | Commentary

... They also went to considerable effort to "reconstruct” the tales,..

Figure 6-1. Result of full-text query for “go”

121

122

CHAPTER 6 INDEXING BLOBS

The row with Commentary ID 36 is returned, since the Commentary column contains the
word went, an inflected form of the word go in English.

XML LOB Data

The dbo.Commentary table also contains an xml data type column. Like the other LOB data
types, the xml data type can hold up to 2.1GB of data. However, unlike the varchar(max) and
nvarchar(max) data types, the xml data type’s capacity is not directly related to the length of the
character representation of the XML data. The xml data type uses an internal representation
based on the XQuery/XPath Data Model (XDM), which tends to be generally more compact
than nvarchar-based XML data representations. You can test this with a query like the one
shown in Listing 6-2; results are shown in Figure 6-2.

Tip The xml data type uses Unicode representations for character data and stores numeric and other data
in compact binary representations.

Listing 6-2. Comparing the Length of xml Data Type Columns and nvarchar(max) Representations

SELECT
Commentary_ID,
DATALENGTH(Article Content) AS XML Length,
DATALENGTH

(
CAST

(

Article Content AS nvarchar(max)

)
) AS Char_Length

FROM dbo.Commentary;

B Results

Commentary D | XML_Length | Char_Length B |
il 1882 1992
2 2 3801 4084 L
g E 24304 25080 E
4 4 93610 95622 =)
& 5 7305 7612
B 5 33641 34340
7 7 11638 12042
3 8 24404 25182
9 9 99693 101978
10 10 17091 17582
11 11 9939 10424 v

Figure 6-2. Comparing the lengths of xml data type and character-based representations

CHAPTER 6 INDEXING BLOBS

An advantage of full-text indexing XML data is the XML word breaker, which respects
xml:1lang language identifier tags in your XML data. This means that you can store language-
specific XML data in different rows of the same column, as we’ve done in the Article Content
column of the dbo.Commentary table. You can see the xml:lang attribute used on the root
<article> tags of the Article Content XML data with a simple query like the one in Listing 6-3.
Results are shown in Figure 6-3.

Listing 6-3. Viewing Article_Content XML Data in the dbo.Commentary Table

SELECT
Commentary ID,
Article Content

FROM dbo.Commentary;

B Results
Commentary_|D | Article_Content K |
21 27 Zarticle><source><name>Wikipedia</name><url=httpfen.wi..
22 28 Zarticle><source><name>Wikipedia</name><url=httpfen.wi..
23 29 Zarticle><source><name>Wikipedia</name><url=httpfen.wi..
24 30 zarticle xml:lang="en"><source*<name>=Wikipedia</name=<. ..
25 3 zarticle xml:lang="en"><source*<name>=Wikipedia</name=<. ..
2B 32 zarticle xmllang="es">*<source><name>Wikipedia</name=<...
27 33 =anicle xmllang="de"><source*<name>ywikipedia</name=<... =
28 36 article xml:lang="de"><source><name>=Wikipedia</name=<. .. | |
29 38 article xmllang="ja"*<source><name>Wikipedia</name><u. .. 2

Figure 6-3. The xml:lang attribute was applied to the root level of many
Article_Content XML entries.

While you can store XML documents in varbinary(max) data type columns and full-text
index and search them there, to take advantage of xml data type features (such as the built-in
XQuery support), you must store your XML in xml data type columns.

The xml:1lang attribute in the sample XML is assigned a two-character language code as
defined by the Internet Assigned Numbers Authority (IANA). The IANA language registry is
based on the ISO 639-2 standard for language representation codes. (You can see the complete
language code registry at http://www.iana.org/assignments/language-subtag-registry.) The
xml:lang attribute allows you to add to the language code, so that, for example, en-US would
indicate that data is in US English, while en-GB indicates international English—English as it’s
written everywhere else in the world. We provide a table listing SQL Server 2008-supported
xml:lang codes and their corresponding LCIDs in Chapter 5.

The main difference between how full-text indexes handle XML data and other data types
is how the word breaker works. When you create a full-text index on an xml data type column,
the XML word breaker disregards element tags and attributes, indexing only the data contained
in the elements. So, if you ran a full-text search for the word synthesised against the column,
iFTS would return no results, despite the fact that Commentary ID 8 contains the following
element in the Article Content data:

<section id="Synthesised plot synopsis">

</section>

123

124 CHAPTER 6 INDEXING BLOBS

Full-text querying the xml data type column is exactly like querying any other column.
Listing 6-4 shows a full-text query for the word city, with partial results shown in Figure 6-4.
Note that we've truncated the results significantly to clearly show examples of matching XML
data in these results.

Listing 6-4. Full-Text Querying XML Data for “city”

SELECT
Commentary_ ID,
Article Content

FROM dbo.Commentary

WHERE FREETEXT

(

Article Content,
N'city',
LANGUAGE 1033

);

B Results

Commentary D | Article_Content

_<para>...the first edition reading "he went into the city", where t...

7 _..<para>..the siege of the city of llion, or Troy, by the Greeks (5.

g _.Tpara>.. . but also king of the city of Orchomenus in Boeotia (a ...

16 _.Tpara>...sending one or more tornadoes into the city that caus..

_.tpara>...and Brutus and Cassius have to leave the city. </para>

2B .. “para*Begional cults (cities are listed north to south): <list=in ..
28 _.Tpara®... acity-port connected to Athens by the Long Walls. 5.
a0 _.Tpara=Only 4 cities hawve more than 20,000 inhahitants: Zara...

[I I B) R S o B
o

Figure 6-4. Results of full-text query for “city”

You can also search for words in alternate languages against this column, as shown in
Listing 6-5. The first query searches for the Spanish word abogados (“lawyers” in English), and
the second query searches for the Japanese word £ (“character” or literally “characteristic
quality” in English). The results are shown in Figure 6-5, with the XML data truncated to high-
light the matches.

Listing 6-5. Full-Text Query Against Non-English XML Data

SELECT Commentary ID, Article Content
FROM dbo.Commentary
WHERE FREETEXT
(
Article Content,
N'abogados',
LANGUAGE 3082
)

CHAPTER 6 INDEXING BLOBS

SELECT
Commentary_ID,
Article Content

FROM dbo.Commentary

WHERE FREETEXT

Article Content,
N'HEE
LANGUAGE 1041
)s
& Results |
[il (Mo column na... | (No column name)
11 I Sparish | 32 _“para> presidente John Adams De profesion sbogado, ocupd la preside. .
2 Japaness 38 <para® . <list>1 % FEEFOHE 2 & Sf0EE GREHED s F /M

Figure 6-5. Results of full-text queries against non-English XML data

The xml:1lang attribute doesn’t restrict full-text searches to specific languages. With regard
to full-text search, the xml: lang attribute applies the proper word breakers when populating a
full-text index. If you perform a search for the word Africa, as shown in Listing 6-6, iFTS will
locate it in both English and Spanish XML data. The results are shown in Figure 6-6, truncated
to highlight the matching XML data.

Listing 6-6. Searching for “Africa”

SELECT
Commentary ID,
Article Content

FROM dbo.Commentary

WHERE FREETEXT

(

Article Content,
N'Africa’,
LANGUAGE 1033

)s

B Results

mentary D | Article_Caontent

_<para>...In Africa, traditional medicine is used for 80% of prima...

_.Tpara>... repatriacion de los esclavos negros al Africa.</para=...

Figure 6-6. Results of search for “Africa”

125

126

CHAPTER 6 INDEXING BLOBS

EAST ASIAN LANGUAGE SUPPORT

In order to properly display East Asian language characters, such as the Japanese characters in Listing 6-5,
you may need to install East Asian language support for your Windows OS installation. This option is available
in the Control Panel, under Regional and Language Options. The following is a screenshot of the Regional and
Language Options window from Windows XP; it’s nearly identical on Windows Server 2003.

E Control Panel

Fle Bl Yiew Favoribes Todlk Help
— z =
Qo - @ - | O sech [Foiders | [
Reglonal and Language Options el = R
[—— = “
fiegionsl Options | Languages | Advanced 113 Eﬁ ﬁ <
Testserdces and inpit lsnguages Add or Admristratve AUTomsalc
Toview or change the longuages and methads you can use 10 ener e, chck FEMGH... ook Updates
Dot
e A
Z @B e
fder Cpbions Fongs Game
Supplemental language suppon Conlrobers
Most languages are insalled by dafaul Toinstall addiional langusges -
selectihe appropriste check box below :) * ﬁ
g =
[T rseadt s e cavnpleos scrips and rightto-lo snguages (inchiding Thai) Mouse Metrrcrk Metwork
Cormectiorns Selup Wizard
[&F] Insta files for Eant Asisn langieanns
e @
Trilrs arid B Scarwwrs and
Faes * Canniras
Ouret: e Speech Sysleam
ko Dhinvices
&
[Ok] [Canzal | [Ay |

The option to Install files for East Asian languages is available under the Languages tab. Check this box
and click OK to install the support files. You’ll need the original installation CDs during the installation. Once
you've installed East Asian language support, you may need to restart your computer.

East Asian language support must be installed to display East Asian character sets (Japanese, Chinese,
and so on) in SSMS and other Windows applications. Without East Asian language support installed, Windows
will display the characters of these languages as small empty squares on the screen.

Note that even though we specified language LCID 1033 (English) in the query, the results
returned XML data that was marked with xm1: lang attributes for both English (en) and Spanish
(es). We covered how this works in greater detail in Chapter 5, but to briefly explain it here,
search terms are stemmed in the chosen language, and then the full-text index is consulted to
find matches. The full-text index doesn’t store any language-specific metadata for the words
that it stores.

CHAPTER 6 INDEXING BLOBS

Binary LOB Data

In addition to character and XML data, SQL Server allows you to create full-text indexes on
BLOB data in the form of varbinary(max) columns. The varbinary(max) data type is intended
to store binary data, which means that if you query the column directly, you’ll be unable to
read the data in the image column, as it’s in binary format.

Tip You can also create full-text indexes on BLOB data in image data type columns. However, the image
data type is deprecated and should be avoided in future development work.

The varbinary(max) data type is important to iFTS, as you can store a variety of document
types in this column and indicate the type of data stored in another column, referred to as the
type column. The type column tells the iFTS indexer which filter to launch to extract text and
property data from the varbinary(max) column.

When you index BLOB data, specifying the type column is mandatory. The type column is
acharacter data type column that holds a set of predefined file extensions which associate your
full-text indexed BLOB data to a specific filter. The type column is essentially a column containing
the file extension your document would have if it were stored in the file system. The filters (also
referred to as iFiltersbecause of their dependence on the IFilter programming interface) were
originally developed for Microsoft’s Index Server product, a search server designed to index
documents stored in the file system. Index Server identified document formats by looking at
the file extension and then launching the correct filter, a model that was carried over to SQL
Server full-text search.

If the contents of the image column contain OLE-structured storage documents, another
filter may be launched. For example, if you store a TIFF image in an MS Word document, the
Word filter will be used to extract the text data and properties in the document, while a TIFF
filter will be used to run optical character recognition (OCR) software to extract any textual
data that might be in the TIFF image.

You can store plain text documents, MS Word documents, XML fragments, PDF files, and
JPEG images in a varbinary(max) data type column and the SQL FTS indexer will extract all text
data from these documents. Note that only the NTFS properties of a JPEG image will be
omitted by the NFTS file properties filter, and these properties won’t be stored in the index.

Note In the example given, the filter will also properly recognize dates, numbers, and currency figures,
and will store them with additional metadata indicating the type of content. However, despite this additional
metadata, you can still only query the data as text.

127

128

CHAPTER 6

INDEXING BLOBS

SQL Server 2008 iFTS can recognize 50 different document types, including those listed in
Table 6-1. You can retrieve a full listing of document types supported by your SQL Server 2008
instance by querying the sys.fulltext_document_types catalog view.

Table 6-1. Some Common iFTS BLOB File Formats

Extension Document Type Language-Aware

.doc MS Word Document Yes

.html, .htm HTML Document Yes (ms.locale META tag)
.pdf Adobe Acrobat PDF Document Yes*

.ppt MS PowerPoint Document Yes

Lrtf Rich Text Document No

Lixt Plain Text Document No

.vsd MS Visio Diagram Yes*

.x1ls MS Excel Spreadsheet Yes

.xml XML Document Yes (xml:lang attribute)

* The filters for these file formats aren’t installed with SQL Server 2008 by default. We'll discuss where to

obtain filters that support these file formats in Chapter 10.

When you store an MS Word document in a varbinary(max) column, the full-text search
engine uses the type column value of . doc to launch the MS Office filter to index the document
content. Because it’s a language-aware file type, the MS Office filter launches the appropriate
word breakers for any languages marked in the document content.

MARKING LANGUAGE-SPECIFIC TEXT IN MS WORD

You can mark text as language-specific in MS Word documents by highlighting the appropriate text and
selecting Tools » Language » Set Language. Other language-aware document types have different methods
for marking language-specific text. By default Word will select the language that matches your operating
system’s Regional and Language Options configuration. If the computer you’re creating your Word documents
on has a different language setting than the language you want to create your document in, you’ll have to
select appropriate styles or create a language-specific template. Other language-aware document types have
different methods for marking language-specific text. You'll have to check the documentation to determine the
proper method for marking language-specific text.

The dbo.Book table in the sample database contains the full content of several books in
BLOB format in the Book _Content column, which is declared as varbinary(max) with the
FILESTREAM option. The Book _File Ext column is the type column that contains the associated
file extensions. If you query this table, you’ll notice that the column contains MS Word, XML,

CHAPTER 6 INDEXING BLOBS

plain text, PDF, and LaTeX documents. We don’t recommend directly querying the
Book_Content column, since it contains several very large documents. Querying this column
directly could cause SSMS to become unresponsive as it tries to retrieve the large BLOB
documents.

Tip By default, SQL Server 2008 doesn’t have filters for PDF and LaTeX documents. We’ll discuss adding
support for both of these file formats in detail in Chapter 10.

Querying the Book_Content column is the same as querying any other LOB data type
column. Listing 6-7 queries the Book_Content column for references to Yorick (as in “Alas, poor
Yorick! I knew him, Horatio . . .”). Results are shown in Figure 6-7.

Listing 6-7. Searching for “Yorick”

SELECT
b.Book _ID,
t.Title,
t.Title LCID,
b.Book File Ext,
b.Book LCID
FROM dbo.Book b
INNER JOIN dbo.Book Title bt
ON b.Book ID = bt.Book ID
INNER JOIN dbo.Title t
ON bt.Title ID = t.Title ID
WHERE FREETEXT
(
b.Book_Content,
N'Yorick'
)
AND t.Is Primary Title = 1;

B Results
 Book_ID | Title Title_LCID | Eook_File_Ext | Book_LCID
Hamlet 1033 o 1033
Hamlet 1033 .doc 1036

Figure 6-7. Alas, Yorick has been found.

Asyou can see in Figure 6-7, Yorickwas located in two versions of the classic tale of Hamlet
that we’ve stored in the database—the English plain text version (LCID 1033) and the French
MS Word document version (LCID 1036).

129

130

CHAPTER 6 INDEXING BLOBS

FILESTREAM BLOB Data

The FILESTREAM option is new to SQL Server 2008. Everyone has an opinion on whether BLOBs
belong in the file system or the database, with many options designed to try to find a middle
ground between the two ideas. In the Microsoft Research paper “To BLOB or Not To BLOB:
Large Object Storage in a Database or a Filesystem” (http://research.microsoft.com/research/
pubs/view.aspx?msr_tr id=MSR-TR-2006-45), Jim Gray and company made specific recom-
mendations about when to store BLOB data in the database and when to store it in the file
system.

Prior to SQL Server 2008, it was common to store BLOB data in the file system with only
pointers (file paths) to the BLOB files maintained in the database. Typically, this involved
creating a nested hierarchy of subfolders—which maximizes efficiencies of scale offered by the
NETS file format and optimizes throughput when enumerating large numbers of files in a
directory. This was especially true in SQL Server 2000 and before, since the old-style image data
type was extremely kludgy to work with.

Managing BLOB data in the file system can often be more efficient than storing it in the
database. By default, Windows NTFS (NT File System) is designed to stream large quantities of
BLOB data more efficiently than SQL Server, which itself excels at managing non-LOB data
sets. In SQL Server 2005, the new varbinary(max) data type made managing BLOB data in SQL
Server easier than was previously possible, but the difference in efficiency between SQL Server
BLOB data management and NTFS BLOB streaming was still a significant factor for applica-
tions that had to store large quantities of BLOB data on the server.

On the down side, storing BLOB data in the file system introduced a new layer of custom-
built abstraction into the mix. Storing data in the file system meant it was up to the database
developer to create techniques to keep the file system and database file paths in sync. When-
ever a file was deleted or a file name was changed on the file system, the database had to be
updated, or if file information was changed in the database, the file stored in the file system
had to be changed to reflect that. A lot of companies made a lot of money creating and selling
document management systems that, at their core, performed this most basic of functions. On
the flip side, disaster recovery, including the most basic backup and restore methodologies, is
simplified greatly when BLOB data is stored in the database.

With the introduction of FILESTREAM functionality in SQL Server 2008, there’s a new solu-
tion to this problem. Basically, SQL Server allows you to create a varbinary(max) column and
decorate it with a FILESTREAM attribute. You can use standard T-SQL query and DML statements
to manipulate the column like any other varbinary(max) column.

The difference is in how SQL Server manages your FILESTREAM data. Under the hood, SQL
Server stores your FILESTREAM BLOBs in the file system, taking advantage of NTFS’s content-
streaming capabilities. You don’t have to worry about keeping the contents of the file system
and the database in sync; SQL Server handles that for you. Additionally, SQL Server takes
advantage of NTFS’s transactional capabilities during T-SQL DML statements, so you get file
system transactions thrown in for free.

Efficiency Advantages

FILESTREAM can offer performance advantages over SQL Server’s internal BLOB storage mech-
anisms. To demonstrate, we ran several rounds of DML statements and queries against two tables:
one with a FILESTREAM-enabled varbinary(max) column and the second with a varbinary(max)

CHAPTER 6

INDEXING BLOBS

column that’s not FILESTREAM-enabled. We ran these tests on a Xeon 64-bit dual-processor
(3GHz) server with 6GB of memory dedicated to the SQL Server instance. The results of our
simple test on the table that’s not FILESTREAM-enabled are shown in Figure 6-8.

BLOB Data Actions w/o FILESTREAM
1600
1400
= 1200
=]
8 1000
w
S 800
o _/b\
1]
5 600 =
& 400
200
0 - - - {3
0.25 MB 0.5MB 1MB 10 MB 100 MB
BLOB Size

Figure 6-8. Efficiency of BLOB data actions without FILESTREAM

Asyou can see, the number of actions completed per second drops dramatically as the size
of the BLOB data increases. At 0.25MB, we were able to complete approximately 1,200 SELECT
queries per second against the table; at 100MB, that number dropped to less than 2 per second.
We ran the same test against a FILESTREAM-enabled table and got the results shown in Figure 6-9.

Blob Data Actions with FILESTREAM

2500
2000 ’\.\ S — *
= b
s
=]
H
& 1500
3
[=8
2 1000
S
g
0 gﬁ%
0 . ——— N
0.25MB 05MB 1MB 10 MB 100 MB
BLOB Size

—— DELETE
—&B— INSERT

—&— SELECT
—0— UPDATE

Figure 6-9. Efficiency of BLOB data actions with FILESTREAM

As you can see in this figure, the efficiency of most BLOB actions starts out slightly lower
than the equivalent non-FILESTREAM actions for smaller files. As the BLOB sizes increase beyond
1MB, however, the FILESTREAM-enabled versions show improved efficiency over the non-
FILESTREAM versions. In fact, the sweet spot in our tests appeared to be somewhere between
1MB and 10MB. Note also that DELETE operations on a FILESTREAM-enabled table are extremely

131

132

CHAPTER 6 INDEXING BLOBS

fast, since the operation simply invokes operating system functionality to delete the under-
lying file. We agree with Microsoft’s recommendation that FILESTREAM increases the efficiency
of T-SQL access and manipulation for BLOBs greater than 1MB in size, and we strongly recom-
mend FILESTREAM for storage of BLOBs larger than 10MB.

FILESTREAM Requirements

The first requirement for FILESTREAM access is NTFS. You can’t create a FILESTREAM on an old
FAT (File Allocation Table) file system. Next, you have to configure SQL Server to enable
FILESTREAM functionality. You can use the SQL Server Configuration Manager utility to easily
enable and configure FILESTREAM access.

To access the FILESTREAM configuration options, right-click on the SQL Server service in
the Configuration Manager and select Properties from the pop-up context menu. In the Prop-
erties window, click on the FILESTREAM tab and select the appropriate options. In Figure 6-10,
we've selected the following options:

1. The Enable FILESTREAM for Transact-SQL access option turns on FILESTREAM access
and makes it available for T-SQL querying and DML access.

2. The Enable FILESTREAM for file I/O streaming access option exposes the FILESTREAM
access for local streaming I/0.

3. When you choose the Enable FILESTREAM for file I/O streaming access option, you
must choose a Windows share name that will be used to expose the FILESTREAM for
streaming I/0.

4. Finally there’s an option to Allow remote clients to have streaming access to FILESTREAM
data. This option allows you to expose the FILESTREAM data to remote client connections.

in Sql Server Configuration Manager

CIolC)

Narne [State Mode |
B P
Lol

SQL Server (MSSQLSERVER) Properties I||z|

¥ Enable FILESTREAM for Transact-S0L sccess

BRSO Server Agent (MSSQLSERVE... Stopped

[+ Enable FILESTREAM for file 1/0 streaming access

Windows share name: | MSSOLSERVER £ i 3|

[+ #llow remote clisnts to have streaming access o
FILESTREAM clata

=) == 1w =]

Figure 6-10. Configuring FILESTREAM access in the SQL Server Configuration Manager

CHAPTER 6 INDEXING BLOBS

After you enable FILESTREAM access in the SQL Server Configuration Manager, you need to
set the access level in T-SQL using sp_configure, as shown in Listing 6-8.

Listing 6-8. Setting FILESTREAM Access Level in T-SQL

EXEC sp_configure 'filestream access level', 2;
Go

RECONFIGURE;

Go

You can use sp_configure to set the FILESTREAM access level to one of the levels shown in
Table 6-2.

Table 6-2. FILESTREAM Access Levels

Level Description

0 Disables FILESTREAM support for the SQL Server
instance

1 Enables FILESTREAM access via T-SQL for the SQL
Server instance

2 Enables FILESTREAM access via T-SQL and via the file

system for the SQL Server instance

After you've enabled FILESTREAM access, you must create a FILESTREAM filegroup in which
to store your data. You can do this with the CREATE DATABASE or ALTER DATABASE statements.
Listing 6-9 shows the CREATE DATABASE statement used to create the iFTS_Books sample data-
base, with the clause that creates the FILESTREAM filegroup in bold.

Listing 6-9. Creating a Database with a FILESTREAM Filegroup

CREATE DATABASE iFTS Books
ON PRIMARY
(
NAME = N'iFTS Books',
FILENAME = N'C:\1FTS_Books\iFTS Books Data.mdf',
SIZE = 43904KB,
MAXSIZE = UNLIMITED,
FILEGROWTH = 1024KB
)}
FILEGROUP FileStreamGroup
CONTAINS FILESTREAM
DEFAULT

(
NAME = N'iFTS_Books FileStream',

FILENAME = N'C:\iFTS_Books\iFTS_Books_FileStream'
)

133

134

CHAPTER 6 INDEXING BLOBS

LOG ON
(
NAME = N'iFTS Books log',
FILENAME = N'C:\iFTS Books\iFTS Books Log.ldf',
SIZE = 1024KB,
MAXSIZE = 2048GB,
FILEGROWTH = 10%
);
GO

In the CONTAINS FILESTREAM clause, the NAME is the logical name for the FILESTREAM and
must be unique within the database. The FILENAME for a FILESTREAM is the path to the folder
where FILESTREAM BLOB data will be stored. The path up to the last folder must exist prior to
creation, and the last folder must not exist at creation time (it will be created automatically).

Once you've enabled FILESTREAM access on the SQL Server instance and created the
FILESTREAM filegroup, you can create tables with FILESTREAM-enabled varbinary(max) columns.
Listing 6-10 shows the CREATE TABLE statement for the dbo.Book table, which contains a
FILESTREAM-enabled varbinary(max) column.

Listing 6-10. CREATE TABLE Statement for FILESTREAM-Enabled dbo.Book Table

CREATE TABLE dbo.Book
(
Book _ID int NOT NULL,
Book_GUID uniqueidentifier ROWGUIDCOL NOT NULL,
Book LCID int NOT NULL,
Book Subject ID tinyint NOT NULL,
Book Class Code nchar(1),
Book Subclass Code nvarchar(3) NOT NULL,
Book_Content varbinary(max) FILESTREAM NOT NULL,
Book File Ext nvarchar(4) NOT NULL,
Book Image Name nvarchar(100),
Book_Image varbinary(max),
Change Track Version timestamp,
CONSTRAINT PK Book PRIMARY KEY CLUSTERED

(
Book ID ASC

)s
UNIQUE NONCLUSTERED

(
Book_GUID ASC

)
);
Go

The Book_Content column of the dbo.Book table is a varbinary(max) column decorated
with the FILESTREAM attribute. This means that any data that’s stored in the column will auto-
matically be stored on the NTFS file system and managed by SQL Server. A particular requirement
of FILESTREAM-enabled tables is that they must contain auniqueidentifier ROWGUIDCOL column

CHAPTER 6 INDEXING BLOBS

with a unique constraint declared on it. The dbo.Book table declares the Book GUID column,
which has a unique constraint declared on it. Once you've created a FILESTREAM-enabled table,
you can query and manipulate it using T-SQL just like any other table.

FILESTREAM AND 8.3 NAMES

For backward compatibility with older 16-bit applications, NTFS automatically creates 8.3-format file names.
An 8.3 file name is simply a name with a maximum length of 12 characters: up to 8 characters for the main
file name, a period, and an extension up to 3 characters in length.

The 8.3 file name creation and enumeration process can cause considerable performance degradation
in a directory with thousands of files stored in it. Because of this, if you store a large number of documents
(thousands of files) in a FILESTREAM-enabled varbinary(max) column, you may suffer performance prob-
lems due to 8.3 naming. To avoid or resolve this issue, simply turn off NTFS 8.3 name creation with the
fsutil.exe command-line utility on Windows XP or Windows Server 2003. The fsutil.exe command
looks like this:

fsutil.exe behavior set disable8dot3 1

For more information on disabling NTFS 8.3 naming, see Microsoft Knowledge Base article #121007 at
http://support.microsoft.com.

T-SQL Access

As we discussed, once you’ve enabled FILESTREAM access on your SQL Server instance, you can
query and manipulate your FILESTREAM-enabled columns using standard T-SQL query and DML
statements. Listing 6-11 retrieves the plain text version of Hamlet in the database using a
simple SELECT query, with partial results shown in Figure 6-11.

Listing 6-11. Querying a FILESTREAM-Enabled Column

SELECT
b.Book_ID,
CAST
(
b.Book_Content AS nvarchar(max)
) AS Book Content
FROM dbo.Book b
WHERE b.Book ID = 9;

E Results
[t | Book Content
| The Tragedie of Hamlet Actus Frimus. Scoena Frima. Enter Barnardo and Francisco two Centinals. ..

1

Figure 6-11. Plain text version of Hamlet queried from FILESTREAM-enabled column

135

136

CHAPTER 6 INDEXING BLOBS

You can also issue UPDATE, DELETE, INSERT, and MERGE statements against the FILESTREAM-
enabled column. The sample code in Listing 6-12 inserts Lincoln’s Gettysburg Address into the
dbo.Book table, queries it, and then deletes it to demonstrate running DML actions against
the FILESTREAM-enabled Book_Content column. The results are shown in Figure 6-12.

Listing 6-12. Performing DML Actions Against a FILESTREAM-Enabled Column

INSERT INTO dbo.Book
(
Book_ID,
Book_GUID,
Book_LCID,
Book_Class_Code,
Book Subclass Code,
Book_Content,
Book_File_ Ext,
Book_Image Name,
Book_Image
)
VALUES
(
100,
NEWID(),
1033,
N'E',
N'E',
CAST
(
N'Four score and seven years ago our fathers brought forth on this
continent a new nation, conceived in Liberty, and dedicated to the
proposition that all men are created equal.

Now we are engaged in a great civil war, testing whether that nation,
or any nation, so conceived and so dedicated, can long endure. We are

met on a great battle-field of that war. We have come to dedicate a
portion of that field, as a final resting place for those who here
gave their lives that that nation might live. It is altogether
fitting and proper that we should do this.

But, in a larger sense, we cannot dedicate-we cannot consecrate-we
cannot hallow-this ground. The brave men, living and dead, who

struggled here, have consecrated it, far above our poor power to add
or detract. The world will little note, nor long remember what we
say here, but it can never forget what they did here. It is for us

the living, rather, to be dedicated here to the unfinished work which

they who fought here have thus far so nobly advanced. It is rather

CHAPTER 6 INDEXING BLOBS

for us to be here dedicated to the great task remaining before us-—
that from these honored dead we take increased devotion to that cause
for which they gave the last full measure of devotion—that we here
highly resolve that these dead shall not have died in vain-that
this nation, under God, shall have a new birth of freedom-and that
government of the people, by the people, for the people, shall not
perish from the earth.' AS varbinary(max)
)J
N'.txt',
NULL,
NULL
)
Go

SELECT
Book_ID,
CAST(Book _Content AS nvarchar(max)) AS Book Content
FROM dbo.Book
WHERE Book_ID = 100;
GO

DELETE FROM dbo.Book
WHERE Book_ID = 100;
GO

E Results

Book_|D | Book_Content
Four score and seven years ago our fathers brought forth on this continent a new ...

Figure 6-12. Result of DML action against a FILESTREAM-enabled column

When you delete a row from a table that has a FILESTREAM-enabled column in it, or set the
value of the column to NULL, the underlying file in the file system is deleted. You can also wrap
DML statements that modify FILESTREAM data in an explicit T-SQL transaction. SQL Server
ensures the durability of FILESTREAM BLOBs when the transaction is committed. If you roll back
the transaction, the DML statements that affect the FILESTREAM BLOBs are rolled back as well.

Storage Considerations

Each instance of BLOB data that you store in a FILESTREAM-enabled column is physically stored
as afile in the file system. Figure 6-13 shows the iFTS_Books database FILESTREAMfiles as viewed
through Windows Explorer.

137

138

CHAPTER 6 INDEXING BLOBS

B C:IFTS_Books\iF TS_Books_FileStream\6e20c47a-5cSe-4dad-Bh4a-ebc9001a7796\bFEI0A6E-,.. [

Fle Edit Vew Favontes Took Hep
Qe - O - 3)Z‘JSearchi{.g-Foueu [~

Arddress i._‘. CNFTS_Bocks\FTS_Books_FieSiream’\Ee20c47a-Se5e-4das-Bhda-ebe 300147 79650 fi550d68- Thib-4934-a7E \'J Go

Folders *oane s ol D floold DR .
® 3 3%z Flopey (8 A Ho0000093-00000bda-0002 SILKB Fle B/10/2008 5:55FM
& vem Local Disk (2 = [@o000008a-00000den-0002 SEIKE Fle /10/2008 555FM
LosapRe it o H0000009a-00000f24-0002 9ATIKE Fle B/10/2008 5:55FM
'_a BechafBzEa les S8 15ochoscy B O00000083-000004F-0002 1551KE Fie
@) Documents and Settnas @ C000009a-000005a 3-0002 IF|KE Al
) 84740 50303554baM0 124 () E0000003a-000005b8-0002 BHKB Fle B/10/2000 5:55FM

= B FT5_Bocks = [@o0000093-0000056d-0002 G43KE Fle B/0/20085

3 | FTo_Books_Fesyean B 0000009a-00000582-0002 9B1KB Fle BfL0/2008 5:55PM

& s B 00000093-000005F7-0002 194K Fle 8/10/2008 5:55 M

E00000093-00000554-0002 EE4KE Fle E/10/2008 5:55FM

B 00000083-0000070c-0002 EI9KB Fle B/10/200A 5:55FM

303 . 0000000000083 1-0002 1013KB Fle B/10/2008 5:55FM

@ [Program Fles R 0000005a-000008f-0002 11,784 KB Fle B/10/2008 5:55FM

B RECYCLER [EBo000008a-000008b5-0002 ITLME Fle BYLO/2008 5:55FM

& &3 Sample Code @ 0000009a-0000036a-0002 441KB Fle B/10/2008 5:55FM

12 System Volume Infetnation 00000053 000005010 7K e B0l RSP

o @ Eo0000023-00000222-0002 ISKE Fle B/10/2008 5:59FM
e 5 [EO0000092-0000050e-D002 L500KB Fe B/IODESISSPM og

o cm PEy e e et

Figure 6-13. FILESTREAM files stored in the file system

Each file shown in Figure 6-13 represents a single FILESTREAM data BLOB stored in the
dbo.Book table. If you've exposed your FILESTREAM data for file system access, SQL Server
exposes the data via Windows file sharing. The FILESTREAM-enabled varbinary(max) column
exposes the PathName () method to return the full logical path to the FILESTREAM files. This
feature is useful if you're using the OpenSqlFilestream API to access FILESTREAM data from
client applications. Listing 6-13 uses the PathName () method to retrieve the full path to the file
containing the book A Connecticut Yankee In King Arthur’s Court, with the result following.
Note that the path returned by your SQL Server when running this sample may differ from the
result shown here.

Listing 6-13. Retrieving Full Path to A Connecticut Yankee in King Arthur’s Court

SELECT
Book_Content.PathName()

FROM dbo.Book

WHERE Book ID = 3;

\\SOL2008\MSSQLSERVER\V1I\iFTS Books\dbo\Book\Book Content\E36D2FOD- =
F690-4F34-A59D-738E22D2A0DC

Bear in mind that the files stored in the file system by FILESTREAM are not encrypted by SQL
Server, even if you're using the SQL Server Transparent Data Encryption (TDE) option to
encrypt your entire database. Also, you can’t use the Write() method of the varbinary(max)
data type to perform T-SQL-chunked updates to FILESTREAM data. Setting a FILESTREAM-
enabled value to NULL deletes the underlying file from the file system.

CHAPTER 6 INDEXING BLOBS

OpenSqlFilestream API

As mentioned previously, one of the advantages of SQL Server 2008 FILESTREAM storage is the
ability to stream data using NTFS. In fact, you can use the OpenSqlFilestream API to stream
FILESTREAM data directly from the file system, bypassing SQL Server’s cache and freeing up
server resources for other processes. Although OpenSqlFilestream is a native Win32 API, the
.NET Framework provides a managed wrapper in the form of the
System.Data.SqlTypes.SglFileStream class.

To demonstrate OpenSqlFilestream functionality on the client side, we created a simple
C# application. Our application executes a full-text search query against the iFTS_Books
sample database, displays a list of matching titles, and allows you to download and open any
of the matching documents through the OpenSqlFilestream API. In this section, we’ll highlight
the code that pertains to retrieving FILESTREAM data from SQL Server.

Note The full code listing is available in the sample downloads file, available at www. apress.com.

We'll begin our discussion of client-side FILESTREAM access by demonstrating the sample
application in action. Then we’ll highlight and describe the portions of code that are critical to
using the OpenSgqlFilestream API in your own code.

The sample application displays a simple Windows form that allows you to perform a full-
text search against the 1FTS Books database by entering search terms in the Enter Search String
text box and clicking the Search button. All titles that match the search criteria you enter are
displayed in a DataGridView control once the search completes. Figure 6-14 shows the results
of a full-text search for the word fish.

