
Pro Full-Text Search in
SQL Server 2008

■ ■ ■

Michael Coles with
Hilary Cotter

www.allitebooks.com

http://www.allitebooks.org

Pro Full-Text Search in SQL Server 2008

Copyright © 2009 by Michael Coles and Hilary Cotter

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1594-3

ISBN-13 (electronic): 978-1-4302-1595-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence

of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick

Technical Reviewer: Steve Jones

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,

Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Denise Santoro Lincoln

Copy Editor: Benjamin Berg

Associate Production Director: Kari Brooks-Copony

Production Editor: Laura Esterman

Compositor/Artist: Octal Publishing, Inc.

Proofreader: Patrick Vincent

Indexer: Broccoli Information Management

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,

New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,

Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit

http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.

eBook versions and licenses are also available for most titles. For more information, reference our Special

Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution

has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly

by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

www.allitebooks.com

http://www.allitebooks.org

For Devoné and Rebecca

—Michael

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 SQL Server Full-Text Search . 1

■CHAPTER 2 Administration . 19

■CHAPTER 3 Basic and Advanced Queries . 45

■CHAPTER 4 Client Applications . 75

■CHAPTER 5 Multilingual Searching . 99

■CHAPTER 6 Indexing BLOBs . 119

■CHAPTER 7 Stoplists . 145

■CHAPTER 8 Thesauruses . 165

■CHAPTER 9 iFTS Dynamic Management Views and Functions 185

■CHAPTER 10 Filters. 207

■CHAPTER 11 Advanced Search Techniques . 239

■APPENDIX A Glossary . 257

■APPENDIX B iFTS_Books Database . 265

■APPENDIX C Vector-Space Searches . 269

■INDEX . 275

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 SQL Server Full-Text Search . 1

Welcome to Full-Text Search . 1

History of SQL Server FTS. 4

Goals of Search . 6

Mechanics of Search . 8

iFTS Architecture . 9

Indexing Process. 11

Query Process . 11

Search Quality . 12

Measuring Quality . 13

Synonymy and Polysemy . 15

Summary . 16

■CHAPTER 2 Administration . 19

Initial Setup and Configuration . 19

Enabling Database Full-Text Support . 21

Creating Full-Text Catalogs . 21

The New Full-Text Catalog Wizard . 21

The CREATE FULLTEXT CATALOG Statement 23

Upgrading Full-Text Catalogs . 24

Creating Full-Text Indexes . 25

The Full-Text Indexing Wizard . 25

The DocId Map . 33

The CREATE FULLTEXT INDEX Statement . 33

www.allitebooks.com

http://www.allitebooks.org

viii ■C O N T E N T S

Full-Text Index Population . 35

Full Population. 35

Incremental Population . 36

Update Population. 37

Additional Index Population Options . 37

Catalog Rebuild and Reorganization . 37

Scheduling Populations . 38

Management . 39

Backups . 39

Logs . 40

SQL Profiler Events . 41

System Procedures. 42

Summary . 43

■CHAPTER 3 Basic and Advanced Queries . 45

iFTS Predicates and Functions . 45

FREETEXT and FREETEXTTABLE . 47

Adding a Language Specification . 51

Returning the Top N by RANK . 56

CONTAINS . 58

Phrase Searches . 59

Boolean Searches . 60

Prefix Searches . 63

Generational Searches . 64

Proximity Searches . 65

Weighted Searches. 67

CONTAINSTABLE Searches . 69

Advanced Search Topics . 71

Using XQuery contains() Function . 71

Column Rank-Multiplier Searches . 71

Taxonomy Search and Text Mining . 73

Summary . 74

■CHAPTER 4 Client Applications . 75

Hit Highlighting . 75

The Procedure . 75

Calling the Procedure . 82

Search Engine–Style Search . 84

Defining a Grammar . 85

www.allitebooks.com

http://www.allitebooks.org

■C O N T E N T S ix

Extended Backus-Naur Form . 87

Implementing the Grammar with Irony. 88

Generating the iFTS Query . 91

Converting a Google-Style Query . 94

Querying with the New Grammar . 94

Summary . 96

■CHAPTER 5 Multilingual Searching . 99

A Brief History of Written Language. 100

iFTS and Language Complexity . 101

Writing Symbols and Alphabets . 102

Bidirectional Writing and Capitalization . 103

Hyphenation and Compound Words . 104

Nonalphanumeric Characters and Accent Marks 105

Token Position Context. 105

Generational Forms . 106

Gender . 106

Storing Multilingual Data. 107

Storing Plain Text . 108

Storing XML . 108

Storing HTML Documents . 111

Storing Microsoft Office Documents. 112

Storing Other Document Types . 112

Detecting Content Language . 112

Designing Tables to Store Multilingual Content . 112

Summary . 118

■CHAPTER 6 Indexing BLOBs . 119

LOB Data . 120

Character LOB Data . 120

XML LOB Data . 122

Binary LOB Data . 127

FILESTREAM BLOB Data . 130

Efficiency Advantages . 130

FILESTREAM Requirements . 132

T-SQL Access . 135

Storage Considerations . 137

OpenSqlFilestream API . 139

Summary . 144

www.allitebooks.com

http://www.allitebooks.org

x ■C O N T E N T S

■CHAPTER 7 Stoplists . 145

System Stoplists . 145

Creating Custom Stoplists. 147

Managing Stoplists . 150

Upgrading Noise Word Lists to Stoplists . 157

Stoplist Behavior . 161

Stoplists and Indexing . 161

Stoplists and Queries . 162

Summary . 164

■CHAPTER 8 Thesauruses . 165

Thesaurus Files . 165

Editing and Loading Thesaurus Files . 167

Expansion Sets . 173

Replacement Sets . 175

Global and Local Thesauruses . 176

A Practical Example . 177

Translation . 179

Word Bags . 180

Additional Considerations . 180

Accent and Case Sensitivity . 180

Nonrecursion . 181

Overlapping Rules. 182

Stoplists . 182

General Recommendations . 183

Summary . 183

■CHAPTER 9 iFTS Dynamic Management Views and Functions 185

iFTS and Transparency . 185

DMVs and DMFs. 186

Looking Inside the Full-Text Index . 186

Parsing Text. 188

Accessing Full-Text Index Entries . 189

Retrieving Population Information . 191

Services and Memory Usage . 195

www.allitebooks.com

http://www.allitebooks.org

■C O N T E N T S xi

Catalog Views . 197

Listing Full-Text Catalogs . 197

Retrieving Full-Text Index Metadata . 198

Revealing Stoplists . 202

Viewing Supported Languages and Document Types 204

Summary . 205

■CHAPTER 10 Filters . 207

Introducing Filters . 207

Standard Filters. 207

Third-Party Filters . 208

Custom Filters . 209

Custom Filter Development . 210

Filter Interfaces . 211

Custom Filter Design . 214

Filter Class Factory . 215

Filter Class . 220

Compiling and Installing the Filter . 229

Testing the Filter . 232

Gatherer and Protocol Handler . 235

Word Breakers and Stemmers . 236

Summary . 237

■CHAPTER 11 Advanced Search Techniques. 239

Spelling Suggestion and Correction. 239

Hamming Distance . 240

Spelling Suggestion Implementation . 241

Name Searching. 243

Phonetic Search . 244

Soundex . 244

NYSIIS. 245

String Similarity Metrics . 247

Longest Common Subsequence . 247

Edit Distance . 249

N-Grams . 250

Summary . 256

www.allitebooks.com

http://www.allitebooks.org

xii ■C O N T E N T S

■APPENDIX A Glossary . 257

■APPENDIX B iFTS_Books Database . 265

Installing the Sample Database . 267

Installing the Phonetic Samples . 268

Sample Code . 268

■APPENDIX C Vector-Space Searches . 269

Documents As Vectors . 269

■INDEX . 275

www.allitebooks.com

http://www.allitebooks.org

xiii

About the Authors

■MICHAEL COLES is a Microsoft MVP with nearly 15 years’ experience in

SQL database design, T-SQL development, and client-server application

programming. He has consulted in a wide range of industries, including

the insurance, financial, retail, and manufacturing sectors, among others.

Michael’s specialty is developing and performance-tuning high-profile

SQL Server–based database solutions. He currently works as a consultant

for a business intelligence consulting firm. He holds a degree in infor-

mation technology and multiple Microsoft and other certifications.

Michael has published dozens of technical articles online and in print magazines,

including SQL Server Central, ASPToday, and SQL Server Standard. Michael is the author of

the books Pro SQL Server 2008 XML (Apress, 2008) and Pro T-SQL 2008 Programmer’s Guide

(Apress, 2008), and he is a contributor to Accelerated SQL Server 2008 (Apress, 2008). His current

projects include speaking engagements and researching new SQL Server 2008 encryption and

security functionality.

■HILARY COTTER is a SQL Server MVP with more than 20 years’ IT experi-

ence working for Fortune 500 clients. He graduated from University of

Toronto in applied science and engineering. He is the author of a book

on SQL Server replication and has written numerous white papers and

articles on SQL Server and databases.

xv

About the Technical Reviewer

■STEVE JONES, a Microsoft MVP, is the founder and editor of SQLServer-

Central, the largest SQL Server community on the Internet. He has been

working with SQL Server since 1991 and has published numerous books

and articles on all aspects of the platform. He lives in Denver with his

wife, three kids, three dogs, three horses, and lots of chores.

xvii

Acknowledgments

There are several people without whom this book would not be a reality. We’d like to start by

thanking our editor, Jonathan Gennick. Thanks to Steve Jones, our technical reviewer and fellow

MVP, for keeping us honest. Thank you to project manager Denise Santoro Lincoln for managing

this project and keeping the lines of communication open between the team members. Also

thanks to Sofia Marchant for assisting with project management. We’d also like to thank

Benjamin Berg and Laura Esterman for making this book print-ready.

Special thanks go to Roman Ivantsov, inventor of the Irony.NET compiler construction kit,

for assisting us in the development of the Irony.NET code sample. And special thanks also to

Jonathan de Halleux, creator of the .NET ternary search tree code that’s the basis for our spelling

suggestion code samples.

We’d also like to thank the good folks at Microsoft who provided answers to all our questions

and additional guidance: Alison Brooks, Arun Krishnamoorthy, Denis Churin, Fernando Azpeitia

Lopez, Jacky Chen, Jingwei Lu, Josh Teitelbaum, Margi Showman, Ramanathan Somasundaram,

Somakala Jagannathan, and Venkatraman Parameswaran.

Michael Coles would also like to thank Gayle and Eric Richardson; Donna Meehan; Chris,

Jennifer, Desmond, and Deja Coles; Linda Sadr and family; Rob and Laura Whitlock and family;

Vitaliy Vorona; and Igor Yeliseyev. Most of all, I would like to thank my little angels, Devoné and

Rebecca.

xix

Introduction

Begin at the beginning and go on till you come to the end . . .

—Alice in Wonderland

Linguistic (language-based) searching has long been a staple of web search engines such as

Google and high-end document management systems. Many developers have created custom

utilities and third-party applications that implement complex search functionality similar to

that provided by the most popular search engines. What many people don’t realize immedi-

ately is that SQL Server provides this advanced linguistic search capability out-of-the-box. Full-

Text Search (FTS) has been included with SQL Server since the SQL Server 7 release. FTS allows

you to perform linguistic searches of documents and text content stored in SQL Server data-

bases using standard T-SQL queries. FTS is a powerful tool that can be used to implement

enterprise-class linguistic database searches.

SQL Server 2008 increases the power of FTS by adding a variety of new features that make

it easier than ever to administer, troubleshoot, and generally use SQL Server’s built-in linguistic

search functionality in your own applications. In this book, we’ll provide an in-depth tour of

SQL Server 2008’s FTS features and functionality, from both the server and client perspective.

Who This Book Is For
This book is intended for SQL Server developers and DBAs who want to get the most out of SQL

Server 2008 Integrated Full-Text Search (iFTS). To get the most out of this book, you should

have a working knowledge of T-SQL, as most of the sample code in the book is written in SQL

Server 2008 T-SQL. Sample code is also provided in C# and C++, where appropriate. Although

knowledge of these programming languages is not required, basic knowledge of procedural

programming will help in understanding the code samples.

How This Book Is Structured
This book is designed to address the needs of T-SQL developers who develop SQL Server–based

search applications and DBAs who support full-text search on SQL Server. For both types of

readers, this book was written to act as a tutorial, describing basic full-text search functionality

available through SQL Server, and as a reference to the new full-text search features and func-

tionality available in SQL Server 2008. The following sections provide a chapter-by-chapter

overview of the book’s content.

xx ■I N T R O D U C T I O N

Chapter 1

Chapter 1 begins by putting full-text search functionality in context. We discuss the history of

SQL Server full-text search as well as the goals and purpose of full-text search, and provide an

overview of SQL Server 2008 Integrated Full-Text Search (iFTS) architecture. We also define the

concept of search quality and how it relates to iFTS.

Chapter 2

In Chapter 2, we discuss iFTS administration, setup, and configuration. In this chapter, we

show how to set up and populate full-text indexes and full-text catalogs. We discuss full-text

index change-tracking options and administration via SQL Server Management Studio (SSMS)

wizards and T-SQL statements.

Chapter 3

Chapter 3 introduces iFTS basic and advanced query techniques. We use this chapter to

demonstrate simple FREETEXT-style queries and more advanced CONTAINS-style query options. We

look at the full range of iFTS query styles in this chapter, including Boolean search options,

proximity search, prefix search, generational search, weighted search, phrase search, and other

iFTS search options.

Chapter 4

Chapter 4 builds on the search techniques demonstrated in Chapter 3 and provides demon-

strations of client interaction with the database via iFTS. This chapter will show you how to

implement simple iFTS-based hit highlighting utilities and search engine–style search

interfaces.

Chapter 5

SQL Server iFTS supports nearly 50 different languages right out of the box. In Chapter 5, we

explore iFTS support for multilingual searching. We describe the factors that affect representa-

tion of international character sets and multilingual searches. We also provide best practices

around multilingual searching.

Chapter 6

SQL Server 2008 provides greater flexibility and more options for storing large object (LOB)

data in your databases. Chapter 6 discusses the options available for storing, managing, and

indexing LOB data in your database. In this chapter, we take a look at how SQL Server indexes

LOB data, including use of the new FILESTREAM option for efficient storage and streaming

retrieval of documents from SQL Server and the NTFS file system.

Chapter 7

In Chapter 7, we discuss iFTS stoplists, which help you eliminate useless words from your

searches. We discuss word frequency theory, system stoplists, and creating and managing

custom stoplists.