. Filestream iF TS Search Demo

Enter Spaich Siieg Peogeess

ik [CSearh | | |

Bulfirch's Muthalogy, The Sge of Fable

Tha I s 18 il

Legeods of the Gods. The Egvrhon Tesds, Edied'sith T |
Lok

T5_Books\dbetBrok', o

s v Publc Seices of dohn Quincy Adar
The Ameic.an Standad Vession of the Hob Sible WSOLA0NMESOLSERVER Y

T

TFTS_Bocks\cbo\Book!s i

Figure 6-14. Results of search for “fish”

139

140

CHAPTER 6 INDEXING BLOBS

You can click on any of the hyperlinks in the Title column of the DataGridView to retrieve
the document from the server via the OpenSqlFilestream API. Once the file is downloaded from
the server and saved to the local file system, it is automatically opened, as shown in Figure 6-15.

Erie Sach Enn

fih]

=t e Ty 4 o ot ety I

w5 Eom e o] B2

CHAPTER 11T

HMWETS ¢ ABLE BOUHD

Mainly the B

Toble tal: was mowologees—namative acrounts of the advestares in
=]

+ out
ta setile £1 o
is berween strangerr—dusls
ch ctber, and berween whom
o

| Timnsn Sred tson ol £ 4

suat of thing belon

pot, I had always imagioed wstil mow that
8 food, bet mete these big bovbies stk

only, and was 3 sign and m
sl taleing pride 1

fish-
Yoil sm 2w that
+ marred £, hindered

asjh e =
Fam Ak o =

Figure 6-15. Downloading and opening a file with the OpenSqlFilestream API

The key FILESTREAM functionality of this application consists of three major operations:

1. Retrieving a pathname to the FILESTREAM file from SQL Server.
2. Getting a SQL Server FILESTREAM transaction context ID for the operation.

3. Using the OpenSqlFilestream API to stream the data back to the client via NTFS.

The first operation is performed by the query that’s sent to SQL Server when you enter a
search term and click Search. The query that is generated is shown in Listing 6-14.

Listing 6-14. Full-Text Search Query Generated by Sample Application

SELECT
b.Book_ID,
t.Title,
b.Book_Content.PathName() AS FilePath,
b.Book File Ext
FROM dbo.Book b
INNER JOIN dbo.Book Title bt
ON b.Book ID = bt.Book ID
INNER JOIN dbo.Title t
ON bt.Title ID = t.Title ID
WHERE FREETEXT(Book Content, @SearchString)
AND t.Is Primary Title = 1;

CHAPTER 6 INDEXING BLOBS

The FilePath column uses the PathName() method of the FILESTREAM-enabled b.Book _Content
column to return the logical UNC path to the FILESTREAM files for each matching title returned
by the query. This fulfills the first requirement: retrieving the pathname for the FILESTREAM files.

Once you click on a hyperlink in the DataGridView, the application begins the process of
downloading the file. We designed the GetFile method to perform this function asynchronously
to keep the user interface (UI) responsive. The asynchronous nature of the sample code adds
some additional complexity, but the basic requirements are the same whether your application
is synchronous or asynchronous. The first step is to open a connection to SQL Server, begin a
transaction, and retrieve a FILESTREAM transaction context with the GET_FILESTREAM_TRANSACTION
CONTEXT function. This function returns a varbinary(max) token that represents the context of
the current FILESTREAM transaction. The varbinary result of this function maps to a .NET byte
array. Listing 6-15 shows the portion of the GetFile method that gets the FILESTREAM trans-
action context.

Listing 6-15. Getting a FILESTREAM Transaction Context

// This method retrieves a file with the OpenSqlFileStream API
private void GetFile
(
string filePath,
string fileType
)
{

try

// Create and open a new SQL connection. This is required because the
// FILESTREAM requires a SQL Server transaction context, so we need
// to create a transaction, which means we need an open connection
sqlConnection = new SqlConnection
(

connectionString
)s
sgqlConnection.Open();

// Create a SQL Server transaction context over the connection
SqlTransaction sqlTransaction = sqlConnection.BeginTransaction
(

"fileStreamTx"

)s

141

142

CHAPTER 6 INDEXING BLOBS

// Use the T-SQL GET_FILESTREAM TRANSACTION CONTEXT() function
// to get the transaction context identifier from SQL Server. The
// transaction context is returned as a varbinary value, which
// maps to the .NET byte array.
sqlCommand = new SqlCommand
(
"SELECT GET_FILESTREAM_TRANSACTION CONTEXT();",
sqlConnection,
sqlTransaction
);
byte[] transactionContext = (byte[])sqlCommand.ExecuteScalar();

After the code retrieves a FILESTREAM transaction context from SQL Server, it uses the
SqlFileStream class, which acts as a managed wrapper around the OpenSqlFileStream API, to
retrieve the FILESTREAM data from SQL Server. The data is retrieved into a .NET byte array buffer
in 4KB increments. As the data is buffered on the client, it’s written back out to a file in the local
file system using a .NET BinaryWriter. Listing 6-16 shows the portion of the GetFile method
that’s concerned with retrieving the actual data via the OpenSqlFilestream API.

Listing 6-16. Retrieving a File with the OpenSqlFilestream API

// This method retrieves a file with the OpenSqlFileStream API
private void GetFile
(
string filePath,
string fileType
)
{

// Here we use the managed SqlFileStream wrapper to retrieve the data
sqlFileStream = new SqlFileStream
(

filePath,

transactionContext,

FileAccess.Read

);

// A 4KB buffer to hold the SqlFileStream data as it's retrieved
byte [] buffer = new byte[4096];

CHAPTER 6 INDEXING BLOBS

// Progress status variables

long filelength = sqlFileStream.Length; // Length of data to retrieve
long totalBytesRead = 0; // Total bytes retrieved

int bytesBuffered = 0; // Bytes buffered currently

// Write the data back out to the local file system in a BinaryWriter
// as it's retrieved
binaryWriter = new BinaryWriter
(
File.Open(destinationFileName, FileMode.Create)
// Create/overwrite existing file of same name

);

// Keep going until the total bytes received is equal to the total
// bytes expected
while (totalBytesRead != filelength)
{
// Buffer 4 KB of data at a time, and write to output file as
// soon as data is received
bytesBuffered = sqlFileStream.Read(buffer, 0, 4096);
binaryWriter.Write(buffer, 0, bytesBuffered);

totalBytesRead += bytesBuffered;

return;

}

Since this method is called asynchronously, there’s some additional required code in the
Callback method. In addition to cleaning up and disposing of SQL Server connectivity-related
objects, the application needs to either commit or roll back the transaction created for the
OpenSqlFilestream API. This is important, since failing to commit or roll back the transaction
can result in server-side resource leaks. This method also calls another helper routine to open
the file that was retrieved to the local file system, as shown in Listing 6-17.

Listing 6-17. Callback Method Performs Cleanup

private void Callback
(

IAsyncResult iar

)
{

143

144

CHAPTER 6 INDEXING BLOBS

// Do all the cleanup

if (sqlCommand != null)
{
if (sqlCommand.Transaction != null)
sqlCommand.Transaction.Commit();
sqlCommand.Dispose();

}

// Opens the file on the local file system
OpenFile(destinationFileName);

}

The rest of the program is support code designed to support asynchronous data retrieval
and provide feedback to the user, in order to keep the Ul responsive and improve the overall
user experience.

Summary

In this chapter, we talked about how to full-text index LOB data in SQL Server 2008. In SQL
Server 7.0 and 2000, full-text indexing LOB data presented several challenges that the new
generation of LOB data types helps overcome. The varchar(max), nvarchar(max), varbinary(max),
and xml data types collectively provide significant improvements over their deprecated SQL 2000
counterparts.

We also discussed SQL Server 2008’s powerful new FILESTREAM feature, which leverages
the power of NTFS to efficiently store and stream unstructured BLOB data from the file system.
FILESTREAM functionality can provide a significant performance boost for manipulating and
streaming large BLOB data (greater than 1MB in size). We discussed the performance benefits
and demonstrated FILESTREAM-enabled column usage.

Finally, we demonstrated use of the OpenSqlFilestream API via the .NET SqlFileStream
managed wrapper class. This API helps you improve client application performance and server
efficiency by allowing you to access FILESTREAM data while keeping SQL Server resources free
for use by other users and processes.

In the next chapter, we’ll discuss iFTS stopwords and stoplists, which allow you to specify
that iFTS should ignore specific words during the indexing process.

CHAPTER 7

Stoplists

Sick I am of idle words, past all reconciling, . . .

—George du Maurier

All versions of SQL Server that have supported full-text search have included an option to
ignore certain words that are considered unimportant for search purposes. In SQL Server 2005
and earlier, this option was known as the noise wordlist. Noise word lists were language-specific
text files stored in the file system. In SQL Server 2008, noise word lists have been replaced by
stoplists, which are likewise composed of words, known as stopwords, that are unimportant for
search. Unlike noise word lists, stoplists are stored in the database rather than in the file system.
SQL Server 2008 also provides T-SQL language improvements designed to make stoplists more
flexible than noise word lists and to facilitate and ease their management.

In SQL Server 2005 and prior versions, FTS utilized noise word lists to indicate words that
should be ignored during full-text searches. These noise word lists were stored as plain text
files under SQL Server’s MSSQL\FTDATA directory with names like noiseXXX.txt, where the XXX
indicates a three-letter language code such as ENU for U.S. English and JPN for Japanese. In prior
versions of SQL Server, you were allowed a single noise word list per supported language.

SQL Server 2008 changes this with stoplists. Stoplists are stored in the database instead of
the file system, and you can create as many stoplists as you like for any supported language.
The only limitation is that you can assign only one stoplist to any given full-text index.

The reasons for creating or using a stoplist include the following:

* To prevent your full-text indexes from becoming bloated with unnecessary and
unimportant words

* To improve the quality of full-text search results by eliminating unimportant word
matches from the results

* To increase the efficiency of full-text searches by eliminating searching and stemming
of irrelevant words

In this chapter we’ll discuss the creation, management, and use of stoplists in SQL Server 2008.

System Stoplists

By default, SQL Server 2008 provides system stoplists for most languages that iFTS supports.
Table 7-1 lists the default iFTS-supported languages that don’t have a system stoplist.

145

146

CHAPTER 7 STOPLISTS

Table 7-1. Supported Languages Without a System Stoplist

LCID Language Name

1042 Korean

1066 Vietnamese

3076 Chinese (Hong Kong SAR, PRC)
4100 Chinese (Singapore)

5124 Chinese (Macau SAR)

In addition, there are a few languages that have a stoplist installed, but aren’t supported by
default in iFTS. These languages are listed in Table 7-2.

Table 7-2. System Stoplists for Languages Not Supported by Default

LCID Language Name
1030 Danish

1045 Polish

1055 Turkish

The system stoplists include single-digit numbers, individual letters of the alphabet, and
words that are considered generally uninformative for purposes of full-text search. The English
(LCID 1033) stoplist, for instance, has 154 entries, including words such as you, an, the, and
our.You can view the system stoplists by querying the sys.fulltext system stopwords catalog
view. This view returns a column with the stopword entries from the system stoplists and a
language id column with the LCID of each entry. Listing 7-1 shows how to query the English
language system stoplist, with partial results shown in Figure 7-1.

Listing 7-1. Querying the English Language System Stoplist

SELECT *
FROM sys.fulltext system stopwords
WHERE language id = 1033;

You can specify that a full-text index use the system stoplist by adding the WITH STOPLIST
= SYSTEM clause to your CREATE FULLTEXT INDEX or ALTER FULLTEXT INDEX statements. If you
don’t specify a stoplist when you create a full-text index, SQL Server defaults to the system
stoplist.

Tip If you don’t want your full-text index to use a stoplist at all, use the WITH STOPLIST = OFF clause
when you create it.

CHAPTER 7 STOPLISTS

B Results
stopword language_id ||
G5 each 1033
551 else 1033
57 for 1033
[515] fram 1033 1
59 get 1033
70 got 1033
71 had 1033
T2 has 1033
73 hawe 1033 v

Figure 7-1. Viewing the English language system stoplist

Creating Custom Stoplists

You can create and manage custom stoplists in SQL Server 2008, using either the SSMS GUI or
T-SQL statements. When you create a custom stoplist, you can either create an empty stoplist
or base it on a system stoplist. To create a custom stoplist in the SSMS GUI, right-click on
Storage » Full Text Stoplists in the Object Explorer. Then select New Full-Text Stoplist... from
the pop-up context menu, as shown in Figure 7-2.

xplorer
Cormect~ |50 M m T &
= C@ Storage
@ 3 Full Text Catalogs
® C@ Partiion Schemes
@ L@ Partition Functon:

= O3 Se MNew Ful-Text Stoplst.[|
@ O Security Start PowerShell
@ L@ Server O
® [Replicatio Reports b
@ 3 Manage Refresh
® B 5L ServermgenT

i | L[}] L|

Figure 7-2. Creating a new full-text stoplist in SSMS

The New Full-Text Stoplist window allows you to name your full-text stoplist, specify a
database principal as the owner of the stoplist, and choose whether your stoplist will initially
be empty or be populated from an existing stoplist. In Figure 7-3, we’ve created a custom
stoplist named NoFish_Stoplist with dbo as the owner. The stoplist will be initially populated
from the system stoplist.

147

148

CHAPTER 7 STOPLISTS

FD New Full-Text Stoplist - iFTS_Books

=

Select u page Eoript = [Help
Ganaral
Fullte staplist name; |NoFisn_Staplist
| Comnocion [wo [[]

Server
S0LZ008 O Creata an empty stoplist
Connection:
S0L2008\Michasl {8) Create from the system sioplist

® \iew connection properies
(O Craate from an axisting full-text stoplist

Source daabess

Fiea
d Source stoplist,

i Ok I [Cancal

Figure 7-3. Defining a custom stoplist in the New Full-Text Stoplist window

After you've created a custom stoplist, you can add or remove stopwords from the stoplist
by right-clicking the name of the stoplist in the Object Explorer and selecting Properties from
the pop-up context menu, as shown in Figure 7-4.

(&

ot Explorer
comest: BB TS
® @ Synornyms |
@ (@ Programmability i
@ O3 Service Broker
= 0@ Storage
@ [Ful Text Catalogs
@ [Partition Schemes
[Partition Functions
& (@ Ful Text Stoplsts
1
= 3 Securit MNew FUl-Text Stoplist...

@ @ Security Script Stoplist as ’
@ @ Server Objec Polcie =
@ @ Replication =

Facets

@ 3 Management
® [SQU Server & Start PowerShel

Ll Reports »
Delete

Refresh

[Properties]

|~

Figure 7-4. Accessing the Full-Text Stoplist Properties window

The Full-Text Stoplist Properties window allows you to perform the following stoplist
management activities from the Action drop-down list:

* Add stopword allows you to add a stopword to the stoplist for a specific language.

¢ Delete stopword allows you to delete a stopword from the stoplist for a specific language.

CHAPTER 7 STOPLISTS

* Delete all stopwords allows you to delete all stopwords from the stoplist for a specific
language.

* Clear stoplist allows you to delete all stopwords from the stoplist for all languages.

In Figure 7-5, we demonstrate how to add the word fish to the NoFish Stoplist.

FD Full-Text Stoplist Properties - NoFish_Stoplist

25 scipt = [Help

Select u page

1 Stop \Words

T — - e 8
Sener

SOL2008 Stap ward: [fish]

Connection.
SOL2008\Michas| g .'_|

Full-teod lsnguangs: |.F_'!E'."E!!_
¥ view connaction properties

Feady

ot J[oot | |

Figure 7-5. Adding “fish” to a stoplist

Once you've created a custom stoplist, you can use the SSMS Create Full-Text Index
wizard to create a new full-text index that uses it. You can also assign it to an existing full-text
index by right-clicking on the full-text indexed table and selecting Full-Text index » Properties,
as shown in Figure 7-6.

9 tE r
Connect~ | 3R 8 m T [2] &
@ [FTS_Book2 =

= [J IFTs_Books
@ @ Database Diagrams
B L3 Tables
@ @ System Tables

Define Ful-Text Index. ..

Enable Full-Text index. ..
Disable Ful-Text index. ..

Pl=| i Mew Table... Delete Ful-Text index. ..
=] Design Start Full Population
w & Select Top 1000 Rows Start Incremental Populaton
= S Edit Top 200 Rows Stop Population
2] :
= Sfmpt Table as ; Track Changes Manually
Pl=| View Dependencies Track Changes Automatically
== | Full-Text index Disable Change Tracking
? % Storage Apply Tracked Changes
L | L Policies | Properties vl

Figure 7-6. Selecting Full-Text Index Properties

149

150

CHAPTER 7 STOPLISTS

In the Full-Text Index Properties window, you can assign a custom stoplist to the full-text
index, as shown in Figure 7-7.

¥ Full-Text Index Properties - Book

Sulect s pags | 55 St = 03 Help
i Ganaral
& Columns Froparties —
& Schedules -
=
e £
[<System>
SENVEr = EE263 s
5012008 Ta HAnGes !
Connection: l.fu.n—qu Ilnd;;m .E b ;
q Enabled True
SOLZB0S\Michas! Change Tracking Automatic
Addions
Flstiomias i
Ready o

Figure 7-7. Assigning a custom stoplist to an existing full-text index

Caution If your full-text index is set for automatic change tracking, changing the stoplist will kick off a
full population.

Managing Stoplists

SQL Server 2008 provides three catalog views that are useful for retrieving the contents of system
and custom stoplists. The sys.fulltext stoplists catalog view returns a list of the names and
IDs of all the custom stoplists in the current database. The sys.fulltext system stopwords
catalog view returns a list of all the stopwords in the system stoplist, along with their associated
languages. Listing 7-2 retrieves the full list of stopwords in the system stoplist in all languages.
Partial results are shown in Figure 7-8.

Listing 7-2. Retrieving All Stopwords from the System Stoplist

SELECT *
FROM sys.fulltext system stopwords;

CHAPTER 7 STOPLISTS

B Results
stopword | language_id K |
9116 that 1033
9117 that 1041
9115 that 1054
9114 that 2052
4120 that 2057 -
9121 the 0
412z the 1028
9123 the 1033
9124 the 1041 [

Figure 7-8. Stopwords in the system stoplist

The sys.fulltext stopwords catalog view is the custom stoplist equivalent of the
sys.fulltext system stopwords catalog view. The sys.fulltext stopwords view returns all
stopwords in all custom stoplists, for all languages, in the current database. Let’s create a
simple scalar user-defined function (UDF) that performs a function similar to the OBJECT ID
system function for custom stoplists. This function will help support retrieval of stoplists by
name and provide by-name capability for stoplist dynamic management functions (DMFs),
which we’ll describe in upcoming chapters. The dbo.Stoplist ID function, shown in Listing 7-3,
accepts a custom stoplist name and returns the ID for that stoplist.

Listing 7-3. UDF to Return a Stoplist ID by Name

CREATE FUNCTION dbo.Stoplist ID
(

@name sysname
)
RETURNS int
AS
BEGIN
RETURN
(
SELECT stoplist id
FROM sys.fulltext stoplists
WHERE name = @name
)5
END;

In Listing 7-4, we use the dbo.Stoplist_ID function with the sys.fulltext stopwords catalog
view to return the stopwords in the NoFish Stoplist. Partial results are shown in Figure 7-9. We’ll
use the dbo.Stoplist ID function again in Chapter 9 to simplify the process of passing a stoplist
ID to full-text search DMFs that accept it as a parameter.

151

152

CHAPTER 7 STOPLISTS

Listing 7-4. Viewing the Stopwords in the NoFish_Stoplist Custom Stoplist

USE iFTS Books;

GO

SELECT *

FROM sys.fulltext stopwords

WHERE stoplist id = dbo.Stoplist ID(N'NoFish Stoplist');

[Results
stoplist_id | stopword | language language_id | |4
3508 B figuemos Brazilian 1046
3507 B fiques Brazilian 1046
3508 6B fish English 1033 B |
3509 6B fixe French 1036
3510 6 fixus Dutch 1043
3511 5 fiz Brazilian 1046
3512 B fizemos Brazilian 1046
3513 B fizer Brazilian 1046
3514 B fizera Brazilian 1046 v

Figure 7-9. Stopwords in a custom stoplist

You might need to script your custom stoplist creation and management actions. SQL
Server provides a variety of T-SQL statements to administer stoplists, including statements to
create, drop, and modify stoplists, as well as additional clauses on the CREATE FULLTEXT INDEX
and ALTER FULLTEXT INDEX statements that let you assign stoplists to new or existing full-text
indexes, respectively. Listing 7-5 uses T-SQL statements to create the NoFish Stoplist, add the
word fish to it, and assign it to the existing full-text index on the dbo.Book table.

Listing 7-5. Creating a Custom Stoplist and Assigning It to a Full-Text Index

USE iFTS Books;
GO

CREATE FULLTEXT STOPLIST NoFish Stoplist
FROM SYSTEM STOPLIST
AUTHORIZATION dbo;

ALTER FULLTEXT STOPLIST NoFish Stoplist
ADD 'fish' LANGUAGE 1033;

ALTER FULLTEXT INDEX ON dbo.Book
SET STOPLIST = NoFish_Stoplist;

In Listing 7-5, we created a stoplist based on the system stoplist. With the CREATE FULLTEXT
STOPLIST statement, you can also specify that a stoplist be created empty or populated from
another existing stoplist.

CHAPTER 7 STOPLISTS

We used the ALTER FULLTEXT STOPLIST statement to add the stopword fish to the stoplist.
The ALTER FULLTEXT STOPLIST statement also allows you to drop individual stopwords, all stop-
words for a specific language, or all stopwords for all languages from your stoplist with its DROP
clause.

Finally, we used the ALTER FULLTEXT INDEX statement’s SET STOPLIST clause to set the
stoplist for the full-text index on the dbo.Book table to NoFish Stoplist.

Tip Stopwords are limited to a maximum token length of 64 characters.

Adding individual stopwords to a stoplist can be a tedious process, since you have to
issue a separate ALTER FULLTEXT STOPLIST statement for each stopword. We’ve created the
dbo.Add_Stopwords stored procedure in Listing 7-6 to make it easier to add multiple stopwords
to a custom stoplist with a single statement. Note that this procedure already exists in the
iFTS_Books sample database.

Listing 7-6. The dbo.Add_Stopwords Procedure

USE 1iFTS Books;
GO

CREATE PROCEDURE dbo.Add Stopwords
(
@stoplist sysname,
@words nvarchar(max),
@lcid int = 1033
)
AS
BEGIN
SET @words = N',' + REPLACE(@words, N';', N'') + N',";

CREATE TABLE #Stopwords
(

Word nvarchar(64)
);

WITH Numbers (n)
AS

(
SELECT 1

UNION ALL
SELECT n + 1

FROM Numbers
WHERE n < LEN(@words)

153

154 CHAPTER 7 STOPLISTS

)
INSERT INTO #Stopwords (Word)

SELECT
SUBSTRING
(
@words,
n+1,
CHARINDEX(N',", @words, n + 1) - n - 1
)
FROM Numbers
WHERE SUBSTRING(@words, n, 1) = N',"
AND n < LEN(@words)
OPTION (MAXRECURSION 0);

DECLARE Stopword Cursor CURSOR
FORWARD_ONLY READ_ONLY

FOR

SELECT LTRIM(RTRIM(Word)) AS Word
FROM #Stopwords

WHERE LEN(Word) > 0;

OPEN Stopword_Cursor;

DECLARE @sql nvarchar(400),
@word nvarchar(64);

FETCH NEXT
FROM StopWord Cursor
INTO @word;

WHILE @@FETCH_STATUS = 0
BEGIN

IF NOT EXISTS
(
SELECT 1
FROM sys.fulltext stopwords fsw
WHERE fsw.stoplist id = dbo.Stoplist ID(@stoplist)
AND fsw.stopword = @word
AND fsw.language id = @lcid
)
BEGIN

SET @sql = N'ALTER FULLTEXT STOPLIST ' +
QUOTENAME (@stoplist) +
N' ADD ' + QUOTENAME(@word, '''') +
N' LANGUAGE ' + CAST(@lcid AS nvarchar(4)) + ';';

CHAPTER 7 STOPLISTS

EXEC (@sql);
END;

FETCH NEXT
FROM StopWord Cursor
INTO @word;

END;
CLOSE StopWord Cursor;
DEALLOCATE StopWord Cursor;

END;
Go

The dbo.Add_Stopwords stored procedure accepts three parameters: the name of the
stoplist you want to modify, a comma-delimited list of stopwords to add to the stoplist, and an
LCID code (the default is 1033 [English]). The procedure uses a CTE and the built-in T-SQL
string manipulation functions to split the comma-delimited list into separate words that are
inserted into a temporary table:

SET @words = N',' + REPLACE(@words, N';', N'') + N',';
CREATE TABLE #Stopwords

(
Word nvarchar(64)
)5

WITH Numbers (n)
AS

(
SELECT 1

UNION ALL

SELECT n + 1
FROM Numbers
WHERE n < LEN(@words)
)
INSERT INTO #Stopwords (Word)
SELECT
SUBSTRING
(
@words,
n+1,
CHARINDEX(N',', @words, n + 1) - n - 1

)

155

156 CHAPTER 7 STOPLISTS

FROM Numbers

WHERE SUBSTRING(@words, n, 1) = N','
AND n < LEN(@words)

OPTION (MAXRECURSION 0);

Once all the stopwords are in the temporary table, the procedure uses a cursor to iterate
the rows, and uses the sys.fulltext stopwords catalog view to see if the stopword already
exists in the custom stoplist. If the word doesn’t already exist, the stored procedure creates a
dynamic SQLALTER FULLTEXT STOPLIST statement for each word. Each dynamic SQL statement
is executed as it’s created:

DECLARE Stopword Cursor CURSOR
FORWARD _ONLY READ_ONLY

FOR

SELECT LTRIM(RTRIM(Word)) AS Word
FROM #Stopwords

WHERE LEN(Word) > 0;

OPEN Stopword_Cursor;

DECLARE @sql nvarchar(400),
@word nvarchar(64);

FETCH NEXT
FROM StopWord Cursor
INTO @word;

WHILE @@FETCH_STATUS = 0
BEGIN

IF NOT EXISTS
(
SELECT 1
FROM sys.fulltext stopwords fsw
WHERE fsw.stoplist id = dbo.Stoplist ID(@stoplist)
AND fsw.stopword = @word
AND fsw.language id = @lcid
)
BEGIN

SET @sql = N'ALTER FULLTEXT STOPLIST ' +

QUOTENAME (@stoplist) +

N' ADD ' + QUOTENAME(@word, '''') +

N' LANGUAGE ' + CAST(@lcid AS nvarchar(4)) + ';';
EXEC (@sql);

END;

CHAPTER 7 STOPLISTS

FETCH NEXT
FROM StopWord Cursor
INTO @word;

END;
CLOSE StopWord Cursor;

DEALLOCATE StopWord Cursor;

We've also included some simple protections against SQL injection in this code, removing
semicolon characters from the comma-delimited list of words and using the QUOTENAME function
to quote both the stoplist name and the stopwords. Listing 7-7 uses the dbo.Add_Stopwords
procedure to add multiple words to the NoFish_Stoplist at once.

Listing 7-7. Using dbo.Add_Stopwords to Add Multiple Stopwords to a Stoplist
EXEC dbo.Add Stopwords 'NoFish Stoplist', 'monkey,banana,catfish', 1033;

You can also create simple convenience functions like this one to remove multiple stop-
words in a given language from the stoplist, or even to add and remove multiple stopwords
from multiple languages on the stoplist.

Upgrading Noise Word Lists to Stoplists

When you upgrade a full-text catalog from a SQL Server 2005 database, SQL Server doesn’t
upgrade your old noise word lists automatically. It will copy the noise word lists to the
MSSOL\FTData\FTNoiseThesaurusBak subdirectory under your SQL Server 2008 installation
directory, but that’s about it. If you only used the default system noise word lists in SQL Server
2005, you won'’t need to upgrade your old noise word lists, since the SQL Server 2008 system
stoplists have equivalent content.

If you customized your old noise word lists, however, you'll need to create a custom stoplist
and import the old noise words into the stoplist. SQL Server doesn’t provide a standard utility
to perform this function, but it’s easy enough to create one with the OPENROWSET rowset provider.
Listing 7-8 is a stored procedure we created for the purpose of upgrading old noise word lists.
The dbo.Upgrade Noisewords procedure creates a custom stoplist and imports your noise word
files into it. The procedure accepts three parameters:

1. @Stoplist: This is the name of the stoplist you want to import your noise words into. If
a stoplist with this name doesn'’t exist, it’s created for you automatically.

2. @Path: The full path to the directory containing the old noise word files.

3. @LCID: The LCID of the noise word file you wish to import. If you specify a valid LCID,
such as 1033 for English, the corresponding noise word file (in this case noiseENU. txt) is
imported. If you set this parameter to NULL, all supported noise word files are imported.

157

158 CHAPTER 7 STOPLISTS

Listing 7-8. Procedure to Upgrade Existing Noise Word Lists to Stoplists

CREATE PROCEDURE dbo.Upgrade Noisewords
(
@Stoplist sysname,
@Path nvarchar(2000),
@LCID int
)
AS
BEGIN

-- First create a temp table that maps noise word file three-letter
-- codes to the proper LCIDs

CREATE TABLE #ThreeletterCode

(
Code nvarchar(3) NOT NULL PRIMARY KEY,
LCID int NOT NULL

)5

INSERT INTO #ThreeletterCode
(

Code,

LCID

)

VALUES (N'CHS', 2052), (N'CHT', 1028), (N'DAN', 1030), (N'DEU', 1031),
(N"ENG', 2057), (N'ENU', 1033), (N'ESN', 3082), (N'FRA', 1036),
(N'ITA', 1040), (N'IPN', 1041), (N'KOR', 1042), (N'NEU', 0),
(N'NLD', 1043), (N'PLK', 1045), (N'PTB', 1046), (N'PTS', 2070),
(N'RUS', 1049), (N'SVE', 1053), (N'THA', 1054), (N'TRK', 1055);

-- Next see if a stoplist with the specified name exists.
-- If not, create it with dynamic SQL

DECLARE @Sql nvarchar(2000);

IF NOT EXISTS

(
SELECT 1
FROM sys.fulltext stoplists
WHERE name = @Stoplist

)
BEGIN

SET @Sql = N'CREATE FULLTEXT STOPLIST ' +
QUOTENAME (@Stoplist) + N';';

CHAPTER 7

EXEC (@sql);
END;

-- Declare a cursor that iterates the possible three-letter codes we
-- previously stored in the temp table. The inner join to the
-- sys.fulltext_languages catalog view ensures we only try to import
-- noise word lists for languages supported on this instance

DECLARE File Cursor CURSOR
FORWARD_ONLY READ_ONLY
FOR
SELECT
tlc.Code,
tlc.LCID
FROM #ThreeletterCode tlc
INNER JOIN sys.fulltext languages f1
ON tlc.LCID = f1.LCID
WHERE tlc.LCID = COALESCE(@LCID, tlc.LCID);

-- Open the cursor and iterate the three-letter codes, importing the
-- files and adding them to the stoplist

OPEN File_Cursor;

DECLARE @Code nvarchar(3),
@Language int;

FETCH NEXT
FROM File_Cursor
INTO
@Code,
@Language;

WHILE @@FETCH_STATUS = 0
BEGIN

-- The file is initially imported as a binary file since some of the
-- files can be Unicode while others might not

DECLARE @BinFile varbinary(max),
@Words nvarchar(max);

-- OPENROWSET is used to import the file as a BLOB

SELECT @Sql = N'SELECT @BinFile = BulkColumn ' +
N'FROM OPENROWSET(BULK ' +

STOPLISTS

159

160

CHAPTER 7 STOPLISTS

QUOTENAME (@Path + N'\noise' + @Code + N'.txt', '"'") +
N', SINGLE BLOB) AS x;';

EXEC dbo.sp_executesql @Sql,
N'@BinFile varbinary(max) OUTPUT',
@BinFile = @BinFile OUTPUT;

-- If the BLOB has the byte order mark (OXFFFE) at the start, it will
-- be cast to nvarchar(max), otherwise varchar(max). The varchar(max)
-- is then implicitly cast to nvarchar(max)

SET @Words = CASE SUBSTRING(@BinFile, 1, 2)
WHEN OXFFFE THEN CAST(@BinFile AS nvarchar(max))
ELSE CAST(@BinFile AS varchar(max))
END;

-- This series of nested REPLACE functions removes carriage returns,
-- line feeds, extra spaces, and the "?about" that occurs in some files.
-- It also replaces spaces with commas to create a comma-separated list.

SELECT @Words = REPLACE

(
REPLACE

(
REPLACE

(
REPLACE

(
REPLACE(@Words, oxoa, N' '), oxod, N' '
), N© O, N
), N" ', N','
), N'?about,', N''
)5

-- The dbo.Add Stopwords procedure adds the comma-separated list of
-- stopwords to the stoplist

EXEC dbo.Add Stopwords @Stoplist,
@Words,
@Language;

FETCH NEXT
FROM File_Cursor
INTO
@Code,
@Language;

CHAPTER 7 STOPLISTS

END;
CLOSE File Cursor;
DEALLOCATE File Cursor;

END;
Go

The procedure identifies which files need to be loaded and uses a cursor to iterate the list.
It then loads each noise word file from a predetermined list as a varbinary(max) BLOB via the
OPENROWSET function.

If the BLOB that gets loaded in starts with the Unicode byte order mark (BOM), OXFFFE, it’s
converted to an nvarchar (max). If the file isn’t Unicode, it’s first converted to varchar (max) and
subsequently converted to nvarchar(max) via an implicit conversion.

Each file is then “parsed” with a series of nested REPLACE function calls. The REPLACE func-
tions eliminate carriage returns and line feeds, double spaces, and the “?isabout” entry that
occurs in some noise word files. The procedure then converts all single spaces to commas,
creating a comma-delimited list of noise words.

After each file is converted to a comma-delimited list, the procedure calls the dbo.Add
StopWords procedure to add the noise words to your stoplist. Listing 7-9 calls dbo.Upgrade
Noisewords to import a SQL Server 2005 English noise word file to a SQL Server 2008 stoplist
named English_Stopwords.

Listing 7-9. Upgrading an English Noise Word File to a Stoplist

EXEC dbo.Upgrade_Noisewords N'English_Stopwords',
N'C:\iFTS_Books\NoiseWords",
1033;

Stoplist Behavior

SQL Server iFTS stoplists behave in some interesting and noteworthy ways in relation to your
full-text indexes and queries. In this section, we’ll discuss how stoplists and the stopwords they
contain are used to shrink the overall size of the full-text index and make query processing
more efficient.

Stoplists and Indexing

When you create or populate a full-text index, SQL Server uses the stoplist associated with the
index to ignore instances of the stopwords during full-text indexing. Basically, iFTS won’t index
any stopwords it encounters during the indexing process. SQL Server will only ignore exact
matches of the stopwords, however. Going back to our example from earlier in the chapter,
we added the word fish to a custom stoplist named NoFish_Stoplist. After assigning the
NoFish Stoplist custom stoplist to the dbo.Book table, you can use the sys.dm_fts index_
keywords_by document DMF to verify that fish wasn’t included in the full-text index. (We’ll discuss
this and other full-text DMFs in detail in Chapter 9.) Listing 7-10 retrieves the full-text-indexed
words that begin with the first four characters fish, with partial results shown in Figure 7-10.

161

162

CHAPTER 7 STOPLISTS

Note As we mentioned previously, when you change the stoplist assigned to a full-text index that has
automatic change tracking turned on, SQL Server kicks off a full population. There may be a delay between
when you change the stoplist assignment and when SQL Server completes the full population.

Listing 7-10. Retrieving Words from the Full-Text Index with the Prefix “fish”

SELECT *
FROM sys.dm_fts_index_keywords by document
DB_ID(),
OBJECT ID('dbo.Book")
WHERE display term LIKE N'fish%';
2 Results |
: keyword - | display term | column_id | document_id | occurrence_count :E
34 Ox006600680073006800650073 fishes B 26 1
|35 O=00BB00680073006800850073 fishes B 31 1
| 36 O=D0BE00BA007 3006800650073 fishes B 38 27
a7 Ox00BE0063007 3006800650073 fishes B 101 2
38 Ow00B800B30073006800650073 fishes B 102 2
38 Ox006600830073006800650073 fishes B 103 2 2
| 40 O=00EE00630073006800850073 fishes B 104 2
41 Ox00BE00B3007 3006800850073 fishes B 108 2
| 42 OxD0BB00630073008600650073 fishes (5 108 2 v

Figure 7-10. Viewing indexed words with the prefix “fish” after adding a custom stoplist

After applying the custom stoplist to the dbo.Book table, the word fish no longer appears in
the full-text index; however, note that inflectional forms of the word fish (such as fishes, fished,
and fishing) are still indexed by iFTS.

Stoplists and Queries

When you define a stoplist and assign it to your full-text index as we’ve done in this chapter,
queries for exact words (such as CONTAINS predicate queries without the FORMSOF predicate)
against the full-text index will result in no matches being found. You can see this by executing
a simple iFTS CONTAINS query, as shown in Listing 7-11. The query returns no matching rows,
since the custom stoplist containing the word fish is assigned to the full-text index on the
dbo.Book table.

Listing 7-11. Simple CONTAINS Query for “fish”

SELECT Book_Id
FROM dbo.Book
WHERE CONTAINS (*, '"fish"');

CHAPTER 7 STOPLISTS

If, however, you perform a generational term search for the word fish, SQL Server will
match inflectional terms of the word. Listing 7-12 uses FREETEXT to perform a generational term
search and returns the IDs of books that contain inflectional forms of the word fish. Partial
results are shown in Figure 7-11.

Listing 7-12. Searching for Inflectional Forms of “fish”

SELECT Book_ID
FROM dbo.Book
WHERE FREETEXT(*, 'fish');

B Results

o
LLLL

R e = e I x I) B SN o B e
[}

- |O
[}

34 |

Figure 7-11. Results of generational term query for the word fish, with stoplist

One of the interesting aspects of the interaction between the stoplist and the generational
search terms is that stopwords aren’t stripped from your full-text search predicates. Instead,
your full-text search terms are first stemmed to find thesaurus and inflectional forms. Once the
stemming is complete, the exact match form of the stopword is marked for exclusion from the
search. Listing 7-13 uses the sys.dm _fts_parser DMF to show the inflectional forms that SQL
Server generates against NoFish Stoplist for this generational term query. The results are
shown in Figure 7-12.

Tip We'll discuss the sys.dm fts_parser DMF in detail in Chapter 9. This useful function provides
some insight into how SQL Server stems words during a search. It also provides information about which
words iFTS will try to match and which it will ignore.

Listing 7-13. Viewing Inflectional Forms of the Word Fish Against the Stoplist

SELECT *
FROM sys.dm fts parser

(
N'FORMSOF (INFLECTIONAL, fish)',

163

164

CHAPTER 7 STOPLISTS

1033,

dbo.Stoplist ID(N'NoFish Stoplist'),

1
)
E Resuits

keyword group_id | phrase.. | occurrence | special term | displey term | expansion_type source_tarm

1 | Ix00BE00890073006800850073 i1 0 1 Exact Match | fishes 2 fish

v Ox00EE00890073006800850064 1 o 1 Exact Match fished 2 fish

3 x00EE0068007300650088006E0087 1 o 1 Exact Match | fishing 2 fizh

4 Ox0066006900730068 1 o 1 Moise Word | fish 0 fish

Figure 7-12. Inflectional forms generated by the word “fish,” against a stoplist

Note that, despite the word fish beingin the NoFish Stoplist custom stoplist, the stemmer
still generates the inflectional forms fishes, fished, and fishing. Note also in the special term
column that Exact Match is indicated for each of these words. The word fish, however, is
marked as a Noise Word, indicating that it won’t be matched during the search.

Note We’re not sure why the iFTS team chose to use the term Noise Word in this DMF to describe what
they now call stopwords. This particular DMF is subject to change, however, and perhaps this disconnect will
be addressed in a future release.

Summary

In prior versions of SQL Server, noise word files gave us a means to exclude certain words from
full-text indexes and subsequent full-text searches. In SQL Server 2008, these noise word files,
formerly stored in the file system, have been replaced with stoplists that are stored in the data-
base. You can create and manage custom stoplists using standard T-SQL CREATE, ALTER, and
DROP FULLTEXT STOPLIST DDL statements. Stoplists provide several benefits, including less
bloated full-text indexes, more efficient full-text search queries, and the ability to specifically
exclude words that you deem unnecessary for your full-text searches.

In this chapter, we talked about how to create and manage stoplists, and how to upgrade
your existing noise word files to SQL Server 2008 stoplists. We provided procedures to simplify
the tasks of adding multiple stopwords to your stoplists and upgrading your existing noise
word lists. We also discussed the effects of stoplists and stopwords on your full-text indexes
and full-text search queries.

In the next chapter, we’ll continue the discussion of iFTS support for generational terms as
we introduce full-text thesauruses.

CHAPTER 8

Thesauruses

What's another word for thesaurus?

—Steven Wright

SQL Server provides powerful full-text search thesauruses that can be used for customizing
searches for relevant text. Using thesauruses, you can define two types of custom pattern-
based rules:

» Expansions that can automatically expand the scope of your searches to include addi-
tional relevant search terms.

* Replacements that substitute your search terms with other specified terms.

Thesaurus files are language-specific and can be modified to suit your specific needs. In
this chapter, we’ll discuss thesaurus management, options, and improvements to thesaurus
functionality in SQL Server 2008.

Thesaurus Files

SQL Server uses language-specific XML thesaurus files stored in the file system. These files are
stored in the MSSQL\FTData subdirectory under the SQL Server installation directory. Each
thesaurus is named using the format ts<language>.xml, where <language> is a three-character
language code or global for the global thesaurus. Figure 8-1 shows a partial listing of the
contents of the MSSQL\FTData directory.

THESAURUSES IN THE DATABASE

One of the ultimate goals of the iFTS team is to move thesaurus files out of the file system and into the data-
base, in much the same way that noise words have been moved into the database in the form of stoplists.
Unfortunately for us, time constraints kept the iFTS team from incorporating this into SQL Server 2008. We can
expect thesaurus files to be incorporated completely into the database in a future release.

165

166

CHAPTER 8 THESAURUSES

Details

File Edit ‘iew Favorites Tools Help #
. I i
e Back @ @ ,O Search [[7% Folders !]~
Address | Ch\Program Files\Microsoft SQL Server\MSSQL. IWSSQLYFTDEtA ,VJ| GO
Mame - | Size | Type e
File and Folder Tasks) (=] tsara.xml ZKB ®ML Document]
(=] tsben.xml 2KB ¥MLDocument |
Other Places (=] tsbgr xml ZKB ®MLDocument |-
(=] tscat.xml 2KB XML Document ||
(=] tschs.xml ZKB ®ML Document
[=] tseht.xml ZKB XML Document
[=] tsdan.xm ZKB ®ML Document
(=] tsdeu.xml ZKB ®ML Document
(=] tseng.xml 2KB XML Document
(=] tsenuxml ZKB ®ML Document
=] tsesn.xm ZKB ®ML Document

(=] tsfra.xml

[tsglobal xml

(=] tsguj.xml

(;_ 1}

2KB
2KB
2KB

#ML Document
#ML Document ;
HML Cocument s

|]

Figure 8-1. XML thesaurus files in MSSQL\FTData subdirectory

The thesaurus files for SQL Server 2008 follow the format shown in Listing 8-1.

Listing 8-1. Sample Thesaurus File

<XML ID = "Microsoft Search Thesaurus">
<thesaurus xmlns = "x-schema:tsSchema.xml">

<diacritics_sensitive>0</diacritics_sensitive>

<expansion>
_{aqua}
_{azure}
_{aquamarine}
_{indigo}
_{teal}
_{cobalt}
_{navy}
_{blue}

</expansion>

<replacement>
<pat>fl</pat>
<pat>fla</pat>
<pat>flor</pat>
_{florida}

</replacement>

CHAPTER 8 THESAURUSES

<expansion>
_{skirmish}
_{scuffle}
_{battle}
_{fight}

</replacement>

</thesaurus>
</XML>

The <diacritics_sensitive> element accepts a value of 0 or 1 indicating whether the words
in the thesaurus should be sensitive to accent marks and other diacritical marks. A value of 0
makes the thesaurus insensitive to diacritical marks, while a value of 1 turns diacritic sensitivity
on. When diacritic sensitivity is turned off, the thesaurus treats words such as resume and
resumé as equivalent. It will also treat the same word with other accent marks as equivalent, so
that if you accented the first éin résumé it would be treated as equivalent to both resumé and
resume.

The <expansion> element defines an expansion set, which will expand your search to
include all of the terms in the expansion set when any of the terms is included in your search.
The <replacement> element defines a replacement set that automatically replaces any matching
terms in your query with a single substitution term. The individual terms defined in the thesaurus
are limited to 512 characters each (which should be more than enough in most situations).
We’'ll discuss both expansion sets and replacement sets in greater detail later in the chapter.

Editing and Loading Thesaurus Files

The default thesaurus files that are installed with SQL Server 2008 show the structure of the file
with a few simple <expansion> and <replacement> elements, but the contents of the sample
files are commented out with the XML comment node delimiters (<!-- and -->). Because the
contents are commented out, the default thesaurus files have no effect on your full-text search
queries. The default contents of the English language (LCID 1033) thesaurus file, tsenu.xml, are
shown in Listing 8-2.

Tip If you decide to edit the sample thesaurus files, be sure to remove the XML <! -- and --> comment
node delimiters or your changes will have no effect.

Listing 8-2. Default tsenu.xml Thesaurus File

<XML ID = "Microsoft Search Thesaurus">
<l--
Commented out (SQL Server 2008)

<thesaurus xmlns = "x-schema:tsSchema.xml">
<diacritics_sensitive>o</diacritics sensitive>
<expansion>

167

168 CHAPTER 8 THESAURUSES

_{Internet Explorer}
_{IE}
_{IE5}
</expansion>
<replacement>
<pat>NT5</pat>
<pat>W2K</pat>
_{Windows 2000}
</replacement>
<expansion>
_{run}
_{jog}
</expansion>
</thesaurus>

-->
</XML>

The root <XML> element has an ID attribute that is set to Microsoft Search Thesaurus. The ID
attribute is not mandatory, and doesn’t appear to affect the functionality of the thesaurus files
if you change it to another value or remove it altogether.

Note The <XML> root element is poorly named. According to the World Wide Web Consortium (W3C) XML
recommendation, no elements should have a name that begins with the letters “XML” (in that order, in any
upper- or lowercased combination). There are no plans to make the thesaurus files compliant with this
requirement of the standard at this time.

The <thesaurus> element sits below the <XML> root element and acts as a container for the
diacritic sensitivity setting and the expansion and replacement sets. The <thesaurus> element
must have its XML namespace set to x-schema:tsSchema.xml. This is mandatory—not setting
the XML namespace for this element, or setting it to an incorrect URI, will result in your
thesaurus file being ignored and having no effect on your queries.

You can edit XML thesaurus files using a simple text editor such as Notepad or a more
specialized XML editor such as Altova XMLSpy.

Gaution The authors ran into problems saving thesaurus files with an older version of the TextPad editor.
Specifically, TextPad didn’t save the Unicode byte order mark at the beginning of the file, which caused prob-
lems at load time. This issue appears to be resolved in newer versions of TextPad.

CHAPTER 8 THESAURUSES

When you save your thesaurus files to the MSSOL\FTData subdirectory, make sure you save
it with a name following the ts<Ianguage>.xml convention. Also, the thesaurus files must be
saved in Unicode format with the byte order mark. The byte order mark should be automati-
cally added to the file by your editor when you save it in Unicode format.

Tip During the upgrade process, existing thesaurus files are copied to the MSSQL\FTData\
FTNoiseThesaurusBak subdirectory of your SQL Server installation directory. You can simply copy
your existing SQL Server 2005 thesaurus files from this subdirectory to the MSSQL\FTData subdirectory
to start using them with SQL Server 2008.

After you've edited and saved your custom thesaurus files, you can reload them using the
new system stored procedure sys.sp_fulltext load thesaurus_file. This procedure accepts
up to two parameters:

* A mandatory int LCID parameter indicating which file should be loaded. The LCID is
mapped to a language-specific thesaurus file; for instance, LCID 1033 is mapped to the
English language thesaurus file tsenu.xml.

* Anoptional bit parameter indicating whether the thesaurus file should be loaded if it
has been previously loaded. If you set this parameter to 0 (the default), the thesaurus file
isreloaded whether it was previously loaded or not. A value of 1 will cause the thesaurus
file to be loaded only if it wasn’t previously loaded. Note that this second optional
parameter is currently undocumented in BOL, but it is detected by SSMS Intellisense.

This new procedure is very useful, particularly when modifying and testing thesaurus files.
In prior versions of SQL Server, a change to a thesaurus file required the full-text search service
to berestarted in order to pick up the changes. Debugging a thesaurus file was a time-consuming
process. The new sys.sp_fulltext _load thesaurus_file procedure eliminates the need to
restart any services. As soon as you execute this procedure, the file is loaded and SQL Server
automatically picks up the changes. Listing 8-3 loads the English language thesaurus file into
SQL Server. Note that only members of the serveradmin fixed server role or the system admin-
istrator can execute this procedure.

Listing 8-3. Loading the English Language Thesaurus File

EXEC sys.sp_fulltext load thesaurus file 1033;

You can modify which XML file is used by changing the entry in HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSearch\
Language\ XXX, where XXXis your language.

169

170

CHAPTER 8 THESAURUSES

THESAURUS CACHING

When SQL Server 2008 loads thesaurus files, it caches them in internal tables in the tempdb database. SQL
Server uses lazy caching, meaning that the query engine checks to see whether the correct thesaurus has
been loaded the first time it's needed, at query time. If the correct thesaurus isn’t loaded yet, SQL Server auto-
matically loads it. You can override this behavior in SQL Server 2008 by using the sys.sp fulltext
load thesaurus_file procedure to load your thesaurus files on demand.

One notable change from SQL Server 2005 thesaurus files is that the former tsneu.xml file
(neutral language thesaurus file) has been renamed tsglobal.xml (global thesaurus file). To
load the global thesaurus file, specify LCID 0 when you execute the sys.sp_fulltext load
thesaurus_file procedure. We'll discuss how the global thesaurus file acts in concert with the
language-specific local thesaurus files later in this chapter.

Unfortunately, SQL Server 2008 doesn’t offer much in the way of error reporting when
there’s a problem with your thesaurus files. It will report errors in the following three
situations:

¢ If the thesaurus file isn’t a well-formed XML document, you’ll receive an error message
indicating that the file can’t be loaded.

¢ Ifthe thesaurus file for the LCID you specify doesn’t exist, you'll likewise receive an error
message indicating that the file can’t be loaded.

¢ Ifthe thesaurus file duplicates one or more phrases in expansion or replacement sections,
you'll receive an informational warning that the duplicate rule “causes ambiguity” and
“hence the phrase will be ignored.”

When ambiguous rules are encountered, expansion rules take precedence over replace-
ment rules. Consider the ambiguous thesaurus in Listing 8-4, which contains multiple rules for
the term fI.

Listing 8-4. Ambiguous Thesaurus File

<XML ID="Microsoft Search Thesaurus">
<thesaurus xmlns="x-schema:tsSchema.xml">
<diacritics_sensitive>0</diacritics_sensitive>
<replacement>
<pat>fl</pat>
<pat>fla</pat>
_{florida}
</replacement>
<expansion>
_{fl}
_{floor}
</expansion>
<expansion>

CHAPTER 8 THESAURUSES

_{fl}
_{fluid}
</expansion>
</thesaurus>
</XML>

The thesaurus in Listing 8-4 contains one replacement rule and two expansion rules for
the term fI. The expansion rules take precedence over the replacement rule, so the replace-
ment rule is ignored. The two expansion rules can be indicated using the form E(fl, floor) and
E(fl, fluid). In this format, the Eindicates that the rule is an expansion rule. The expansion
terms are shown as a list in parentheses. Any of the terms will be expanded to all of the terms in
the list. Of the two expansion rules, the one that’s defined first, E(fl, floor), is used; the other rule
isignored. When you try to load an ambiguous thesaurus file like the one shown in Listing 8-4,
SQL Server returns only a generic warning message like the following; it’s up to you to manually
locate and fix the offending rules:

Informational: Ignoring duplicate thesaurus rule 'fl' while loading thesaurus
file for LCID 0. A duplicate thesaurus phrase was encountered in either the
<sub> section of an expansion rule or the <pat> section of a replacement rule.
This causes an ambiguity and hence this phrase will be ignored.

In almost every other instance of problems with your thesaurus files, including incorrect
element names or failure to use the correct Uniform Resource Indicator (URI) for the <thesaurus>
element namespace, attempting to load and use your thesaurus file will fail silently. We've
created the dbo.Validate Thesaurus File procedure to load and validate your thesaurus files
against rules similar to the ones SQL Server 2008 applies when loading your thesaurus files.
Simply pass this procedure the full pathname to a thesaurus file and it will validate the thesaurus
file for you. The full source listing for the dbo.Validate _Thesaurus_File procedure is available
in the sample code download for this book. Because the listing is lengthy, we’re not going to
reproduce it in its entirety. Instead we’ll discuss the types of errors it catches and show an
example of usage here.

Tip Complete code listings for this procedure, and other code found throughout this book, is available at
www.apress.com in the Downloads section.

One of the goals of the dbo.Validate Thesaurus File procedure was to give complete
information about the types of errors and problems in thesaurus files that cause them not to
load/work properly. The dbo.Validate Thesaurus File procedure can capture the following
types of errors:

¢ File format (non-Unicode with byte order mark) errors

¢ Well-formedness errors (for example, multiple root elements)

¢ Thesaurus files with no <XML> root element

17

172

CHAPTER 8 THESAURUSES

¢ Improper XML namespace on <thesaurus> element
¢ Invalid values in <diacritics_sensitive> element
* Ambiguous expansion and replacement rules

The procedure also gives you useful warnings about other thesaurus file content that
might load with no errors, but could cause unexpected results. In addition, the procedure
attempts to tell you where it encounters errors in the XML file by numbering your elements (in
XML document order). Listing 8-5 demonstrates a call to dbo.Validate Thesaurus File to vali-
date the tsglobal.xml global thesaurus file.

Listing 8-5. Validating the tsglobal.xml Global Thesaurus File

EXEC dbo.Validate Thesaurus File N'C:\Program Files\Microsoft SQLw»
Server\MSSQL10.MSSQLSERVER\MSSQL\FTData\tsglobal.xml";

The following are the results, after we introduced some problems into our tsglobal.xml
file:

WARNING: The <diacritics sensitive> element #1 under <thesaurus> element #1
is defined under the namespace URI "wrong-schema" but the namespace URI needs
to be "x-schema:tsSchema.xml". The thesaurus file should load properly, but
this element may be ignored resulting in unexpected query results.

WARNING: Ambiguous term found: [Term = "fl": <thesaurus> #1, <expansion>
#1]. Your thesaurus file should load properly, but some ambiguous rules will
be ignored.

WARNING: Ambiguous term found: [Term = "fl": <thesaurus> #1, <expansion>
#4]. Your thesaurus file should load properly, but some ambiguous rules will
be ignored.

WARNING: Ambiguous term found: [Term = "fl": <thesaurus> #1, <replacement>
#1]. Your thesaurus file should load properly, but some ambiguous rules will
be ignored.

WARNING: Ambiguous term found: [Term = "fla": <thesaurus> #1, <expansion>
#3]. Your thesaurus file should load properly, but some ambiguous rules will
be ignored.

WARNING: Ambiguous term found: [Term = "fla": <thesaurus> #1, <replacement>
#2]. Your thesaurus file should load properly, but some ambiguous rules will
be ignored.

Total Error Count = 0

Total Warning Count = 6

We hope this procedure will come in handy for troubleshooting iFTS thesaurus file problems.

CHAPTER 8 THESAURUSES

Tip Because SQL Server 2008 uses the xm1 data type to load and parse your thesaurus file content, it will
throw an exception if your XML thesaurus file is not well-formed. Mismatched and improperly nested tags, for
instance, will raise an exception.

Expansion Sets

An expansion set in the thesaurus file is defined by <sub> tags contained within an <expansion>
tag. If any of the words contained in the <sub> tags are encountered, your search is automati-
cally expanded to include all other words defined in the expansion set. You can include as
many expansion sets as you want in a SQL Server 2008 XML thesaurus file, but each expansion
set word is limited to 512 Unicode characters. Through expansion sets, you gain the ability to
search for multiple synonyms of any given search term, as shown in Figure 8-2.

Expansion Set Full-Text Index
aqua —) Lorem ipsum ¢
azure _) consectetur ac

Search Term aquamarine _) do eiusmod te
indigo > Iat?ore et d_ol_or

teal > enim ad m|n|rT
) nostrud exerci

cobalt laboris nisi ut :

navy ’ commodo con

blue —> irure dolor in r

Figure 8-2. Logical view of expansion set operation

In the previous example in Listing 8-1, we included an expansion set with several
synonyms for the word blue:

<expansion>
_{aqua}
_{azure}
_{aquamarine}
_{indigo}
_{teal}
_{cobalt}
_{navy}
_{blue}

</expansion>

With this expansion set, performing a search for any of the synonyms (the word aqua, for
instance) results in your search being automatically broadened to include all of the words in
the expansion set. Consider the CONTAINS query in Listing 8-6.

173

174

CHAPTER 8 THESAURUSES

Listing 8-6. CONTAINS Query with Thesaurus Expansion

SELECT Book_ID
FROM dbo.Book
WHERE CONTAINS
(
Book_Content,
N' FORMSOF (THESAURUS, aqua)'
)5

With the expansion set we defined earlier in this section, this query is internally expanded
to the equivalent query in Listing 8-7.

Listing 8-7. CONTAINS Query After Thesaurus Expansion

SELECT Book_ID
FROM dbo.Book
WHERE CONTAINS
(
Book_Content,
N'"aqua" OR "azure" OR "aquamarine" OR "indigo" OR "teal" OR "cobalt'"ws
"navy" OR "blue"'

)5

This automatic expansion can be verified with the new sys.dm fts_parser DMF, using a
query like the one in Listing 8-8. The results are shown in Figure 8-3.

Listing 8-8. Verifying Thesaurus Expansions with sys.dm_fts_parser

SELECT *

FROM sys.dm fts parser

(

N' FORMSOF (THESAURUS, aqua)',

1033,

null,

0

)s

T Resulls

group_id | phrase_id | occurrence | special_term display term expansion_type | source term

1 1] 1 Exact Match agua i] agua
2 » 1 2 1 Exact Match azure 4 agua
3 O0x008100. 1 3 1 Exact Match aguamarine 4 agua
4 Ox006900.. 1 4 1 Exact Match indigo 4 agua
5 0007400.. 1 5 1 Exact Match teal 4 aqua
.E_ Ox00B300.. 1 B 1 Exact Match cobalt 4 agua
7 0x006EDD.. 1 7 1 Exact Match nawy 4 ague
8 0x006200.. 1 8 1 Exact Match blue 4 agua

Figure 8-3. Viewing the thesaurus expansions for the search term aqua

CHAPTER 8 THESAURUSES

Replacement Sets

Replacement sets provide an alternative to expansion sets. Like expansion sets, replacement
sets are defined using XML in the thesaurus files. Replacement sets also have the same
512-character limitation on terms. You can define replacement sets with <pat> and <sub> tags
contained within a <replacement> tag. Though they're defined in the same thesaurus files,
replacement sets behave differently from expansion sets. While expansion sets automatically
expand your search to include every search term in the set, replacement sets simply replace
your search term with another search term per your definition. Where expansion sets are
commonly used to define synonyms for words, replacement sets are useful for redefining
acronyms and abbreviations in your searches. Replacement sets operate on search terms in the
manner shown in Figure 8-4.

Replacement Set Full-Text Index)

Lorem ipsum ¢
consectetur ac

Replacement :
1
! do eiusmod te
1
1
1

Patterns
fl

Search Term labore et dolor

nostrud exerci
laboris nisi ut
commodo con

irure dolor in r

Figure 8-4. Logical view of replacement set operation

In Listing 8-1, we created the replacement set shown in Figure 8-4, replacing various
search term abbreviations for Florida with the word florida, as shown:

<replacement>
<pat>fl</pat>
<pat>fla</pat>
<pat>flor</pat>
_{florida}

</replacement>

With this replacement set, performing a search for any of the defined abbreviations results
in a search for the word florida. Note that the original search term is completely replaced in the
search, so that the original search term is not included in the final search. Listing 8-9 shows a
simple CONTAINS query with thesaurus replacement.

Listing 8-9. CONTAINS Query with Thesaurus Replacement

SELECT Book ID
FROM dbo.Book
WHERE CONTAINS
(
Book Content,
N' FORMSOF (THESAURUS, f1)'

);

175

176

CHAPTER 8 THESAURUSES

The replacement set we defined earlier in this section replaces the search term fl with the
replacement term florida, resulting in SQL Server treating the query as the equivalent shown in
Listing 8-10. Note that the query in Listing 8-10 is simply a representative query; it shows how
SQL Server evaluates the thesaurus-replacement query in Listing 8-9 with the previously
defined replacement rules in place.

Listing 8-10. CONTAINS Query After Thesaurus Replacement

SELECT Book_ID
FROM dbo.Book
WHERE CONTAINS
(
Book_Content,
N'"florida"'

);

As with expansion sets, you can verify replacement set activity with the sys.dm fts _parser
DMF, as shown in Listing 8-11. The results are shown in Figure 8-5.

Listing 8-11. Verifying Thesaurus Replacements with sys.dm_fts_parser

SELECT *
FROM sys.dm fts_parser
(
N'FORMSOF (THESAURUS, f1)',
1033,
NULL,
0

);

E Eesults

keyword group_id | phrase_id | occurrence special_term | display_term | expansion_type | source_term

1 |ox008e00. | | 1 | Exact Mateh | florida 4 fl

Figure 8-5. Viewing thesaurus replacement for the search term “fl”

Global and Local Thesauruses

SQL Server 2005 had the neutral language thesaurus (tsneu.xml), which was used when you
specified an LCID of 0. SQL Server 2008 replaces the neutral language thesaurus with the global
thesaurus (tsglobal.xml). Like the neutral language thesaurus, the global thesaurus is used
when you specify an LCID of 0. Unlike the neutral language thesaurus, the global thesaurus
now works in tandem with local language thesauruses no matter which language you specify in

CHAPTER 8 THESAURUSES

your query. When you specify a full-text search with thesaurus expansion, the global thesaurus
is consulted in addition to the local language thesaurus, regardless of which language you indi-
cate. As an example, consider the following replacement rule as a global thesaurus entry:

<replacement>
<pat>ca</pat>
_{california}

</replacement>

This replacement rule in the global thesaurus can be indicated using the form: R(ca —
california). In this format. the Rindicates a replacement rule, and the term to the right of the
arrow in parentheses replace the term (or terms) to the left of the arrow. This particular rule
causes the search term ca to be replaced with the term california. When added to the global
thesaurus, this replacement rule is applied no matter what language you're using to search. In
addition to the global thesaurus, the local thesaurus for the specified search language is also
consulted by iFTS. If the global thesaurus and the local language thesaurus for the language
specified in the query contain overlapping rules, the local thesaurus rules take precedence over
the global thesaurus. Consider if the following replacement rule were placed in the English
language thesaurus (tsenu.xml):

<replacement>
<pat>ca</pat>
_{canada}

</replacement>

This replacement rule can be indicated using the form R(ca — canada). Even if the conflicting
replacement rule for the search term ca, R(ca — california), is defined in the global thesaurus,
the local replacement rule R(ca — canada) takes precedence and will be used by the full-text
query engine.

A Practical Example

As a practical example of full-text thesaurus usage, we’ve implemented a simple thesaurus that
accounts for “oddities” in the works of William “The Bard” Shakespeare. Shakespeare’s works
were written in Early Modern English, quite different from English in its current incarnations.
Because of this, there are a lot of differences in spelling that we would consider anomalous in
Modern English. Many words have extraneous €’s at the end, for example.

Another issue with Shakespeare’s works is in the typography of the age. Many commonly
used words in printing were prepacked into clichés, or entire words contained on single slugs
of metal. Because printing press letters were expensive, printers often ran out of certain letters
and clichés during print runs. Rather than spending money on additional sets of letters, it was
a common practice of the time to substitute similar-looking letters for one another. Probably
the most common example is the substitution of the letter « for the letter v, and vice versa.
Shakespeare’s original printed works are full of such substitutions, and many scholars prefer

177

178 CHAPTER 8 THESAURUSES

the faithful reproduction of these “canonical errors.” Consider the following lines from The
Tragedie of Hamlet:

Fran. Nay answer me: Stand & vnfold your selfe
Bar. Long liue the King

Fran. Barnardo?

Bar. He

Fran. You come most carefully vpon your houre

With this in mind, we’ve introduced some Shakespearean texts in the iFTS_Books database
that are reproduced with these types of canonical errors. Our thesaurus example will convert
some of these spelling anomalies to their modern equivalents. The following thesaurus entries
represent a sample from our Shakespearean English thesaurus (LCID 1033):

<expansion>
_{appeare}
_{appear}
</expansion>
<expansion>
_{approue}
_{approve}
</expansion>
<expansion>
_{beleefe}
_{belief}
</expansion>
<expansion>
_{Faiery}
_{Faire}
_{Fairy}
</expansion>
<expansion>
_{haue}
_{have}
</expansion>

This thesaurus uses expansion rules to accommodate archaic spellings of words such as
E(belief, beleefe) and canonical typographical anomalies such as E(upon, vpon). With this
thesaurus loaded, searches for the modern spellings of these words will also locate the archaic
spellings, and vice versa. We’ve included a larger Shakespearean thesaurus in the sample
download files for this book under the \Shakespeare subdirectory.

In addition to accounting for archaic language spellings and anomalies, thesaurus files are
useful for expanding modern abbreviations and acronyms, and for retrieving matches for
words that are synonymous with your search term. All of this can be used to make your data-
base searches more intelligent and increase overall recall.

CHAPTER 8 THESAURUSES 179

Translation

You can also use the thesaurus as a simple translator. With simple replacement rules, you can
easily translate commonly used foreign words into the target language in much the same way
that the previous example converted archaic English words into modern English. Consider the
following sample thesaurus entries that replace Latin words with their English equivalents:

<replacement>
<pat>octoginta</pat>
_{eighty}
</replacement>
<replacement>
<pat>irrito</pat>
_{provoke}
_{annoy}
_{excite}
_{stimulate}
_{aggravate}
</replacement>

Because replacement rules are used in this example, the original Latin word is lost in the
search, but the equivalent English terms are used to fulfill the search. You can use expansion
and rules to widen your searches to include alternative methods of representing words as well.
Consider the following expansion rules, which expand searches on Chinese words to automat-
ically include both pinyin and English equivalents:

PINYIN: “SPELL-SOUND”

Pinyin literally means “spell-sound.” It’s a system of Romanization, where Chinese words are represented
using Latin alphabet characters. Each syllable of a Chinese word has a tone, or pitch movement, which is
important to the meaning of the word. As an example, the Chinese word “ma” can refer to either a mother or
a horse, depending on the tone used. Pinyin makes extensive use of diacritical marks to differentiate the tone
of syllables.

<expansion>
_{BIFRHRHE}
_{guéjixiangqi}
_{chess}
</expansion>
<expansion>
₅
_{mi}
_{knight}
</expansion>
<expansion>
_£

180

CHAPTER 8 THESAURUSES

_{bing}
_{pawn}
</expansion>

Using these sample thesaurus entries, you can search for chess-related terms using Tradi-
tional Chinese words or their pinyin or English equivalents. A search for any of these terms will
be automatically expanded to include the alternate versions of the same group when thesaurus
expansion is used. Refer to Chapter 5 for a detailed discussion of multilingual searches.

Word Bags

Thesauruses can also be used to expand a search using words that aren’t necessarily synonyms,
but might be closely related to the search term. This might be useful in applications where you
want to automatically expand a search to include associated documents or products. For
instance, when a user searches for pancakes, you might want to return related results that
include associated products such as syrup. Consider the following sample thesaurus that
expands selected product searches:

<expansion>
_{pancakes}
_{syrup}
_{bacon}
_{eggs}
</expansion>
<expansion>
_{ham}
_{cheese}
_{bread}
_{lettuce}
_{tomato}
</expansion>

This type of expansion is useful when you’re attempting to make intelligent guesses at
what a user really wants when she types in a given search term, or for applications in which you
want to try to upsell products based on the user’s current area of interest (as determined by her
search terms).

Additional Considerations

There are additional considerations that you need to take into account when you define your
full-text thesauruses, such as case sensitivity, accent sensitivity, nonrecursion, and other
aspects. Let’s discuss these aspects of full-text thesaurus creation.

Accent and Case Sensitivity

Aswe mentioned previously, the <diacritics_sensitive> elementin your thesaurus files defines
your thesaurus’s sensitivity to diacritical marks, including accent marks. Your thesaurus’s
diacritics sensitivity setting should be set in sync with your full-text catalog’s accent sensitivity

CHAPTER 8 THESAURUSES

setting. If your full-text catalog is using accent insensitivity, your thesaurus should have
<diacritics_sensitive> set to 0; if your full-text catalog is accent sensitive, the thesaurus
<diacritics_sensitive> setting should be 1. A mismatch between your full-text catalog’s
accent sensitivity and the thesaurus’s <diacritics_sensitive> setting can result in accented
search terms in your query not being matched by accented terms in your full-text index. A
mismatch in accent sensitivity settings will also cause accented expansions and replacements
to cause missed search matches.

The full-text thesaurus is always treated as case insensitive, regardless of your database
collation settings. Even in a case-sensitive database, a full-text search for the capitalized search
term TVwill match a thesaurus rule for the lowercase term tv.

Nonrecursion

Thesaurus definitions are nonrecursive, meaning that one rule doesn’t recursively invoke
additional rules. Consider the following sample thesaurus replacement rules:

<replacement>
<pat>fl</pat>
_{fla}

</replacement>

<replacement>
<pat>fla</pat>
_{florida}

</replacement>

In this example, the rule R(fl — fla) replaces the search term fIwith the search term fla.
There’s an additional rule, R(fla — florida), which is not invoked by the previous replacement
rule. Listing 8-12 verifies this thesaurus rule application with the sys.dm_fts_parser DMF. As
you can see in Figure 8-6, the search term flis replaced with fla, but the replacement rule for fla
is not invoked.

Listing 8-12. Verifying Thesaurus Expansion with sys.dm_fts_parser

SELECT
special term,
display term,
expansion_type,
source term
FROM sys.dm fts parser
(
N' FORMSOF (THESAURUS, "f1")',
1033,
NULL,
0

);

181

182

CHAPTER 8 THESAURUSES

B Results

display_term | expansion_type source_term
fla 4 fl

Figure 8-6. Viewing thesaurus replacement rule

Overlapping Rules

As we discussed previously in this chapter, ambiguous replacement and expansion rules in a
thesaurus are dealt with at load time. However, it’s possible to have overlapping rules that
aren’t considered ambiguous by the full-text search engine. An overlapping rule is one where
some search terms are shared between the <pat> elements of replacement rules and the <sub>
elements of expansion rules. In the following example, for instance, the rule R(fl 0z — fluid
ounces) overlaps with the rule R(fl — florida), because they have the search term flin common:

<replacement>
<pat>fl oz</pat>
_{fluid ounces}
</replacement>

<replacement>
<pat>fl</pat>
_{fla}

</replacement>

If you perform a search for terms that have overlapping rules, the longest matching rule
wins. In this instance, a search for 16 fl oz will trigger the fl oz replacement rule, while a search
for fl statewill trigger the flrule. If two overlapping replacement rules happen to have the same
length, the first one in the thesaurus is used.