■I N T R O D U C T I O N xxi

Chapter 8

Chapter 8 provides insight into iFTS thesauruses, with examples of the types of functionality

that can be built using thesaurus expansion and replacement sets, including “word bag” searches,

translation, and error correction. We also discuss factors affecting thesaurus expansion and

replacement, including diacritics sensitivity, nonrecursion, and overlapping rules.

Chapter 9

SQL Server 2008 iFTS provides greater transparency than any prior release of SQL Server FTS.

Chapter 9 explores the new catalog views and dynamic management views and functions, all of

which allow you to explore, manage, and troubleshoot your iFTS installations, full-text indexes,

and full-text queries with greater insight, flexibility, and power than ever before.

Chapter 10

As with prior versions of SQL Server FTS, SQL Server 2008 iFTS depends on external components

known as filters, word breakers, and stemmers. These components are critical to proper indexing

and querying in iFTS. Chapter 10 discusses iFTS filters and other components, including custom

filter creation. In this chapter, we explore creating a sample custom iFTS filter.

Chapter 11

SQL Server iFTS is a great tool for linguistic searches against documents and textual data, but

it’s not optimized for other types of common database searches, such as name-based searching.

In Chapter 11, we explore the world beyond iFTS and introduce fuzzy search technologies, such

as phonetic search and n-grams, which fill the void between exact matches and linguistic full-

text search.

Appendix A

In this book, we introduce several iFTS-related terms that may be unfamiliar to the uninitiated.

We define these words in the body of the text where appropriate, and have included a quick

reference glossary of iFTS-related search terms in Appendix A.

Appendix B

To provide more interesting examples than would be possible using the standard Adventure-

Works sample database, we’ve decided to implement our own database known as iFTS_Books.

This sample database includes the full text of dozens of public domain books in several

languages, and provides concrete examples of the best practices we introduce in this book.

Appendix B describes the structure and design of the iFTS_Books sample database.

Appendix C

Appendix C includes additional information about the mathematics and theory behind vector-

space search, which is implemented in iFTS via weighted full-text searches.

xxii ■I N T R O D U C T I O N

Conventions
To make reading this book an enjoyable experience, and to help readers get the most out of the

text, we’ve adopted standardized formatting conventions throughout.

C# and C++ code is shown in code font. Note that these languages are case sensitive. Here’s

an example of a line of C# code:

while (i < 10)

T-SQL source code is also shown in code font. Though T-SQL is not case sensitive, we’ve

consistently capitalized keywords for readability. Also note that, for readability purposes,

we’ve lowercased data type names in T-SQL code. Finally, following Microsoft’s best practices,

we consistently use the semicolon T-SQL statement terminator. The following demonstrates a

line of T-SQL code:

DECLARE @x xml;

XML code is shown in code font with attribute and element content shown in bold for

readability. Note that some XML code samples and results may have been reformatted in this

book for easier reading. Because XML ignores insignificant whitespace, the significant content

of the XML has not been altered. Here’s an example:

<book published = "Apress">Pro T-SQL 2008 Programmer's Guide</book>

■Note Notes, tips, and warnings are displayed like this, in a special font with solid bars placed over and

under the content.

SIDEBARS

Sidebars include additional information relevant to the current discussion and other interesting facts. Sidebars

are shown on a gray background.

Prerequisites
This book requires an installation of SQL Server 2008 in order to run the T-SQL code samples

provided. Note that the code in this book has been designed specifically to take advantage of

SQL Server 2008 features, and most of the code in the book will either not run on prior versions

of SQL Server, or will require significant modification to work on prior releases. The code samples

provided in the book are designed specifically to run against the iFTS_Books sample database,

available for download from the Apress web site at www.apress.com (see the following section).

We describe the iFTS_Books database and provide installation instructions in Appendix B.

■I N T R O D U C T I O N xxiii

Other code samples provided in the book were written in C# (and C++ where appropriate)

using Visual Studio 2008. If you’re interested in compiling and executing the SQL CLR, client code,

and other sample code provided, we highly recommend an installation of Visual Studio 2008

(with Service Pack 1 installed). Although you can compile the code from the command line, we

find that the Visual Studio IDE provides a much more enjoyable and productive experience.

Some of the code samples may have additional requirements specified in order to use

them; we will identify these special requirements as the code is presented.

Downloading the Code
The iFTS_Books sample database and all of the code samples presented in this book are avail-

able in a single Zip file from the Downloads section of the Apress web site at www.apress.com.

The Zip file is structured so that each subdirectory contains a set of installation scripts or

code samples presented in the book. Installation instructions for the iFTS_Books database

and code samples are provided in Appendix B.

Contacting the Authors
The Apress team and the authors have made every effort to ensure that this book is free from

errors and defects. Unfortunately, the occasional error does slip past us, despite our best efforts.

In the event that you find an error in the book, please let us know! You can submit errors directly

to Apress by visiting www.apress.com, locating the page for this book, and clicking on Submit

Errata. Alternatively, feel free to drop a line directly to the authors at michaelco@optonline.net.

1

■ ■ ■

C H A P T E R 1

SQL Server Full-Text Search

. . . but I still haven’t found what I’m looking for.

—Bono Vox, U2

Full-text search encompasses techniques for searching text-based data and documents. This

is an increasingly important function of modern databases. SQL Server has had full-text search

capability built into it since SQL Server 7.0. SQL Server 2008 integrated full-text search (iFTS)

represents a significant improvement in full-text search functionality, a new level of full-text

search integration into the database engine over prior releases. In this chapter, we’ll discuss

full-text search theory and then give a high-level overview of SQL Server 2008 iFTS function-

ality and architecture.

Welcome to Full-Text Search
Full-text search is designed to allow you to perform linguistic (language-based) searches against

text and documents stored in your databases. With options such as word and phrase-based

searches, language features, the ability to index documents in their native formats (for example,

Office documents and PDFs stored in the database can be indexed), inflectional and thesaurus

generational terms, ranking, and elimination of noise words, full-text search provides a

powerful set of tools for searching your data. Full-text search functionality is an increasingly

important function in modern databases. There are many reasons for this increase in popu-

larity, including the following:

• Databases are increasingly being used as document repositories. In SQL Server 2000 and

prior, storage and manipulation of large object (LOB) data (textual data and documents

larger than 8,000 bytes) was difficult to say the least, leading to many interesting (and

often complicated) alternatives for storing and manipulating LOB data outside the data-

base while storing metadata within the database. With the release of SQL Server 2005,

storage and manipulation of LOB text and documents was improved significantly. SQL

Server 2008 provides additional performance enhancements for LOB data, making

storage of all types of documents in the database much more palatable. We’ll discuss

these improvements in later chapters in this book.

2 C H A P T E R 1 ■ SQ L S E R V E R F U LL - T E X T S E A R C H

• Many databases are public facing. In the not too distant past, computers were only used

by a handful of technical professionals: computer scientists, engineers, and academics.

Today, almost everyone owns a computer, and businesses, always conscious of the

bottom dollar, have taken advantage of this fact to save money by providing self-service

options to customers. As an example, instead of going to a brick-and-mortar store to

make a purchase, you can shop online; instead of calling customer service, you check

your orders online; instead of calling your broker to place a stock trade, you can research

it and then make the trade online. Search functionality in public-facing databases is a

key technology that makes online self-service work.

• Storage is cheap. Even as hard drive prices have dropped, the storage requirements of

the average user have ballooned. It’s not uncommon to find a half terabyte (or more)

of storage on the average user’s personal computer. According to the Enterprise

Strategy Group Inc., worldwide total private storage capacity will reach 27,000 petabytes

(27 billion gigabytes) of storage by 2010. Documents are born digitally, live digitally,

and die digitally, many times never having a paper existence, or at most a short tran-

sient hard-copy life.

• New document types are constantly introduced, and there are increasing requirements

to store documents in their native format. XML and formats based on or derived from

XML have changed the way we store documents. XML-based documents include XHTML

and Office Open XML (OOXML) documents. Businesses are increasingly abandoning

paper in the normal course of transactions. Businesses send electronic documents such

as purchase orders, invoices, contracts, and ship notices back and forth. Regulatory and

legal requirements often necessitate storing exact copies of the business documents

when no hard copies exist. For example, a pharmaceutical company assembles medica-

tions for drug trials. This involves sending purchase orders, change orders, requisition

orders, and other business documents back and forth. The format for many of these

documents is XML, and the documents are frequently stored in their native formats in

the database. While all of this documentation has to be stored and archived, users need

the ability to search for specific documents pertaining to certain transactions, vendors,

and so on, quickly and easily. Full-text search provides this capability.

• Researching and analyzing documents and textual data requires data to be stored in a

database with full-text search capabilities. Business analysts have two main issues to

deal with during the course of research and analysis for business projects:

• Incomplete or dirty data can cripple business analysis projects, resulting in inaccu-

rate analyses and less than optimal decision making.

• Too much data can result in information overload, causing “analysis paralysis,”

slowing business projects to a crawl.

• Full-text search helps by allowing analysts to perform contextual searches that allow

relevant data to reveal itself to business users. Full-text search also serves as a solid foun-

dation for more advanced analysis techniques, such as extending classic data mining to

text mining.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 1 ■ S Q L SE R V E R F U L L - T E X T S E A R C H 3

• Developers want a single standardized interface for searching documents and textual

data stored in their databases. Prior to the advent of full-text search in the database, it

was not uncommon for developers to come up with a wide variety of inventive and

sometimes kludgy methods of searching documents and textual data. These custom-

built search routines achieved varying degrees of success. SQL Server full-text search

was designed to meet developer demand for a standard toolset to search documents and

textual data stored in any SQL Server database.

SQL Server iFTS represents the next generation of SQL Server-based full-text search. The

iFTS functionality in SQL Server provides significant advantages over other alternatives, such

as the LIKE predicate with wild cards or custom-built solutions. The tasks you can perform with

iFTS include the following:

• You can perform linguistic searches of textual data and documents. A linguistic search is

a word- or phrase-based search that accounts for various language-specific settings,

such as the source language of the data being searched, inflectional word forms like verb

conjugations, and diacritic mark handling, among others. Unlike the LIKE predicate,

when used with wild cards, full-text search is optimized to take full advantage of an

efficient specialized indexing structure to obtain results.

• You can automate removal of extraneous and unimportant words (stopwords) from

your search criteria. Words that don’t lend themselves well to search and don’t add value

to search results, such as and, an, and the, are automatically stripped from full-text

indexes and ignored during full-text searches. The system predefines lists of stopwords

(stoplists) in dozens of languages for you. Doing this on your own would require a signif-

icant amount of custom coding and knowledge of foreign languages.

• You can apply weight values to your search terms to indicate that some words or phrases

should be treated as more important than others in the same full-text search query. This

allows you to normalize your results or change the ranking values of your results to indi-

cate that those matching certain terms are more relevant than others.

• You can rank full-text search results to allow your users to choose those documents that

are most relevant to their search criteria. Again, it’s not necessarily a trivial task to create

custom code that ranks search results obtained through custom search algorithms.

• You can index and search an extremely wide array of document types with iFTS. SQL

Server full-text search understands how to tokenize and extract text and properties from

dozens of different document types, including word-processing documents, spread-

sheets, ZIP files, image files, electronic documents, and more. SQL Server iFTS also

provides an extensible model that allows you to create custom components to handle

any document type in any language you choose. As examples, there are third-party

components readily available for additional file formats such as AutoCAD drawings,

PDF files, PostScript files, and more.

It’s a good bet that a large amount of the data stored by your organization is

unstructured—word processing documents, spreadsheets, presentations, electronic docu-

ments, and so on. Over the years, many companies have created lucrative business models based

on managing unstructured content, including storing, searching, and retrieving this type of

4 C H A P T E R 1 ■ SQ L S E R V E R F U LL - T E X T S E A R C H

content. Some rely on SQL Server’s native full-text search capabilities to help provide the back-

end functionality for their products. The good news is that you can use this same functionality

in your own applications.

The advantage of allowing efficient searches of unstructured content is that your users can

create documents and content using the tools they know and love—Word, Acrobat, Excel—and

you can manage and share the content they generate from a centralized repository on an

enterprise-class database management system (DBMS).

History of SQL Server FTS
Full-text search has been a part of SQL Server since version 7.0. The initial design of SQL

Server full-text search provided for reuse of Microsoft Indexing Service components. Indexing

Service is Microsoft’s core product for indexing and searching files and documents in the file

system. The idea was that FTS could easily reuse systemwide components such as word breakers,

stemmers, and filters. This legacy can be seen in FTS’s dependence on components that imple-

ment Indexing Service’s programming interfaces. For instance, in SQL Server, document-specific

filters are tied to filename extensions.

Though powerful for its day, the initial implementations of FTS in SQL Server 7.0 and 2000

proved to have certain limitations, including the following:

• The DBMS itself made storing, manipulating, searching, and retrieving large object data

particularly difficult.

• The fact that only systemwide shared components could be used for FTS indexing

caused issues with component version control. This made side-by-side implementa-

tions with different component versions difficult.

• Because FTS was implemented as a completely separate service from the SQL Server

query engine, efficiency and scalability were definite issues. As a matter of fact, SQL

Server 7.0 FTS was at one point considered as an option for the eBay search engine;

however, it was determined that it wasn’t scalable enough for the job at that time.

• The fact that SQL Server had to store indexes, noise word lists, and other data outside of

the database itself made even the most mundane administration tasks (such as backups

and restores) tricky at best.

• Finally, prior versions of FTS provided no transparency into the process. Trouble-

shooting essentially involved a sometimes complicated guess-and-fail approach.

The new version of SQL Server integrated FTS provides much greater integration with the

SQL query engine. SQL Server 2008 large object data storage, manipulation, and retrieval has

been greatly simplified with the new large object max data types (varchar(max), varbinary(max)).

Although you can still use systemwide FTS components, iFTS allows you to use instance-

specific installations of FTS components to more easily create side-by-side implementations.

FTS efficiency and scalability has been greatly improved by implementing the FTS query

engine directly within the SQL Server service instead of as a separate service. Administration

has been improved by storing most FTS data within the database instead of in the file system.

Noise word lists (now stopword lists) and the full-text catalogs and indexes themselves are now

C H A P T E R 1 ■ S Q L SE R V E R F U L L - T E X T S E A R C H 5

stored directly in the database, easing the burden placed on administrators. In addition, the

newest release of FTS provides several dynamic management views and functions to provide

insight into the FTS process. This makes troubleshooting issues a much simpler exercise.