Stoplists

Full-text thesaurus entries take precedence over stopwords contained in stoplists. Consider
the sample thesaurus entries from the previous section, for instance. These entries specify two
replacement rules: R(fl oz — fluid ounces) and R(fl — fla). If you added the search term fl to
your stoplist, these two rules that contain that search term will still be applied. Only after
your thesaurus replacements and expansions are applied does the stoplist come into play,
since stopwords aren’t stored in the full-text index. It’s a good idea to not put stopwords in
<sub> entries of replacement rules, since they’ll find no match in the full-text index. Stopwords
in the <sub> entries of expansion rules will also find no matches in the full-text index, but they
may be used as the point of entry for expansion to include other terms in the search.

CHAPTER 8 THESAURUSES

General Recommendations

Microsoft makes some general recommendations regarding thesaurus files, including the
following:

* Avoid using special characters in your thesaurus entries to avoid unexpected word
breaker behavior.

e Thesaurus entries can’t be empty strings or composed of strings of special characters
that can be converted to empty strings by the word breaker.

In addition, when loading a full-text index with the sys.sp_fulltext load thesaurus file
procedure, the full-text thesaurus is loaded into a SQL Server xml data type instance. This has
two implications:

1. There’s an upper limit of 2.1GB of storage for any given thesaurus file. Since the file
is being loaded into an xml data type instance, however, the actual XML file could be
larger. As a practical matter, though, a large thesaurus file (greater than 10MB) could
take a considerable amount of time to load and parse.

2. The XML thesaurus file has to follow most of the rules for well-formedness. The
element tags must be properly nested, special characters must be properly entitized
(converted to XML entities such as > ; for the > character), attribute values quoted,
and so on. We say the thesaurus file has to follow most of the rules for well-formedness
because it technically doesn’t have to have a single root element, but subsequent root-
level elements after the first <XML> element are ignored.

Summary

SQL Server 2008 full-text search thesauruses allow you to expand user search terms to include
search term synonyms and replacements. Although the ultimate goal of the iFTS team is to
integrate thesauruses into the database, in much the same way that they’ve integrated stoplists,
time constraints prevented it for this release. For now, we have to manage thesauruses as XML
files in the file system. Even so, SQL Server 2008 provides the new sys.sp_fulltext thesaurus file
procedure to load thesaurus files on demand without the service restart required in previous
releases.

We discussed expansion and replacement rules in thesaurus files and how they affect your
queries. We talked about the new global thesaurus files and how they work in tandem with your
local language-specific thesaurus files. We also addressed some of the issues you need to keep
in mind when designing your thesauruses, such as accent sensitivity and overlapping rules.

In the next chapter, we’ll continue the discussion of new iFTS features available through
SQL Server 2008’s catalog views and dynamic management views and functions.

183

CHAPTER 9

IFTS Dynamic Management
Views and Functions

What is written clearly is not worth much, it’s the transparency that counts.

—Louis-Ferdinand Celine

Historically speaking, transparency hasn’t been a strong suit of SQL Server FTS. The problem
was that there were no tools available to lay out the inner workings of the FTS engine. This was
partially due to the fact that the FTS engine was a completely separate service from the SQL
Server service. FTS has long been treated as an opaque “black box”—you push data through it
and expect the results to come out in the proper form on the other end.

However, as many people have found over the years, despite the best intentions and plan-
ning, what you get out of the black box is not necessarily what you expect. Simply put, the black
box paradigm is not an adequate model for developers and administrators trying to optimize
and troubleshoot FTS problems.

SQL Server 2008 provides several new dynamic management views (DMVs), dynamic
management functions (DMFs), catalog views, and other methods of retrieving iFTS-specific
state information and metadata. The new DMVs and DMFs, in particular, provide insight into
the inner workings of iFTS. You can now query your full-text indexes and see exactly what SQL
Server has come up with after word-breaking your documents. Or you can see what SQL Server
sees after it parses a full-text search query.

These features bring an unprecedented level of transparency and insight to iFTS, and will
make troubleshooting, debugging, optimizing, and studying the internal details of iFTS easier
than ever. In this chapter, we’ll discuss the new transparency provided by these features and
explore how you can use them in your own development and administration work.

185

186

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

DMVs and DMFs

The list of exciting new iFTS features in SQL Server 2008 includes several DMVs and DMFs that
provide insight into the inner workings of iFTS. Among these are DMFs that show the result of
word and phrase parsing and stemming, index population, and iFTS memory usage. In this
section, we’ll discuss these DMVs and DMFs.

Looking Inside the Full-Text Index

SQL Server 2008 provides two new DMFs that provide a view into your populated full-text indexes.
We used these DMFs back in Chapter 4 to demonstrate hit highlighting; we’ll explore them in
greater detail here. The sys.dm_fts index_keywords DMF accepts a database ID and a table
object ID, returning the contents of the full-text index in relational format. This DMF returns
the following four columns:

* keyword is an internal hexadecimal representation of the indexed keyword used by iFTS.
e display termis a human readable representation of the indexed keyword.

e column_id is the ID of the source column for the indexed keyword.

e document_count is the number of documents (rows) containing the indexed keyword.

Listing 9-1 uses the sys.dm_fts_index_keywords DMF to retrieve the full-text index entries
for the dbo.Book table. The results are returned in decreasing order of occurrence, as shown in
Figure 9-1.

Listing 9-1. Retrieving dbo.Book Full-Text Index Entries in Decreasing Order of Occurrence

SELECT *
FROM sys.dm fts_index_keywords
(

DB_ID(N'iFTS Books'),

OBJECT _ID(N'dbo.Book")

)
ORDER BY document_count DESC;

The sys.dm fts_index_keywords by document DMF also accepts a database ID and table
object ID. This DMF is similar in functionality to the sys.dm_fts_index_keywords DMF, except
that it provides a greater level of granularity by indicating the document IDs in which the
indexed keywords were found. The sys.dm_fts _index_keywords by document DMF returns all
of the columns returned by sys.dm_fts_index_keywords, with two exceptions:

e document_id is an additional column containing the ID of the document (or row) in
which the indexed keyword was found.

* occurrence_count replaces the document_count column and indicates how many times
the indexed keyword was found in the current document (or row).

CHAPTER 9

IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

B Results
kevaward display_term | column_id | document_count 8
1 Ox00BEOQOGFOO74 | nat 5 gz B
2 (0x007300680061006C006C shall 5 g7
3 Ox006FO0GEDOGS ane g g0
4 Ox00600061006E fman 5 57
g Ox006000610079 = 5 54
5 (x007300650065 she 5 54
7 (x00750070006F00GE upon 5 54
g (x0064006100749 day 5 52
9 0x0070006C006100630065 place 5 52
10 0x00740063006F0075 thou 5 52
11 Ox0067006F0064 god 5 g1
12 (ke NOECINNERNNEE Fric = | =4

Figure 9-1. Contents of dbo.Book full-text index (partial)

This DMF can be used to determine, for instance, how many indexed keywords your
individual documents (or rows) contain. Listing 9-2 demonstrates this, with results shown in

Figure 9-2.

Listing 9-2. Retrieving the Number of Indexed Keywords per Document

SELECT
document_id,

SUM(occurrence _count) AS keywords per document
FROM sys.dm fts index_ keywords by document

(
DB _ID(N'iFTS Books'),
OBJECT _ID(N'dbo.Book")

)
GROUP BY document_id

ORDER BY SUM(occurrence count) DESC;

B Results

kevwoards_per_document
381115

1

2 273806
3 1o 247070
4 il 74618
5 7 72667
B 5 70914
7 32 98114
g 28 51500
9 22 91037
10 3 49693
11 16 42061

>

Figure 9-2. Partial list of number of keywords per document

187

188

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

These two DMFs are useful in situations where you need to peek under the hood to see
exactly what iFTS has indexed. Useful scenarios include simple applications like the hit high-
lighter in Chapter 4, or when testing custom filters like the one we’ll develop in Chapter 10.

Parsing Text

In previous versions of SQL Server, there was no easy way to test FTS’s parsing and stemming
functionality. While you could make educated guesses and assumptions about exactly what
the parser and stemmers were producing, and you could test the results they produced, actually
doing so could result in a lot of hard-to-find issues. SQL Server 2008 provides the sys.dm_fts_parser
DMF to bring clarity to this situation, allowing you to see exactly what the parser and stemmer
are producing for any given search query string. This DMF accepts a query string, LCID, stoplist
ID, and accent-sensitivity indicator as parameters. It returns several columns:

* keyword is the internal hexadecimal representation of a keyword returned by the word
breaker.

e group_idisan ID that indicates the logical group in the search query from which the
keyword was extracted.

* phrase_idisanID thatindicates groupings of alternative forms of compound words; the
compound word data-baseis broken into two groups, with group 1 containing the words
data and base, while group 2 contains the word data-base.

* occurrence is a positional indicator that returns the order of each term in the parsing
result; in the phrase all good things, the word allhas occurrence ID 1, good has ID 2, and
thingsis assigned ID 3.

* special termgives some additional characteristics about the term, including whether
the keyword is an exact match, noise word, end of sentence, end of paragraph, or end
of chapter.

e display termis the human-readable form of the keyword as produced by the word
breaker and stemmer.

* expansion_type tells you whether the keyword is an exact keyword from the search query
(type 0), or the result of inflectional expansion (type 2) or thesaurus expansion/replace-
ment (type 4).

¢ source_termis the source term or phrase from which the keyword was extracted or
generated.

The query string that you pass into this DMF can be a CONTAINS style query, which we described
in Chapter 3. You can also use the FORMSOF (FREETEXT, ...) option to perform FREETEXT-style
inflectional form generation and thesaurus expansions and replacement. Listing 9-3 uses
sys.dm fts parser to parse a FREETEXT-style query using the English language (LCID 1033), the
default stoplist, and no accent sensitivity. The results are shown in Figure 9-3.

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

Listing 9-3. Inflectional-Style Parsing with sys.dm_fts_parser

SELECT *
FROM sys.dm fts_parser

(
N'FORMSOF (INFLECTIONAL, "a penny saved")',

1033,
NULL,
0

)s

[Results |
keyword group_id phrase_id | occurrence | special_term | display_term
! 0 Exact Match | a

1 1 1
“E 1 0 2 Exact Match pence
3 0=00700... 1 0 2 Exact Match = pennigs
4 0«00700... 1] 2 Exact Maich | penny
5 Ox00730.. 1 0 3 Exact Match = save

B 00730 1 0 | Exact Maich | saves
|7 x00730... 1] 3 Exact Match | saving
8 1 3

O0x00730.. Exmct Match saved

expansion_type
0

[T S T S TN o TR o R S Y

source_tenm

a penny saved
a penny saved
a penny saved
apenry seved
a penny saved
a penny saved
a penry savad

a penny seved

Figure 9-3. Results of sys.dm_fts_parser query parsing

We demonstrated use of sys.dm_fts_parser in the hit-highlighter example in Chapter 4.

This DMF is also useful for debugging custom filters, word breakers, and stemmers.

Accessing Full-Text Index Entries

One of the most significant new advances in iFTS is the ability to store full-text indexes directly
in the database. This improvement also makes it easier to access the contents of the full-text
indexes via normal SQL queries. The sys.dm_fts_index_keywords DMF accepts a database ID
and object ID for a table, and retrieves the contents of the full-text index for that table. The

columns returned by this DMF include the following:

* keyword is the hexadecimal representation of the indexed keyword used internally by iFTS.

e display termisthe human-readable indexed keyword.

e column_id is the ID of the column from which the indexed keyword was sourced.

* document_count is a count of the number of documents (or rows) in which the keyword

was found in the source table.

Listing 9-4 shows the DMF in action, accessing the full-text index entries from the dbo.Book

table. Partial results are shown in Figure 9-4.

189

190

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

Listing 9-4. Accessing Full-Text Index Entries for the dbo.Book Table

SELECT *
FROM sys.dm fts_index_keywords

(
DB_ID(N'iFTS Books'),
OBJECT ID(N'dbo.Book")

)s
E Results
kesword display_term column_id | document_count | 4]
11728 Ox006Z2008CO0GFO0Y 7006500720073 blowers B 2
11730 Ox00BZ008CO0GFO0Y 700650073 blowes B 2 -
11731 Ox006Z2008CO0GFO0Y 7006500740065 bloweth B 3
11732 Ox006Z2008CO0GFO0Y70063006ECOGY blowing B 14
11733 Ox006Z2008CO0GFO0Y700EE blawn B 18
11734 Ox0062008CO0GFO0Y700EEODGS blowne B 1
11735 Ox006Z2008CO0GFO0Y 70073 blows B 22
11736 Ox00BZ2008CO07500630065300650072 blucher B 1
11737 Ox006Z2008CO075006400670065006F00GE bludgeon B 1
11738 Ox00BZ2008CO0750065 blue B 27
11738 Ox0062008CO07500650064 blued B 1
11740 Ox00BZ2008CO07500650063006E00G7 blueing B 2 -

Figure 9-4. Partial listing of keyword entries in dbo.Book full-text index

The sys.dm fts index keywords by document DMFissimilar to the sys.dm fts index_keywords
DMF, in that it returns full-text index entries for a given table. The sys.dm_fts index
keywords by document DMF, however, gives you a greater level of granularity by returning
information about full-text index entries on a per-document basis. The sys.dm_fts_index
keywords by document DMF returns the keyword, display term, and column_id columns that
are returned by the sys.dm_fts _index keywords DMF. The sys.dm fts_index keywords by
document DMF returns an additional document_id column with the ID of the document from
which the keyword was sourced, and adds an additional occurrence_count column that tells
you how many times the keyword appears in the given document. Listing 9-5 shows this DMF
in action, with partial results shown in Figure 9-5.

Listing 9-5. Accessing Full-Text Index Entries on a Per-Document Basis

SELECT *
FROM sys.dm fts index_keywords by document
(
DB_ID(N'iFTS Books'),
OBJECT_ID(N'dbo.Book")
)

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

= Results
keyword display_term | column_id | document_id | occurrence_count |
23875 Ox006200BCO0BFO077006500720073 blowers B 11 1
23676 x0062006CO06FD077006500720073 hlowers B 31 1 =
23677 Ox00B2008CO0BFODT700650073 blowes B a 2
23678 Dx0D0B200BCO0BFOOY700B50073 blowes B 25 2
23678 0x0062006C006F0077006500740068 bloweth B 39 4
23BB0 OxD062006CONBFO07700689006EN067 blowing B 3 2
23681 Ox00B2008CO0BF0077006800BEDDBY hlowing B 5 2
23662 OxD0B200BCO0BFO077006800BE0067 blowing B 6 2
23683 (x00B200BCO0BFO0770083008E0DET blowing 5 8 1
2368684 Ox00B2006CO0BFO077008800BED0BT blowing B 10 1
23685 Ox006200BCO0BFO077008900BEDDEY blowihg B 11 1
23666 0x0062006C006F00770069006E0067 hlowing B 16 1 |

Figure 9-5. Full-text entries per document for the dbo.Book table

Retrieving Population Information

SQL Server 2008 provides additional information about one of the most important processes in
iFTS: the population process. You can use four of the new DMVs to gather information about
full-text index populations currently in progress. This information can be used to diagnose and
troubleshoot full-text index population slowness and other issues related to memory pressure
and resource problems on the server. You can also use these DMVs for more mundane admin-
istrative tasks related to monitoring full-text index population.

The diagram in Figure 9-6 shows the relationships of the new full-text index population
DMVs and a few iFTS-specific catalog views. The iFTS-specific DMVs provide point-in-time
population information and don’t retain historical information about populations.

Note we’ll discuss IFTS-specific catalog views in the “Catalog Views” section of this chapter.

The first iFTS-specific population DMV is the sys.dm_fts _active catalogs DMV. This
DMV allows you to list all of the active full-text catalogs that are currently undergoing some
population activity on the server. Listing 9-6 queries the sys.dm fts_active catalogs DMV and
returns the list of catalogs currently being populated on my local server, as shown in Figure 9-7.
Note that your results will vary. This DMV returns status information and counts of various
population specific items, such as the number of threads currently working on a full-text
catalog and the number of full-text indexes being populated, among others.

191

192

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS
sys.dm_fts_outstanding_batches
sys.tables) database_id
object_id catalog,ld
y, table_id
batch_id
sys.databases sys.dm_fts_active_catalogs
database_id databasg_Jd
catalog_id
sys.dm_fts_index_population
sys.fulltext_catalogs database._id
fulltext_catalog_id catalog_id

memory_address

sys.dm_fts_population_ranges
parent_memory_address

Figure 9-6. iFTS-specific population DMVs and their relationships

Listing 9-6. Querying sys.dm_fts_active_catalogs

SELECT

fc.name AS catalog_name,
d.name AS database name,

ac.name

)

CASE ac.is_paused
WHEN 1 THEN N'Yes'
ELSE N'No'
END AS is paused,

CASE ac.status

WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
ELSE

0
1
2
3
4
5
6
7

8

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

N'Initializing'

N'Ready’

N'Paused’

N'Temporary error'

N'Remount needed'

N'Shutdown'

N'Quiesced for backup'

N'Backup is done through catalog'
N'Catalog is corrupt'

N'Unknown'
END AS status,

ac.
.worker_count,
ac.
.auto_population_count,
ac.
.full_incremental population count,
ac.

ac

ac

ac

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

status_description,
active fts index count,
manual population_count,

row_count_in_thousands,

CASE ac.is_importing

WHEN 1 THEN N'Yes'
ELSE N'No'
END AS is_importing

FROM sys.dm_fts active catalogs ac
INNER JOIN sys.fulltext catalogs fc

ON

ac.catalog id = fc.fulltext catalog_id

INNER JOIN sys.databases d
ON ac.database_id = d.database_id;

i M Resulis I
|
| catelog . detebase . | name is_poused | stotus | status desc. | worker . | acive.. mute.. | menual., full | row. is_imporing |
1 |Book Cal | FTS_Books Book Cat Ng Ready AVAILABLE 0 12 0] 12 o Mo

Figure 9-7. Catalogs currently undergoing population activity

The sys.dm_fts outstanding batches DMV gives you information about all outstanding

population batches, or set of rows being populated, for each full-text catalog. This is useful for
troubleshooting population issues and determining resource usage. Listing 9-7 returns a count
of the number of outstanding batches in full-text catalogs currently being populated. The results
are shown in Figure 9-8. Note again that your results may vary from those shown; if there are
no currently outstanding batches, the DMV returns no rows.

Listing 9-7. Retrieving the Number of Full-Text Index Population Batches

SELECT

OBJECT NAME(ob.table id) AS table name,

fc.name AS catalog name,

COUNT(*) AS outstanding batches
FROM sys.dm fts outstanding batches ob
INNER JOIN sys.fulltext catalogs fc

ON ob.catalog id = fc.fulltext catalog id
INNER JOIN sys.databases d

ON ob.database id = d.database_id
GROUP BY

ob.table id,

fc.name;

193

194 CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

B Results

table_narme catalog_name | outstanding_batches
1 Commentary Book_Cat 1
2 Contributor_Birth_Flace = Book_Cat 1
& Contributor_Information Book_Cat 1
4 Contributor_Mame Book_Cat 1
& Contributor_Fole Book_Cat 1
B LoC_Class Book_Cat 1
7 LoC_Subclass Book_Cat 1
8 Title Book_Cat 1
9 Book Book_Cat 2

Figure 9-8. Counts of outstanding full-text index population batches

As you can see in Figure 9-8, there are currently 10 batches outstanding in the current
population process. These numbers will change throughout the population batches, as
currently outstanding batches are finished and new batches are started.

The sys.dm_fts_index_populations DMV is useful for retrieving information about the
currently running index population, including the number of parallelized ranges that have
been created and completed for the current population. Listing 9-8 returns the population
status during a catalog rebuild. Results are shown in Figure 9-9. Once again, your results
will vary.

Listing 9-8. Listing Populations Currently in Progress

SELECT
fc.name AS catalog name,
d.name AS database name,
ip.population type,
ip.population type description,
SUM(ip.range count) AS ranges,
SUM(ip.completed range count) AS completed ranges
FROM sys.dm_fts_index_population ip
INNER JOIN sys.fulltext catalogs fc
ON ip.catalog id = fc.fulltext catalog id
INNER JOIN sys.databases d
ON ip.database _id = d.database id
GROUP BY
fc.name,
d.name,
ip.population_type,
ip.population_type description;

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

E Results |

database_name | population_type | populstion_type_description | renges completed ranges |
| IFTS_Books 1 FULL 2 0
iIFTS_Books 4 AUTO 1 11

|2 Book_Cat

Figure 9-9. Populations in progress during a catalog rebuild

The sys.dm_fts_population_ranges DMV returns even greater detail concerning the
current population process. Specifically, this DMV returns addresses of memory buffers,
session ID information, the number of rows processed, retry status, and an error count. All of
this information is particularly useful for deep troubleshooting of specific problems, such as
failure to complete the population process. Listing 9-9 uses sys.dm_fts_population_ranges to
retrieve this troubleshooting information. Figure 9-10 shows partial results of this query. Once
again, you can expect your results to vary, and rows are returned only when a full-text popula-
tion is in progress.

Listing 9-9. Retrieving Additional Troubleshooting Information with
sys.dm_fts_population_ranges

SELECT *
FROM sys.dm_fts_population_ranges;

= Results |

;. __m_emég: v _address | parent_memory_address | is_retry | session jd | processed row count | error_count ~
|1 | OxDAB3SBO0 | 0x04480608 0 27] i '
|2 o«w4eFensn 004460608 0 32 0 0

3 OxD4EFECDO 0x044815C0 0 34 0 0

|4 Ox0ABEBD40 Ox044815C0 0 35 o 0

5 D«DBBBECDO 0x080FESS0 0 0 0 0 L
B Ox0B876040 Ox0BDFEESD 0 0 a 0

i Ox0ABESBED Ox08DFFE48 0 33 2] 0

i Ox0886E040 Ox0BDFFE48 0 23 0 0
|8 D«08578C00 Ox0ASDEES0 0 0] 0

10 Dx03188040 x0ASDEES0] 0 0 0

1.! 0x09188C00 0x0ABOTE4E 0 0 0 0
|12 Ox0A4534040 Ox0AB07648 0 a 0 0

13 O0x0A334C00 OxDASBEEI0 0 a 0 0
| 14 Ox0887A040 x0AS9E6630 0] 0 0 -

Figure 9-10. Partial result of additional iFTS troubleshooting information

Services and Memory Usage

SQL Server 2008 provides additional DMVs that retrieve information about memory buffers
currently in use by the full-text crawl process and the activity of the full-text daemon hosts on
the server instance. Listing 9-10 uses the sys.dm_fts_hosts DMV to retrieve information about
full-text daemon hosts on the current instance, with results shown in Figure 9-11. The IDs
returned by this DMV will be different for each machine.

195

196

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

Listing 9-10. Retrieving Full-Text Daemon Host Information

SELECT *
FROM sys.dm fts fdhosts;

[Results |

| fdhost_id | fdhost_name fdhost_process_id | fdhost_type me_thread | batch_count

1 | M5S0L10 MSSOLSERVERAS(Y. . 2632 MultiThreaded 2 o

Figure 9-11. Full-text deamon host information

The sys.dm _fts_memory pools DMV returns information about shared memory pools
available to the Full-Text Gatherer component. These memory pools represent the memory
available for the full-text crawl and full-text crawl range processes. Listing 9-11 retrieves the
memory pool information. Results are shown in Figure 9-12. As you probably expect by now
from these DMVs, your results will vary from those shown depending on full-text population
activity on your server.

Listing 9-11. Retrieving Full-Text Gatherer Shared Memory Pool Information

SELECT *
FROM sys.dm_fts memory pools;

[Fesults

pool_id | buffer_size min_buffer_limit | max_buffer_limit | buffer_count
1 262144 0 100 13
2 1 1048576 0 100 a

Figure 9-12. Available Full-Text Gatherer memory pools

Closely related to sys.dm_fts_memory pools, the sys.dm fts memory buffers DMV returns
information about the memory buffers that compose the Full-Text Gatherer’s shared memory
pools. This DMV allows you to see the amount of memory currently in use during the popula-
tion process. Listing 9-12 retrieves information about memory buffers currently in use during
the population process. Figure 9-13 shows the results. Once more, you can expect your results
to be different from those shown here, depending on your full-text index population activity.
You can use this information to troubleshoot population issues related to memory pressure.

Listing 9-12. Retrieving Population Process Memory Buffer Information

SELECT *
FROM sys.dm fts memory buffers;

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

E Results |
[P.EE.L id | memary_address | name is_free | row_count | Indes used | percent used £
1 |_U_ ________ : OxOCE24110 GlobaMJSMMSEOQLIDMSS0OLS.. D 0 B32 0

2 0 Ox0BEZ28040 GlobahOSMMSSALI0OMS30LE.. 0 0 B32 0

3 0 0x0CDEZ848 GlobalhOSMMSSAL10MS30LE.. 0 0 632 0
|4 0 Ox0D850CES GlobahOSMMSE0OL10 MSSALS.. 0 0 632 0

& 0 Ox0D881880 GlobaNOSMMSSOL10MEE0LE.,. 0 0 632 0 =
IE o Ox0BFEED4D GlobahOSMMS5QL10 MS5ALS 1] 0 632 1]

7 0 0<0BF39050 GlobaMOSMMSSAL10.MSS0OLS... 0 0 B32 0

8 0 OxDCF72CED GlobahOSMMSSQLIOMSSALS .. 0 0 B3z i}

3 0 0x0D7CE848 GlobaMOSMMSSOL10OMSS0OLE.. 0 0 832 0 =i
|10 0 Ox0BFFA400 GlobahOSMMSSOLIOMS30LS . 0 0 B3z 0

11 0 OOBFFAD40 GlobalOSMMS3QLI0MS30LE.. 0 0 632 0 -

Figure 9-13. Viewing memory buffer information during a full-text index population

Catalog Views

Whereas DMVs provide server state information for a specific point in time, catalog views
return metadata about server instances, databases, and database objects. The database engine
uses this metadata internally to manage server instances and databases, and to fulfill queries
and other requests. While SQL Server can use any number of various data structures to store
this data internally, catalog views are designed to allow you to access it via T-SQL in read-only
tabular data structures. SQL Server 2008 provides several iFTS-specific catalog views that
provide information about full-text catalogs, indexes, and stoplists required by iFTS. We’ll look
at these iFTS-specific catalog views in this section.

Listing Full-Text Catalogs

The sys.fulltext catalogs catalog view returns a single row for each full-text catalog in
the current database. The information returned includes the ID of the catalog, the name of the
catalog, the accent sensitivity setting, whether the catalog is the default catalog, and the data-
base principal defined as the catalog owner.

Caution In addition, the sys.fulltext catalogs catalog view also returns the ID of the filegroup
where the catalog was created, the ID of the full-text file associated with the catalog, and the file system path
of where the catalog was created. These columns are deprecated and will be removed in a future version of
SQL Server; avoid using them in future work.

Listing 9-13 retrieves the list of full-text catalogs in the current database. The results are
shown in Figure 9-14.

197

198

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

Listing 9-13. Retrieving the List of Full-Text Catalogs

SELECT
fulltext catalog id,
name,
is_default,
is_accent_sensitivity on,
principal id,
is_importing

FROM sys.fulltext catalogs;

EH Results

fulltext_catalog_id narme is_default | is_accent_sensitivity_on | principal_id | is_importing

13 | Book_Cat 1 o 1 0

Figure 9-14. All full-text catalogs in the iFTS_Books database

Retrieving Full-Text Index Metadata

SQL Server 2008 provides several iFTS-specific catalog views that allow you to peek under the
hood to enumerate your full-text indexes and the related tables, columns, and relational indexes.
We’ve used some of these catalog views in previous examples, but we’ll explain them in greater
detail in this section.

The first catalog view, sys.fulltext_indexes, returns a single row for each full-text index
in the current database. The information reported includes the ID of the table to which the full-
text index belongs, the catalog ID, the ID of the stoplist associated with the full-text index, and
change tracking and current full-text index crawl status. Listing 9-14 uses the sys.fulltext_
indexes catalog view to retrieve the full-text index information for the current database. The
results are shown in Figure 9-15.

Tip When joining to the sys.fulltext stoplists catalog view, an outer join is necessary, since the
default SYSTEM stoplist doesn’t have an entry in the catalog view.

Listing 9-14. Retrieving Full-Text Index Information

SELECT
t.name AS table_name,
c.name AS catalog name,
i.unique_index_id,
CASE i.is_enabled
WHEN 1 THEN N'Yes'
ELSE N'No'
END AS is_enabled,

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

i.change tracking state_desc AS change tracking,
CASE i.has_crawl completed
WHEN 1 THEN N'Yes'
ELSE N'No'
END AS crawl complete,
COALESCE(s.name, N'**SYSTEM**') AS stoplist name
FROM sys.fulltext indexes i
INNER JOIN sys.tables t
ON i.object id = t.object id
INNER JOIN sys.fulltext catalogs c
ON i.fulltext catalog id = c.fulltext catalog id
LEFT JOIN sys.fulltext stoplists s
ON i.stoplist id = s.stoplist_id;

[Results
.. Cotelog neme | umique index id | is_enabled change tracking | crewd_complete | stoplist_name

1 | Book_cat 1 Yes ALTO Yes ~SYSTEM™
2 Contnbutor_Birth_Plece Book_Cat 1 Yes ALTO Yes “SYSTEM™
g Contributor_Information | Book_Cat 1 Yes ALTO Yes SYSTEM™
4 Contributor_Name Book_Cat 2 res ALTO Yes =BYSTEM™
o Contrbutor_Role Book_Cat 1 Yes ALTO Yes =SYSTEM™
B LaC_Class Book_Cat 1 es AUTO es =SYSTEM™
7 Lol Subclass Book_Cat 2 Yes AUTO Yes SYSTEM™
8 Subject Book_Cat 1 Yes ALTO Yes "EYSTEM™
8 Title Book_Cat 1 Yes ALTO Yes EYETEM™
10 Book Book_Cat 1 Yes AUTO Yes TEYSTEM™

Figure 9-15. Full-text index information for iFTS_Books database

The sys.fulltext_index catalog_usages catalog view returns only a few columns. The
data returned by the catalog view represents the full-text catalog to full-text index mappings, and
the full-text index to relational index usages. Listing 9-15 retrieves all of this mapping informa-
tion from the catalog view and joins the results to other relevant catalog views in order to display
the information in human-readable format. Results are shown in Figure 9-16.

Listing 9-15. Retrieving Full-Text Index to Relational Index Relationships

SELECT

t.name AS table_name,

c.name AS catalog_name,

i.name AS index_name,

i.type desc
FROM sys.fulltext index_catalog usages icu
INNER JOIN sys.tables t

ON icu.object id = t.object id
INNER JOIN sys.fulltext catalogs c

ON icu.fulltext catalog id = c.fulltext catalog id
INNER JOIN sys.indexes i

ON icu.object id = i.object id

AND icu.index_id = i.index_id;

199

200 CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

B Results
table_narme catalog_na... | index_name type_desc

il Commentany Book_Cat PK._Caommentary CLUSTERED

2 Contributor_Birth_Flace Book_Cat PK._Contributar_Birth_Place CLUSTERED

3 Contributar_Infarmation Book_Cat Fk_Caontributar_Infarmation CLUSTERED

4 Contributor_Mame Book_Cat UC_Contributar_MName MOMCLUSTERED
& Contributor_Fole Book_Cat PK._Contributor_FRole CLUSTERED

B LoC_Class Book_Cat PK_LoC_Class CLUSTERED

7 LoC_Subclass Book_Cat U0 _LoC SubClass MOMCLUSTERED
g Yz Book_Cat PK.__xyz_ 3BDO1H961EC48A18 CLUSTERED

9 Subject Book_Cat PK._Subject CLUSTERED

10 Title Book_Cat PK_Title CLUSTERED

11 Test1 Book_Cat Pk_ Testl_ 3213EB3F3CH4EDO0 CLUSTERED

12 Book Book_Cat PK._Book CLUSTERED

Figure 9-16. IFTS relational index usage

While the sys.fulltext index catalog usages catalog view gives you a picture of the
relational indexes used by the full-text indexes, the sys.fulltext _index_columns catalog view
provides insight into the actual relational columns being indexed by the full-text indexes. You
can join the rows returned by the sys.fulltext_index_columns to the sys.columns catalog view
in order to retrieve column metadata for each full-text index. This information is particularly
useful for administrative tasks such as scripting full-text index DML statements or displaying
the relationships between full-text indexes and relational columns in a GUI application.
Listing 9-16 retrieves the column information for all the full-text indexes in the iFTS _Books
database, with results shown in Figure 9-17.

Listing 9-16. Retrieving Full-Text Index Column Information

SELECT

t.name AS table name,

c.name AS column_name,

c.column_id,

ic.language_id
FROM sys.fulltext_index_columns ic
INNER JOIN sys.tables t

ON ic.object id = t.object id
INNER JOIN sys.columns c

ON ic.object id = c.object id

AND ic.column_id = c.column_id
ORDER BY

t.name,

c.name,

c.column_id;

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

B Results
table_narme colurmn_name column_id | language_id

1 Book | Book_Content B 1033
2 Commentary Article_Content 3 1033
& Commentary Commentary 2 1033
4 Contributor_Birth_Flace Birth_City 2 1033
& Contributor_Birth_Flace Birth_Country 4 1033
B Contributor_Birth_Flace Birth_State 3 1033
7 Contributor_Information Information 2 1033
8 Contributor_Mame First_MName 5 1033
9 Contributor_Mame Last_MName 4 1033
10 Contributor_Mame Middle_MName 5 1033
1 Contributor_Fole Contributor_Fole_Description 2 1033
12 LoC_Class Class_Description 2 1033
13 LoC_Subclass Subclass_Description 4 1033
14 Subject Subject_Description 2 1033
15 Title Title 4 1033

Figure 9-17. Full-text index column information

Full-text indexes are stored in inverted index structures known as fragments. You can use
the sys.fulltext_index fragments catalog view to look at the fragments currently in use. By
querying this catalog view for queryable fragments, you can determine whether an index
reorganization or rebuild will help performance. A queryable fragment is one that has a status
of 4 (Closed. Ready for query) or 6 (Being used for merge input and ready for query). If your query
returns a large number of fragments for a given index, a reorganization can help improve
query performance. Listing 9-17 demonstrates this by querying for all queryable fragments
in the current database, with results shown in Figure 9-18. Your results will vary from those
shown in Figure 9-18, depending on the number and size of queryable fragments in your
database.

Listing 9-17. Returning the Number of Queryable Fragments

SELECT *
FROM sys.fulltext_index_fragments
WHERE status IN (4, 6);

201

202

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

M Results
table_id L fragment_id | fragment_object_id | timestamp status | data_size | row_count |
1 1B 1840725610 0x000000000000575A 4 647221 13338
2 165575628 16 1776725382 Ox0000000000005753 4 2008 35
3 228575856 16 1808725496 0x0000000000005755 4 21615 378
4 293576084 1B 1792725438 0x0000000000005757 4 4812 85
5 341578255 1B 1824725553 0«0000000000005758 4 587 10
.E 437576587 1B 1872725724 O0x000000000000575E 4 7z 12
7 469576711 16 1856725667 0x000000000000575C 4 2282 38
8 484196775 1 1888725781 0x000000000000575F 4 245 8
9 549576396 1B 1804725838 0x0000000000005761 4 4988 a5
10 581577110 20 1836725952 0x0000000000005763 4 94498 17
11 880198542 15 1920725895 Ox0000000000005765 4 387 4
12 2105058535 82 13243102 0x0000000000005787 4 107146501 | 105282

Figure 9-18. List of queryable fragments in the iFTS_Books database

Revealing Stoplists

Like full-text indexes, stoplists are stored in the database by SQL Server 2008. There are three
new catalog views that provide insight into the contents of the system stoplist and user stoplists.
The sys.fulltext system stopwords catalog view allows you to view the default system stop-
word entries. Listing 9-18 lists all of the stopwords in the English (LCID 1033) system stoplist,
with partial results shown in Figure 9-19.