MORE ON TEXT-BASED SEARCHING

Text-based searching is not exclusively the domain of SQL Server iFTS. There are many common applications

and systems that implement text-based searching algorithms to retrieve relevant documents and data.

Consider MS Outlook—users commonly store documents in their Outlook Personal Storage Table (PST) files

or in their MS Exchange folders. Frequently, Outlook users will email documents to themselves, adding rele-

vant phrases to the email (mushroom duxelles recipe or notes from accounting meeting, for example) to make

searching easier later. What we see here is users storing all sorts of data (email messages, images, MS Office

documents, PDF files, and so on) somewhere on the network in a database, tagging it with information that

will help them to find relevant documents later, and sometimes categorizing documents by putting them in

subfolders. The key to this model is being able to find the data once it’s been stored. Users may rely on MS

Outlook Search, Windows Desktop Search, or a third-party search product (such as Google Desktop) to find

relevant documents in the future.

Searching the Web requires the use of text-based search algorithms as well. Search engines such as

Google go out and scrape tens of millions of web pages, indexing their textual content and attributes (like

META tags) for efficient retrieval by users. These text-based search algorithms are often proprietary in nature

and custom-built by the search provider, but the concepts are similar to those utilized by other full-text search

products such as SQL Server iFTS.

Microsoft has being going back and forth for nearly two decades over the idea of hosting the entire file

system in a SQL Server database or keeping it in the existing file system database structure (such as NTFS

[New Technology File System]). Microsoft Exchange is an example of an application with its own file system

(called ESE—pronounced “easy”) that’s able to store data in rectangular (table-like) structures and nonrectangular

data (any file format which contains more properties than a simple file name, size, path, creation date, and so

forth). In short, it can store anything that shows up when you view any documents using Windows Explorer.

Microsoft has been trying to decide whether to port ESE to SQL Server. What’s clear is that SQL Server is

extensible enough to hold a file system such as NTFS or Exchange, and in the future might house these two

file systems, allowing SQL FTS to index content for even more applications.

Microsoft has been working on other search technologies since the days of Windows NT 3.5. Many of

their concepts essentially extend the Windows NT File System (NTFS) to include schemas. In a schema-based

system, all document types stored in the file system would have an associated schema detailing the properties

and metadata associated with the files. An MS Word document would have its own schema, while an Adobe

PDF file would also have its own schema. Some of the technologies that Microsoft has worked on over the

years promise to host the file system in a database. These technologies include OFS (Object File System), RFS

(Relational File System, originally intended to ship with SQL 2000), and WinFS (Windows Future Storage, but

also less frequently called Windows File System). All of these technologies hold great promise in the search

space, but so far none have been delivered in Microsoft’s flagship OS yet.

6 C H A P T E R 1 ■ SQ L S E R V E R F U LL - T E X T S E A R C H

Goals of Search
As we mentioned, the primary function of full-text search is to optimize linguistic searches

of unstructured content. This section is designed to get you thinking about search in general.

We’ll present some of the common problems faced by search engineers (or as they’re more

formally known, information retrieval scientists), some of the theory behind search engines,

and some of the search algorithms used by Microsoft. The goals of search engines are (in order

of importance):

1. To return a list of documents, or a list of links to documents, that match a given search

phrase. The results returned are commonly referred to as a list of hits or search results.

2. To control the inputs and provide users with feedback as to the accuracy of their search.

Normally this feedback takes the form of a ratio of the total number of hits out of the

number of documents indexed. Another more subtle measure is how long the search

engine churns away before returning a response. As Michael Berry points out in his

book Understanding Search Engines- Mathematical Models and Text Retrieval (SIAM,

ISBN 0-89871-437-0), an instantaneous response of “No documents matched your

query” leaves the user wondering if the search engine did any searching at all.

3. To allow the users to refine the search, possibly to search within the results retrieved

from the first search.

4. To present the users with a search interface that’s intuitive and easy to navigate.

5. To provide users a measure of confidence to indicate that their search was both

exhaustive and complete.

6. To provide snippets of document text from the search results (or document abstracts),

allowing users to quickly determine whether the documents in the search results are

relevant to their needs.

The overall goal of search is to maximize user experience in all domains. You must give

your users accurate results as quickly as possible. This can be accomplished by not only giving

users what they’re looking for, but delivering it quickly and accurately, and by providing options

to make searches as flexible as possible.

On one hand, you don’t want to overwhelm them with search results, forcing them to

wade through tens of thousands of results to find the handful of relevant documents they really

need. On the other hand, you do want to present them with a flexible search interface so they

can control their searching without sacrificing user experience.

There are many factors that affect your search solution: hardware, layout and design,

search engine, bandwidth, competitors, and so on. You can control most of these to some

extent, and with luck you can minimize their impact. But what about your users? How do you

cater to them?

Search architects planning a search solution must consider their interface (or search page)

and their users. No matter how sophisticated or powerful your search server, there may be

environmental factors that can limit the success of your search solution. Fortunately, most of

these factors are within your control. The following problems can make your users unhappy:

C H A P T E R 1 ■ S Q L SE R V E R F U L L - T E X T S E A R C H 7

• Sometimes your users don’t know what they’re looking for and are making best guesses,

hoping to get the right answers. In other words, unsophisticated searchers rely on a hit-

or-miss approach, blind luck, or serendipity. You can help your users by offering training

in corporate environments, providing online help, and instituting other methods of

educating them. Good search engineers will institute some form of logging to determine

what their users are searching for, create their own “best bets” pages, and tag content

with keywords to help users find relevant content efficiently. User search requirements

and results from the log can be further analyzed by research and development to improve

search results, or those results can be directed to management as a guide in focusing

development dollars on hot areas of interest.

• Sometimes users make spelling mistakes in their search phrases. There are several inge-

nious solutions for dealing with this. Google and the Amazon.com search engine run a

spell check and make suggestions for other search terms when the number of hits is

relatively low. In the case of Amazon.com, the search engine can recommend best-

selling products that you might be interested in that are relevant to your search.

• Sometimes users are presented with results in an overwhelming format. This can quickly

lead frustrated users to simply give up on continuing to search with your application. A

cluttered interface (such as a poorly designed web page) can overwhelm even the most

advanced user. A well-designed search page can overcome this. Take a tip from the most

popular search engine in the world—Google provides a minimalist main page with lots

of white space.

• Sometimes the user finds it too difficult to navigate a search interface and gives up.

Again, a well designed web site with intuitive navigation helps alleviate this.

• Sometimes the user is searching for a topic and using incorrect terminology. This can be

addressed on SQL Server, to some degree, through the use of inflectional forms and

thesaurus searches.

In this chapter, we’re going to consider the search site Google.com. We’ll contrast Google

against some of Microsoft’s search sites, and against Microsoft.com. We’ll be surveying search

solutions from across the spectrum of possible configurations.

GOOGLE

Google, started as a research project at Stanford University in California, is currently the world’s most popular

search engine. For years, http://google.stanford.edu used to redirect to http://www.google.com;

it now redirects to their Google mini search appliance (http://www.stanford.edu/services/

websearch/Google/). Google is powered by tens of thousands of Linux machines—termed bricks—that

index pages, perform searches, and serve up cached pages. The Google ranking algorithm differs from most

search algorithms in that it relies on inbound page links to rank pages and determine result relevance. For

instance, if your web site is the world’s ultimate resource for diabetes information, the odds are high that many

other web sites would have links pointing to your site This in turn causes your site to be ranked higher when

users search for diabetes-related topics. Sites that don’t have as many links to them for the word diabetes

would be ranked lower.

8 C H A P T E R 1 ■ SQ L S E R V E R F U LL - T E X T S E A R C H

Mechanics of Search
Modern search solutions such as iFTS rely on precompiled indexes of words that were previ-

ously extracted from searchable content. If you’re storing word processing documents, for

instance, the precompiled index will contain all of the words in the documents and references

back to the source documents themselves. The index produced is somewhat similar to an

index at the back of most books. Imagine having to search a book page by page for a topic

you’re interested in. Having all key words in an index returns hits substantially faster than

looking through every document you’re storing to find the user’s search phrase.

SQL Server uses an inverted index structure to store full-text index data. The inverted

index structure is built by breaking searchable content into word-length tokens (a process

known as tokenizing) and storing each word with relevant metadata in the index. An inverted

index for a document containing the phrase Now is the time for all good men to come to the aid

of the party would be similar to Figure 1-1.

Figure 1-1. Inverted index of sample phrase (partial)

The key fields in the inverted index include the word being indexed, a reference back to the

source document where the word is found, and an occurrence indicator, which gives a relative

position for each word. SQL Server actually eliminates commonly used stopwords such as the,

and, and of from the index, making it substantially smaller. With system-defined stopwords

removed, the inverted index for the previously given sample phrase looks more like Figure 1-2.

■Note The sample inverted index fragments shown are simplified to include only key information. The

actual inverted index structure SQL Server uses contains additional fields not shown.

1

1 8

7

6

5

4

3

2

1

1

1

1

1

1

Now

is

the

time

for

all

good

men

.

.

.

.

.

.

.

.

.

1

Document ID OccurrenceWord

C H A P T E R 1 ■ S Q L SE R V E R F U L L - T E X T S E A R C H 9

Figure 1-2. Inverted index with stopwords removed

Whenever you perform a full-text search in SQL Server, the full-text query engine tokenizes

your input string and consults the inverted index to locate relevant documents. We’ll discuss

indexing in detail in Chapter 2 and full-text search queries in Chapter 3.

iFTS Architecture
The iFTS architecture consists of several full-text search components working in cooperation

with the SQL Server query engine to perform efficient linguistic searches. We’ve highlighted

some of the more important components involved in iFTS in the simplified diagram shown in

Figure 1-3.

Figure 1-3. iFTS architecture (simplified)

1

17

16

13

8

7

1

1

1

1

1

time

good

men

aid

party

{End Of File}

4

Document ID OccurrenceWord

Client Application

SQL Server Process

SQL Server Query Processor Full-Text Engine

Indexer

Thesaurus

Stoplist Full-Text Index
SQL Database

Query

SQL Query Compilation

and Execution

Full-Text Query Compilation

and Execution

Lorem
ipsum
dolor sit
consectet

XML

Lorem
ipsum
dolor sit
consectet

X

10 C H A P T E R 1 ■ SQ L S E R V E R F U LL - T E X T S E A R C H

The components we’ve highlighted in Figure 1-3 include the following:

• Client application: The client application composes full-text queries and submits them

to the SQL Server query processor. It’s the responsibility of the client application to

ensure that full-text queries conform to the proper syntax. We’ll cover full-text query

syntax in detail in Chapter 3.

• SQL Server process: The SQL Server process contains both the SQL Server query processor,

which compiles and executes SQL queries, and the full-text engine, which compiles and

executes full-text queries. This tight integration of the SQL Server and full-text query

processors in SQL Server 2008 is a significant improvement over prior versions of SQL

Server full-text search, allowing SQL Server to generate far more efficient query plans

than was previously possible.

• SQL Server query processor: The SQL Server query processor consists of several subcom-

ponents that are responsible for validating SQL queries, compiling queries, generating

query plans, and executing queries in the database.

• Full-text query processor: When the SQL Server query processor receives a full-text query

request, it passes the request along to the full-text query processor. It’s the responsibility

of the full-text query processor to parse and validate the query request, consult the full-

text index to fulfill the request, and work with the SQL Server query processor to return

the necessary results.

• Indexer: The indexer works in conjunction with other components to retrieve streams of

textual data from documents, tokenize the content, and populate the full-text indexes.

Some of the components with which the indexer works (not shown in the diagram)

include the gatherer, protocol handler, filters, and word breakers. We’ll discuss these

components in greater detail in Chapter 10.

• Full-text index: The full-text index is an inverted index structure associated with a given

table. The indexer populates the full-text index and the full-text query processor consults

the index to fulfill search requests. Unlike prior versions of SQL Server the full-text index

in SQL Server 2008 is stored in the database instead of the file system. We will discuss

setup, configuration, and population of full-text indexes in detail in Chapter 2.

• Stoplist: The stoplist is simply a list of stopwords, or words that are considered useless

for the purposes of full-text search. The indexer consults the stoplist during the indexing

and querying process in order to eliminate stopwords from the index and search phrase.

Unlike prior versions of SQL Server, which stored their equivalent of stoplists (noise

word lists) in the file system, SQL Server 2008 stores stopword lists in the database. We’ll

talk about stoplists in greater detail in Chapter 7.

• Thesaurus: The thesaurus is an XML file (stored in the file system) that defines full-text

query word replacements and expansions. Replacements and expansions allow you to

expand a search to include additional words or completely replace certain words at

query time. As an example, you could use the thesaurus to expand a query for the word

run to also include the words jog and sprint, or you could replace the word maroon with

the word red. Thesauruses are language-specific, and the query processor consults the

thesaurus at query time to perform expansions and replacements. We’ll detail the

mechanics and usage of thesauruses in Chapter 8.

C H A P T E R 1 ■ S Q L SE R V E R F U L L - T E X T S E A R C H 11

■Note Though the XML thesaurus files are currently stored as files in the file system, the iFTS team is

considering the best way to incorporate the thesaurus files directly into the database, in much the same way

that the stoplists and full-text indexes have been integrated.

Indexing Process

The full-text indexing process is based on the index population, or crawl process. The crawl

can be initiated automatically, based on a schedule, or manually via T-SQL statements. When

a crawl is started, an iFTS component known as the protocol handler connects to the data

source (tables you’re full-text indexing) and begins streaming data from the searchable content.

The protocol handler provides the means for iFTS to communicate with the SQL storage

engine. Another component, the filter daemon host, is a service that’s external to the SQL

Server service. This service controls and manages content-type-specific filters, which in turn

invoke language-specific word breakers that tokenize the stream of content provided by the

protocol handler.

The indexing process consults stoplists to eliminate stopwords from the tokenized

content, normalizes the words (for case and accent sensitivity), and adds the indexable words

to inverted index fragments. The last step of the indexing process is the master merge, which

combines all of the index fragments into a single master full-text index. The indexing process

in general and the master merge in particular can be resource- and I/O-intensive. Despite the

intensity of the process, the indexing process doesn’t block queries from occurring. Querying a

full-text index during the indexing process, however, can result in partial and incomplete

results being returned.

Query Process

The full-text query process uses the same language-specific word breakers that the indexer

uses in the indexing process; however, it uses several additional components to fulfill query

requests. The query processor accepts a full-text query predicate, which it tokenizes using

word breakers. During the tokenization process, the query processor creates generational

forms, or alternate forms of words, as follows:

• It uses stemmers, components that return language-based alternative word forms, to

generate inflectional word forms. These inflectional word forms include verb conjugations

and plural noun forms for search terms that require them. Stemmers help to maximize

precision and recall, which we’ll discuss later in this chapter. For instance, the English

verb eat is stemmed to return the verb forms eating, eaten, ate, and eats in addition to the

root form eat.

• It invokes language-specific thesauruses to perform thesaurus replacements and expansions

when required. The thesaurus files contain user-defined rules that allow you to replace

search words with other words or expand searches to automatically include additional

words. You might create a rule that replaces the word maroon with the word red, for

instance; or you might create a rule that automatically expands a search for maroon to

also include red, brick, ruby, and scarlet.

12 C H A P T E R 1 ■ SQ L S E R V E R F U LL - T E X T S E A R C H

■Tip Stemmer components are encapsulated in the word breaker DLL files, but are separate components

(and implement a separate function) from the word breakers themselves. Different language rules are applied

at index time by the word breakers than by the stemmers at query time. Many of the stemmers and word

breakers have been completely rewritten for SQL 2008, which makes a full population necessary for many

full-text indexes upgraded from SQL 2005. We’ll discuss full-text index population in detail in Chapter 2.

After creating generational forms of words, the query processor provides input to the SQL

Server query processor to help determine the most efficient query plan through which to retrieve

the required results. The full-text query processor consults the full-text index to locate docu-

ments that qualify based on the search criteria, ranks the results, and works with the SQL

Server query processor to return relevant results back to the user.

The new tighter integration between the full-text query processor and the SQL Server

query processor (both are now hosted together within the SQL Server process) provides the

ability to perform full-text searches that are more highly optimized than in previous versions of

SQL Server. As an example, in SQL Server 2005 a full-text search predicate that returned one

million matching documents had to return the full one-million-row result set to the SQL Server

query processor. At that point, SQL Server could apply additional predicates to narrow down

results as necessary. In SQL Server 2008, the search process has been optimized so that SQL

Server can shortcut the process, limiting the total results that need to be returned by iFTS

without all the overhead of passing around large result sets full of unnecessary data between

separate full-text engine and SQL Server services.

Search Quality
For most intranet sites and other internal search solutions, the search phrases that will hit your

search servers will be a small fraction or subset of the total number of words in the English

language (or any other language for that matter). If you started searching for medical terms or

philosophical terms on the Microsoft web site, for instance, you wouldn’t expect to get many

hits (although we do get hits for existentialist, Plato, and anarchist, we aren’t sure how much

significance, if any, we can apply to this).

Microsoft’s web site deals primarily with technical information—it can be considered a

subset of the total content that’s indexed by Google. Amazon indexes book titles, book descrip-

tions, and other product descriptions. They would cover a much larger range of subjects than

the Microsoft web site, but wouldn’t get into the level of detail that the Microsoft site does, as

Amazon primarily indexes the publisher’s blurb on the book or other sales-related literature

for their products.

As you can see, Google probably contains many entries in its index for each word in the

English language. In fact, for many words or phrases, Google has millions of entries; for example,

the word Internet currently returns over 2.6 billion hits as of Fall 2008. Search engines with a

relatively small volume of content to index, or that are specialized in nature, have fewer entries

for each word and many more words having no entries.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 1 ■ S Q L SE R V E R F U L L - T E X T S E A R C H 13

BENEFITS OF INTEGRATION

As we mentioned previously, the new level of integration that SQL Server iFTS offers means that the SQL query

optimizer has access to new options to make your queries more efficient than ever. As an example, the

following illustration highlights the SQL Server 2005 Remote Scan query operator that FTS uses to retrieve

results from the full-text engine service. This operator is expensive, and the cost estimates are often inaccurate

because of the reliance on a separate service. In the example query plan, the operator accounts for 47% of the

total cost of the example query plan.

SQL Server 2008 iFTS provides the SQL query optimizer with a new and more efficient operator, the

Table Valued Function [FulltextMatch] operator, shown in the following example query plan. This new query

operator allows SQL Server to quickly retrieve results from the integrated full-text engine while providing a

means for the SQL Server query engine to limit the amount of results returned by the full-text engine.

The new full-text search integration provides significant performance and scalability benefits over

previous releases.

Measuring Quality

The quality of search results can be measured using two primary metrics: precision and recall.

Precision is the number of hits returned that are relevant versus the number of hits that are

irrelevant. If you’re having trouble with your car, for instance, and you do a search on Cressida

14 C H A P T E R 1 ■ SQ L S E R V E R F U LL - T E X T S E A R C H

on Google, you’ll get many hits for the Shakespearian play Troilus and Cressida and one of the

moons of Uranus, with later results further down the page referring to the Toyota product.

Precision in this case is poor. Searching for Toyota Cressida gives you only hits related to the

Toyota car, with very good or high precision. Precision can be defined mathematically using

the formula shown in Figure 1-4, where p represents the precision, n is the number of relevant

retrieved documents, and d is the total number of retrieved documents.

Figure 1-4. Formula for calculating precision

Recall is the number of hits that are returned that are relevant versus the number of rele-

vant documents that aren’t returned. That is, it’s a measure of how much relevant information

your searches are missing. Consider a search for the misspelled word mortage (a spelling

mistake for mortgage). You’ll get hits for several web sites for mortgage companies. Most web

sites don’t automatically do spell checking and return hits on corrected spelling mistakes or at

least suggest spelling corrections. When you make spelling mistakes, you’re missing a lot of

relevant hits, or in the language of search, you’re getting poor recall. Figure 1-5 is the mathe-

matical definition of recall, where r represents recall, n is the number of relevant retrieved

documents, and v is the total number of relevant documents.

Figure 1-5. Formula for calculating recall

Figure 1-6 is a visual demonstration of precision and recall as they apply to search. The large

outer box in the figure represents the search space, or database, containing all of the searchable

content. The black dots within the box represent individual searchable documents. The shaded

area on the left side of the figure represents all of the documents relevant to the current search,

while the nonshaded area to the right represents nonrelevant documents.

The complete results of the current search are represented by the documents contained in

the dashed oval inside the box. The precision of this search, represented by the shaded area of

the oval divided by the entire area of the oval, is low in this query. That is, out of all the docu-

ments retrieved, only about half are relevant to the user’s needs.

The recall of this search is represented by the shaded area of the oval divided by the entire

shaded area of the box. For this particular query, recall was low as well, since a very large

number of relevant documents weren’t returned to the user.

Precision and recall are normally used in tandem to measure search quality. They work

well together and are often defined as having an inverse relationship—barring a complete

overhaul of the search algorithm, you can generally raise one of these measures at the expense

of lowering the other.

C H A P T E R 1 ■ S Q L SE R V E R F U L L - T E X T S E A R C H 15

Figure 1-6. Visual representation of precision and recall in search

There are other calculations based on precision and recall that can be used to measure the

quality of searches. The weighted harmonic mean, or F-measure, combines precision and recall

into a single formula. Figure 1-7 shows the F1 measure formula, in which precision and recall

are evenly weighted. In this formula, p represents precision and r is the recall value.

Figure 1-7. Evenly weighted harmonic mean formula

The formula can be weighted differently to favor recall or precision by using the weighted

F-measure formula shown in Figure 1-8. In this formula, � represents the nonnegative weight

that should be applied. A value of � greater than 1.0 favors precision, while a value of � less

than 1.0 favors recall.

Figure 1-8. Weighted harmonic mean formula

Synonymy and Polysemy

Precision and recall are complicated by a number of factors. Two of the most significant factors

affecting them are synonymy and polysemy.

Relevant

Documents

Results

Nonrelevant

Documents

16 C H A P T E R 1 ■ SQ L S E R V E R F U LL - T E X T S E A R C H

Synonymy: different words that describe the same object or phenomenon. To borrow an

example from Michel W. Berry and Murray Browne’s book, Understanding Search Engines,

a heart attack is normally referred to in the medical community as myocardial infarction.

It is said that Inuit Alaskan natives have no words for war, but 10,000 words for snow

(I suspect most of these words for snow are obscenities).

Polysemy: words and phrases that are spelled the same but have different meanings. SOAP,

for instance, has a very different meaning to programmers than to the general populace at

large. Tiny Tim has one meaning to the Woodstock generation and a completely different

meaning to members of younger generations who’ve read or seen Dickens’s A Christmas

Carol. Another example: one of the authors met his wife while searching for his favorite

rock band, Rush, on a web site. Her name came up in the search results and her bio

mentioned that she loved Rush. Three years into the marriage, the author discovered that

his wife’s affection was not for the rock group Rush, but for a radio broadcaster of certain

notoriety.

■Note For a more complete discussion of the concepts of synonymy and polysemy, please refer

to Understanding Search Engines-Mathematical Modeling and Text Retrieval by Michael W. Berry and

Murray Browne, (SIAM, ISBN 0-89871-437-0).

There are several strategies to deal with polysemy and synonymy. Among these are two

brute force methods, namely:

• Employ people to manually categorize content. The Yahoo! search engine is an example.

Yahoo! pays people to surf the Web all day and categorize what they find. Each person

has a specialty and is responsible for categorizing content in that category.

• Tag content with keywords that will be searched on. For instance, in support.microsoft.com,

you can restrict your search to a subset of the knowledge base documents. A search

limited to the SQL Server Knowledge Base will be performed against content pertaining

only to SQL Server Knowledge Base articles. These articles have been tagged as knowledge

base articles to assist you in narrowing your search.

Currently, research is underway to incorporate automated categorization to deal with

polysemy and synonymy in indexing and search algorithms, with particularly interesting work

being done by Susan Dumais of Microsoft Research, Michael W. Berry, and others. Microsoft

SharePoint, for example, ships with a component to categorize the documents it indexes.

Summary
In this chapter, we introduced full-text search. We considered the advantages of using SQL

Server full-text search to search your unstructured content, such as word processing documents,

spreadsheets, and other documents.

C H A P T E R 1 ■ S Q L SE R V E R F U L L - T E X T S E A R C H 17

We gave an overview of the goals and mechanics of full-text search in general, and discussed

the SQL Server iFTS implementation architecture, including the indexing and querying processes.

As you can see, there are a lot of components involved in the SQL Server iFTS implementation.

What we explored in this chapter is a simplified and broad overview of iFTS architecture, which

we’ll explore further in subsequent chapters.

Finally, we considered search quality concepts and measurements. In this chapter, we

introduced the terms and functions that define quality in terms of results.

In subsequent chapters, we’ll explore all these concepts in greater detail as we describe the

functional characteristics of the SQL Server iFTS implementation.

19

■ ■ ■

C H A P T E R 2

Administration

Always have a backup plan.

—Mila Kunis (actress, That ’70s Show)

SQL Server provides two ways to administer iFTS. You can use the SQL Server Management

Studio (SSMS) GUI wizards to create full-text catalogs and full-text indexes, or you can use T-SQL

DDL statements to manage iFTS. In this chapter, we’ll discuss both methods as well as some

advanced configuration features.

Initial Setup and Configuration
It’s relatively easy to set up and configure iFTS in SQL Server 2008. The first step is to ensure

that iFTS is installed with your SQL Server instance. In the SQL Server installation wizard, you’ll

see a screen with the iFTS option—make sure this option is checked at install time, as shown in

Figure 2-1.

Figure 2-1. Choosing the Full text search option during installation

20 C H A P T E R 2 ■ AD M I N I S T R A T I O N

■Tip Though not required by iFTS, we strongly recommend also installing, at a minimum, the SQL Client

Tools and SQL Server Books Online (BOL). The code samples shown in this book run in SSMS, which is

installed as part of the client tools. BOL is the official Microsoft documentation for SQL Server functionality,

including iFTS.

If you’re performing an upgrade of a SQL Server 2005 instance with full-text catalogs

defined on it, the installer migrates your full-text catalogs to the newly installed SQL Server

2008 instance. In prior versions of SQL Server, full-text search functionality was provided by

the full-text engine service, which was external to the SQL Server query engine. In SQL Server

2008, all full-text search functionality is integrated into the query engine. The following items

still operate outside of the query engine, however:

• The full-text filter daemon host (fdhost.exe), which manages word breakers, stemmers,

and filters is run as a separate process. SQL Server uses the SQL Full-text Filter Daemon

Launcher service (fdlauncher.exe) to launch the filter daemon host. Both the filter

daemon host process and the launcher service are shown in Figure 2-2.

• The iFTS word breakers, stemmers, and filters are external to the query engine. Prior to

SQL Server 2005, full-text search relied on the operating system for these components.

In SQL Server 2008, each instance relies on its own set of word breakers, stemmers,

and filters.

• The iFTS language-specific thesaurus files are stored in the file system separately. These

XML files are loaded when the server is started, or on request via the sys.sp_fulltext_

load_thesaurus_file system stored procedure. We’ll discuss thesaurus files in greater

detail in Chapter 8.

Figure 2-2. Full-text daemon host process

C H A P T E R 2 ■ A D M I N I ST R A T I O N 21

In SQL Server 2005, full-text catalogs contained full-text indexes and weren’t created in the

database, but rather in a user-specified file path on the local hard drive. Beginning with SQL

Server 2008, full-text catalogs are logical constructs that are created in the database to act as

containers for full-text indexes, which are also created in the database. Because of this change,

the upgrade process will create a new filegroup on the local hard drive and migrate the full-text

catalog and its indexes to the SQL Server 2008 instance.

Enabling Database Full-Text Support
In previous versions of SQL Server, it was necessary to explicitly enable and disable full-text

search in the database with the sp_fulltext_database system stored procedure. While this

stored procedure is still available in SQL Server 2008, it’s use is no longer required; in fact, the

procedure is deprecated. In SQL Server 2008, all user databases are full-text enabled by default,

and full-text support can’t be disabled on a per-database basis.

Another backward-compatibility feature is the IsFulltextEnabled database property,

exposed through the DATABASEPROPERTYEX function. This database property returns 1 if the

database is full-text enabled and 0 if not. This feature is also deprecated, since all user data-

bases on SQL Server 2008 are always full-text enabled. Because of this, you can’t rely on the

return value of the IsFulltextEnabled database property.

■Caution Avoid using deprecated features such as sp_fulltext_database and DATABASEPROPERTYEX

('your_database', 'IsFulltextEnabled') in your development work, since these and other depre-

cated features will be removed in a future version of SQL Server.

Creating Full-Text Catalogs
Full-text catalogs have changed in SQL Server 2008. While previous versions of SQL Server

stored full-text catalogs in the file system, SQL Server 2008 virtualizes the concept of the full-

text catalog. A full-text catalog is now simply a logical container for full-text indexes, to make

administration and management of groups of full-text indexes easier. You create new full-text

catalogs in two ways. The first option is to create a full-text catalog through the SSMS GUI.