Listing 9-18. Listing English (LCID 1033) System Stoplist Information

SELECT *
FROM sys.fulltext system stopwords
WHERE language id = 1033;

[Results
| stopword | language_id | QJ
B2 dic! 1033
B3 do 1033
G4 does 1033
B5 each 1033
BB else 1033 E
B7 for 1033 7
53] from 1033
B9 get 1033
70 got 1033
71 had 1033
72 has 1033
73 hawve 1033 LJ

Figure 9-19. Partial English system stoplist

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS 203

The sys.fulltext stoplists catalog view returns a list of user-defined stoplists. Note
that the default system stoplists aren’t included in the results of this catalog view. Listing 9-19
retrieves the list of user-defined stoplists, with the result shown in Figure 9-20. Your results
may vary from those shown, depending on how many user-defined stoplists you’'ve created in
your database.

Tip To get the results like those shown in Figure 9-20, you need to create a user-defined stoplist like the
NoFish Stoplist we created in Chapter 7.

Listing 9-19. Retrieving the Names of All User-Defined Stoplists

SELECT *
FROM sys.fulltext stoplists;

B Results

stoplist_id | name create_date modify_date principal_id

1 i B MNoFish_Stoplist | 2008-08-26 23:12:47.683 2008-08-26 23:12:48.363 1

Figure 9-20. User-defined stoplists listing

The sys.fulltext stopwords catalog view returns a list of stopwords that comprise the
user-defined full-text stoplists. You can join sys.fulltext stopwords to the sys.fulltext stoplists
catalog view in order to retrieve the contents of user-defined stoplists by name. Listing 9-20
shows how to retrieve the contents of the NoFish_Stoplist in this way, with partial results
shown in Figure 9-21.

Listing 9-20. Retrieving the Contents of a User-Defined Stoplist

SELECT sw.*

FROM sys.fulltext stoplists sl

INNER JOIN sys.fulltext stopwords sw
ON sl.stoplist id = sw.stoplist id

WHERE sl.name = N'NoFish Stoplist'
AND sw.language id = 1033;

204

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS

B Results
stoplist_id | stopword | language | language_id =
53 B do English 1033
A4 g does English 1033
B5 B each English 1033
BE B else English 1033 B
57 B fish English 1033
[515] B for English 1033
B9 B fram English 1033
70 5 get English 1033 S

Figure 9-21. English (LCID 1033) user-defined stoplist entries

Viewing Supported Languages and Document Types

SQL Server 2008 provides two additional iFTS-specific catalog views that return information
about supported languages and document types. The sys.fulltext languages catalog view
retrieves all iFTS supported languages on an instance of SQL Server. Listing 9-21 returns a list
of all supported languages for a SQL Server instance, with partial results shown in Figure 9-22.

Listing 9-21. Retrieving List of iFTS-Supported Languages

SELECT *
FROM sys.fulltext languages
ORDER BY name;

B Results

Icid narme |
g 9124 Chinese (Macau SAR)
9 4100 Chinese (Singapare)
10 1050 Croatian
11 1043 Dutch
12 1033 English
13 1036 French
14 1031 German
15 1095 Gujarati
16 1037 Hebrew
17 1081 Hindi

10 1090 lealsnd

[LLLL

Figure 9-22. List of iFTS-supported languages

Tip The iFTS Books database includes a table called dbo.XML_Lang_Code that maps a number of
LCID codes to XML language (xml:1ang attribute) codes.

You can also return a list of supported document types on an instance of SQL Server with
the sys.fulltext document_types catalog view. This is particularly useful after installing new

CHAPTER 9 IFTS DYNAMIC MANAGEMENT VIEWS AND FUNCTIONS 205

filter components, to ensure that they’ve been properly registered with your SQL Server
instance. Listing 9-22 queries the sys.fulltext_document_types catalog view, with partial
results shown in Figure 9-23.

Listing 9-22. Retrieving a List of Supported iFTS Document Types

SELECT *
FROM sys.fulltext document types;

[Results

e |class_id path version manufacturer :‘.-|
3|] ENCAS340-4534-11CF-BA52-00AA0051FE20 C\Program Files\, 120668280 Microsoft Corporation A
2 C7310720-ACE0-1101-8DF3-00C0O4FBEEF4F C\Frogram Filesh, 12086280 Microsoft Corporation
3 EOCAS340-4534-11CFB352-00AA0051FE20 C:\Program Filesh.. 12.0.6828.0 Microsoft Corporation
4 E0CAS340-4534-11CF-BE52-004A0051FEZ0 C\Program Filesh 12.0.6828.0 Microsoft Corporation
5 C7310720-AC80-1101-80F3-00CO4FBEEF4F C\Program Filesh. 12.0.8628.0 Microsoft Corporation
B C C7310720-AC80-1101-80F3-00C04FBBEFAF C\Program Files\.. 12066280 Microsoft Corporation
7 crd C7310720-ACE0-1101-8DF3-00CO4FBBEF4F C\Program Filesh 12.08828.0 Microsoft Corporation
8 cpp C7310720-ACE0-1101-8DF5-00CO4FBEEF4F CProgram Filesh. 12.0.86828.0 Microsoft Corporation
] (=4 CT310720-AC80-11071-8DF3-00CO4FBEEF4F C\Program Filesh.. 12.0.6628.0 Microscoft Corporation
1o def CT310720-ACE0-1101-8BDF3-00CO4FBEEF4F C\Program Files) 12066280 Microsoft Corporation =
i1 Lic CIsiozaa sacan 1io - aneEs ONCOAEREEEAE CoDencears Eilos 12 08828 0 hiceocoft Cormmoration i

Figure 9-23. List of supported iFTS document types

Summary

SQL Server 2008 iFTS integration with the SQL query engine provides significant advantages
over prior versions of FTS. In addition to the performance, administration, flexibility, and
management benefits, this tighter integration with the database provides several opportunities
for greater transparency into the inner workings of iFTS. In prior releases of SQL Server, FTS
was somewhat of a black box, and full-text search administration and querying in general was
somewhat of an arcane black art.

Microsoft has taken advantage of SQL Server 2008’s new iFTS architecture by providing us
with several iFTS-specific DMFs, DMVs, and catalog views. These new system functions and
views provide more insight into the inner workings of iFTS than prior releases of SQL Server.
This new transparency demystifies full-text search, making it easier to understand, query,
administer, fine-tune, and troubleshoot. In this chapter, we discussed these new tools and the
insight they can provide into the inner workings of your iFTS implementations.

In the next chapter, we’ll discuss IFTS filters, including commercially developed filters and
custom filter design and development.

CHAPTER 10

Filters

The wise ones fashioned speech with their thought, sifting it as grain is sifted
through a sieve.

— Buddha

In the first chapter, we introduced the interrelated components that enable SQL Server iFTS
functionality. In this chapter, we’ll explore filter components in detail and provide an overview
of other components, including the gatherer and protocol handlers, word breakers, and stem-
mers. We'll discuss the different types of filters available for use with SQL Server 2008 iFTS,
including standard filters that come with SQL Server 2008 and third-party filters. We’ll also
show you how to create your own custom filters.

Introducing Filters

Filters are responsible for parsing data and returning chunks of content text and name/value
property pairs. For purposes of security and stability, filters are run outside of the SQL Server
process space. They're managed by the filter daemon process, which is kicked off by the
gatherer, which is the component responsible for managing full-text index population, during
the indexing process. Where the protocol handler is data source-specific (in the case of iFTS, the
protocol handler is specific to SQL Server), filters are content-specific; that is, each filter handles
specific content formats. Regular character content in SQL Server is indexed using the built-in
plain text filter, xn1 data type content is indexed using the XML filter, and varbinary(max)
content is filtered based on a corresponding file extension stored in a file type column.

Note we discussed filtering xm1 and varbinary(max) content in Chapter 6.

Standard Filters

SQL Server 2008 comes with several standard filters, supporting more than 50 different types
of file content out of the box. Table 10-1 is a short listing of some of the more commonly used
standard filters and the file types they support.

207

208

CHAPTER 10 FILTERS

Table 10-1. Standard SQL Server 2008 Filters

Filter Name File Extension Description

Plain text filter JIXT Plain ASCII and Unicode text filter, no special
handling or markup

Office document .DOC, .XLS, Microsoft Office documents

filter .PPS

HTML filter .HTM, .HTML HTML documents

XML filter XML XML documents

In addition to the standard filters, Microsoft provides the Microsoft Filter Pack for
free download at http://download.microsoft.com. This filter pack works with several Micro-
soft products, including SQL Server 2008, and provides built-in support for indexing Microsoft
Office 2007 documents (.DOCX, .XLSX, and so on), Visio documents (.VSD, .VSDX), and even
compressed Zip files (.ZIP).

Third-Party Filters

If the standard filters don’t cover all the content types that you need to index, there are a variety
of third-party filters available to fill the void. Filters are available from several different vendors,
including the following:

¢ Adobe PDF filters are available from www.adobe.com and www.foxitsoftware.com.
* An AutoCAD DWG filter is available at www.dwgifilter.com.
¢ A WordPerfect filter is available at www.corel.com.

There are several web sites that compile listings of available filters and filter developers;
some filters are available for free while others can be bought commercially. A sample of these
sites include Hilary Cotter’s www. indexserverfaq.com site, the Document Locator site at
www . documentlocator.com/Support/IFilters, and the iFilterShop site at waw.ifiltershop.com.

We’ve included sample PDF content in the iFTS Books database to demonstrate the instal-
lation and use of a free third-party filter. Though Adobe offers older versions of its PDF filter for
separate download from the Adobe web site, the newest versions of the Adobe PDF filter are
downloaded and installed as part of Acrobat Reader. To demonstrate third-party filter func-
tionality, we downloaded and installed Acrobat Reader 9.0. To install the Adobe PDF filter and
index PDF content, perform the following steps:

1. Download and install Adobe Acrobat Reader from www.adobe.com. Follow the wizard
prompts as necessary.

2. The Adobe PDF filter is not exclusive to SQL Server. You install it and treat it like an
operating system (OS) resource. You need to set your SQL Server full-text service to load
OS resources with the following statement:

EXEC sys.sp_fulltext service 'load os resources', 1;
GO

CHAPTER 10 FILTERS

3. In prior versions of SQL Server, installing a new FTS filter required a restart of the full-
text service. In SQL Server 2008, no restart is required; you just need to execute the fol-
lowing statement to update the SQL Server full-text service with the new filter:

EXEC sys.sp_fulltext service 'update languages', NULL;

4, Finally, you can verify the installation and registration with SQL Server iFTS by executing
the following query (partial results are shown in Figure 10-1):

SELECT

document_type,

class_id,

path
FROM sys.fulltext document_ types
WHERE document type = N'.pdf';

[Results |

path

Figure 10-1. Verifying installation and registration of the Adobe PDF filter

Caution Prior versions of the Adobe PDF filter were designed and developed as apartment threaded,
which can cause performance and other issues when running in the multithreaded SQL iFTS environment. We
recommend using the newer versions of the Adobe PDF filter when possible.

After installing the Adobe PDF filter, your full-text indexes will automatically update if you
have them set for automatic change tracking. Otherwise, you'll need to kick off a full popula-
tion manually.

Custom Filters

If you need to filter content for which the standard filters won’t work and there are no available
third-party filters, you can create a custom filter to index your content. Custom filter creation
is made possible through the magic of the Component Object Model (COM). Successfully
implementing a custom filter requires knowledge of a wide range of unmanaged coding tech-
nologies, including the following:

e C++ and object-oriented programming for Windows
* Development for COM interfaces and COM DLL component registration

e Multithreaded programming techniques

209

210

CHAPTER 10 FILTERS

In addition, knowledge of memory management techniques in unmanaged code is essen-
tial to filter development. Knowledge of standard libraries such as the Microsoft Foundation
Class (MFC) library, Active Template Library (ATL), and Standard Template Library (STL) is
extremely useful for filter development.

Custom Filter Development

Windows exposes several interfaces for designing your own custom full-text search components,
including the IFilter interface, which is the basis for filters. In this section, we’ll create a
simple custom filter to index the content of LaTeX documents.

Tip Full-text search filters are often called iFilters because they’re created based on the IFilter interface.

LaTeX (usually pronounced “LAY-tek”) is a superset of Donald Knuth’s TeX (pronounced
“tek”) typesetting system. TeX was originally designed as a markup system for the production
of high-quality typesetting in documents. LaTeX was built on top of TeX to abstract away some
of the more mundane tasks required to create TeX documents. A simple LaTeX document is
shown in Listing 10-1.

Listing 10-1. Simple LaTeX Document
%
% Comments always begin with a % sign

% Everything after the % sign on the current line is ignored
%

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0, 0/0/0/0/0, 0/0, 0/0, 0/0/0/0/0/0/0/0,

\documentclass[12pt]{article} % here we set up some document metadata
\title{Simple \LaTeX{} Document}

\author{Michael Coles and Hilary Cotter}

\date{July 19, 2008}

\begin{document} % let the document begin!
\maketitle

\LaTeX{} documents are created from plain text documents with special
typesetting markup included. In fact we created this sample document in
\textbf{notepad}.

\section{Why Use \LaTeX{}?}

\LaTeX{} is used extensively in the world of academic publishing because of its
ability to perfectly typeset technical information like the formula for the area

CHAPTER 10 FILTERS

of a circle: $a = \pi r"2$ or the length of the hypotenuse of a right triangle
$c = \sqrt{a”2 + b"2}$.

\section{The \LaTeX{} Filter}

When creating a filter for \LaTeX{} we need to keep in mind that there are
several typesetting tags and additional markup that need to be taken into
consideration. \LaTeX{} recognizes over 5,000 special markup tags and symbols;
we will consider only a few of these for our filter sample.

\section{Acknowledgments}

Big thanks to Dr. Knuth and the folks at The \LaTeX{} Project
(\emph{http://www.latex-project.org}).

\section{The End}
Good bye!

\end{document}

After rendering this document with a LaTeX typesetting program, we get the result shown
in Figure 10-2.

Filter Interfaces

Now that we’ve given a brief overview of what LaTeX is and what it does, we’ll look at the inter-
faces we need to implement to design a simple filter for LaTeX content. We’ve chosen to use
the sample plain text filter for simple content, which is included as part of the Windows 2003
Platform Software Development Kit (SDK), as a starting point for our example LaTeX filter.
We’ll begin the design phase with a discussion of COM interfaces that the filter must implement.

Tip The Windows 2003 Platform SDK includes a few different examples of source code for custom filters,
and is available for download from www.microsoft.com. We recommend downloading the Platform SDK
and familiarizing yourself with the source code before you undertake a new custom filter project.

Filters implement the IFilter interface and one or more of the IPersistFile, IPersistStream,
and IPersistStorage interfaces. Each filter DLL must also contain a COM class factory derived
from the IClassFactory interface. In addition, the filter DLL must export four functions—
D11RegisterServer,D11UnregisterServer,D11GetClassObject, and D11CanUnloadNow—as shown
in Figure 10-3.

211

212 CHAPTER 10 FILTERS

Simple IXTEX Document

Michael Coles and Hilary Cotter
July 19, 2008

HTEX documents are created from plain text documents with special
typesetting markup included. In fact we created this sample document in
notepad.

1 Why Use BTEX?

HTEX is used extensively in the world of academic publishing because of
its ability to perfectly typeset technical information like the formula for the
area of a circle: @ = mr? or the length of the hypotenuse of a right triangle

c=+a+ B
2 The BTEX Filter

When creating a filter for ITEX we need to keep in mind that there are
several typesetting tags and additional markup that need to be taken into
consideration. BTEX recognizes over 5,000 special markup tags and symbols;
we will consider only a few of these for our filter sample.

3 Acknowledgments

Big thanks to Dr. Knuth and the folks at The BTEX Project (http://www.latez-
project.org).

1

Figure 10-2. A rendered sample LaTeX document

The IClassFactory, IFilter, IPersistFile, IPersistStream, and IPersistStorage inter-
faces all inherit from the COM IUnknown interface. IUnknown provides the following three virtual
methods that must be implemented by the user:

¢ IUnknown: :QueryInterface, which returns pointers to supported interfaces
¢ IUnknown::AddRef, which increments the reference count for the class

e TIUnknown::Release, which decrements the reference count for the class

CHAPTER 10 FILTERS

1
: Interfaces Filter DLL Exported Functions :
1
1 .
COM Filter !
' IClassFactory O——— i
| Class Factory <— DilRegisterServer !
\ . < DilUnregisterServer !
\ v <——DilGetClassObject !
: IFilter O—— : <—— DiiCanUnioadNow
! IPersistFile O—— COM Filter !
' IPersistStream O—— Class X
' IPersistsStorage O—— !

Figure 10-3. Filter DLL classes, interfaces, and exported functions

Every COM class must maintain a count of the number of current references to the inter-
face pointer. When the reference count drops to 0, the memory for the interface is released.

The IClassFactory interface implements the following two additional methods for the
creation and management of objects:

» IClassFactory::CreatelInstance, which creates an uninitialized object

e IClassFactory::LockServer, which locks the object server in memory to enhance
performance

In addition to IUnknown, the IPersist* interfaces also inherit from the IPersist interface.
IPersist implements only a single method, IPersist::GetClassID, which returns a class iden-
tifier (CLSID) of the object. The IPersist* interfaces require that you implement methods to
load and save data, as well as to check for changes to your source data during processing. In our
sample, we’ll be implementing the IPersistFile interface, which requires implementation of
the following methods:

» IPersistFile::Load, which opens the specified file and initializes an object from the
file’s contents

e IPersistFile::Save, which saves the object to the specified file
e IPersistFile::SaveCompleted, which informs the object that it’s safe to write to its file

e IPersistFile::IsDirty, which checks to see if the data in the file has changed since it
was last saved

e IPersistFile::GetCurFile, which retrieves the path to the current file

Since we’re creating a filter specifically for the SQL Server iFTS, we’ll create nonfunctional
stubs for many of the IPersistFile methods; the only method we’re really concerned with for
SQL Server iFTS is the IPersistFile: :Load method.

The IFilter interface is where the real action happens. IFilter provides methods to initialize
a filtering session, read chunks of data from the data source, and return text and values from the
chunks of data. The IFilter interface requires implementation of the following five methods:

e IFilter::Init, which initializes a filtering session

e IFilter::GetChunk, which positions the filter at the beginning of the first, or subsequent,
chunk of data

213

214

CHAPTER 10 FILTERS

o IFilter::GetText, which retrieves text from the current data chunk
e TFilter::GetValue, which retrieves a value from the current data chunk

e IFilter::BindRegion, which is reserved for future use

Custom Filter Design

The design for the LaTeX filter is relatively simple. We simply open up the data source, read the
data one chunk at a time, and parse the data, returning one line of textual data at a time. This
is shown in simplified form as a flowchart in Figure 10-4.

A4

Create filter class instance ’ ’ Read data chunk from
(use class factory) Open source document source document (_

|

E E Parse line of text from
Yes data chunk and return

End of source
document?

No No *

| Close source document |————)>

Figure 10-4. Simplified LaTeX filter processing

We say the design is relatively simple in this case because the data is simple plain text with
textual markup. The textual data also has a natural break for pieces of text—the line break. All
of this simplifies processing to the point of a basic nested loop. The outer loop of this process
retrieves chunks of data from the source file and places them in a buffer. The inner loop returns
single lines of data from the chunk buffer. The actual implementation is slightly more complex,
since markup and some other details need to be properly handled, but overall the majority of
the filter’s functionality can be described with this simple processing model.

Our LaTeX filter implementation is based on the simple filter example provided in the
Windows 2003 Platform SDK. The simple filter example grabs chunks of data from the source
document and returns each chunk as text. The Platform SDK simple filter doesn’t account for
line breaks, comments, or markup—all of which must be accounted for in the LaTeX filter. The
items we’ll consider in the sample LaTeX filter include the following:

CHAPTER 10 FILTERS

¢ The % character indicates the start of a comment. All characters after the % will be
ignored, up to the end of the current line.

* The \ character indicates the start of a markup tag. There are two types of tags we’ll
consider: tags that have additional information in trailing braces ({}) and tags that don’t
have trailing braces. For this example, we won’t be doing anything special with markup
tags other than consuming and disposing of their content. In a more complex filter,
however, you might want to grab the content of specific markup tags and return it as
name/value property pairs.

* The carriage return (0x0d) and line feed (0x0a) characters both indicate an end-of-line
condition. The end-of-line condition requires special handling, since comments and
some tags can end with the end of a line of text.

The filter implementation requires two classes to be implemented: the filter class factory
and the filter class, which we’ll describe in the sections following. We’ll implement this filter in
C++ and compile to native code based on the Microsoft filter team’s recommendations.
Although .NET-based filter components are being tested in various forms, the filter team has
recommended that filters be developed using C++/COM and compiled to native code.

Filter Class Factory

The CTeXFilterCF class is the LaTeX filter class factory. The sole purpose of this class factory is
to build instances of the CTeXFilter class. The header file for this class is shown in Listing 10-2.

Listing 10-2. CTeXFilterCF Header File

class CTeXFilterCF : public IClassFactory

{
public:

virtual SCODE STDMETHODCALLTYPE QueryInterface
(

REFIID riid,

void ** ppvObject
)s
virtual ULONG STDMETHODCALLTYPE AddRef();
virtual ULONG STDMETHODCALLTYPE Release();
virtual SCODE STDMETHODCALLTYPE CreatelInstance

(

IUnknown * pUnkOuter,
REFIID riid, void ** ppvObject

)5
virtual SCODE STDMETHODCALLTYPE LockServer

(
BOOL fLock
)5

private:

215

216

CHAPTER 10 FILTERS

friend SCODE STDMETHODCALLTYPE Dl1lGetClassObject
(
REFCLSID cid,
REFIID iid,
void ** ppvObj
)s
CTeXFilterCF();
~CTeXFilterCF();
long InstanceCount;

};

Asyou can see by the header declarations, the CTeXFilterCF class factory implements all of
the IClassFactory interface methods. The CTeXFilterCF: :CreateInstance method, shown in
Listing 10-3, is the main method of this class. CreateInstance instantiates a new instance of the
CTeXFilter class to filter content.

Tip Using standard COM protocol, a successful COM operation returns the S_OK code and a failure returns
an E_error code. You'll notice the use of these return codes in many of the COM-based methods.

Listing 10-3. CTeXFilterCF::Createlnstance Class

SCODE STDMETHODCALLTYPE CTeXFilterCF::CreateInstance
(

IUnknown * pUnkOuter,
REFIID riid,
void ** ppvObject

)

{
CTeXFilter *pIUnk = 0;

if (0 !'= pUnkOuter)
return CLASS E_NOAGGREGATION;

pIUnk = new CTeXFilter();

if (0 !'= pIUnk)
{
if (SUCCEEDED(pIUnk->QueryInterface(riid, ppvObject)))

{

// Release extra refcount from QueryInterface

CHAPTER 10 FILTERS

pIUnk->Release();
}

else

{
delete pIUnk;

return E_UNEXPECTED;

}
}

else
return E_OUTOFMEMORY;

return S_OK;

}

The CTeXFilterCF: :AddRef and CTeXFilterCF: :Release methods are important as well.
These two COM methods maintain the reference count, removing the interface from memory
when the reference count reaches 0. Listing 10-4 shows the AddRef and Release methods. These
methods use the InterlockedIncrement and InterlockedDecrement functions to synchronize
multithreaded access to the InstanceCount variable.

Listing 10-4. CTeXFilterCF::AddRef and CTeXFilterCF::Release Methods

ULONG STDMETHODCALLTYPE CTeXFilterCF::AddRef()
{

return InterlockedIncrement(8InstanceCount);

}

ULONG STDMETHODCALLTYPE CTeXFilterCF::Release()
{

ULONG Tmp = InterlockedDecrement(&InstanceCount);

if (Tmp == 0)
delete this;

return Tmp;

}

The CTeXFilterCF: :QueryInterface method is the implementation of the COM QueryInterface
method, as required by the IUnknown interface. This method returns pointers to interfaces
supported by this class. Listing 10-5 shows the implementation of QueryInterface.

Listing 10-5. CTeXFilterCF::Querylnterface Method

SCODE STDMETHODCALLTYPE CTeXFilterCF::QueryInterface
(

REFIID riid,
void ** ppvObject
)

217

218

CHAPTER 10 FILTERS

{
IUnknown *pUnkTemp;
if (IID IClassFactory == riid)
pUnkTemp = (IUnknown *)(IClassFactory *)this;
else if (IID_IUnknown == riid)
pUnkTemp = (IUnknown *)this;
else
{
*ppvObject = NULL;
return E_NOINTERFACE;
}
*ppvObject = (void *)pUnkTemp;
pUnkTemp->AddRef();
return S _OK;
}

The D11CanUnloadNow method informs SQL Server whether the filter DLL can be unloaded.
To conserve memory, SQL Server will automatically unload the filter DLL if it hasn’t been used
for an extended period of time. Listing 10-6 shows the D11CanUnloadNow method.

Listing 10-6. DIICanUnloadNow Method

extern "C" SCODE STDMETHODCALLTYPE D1lCanUnloadNow
(

void
)

{
if (0 »= InstanceCount)
return S_OK;
else
return S_FALSE;

The D11Main method is the DLL entry point method, called when the DLL is initially loaded
or unloaded. Listing 10-7 is the D11Main method exposed by the filter DLL.

Listing 10-7. DIIMain Method

extern "C" BOOL WINAPI D11lMain
(

HINSTANCE hInstance,

DWORD fdwReason,

LPVOID 1pvReserved

)

CHAPTER 10 FILTERS

{
if (DLL_PROCESS ATTACH == fdwReason)

DisableThreadLibraryCalls(hInstance);

return TRUE;
}

The D11GetClassObject method is a method that COM calls internally to load and create
an instance of the COM object. You won't call this method directly, but it’s used by the COM
ColoadlLibrary function, which is called in turn by the COM CoGetClassObject function.
Listing 10-8 is the D11GetClassObject method.

Listing 10-8. DIIGetClassObject Method

extern "C" SCODE STDMETHODCALLTYPE DllGetClassObject
(
REFCLSID cid,
REFIID iid,
void ** ppvObj
)
{

IUnknown *pResult = 0;

if (CLSID_CTeXFilteI == cid)

pResult = (IUnknown *)new CTeXFilterCF;
else

return CLASS E CLASSNOTAVAILABLE;

if (0 != pResult)
{

If (SUCCEEDED(pResult->QueryInterface(iid, ppvObj)))
// Release extra refcount from QueryInterface
pResult->Release();

else

{
delete pResult;
return E_UNEXPECTED;

}

}

else
return E_OUTOFMEMORY;

return S_OK;

}

219

220 CHAPTER 10 FILTERS

Filter Class

The filter class factory, CTeXFilterCF, creates instances of the filter class, CTeXFilter. The
CTeXFilter class performs the actual filtering we discussed previously. This class implements
both the standard COM IUnknown management methods and additional methods to perform
the following three main filtering functions:

1. Open the source data for reading.

2. Read the source data in chunks.

3. Process the chunks, handling comments and markup tags, returning one line at a time.
The first step to implementing the filter is to define a CLSID for the filter class. The CLSID

can be generated from the command line with the GUIDGEN utility, which is located in the bin
subdirectory of the Platform SDK. Figure 10-5 shows the GUIDGEN utility in action.

e C:AWINDOWS\system32\cmd.exe

C S UWINDOWS s systen3d2 >guidgen 3

C:sUWINDOWS s system32 >

Create GUID |= || [X]
Choose the desired format below, then select "'Copy” ta _
copy the results to the clipboard [the results can then be
pasted inta your source code]. Choose "Exit'’ when Mew GUID |
done. =

— GUID Format E it |

1. IMPLEMENT_OLECREATE...]
2 DEFINE_GUID...)
3 static const struct GUID = { .. }

& 4 Fegisty Format [ie. Do o 1

— Result
{B47CA353-457A-4acE-4994-FBBC04DBESFE LI

Figure 10-5. Using the GUIDGEN utility to generate a CLSID

The CLSID is added to the registry during installation so the OS can locate and create
instances of the CTeXFilter class as needed. The CLSID we generated for the CTeXFilter class
is {6fc40ad8-8657-4429-a816-abef6974b763}. Listing 10-9 defines the CLSID as a GUID constant.

Listing 10-9. Defining the CLSID As a Constant

// CTeXFilter Class ID
// {6fc40ad8-8657-4429-a816-abef6974b763}
GUID const CLSID CTeXFilter =

CHAPTER 10 FILTERS

{
0x6fc40ads,

0x8657,

0x4429,

{oxa8, 0x16, Oxab, Oxef, 0x69, 0x74, 0xb7, 0x63}
s

The CTeXFilter class implements both the IFilter and IPersistFile interfaces. Apart
from the COM interface methods, the CTeXFilter class implements several methods and flags
required to process the source data. The flags exposed include end-of-line and end-of-buffer
indicators, among others. Listing 10-10 shows the header for the CTeXFilter class.

Listing 10-10. CTeXFilter Class Header

// CTeXFilter filter class
class CTeXFilter :

public IFilter,

public IPersistFile

{
public:

virtual SCODE STDMETHODCALLTYPE QueryInterface
(

REFIID riid,

void ** ppvObject
);
virtual ULONG STDMETHODCALLTYPE AddRef();
virtual ULONG STDMETHODCALLTYPE Release();

virtual SCODE STDMETHODCALLTYPE 1Init
(
ULONG grfFlags,
ULONG cAttributes,
FULLPROPSPEC const * aAttributes,
ULONG * pFlags
)5
virtual SCODE STDMETHODCALLTYPE GetChunk
(
STAT CHUNK * pStat
)5
virtual SCODE STDMETHODCALLTYPE GetText
(
ULONG * pcwcBuffer,
WCHAR * awcBuffer
)5
virtual SCODE STDMETHODCALLTYPE GetValue

221

222 CHAPTER 10 FILTERS

(
PROPVARIANT ** ppPropValue
);
virtual SCODE STDMETHODCALLTYPE BindRegion
(
FILTERREGION origPos,
REFIID riid,
void ** ppunk

);
virtual SCODE STDMETHODCALLTYPE GetClassID
(
CLSID * pClassID
);

virtual SCODE STDMETHODCALLTYPE IsDirty();
virtual SCODE STDMETHODCALLTYPE Load
(
LPCWSTR pszFileName,
DWORD dwMode
)s
virtual SCODE STDMETHODCALLTYPE Save
(
LPCWSTR pszFileName,
BOOL fRemember

)
virtual SCODE STDMETHODCALLTYPE SaveCompleted
(
LPCWSTR pszFileName
)
virtual SCODE STDMETHODCALLTYPE GetCurFile
(
LPWSTR * ppszFileName
)
private:

friend class CTeXFilterCF; // Class Factory

(TeXFilter(); // Ctor
~CTeXFilter(); // Dtor

bool CTeXFilter::Eob() { return Eob; }; // Return end of block flag
bool CTeXFilter::Eol() { return Eol; }; // Return end of line flag

// Convert Code Page to Wide Character
SCODE CTeXFilter::ConvertCP2Wide

(

char * SourceBuffer,

ULONG CodePage,

ULONG BufferLength
)5

CHAPTER 10 FILTERS

WCHAR CTeXFilter::GetChar(); // Get a character from the buffer

// Unget a character from the buffer
void CTeXFilter::UngetChar (WCHAR Wch)

{
UngotChar = Wch;

UngetPending = true;
};

void CTeXFilter::GetMarkup(); // Get markup from the buffer

void CTeXFilter::DoMarkup(); // Do markup

void CTeXFilter::EatLine(); // Eat remaining characters on the current line
void CTeXFilter::EatBraces(); // Eat everything within the nested braces

bool In Markup_ Flag;

std::wstring Markup_Tag;

int Bracelevel;
HANDLE FileHandle;
long Refs;

WCHAR * FileName;
ULONG ChunkID;

ULONG CodePage;

bool Contents Req Flag;
bool Eof;

WCHAR * Chunk_Buffer;
WCHAR * CurrentChar;
ULONG Chunk_Length;
ULONG Chunk Read Pos;
bool UngetPending;
WCHAR UngotChar;

bool In_Comment Flag;
bool _Eol;

bool _Eob;

IS

// following, including the braces

Currently within markup flag
Markup tag

Brace nesting level flag

Handle to the input file
Reference count

Name of input file to filter
Current chunk id

Current default codepage
Contents requested flag

End of file flag

Chunk buffer

Current character pointer
Length of current chunk

Read position within current chunk
Unget character pending flag
Ungot character

Currently within a comment flag
End of line flag

End of block flag

The CTeXFilter class exposes the CTeXFilter: :Init method to initialize an instance of the
class. The Init method opens the source document, sets appropriate flags, and prepares to
read the source data in chunks. Listing 10-11 shows the CTeXFilter::Init method.

223

224

CHAPTER 10 FILTERS

Listing 10-11. CTeXFilter::Init Method

SCODE STDMETHODCALLTYPE CTeXFilter::Init

(

)
{

ULONG grfFlags,

ULONG cAttributes,

FULLPROPSPEC const * aAttributes,
ULONG * pFlags

// Ignore flags for text canonicalization (text is unformatted)
// Check for proper attributes request and recognize only "contents"

if (0 < cAttributes)

{
ULONG ulNumAttr;

if (0 == aAttributes)
return E_INVALIDARG;

for (ulNumAttr = 0; ulNumAttr < cAttributes; ulNumAttr++)
{
if (guidStorage == aAttributes[ulNumAttr].guidPropSet &&
PID STG_CONTENTS == aAttributes[ulNumAttr].psProperty.propid)
break;

}

if (ulNumAttr < cAttributes)
_Contents_Req_Flag = true;
else
_Contents_Req_Flag = false;
}
else if (0 == grfFlags ||
(grfFlags & IFILTER INIT APPLY INDEX ATTRIBUTES))
_Contents Req Flag = true;
else
_Contents Req Flag = false;

_Eof = false;

// Open the file previously specified in call to IPersistFile::Load

if (0 !'= FileName)

{
if (INVALID HANDLE VALUE != FileHandle)

CHAPTER 10 FILTERS 225

{
CloseHandle (FileHandle);
FileHandle = INVALID HANDLE VALUE;

}

FileHandle = CreateFile
(
(LPCWSTR)FileName,
GENERIC READ,
FILE SHARE READ | FILE SHARE DELETE,
0,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
0

)s

if (FileHandle == INVALID_HANDLE_VALUE)
return FILTER_E_ACCESS;
}
else
return E_FAIL;

// Enumerate OLE properties, since any NTFS file can have them
*pFlags = IFILTER FLAGS OLE PROPERTIES;
// Re-initialize

ChunkID = 1;
return S_OK;

The CTeXFilter: :GetChunk method retrieves the source data in chunks of 10,000 bytes. Each
chunk is read into a chunk buffer in turn. After a chunk is read into the buffer, it’s converted to
wide-character (Unicode) form using the current ANSI code page. The support function
ConvertCP2Wide provides this conversion functionality. After the buffer conversion all subsequent
manipulations are performed, and results are returned, in Unicode.

SQL Server automatically calls the filter's GetChunk method when you indicate that all text
has been returned from the current chunk. When all chunks have been processed, the GetChunk
method returns the FILTER_E_END_OF CHUNKS status. If a chunk has been successfully retrieved,
GetChunk returns S_OK. Listing 10-12 shows the CTeXFilter: :GetChunk method.