■Note You can’t create full-text catalogs in the tempdb, model, and master system databases.

The New Full-Text Catalog Wizard

The following three steps are required to create a full-text catalog in SSMS:

1. Expand the Storage folder under the target database in the Object Explorer window.

2. Once the Storage folder is expanded, right click on its Full Text Catalogs folder and

select New Full-Text Catalog... from the context menu, as shown in Figure 2-3.

22 C H A P T E R 2 ■ AD M I N I S T R A T I O N

Figure 2-3. Selecting the New Full-Text Catalog... menu option in SSMS

3. After you select New Full-Text Catalog... from the context menu, SSMS presents you

with the New Full-Text Catalog window, as shown in Figure 2-4.

Figure 2-4. Filling out the New Full-Text Catalog window

As shown in Figure 2-4, we’ve specified the following options:

• The Full-text catalog name has been set to Book_Cat. This name must be a valid SQL

identifier.

• The Owner has been set to dbo, the user specified in the db_owner role for this database.

This owner must be a valid database user or role.

C H A P T E R 2 ■ A D M I N I ST R A T I O N 23

• The Set as default catalog option has been checked in the example. When checked, this

option indicates that anytime a full-text index is created in the database without a target

full-text catalog explicitly specified in the CREATE FULLTEXT INDEX statement, the full-text

index will be created in this catalog.

• The Accent sensitivity setting has been set to Insensitive, indicating that full-text

indexing should be insensitive to accents. This means that words such as resumé and

resume, which differ only in their accent marks, will be treated as equivalent by full-text

search. Turning off search accent sensitivity returns accent-insensitive matches. Basically

any diacritic marks in the search term and indexed word are stripped out, so accent-

insensitivity doesn’t necessarily return expected results for languages that are heavy on

diacritic marks.

The CREATE FULLTEXT CATALOG Statement

The second way to create a full-text catalog is through the T-SQL CREATE FULLTEXT CATALOG

statement. Listing 2-1 shows the T-SQL statement that creates a full-text catalog using all the

same options as in the previous SSMS GUI example.

Listing 2-1. Creating a Full-Text Index with T-SQL

CREATE FULLTEXT CATALOG Book_Cat

WITH ACCENT_SENSITIVITY = OFF

AS DEFAULT

AUTHORIZATION dbo;

In addition to the options shown, you can also specify a filegroup on which to create the

full-text catalog with the ON FILEGROUP clause. You might want to create a separate filegroup on

a separate hard drive for improved performance.

■Tip While you can still specify the IN PATH clause of the CREATE FULLTEXT CATALOG statement for

backward compatibility, SQL Server 2008 ignores this clause.

SQL Server provides the ALTER FULLTEXT CATALOG statement. This allows you to mark an

existing full-text catalog as the default with the AS DEFAULT option, rebuild an entire full-text

catalog with the REBUILD clause (optionally changing the accent-sensitivity settings), or initiate

a master merge and optimization of indexes in the full-text catalog with the REORGANIZE clause.

A master merge is the process by which SQL Server merges smaller index fragments into a

single large index. A rebuild or master merge of a full-text catalog may take a considerable

amount of time depending on the amount of indexed data. Listing 2-2 initiates a rebuild of the

full-text catalog created in Listing 2-1.

Listing 2-2. Rebuilding a Full-Text Catalog

ALTER FULLTEXT CATALOG Book_Cat

REBUILD WITH ACCENT_SENSITIVITY = OFF;

www.allitebooks.com

http://www.allitebooks.org

24 C H A P T E R 2 ■ AD M I N I S T R A T I O N

The DROP FULLTEXT CATALOG statement deletes an existing full-text catalog. You can’t drop

a full-text catalog that contains any full-text indexes.

Upgrading Full-Text Catalogs
Since full-text catalogs in prior versions of SQL Server were stored in the file system, not in the

database itself, upgrading an existing full-text catalog involves essentially moving the full-text

catalog data from the file system into the database. An full-text catalog upgrade is required if

you do any of the following:

• Perform an upgrade of a SQL Server instance

• Back up a SQL Server 2000 or 2005 database and restore it to a SQL Server 2008 instance

• Detach an existing database and attach it to a SQL Server 2008 instance

• Copy a database with the SQL Server Copy Database wizard

All of these SQL Server upgrade methods are detailed in BOL.

The iFTS team has given us a number of options for upgrading SQL Server 2000 and 2005

full-text catalogs, including the following:

• Import full-text indexed data: This option directly imports the data from your existing

full-text catalog into your SQL Server 2008 full-text indexes. This is the default option

and will normally be the fastest upgrade path. However, there have been improvements

to several of the SQL Server 2008 word breakers and stemmers, and they may generate

different output than their SQL Server 2005 counterparts. Table 2-1 lists the languages

that use the same word breakers as SQL Server 2005. If your existing full-text catalogs use

only the languages listed in Table 2-1, you can safely import your full-text indexed data.

Table 2-1. Languages with Identical Word Breakers in SQL Server 2005 and 2008

Language LCID

Chinese (Hong Kong) 3076

Chinese (Macau) 5124

Chinese (Singapore) 4100

Danish 1030

English 1033

Korean 1042

Polish 1045

Simplified Chinese 2052

Thai 1054

Traditional Chinese 1028

Turkish 1055

UK (International) English 2057

C H A P T E R 2 ■ A D M I N I ST R A T I O N 25

• Reset your full-text catalogs: This option deletes the existing full-text catalogs for the

database you’re upgrading. This method turns off change tracking and automatic popu-

lation for your full-text catalog. Use this when you want to schedule a full population of

an upgraded full-text catalog for off-peak hours.

• Perform full population: This option rebuilds your full-text catalog, kicking off a full

population of the full-text catalog after the upgrade. Although this method guarantees

that all your full-text data will be indexed using the most current SQL Server 2008 word

breakers you have installed, full population can be resource-intensive for large full-text

catalogs.

Creating Full-Text Indexes
The full-text index is the basis of iFTS. When you perform a SQL Server iFTS query, the query

engine uses the full-text index to quickly locate relevant rows. SQL Server uses a word-level,

inverted index data structure that stores information about the indexed word, the location of

the word within the indexed data, and the primary key referencing the proper row in the source

table. As with full-text catalogs, SQL Server 2008 provides two options for creating full-text

indexes: an SSMS GUI wizard and T-SQL statements. Words are stored in the index in Unicode

format, in lowercase. The decision to store them in lowercase is for display reasons, because

lowercase words are easier to read than all-uppercase words.

The Full-Text Indexing Wizard

To use the SSMS GUI to create a full-text index, expand the Tables folder under your database

in the Object Explorer and right-click on the target table. To access the Full-Text Indexing

Wizard, choose the Full-Text index ➤ Define Full-Text Index... option from the pop-up context

menu, as shown in Figure 2-5.

Figure 2-5. Accessing the Create Full-Text Index Wizard in SSMS

26 C H A P T E R 2 ■ AD M I N I S T R A T I O N

A splash screen appears, welcoming you to the Full-Text Indexing Wizard, as shown in

Figure 2-6. You can disable the splash screen for future invocations of the wizard by checking

the appropriate box.

Figure 2-6. Full-Text Indexing Wizard splash screen

Click Next to move past the splash screen, and follow the wizard’s instructions:

1. Select a single-column unique index defined on the table. The unique index is used by

the full-text index to relate index entries back to the source table. It’s best to select an

int primary key or unique index to fulfill this function, as we’ve done in Figure 2-7.

2. Next, select the columns from the table that you want to add to the full-text index, as

shown in Figure 2-8. All eligible columns are listed, including character, Unicode,

binary, and large object (LOB) data type columns.

3. In Figure 2-8, we’ve chosen to add the Book_Content and Book_Name columns to the full-

text index. The Book_Content column is defined as a varbinary(max) column. When you

use a varbinary column to hold your indexed content, you must also define a type column

that declares the type of content held in the varbinary column. In this example, we’ve

chosen the Book_File_Ext column as the type column. This column contains the file

extensions associated with the documents in the full-text indexed varbinary column

(in this case, Book_Content). The Book_File_Ext column contains entries such as .doc for

Microsoft Word documents, .txt for plain text documents, and .xml for XML documents,

among others.

4. On this screen, we’ve also chosen the English language word breaker. All the columns

you add to the full-text index must use the same language word breaker or your full-text

queries will return errors.

C H A P T E R 2 ■ A D M I N I ST R A T I O N 27

Figure 2-7. Selecting a unique index in the Full-Text Indexing Wizard

Figure 2-8. Selecting table columns for the full-text index

28 C H A P T E R 2 ■ AD M I N I S T R A T I O N

5. Figure 2-9 shows the next step in the wizard—selecting a change tracking option. The

choices include the following:

• Automatically: Changes are tracked automatically and the full-text index is updated

automatically. The automatic updating of the full-text index isn’t necessarily imme-

diate, and there may be a delay between when a change is made and when the full-

text index is updated. This option is useful for situations in which you don’t expect a

large volume of changes.

• Manually: Changes are tracked automatically by SQL Server, but no changes are

applied to the full-text index until you start index population with the appropriate

ALTER FULLTEXT INDEX statement. Manual change tracking allows SQL Server to track

changes, even during peak server usage periods, while allowing you to schedule

regular updates for off-peak hours.

• Do not track changes: SQL Server doesn’t track changes and doesn’t update the full-

text index. You must manually start a population with the ALTER FULLTEXT INDEX state-

ment to update your full-text index. This option is best used when the majority of your

data changes at discrete intervals, for example if you have an online store that changes

its product descriptions once a month.

6. For this example, we’ve chosen to let SQL Server automatically track changes and apply

updates to the full-text index.

Figure 2-9. Selecting the change tracking option in the Full-Text Indexing wizard

C H A P T E R 2 ■ A D M I N I ST R A T I O N 29

7. The wizard asks you to select a full-text catalog in which to create the index, a filegroup,

and a stoplist (see Figure 2-10). If you don’t have an existing full-text catalog, the wizard

allows you to create one in this step. Unless you choose another filegroup to contain

your full-text index, the wizard uses the default filegroup.

8. The wizard also defaults to the system stoplist, which is a list of words ignored by word

breakers. The system stoplist contains many simple words that are normally considered

unhelpful to full-text search, such as a, the, and and.

Figure 2-10. Choosing a catalog, filegroup, and stoplist in the wizard

9. The next screen of the wizard, shown in Figure 2-11, allows you to define a population

schedule for your full-text catalog or index. This step is only necessary if you aren’t

using change tracking (the Do not track changes option). We’ll describe this feature in

greater detail in the “Scheduling Population” section later in this chapter.

10. The wizard gives you a summary screen that allows you to view all the options you’ve

selected. This gives you a chance to hit the Back button to change your full-text indexing

wizard options, or confirm your index creation options and build the full-text index by

pressing the Next button. The summary screen is shown in Figure 2-12.

11. The final screen of the wizard shows the progress of the full-text index creation,

including a final success or failure notice at the end of the creation attempt. Figure 2-13

shows the final Full-Text Indexing Wizard progress and status screen.

30 C H A P T E R 2 ■ AD M I N I S T R A T I O N

Figure 2-11. Defining population schedules in the wizard

Figure 2-12. Full-Text Indexing wizard summary screen

C H A P T E R 2 ■ A D M I N I ST R A T I O N 31

Figure 2-13. Final wizard progress and status screen

When the wizard progress screen indicates success with a green checkmark icon, your

full-text index has been successfully created. You can verify this by expanding the Storage ➤

Full-Text Catalogs folder under the target database and right-clicking on the chosen full-text

catalog. When the pop-up context menu appears, choose Properties and look at the Tables/

Views page in the Full-Text Catalog Properties window. This window shows all full-text indexes

that are in the full-text catalog, with additional details about the full-text indexes. Figure 2-14

shows the Book_Cat full-text catalog properties, featuring details about the full-text index just

created on the Book table.

Figure 2-14. Full-Text Catalog Properties for Book_Cat catalog

32 C H A P T E R 2 ■ AD M I N I S T R A T I O N

The DROP FULLTEXT INDEX statement drops a specified full-text index from the database.

FULL-TEXT METADATA

SQL Server creates and stores a lot of metadata around your full-text indexes in several internal tables. You

can’t directly query these internal tables, as they’re exclusively for SQL Server’s use. There are two main

internal tables that are specific to iFTS metadata:

• The sys.fulltext_index_map internal table stores the mappings between full-text key columns

and internal document IDs that uniquely identify documents.

• The sys.fulltext_catalog_freelist internal table stores unused document IDs.

In addition, SQL Server creates several more internal data structures to support individual full-text

indexes. You can view the metadata for these internal data structures in tabular format with a query like the

following that uses the sys.internal_tables catalog view:

SELECT

 SCHEMA_NAME(t.schema_id) AS user_table_schema,

 OBJECT_NAME(fti.object_id) AS user_table,

 fti.object_id AS user_table_name,

 it.name AS internal_table_name,

 it.object_id AS internal_table_id,

 it.internal_type_desc

FROM sys.internal_tables AS it

INNER JOIN sys.fulltext_indexes AS fti

 ON it.parent_id = fti.object_id

INNER JOIN sys.tables t

 ON t.object_id = fti.object_id

WHERE it.internal_type_desc LIKE 'FULLTEXT%'

ORDER BY user_table;

The results might resemble the following figure:

As you can see, SQL Server creates several types of iFTS-specific internal tables. The name of each

internal table has the object_id of the user table it’s associated with appended to it. We’ll discuss DMVs,

DMFs, catalog views, and other methods of accessing iFTS-specific metadata in greater detail in Chapter 9.

C H A P T E R 2 ■ A D M I N I ST R A T I O N 33

The DocId Map

You can use most any indexable data type as the unique index on your full-text indexed table.

You can use a uniqueidentifier or varchar column, for instance. However, when you define

the unique index using a non-int data type, SQL Server has to create a document ID (DocId)

map that maps your unique index values to internally managed int values. This translates into

an additional step that the query engine must perform in your full-text search queries, making

them less efficient than they could be. If you define the unique index on an int column, SQL

Server can use the column value as the DocId directly without an intermediate mapping step.

This can result in a significant increase in efficiency, particularly when you’re indexing a table

with a large number of rows. We strongly recommend using an int column as your unique

index for purposes of full-text indexing.

The CREATE FULLTEXT INDEX Statement

You can also create full-text indexes on tables or indexed views via T-SQL with the CREATE

FULLTEXT INDEX statement. Scripting allows you to automate full-text index creation and gives

you the ability to apply the same full-text index across multiple databases and environments.

For instance, it’s not uncommon to create a full-text index in a development environment, test

it, and then re-create the same full-text index in a user acceptance testing (UAT) environment.

Once the full-text index has been tested in UAT, it can be recreated in a production environ-

ment. Listing 2-3 shows a T-SQL script that creates and enables the same full-text index on the

Book table that we previously demonstrated with the Full-Text Indexing Wizard.

Listing 2-3. Scripting Full-Text Index Creation

CREATE FULLTEXT INDEX ON dbo.Book

(

 Book_Content TYPE COLUMN Book_File_Ext LANGUAGE English,

 Book_Name LANGUAGE English

)

KEY INDEX PK_Book

ON

(

 Book_Cat

)

WITH

(

 CHANGE_TRACKING = AUTO,

 STOPLIST = SYSTEM

);

GO

ALTER FULLTEXT INDEX

ON dbo.Book ENABLE;

GO

www.allitebooks.com

http://www.allitebooks.org

34 C H A P T E R 2 ■ AD M I N I S T R A T I O N

The CREATE FULLTEXT INDEX statement shown in Listing 2-3 begins by indicating the table

you wish to create the index on, followed by the columns to index in parentheses.

CREATE FULLTEXT INDEX ON dbo.Book

(

 Book_Content TYPE COLUMN Book_File_Ext LANGUAGE English,

 Book_Name LANGUAGE English

)

■Note You can use language keywords (such as English) or LCIDs in some situations, for example in the

CREATE FULLTEXT INDEX statement LANGUAGE clauses. The LCID equivalent for English is 1033.

The Book_Content column definition in the example uses the TYPE COLUMN clause to define

the type of data stored in each corresponding row of the Book table. The Book_File_Ext column

contains a filename extension to indicate the type of content in the Book_Content column. The

value of the Book_File_Ext column determines which filter iFTS applies to the content. A value

of .doc in the Book_File_Ext column, for instance, means that the Book_Content column contains

a Microsoft Word document, while a value of .xml indicates an XML document.

■Tip You can retrieve the entire list of document types supported by an instance of SQL Server 2008 by

querying the sys.fulltext_document_types catalog view.

The LANGUAGE clause of the column definitions specifies English, or Language Code Identifier

(LCID) 1033, as the language to be used. You can retrieve the entire listing of supported full-text

languages and LCID codes by querying the sys.fulltext_languages catalog view.

The KEY INDEX clause specifies which unique index on the Book table iFTS will use to relate

full-text index entries back to the source table. In this instance, we’ve chosen to use the int

primary key. The ON clause that follows specifies which full-text catalog this full-text index will

be created on—in this example the Book_Cat catalog:

KEY INDEX PK_Book

ON

(

 Book_Cat

)

The WITH clause in the example sets the change-tracking mode for the full-text index. In

this case, we’ve set it to AUTO. The STOPLIST option has also been set to SYSTEM in the example:

WITH

(

 CHANGE_TRACKING = AUTO,

 STOPLIST = SYSTEM

);

C H A P T E R 2 ■ A D M I N I ST R A T I O N 35

The available options for CHANGE_TRACKING are AUTO, MANUAL, and OFF, each corresponding

to the similarly named options in the Full-Text Indexing Wizard. The OFF mode has an optional

NO POPULATION clause, which indicates that the full-text index shouldn’t be populated after

creation. While your index will be queryable, no results will be returned in your queries, as

nothing has been indexed yet. If you set change tracking to OFF with the NO POPULATION clause,

you must manually start population of your full-text index with the ALTER FULLTEXT INDEX

statement.

The STOPLIST option can be set to one of SYSTEM, OFF, or the name of a user-created stoplist,

indicating the system stoplist, no stoplist, or a user-defined stoplist, respectively.

The final ALTER FULLTEXT INDEX statement includes the ENABLE clause to enable the full-

text index after it’s created:

ALTER FULLTEXT INDEX

ON dbo.Book ENABLE;

Full-Text Index Population
Once full-text indexes are created, there’s the small matter of populating them. When full-text

indexes are created, they’re automatically populated unless you create them with the CHANGE_

TRACKING = OFF, NO POPULATION option. Even after a full-text index is created and initially

populated, however, it still needs to be updated from time to time. We’ll discuss full-text index

population in this section.

If you create a full-text index with change tracking set to AUTO, as we did in our example,

SQL Server handles the details of tracking changes to the base table and updating the full-text

index on an as-needed basis. You may determine that the overhead associated with automatic

change tracking is too costly for your system. You can reach this decision for a variety of reasons—

if you expect full-text index change tracking to consume too many server resources during peak

periods of server activity, for instance. In that case, you can set the CHANGE_TRACKING option to OFF

or MANUAL and begin full-text index populations with the ALTER FULLTEXT INDEX statement.

SQL Server provides three types of full-text index populations through the ALTER FULLTEXT

INDEX statement: full population, incremental population, and update population.

■Tip If a full-text index population is in progress when you try to start a new population, SQL Server returns

a warning message and doesn’t start the new population. The population that is currently in process continues

unaffected though.

Full Population

The START FULL POPULATION clause of the ALTER FULLTEXT INDEX statement starts a full popula-

tion of your index. When you start a full population on a full-text index, SQL Server retrieves

every row of the source table or indexed view and adds all entries to the index. A full population

can cause excessive locking during the index process, which might conflict with user queries

and DML statements, since the full-text engine must access every row of the source table to

populate the index. Normally, a full population is run immediately after full-text index creation

36 C H A P T E R 2 ■ AD M I N I S T R A T I O N

and might be scheduled at regular intervals (normally off-peak hours) if you’ve chosen to set

change tracking to MANUAL or OFF. A full population on a table that already has a populated full-

text index won’t break the existing full-text index—it will still be queryable while the new full

population is in process. Listing 2-4 demonstrates how to start a full population on a full-text

index.

Listing 2-4. Starting Full Population of a Full-Text Index

ALTER FULLTEXT INDEX ON dbo.Book

START FULL POPULATION;

Incremental Population

When you start an incremental population with the START INCREMENTAL POPULATION clause of

the ALTER FULLTEXT INDEX statement, the population process retrieves only the rows modified

since the last full-text index population completed. It then has to enumerate all rows in the

table to determine which rows have been deleted and remove references to these rows from

the full-text index. If a large percentage of your data has changed, incremental populations are

generally faster than full populations, as they only make one pass of the base table. If you encounter

excessive server resource usage or user query and DML statement locking, you might decide to

schedule full populations or update populations for off-peak hours instead of using incremental

populations with AUTO change tracking.

To use the incremental population option, the source table must have a rowversion data

type column. If the table doesn’t have a rowversion column and you specify incremental popu-

lation, SQL Server will start a full population. Note that when you initially start change tracking,

a full population will be done. If you subsequently kick off change tracking on a table, an incre-

mental population may be done instead of a full-population if the table has a rowversion

column and a prior full population has completed.

■Tip The rowversion data type is a synonym for the timestamp data type. The name timestamp for

this data type is deprecated. You should use the name rowversion in future development.

When you start an incremental population, SQL Server uses the rowversion column of the

base table or indexed view to determine which rows have changed since the last population. In

the incremental population strategy, SQL Server only considers rows that have changed since

the last population when updating the full-text index. Listing 2-5 shows how to start an incre-

mental population.

Listing 2-5. Starting Incremental Population of a Full-Text Index

ALTER FULLTEXT INDEX ON dbo.Book

START INCREMENTAL POPULATION;

C H A P T E R 2 ■ A D M I N I ST R A T I O N 37

Update Population

You can start an update population with the START UPDATE POPULATION clause of the ALTER

FULLTEXT INDEX statement. An update population (formerly called a change-tracking population

in prior releases of SQL Server) relies on a record of the updates, inserts, and deletes to the base

table or indexed view, which is maintained by SQL Server between populations. These changes

are maintained by SQL Server in a change-tracking index. When you start an update popula-

tion, SQL Server applies all the changes in the change-tracking index to the full-text index. In

order to use update populations, your full-text index needs to be set to MANUAL change tracking.

Update populations don’t require a rowversion column like incremental populations do. Again,

if you’re using an update population and are encountering excessive locking or resource prob-

lems, you may decide to schedule your populations for off-peak hours. Listing 2-6 demonstrates

how to start an update population.

Listing 2-6. Starting Update Population of a Full-Text Index

ALTER FULLTEXT INDEX ON dbo.Book

START UPDATE POPULATION;

Additional Index Population Options

You can also stop, pause, or resume a population with the STOP POPULATION, PAUSE POPULATION,

and RESUME POPULATION clauses of the ALTER FULLTEXT INDEX statement. The STOP POPULATION

clause stops any population in progress, but allows auto change tracking to continue. (To stop

change tracking, you must use the SET CHANGE_TRACKING OFF option.) PAUSE POPULATION pauses

a full population, and RESUME POPULATION resumes a previously paused full population. The

index will remain queryable while the full-text population has been stored or paused. These

two options are only applicable to a full population.

The ALTER FULLTEXT INDEX statement also allows you to alter the change-tracking mode for

your full-text index with the SET CHANGE_TRACKING clause. If your full-text index has change

tracking turned off, for instance, you can change it to AUTO or MANUAL with this clause.

ALTER FULLTEXT INDEX also provides the ENABLE and DISABLE clauses to enable or disable a

full-text index, respectively. You can change the full-text stoplist via the SET STOPLIST clause,

and can add columns to an index via the ADD clause or drop columns with the DROP clause.

Catalog Rebuild and Reorganization

In addition to managing full-text index populations on an individual basis with the ALTER

FULLTEXT INDEX statement, you can use ALTER FULLTEXT CATALOG to rebuild or reorganize an

entire full-text catalog. Rebuilding a full-text catalog repopulates every full-text index that the

catalog contains. Listing 2-7 shows how to rebuild a full-text catalog.

Listing 2-7. Rebuilding a Full-Text Catalog

ALTER FULLTEXT CATALOG Book_Cat

REBUILD WITH ACCENT_SENSITIVITY = OFF;

38 C H A P T E R 2 ■ AD M I N I S T R A T I O N

In this example, the optional WITH ACCENT_SENSITIVITY clause of the REBUILD clause sets

the accent sensitivity for the catalog to OFF. You can use this option to change the accent sensi-

tivity of your full-text catalog.

During the process of populating a full-text index, SQL Server can generate multiple small

indexes, which it subsequently combines into one large index—a process known as a master

merge, or index reorganization. You can tell SQL Server to perform a master merge to optimize

internal full-text index and catalog structures. Periodic reorganization can improve full-text

index performance, particularly if your catalog changes frequently. Listing 2-8 demonstrates

reorganization of a full-text catalog.

Listing 2-8. Reorganizing a Full-Text Catalog

ALTER FULLTEXT CATALOG Book_Cat

REORGANIZE;

Scheduling Populations

You can schedule full-text index populations using the Full-Text Indexing Wizard, as we

previously mentioned in this chapter. When you use the Full-Text Indexing Wizard to create a

schedule, it creates a SQL Server Agent job to perform full-text index population according to

the schedule you define. Figure 2-15 shows the wizard schedule window, in which we’ve

defined a recurring population task that will kick off every day at 1 a.m.

Figure 2-15. Full-Text Indexing Wizard schedule wizard

C H A P T E R 2 ■ A D M I N I ST R A T I O N 39

■Note Since the Full-Text Indexing Wizard schedules jobs via SQL Server Agent, you need to ensure that

the SQL Server Agent service is turned on. You can verify this with the SQL Server Configuration Manager

utility or in the Control Panel under Services.

If you’ve already created your full-text indexes, you can schedule your own SQL Server

Agent jobs to execute ALTER FULLTEXT INDEX statements to populate them without going

through the Full-Text Indexing wizard GUI.

Management
SQL Server 2008 provides several tools to help you manage your full-text indexes and catalogs.

In this section, we’ll look at backing up SQL Server full-text catalogs and indexes, as well as

SQL Server Profiler events that are useful for iFTS management, performance tuning, and

troubleshooting.

Backups

Prior to SQL Server 2008, full-text catalogs and indexes were stored in the file system, separate

from their associated databases. In SQL Server 2000, you needed a separate strategy to back up

your full-text indexes separately from your databases. SQL Server 2005 also stored full-text

catalogs in the file system, but improved backups by allowing you to back up your catalogs with

the database.

SQL Server 2008 ups the ante by creating your full-text indexes and catalogs in the data-

base. This simplifies backing them up, since they’re automatically backed up during normal

database backups. Listing 2-9 shows a simple BACKUP DATABASE statement that performs a full

database backup, including full-text catalogs.

Listing 2-9. Full Database Backup

BACKUP DATABASE iFTS_Books

TO DISK = N'C:\iFTS_Books\iFTS_Books.bak'

 WITH DESCRIPTION = N'iFTS_Books backup example including full-text catalogs',

 NOFORMAT,

 INIT,

 NAME = N'iFTS_Books-Full Database Backup',

 SKIP,

 NOREWIND,

 NOUNLOAD,

 STATS = 10;

You can restore your database, including full-text catalogs and indexes, with the RESTORE

DATABASE statement, as shown in Listing 2-10.

40 C H A P T E R 2 ■ AD M I N I S T R A T I O N

Listing 2-10. Full Database Restore

RESTORE DATABASE iFTS_Books

 FROM DISK = N'C:\iFTS_Books\iFTS_Books.bak'

 WITH FILE = 1,

 NOUNLOAD,

 REPLACE,

 STATS = 10;

If you created your full-text indexes on a different filegroup, or if you have multiple full-

text indexes on separate filegroups, you can identify the filegroups that contain your full-text

indexes to perform filegroup backups and restores.

■Tip Your first backup for a filegroup has to be a full file backup; subsequent backups of the filegroup can

be differential file backups.

Logs

The iFTS crawler keeps crawl logs in the MSSQL\Log directory for each SQL Server instance.

These are text log files with names that begin with sqlft* and end with the extension .log. The

crawl logs contain entries that give you information about full-text population start events,

stop events, and errors. The following are some sample crawl log entries:

2008-06-02 23:29:48.94 spid26s Informational: Full-text Full population

 initialized for table or indexed view '[iFTS_Books].[dbo].[Book]'

 (table or indexed view ID '706101556', database ID '11'). Population

 sub-tasks: 1.