Listing 10-12. CTeXFilter::GetChunk Method

SCODE STDMETHODCALLTYPE CTeXFilter::GetChunk

(
STAT CHUNK * pStat

)

226 CHAPTER 10 FILTERS

if (FileHandle == INVALID HANDLE VALUE)
return FILTER_E_ACCESS;

// Read characters from single-byte file
char InBuffer[TEXT FILTER CHUNK SIZE];

if (!ReadFile

(
FileHandle,
InBuffer,
TEXT_FILTER CHUNK SIZE,
&Chunk_Length,
NULL

)

)
return FILTER_E_ACCESS;

else if (Chunk_Length == 0)
_Eof = true;

if (!Contents Req Flag || _Eof)
return FILTER_E_END_OF CHUNKS;

ConvertCP2Wide(InBuffer, CodePage, Chunk Length);
// Set chunk description

pStat->idChunk ChunkID;

pStat->breakType = CHUNK_NO_BREAK;

pStat->flags CHUNK_TEXT;

pStat->locale GetSystemDefaultLCID();
pStat->attribute.guidPropSet = guidStorage;
pStat->attribute.psProperty.ulkind = PRSPEC_PROPID;
pStat->attribute.psProperty.propid = PID_STG_CONTENTS;
pStat->idChunkSource = ChunkID;

pStat->cwcStartSource = 0;

pStat->cwclenSource 0;

ChunkID++;

Chunk Read Pos = 0;
CurrentChar = Chunk_Buffer;
return S_OK;

Once the source buffer has been populated and converted to Unicode, it’s time to start
reading the text from the buffer line by line. The CTeXFilter: :CetText method provides this
functionality. Once the buffer has been filled with GetChunk, SQL Server calls the GetText

CHAPTER 10 FILTERS

method continuously until the buffer has been depleted. It’s within the GetText method that
we perform special processing, such as recognizing comments, markup tags, and special
characters. During processing, we also process end-of-line and end-of-buffer conditions.
Listing 10-13 shows the GetText method.

Listing 10-13. CTeXFilter::GetText Method

SCODE STDMETHODCALLTYPE CTeXFilter::GetText
(

ULONG * GetText Buffer Length,

WCHAR * GetText Buffer
)

{
if (Chunk Buffer == NULL) // If buffer is empty, return no more text status

return FILTER_E_NO MORE_TEXT;

// Initialize variables

ULONG GetText Write Pos = 0;

ULONG Output Buffer Length = *(GetText Buffer Length);
bool Done Flag = false;

// Grab the first char, and continue grabbing chars until
// end of buffer, output buffer full, or other done indicator
WCHAR Wch = GetChar();

while (
(GetText_Write Pos < Output Buffer Length) &&
(!Eob()) &&
('Done_Flag)
)
{
if (!In_Comment Flag) // If not in a comment then check these
{
if (Wch == "\\") // Look for a markup tag leading backslash
{
Markup Tag = L"";
GetMarkup(); // Get the markup tag
Wch = ' *;
}

if (In_Markup Flag) // If in a markup tag already, continue
// getting markup
{
GetMarkup();
Wch = " ';

if (Wch == '%") // If a comment start, set in comment flag

227

228 CHAPTER 10 FILTERS

{
*(GetText Buffer + GetText Write Pos) = ' ';
In_Comment Flag = true;
}
else if (Eol()) // If at end of line then done flag
{
*(GetText Buffer + GetText Write Pos) = Wch;
In_Comment Flag = false;
Done_Flag = true;
}
else // Otherwise just output the char to the buffer
{
*(GetText Buffer + GetText Write Pos) = Wch;
}
GetText_Write_Pos++; // Increment output buffer pointer
}
else
{
if (Eol()) // If at end of line then done
{
In_Comment_Flag = false;
Done_Flag = true;
*(GetText Buffer + GetText Write Pos) = Wch;
GetText Write Pos++;
}
}
Wch = GetChar(); // Get next character

}

// Set the output text buffer length
*GetText Buffer Length = GetText Write Pos;

// If the output buffer length is 0, delete the buffer
if (GetText Write Pos == 0)

{
delete Chunk Buffer;

Chunk Buffer = NULL;
return FILTER E_NO MORE_TEXT;

}

return S _OK;
}

The CGetText method depends on several private functions, including the following:

¢ GetChar, which retrieves the text from the buffer one character at a time
¢ UngetChar, which puts a single character back on the buffer

e GetMarkup, which reads and subsequently processes markup tags

CHAPTER 10 FILTERS

As each line of the buffer is read and processed, it’s written back to the output buffer. The
output buffer and the number of characters in the output buffer are both returned when a call
to GetText completes. The text returned by GetText is subsequently fed into word breakers to
complete the indexing process.

CHUNKING AND EFFICIENCY

Data is read in chunks for efficiency reasons. If you had to read an entire 50, 100, or 500 MB file into memory
all at once in order to index it, you’'d tie up a lot of server resources, including CPU and memory, for an
extended period of time. Multiply that by 10, 100, or 1,000 files of that size and you could cause a serious drain
on your server until indexing completes. By reading the data in small chunks of well-defined size, you get the
benefit of being able to amortize the resource cost of indexing over a longer period of time, ensuring that
filtering and indexing documents doesn’t bring your server to its knees. Chunking does introduce some
complexities, however, which we’ll describe later in this section.

While the design for the GetText routine is relatively simple, it's complicated by the fact that you're
retrieving the text from the file in chunks. You essentially have to maintain some state information between
calls to GetText. For instance, if GetText is in the middle of a comment in the buffer when the method ends
due to an end of buffer condition, and you haven’t reached the end of line yet, GetText needs to resume
reading the comment once the buffer has been refreshed with a new chunk.

To keep this example simple, we decided to simply retrieve the data a single line at a time with GetText;
however, more complex design patterns are possible. For instance, it's possible to populate an internal
memory structure, such as a linked list or b-tree, with the contents of structured source data in the index.
Subsequent calls to GetText could be used to traverse the in-memory structure and return elements from
memory.

The balance of the remaining filter code represents support functions, such as EatLine and
EatBraces, which grab characters from the input buffer in response to calls from the DoMarkup
routine. The DoMarkup routine itself handles LaTeX markup tags.

Compiling and Installing the Filter

There are four steps required to compile and install a filter for SQL Server 2008 iFTS:

1. Compile the source code.

2. Copy the DLL to the Windows\System32 directory.

3. Register the DLL on the server and create appropriate registry entries.

4. Configure SQL Server to load unsigned system resources.

We'll cover all of these steps in this section. To perform the first step, filter compilation,

simply load the TeXFilt solution into Visual Studio and choose Build » Compile from the
menu, as illustrated in Figure 10-6.

229

230

CHAPTER 10 FILTERS

"8 TeXFilt - Microsoft Visual Studio

Fie Edit View Project Debig Test Took Analyze Window Help
L L 5| Build TexFit x| S
Project Ondy 3
Profife Guided Optimization »
| Jet Buiid Definitior =
L S [Header Fiss
B comple a7 | =4 | 8] FitReq.h
- :?= L)ﬁ resaurce.h
8] stdafxhn
// Contents: Sample LaTeX Filter |§I TexEdt h
il = & Resource Fies
// Bummary: The sample filter reads LaTeX files (extension .TE =Y TesFir.Def
' using the current thread's ANSI code page and outg ET,H,,C
g UNICODE cext. 2 & source Files
s &) TeFlt.cpp
I It mccepts as input only single-hyte-character tey
T and not multibyte-character or UNICODE text files-ﬂg
[0 orers| [8 o warngs | [cmessoes]|
[l ey o __ G 35 Lo N R
[Ervor List [OUEpGt | g7 Find Symbol Restts | 35T s [| <39S 3R]
ﬁ"*’.ﬂf inssd Col 54 Ch 48 s

Figure 10-6. Compiling TeXFilt solution

The result of compiling the solution is a DLL called TeXFilt.d1l. To perform the second
and third steps, copy the filter file to the Windows\System32 directory and run regsvr32 on it, as
shown in Figure 10-7.

C:A\WINDOWS\system32\cmd.exe

C:~TeXFilt~Release>copy TelFilt.d1ll xwindirx“\System32
1 file<{s> copied.

C:~TeXFilt~Release>regsvr32 xwindirxssystemd2:\TelFilt.d1ll
IC:~TeXFilt~Release>

RegSvr32

-
Q DlRegisterServer in CYWINDOWS system32) TexFilt. dll succeeded,

Figure 10-7. Copying the DLL to the System32 directory and registering it

CHAPTER 10 FILTERS

Filter DLL registration for SQL Server also requires that additional registry entries be
created. Although these additional registry entries are often included in the registration methods
of the DLL, we’ve decided to separate them out into a separate TeXFilt.reg file because it’s
easier to read. After copying the DLL and running regsvr32, double-click the TeXFilt.reg file
to install the appropriate registry entries. The registry entries are shown in Listing 10-14.

Listing 10-14. TeXFilt.reg Filter Registry Entries

Windows Registry Editor Version 5.00

[HKEY_CLASSES_ROOT\.tex]
@="LaTeX.Document"

[HKEY_CLASSES_ROOT\.tex\PersistentHandler]
@="{51BFBAD1-09B0-4BD4-9509-FDO9E26FF32A}"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\LaTeX.Document]
@="Class for LaTeX Documents"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\LaTeX.Document\CLSID]
@="{098f2470-bae0-11cd-b579-08002b30bfeb}"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{0982470-bae0-11cd-b579-=
08002b30bfeb}]
@="LaTeX Document Files"

[HKEY_LOCAL MACHINE\SOFTWARE\Classes\CLSID\{098f2470-bae0-11cd-b579-'=
08002b30bfeb}\CLSID]
@="{51BFBAD1-09B0-4BD4-9509-FDO9E26FF32A}"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{51BFBAD1-09B0-4BD4-9509- =
FDO9E26FF32A}]
@="LaTeX Document Persistent Handler"

[HKEY_LOCAL MACHINE\SOFTWARE\Classes\CLSID\{51BFBAD1-09B0-4BD4-9509-w
FDO9E26FF32A}\PersistentAddinsRegistered\{89bcb740-6119-101a-bcb7-00dd010655af}]
@="{6fc40ad8-8657-4429-a816-abef6974b763}"

[HKEY_LOCAL_MACHINE \SOFTWARE\Classes\CLSID\{6fc40ad8-8657-4429-a816-'=
abef6974b763}]
@="LaTeX Document Filter"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{6fc40ad8-8657-4429-a816-=
abef6974b763}\InprocServer32]
@="c:\\windows\\system32\\TeXFilt.d11"

231

232 CHAPTER 10 FILTERS

When SQL Server needs to index a document, it traverses the registry to match the docu-
ment type with the appropriate filter. Figure 10-8 shows a simplified version of how SQL Server
uses the registry to connect the file extension .tex to the TeXFilt.dl11 filter.

HKEY_CLASSES_ROOT.tex = "LaTexX Document”
S HKEY_LOCAL_MACHINE'SOFTWARE' Classes'LaTeX.Document'\CLSID = "{028f2470-bae0-11cd-b579-08002030bfeb}"

S—p HKEY_LOCAL_MACHINE"SOFTWARE' Classes',CLSID {098f2470-bae0-11cd-b579-08002b30bfeb } \CLSID we

PersistentAddinsRegistered' {89bch740-6119-101a-hcb7-00dd010655af} = "{6fcd0ads-5657-4429-2516-abefa7407653"
HKEY _LOCAL_MACHINE'\SOFTWARE" Classes',CLSIDN { 6fc40adB-8657-4429-a816-abef6974b763 1\ InprocServer32 we
= "c\windowshgystem 32\ TexFilt.dll"

= "{S1BFBAD1-09B0-4BD4-9503-FDOCE26FF32A "
v HKEY_LOCAL_MACHINE\SOFTWARE" Classes\CLSIDN {51BFBAD1-09B0-4BD4-9509-FDO9E2GFF32A Y, we

Figure 10-8. Traversing the registry to relate a file extension to the appropriate filter DLL

On the SQL Server side, you need to tell SQL Server to load OS resources and turn off signa-
ture verifications for iFTS components. Listing 10-15 shows a script that will do this for you.

Listing 10-15. Configuring SQL Server to Load Unsigned Filters

EXEC sys.sp_fulltext service N'load os resources', 1;
GO

EXEC sys.sp_fulltext service N'verify signature', 0;
GO

EXEC sys.sp_fulltext service N'update languages', NULL;
GO

Testing the Filter

You can use the utilities provided in the Platform SDK to test your custom filters. The Platform
SDK provides three tools for testing your filters, all located in the Platform SDK bin subdirec-
tory. The first tool is filtreg.exe. Running this tool at the command line shows you a list of all
registered filters on the computer, as shown in Figure 10-9. This is useful for determining
whether your filter is installed correctly. The LaTeX filter is shown highlighted in the figure.

Tip Microsoft supplies several tools, utilities, and code samples in the Windows Platform SDK. The
Platform SDK can be downloaded for free from www.microsoft.com/downloads. We highly recommend
downloading and installing the Platform SDK if you're developing custom filters and other iFTS components.

WS\system32\cmd.exe

==2» Null filter {(query.dll)
.sys —2» Null filter {gquery.dll>
-sy_ —==2» Null filter {query. d.
Jtap ——3 Null filtep ¢

I tex ——) Teﬂ Filter (TeHI’].lt d
.tg
FILT DLL>
PFILT.DLL>
.t1lbh —>» Null filter {query.dll>
L.tep —=» Null filter (query.dll)
.tte —2» Null filter {query.dll>
Jttf =3 Null filter (Euevy.dll)
.txt —> Plain Text filter {guery.dll)
URL ==» Plain Text filter {query.dll)
.vhs —>» Plain Text filter {guery.dll)

swbx —=2» Null filter C(query.dll>

.wdx ——> Microsoft Office Uisio IFilter
Shared\Wisio Shared“WISFILT.DLL>

.wgd ——> Microsoft Office UVisio IFilter
Shared\Wisio Shared\UISFILT.DLL)

wes ——> Microsoft Office Uisio IFilter
SharedWisio Shared“\UWISFILT.DLL>

wst —=> Microsoft Office Uisio IFilter
Shared\Wisio Shared“WISFILT.DLL>»

wex —=> Microsoft Office Uisio [Filter
Shared\Wisio Shared\UISFILT.DLL>

wtx == Microsoft Office Uisio IFilter
Shared\Wisio Shared\UISFILT.DLL)>

wxd =<2 Null filter {query.dll)

.wav —2» Null filter {gquery.dll)

.wax ——2» Null filter {query.dll

.wll ==» Null filter {quepry.dll)

.wlt —2» Null filter {query.dlld>

wm —> Null filter (qguery.dll>

.wma —2» Null filter {query.dll)

.unf ——> Null filter {(query.dll>

(C:\Program Files\Common
{C:“\Program Files\Common
(C:5\Program Files\Common
{C:“\Program Files“Common
(C:\Program Files“Common

(C:\Program Files“Common

CHAPTER 10

FILTERS

if —> I'IODI Document Fxlter class (C:\PROGRA™1:COMMON™~1“MICROS™1“MODI~11.8“M5P
.tiff —> MODI Document Filter class <(C:\PROGRA™1“COMMON™1“MICROS™1~MODI~11.8~MS

Files\Microsoft
Files\Microsoft
Files\Microsoft
Files\Microsoft
Files\Microsoft
Files\Microsoft

|»

Figure 10-9. Filtreg.exe registered filter list

The second tool is filtdump.exe. This tool takes the name of a document as a parameter.
It automatically loads the correct filter based on the file extension and filters the document
contents. The result is that you see exactly the type of output SQL Server iFTS gets when it
invokes the filter on documents of the same type. This is particularly useful for troubleshooting
the GetChunk and GetText methods. Figure 10-10 shows the output of filtdump.exe on the

Sample.tex document.

& \WIM’}DWM\sysIem Icmd, exe

PI LE Sunple tex

mufidditional Properties available via IPropertyStorage.

idCh
BreakType = B (No Break
Flags{chunkstate) = Bxl (Text)

Locale = 1833 (Bx409>
IdChunkSource = 1
cucStartSource = @
cwcLenSource =

nttrib;te ‘l= B725F138-47EF-181A-A5SF1B26B8C9 EERACN1Y

[12pt Marticled

{Simple {* Document}

{Hichael Coles and Hilary Cotterd
{luly 19. 28683

{document?

markup included.

{Uhy Uze {373

l:.u-cle.
2 + b2

LaTe®{} documents are created from plain text documents with special typesetting
Infact we created thiz sample document in

{notepad?.

{} iz used extenzively in the world of academic publishing because of its a]u.l:lAI
ty to perl'ectly t et technical information like
g?nr the length of thehypotenuse of a right triangle %c =

the formula for the area of

{a™

3

Figure 10-10. Results of filtdump.exe

233

234

CHAPTER 10 FILTERS

The ifilttst.exe filter test utility is located in the bin\winnt subdirectory of the Platform
SDK. This tool accepts command-line switches such as /1 to specify an input file name, /d to
specify a file dump, and /1 to specify logging to a file. The following command line shows how
to run ifilttst.exe on the Sample. tex file:

ifilttst /i Sample.tex /d /1
The results are output to the following files:

e Sample.tex.dmp: a dump file that contains the output of the filter produced by
ifilttst.exe

* Sample.tex.log: alog file that shows the result of all the calls to the filter methods that
ifilttst.exe tests

Figure 10-11 shows a portion of the Sample.tex.log file generated by ifilttst.exe.

[Sample.tex.log - Notepad

File Edit Format View Help

5032.972 1 4TEST+PASS Init() returned a wvalid walue for pdwFlags. Al
5032.972 @ 4TEST+INFD successTully dnitialized filter.

5032.972 1 +TEST+INFO Performing the invalid input test. The filter has
bheen reinitialized and the test will now make inappropriate IFilter method
calls and werify the return codes. In addition, it will double-check the
chunk structures returned by GetChunk().

S032.972 @ +TEST+PASS Upon reinitialization of the filter, the same number
of chunks were emitted as were emitted Erevious1y.

5032.972 @ +TEST+PASS Calling Getchunk () after end of chunks returned
FILTER_E_END_OF_CHUMKS,

5032.972 @ 4+TEST+INFO released filter

LOS REPORT

Total Tests : 457

Tests Passed 457 100%
Tests warned o} 0%
Tests Failed SEV3 o} 0%
Tests Failed seEv2 o} 0%
Tests Failed sSEVL o} 0%
Tests Blocked o} 0%
Tests aborted o} 0%

Py

Figure 10-11. Results of ifilttst.exe

In addition to the tools that come free with the Platform SDK, there’s a tool called IFilter
Explorer, available from Citeknet at www.citeknet.com. This tool lets you view all of the filters
installed on your computer, for all applications that use them. Figure 10-12 shows the IFilter
Explorer in action.

Ei¢ Edt Jooks e

% |Filter Explorer - Citekinel: www, citeknet.com

CHAPTER 10

TARGE Fie:
Tahioe Server Cantert 5.,
S0k Seryer Profier - brace.

spplcationfml

TaEFie anpleationfi-oa.
Wrindows Thems Fie:
THME File

TIFFds Imagajtf
TIFF Fie Imageftf
TLE Fie

15P 1,2 Tag Lbrary Deson.,,

Typelh Gerarated .+ beakiplan
Typelb Gensrated CpC++... tetjplain
Micrascft S04 Server Tem

SOL Server Profier - brace.

5L Server Replication Sn,

S Server Trarsaction L.,
HeroShowTime Fles? trp.

Show eoitamsions; Group by -_Raﬁesh
() ek Fbers arly (%) Extensiors) IFiters (i Parsictant Hardier Names
O Withgut Fiters orly Pk Types I Methods () Bassistent. Handir Adkdre
Ga Ocorkent Tepes O Sgnanrss CParsistert Handgrs E
| \-'Mnowvmkm Search | S0L Server 2005 ;lmurn-w Pietal Serve 2003 | Sharepairt Partal Seryer 2001 | Indesin c‘w-:_ arvices Model |r|1¢xng Service 3.0 | '|r|:hxr.\q Service 2.0 A
File Types Content Types IFikers | Methods Signed | Persistent Herder Names | A

ol Filer

MOCT Document Fiter dass
MCD Docarmnt Fiter cass

Full Fizer

Figure 10-12. Citeknet IFilter Explorer

Gatherer and Protocol Handler

The gatherer and protocol handler are two closely related components. The protocol handler
is a data source-specific component that feeds the gatherer during full-text crawl operations.
The protocol handler component supplied with SQL Server is specific to SQL Server, and
provides connectivity and communication capabilities between SQL Server and iFTS. Because
of its data source-specific functionality, it’s unlikely that you'll need to create a custom protocol
handler for SQL Server; generally the need for custom protocol handlers is based on a require-

ment to use Indexing Service to index data in a custom data source.

FILTERS

The gatherer component is responsible for scheduling and driving full-text index popula-
tion. The gatherer works in conjunction with the full-text crawl threads, in turn launching the
filter daemon process that manages filters.

235

236 CHAPTER 10 FILTERS

Word Breakers and Stemmers

Word breakers are language-specific components that literally break up the text returned by
the IFilter: :CetText method into individual words. The rules that define exactly what consti-
tutes a word vary depending on the language. Consider the following two sys.dm fts parser
queries:

-- Parse 'data-base' in English
SELECT *
FROM sys.dm fts parser('data-base', 1033, 0, 0);

-- Parse 'data-base' in German
SELECT *
FROM sys.dm fts parser('data-base', 1031, 0, 0);

The English and German word breakers in this instance treat the hyphen differently. The
English word breaker breaks the word into three pieces: data, base, and database. The German
word breaker enforces a more strict interpretation of the hyphen, returning only data and base.

The word breaker feeds its words into the stemmer to retrieve stemmed versions of the
words. The stemmer takes your words and returns variants, including verb conjugations and
pluralized nouns, based on a language-specific dictionary lookup. For instance, the stemmer is
responsible for returning the search terms goes, going, gone, and wentwhen you specify a
search for the inflectional forms of the word go. We discuss inflectional word forms in detail in
Chapter 3.

The word breaker and stemmer are so closely interrelated that they’re implemented
within the same DLL. Like filters, word breakers and stemmers are COM-based. Word breakers
implement the IWordBreaker interface, while stemmers implement the IStemmer interface.

Note Both of these interfaces are documented at Microsoft’s MSDN web site:
http://msdn.microsoft.com.

The Platform SDK includes a simple example of a word breaker and stemmer combination
DLL, referred to as the language resource sample (or lrsample for short). The lIrsample shows
how to create a simple word breaker that recognizes word-breaking characters and tokenizes
words from input. It also includes a simple stemmer that performs a dictionary lookup to
return inflectional forms of a small set of words.

Tip It's unlikely that you’ll encounter a need to create custom word breakers and stemmers. The excep-
tions are if you decide to implement support for a language that’s currently not supported by iFTS, or if your
business is a third-party provider of such tools.

CHAPTER 10 FILTERS

Summary

In this chapter, we discussed the details of full-text search components including filters, word
breakers, and stemmers. We talked about the built-in iFTS filters, as well as additional filters
available from Microsoft and third parties, and then demonstrated the creation of your own
COM-based filters. We detailed the COM implementation including the interfaces you must
implement in order to create a custom filter.

We also discussed word breakers and stemmers, which are language-specific. Generally
speaking, the only time you’ll need to install or create a custom word breaker or stemmer is for
specialized applications, such as implementing support for a language that’s not supported by
default.

237

CHAPTER 11

Advanced Search Techniques

A computer will do what you tell it to do, but that may be much different from what you
had in mind.

—Joseph Weizenbaum

The focus of this book has been on full-text search, specifically the SQL Server 2008 iFTS
implementation. Full-text search falls into a class of search technologies known as fuzzy
search. The main idea behind fuzzy search is that the computer should accept user requests
and return what the user actually wants, which as we all know is not necessarily the same as
what was asked for. While iFTS is a highly optimized and proven technology for performing
fuzzy searches on documents and large blocks of textual information stored in the database,
it's not ideal for other types of searches. We’'ll explore some of these additional search require-
ments in this chapter and provide sample code to fulfill these needs.

Spelling Suggestion and Correction

A common user request is for a means of taking user input and suggesting spelling corrections
for misspelled words. If your user inputs cw, for instance, you might want to suggest possible
corrections such as cow and caw. Many proposed solutions for this problem introduce ineffi-
ciencies, because they involve prefix and mid-string wildcard searches that don’t work well
with most indexing structures.

Though not natively supported by SQL Server, there is a data structure that provides an
excellent facility for this type of fuzzy matching. The ternary search tree has the efficiency of a
string prefix tree (or trie, which is a “digital tree”) with the space efficiency of a binary tree.
Unlike binary trees, in which each node has two child nodes, each node in a ternary search tree
has three child nodes: a low child node, a high child node, and a middle child node. Figure 11-1
shows the structure of a small ternary search tree. This ternary search tree contains five short
words: cash, caw, cow, dog, and fish. Note that although each node logically has three child
nodes, we've eliminated all empty child nodes from the diagram to keep the representation
simple.

239

240 CHAPTER 11 ADVANCED SEARCH TECHNIQUES

©

©

}
l
}
l
l

e (@0

!

W "Cow" "DOoG"

®)
)
%
"Fl'lSH"

Figure 11-1. Ternary search tree structure

The ternary search tree has some interesting properties that we can take advantage of to
implement spelling suggestion and spell checking functionality, including the following:

* Each node of the tree stores a single character for comparison, making searches of the
tree extremely efficient.

¢ Ternary search trees can quickly retrieve words containing single-character wildcards.

* Words that are similar tend to group together within the tree structure. It’s this last property,
known as a near neighbors, that we’ll exploit to create a SQL Server-based spelling
suggestion feature.

Hamming Distance

When you search for word suggestions based on a given input string, how do you measure the
similarity of dictionary words against the input string? The answer is Hamming distance. The
Hamming distance of two strings (strings of characters or strings of bits, in fact) of equal length
is the number of differences between them. Another way of thinking about Hamming distance
is the number of actions required to convert one string to another. Converting the word cow to
dog, for instance, requires two changes: replacing the initial cwith the letter d and replacing the
final wwith the letter g. Therefore, the Hamming distance (or edit distance) between these two
words is 2.

Note The edit distance between two strings is the difference between them, as measured by the number
of deletions, insertions, replacements (and in some algorithms, two-character transpositions) required to
convert one string into another. Edit distance is actually a generalization of Hamming distance, though the
terms can be used nearly interchangeably for our purposes.

CHAPTER 11 ADVANCED SEARCH TECHNIQUES

Spelling Suggestion Implementation

We decided to implement a ternary search tree-based spelling suggestion feature for SQL CLR
in C#. We used the excellent C# ternary search tree implementation by Jonathan de Halleux,
with only a few minor modifications, as the basis for our SQL CLR assembly. We won’t dive
deeply into the ternary search tree implementation, but Jonathan’s source code is available for
download at http://www.codeproject.com/KB/recipes/tst.aspx if you want to get into the details.

The iFTS Books database contains a table called dbo.Dictionary. This dictionary contains
more than 43,000 words from the “alternate unofficial” 12Dicts dictionary, compiled by
Kevin Atkinson. The 12Dicts dictionary and other dictionaries are available for download at
ftp://ftp.gnu.org/gnu/aspell/dict/0index.html. The assembly we’ve created for spelling
suggestion, called SpellCheck, has four public methods that are exposed as SQL CLR stored
procedures:

* The ReloadDictionary procedure loads the dictionary from the dbo.Dictionary table
into the internal ternary search tree structure. Populating the tree involves opening a
context connection to the database and querying the dbo.Dictionary table to get all
the dictionary entries.

* The GetDictionary procedure lists all of the dictionary entries stored in the internal
ternary search tree structure. This is useful for debugging purposes, since the recom-
posed ternary search tree contents should match the contents of the dbo.Dictionary
table.

* The GetSuggestions procedure accepts two parameters: an input string and an edit
distance. This procedure traverses the ternary search tree and returns all entries that
are within the specified edit distance of the input string. The procedure also returns a
column containing the actual calculated edit distance, so you can see exactly how far
apart the dictionary entries are from your input string.

* The CGetMatch procedure is a bonus procedure we’ve included to demonstrate the ternary
search tree’s wildcard searching ability. The procedure accepts a single parameter, an
input string, which can contain ?wildcard characters. The wildcard characters match a
single character in the string, so that c?w will match the dictionary words cow and caw.

SQL CLR SHARED STATE

In order to make the code as efficient as possible, the SQL CLR assembly stores a static ternary search tree in
memory. This introduces the practical issue of maintaining shared state within the assembly, something that
SQL CLR takes very seriously. One issue with shared state is maintaining integrity when multiple users are
simultaneously updating and accessing the shared state. Based on our design, updating the static ternary
search tree is an all-at-once operation. Dealing with simultaneous updates isn’t as big an issue as it would
otherwise be.

The other issue is that SQL Server can unload an AppDomain completely at any point if an error occurs
or if memory pressure demands it. Because of this, we perform a check every time you run the GetSuggestions
or GetMatch procedure to see if the ternary search tree is populated. If not, the assembly kicks off the method that
populates the tree.

241

242

CHAPTER 11 ADVANCED SEARCH TECHNIQUES

When you run the GetSuggestions procedure as in Listing 11-1, it returns results like those
shown in Figure 11-2.

Listing 11-1. Getting Suggestions for the String “cow”

EXEC dbo.CetSuggestions 'cow', 2;

B Results

Suggestion | Distance ~

bow 1
Caw
cob

cod
cog
col

can

[I xR) R S o B

coa

o

cop
10 cos
iR cot

12 cow

- O = 4 4

8 coy

Figure 11-2. Suggestions within an edit distance of two for the word “cow”

For this example, the procedure returns 23 suggestions. Note that the suggestions returned
are all less than the edit distance specified in the query. A distance of 0 represents an exact
match. You can use the Distance column to sort results in client applications based on rele-
vance. If you expand the search by increasing the edit distance, you'll get significantly larger
numbers of results. As a rule, we’d recommend using an edit distance of 2 or 3 in most instances
to keep the result set manageable.

We’ve also included a C# Windows forms spell check client in the download code. When
you run this sample client in Visual Studio, it automatically retrieves word suggestions from
SQL Server as you type. You can also change the sensitivity level, which adjusts edit distance
specified in the stored procedure calls. This type of utility is easily adaptable to Web 2.0-style
applications, where this type of functionality is demanded by sophisticated users. Figure 11-3
shows a sample of the client application in action.

The bonus procedure we’ve included, GetMatch, demonstrates simple wildcard searching
with the ternary search tree. Listing 11-2 calls this procedure to return all words from the
dictionary that are five characters long, begin with the letter ¢, and contain the letter d in
the third position. The second, fourth, and fifth characters are unknown, as represented by the
wildcard ? character. The results are shown in Figure 11-4.

£E Word Suggestion

Enter a‘word: | fsh

Sensitivity: 3 e,

fey (2]
fez [2]
fib (2)
fie [2]
fig [2]
fin [2]

fit [2]

fix [2]

fla 2]
flu (2]
flw (2]

fab [2])
foe [2]
fog (2]
fop (2]
for [2]

fir [2

I

o

CHAPTER 11

ADVANCED SEARCH TECHNIQUES

Figure 11-3. Word suggestions for the word “fsh” in a client application

Listing 11-2. Wildcard Search in the Ternary Search Tree

EXEC dbo.GetMatch 'c?d??';

B Results

— = @ O~ 0O &= M=

S

Figure 11-4. Wildcard search against the ternary search tree

Name Searching

Another area in which fuzzy search techniques are often needed, but where full-text search
doesn’t necessarily help, is name-based searching. Searching for customer or other informa-
tion in a database by name is a common scenario. Unfortunately, there are many factors at
play, not the least of which is the countless number of ways to pronounce different words with
similar spellings. This is particularly bad with surnames, which are often derived from other
languages with different (often regional) pronunciation rules from English.

243

244

CHAPTER 11 ADVANCED SEARCH TECHNIQUES

Another problem, particularly with the English language, is the dizzying array of excep-
tions to every rule in the language. George Bernard Shaw used the made-up word ghoti as an
example to demonstrate some of the strange rules of English. Ghoti is an imagined alternate
spelling for the word fish. This alternate spelling applies the following rules of English:

e ghis pronounced fas in cough.
¢ ois pronounced i as in women.
¢ tiis pronounced sh as in nation.

Although ghoti is a contrived example, it encapsulates many of the problems involved in
name-based searching. The fact of the matter is that someone searching for a name pronounced
“jeer-a-dell-ee” might have to search for several variations including Jeradelli, Jaerardeli,
Ghiradelli, Jheradeli, and possibly many others. Wouldn't it be great if you could enter a search
string that approximated the sound of a name and still locate the necessary customer (or other)
records? One answer to this problem is phonetic search.

Phonetic Search

Phonetic search includes methods of encoding words as their phonetic equivalents. It’s imple-
mented by algorithms that attempt to approximate the pronunciation of words. Back in the
early 20th century, Robert Russell and Margaret O’Dell patented a sound-based indexing
system known as Soundex. The Soundex system was designed for indexing U.S. Census Bureau
records from the late 19th century. Many modern phonetic algorithms are based, to some
degree, on Soundex.

Of course, Soundex has many shortcomings, not the least of which is its simplicity, which
was actually its prime asset before the age of computers. Soundex encoding was designed so
that it could be performed by clerks with varying levels of education. The rules had to be
formulaic in their simplicity, easy to memorize, and capable of being implemented with the
most rudimentary of tools (for example, with pencil, paper, and an occasional preprinted
template). This simplicity doesn’t work well these days, due in large part to a great increase in
surnames of non-Western European origin.

Fortunately for us, several people have developed more advanced Soundex replacements,
all of which improve upon the algorithm in some areas but inherit some of Soundex’s limita-
tions in other areas. In this section, we’ll discuss some of these phonetic search algorithms.

Soundex

SQL Server includes a version of the Soundex algorithm natively via the SOUNDEX function.
When you pass a string to the SOUNDEX function, it returns a four-character phonetic encoding.
Soundex codes consist of an alphabetic character followed by three numbers, each representing
a grouping of letters that are pronounced similarly. For instance, the letters B, F, P, and Vare all
grouped together and converted to a numeric code of 1.

SQL Server also provides Soundex match scoring via the DIFFERENCE function. The DIFFERENCE
function accepts two strings, Soundex-encodes them, and then compares the encoded values.
DIFFERENCE returns values between 0 (worst match) and 4 (best match). Listing 11-3 uses the

CHAPTER 11 ADVANCED SEARCH TECHNIQUES

DIFFERENCE and SOUNDEX functions to retrieve surnames from the dbo.Surnames table that have
a Soundex code close to the code for Johnson. Partial results are shown in Figure 11-5.

Listing 11-3. Using SQL Server’s SOUNDEX and DIFFERENCE Functions

SELECT
Id,
Surname,
SOUNDEX(Surname) AS Surname_Soundex,
DIFFERENCE(Surname, N'Johnson') AS Soundex Difference
FROM dbo.Surnames
WHERE DIFFERENCE(Surname, N'Johnson') >= 3;

B Results

Id Surname Surname_Soundex | Soundex_Difference]
1 | JOHNSON J525 4 =
2 JOMES J520 3
3 JACKEON Jz250 3
4 71 JAMES J520 3
g g3 JEMKINSG J525 4
5 a2 SIMMONS 5552 3
7 177 DUMNCAN D525 3
g 180 CUMMINGHAM 552 3
49 214 JOHNSTOMN J523 3
10 222 HAMNSEM H525 3
11 231 JACOBS Jz21z2 3
12 244 HANSOMN H525 3
13 258 JEMSEM J525 4
14 274 IE BN GE 1552 4 b/

Figure 11-5. Surnames matched for closeness by Soundex

As you can see from the matches that Soundex returns—most people wouldn’t tell you
that James sounds like Cunningham—Soundex is not the most accurate algorithm available. In
fact, Soundex is infamous for returning a lot of false positives and poor matches. There are
other algorithms available including improvements to Soundex, such as the NYSIIS algorithm
we’ll cover in the next section.

NYSIIS

The New York State Identification and Intelligence System (NYSIIS) was created as a Soundex
replacement in 1970. NYSIIS performs a function similar to Soundex; namely, it creates a
phonetic version of an input name. The phonetic version is a rough representation of the way
a name is pronounced. Consider Table 11-1, which contrasts the phonetic encodings gener-
ated by both the NYSIIS and Soundex algorithms for the same surnames.