2008-06-02 23:30:17.97 spid26s Warning: No appropriate filter was found

 during full-text index population for table or indexed view

 '[iFTS_Books].[dbo].[Book]' (table or indexed view ID '706101556',

 database ID '11'), full-text key value 0x34. Some columns of the row were not

 indexed.

2008-06-02 23:30:18.01 spid32s Informational: Full-text Full population

 completed for table or indexed view '[iFTS_Books].[dbo].[Book]' (table

 or indexed view ID '706101556', database ID '11'). Number of documents

 processed: 25. Number of documents failed: 0. Number of documents that were

 retried: 0.

This sample shows the initialization and completion of a full-text population. In between

is a warning that no appropriate filter was found for a specific entry (in this case an Adobe

Acrobat PDF file), so the indexer skipped it. The crawl logs are a useful tool for locating infor-

mation about specific iFTS population and indexing problems.

C H A P T E R 2 ■ A D M I N I ST R A T I O N 41

SQL Profiler Events

SQL Profiler contains three full-text search events that you can view in the Trace Properties, as

shown in Figure 2-16.

Figure 2-16. Full-text events in SQL Profiler

The events you can trace in SQL Profiler are related to full-text index population, namely

the process known as the full-text index crawl. The crawl process performs the following iFTS

tasks:

1. The crawl first retrieves rows from the base table or indexed view.

2. Once rows are retrieved, a binary stream is sent to the IFilters, which extract text and

properties.

3. The IFilters send data to the word breakers, which tokenize the words in the columns

covered by the index.

4. Finally, the full-text index is populated with the tokenized words.

SQL Profiler can capture the following events that are useful for troubleshooting full-text

population issues:

• The FT:Crawl Started event is fired whenever a full-text population begins.

• The FT:Crawl Stopped event is fired whenever a full-text population stops because of a

successful completion or a fatal error.

• The FT:Crawl Aborted event is fired when there’s an error (usually a fatal error) during a

full-text population.

You can access these same events in Windows System Monitor (perfmon.exe) under the

SQLServer:Trace Event Statistics performance object.

42 C H A P T E R 2 ■ AD M I N I S T R A T I O N

■Tip In the event of a full-text population error, the SQL Server log, the crawl log, and the Windows Event

Log will contain additional information about the cause of the error.

System Procedures

SQL Server 2008 deprecates many of the FTS-specific system stored procedures that were used

in previous versions. Most have been replaced by catalog views and dynamic management

views and functions. In fact, there are only a handful of system stored procedures specific to

iFTS that aren’t deprecated in SQL Server 2008. The sp_fulltext_service procedure changes

server properties related to full-text search on SQL Server. There are several properties that can

be changed or retrieved with the sp_fulltext_service procedure, as shown in Table 2-2.

Table 2-2. The sp_fulltext_service Properties

Property Description

load_os_resources Determines whether SQL Server uses instance-specific or operating
systemwide word breakers, stemmers, and filters. This property can be
set to one of the following values:

0 = SQL Server uses only word breakers, stemmers, and filters specific to
the server instance. This is the default setting.

1 = SQL Server uses operating system word breakers, stemmers, and filters.
This allows the use of Microsoft Indexing Service resources and language
types that don’t have instance-specific resources.

pause_indexing Allows you to pause or resume full-text indexing operations on a SQL
Server instance. This property can be set to one of the following values:

0 = Resume full-text indexing operations for the instance.

1 = Pause full-text indexing operations for the instance.

update_languages Updates the list of languages registered with iFTS.

upgrade_option Controls how full-text indexes are migrated during an upgrade from SQL
Server 2000 or SQL Server 2005. This property can be set to one of the
following values:

0 = Causes full-text catalogs to be rebuilt using SQL Server 2008 word
breakers.

1 = Resets full-text catalogs, causing the catalog contents to be emptied
and the full-text indexes to be disabled.

2 = Imports full-text catalogs without rebuilding them using SQL Server
2008 word breakers.

verify_signature Enables or disables whether unsigned binaries (such as word breakers)
can be loaded by the full-text search engine. This property can be set to
one of the following values:

0 = Do not verify whether binaries are signed.

1 = Load only signed, trusted binaries. This is the default.

C H A P T E R 2 ■ A D M I N I ST R A T I O N 43

The clean_up, connect_timeout, data_timeout, and resource_usage properties of the

sp_fulltext_service procedure are all provided for backward compatibility, but they don’t

perform any function in SQL Server 2008. The values for these properties are always 0 in SQL

Server 2008. Avoid using these properties in SQL Server 2008. In addition, SQL Server provides

the system stored procedures listed in Table 2-3.

The remaining full-text search system stored procedures are deprecated. You should avoid

using them in future development work and instead use the catalog views and data manage-

ment views provided by SQL Server 2008.

■Note We’ll discuss full-text search-specific catalog views and dynamic management views in detail in

Chapter 9.

Summary
In this chapter, we covered several topics specific to the creation and management of full-text

catalogs and indexes. We talked about selecting full-text search in the SQL Server installation

wizard and some of the tasks the installation wizard takes during an upgrade from SQL Server

2000 or 2005. We then talked about how to create full-text catalogs and full-text indexes using

the SSMS wizards and scripted T-SQL statements.

Then we discussed full-text index population methods, including full population, update

population, and incremental population. We also presented catalog rebuild and reorganiza-

tion options and discussed scheduling population jobs with SQL Server Agent.

We rounded out this chapter with a discussion of some of the administration tools avail-

able for full-text search management. We discussed database backups, crawl logs, SQL Profiler

events, and system stored procedures. Many of the iFTS-specific system stored procedures

have been deprecated in SQL Server 2008 in favor of catalog views and dynamic management

views, which we’ll detail in Chapter 9. In the next chapter, we’ll discuss basic and advanced

full-text queries on SQL Server 2008.

Table 2-3. Full-Text Search System Stored Procedures

Procedure Description

sp_fulltext_key_mappings Returns the internal mappings between document identi-
fiers (DocIds) and full-text key values.

sp_help_fulltext_system_components Returns information about registered word breakers,
filters, and protocol handlers.

sp_fulltext_load_thesaurus_file Loads language-specific iFTS thesaurus file.

sp_fulltext_pending_changes Returns unprocessed changes for a table that’s full-text
indexed using change tracking.

sp_fulltext_service Sets full-text service properties for the SQL Server instance.

www.allitebooks.com

http://www.allitebooks.org

45

■ ■ ■

C H A P T E R 3

Basic and Advanced Queries

I did not look for any specific thing. I only hoped to find, and find I have, all that there
was, only some letters and a few memoranda . . .

—Bram Stoker’s Dracula

Once you’ve built and populated full-text indexes in your database, you can begin querying

them to retrieve relevant data. This chapter is designed to provide an introduction to the features

available through full-text search predicates and functions, and as a guide to the powerful

search query grammar of SQL Server iFTS. SQL Server provides powerful full-text search

querying capabilities, from the most basic phrase search to extremely complex searches

involving Boolean operators, proximity searches, and weighted search terms. We begin our

discussion of SQL Server iFTS with an introduction to the two available SQL Server search

predicates, CONTAINS and FREETEXT.

iFTS Predicates and Functions
SQL Server iFTS provides two search predicates, both based on SearchSQL, which is an exten-

sion to the SQL language promoted by the ISO and ANSI committees. These predicates are the

following:

• The CONTAINS predicate provides access to phrase search, proximity search, strict search,

and advanced query capability.

• The FREETEXT predicate provides fuzzy search and basic query capabilities.

■Tip These two search predicates are supported by all Microsoft Search products, including Microsoft Index

Server as well as most other search engines.

46 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

What is a predicate? Simply put, a predicate is a comparison operator in the WHERE clause of

a SQL statement. In SQL Server iFTS, predicates take a format similar to the SQL EXISTS predi-

cate, with no explicit comparison operators required, as shown in Listing 3-1.

Listing 3-1. Simple iFTS Queries

USE iFTS_Books;

GO

SELECT b.Book_ID

FROM dbo.Book b

WHERE CONTAINS

(

 *,

 N'fish and chips'

);

SELECT b.Book_ID

FROM dbo.Book b

WHERE FREETEXT

(

 *,

 N'love''s or money'

);

■Tip The queries in Listing 3-1 work in the sample iFTS_Books database available from the downloads

section of the Apress web site (www.apress.com).

As with other SQL statements, single quotation marks in search phrase strings must be

doubled up. Single quotes don’t need to be doubled if they’re coming from client applications

that pass search phrase strings as parameters to stored procedures and parameterized queries.

Take care when writing query phrases containing single quotation marks, as they’ll cause your

query to bomb with an error message similar to the following:

Msg 102, Level 15, State 1, Line 1

Incorrect syntax near 'm'.

Msg 105, Level 15, State 1, Line 1

Unclosed quotation mark after the character string ')

'.

C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S 47

UNICODE SEARCH PHRASES

Your search phrases should always be declared as Unicode (nvarchar, nchar). When you don’t declare them

as Unicode, SQL Server implicitly converts them to Unicode, so it’s a good idea to explicitly declare them as

Unicode from a performance perspective. Declaring them as Unicode also helps prevent parameter sniffing.

Furthermore, with the trend toward globalization, restricting your full-text-indexed columns to specific non-

Unicode collations can prove short-sighted and result in the need for a drastic and expensive system overhaul

down the line. We’ve used Unicode throughout the iFTS_Books sample database to support the international

character sets used to store the documents and book metadata.

The functionality of the FREETEXT and CONTAINS predicates are also exposed by the rowset

functions, FREETEXTTABLE and CONTAINSTABLE. These are complementary functions that accept

parameters including a search phrase. Unlike their predicate counterparts, however, these

functions return rowsets consisting of two columns—a key column appropriately named KEY

and a rank column named RANK. The rowsets returned by these functions can be returned to the

client application or used server-side to join against the source table (or another related table).

You can sort the results in descending order to push the most relevant results to the top of the

result set. We’ll explore the details of how these predicates work and the algorithms they use in

this chapter. We’ll cover the FREETEXT predicate and FREETEXTTABLE function first, as they’re the

simplest. We’ll then tackle the more advanced options available via the CONTAINS predicate and

CONTAINSTABLE function.

FREETEXT and FREETEXTTABLE

One of the most common problems DBAs have when deploying search applications is low

recall (the searches miss relevant results). The most common causes for this are that either the

content hasn’t been indexed correctly or the search phrase hasn’t been constructed appropriately.

The most common reason a searcher can’t find what she’s looking for is because the search

is being too strict—for example, the user’s searching for documents containing the word book

and frustrated when documents containing the word books aren’t returned, or when searching

for jog and the results don’t return documents containing the word jogging.

The FREETEXT predicate and FREETEXTTABLE function searches automatically expand your

search terms to include all noun conjugations (including plurals, gender, and case) and declen-

sions (verb forms) of the root of the original search term. So a search for the word jog is expanded

to a search for the following:

• jog

• jogging

• jogged

48 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

A search for the word book is expanded to include the following:

• books

• booked

• booking

• book

In the case of the word book, both verb and noun forms are included. FREETEXT queries also

automatically apply all thesaurus expansions and replacements for the language being used in

the query, as well as the global thesaurus entries for all languages. As an example, you might

include thesaurus entries to expand the word jog to include the words run and sprint as well.

We’ll discuss thesaurus expansions and replacements in detail in Chapter 8.

Another feature of a FREETEXT query is that nearness, or separation distance, is factored

into rank. Nearness is a measure of how close individual search tokens are to one another in

the matching content. By default, a multitoken search using the CONTAINS predicate will only

return rows where the tokens or words are adjacent to one another—that is, there are no words

in between tokens. You can override this behavior with the NEAR operator or by including a

Boolean operator (AND, OR, or AND NOT) between search tokens. As an example, a default

CONTAINS search for University of California won’t match with University California, but in a

FREETEXT search it will match.

NEARNESS AND RANK

With regard to nearness and rank, the behavior of SQL Server 2008 iFTS has changed somewhat from SQL

Server 2005 FTS. In SQL Server 2008, the closer any two search terms are to one another, the higher the

ranking. As an example, the phrase dollar is not a sign has a three-word separation distance between the

terms dollar and sign. In SQL Server 2005, if the search token separation distance was greater than 3,978

words, the rows weren’t returned in search results. In SQL Server 2008, as long as all search tokens are in the

content, they will be returned in searches and nearness is factored into rank. We tested separation distances

up to one million words and confirmed this to be true.

FREETEXT is sometimes referred to as the “natural way to search”; however, many users

complain about FREETEXT, as it often returns far too many irrelevant results, and result retrieval

can be relatively slow. In actuality, FREETEXT is only marginally slower than CONTAINS searches,

and the perceived slowness of FREETEXT tends to be a result of the large number of documents

returned by a FREETEXT search.

■Note Microsoft switched the default search type in its Indexing Service product from CONTAINS to

FREETEXT in version 2.0. That switch reportedly raised an inordinate number of support incidents reported

to PSS (Product Support Services, now called Customer Support Services) in which users complained about

irrelevant results. Before you implement a search solution using FREETEXT, ensure that it will be appropriate

for your users.

C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S 49

In general, we don’t recommend using FREETEXT in search applications that serve up tech-

nical documentation or knowledge base articles where the keywords are generally technical

terms or nouns that don’t have verb forms. In other words, avoid using FREETEXT for keyword-

based searches. For catalogs or news service applications, FREETEXT is the recommended

method, as the searches tend to be phrase-based as opposed to keyword-based. As an example,

Google uses a FREETEXT-type algorithm for default searches. (Note that Google doesn’t use SQL

iFTS to power its searches, but rather a proprietary search engine.)

A FREETEXT search accepts up to three arguments. They are, in order:

• The first argument is a column list.

• You can qualify columns using two-part names.

• You can use the wildcard * character to indicate that all full-text-indexed columns

should be included in the search.

• You can use parentheses to enclose a comma-separated list containing multiple

column names.

• The second argument is the search phrase, which should be a Unicode string using the

appropriate iFTS FREETEXT or CONTAINS search predicate syntax.

• The third argument is an optional language setting specifier preceded by the LANGUAGE

keyword.

Listing 3-2 demonstrates a simple FREETEXT search on a single column of the dbo.Book

table, with results shown in Figure 3-1.

Listing 3-2. FREETEXT Search on a Single Column

SELECT b.Book_ID

FROM dbo.Book b

WHERE FREETEXT

(

 *,

 N'mutton'

);

Figure 3-1. Results of FREETEXT single-column search

Alternatively, you can search on multiple specific columns as shown in Listing 3-3, with

results shown in Figure 3-2.