245

246

CHAPTER 11 ADVANCED SEARCH TECHNIQUES

Table 11-1. Comparison of NYSIIS and Soundex Sample Phonetic Encodings

Surname NYSIIS Soundex
BARRIOS BAR B620
BURROWS BAR B620
BARRAZ BAR B620
CALE CAL C400
COLAS CAL C420
COLES CAL C420
KOHLES CAL K420
DUNN DAN D500
DEAN DAN D500
DENNIS DAN D520
DOWNS DAN D520
PILON PALAN P450
PULLINS PALAN P452
PULLIN PALAN P450
PALIN PALAN P450
SIMS SAN $520
SIMMS SAN $520
SAMS SAN $520

Even though NYSIIS is based on Soundey, the differences in encoding rules used result in
quite different encodings in many instances. For one thing, NYSIIS preserves the relative posi-
tioning of vowels within a phonetic encoding (it replaces vowels with A). Name prefixes are
also encoded using different rules. For instance, NYSIIS replaces the letter Kwith C, while
Soundex always preserves the first letter. Suffix handling is different as well, since NYSIIS strips
trailing S characters and trailing vowels.

We’ve implemented the NYSIIS algorithm within a SQL CLR user-defined function called
dbo.NYSIIS in the iFTS Books sample database. For testing purposes, we’ve included the
dbo.Surnames table, which contains the most common 88,000 surnames in the United States as
reported by the U.S. Census Bureau. This table contains both a Surname column with plain-text
surnames and a Surname_NYSIIS column with the NYSIIS-encoded versions. Listing 11-4
demonstrates a simple search against this table for names that sound like Rambo, courtesy of
the dbo.NYSIIS function. Results are shown in Figure 11-6.

CHAPTER 11 ADVANCED SEARCH TECHNIQUES 247

Listing 11-4. Searching for Names That Sound Like “Rambo”

SELECT
Surname,
Surname_NYSIIS
FROM dbo.Surnames
WHERE Surname NYSIIS = dbo.NYSIIS(N'Rambo');

B Results

Surname Surname_MNYSIIS
RANB
"RUMBO RANE
RAIMNBOW RANB

ROMBS FAMNEB

FAMBUS FAMNEB
FAMBEAL RANB

[ax i) B S e B SN IS

Figure 11-6. Names that sound like “Rambo”

Asyou can see from the results in Figure 11-6, NYSIIS returns better-quality results than
Soundex.

String Similarity Metrics

String similarity calculations are another tool that can be used to perform fuzzy searches. String
similarity is based on similarities between the spelling of two words, rather than pronunciation.
String similarity is useful for narrowing down results returned by phonetic search algorithms,
or for other situations where you need to calculate the difference between strings.

Longest Common Subsequence

The longest common subsequence or LCS algorithm is used to calculate the similarity between
two strings. LCS compares two strings and retrieves the character subsets they share in common,
while maintaining the order of characters. As an example, the LCS for the strings Joseph and
Joelis calculated as shown in Figure 11-7.

The two strings are compared character by character using LCS, and all characters that
appear in both strings (in order, though not necessarily contiguous) are combined to create the
LCS. Note that, even though the word Joseph has an S between the O and the E, the Eis still
considered part of the LCS. The LCS gives you a good approximate calculation of the difference
between two strings and provides a good scoring mechanism for calculating a numeric simi-
larity score. LCS and LCS variants are commonly used in a wide variety of applications and
utilities (such as diff) that compare files and report their differences.

248

CHAPTER 11 ADVANCED SEARCH TECHNIQUES

First string: |J|OIS|EIP|H

Longest common
subsequence:

Second string: |J|O | E[L

Figure 11-7. LCS for Joseph and Joel

Note Longest common subsequence is not the same as longest common substring, though they are
easily confused. Longest common substring is actually a specialized application of the longest common
subsequence algorithm. Longest common substring requires all characters matched to be contiguous (with
no intervening characters in the sequence).

We’ve implemented the LCS algorithm as a SQL CLR user-defined function named dbo. LCS.
The function accepts two strings and returns their LCS. In addition, we’ve included a function
called dbo. ScorelCS that calculates the LCS for two strings and returns a similarity score. The
similarity score is between 0.0 and 1.0, representing the range between no match and a perfect
match. This score is calculated by dividing the length of the LCS by the length of the longer
input string. Listing 11-5 calculates the LCS and an LCS score for the words Joseph and joel. The
results are shown in Figure 11-8.

Listing 11-5. Calculating LCS and Score for Two Strings

SELECT
dbo.LCS
(
N'Joel’,
N'Joseph'
) AS LCS,
dbo.ScorelCS
(
N'Joel',
N'Joseph'
) AS Score;

CHAPTER 11 ADVANCED SEARCH TECHNIQUES

B Results

Score

Figure 11-8. LCS and score for the words Joel and Joseph

LCS is useful for calculating a similarity metric between two strings; however, it’s a rather
inefficient algorithm of complexity O(mn), where m and n are the lengths of the two input
strings. This algorithm literally builds a matrix with dimensions [m, nl, and populates the
matrix as it calculates the similarity between the two strings. Because of this complexity, we
recommend using another method to narrow down your result set before applying a string
similarity algorithm such as LCS to further narrow down your results.

Edit Distance

Another algorithm, closely related to LCS, is edit distance. As we mentioned previously in this
chapter, edit distance is a generalized form of Hamming distance. Like Hamming distance and
LCS, edit distance is a measure of the similarity (or difference) between two strings.

We’ve implemented an edit distance algorithm known as the Damerau-Levenshtein Edit
Distance as a SQL CLR function. This algorithm acts on two input strings in a manner similar
to LCS, by building a matrix. Unlike LCS, Damerau-Levenshtein counts the number of opera-
tions required to convert one input string into another. The algorithm accounts for four types
of operations:

» Insertions: An insertion is a single character that must be inserted into one string to turn
it into the other string. For instance, the word you needs to have the letter rinserted to
turn it into the word your.

* Deletions: A deletion is a single character that must be deleted from one string to turn it
into the other string. As an example, the word placesneeds to have the letter s deleted to
turn it into the word place.

* Replacements: A replacement is a single character that must be replaced in one string to
turn itinto the other string. The letter u must be replaced with ain the word mush to turn
it into the word mash, for instance.

» Transpositions: A transposition is a side-by-side swap of two characters in one string to
turn it into the other string. Consider the word cast, which requires a transposition of the
letters sand ¢ to turn it into the word cats.

The Damerau-Levenshtein Edit Distance algorithm is implemented as the function
dbo.DamLev. You can call this function with two strings to calculate the edit distance between
them. Listing 11-6 calculates the edit distance between the words lastly and listen. The results
are shown in Figure 11-9.

249

250

CHAPTER 11 ADVANCED SEARCH TECHNIQUES

Listing 11-6. Calculating Damerau-Levenshtein Edit Distance Between the Words “lastly” and “listen”

SELECT dbo.DamLev

(
N'lastly',
N'listen’
)5

B Results

(Mo colurnn name)

Figure 11-9. Edit distance between “lastly” and “listen”

Like the LCS algorithm, Damerau-Levenshtein has a complexity of O(mn), where mand n
are the lengths of the two input strings. Because of this, we recommend narrowing down your
result set using another method before calculating the edit distance between results.

N-Grams

The complexity of the edit distance and LCS algorithms is generally O(mn), where m and n are
the lengths of the two input strings being compared. These algorithms are computationally
intensive and aren’t efficient for on-the-fly calculations on large data sets. Another algorithm
for string comparison that’s much more flexible and efficient in T-SQL set-based programming
is the n-gram algorithm.

The n-gram algorithm requires preprocessing of the strings to be compared. All strings are
divided into sequences of contiguous letters of length 7 (generally a length of 3 or 4, trigrams
and quadgrams, are used). By preprocessing the search strings and storing the n-grams in the
database, you can use T-SQL’s set-based operators to efficiently locate matching approximate
strings. Consider Figure 11-10, which shows the trigrams for the surname Richardson.

The dbo.GetNGrams SQL CLR function divides a word into n-grams. This function accepts
two parameters: a string to process and the length of the n-grams to produce. The resultis a
table of n-grams, each with an ID number starting with 0 for the first n-gram and increasing
from left to right. Listing 11-7 uses the dbo.GetNGrams function to retrieve trigrams for the
surname Richardson. Results are shown in Figure 11-11.

Listing 11-7. Retrieving N-Grams for the Surname Richardson

SELECT *
FROM dbo.GetNGrams
(

3,

N'Richardson’

)s

CHAPTER 11 ADVANCED SEARCH TECHNIQUES

1| CH RID|S NI$ $

Figure 11-10. The surname Richardson divided into a set of trigrams

B Results
lid [nGram |

1 0 $3R
2 1 FRi
a8 2 Ric
4 3 ich
& 4 cha
B 5 har
7 5 ard
8 7 ris
9 8 dso
10 9 san
11 10 onf
12 11 n$$

Figure 11-11. Trigrams produced by dbo.GetNGrams for the
surname Richardson

Once the words are divided into n-grams, you can store them in a table and use simple and
efficient T-SQL inner joins to find approximate matches for given strings. The trade-off for
n-gram efficiency is increased preprocessing and storage requirements, but the results tend
to be both fast and accurate.

The dbo.GetTriGramMatches function performs exactly this type of join against the
dbo.Surnames_TriGrams table to retrieve approximate matches for an input surname. The proce-
dure accepts a surname to match and a minimum quality score. The results are returned as a
table with the ID for matching surname, the surname itself, and the quality score. The proce-
dure calculates Dice’s coefficient to determine the quality of matches. Only matches that have
a quality greater than, or equal to, the minimum specified quality score are returned.

251

252

CHAPTER 11 ADVANCED SEARCH TECHNIQUES

The dbo.GetTriGramMatches function is designed as a T-SQL table-valued function and
begins with the following function header and results table definitions:

CREATE FUNCTION dbo.GetTrigramMatches
(
@Surname nvarchar(128),
@Quality decimal(10, 4)
)
RETURNS @r TABLE
(
Id int PRIMARY KEY NOT NULL,
Surname nvarchar(128),
Quality decimal(10, 4)

The body of the function begins by retrieving the count of trigrams produced by the
surname that was passed in as a parameter:

DECLARE @i decimal(10, 4);

SELECT @i = COUNT(*)
FROM dbo.GetNGrams (3, @Surname);

The function then declares a CTE that performs the bulk of the work, joining the trigrams
of the name passed in as a parameter to the dbo.SurnameTriGrams table. The CTE returns three
columns: an ID for each surname matched, the matching surname, and Dice’s coefficient for
matching surnames as a quality metric:

WITH NGramCTE
(
Id,
Surname,
Quality
)
AS
(
SELECT
t.Surname_Id AS Id,
s.Surname AS Surname,
COUNT(t.Surname_Id) * 2.0 / (@i +
(
SELECT COUNT(*)
FROM SurnameTriGrams si1
WHERE s1.Surname_Id = t.Surname_Id
)) AS Quality

CHAPTER 11 ADVANCED SEARCH TECHNIQUES

FROM SurnameTriCrams t
INNER JOIN Surnames s

ON t.Surname ID = s.Id
WHERE EXISTS
(

SELECT 1

FROM dbo.GetNGrams(3, @Surname) g

WHERE g.NGram = t.NGram
)
GROUP BY

t.Surname_Id,

S.Surname

Finally, the function inserts the results of the CTE into the results table, but only where the
quality metric is greater than, or equal to, the minimum quality value passed in as a parameter:

INSERT INTO @r
(
Id,
Surname,
Quality
)
SELECT
Id,
Surname,
Quality
FROM NGramCTE
WHERE Quality >= @Quality;

Listing 11-8 shows how to use the dbo.GetTriGramMatches function to retrieve a list of
trigram matches for the surname Smith with quality of at least 0.6. Results are shown in
Figure 11-12.

Listing 11-8. Retrieving Trigram Matches for the Surname Smith with Quality of at Least 0.6

SELECT *
FROM dbo.GetTriGramMatches
(
N'Smith',
0.6
)5

253

254 CHAPTER 11 ADVANCED SEARCH TECHNIQUES

B Results

Surname Cuality
1 | SMITH 1.0000
2 4388 MHESMITH 0.6250
3 10423 SMITHER 0.6250
4 11153 SMITHEY 0.6250
g 12725 SMIT 0.6154
5 21887 SILVERSMITH - 0.8000
7 25498 HvsSMITH 0.6250
g 34689 SMITHEE 0.6250
4 34778 SCHMITH 0.6250
10 36802 SMSITH 0.6667
11 39189 SMITHY 0.6667
12 40840 DESMITH 0.6250
13 41896 STALLSMITH 0.6316
14 45385 SITH 0.6154
15 61796 MITH 0.6154
16 67742 SMITHEM 0.6250
17 78005 SMITHE 0.6667
158 78079 SLXSMITH 0.70549
15 83753 HISMITH 0.6250

Figure 11-12. Results of trigram matches for surname Smith

Because the dbo.CGetTriGramMatches function uses set-based processing, order is consid-
ered unimportant. However, you can increase the accuracy of your results by using positional
information in your queries. The dbo.GetTriGramMatches Distance function performs the same
function as dbo.GetTriGramMatches, but it further narrows the results by accepting a distance
parameter. The distance calculation enforces another rule on the comparison: matching trigrams
must fall within similar relative positions in both strings. The dbo.GetTriGramMatches Distance
function is similar to dbo.GetTriGramMatches, but it includes a BETWEEN predicate in the CTE to
limit matching trigrams to those that fall within a specific distance:

SELECT
t.Surname_ID AS Id,
s.Surname AS Surname,
COUNT(t.Surname_Id) * 2.0 / (@i +
(
SELECT COUNT(*)
FROM dbo.SurnameTriGrams si
WHERE s1.Surname_Id = t.Surname_Id
)) AS Quality
FROM SurnameTriGrams t
INNER JOIN Surnames s
ON t.Surname Id = s.Id
WHERE EXISTS

CHAPTER 11 ADVANCED SEARCH TECHNIQUES

(
SELECT 1

FROM dbo.GetNGrams(3, @Surname) g

WHERE g.NGram = t.NGram

AND g.Id BETWEEN t.NGram Id - @Distance AND t.NGram Id + @Distance
)
GROUP BY

t.Surname_Id,

s.Surname

Listing 11-9 refines the example in Listing 11-8 by specifying a distance of 1, which means
that equal trigrams must fall within the range of -1 to +1 positions of each other in both strings
to be counted as a match. The results of Listing 11-9 are shown in Figure 11-13. Note that the
results have been reduced significantly by narrowing the n-gram relative distances.

Listing 11-9. Retrieving Trigram Matches with a Distance Indicator

SELECT *

FROM GetTriGramMatches Distance

(
N'Smith',
0.6,
1

)5

B Results

I Surname | Cuality

1] 1.0000
2 10423 SMITHER 0.6250
3 11153 SMITHEY 0.6250
4 12725 SMIT 0.6154
5 34689 SMITHEE 0.B250
B 36802 SMSITH 0.BBE7
7 39189 SMITHJ 0.BBE7
8 45385 SITH 0.6154
] B1796 MITH 0.6154
10 B7742 SMITHEN 0.5250
11 78005 SMITHE 0.BBE7

Figure 11-13. Results of n-gram matches for the surname Smith with additional distance
restriction

N-gram matches are a particularly useful method for finding similarity between strings.
When n-grams are treated as sets, their implementation can be quite efficient in T-SQL.

255

256

CHAPTER 11 ADVANCED SEARCH TECHNIQUES

Summary

While full-text search, and SQL Server 2008’s iFTS implementation, is great for fuzzy searching
of textual data and documents, it’s not necessarily the right tool for name-based fuzzy searching.
The particular requirements of name-based searching are entirely different from the require-
ments for document-based searching, so different technology is needed.

In this chapter, we looked at a variety of approximate search technologies that go beyond
what full-text search offers. First, we looked at using ternary search trees for spelling suggestion
and correction applications. While SQL Server doesn’t expose built-in support for ternary
search trees, SQL CLR allows us to extend our SQL Server database to support this capability
via .NET code.

We also considered simple phonetic matching with SQL Server’s built-in SOUNDEX and
DIFFERENCE functions. Then we looked at achieving better quality phonetic matches with the
more modern NYSIIS phonetic algorithm.

String similarity metrics provide yet another method of fuzzy string matching. We looked
at several string similarity algorithms, including the longest common subsequence algorithm,
Damerau-Levenshtein Edit Distance, and n-gram matching. We also provided SQL CLR and
T-SQL code to implement the wide variety of fuzzy searching algorithms we covered in this
chapter.

The authors would like to thank Jonathan de Halleux for providing the base .NET ternary
search tree implementation, and Kevin Atkinson for providing the unofficial 12Dicts dictionary;
both of which were used in the spelling suggestion application example.

APPENDIX A

Glossary

If you wish to converse with me, define your terms.

—Voltaire

During our journey through the functionality in SQL Server 2008 iFTS, we've encountered
several terms that may not be familiar and widespread in use. Part of this has to do with the fact
that, until this release of SQL Server, full-text search was something of a black art. Only a select
few were expert enough at it to take full advantage of the power it provided. In addition, iFTS
has removed some terms from the Microsoft full-text lexicon and added new words—some
replacements, others brand new. In this appendix, we’ll provide definitions for a selection of
iFTS-related and other terms that we’ve used throughout this book.

BLOB

BLOB is an acronym for binary large object data. BLOB data can consist of binary documents,
graphic images, and other binary data. See also LOB, CLOB, NCLOB.

Catalog Views
Catalog views are system views that return information about database objects and catalog

metadata. Some of this information isn’t accessible through any other means. SQL Server
2008 supports some iFTS-specific catalog views.

CLOB

CLOB is an acronym for character large object data. CLOB data consists of large text documents.
See also LOB, BLOB, NCLOB.

CONTAINS Predicate
SQL Server 2008 supports the CONTAINS predicate, which allows the use of several advanced

full-text search options such as inflectional form generation, weighted searches, thesaurus
expansions and replacements, phrase searches, and proximity searches. See also FREETEXT
predicate, CONTAINSTABLE function.

257

258 APPENDIX A GLOSSARY

CONTAINSTABLE Function
The CONTAINSTABLE function supports full-text searching with the same options as the

CONTAINS predicate, but it returns a table of IDs and rank values for the results. See
also CONTAINS predicate.

Crawl
See population.

Damerau-Levenshtein Edit Distance
The Damerau-Levenshtein Edit Distance algorithm is used to calculate the difference
between two strings. Damerau-Levenshtein calculates the number of operations needed
to convert one string to another string. The operations counted include deletions, insertions,
single-character replacements, and two-character transpositions.

Diacritics Sensitivity
Full-text catalogs (and the indexes they contain) and thesauruses can be made sensitive or
insensitive to diacritical marks through the diacritics sensitivity setting. Diacritical marks
include grave and acute accent marks, cedilla, and other distinguishing marks.

Dice’s Coefficient
Dice’s Coefficient is a similarity measure that can be calculated using the following formula:

2+ x|
lsl + |t

where Ix| is the number of matching n-grams of two given strings, and Isl and Izl are the
number of n-grams in each of the two strings. Dice’s Coefficient always falls between 0.0 and
1.0, with 1.0 representing the best match possible.

Docld
The Docld, or Document ID, is an integer surrogate key used by SQL Server to map a table’s
primary key to the data stored in the full-text index. If you use an integer primary key on your
table, SQL Server can eliminate the extra Docld mapping for better performance.

Document
Documents are textual or binary entities indexed and returned by full-text searches.

Dynamic Management Views and Functions
Dynamic Management Views (DMVs) and Dynamic Management Functions (DMFs) return
server state information that you can use to retrieve server state information. SQL Server
2008 supports some iFTS-specific DMVs and DMFs.

APPENDIX A GLOSSARY

Edit Distance

Edit distance is a more sophisticated generalization of Hamming distance. Edit distance is
calculated by determining the number of operations required to convert one character
string into another character string. See also Hamming distance, Damerau-Levenshtein Edit
Distance.

Expansion Set
A thesaurus expansion set recognizes a word or token and expands the search to include

additional words or terms. See also replacement set.

Filestream
SQL Server 2008 supports filestream, which is a mechanism for storing BLOB data in the

NTEFS file system but accessing and managing the data via T-SQL statements and the
OpenSqlFileStream API. See also BLOB.

Filter

Filters are content-type-specific components that are designed to extract useful data from
text-based or binary data. Filters are designed to ignore binary or textual content that is

unimportant for purposes of full-text search. Filters invoke language-specific word breakers
to tokenize content deemed important for full-text search purposes. See also word breaker.

Filter Daemon Host Process
The filter daemon host process (fdhost. exe) is external to the SQL Server process. For security

and stability of the SQL Server process, the filter daemon is used to load external filter
components.

FREETEXT Predicate
SQL Server 2008 supports the FREETEXT predicate, which performs a full-text search with

automatic inflectional form generation and thesaurus expansions and replacements. See
also CONTAINS predicate, FREETEXTTABLE function.

FREETEXTTABLE Function
The FREETEXTTABLE function supports full-text searching with the same options as the FREETEXT

predicate, but it returns a table of IDs and rank values for the results. See also FREETEXT
predicate.

Full-Text Catalog

In SQL Server 2008, the full-text catalog is simply a logical grouping of one or more full-text
indexes. The full-text catalog also defines the diacritics sensitivity settings for the full-text indexes
it contains. See also full-text index, diacritics sensitivity.

Full-Text Index
A full-text index is an inverted index of one or more documents. SQL Server may store a full-

text index entirely in memory or in disk storage. See also full-text catalog, inverted index.

259

260 APPENDIX A GLOSSARY

Full-Text Search

Full-text search encompasses a variety of techniques used to search textual data and docu-
ments. SQL Server 2008 implements full-text search technology in the form of iFTS. See also
Integrated Full-Text Search.

Fuzzy Search
Fuzzy search encompasses a variety of techniques for searching textual data for approxi-

mate matches. Fuzzy search encompasses such technologies as full-text search, phonetic
search, substring matching, wildcard searching, n-gram matching, and other approximate
or inexact search techniques.

Gatherer
The gatherer component retrieves textual and binary data from database tables, streaming

the content to filters for indexing.

Generational Searches
Generational searches are searches that generate inflectional forms of search terms. See also

inflectional forms.

Hamming Distance
Hamming distance is a measure of the difference between two strings of characters or bits.

Hamming distance is determined by calculating the number of operations to turn one string
into another string. See also edit distance.

IFilter

IFilter is the COM-based interface used by iFTS filter components. Sometimes filters are
referred to as IFilters. See also filter.

Inflectional Forms
Inflectional forms of words include plural nouns, verb conjugations, and other word forms.

SQL Server iFTS can generate inflectional forms of words during searches. See also generation.

Integrated Full-Text Search

Integrated Full-Text Search, or iFTS, is the newest version of full-text search functionality
available in SQL Server. This version is available beginning with SQL Server 2008 and sports
several improvements, including in-database index and stoplist storage, new DMVs and
DMFs, and additional functionality not available in prior releases of SQL Server.

Inverted Index
An index structure that stores mapping information from content, such as tokens in docu-

ments or text, to their locations. In terms of iFTS, the full-text index is stored as an inverted
index that stores mappings from tokens to the rows that contain them. See also full-text index.

APPENDIX A GLOSSARY

Jaccard Coefficient
The Jaccard Coefficient is used to calculate rankings for weighted CONTAINS searches in iFTS.

See also CONTAINS predicate, weighted search.

LOB
LOB is an acronym for large object data. SQL Server can store and manage large object data
(such as documents and images) up to 2.1GB in size. LOB data can be further divided into
BLOB, CLOB, or NCLOB data. See also BLOB, CLOB, NCLOB.

Longest Common Substring
The longest common substring (LCS) algorithm is a fuzzy search algorithm that returns all

characters that two strings have in common, where order is preserved. The substrings can
have intermediate characters that aren’t part of the common substrings.

N-Gram
The n-gram string matching algorithm is an approximate search algorithm. The n-gram
algorithm divides given words into sequences of characters of equal length known as n-grams.
It then tries to determine the number of exact n-grams that the words have in common. An
n-gram can be of any length, but they’re generally of length 3 or 4 (trigrams and quadgrams).

NCLOB
NCLOB is an acronym for national character large object data. NCLOB data consists of large
national character (Unicode) text documents. See also LOB, BLOB, CLOB.

Noise Words
Noise words were used in previous versions of SQL Server to eliminate extraneous, unhelpful
words from full-text searches. Stopwords replace noise words in SQL Server 2008. See also
stopwords.

NYSIIS
NYSIIS, the New York State Identification and Intelligence System, was introduced in 1970

as an improved version of the Soundex phonetic algorithm. See also Soundex.

Occurrence
SQL Server’s full-text indexes store the relative offsets of instances of words. The first occur-

rence of a given word in a document is occurrence 1, the next is occurrence 2, and so on.

Okapi BM25
The Okapi BM25 method is an alternate search results ranking method used by iFTS to rank
FREETEXT searches. See also FREETEXT predicate.

Phonetic Search
Phonetic search is a method of searching for words that sound similar to one another.

261

262 APPENDIX A GLOSSARY

Phrase Search
Phrases are multiword tokens that are considered as a single atomic unit for purposes of

search.

Population
Population is the process of tokenizing documents and textual data and filling full-text

indexes with words returned by the word breaker component. See also word breaker.

Prefix Search
A prefix search is one in which a word has the wildcard * character at the end. Prefix searches

will locate words that begin with the given prefix.

Protocol Handler
The protocol handler is an application-specific component that pulls data from memory

using the gatherer and coordinates full-text index filtering and population.

Proximity Search
Proximity searching is the process of searching for words that are close to one another, or

within a specified number of words or characters from one another. The SQL Server CONTAINS
predicate supports proximity searching. See also CONTAINS predicate.

Replacement Set
Replacement sets are defined in iFTS thesaurus files to perform wholesale replacement of

specific search terms with other words or terms. See also expansion set.

Simple Term
A simple term is a simple word or phrase to be used in full-text search.

Soundex
Soundex is a 90-year-old algorithm for indexing names by sound. In Soundex, a name is

converted to a four-character code that begins with an alphabetic character and includes
three additional numeric digits. See also NYSIIS.

SQL Server Process
The SQL Server process (sqlserver.exe) is the process that hosts the SQL Server query engine

and the full-text query engine. Note that in versions of SQL Server prior to SQL Server 2008,
the full-text query engine was separated from the SQL Server process.

Stoplists

Stoplists are lists of stopwords stored in SQL Server. Stoplists can be associated with full-text
indexes in SQL Server. See also stopwords.

APPENDIX A GLOSSARY

Stopwords
Stopwords are tokens that are specifically considered useless for terms of full-text search.

Stopwords are generally words that occur frequently in a given language and don’t add value
during a search of textual data. SQL Server includes several default system-defined stop-
words including and, the, and an, among others. See also stoplists, noise words.

Ternary Search Tree
The ternary search tree is a three-way data structure that combines the speed and efficiency

of digital search tries and binary search trees. Ternary search trees are useful for performing
near neighbor approximate searches.

Thesaurus
SQL Server iFTS supports an XML thesaurus containing replacement and expansion sets

to increase the breadth of full-text searches for specified words. See also expansion sets,
replacement sets.

Token
Tokens are the atomic sequences of characters returned by the word breaker component as

it applies language-specific word-breaking rules to textual data. See also word breaker.

Type Column

To index BLOB data, iFTS requires that you specify a type column containing a document
extension that indicates the type of content contained in the binary data. A type column
might include entries such as .doc for a Word document or .xml for an XML document. The
value in the type column determines which filter iFTS uses to index the given document. See
also BLOB.

Weighted Search

A weighted search is one in which some search terms are assigned greater importance than
others. In iFTS, you can perform weighted searches with the CONTAINS predicate. See also
CONTAINS predicate.

Word

See token.

Word Breaker

SQL Server uses components known as word breakers to tokenize textual data based on
language-specific rules. See also word stemmer.

Word Stemmer
SQL Server uses word stemmer components to generate inflectional forms of the words

tokenized by word breakers. See also word breaker.

263

APPENDIX B

IFTS_Books Database

The key, the whole key, and nothing but the key, so help me Codd.

—Mnemonic Summary of Codd’s First Three Normal Forms (Anonymous)

While this book was still in the early planning stages, the authors set about investigating how
we could best deliver meaningful and easy-to-use code samples. We found out pretty quickly
that the official Microsoft AdventureWorks 2008 sample database wasn’t up to the task. While
AdventureWorks has been completely redesigned for the 2008 release, it doesn’t have enough
variety and quantity of information to really show off the power and improved functionality
of iFTS.

Instead of making extensive modifications to the AdventureWorks database, we decided
to create a sample database that would better suit our needs and show off the full range of iFTS
functionality. We decided to model only a couple of logical entities in this database—namely,
books and book contributors (authors, editors, illustrators, and so on). The normalized physical
model of the iFTS Books sample database is shown in Figure B-1.

The database itself is populated with data from a variety of sources, including public domain
books in various forms and information about authors and related topics from Wikipedia
(available under terms of the GNU Free Documentation License). This raw data provided us
with a widely varied multilingual set of texts to index and query using iFTS.

In addition, we’ve included sample data to demonstrate non-iFTS functionality, such as
the phonetic search functions in Chapter 11. This data comes in the form of common surnames
from the U.S. Census Bureau’s 1990 census data and the “unofficial” 12Dicts dictionary. These
additional samples are installed separately as described in the “Installing the Phonetic Samples”
section of this chapter.

265

266

APPENDIX B ' IFTS_BOOKS DATABASE

Figure B-1. iFTS_Books physical model

APPENDIX B IFTS_BOOKS DATABASE

Installing the Sample Database

We’ve attempted to make the installation of the iFTS_Books sample database as simple as
possible. To keep the download size manageable, we decided to utilize T-SQL installation
scripts to perform the installation. All sample code and iFTS_Books installation scripts are avail-
able as a single Zip file download from www. apress. com/book/sourcecode. The installation scripts
are located in the \Sample Database subdirectory of the Zip file. To install the iFTS Books
sample database, follow these steps:

1.
2,

Download the sample code for this book from the www.apress.com web site.
Unzip the contents to your local hard drive.

Open the Command Prompt window and change the current directory to the \Sample
Database subdirectory. As an example, if you unzip the file to the C:\Sample Code
directory on your hard drive, you would change to the C:\Sample Code\Sample Database
subdirectory in this step.

Run the setup.bat batch file from the command prompt. This batch file takes one or
three parameters. The first parameter is the server name. If you're using Windows
Integrated security to connect to your SQL Server, this is all that’s necessary. If, however,
you're using SQL Authentication, you'll need to add two more parameters—a user name
and password to log into SQL Server. Figure B-2 shows how to call setup.bat with (local)
specified as the server name to install on the local server.

=+ C:A\WINDOWS\system32\cmd. exe

C:\Sample Code\Sample Database>setup (locall 9

[|

Figure B-2. Installing the iFTS_Books sample database to the local instance of SQL Server

The setup.bat batch file looks for a folder on your hard drive named C:\1FTS_Books. If
the directory doesn't exist, it is created (you can manually modify the scripts to change
the installation location if you choose).

Setup.bat calls the sqlcmd command-line utility to execute T-SQL scripts that create the
iFTS Books sample database, create and populate tables, define and populate full-text
indexes, and create other database objects.

267

268

APPENDIX B IFTS_BOOKS DATABASE

Once the sample database has been installed, you can execute the sample code we’ve
included in this book.

Installing the Phonetic Samples

The iFTS_Books sample database also comes with the non-iFTS phonetic algorithm samples
that we described in this book. These are implemented using a combination of SQL CLR
assemblies and T-SQL functions. Assuming you’ve already downloaded and unzipped the
sample code files to your hard drive, follow these steps to install the phonetic algorithm samples:

1. Install the iFTS Books database as discussed in the previous section.

2. Open the Command Prompt window and change the current directory to the \Phonetics
subdirectory. For example, if you unzipped to the C:\Sample Code directory, you would
change the current directory to C: \Sample Code\Phonetics.

3. Run the setup.bat batch file from the command prompt. This batch file also accepts
one parameter (server name) for Windows Integrated security and three parameters
(server name, user name, password) for SQL Authentication.

4. The setup.bat batch file uses the sqlcmd command-line utility to execute the appropriate
T-SQL installation scripts. These scripts create and load tables, register SQL CLR assem-
blies, and create T-SQL and SQL CLR user-defined functions.

After the phonetic samples are installed, you can execute the phonetic code samples from
Chapter 11.

Sample Code

In addition to the sample databases, we’ve included sample utilities throughout the book that
can utilize the iFTS Books sample database and the phonetic algorithms demonstrated. This
source code is primarily written in T-SQL and .NET using C#.

There are some examples, however, that we created in other languages where appro-
priate. For instance, the iFTS filter sample from Chapter 10 was written in unmanaged
C++, per Microsoft’s recommendations. All non-SQL code samples provided were created
as Visual Studio 2008 solutions. You can open, compile, and execute the sample code using
Visual Studio 2008.

APPENDIX C

Vector-Space Searches

Space is big. You just won’t believe how vastly, hugely, mind-bogglingly big it is. I mean,
you may think it’s a long way down the road to the drug store, but that'’s just peanuts to
space.

—Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Vector-space is an algebraic algorithm for representing text documents as vectors. Vector-space
is used by iFTS to perform weighted searches using the ISABOUT operator. We describe weighted
searches in Chapter 3. In this appendix, we’ll describe vector-space and how iFTS utilizes it.
This information is more detailed and technical, dealing with the inner workings of vector-space
search systems, which is why we decided to separate it from the general discussion of weighted
vector-space searches in iFTS.

Documents As Vectors

Aswe described in previous chapters, when a document is indexed by iFTS, each word is stored
in an inverted index. The index contains the document ID, word, and relative position in the
document where the word occurs. Consider a document containing the following quote from
the Roman poet Virgil:

Fortune favors the bold.

The word breaker and filter generate the token stream and remove stopwords, resulting in
the tokens shown in Figure C-1.

Tokens

fortune

favors

bold

Figure C-1. Word breaker—generated token stream for Virgil quote
269

270

APPENDIX C VECTOR-SPACE SEARCHES

If we then indexed a second document containing the following Francis Bacon quote,
removing stopwords, we would get the tokens shown in Figure C-2:

Behind every great fortune there is a crime.

Tokens

behind

every

great

fortune

crime

Figure C-2. Word breaker—generated token stream for Francis Bacon quote

Now that we’ve tokenized the source documents, the user can apply a search phrase. In
this case, we’ll use the simple search phrase bold fortune. After tokenization, the documents
and search phrase are assigned a value of 1 for each token from the stream that they contain,
and a value of 0 for each token that they don’t contain, as shown in Figure C-3.

Tokens Virgil Quote Bacon Quote Search Phase
behind 0 1 0
bold 1 0 1
crime 0 1 0
every 0 1 0
fortune 1 1 1
favors 1 0 0
great 0 1 0

Figure C-3. Tokens after ID assignment

By assigning zeroes and ones to the tokens in the documents and search phrase, we're
now representing the text as single-row matrices, or vectors. The vectors are represented as
follows:

Fortune favors the bold.» [0100110]
Behind every great fortune thereisa crime.» [1011101]

bold fortune» [0100100]

APPENDIX C VECTOR-SPACE SEARCHES

Once the documents and search phrase are converted to their vector equivalents, the
differences between the documents can be calculated using the cosines between the vectors,
or another calculation of distance between vectors. The cosine distance between vectors can
be easily calculated using a simple dot product calculation. The formula is shown in Figure C-4.

v;'vz
cosf=—+—
\ARA

Figure C-4. Dot product calculation

The mechanics of the dot product calculation are described in the “Dot Product Calculation”
sidebar in this section, and more specifics on matrix math and dot product calculations are
available at http://en.wikipedia.org/wiki/Dot_product. The essential point to take away is
that the cosine derived via the dot product calculation gives you a distance measure between
your two documents.

By calculating the dot product of the matrices, you're essentially converting them to
Euclidean space, and you can plot them in two or three dimensions. Figure C-5 is a represen-
tation of vectors plotted in three-dimensional Euclidean space. The black arrows represent the
document and search phrase vectors, and the curved white arrows represent the distance
between vectors.

Figure C-5. Document and search phrase vectors plotted in 3D space

27

272

APPENDIX C VECTOR-SPACE SEARCHES

DOT PRODUCT CALCULATION

The dot product is defined by the relationship between the length and angle of two matrices. Using the formula
shown previously in Figure C-4, you can easily calculate the cosine of the angle between two documents that
have been converted to matrix representations. This gives you a basic measure of the difference, or distance,
between the two documents. The dot product formula begins with a simple matrix multiplication. Assuming V;
is the matrix that represents the text Fortune favors thg_ bo_lg, and I/, is the matrix for the search phrase bold
fortune, the formula begins by calculating the divisor, Vi* V2, as shown:

[0100110]

OO0 - 00-=0
1]
[h%]

The bottom dividend consists of the magnitude of I/, multiplied by the magnitude of V/,, represented as
V4l IVal. The magnitude of each matrix is calculated by taking the square root of the sum of all the elements in
the matrix squared. The following are the magnitude calculations for the previously multiplied vectors:

Vo2+ 1?4+ 02402+ ?+ 2402 =3

V024 12+ 024+ 0%+ 12 + 02+ 07 =2

In the final calculation, you simply divide the result of the matrix multiplication by the product of the two
magnitudes. This gives you the cosine between the two matrices. Plugging the values we calculated earlier
into the dot product formula, we get the following final result:

cosf= 2 = 0.816496580927726
V23

The final result is the cosine between the two text matrices. By calculating the cosine between other
document matrices and the search phrase matrix, you can determine the relative similarity of the documents
to the search phrase. Of course, you don’t have to perform these types of calculations in vector space, as SQL
Server does this for you under the covers. SQL Server actually uses other more modernized calculations that
have been shown to give better results than these simple dot product calculations, but the basic idea is the
same.

APPENDIX C VECTOR-SPACE SEARCHES 273

As Figure C-5 indicates, the Virgil quote is closer to the search phrase than the Bacon quote.
In the example, the search phrase shares two words in common with the Virgil quote, and has
only one word in common with the Bacon quote.

Essentially you can measure the length of the shadow cast by the document vector on the
search vector, taking the point of reference as your search vector. This is the functional equiv-
alent of doing a dot product (or inner product) on the search argument, a document collection
matrix.

In SQL Server, the older cosine method has been updated to use modern calculations,
since the cosine method doesn’t consider several factors, such as the frequency of word occur-
rence in the document. Information retrieval scientists have determined that accounting for
additional factors, such as the ratio of the frequency of each term in the document versus the
frequency of the term in the entire document collection and document length, results in better
quality results when calculating the similarity of document vectors,. For instance, a word that
is rare in a document collection but common in a given document should be weighted higher
than words that occur frequently throughout the document collection. Additionally, the
normalized length of documents should be considered when calculating similarity.

Once you have a document vector representation of a given document, it’s relatively easy
to compare this document vector to other document vectors with similar distributions of words.
For instance, a document vector for an essay on Eastern Canadian agriculture would look
nothing like a document vector for a white paper on SQL Server installation procedures. This is
because they would use completely different sets of words. However, a document vector for a
white paper on upgrading SQL Server 7 to SQL 2000 would have a lot in common with the
document vector for a white paper on installation procedures for SQL Server 2005. They would
use alot of the same words and would result in a much closer match than the documents in the
previous example.

Informational retrieval researchers have realized this and are doing research into grouping
document vectors with similar word distributions together. They know that if your search
vector is close to another document vector (in other words, the search vector’s pattern word
distribution is similar to the document vector’s pattern), other document vectors that group
closely to a matching document vector probably contain subject matter that the searcher is
interested in. This topic is called latent semantic indexing, and such groups of document vectors
or document collections are one strategy for solving the problem of polysemy and synonymy,
which we discussed in Chapter 1. This is based on the fact that there will be similarities in the
semantics used in documents pertaining to the same subjects. In other words, documents that
are similar will have latent semantic similarities to them. (Semantics is the study of meaning in
language.)

While vector-space search functionality is often used, it does come under criticism from
some corners. The vector-space model has no formal basis in scientific theory, and is instead
based on informal observations and experience. While there are other formalized search models
based on probability theory, they don’t yield significantly better results than the vector-space
model.

Index

Special Characters
% character, 215
* (wildcard asterisk), 60, 63
(.) operator, 86
{} braces, 87
~ operator, 86
+ operator, 76-77, 80-83, 86-90, 92-93
<.> operator, 86
\ character, 215

A
abstract syntax tree (AST), 88
accent marks, 105, 180-181
Accent sensitivity setting, 23
acronyms, 53
Active Template Library (ATL), 210
ADD clause, 37
Add stopword option, 148
administration
database full-text support, 21
full-text catalogs
CREATE FULLTEXT CATALOG
statement, 23-24
Full-Text Catalog Wizard, 21-23
overview, 21
upgrading, 24-25
full-text indexes
CREATE FULLTEXT INDEX statement,
33-35
Docld map, 33
Full-Text Indexing Wizard, 25-32
overview, 25
populating, 35-39
management
backups, 39-40
logs, 40
overview, 39
SQL Profiler events, 41-42
system procedures, 42-43
overview, 19
setup and configuration, 19-21
Adobe PDF filter, 209

advanced search techniques, 239-240

alphabets, 102

ALTER DATABASE statement, 133

ALTER FULLTEXT CATALOG statement, 23,
37

ALTER FULLTEXT INDEX statement, 28,
35-37, 39, 146, 152-153

ALTER FULLTEXT STOPLIST statement, 153,
156

analysis paralysis, 2

AND NOT operator, 62, 67, 86, 93

AND operator, 61, 67, 86, 93

apartment threaded, 209

apostrophes, 87

ar value, 110

Arabic, 102, 106

Article_Content column, 71, 123

Article_Content data, 123

Article_Content data type, 120

Article_Content XML data, 123

<article> tags, 123

AS DEFAULT option, 23

AST (abstract syntax tree), 88

ATL (Active Template Library), 210

AUTO option, 34-35

B
BACKUP DATABASE statement, 39

backups, 39-40
bag of words approach, 74
Berry, Michel W., 16
bg value, 110
bidirectional writing, 103-104
bin subdirectory, 232
binary large object (BLOB) data
defined, 257
indexing
character large object (CLOB) data,
120-122
FILESTREAM BLOB data, 130-138
large object (LOB) data, 120
OpenSgqlFilestream API, 139-144 275

276

INDEX

overview, 119-129

XML LOB data, 122-126
bit parameter, 169
BLOB. Seebinary large object data
bn value, 110
BOL (Books Online), 20
Books Online (BOL), 20
Books table, 31, 33
Boolean operators, 45, 60-61
Boolean searches, 60-63
braces {}, 87
bricks, 7
Browne, Murray, 16
bugs, 99
byte array, 141-142

H
cavalue, 110
Callback method, 143
calling procedure, 82-84
capitalization, 103-104
c.Article_Content column, 50
case sensitivity, 180-181
catalog rebuild and reorganization, 37-38
catalog views
defined, 257
full-text catalogs, 197
full-text index metadata, 198-201
stoplists, 202-203
supported languages and document
types, 204-205
c.Commentary column, 50
CHANGE_TRACKING option, 35
change-tracking population, 37
char data type, 108
character large object (CLOB) data, 120-122,
257
character strings, 102
Chinese character string, 102
Chinese language, 99
Chinese word breaker, 102
Chinese words, 179
class identifier (CLSID), 213
clean_up property, 43
Clear stoplist option, 149
client applications
hit highlighting
calling procedure, 82-84
overview, 75
procedure, 75-81

overview, 10, 75
search engine-style search
defining grammar, 85-87
Extended Backus-Naur Form (EBNF),
87-88
Google-style queries, converting, 94
iFTS queries, generating, 91-93
Irony library, implementing grammar
with, 88-90
overview, 84-85
querying with new grammar, 94-96
CLOB (character large object) data, 120-122,
257
CLSID (class identifier), 213
code page, 108
CoGetClassObject function, 219
CoLoadLibrary function, 219
column rank-multiplier searches, 71-72
column_id column, 186, 189
COM (Component Object Model), 209
comment node delimiters, 167
Commentary column, 71, 79-80, 108,
120-121
Commentary_ID data, 122
compiling custom filters, 229-232
Component Object Model (COM), 209
compound words, 104-105
connect_timeout property, 43
contains() function, 71
CONTAINS FILESTREAM clause, 134
CONTAINS predicate
Boolean searches, 60-63
CONTAINSTABLE function, 69-70
defined, 257
FREETEXT query and, 48
generational searches, 64
overview, 58
phrase searches, 59-60
prefix searches, 63-64
proximity searches, 65-67
weighted searches, 67-69
CONTAINS predicate queries, 162
CONTAINS query, 75, 84-85, 91, 95-96, 162,
173,175, 188
CONTAINSTABLE function, 47, 57, 69-70, 74,
95, 258
CONTAINSTABLE query, 94-95
CONTAINSTABLE search query string, 91
CONTAINSTABLE SQL query, 95

content language, 112
Control Panel, 126
ConvertCP2Wide function, 222, 225-226
ConvertQuery function, 91, 94
cosine method, 273
Cotter, Hilary, 208
crawl, 11, 258
CREATE DATABASE statement, 133
CREATE FULLTEXT CATALOG statement,
23-24
CREATE FULLTEXT INDEX statement, 23,
33-35, 53, 146, 152
CREATE FULLTEXT STOPLIST statement,
152
CREATE TABLE statement, 108, 114, 134
Createlnstance class, 215-216
CTeXFilter class, 215-216, 220-221, 223
CTeXFilterCF class, 215-217, 219-220, 222
CTeXFilterCF::AddRef method, 217
CTeXFilterCF::CreateInstance method, 216
CTeXFilterCF::Querylnterface method, 217
CTeXFilterCF::Release methods, 217
CTeXFilter::GetChunk method, 225
CTeXFilter::GetText method, 226
CTeXFilter::Init method, 223
currency, 54
custom filters
compiling, 229-232
design, 214
filter class, 220-229
filter class factory, 215-219
installing, 229-232
interfaces, 211-214
overview, 209-211
testing, 232-234

D

Damerau-Levenshtein Edit Distance, 249,
258

data_timeout property, 43

database management system (DBMS), 4

Database subdirectory, 267

DATABASEPROPERTYEX function, 21

databases, 1

DataGridView control, 94, 139

dates, 54

db_owner role, 22

DBMS (database management system), 4

dbo user name, 22

INDEX

dbo.Add_Stopwords procedure, 153, 155,
157,161

dbo.Book table, 49, 53, 94-95, 114-115, 120,
128, 135, 152, 161-162, 189

dbo.Book_Denorm table, 114

dbo.Commentary column, 120

dbo.Commentary table, 71, 78-79, 108, 120,
122-123

dbo.Contributor_Birth_Place table, 71

dbo.Dictionary table, 241

dbo.GetNGrams SQL CLR function, 250

dbo.GetTriGramMatches function, 251-254

dbo.GetTriGramMatches_Distance function,
254

dbo.LCS function, 248

dbo.NYSIIS function, 246-247

dbo.ScoreLCS function, 248

dbo.Stoplist_ID function, 151

dbo.Surnames table, 245-246

dbo.Surnames_TriGrams table, 251-252

dbo.Upgrade_Noisewords procedure,
157-158, 161

dbo.Validate_Thesaurus_File procedure, 171

dbo.Xml _Lang Code table, 109

de value, 110

Delete all stopwords option, 149

DELETE option, 131

DELETE statement, 136-137

Delete stopword option, 148

deletions, 249

demotic alphabet, 101

Description column, 71

diacritic marks, 105

diacritics sensitivity, 167, 258

<diacritics_sensitive> element, 167-172, 180

Dice’s Coefficient, 258

DIFFERENCE function, 244

DISABLE clause, 37

display_term column, 186, 188-189

Distance column, 242

DIlICanUnloadNow function, 211, 218

DIIGetClassObject function, 211, 216, 219

DIlIMain method, 218

DIIRegisterServer function, 211

DllUnregisterServer function, 211

DMFs. See dynamic management functions

DMVs. See dynamic management views

.doc extension, 128

Docld (Document ID), 33, 258

277

278

INDEX

document, 258
document vector representation, 273
document_count column, 186, 189
document_id column, 186, 190
documents as vectors, 269-273
DoMarkup routine, 229
dot product, 272
DROP clause, 37
DROP FULLTEXT CATALOG statement, 24
DROP FULLTEXT INDEX statement, 32
Dutch word breaker, 104
dynamic management functions (DMFs)
accessing full-text index entries, 189-190
defined, 258
full-text index, 186-188
parsing text, 188-189
dynamic management views (DMVs)
defined, 258
retrieving population information,
191-195
services and memory usage, 195-196

E
E_error code, 216
East Asian language, 126
EatBraces function, 223, 229
EatLine function, 223, 229
EBNF (Extended Backus-Naur Form), 87-88
edit distance, 240, 249-259
ENABLE clause, 35, 37
en-GB value, 110
English word breaker, 104
English_Stopwords stoplist, 161
en-US value, 110
es value, 110
ExecuteQuery method, 94-95
exist() method, 71
EXISTS predicate, 46
expansion sets, 173-174, 259, 262-263
expansion_type column, 188
<expansion> element, 167
expansions, 165
Extended Backus-Naur Form (EBNF), 87-88

F
false conjugates, 53
false friends, 53
filegroups, 29
FilePath column, 141
files, thesaurus
editing and loading, 167-172

expansion sets, 173-174
overview, 165-167
filestream, 259
FILESTREAM, xml data, 119
FILESTREAM access, 119
FILESTREAM attribute, 114, 120, 130, 134
FILESTREAM BLOB data
efficiency advantages, 130-132
FILESTREAM requirements, 132-135
overview, 130
storage considerations, 137-138
T-SQL access, 135-137
FILESTREAM option, 128, 130
filtdump.exe tool, 233
filter class, 220-229
filter class factory, 215-219
filter daemon host process, 11, 207, 259
FILTER_E_END_OF_CHUNKS status, 225
filters
custom
compiling, 229-232
design, 214
filter class, 220-229
filter class factory, 215-219
interfaces, 211-214
overview, 209-211
testing, 232-234
defined, 259
gatherer handler, 235
standard, 207-208
third-party, 208-209
word breakers, 236
filtreg.exe tool, 232
F-measure, 15
FORMSOF operator, 64
FORMSOF(FREETEXT, ...) option, 188
fr value, 110
fragments, 201
FREETEXT predicate, 45, 47-51, 64, 67,
259, 261
FREETEXT query, 48, 58, 75-77, 79, 81, 84
FREETEXTTABLE function, 47-51, 57, 67, 69,
72,74, 259
French language, 103
FROM clause, 80
fsutil.exe command-line utility, 135
FT:Crawl Aborted event, 41
FT:Crawl Started event, 41
FT:Crawl Stopped event, 41
FTS. See SQL Server full-text search (FTS)

full population, 35-36
Full Text Catalogs folder, 21
full-text catalog, 259
Full-Text Catalog Properties window, 31
Full-Text Catalog Wizard, 21-23
full-text catalogs
CREATE FULLTEXT CATALOG statement,
23-24
Full-Text Catalog Wizard, 21-23
listing, 197
overview, 21
upgrading, 24-25
full-text filter daemon host, 20
Full-Text Index Properties window, 150
full-text indexes
crawl process, 41
CREATE FULLTEXT INDEX statement,
33-35
defined, 259
Docld map, 33
dynamic management functions (DMFs),
186-188
Full-Text Indexing Wizard, 25-32
metadata, 198-201
overview, 10, 25
populating
additional index population options, 37
catalog rebuild and reorganization,
37-38
full population, 35-36
incremental population, 36
overview, 35
scheduling populations, 38-39
update population, 37
Full-Text Indexing Wizard, 25-32, 35, 38
Full-text query processor, 10
full-text search, 260
full-text search (FTS). See SQL Server full-text
search (FTS)
Full-Text Stoplist Properties window, 148
fuzzy search, 239, 260

G
gatherer, 235, 260
gender rules, 107
generational forms, 11, 106
generational searches, 64, 260
Gerdemann, Dale, 112
German language, 104

INDEX

GET_FILESTREAM_TRANSACTION_
CONTEXT function, 141

GetChar function, 223, 227-228

GetChunk method, 221, 225-226, 233

GetDictionary procedure, 241

GetFile method, 141-142

GetMarkup function, 223, 227-228

GetMatch procedure, 241-243

GetSuggestions procedure, 241-242

GetText method, 221, 226-229, 233, 236

global thesauruses, 176-177

Google, 7

Google-style queries, 94

grammar, 85

Grammar class, 89

group_id column, 188

guvalue, 110

GUID constant, 220

GUIDGEN utility, 220

H
hamming distance, 240, 260
he value, 110
hi value, 110
hit highlighting
calling procedure, 82-84
overview, 75
procedure, 75-81
hits, 6
hr value, 110
.htm extension, 128
HTML documents, 111-112
.html extension, 128
hyphenation, 53, 55, 104-105

|

IClassFactory interface, 211-213, 215-216,
218

IClassFactory: :LockServer method, 213
IClassFactory::Createlnstance method, 213
ID attribute, 168
id value, 110
ideographic symbols, 101
IFilter interface, 210-213, 221, 234-236
IFilter::BindRegion method, 214
IFilter::GetChunk method, 213
IFilter::GetText method, 214
IFilter::GetValue method, 214
IFilter::Init method, 213
iFilters, 127, 260

279

INDEX

iFilterShop, 208
ifilttst.exe filter, 234
iFTS (Integrated Full-Text Search)
architecture, 9-13
indexing process, 11
overview, 9-11
query process, 11-13
catalog views
full-text catalogs, 197
full-text index metadata, 198-201
overview, 197
stoplists, 202-203
supported languages and document
types, 204-205
crawler, 40
defined, 260
dynamic management functions (DMFs),
186-190
dynamic management views (DMVs),
191-196
overview, 185
queries, 91-93
transparency and, 185
iFTS_Books database, 46, 71, 94, 109,
113-114, 178, 200, 208, 241,
267-268
iFTS_Books installation scripts, 267
IIS (Internet Information Server) extensions,
81
image data type, 120
Import full-text indexed data, 24
IN PATH clause, 23
incremental population, 36
index reorganization, 38
indexers, 10
indexing
BLOBs
character large object (CLOB) data,
120-122
FILESTREAM BLOB data, 130-138
large object (LOB) data, 120
OpenSqlFilestream API, 139-144
overview, 119-129
XML LOB data, 122-126
methodologies, 106
overview, 11
stoplists, 161-162
Indexing Service, 4
INFLECTIONAL form, 64

inflectional forms, 260
inflectional term generation, 64
information retrieval scientists, 6
Information Technology (IT), 119
INSERT statement, 136
insertions, 249
installing

custom filters, 229-232

protocol handler, 235

word stemmers, 236
InstanceCount variable, 217
int column, 33
int LCID parameter, 169
int primary key, 26, 34
int values, 33
Integrated Full-Text Search. SeeiFTS
Intellisophic, 73
InterlockedDecrement function, 217
InterlockedIncrement function, 217
Internet Information Server (IIS) extensions,

81

inverted index, 8, 260
IPersist* interface, 213
IPersistFile interface, 211-213, 221, 224
IPersistFile::GetCurFile method, 213
IPersistFile::IsDirty method, 213
IPersistFile::Load method, 213
IPersistFile::Save method, 213
IPersistFile::SaveCompleted method, 213
IPersist::GetClassID method, 213
IPersistStorage interface, 211-212
IPersistStream interface, 211-212
Irony library, 88-90
Irony.Compiler namespace, 89
is value, 110
ISABOUT operator, 269
IsFulltextEnabled database property, 21
IStemmer interface, 236
IT (Information Technology), 119
it value, 110
IUnknown interface, 212-213, 215-220
IWordBreaker interface, 236

J
javalue, 110
Jaccard Coefficient, 261

K
KEY column, 47, 69
keyword column, 186, 188-189

kn value, 110
ko value, 110

L
language
Chinese, 99
complexity of
accent marks, 105
alphabets, 102
bidirectional writing, 103-104
capitalization, 103-104
compound words, 104-105
gender, 106-107
generational forms, 106
hyphenation, 104-105
nonalphanumeric characters, 105
overview, 101
symbols, 102
token position context, 105-106
East Asian, 126
French, 103
German, 104
storing multilingual data
content language, detecting, 112
HTML documents, 111-112
Microsoft Office documents, 112
overview, 107
plain text, 108
tables, designing for, 112-117
XML, 108-111
written, history of, 100-101
language argument, 51
LANGUAGE clause, 34, 53
Language Code Identifiers (LCIDs), 117
LANGUAGE keyword, 49, 51-56
language parameter, 53
language rules, 53
language_id column, 146
LanguageCompiler object, 94
Languages tab, 126
Language-specific word breakers, 105
large object (LOB) data, 1, 120, 261
latent semantic indexing, 273
LaTeX document, 210
LCIDs (Language Code Identifiers), 117
LCS (longest common subsequence), 247-249
LCS (longest common substring), 248, 261
LIKE predicate, 3
linguistic search, 3
load_os_resources property, 42

INDEX

LOB (large object) data, 1, 120, 261

local thesauruses, 176-177

Jlog extension, 40

logographic systems, 100

logs, 40

longest common subsequence (LCS),
247-249

longest common substring (LCS), 248, 261

It value, 110

lv value, 110

M
MANUAL change tracking, 37
MANUAL option, 35
master merge, 11, 23, 38
master system database, 21
max data types, 4
memory usage, 195-196
MERGE statement, 136
Messages tab, 59
<meta name = "MS.LOCALE" content =
"DE"/> tag, 112
Microsoft Foundation Class (MFC) library,
210
Microsoft Office documents, 112
Microsoft Search Thesaurus, 168
ml value, 110
model system database, 21
mr value, 110
ms value, 110
MS.LOCALE meta tag, 111
MSSQL\FTDATA directory, 145
MSSQL\FTData subdirectory, 165-166, 169
MSSQL\FTData\FTNoiseThesaurusBak
subdirectory, 157, 169
MSSQL\Log directory, 40
multilingual searching
language complexity
accent marks, 105
alphabets, 102
bidirectional writing, 103-104
capitalization, 103-104
compound words, 104-105
gender, 106-107
generational forms, 106
hyphenation, 104-105
nonalphanumeric characters, 105
overview, 101
symbols, 102
token position context, 105-106

281

INDEX

overview, 99-100

storing multilingual data
content language, detecting, 112
HTML documents, 111-112
Microsoft Office documents, 112
overview, 107
plain text, 108
tables, designing for, 112-117
XML, 108-111

written language, 100-101

N
name searching, 243-244
national character large object data
(NCLOB), 120, 261
nchar data type, 108, 120, 134
NCLOB (national character large object
data), 120, 261
near neighbors, 240
NEAR operator, 48, 66
New Full-Text Stoplist window, 147
New York State Identification and
Intelligence System (NYSIIS),
245-247, 261
NFTS file properties filter, 127
n-grams, 250-255, 261
nl value, 110
NO POPULATION clause, 35
no value, 110
NoFish_Stoplist procedure, 147, 149,
151-153, 157, 161, 163-164
noise word list, 145
Noise Word lists, 157-161
noise words, 261, 263
nonalphanumeric characters, 105
nonrecursion, 181
NT File System (NTFS)
properties, 127
schemas, 5
ntext data type, 120
NTFS (NT File System)
properties, 127
schemas, 5
numbers, 54

nvarchar data type, 108, 119-122, 134-135,

137,144

nvarchar(max) data type, 119-122, 135, 137,

144, 161

NYSIIS (New York State Identification and
Intelligence System), 245-247, 261

0
Object Explorer window, 21
Obiject File System (OFS), 5
OBJECT_ID system function, 151
occurrence column, 188
occurrence_count column, 186, 190
occurrences, defined, 261
OCR (optical character recognition), 127
OFF option, 35
Office documents, 112
Office Open XML (OOXML), 2
OFS (Object File System), 5
Okapi BM25, 261
ON clause, 34
ON FILEGROUP clause, 23
OOXML (Office Open XML), 2
OPENROWSET function, 161
OpenSqlFilestream API, 139-144
OpenSqlFilestream setting, 138
operating system (OS), 208
operators
custom search engine, 86
SQL Server 2005 Remote Scan query
operator, 13
optical character recognition (OCR), 127
OR keyword, 85
OR operator, 61, 86
OS (operating system), 208
overlapping rules, 182

P
pavalue, 110
Parentheses, 87
parsing text, 188-189
<pat> tag, 171-175, 182
PathName() method, 138, 141
PATINDEX function, 80
PAUSE POPULATION option, 37
pause_indexing property, 42
.pdf extension, 128
Perform full population, 25
Personal Storage Table (PST), 5
phonemes, 101
phonetic samples, 268
phonetic search

defined, 261

NYSIIS, 245-247

overview, 244

Soundex, 244-245
“phrase” operator, 86

phrase searches
with CONTAINS predicate, 59-60
defined, 262

phrase_id column, 188

pictograms, 100

pipe symbol, 87

plain text, 108

plus sign (+), 88

polysemy, 15-16

populating full-text indexes
additional options, 37
catalog rebuild and reorganization, 37-38
full population, 35-36
incremental population, 36
overview, 35
scheduling populations, 38-39
update population, 37

population, defined, 262

.ppt extension, 128

precision, 13

predicates, defined, 46

prefix searches
with CONTAINS predicate, 63-64
defined, 262

protocol handler, 11, 235, 262

proximity searches
with CONTAINS predicate, 65-67
defined, 262

PST (Personal Storage Table), 5

ptvalue, 110

pt-BR value, 110

public facing, 2

Publication_Name column, 71

Q

quadgrams, 250
queries
column rank-multiplier searches, 71-72
CONTAINS predicate
Boolean searches, 60-63
CONTAINSTABLE function, 69-70
generational searches, 64
overview, 58
phrase searches, 59-60
prefix searches, 63-64
proximity searches, 65-67
weighted searches, 67-69
FREETEXT predicate, 47-51
FREETEXTTABLE function, 47-51
LANGUAGE keyword, 51-56

INDEX

overview, 45-47

stoplists, 162-164

taxonomy searches, 73-74

text mining, 73-74

top_n_by_rank argument, 56-57

XQuery contains() function, 71
query process, 11-13
Querylnterface method, 217
QUOTENAME function, 157

R
RANK column, 47, 66, 69
RANK values, 69
REBUILD clause, 23, 38
recall, 13
Regional and Language Options, 126
Relational File System (RFS), 5
ReloadDictionary procedure, 241
REORGANIZE clause, 23
REPLACE function, 161
replacement sets, 175-176, 262
<replacement> element, 167, 175
replacements, 165, 249
Reset your full-text catalogs, 25
resource_usage property, 43
RESTORE DATABASE statement, 39
RESUME POPULATION clauses, 37
RFS (Relational File System), 5
ro value, 110
rowversion column, 36-37
.rtf extension, 128
ru value, 110

S
S_OK code, 216
sample database, installing, 267268
Sample.tex document, 233
Sample.tex file, 234
Sample.tex.dmp file, 234
Sample.tex.log file, 234
scheduling populations, 38-39
SDK (Software Development Kit), 211
search engine-style search
Extended Backus-Naur Form (EBNF),
87-88
Google-style queries, converting, 94
grammar
defining, 85-87
implementing with Irony library, 88-90
querying with new, 94-96

283

284

INDEX

iFTS queries, generating, 91-93
overview, 84-85
search quality
measuring, 13-15
overview, 12
synonymy and polysemy, 15-16
search results, 6
search techniques, 239, 256
searches, vector-space, 269-273
SearchGrammar class, 89-90, 94-95
SearchSQL, 45
SELECT clause, 79
SELECT queries, 120, 131, 135
semantics, 85, 273
serveradmin fixed server role, 169
services, DMVs, 195-196
SET CHANGE_TRACKING clause, 37
SET STOPLIST clause, 37, 153
setup.bat batch file, 267-268
signatures, 73
simple terms, 262
SimpleCommentaryHighlight procedure, 78
sk value, 110
sl value, 110
Software Development Kit (SDK), 211
Soundex, 244-245, 262
sp_configure setting, 133
sp_configure system stored procedure, 53, 60
sp_fulltext_database system stored
procedure, 21
sp_fulltext_key_mappings procedure, 43
sp_fulltext_load_thesaurus_file procedure,
43
sp_fulltext_pending changes procedure, 43
sp_fulltext_service procedure, 42-43
sp_help_fulltext_system_components
procedure, 43
 HTML tag, 79
special_term column, 164, 188
spelling suggestion and correction, 239-242
SQL CLR assembly, 241
SQL CLR function, 249
SQL FTS indexer, 127
SQL Full-text Filter Daemon Launcher
service, 20
SQL Profiler events, 41-42
SQL Server 2005 Remote Scan query
operator, 13

SQL Server 2008 iFTS-Supported Languages,
107
SQL Server Copy Database wizard, 24
SQL Server full-text search (FTS)
goals of, 6-7
history of, 4-5
iFTS architecture
indexing process, 11
overview, 9-11
query process, 11-13
mechanics of, 8-9
overview, 1-4
search quality
measuring, 13-15
overview, 12
synonymy and polysemy, 15-16
SQL Server Management Studio (SSMS) GUI
wizards, 19, 25
SQL Server process, 10, 262
SQL Server query processor, 10
SQL Server Transparent Data Encryption
(TDE) option, 138
SqlClient class, 82
sqlcmd command-line utility, 267-268
SqlCommand class, 82
SqlDataReader class, 82
SqlFileStream class, 142
SQLServer:Trace Event Statistics
performance object, 41
sr-Cyrl value, 110
sr-Latn value, 110
SSMS (SQL Server Management Studio) GUI
wizards, 19, 25
SSMS Create Full-Text Index wizard, 149
standard filters, 207-208
Standard Template Library (STL), 210
START FULL POPULATION clause, 35
START INCREMENTAL POPULATION
clause, 36
START UPDATE POPULATION clause, 37
static ternary search tree, 241
stemmers, 11
STL (Standard Template Library), 210
STOP POPULATION clause, 37
STOPLIST option, 34-35
stoplists
behavior
indexing, 161-162

overview, 161
queries, 162-164
custom, 147-150
defined, 10, 262
Full-Text Indexing Wizard, 29
managing, 150-157
revealing, 202-203
system, 145-146
thesauruses and, 182
upgrading Noise Word lists to, 157-161
stopwords, 59, 145, 164, 263
Storage folder, 21
storing, multilingual data
content language, detecting, 112
HTML documents, 111-112
Microsoft Office documents, 112
overview, 107
plain text, 108
tables, designing for, 112-117
XML, 108-111
string characters, 88
string similarity metrics, 247-255
<sub> tags, 173-175
suffix searches, 64
supported languages and document types,
viewing, 204-205
Surname_NYSIIS column, 246
svvalue, 110
symbols, writing, 102
synonymy, 15-16
syntax, 85
sys.columns catalog view, 200
sys.dm_fts_active_catalogs DMV, 191
sys.dm_fts_hosts DMV, 195
sys.dm_fts_index_keywords DMF, 186,
189-190
sys.dm_fts_index_keywords_by_document
DMF, 80, 161, 186, 190
sys.dm_fts_index_populations DMV, 194
sys.dm_fts_memory_buffers DMV, 196
sys.dm_fts_memory_pools DMV, 196
sys.dm_fts_outstanding batches DMV, 193
sys.dm_fts_parser DMF, 54, 75, 80-81, 163,
174,176, 181, 188
sys.dm_fts_population_ranges DMV, 195
sys.fulltext_catalog_freelist internal table,
32
sys.fulltext_catalogs catalog view, 197

INDEX

sys.fulltext_document_types catalog view,
34, 128, 204

sys.fulltext_index_catalog usages catalog
view, 199-200

sys.fulltext_index_columns catalog view, 200

sys.fulltext_index_fragments catalog view,
201

sys.fulltext_index_map internal table, 32

sys.fulltext_indexes catalog view, 198

sys.fulltext_languages catalog view, 34, 204

sys.fulltext_stoplists catalog view, 150, 198,
203

sys.fulltext_stopwords catalog view, 151, 156,
203

sys.fulltext_system_stopwords catalog view,
146, 150-151, 202

sys.internal_tables catalog view, 32

sys.sp_fulltext_load_thesaurus_file
procedure, 20, 169-170, 183

system procedures, 42-43

SYSTEM stoplist, 198

system stoplists, 145-146

System.Data.SqlTypes.SqlFileStream class,
139

T

ta value, 110

Table Valued Function, 13

tables, multilingual data storage, 112-117

taxonomy searches, 73-74

TDE (SQL Server Transparent Data
Encryption) option, 138

te value, 110

tempdb database, 21, 170

term operator, 75, 78, 80-82, 84-86, 93

term* operator, 86

ternary search tree, 239, 263

TeX documents, 210

TeXFilt.dll assembly, 230-232

TeXFilt.reg file, 231

text, storing, 108

text data type, 120

text mining, 73-74

TextPad, 168

th value, 110

THESAURUS form, 64

thesaurus term generation, 64

<thesaurus> element, 168-172

285

INDEX

thesauruses
accent and case sensitivity, 180-181
defined, 10, 263
general recommendations, 183
global and local, 176-177
nonrecursion, 181
overlapping rules, 182
overview, 165
replacement sets, 175-176
stoplists, 182
thesaurus files
editing and loading, 167-172
expansion sets, 173-174
overview, 165-167
translation, 179-180
word bags, 180
third-party filters, 112, 208-209
TIFF image, 127
timestamp data type, 36
title element, 71
token position context, 105-106
tokenization, 270
tokenizing, 8
tokens, 102, 105, 117, 263
top_n_by_rank argument, 56-57, 69
Trace Properties, 41
tracking option, 28
transform noise words server option, 60
translation, 179-180
transparency, 185
transpositions, 249
trigrams, 250
Triplehop company, 73
ts<language>.xml convention, 169
tsenu.xml file, 167
tsglobal.xml file, 170, 172, 176
tsneu.xml file, 169, 170, 177
T-SQL
FILESTREAM BLOB data, 135-137
statements, 25
.txt extension, 128-137
type column, 127, 263
TYPE COLUMN clause, 34

U
UDF (user-defined function), 151
UI (user interface), 141
uk value, 110
UngetChar function, 223, 228

uniqueidentifier column, 33

uniqueidentifier ROWGUIDCOL column,
134

update population, 37

UPDATE statement, 136

update_languages property, 42

upgrading full-text catalogs, 24-25

ur value, 110

user interface (UI), 141

user-defined function (UDF), 151

v
varbinary column, 26, 108
varbinary data, 119
varbinary documents, 111
varbinary(max) data type, 26, 53, 114, 119,

120, 123, 127-128, 130, 134-135, 138

varchar data type column, 33, 108
varchar(max) data type, 119-122, 144
vector-space searches, 269-273
verify_signature property, 42

vi value, 110

.vsd extension, 128

w
W3C (World Wide Web Consortium), 168
wanderworts, 53
WebBrowser control, 82
WEIGHT value, 69
weighted harmonic mean, 15
weighted searches, 67-69, 261, 263
WHERE clause, 46, 53, 67, 115
whitespace, 102
wildcard asterisk (*), 60, 63
Windows File System, 5
Windows Future Storage (WinFS), 5
Windows System Monitor, 41
Windows\System32 directory, 230
WinFS (Windows Future Storage), 5
WITH ACCENT_SENSITIVITY clause, 38
WITH clause, 34
WITH STOPLIST = OFF clause, 146
WITH STOPLIST = SYSTEM clause, 146
wizard, 29
word bags, 180
word breakers, 101, 117, 236, 259, 263
word stemmers, 236, 263
World Wide Web Consortium (W3C), 168
Write() method, 138

X
XHTML, 2
xls extension, 128
XML, storing, 108-111
xml column, 53
xml data type, 120, 122-124, 173
xml data type content, 207
xml data type instance, 183

INDEX

xml extension, 128

XML LOB data, 122-126

<XML> element, 168-171, 183
xml:lang = "ja" attribute, 109
xml:lang attribute, 108, 123, 125
xml:lang language identifier tags, 123
XQuery contains() function, 71

287