50 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

Listing 3-3. FREETEXT Search on Multiple Columns

SELECT *

FROM dbo.Commentary c

WHERE FREETEXT

(

 (c.Commentary, c.Article_Content),

 N'Aristotle'

);

Figure 3-2. Result of multiple column FREETEXT search

In Listing 3-3, we specified the exact columns that we wanted to search. Note that we also

qualified columns using their two-part names: c.Commentary and c.Article_Content. Though

this isn’t strictly necessary in our example, it’s useful to eliminate ambiguity when your queries

are joining multiple tables.

When you full-text index a table, as described in Chapter 2, only the columns that you

specify are actually included in the index. If you specify a column that isn’t part of the full-text

index in your search predicate, SQL Server will raise an error similar to the following:

Msg 7601, Level 16, State 3, Line 1

Cannot use a CONTAINS or FREETEXT predicate on column 'NonIndexedColumn' because

it is not full-text indexed.

Another option is to use the wildcard * symbol to search all full-text-indexed columns on

a table, as shown in Listing 3-4. Results are shown in Figure 3-3.

Listing 3-4. FREETEXT Query on All Indexed Columns

SELECT b.Book_ID

FROM dbo.Book b

WHERE FREETEXT

(

 *,

 N'geometry'

);

C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S 51

Figure 3-3. Result of FREETEXT query on all indexed columns

MULTIPLE LANGUAGE CODE ERRORS

Take care with language specifications when indexing your content. Normally, you’ll want to index all of the

columns in a table using a single language identifier or LCID. If you specify multiple LCIDs across different

columns of a single table, you can’t search them all in a single full-text search predicate. If your search query

and target table meet all of the following conditions, your query will fail:

• There are multiple full-text indexed columns in a query.

• The full-text indexed columns are defined to be indexed by different language word breakers.

• A language is not specified in your query.

A query that fails for these reasons will generate an error message like the following:

Msg 7525, Level 16, State 1, Line 1

Full-text table or indexed view has more than one LCID among its

full-text indexed columns.

Chapter 5 delves into the concept of multilingual searches and explains how to circumvent this problem

and search in multiple languages.

Adding a Language Specification

The optional language argument consists of the LANGUAGE keyword followed by an LCID or

language name in single quotes. The language argument proves to be a common conceptual

stumbling block. This argument is intended to be used when you’re storing multilingual

content in your full-text index columns and want to search the columns using a specific

language. The common assumption is that if you search in English (LCID 1033), only documents

written in English will be returned. The expectation among search users (and many developers)

is that SQL Server iFTS is clever enough to figure out the language of your query and only return

documents written in the language you specify. This is not the case.

52 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

The results returned are actually documents that contain any of the stemmed versions of

your search phrase. A search on multilingual content will return all rows containing the search

phrase (and any thesaurus expansions or substitutions as well as any conjugations and declen-

sions of the search phrase).

As an example, if you search for gift, you’ll get rows that contain the words gifted, gift, gifts,

and gifting. Gift in German, however, means poison. This means you’ll get rows with English

content containing the word gift, but also rows in German that refer to the German word for

poison. Listing 3-5 demonstrates a FREETEXT search for books containing the word gift, specifying

English (LCID 1033) as the query language. Figure 3-4 shows that the results include German

(LCID 1031) content containing the word gift as well.

Listing 3-5. FREETEXT Search for “Gift”, with English Language Specified

SELECT b.Book_ID,

 b.Book_LCID

FROM dbo.Book b

WHERE FREETEXT

(

 b.Book_Content,

 N'gift',

 LANGUAGE 1033

);

Figure 3-4. English and German content returned by a
FREETEXT query with English language specified

C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S 53

In the example, you’ll get some results that are exact word matches, but are completely

irrelevant and probably not in a language the searcher understands. The name for these classes

of words are false friends or false conjugates, not to be confused with wanderworts, which are

words that are spelled the same (or pronounced the same) in different languages and have the

same meaning (for example wine). We’ll discuss false friends and wanderworts in greater detail

in Chapter 5.

Using the language parameter is the best option when you’re forced to store multilingual

content in the same column, even though rows will be returned in a different language than

what the user is searching in. Note that you can add an LCID column to specify the language of

each row’s content, as we’ve done in the dbo.Book table. To return only German content, you

can add a Book_LCID = 1031 predicate to your WHERE clause in addition to specifying the language

argument.

The key to understanding the language argument is the fact that language rules are applied

during index time as well as at query time. These language rules are applied by the word breakers

that tokenize content. When you specify the language you want your content indexed by, the

appropriate language-specific word breaker is invoked at index time. You can specify this in

the wizard or by using the LANGUAGE clause of the CREATE FULLTEXT INDEX statement. If you don’t

use the LANGUAGE clause, the default full-text language setting for your server is used. You can

retrieve this setting via the sp_configure system stored procedure, as shown in Listing 3-6.

Listing 3-6. Retrieving the Server Default Full-Text Language

EXECUTE sp_configure 'default full-text language';

Keep in mind that certain filters override these settings if your content is stored in

varbinary(max) or xml columns. The word breakers for Microsoft Office documents, XML

documents, and HTML documents will override the default server settings and query-specific

options, and will instead defer to language-specific settings stored within these documents.

The word breakers for these types of documents apply language rules while extracting the

content, also performing some expansion of words. The simple expansion that’s performed at

index time is not as comprehensive as the word stemming that’s performed at query time. As

an example, the types of index expansions that are performed on English content can be

grouped into four categories, as follows:

1. Hyphenation: Words with hyphens are indexed as the base words, and then the base

words are concatenated. For example, the word data-base will be indexed as data, base,

and database. (This hyphenated spelling of the word database was prevalent in academic

papers of the mid-to-late 20th century.)

2. Acronyms: Capitalized acronyms are indexed as the individual letters and as a unit. For

example, the acronym F.B.I. is indexed as fbi, and f.b.i. On the other hand, fbi is indexed

only as fbi. The lowercase acronym f.b.i. is only indexed as the individual letters f, b, and

i. A search for the uppercase acronym F.B.I. finds documents containing F.B.I., f.b.i., fbi,

and FBI. A search for f.b.i. will locate only documents containing f.b.i. and F.B.I.

54 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

3. Currency and numbers: Currencies are stored as the currency value and also using a

special nnCurrency format. The value $1.00 is indexed as $1.00 and also as nn1$;

$1,23.45 is indexed as $1,234.56 and nn1,234dd56. Non-currency numbers are indexed

as the number and also using a format known as nnNumber. The number 3.14159 is

indexed as both 3.14158 and nn3dd14159. This indexing scheme helps maintain con-

sistency with other Microsoft search products that index numbers, to allow you to

perform value-based searches on them. In other Microsoft search products, you could

search for Word documents with a page count property greater than 100 pages. In SQL

Server, all indexed properties are treated as strings in your searches.

4. Date: If a date to be indexed follows the format MM/DD/YYYY or any variant of that

format (with the exception of dates with month names spelled out such as January 31,

2008), the date will be indexed in both a string format and a special ddDate format. The

date 01/31/2008, for example, is indexed as both 01/31/2008 and dd20080131.

Not all languages follow the same rules for hyphenation and acronyms, however. For some

languages, compound words are indexed alongside alternate word forms. Indexing the German

word Haftzugsfestigkeitsprüfungsprotokoll causes no less than six alternate word forms to be

indexed. The query in Listing 3-7 uses the sys.dm_fts_parser DMF to display the alternate

words for Haftzugsfestigkeitsprüfungsprotokoll. Results are shown in Figure 3-5. We’ll explore

the sys.dm_fts_parser DMF, and other useful views and functions, in Chapter 9.

Listing 3-7. Parsing a German Search Term with a German Word Breaker

SELECT *

FROM sys.dm_fts_parser

(

 N'Haftzugsfestigkeitsprüfungsprotokoll',

 1031,

 0,

 0

);

Figure 3-5. Alternate word forms of a single German word

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S 55

When you search for one of the alternate word forms shown in Figure 3-5, the source term

will be matched as well. Compound words aren’t exclusive to German; they also exist in

Finnish, Swedish, and other languages. Each language may have different rules concerning

hyphenation and other specific word-breaking details.

The Dutch language, for instance, treats hyphenation differently than most other languages.

In most languages, a hyphen implies that a word should be treated as a single unit, and the unit will

sometimes appear unhyphenated. As we described previously, the English word data-base is

indexed as data, base, and database. In Dutch, hyphenation is for the most part preserved, so

that kop-van-jut is indexed as three separate words: kop, van, and jut. There are some exceptions,

though, such as the word kop-hals-rompboerderij, which is indexed as kop-hals-rompboerderij,

kop-hals-romp, boerderij, kop-hals-rompboerderij, and kophalsrompboerderij. Listing 3-8

contains a few sample queries to illustrate Dutch hyphenation, with results shown in Figure 3-6.

Listing 3-8. Dutch Word Breaker Hyphenation in Action

SELECT

 special_term,

 display_term,

 source_term,

 occurrence

FROM sys.dm_fts_parser

(

 N'kop-van-jut',

 1043,

 0,

 0

);

GO

SELECT

 special_term,

 display_term,

 source_term,

 occurrence

FROM sys.dm_fts_parser

(

 N'pianiste-componiste',

 1043,

 0,

 0

);

GO

-- The above are indexed as separate words. The following demonstrates how

-- the entire token is indexed as a unit, both with and without hyphens in place

56 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

SELECT

 special_term,

 display_term,

 source_term,

 occurrence

FROM sys.dm_fts_parser

(

 N'kop-hals-rompboerderij',

 1043,

 0,

 0

);

GO

Figure 3-6. Results of Dutch word-breaker hyphenation

Because of differences in how various word breakers handle hyphenation and index

hyphenated words, we advise against stripping hyphens out of your search queries.

Keep in mind that when querying, you should specify the same language settings you used

to create the index. If you indexed your content in Dutch and you search for the word data-base

using the English language word breaker, the search will attempt to locate the words data and

base; you won’t find content containing the word database. If your content was indexed using

the US English word breaker, however, you would find content containing the word database.

Returning the Top N by RANK

In many search applications, only a small percentage of search results are returned. This is done

mainly for performance reasons, and it works well because users tend to find what they’re

looking for in the first page of results. If the first page of results doesn’t contain the required

results, users will generally refine their search and try again. Although most users don’t check

secondary pages of search results, there are some search applications where users have a

greater probability of reading beyond the first page. For example, in most job search applica-

tions, users can be counted on to view several pages.

C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S 57

When large numbers of search results are returned, it may not be practical to transfer the

entire result set to the client for client-side paging. You can use the top_n_by_rank argument to

limit results in such cases. The top_n_by_rank argument is a fourth optional argument avail-

able only with the FREETEXTTABLE and CONTAINSTABLE functions. Listing 3-9 illustrates how this

works, with the results shown in Figure 3-7.

Listing 3-9. Retrieving the Top Five Search Results by Rank

SELECT

 t.*,

 k.[RANK]

FROM dbo.Book b

INNER JOIN dbo.Book_Title bt

 ON b.Book_ID = bt.Book_ID

INNER JOIN dbo.Title t

 ON bt.Title_ID = t.Title_ID

INNER JOIN FREETEXTTABLE

(

 dbo.Book,

 *,

 N'fish',

 5

) AS k

 ON k.[KEY] = b.Book_ID

WHERE t.Is_Primary_Title = 1

ORDER BY k.[RANK] DESC;

Figure 3-7. Top N by Rank FREETEXT query results

In this example, the top_n_by_rank argument is set to 5, ensuring that only the first five

results in descending order of RANK are returned.

■Note In SQL Server 2005, there was an additional setting for “precompute rank” that gave a performance

boost for FREETEXTTABLE queries in which the top_n_by_rank argument was used. This setting is depre-

cated in SQL 2008 and is not operational—it doesn’t do anything. This feature is no longer required, as the

iFTS query engine is now fully integrated with SQL Server.

58 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

CONTAINS
CONTAINS returns exact or literal matches for a search phrase. Queries for the word run, for

instance, will only match content containing the exact word run and not runs or runt. Only

content containing character-for-character matches is returned. However, you can select the

degree of imprecision, closeness, or fuzziness in your search using additional query string

options. Taken to its extreme, you can make CONTAINS functionally equivalent to FREETEXT.

Listing 3-10 demonstrates a simple CONTAINS query, with the result shown in Figure 3-8.

Listing 3-10. Simple CONTAINS Query

SELECT b.Book_ID

FROM dbo.Book b

WHERE CONTAINS

(

 *,

 N'leaf'

);

Figure 3-8. Result of simple CONTAINS query

As with the FREETEXT search, the CONTAINS predicate supports the ability to specify whether

to search a single column, multiple columns, or all columns. The CONTAINS predicate supports

several types of modifiers, including the following:

• Phrase

• Boolean

• Prefix

• Generational

• Proximity

• Weighted

We’ll describe each of these search modifiers in turn in the following sections.

C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S 59

Phrase Searches

You can search for phrases as opposed to a single word. To specify a phrase in a CONTAINS search,

you have to wrap the entire phrase in double quotes. Listing 3-11 is a simple CONTAINS search for

the phrase “cats and dogs”. The result is shown in Figure 3-9.

Listing 3-11. Simple CONTAINS Phrase Search

SELECT b.Book_ID

FROM dbo.Book b

WHERE CONTAINS

(

 *,

 N'"cats and dogs"'

);

Figure 3-9. Result of simple CONTAINS phrase search

If you look at the Messages tab in SSMS after running this query, you’ll notice that SQL

Server returned an informational warning message because the search phrase in Listing 3-11

contains the noise word and. The warning message looks like the following:

Informational: The full-text search condition contained noise word(s).

The issue of full-text search conditions that contain noise words can be problematic when

one token in a Boolean search is a stopword, as shown in Listing 3-12, which is a slightly modi-

fied version of the query in Listing 3-11.

Listing 3-12. Boolean Search with a Stopword

SELECT b.Book_ID

FROM dbo.Book b

WHERE CONTAINS

(

 *,

 N'"cats" and "and"'

);

60 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

By default this query returns no results, even though there are documents that contain the

word cats. This is because the word and is on the English stoplist, so no documents will ever

match the Boolean condition "cats" and "and". You have three possible options to get around

this behavior, as listed following:

1. Strip stopwords out of search conditions before submitting them to the server. This

could be done in a client application prior to performing the SQL iFTS query.

2. Remove stopwords you want to include in searches from the stopword list. In SQL

Server 2008, you could create a custom stoplist (possibly based on an existing system

stoplist), remove the stopwords you want to include in queries, and assign the newly

created stoplist to a full-text index. We discuss stoplists in depth in Chapter 7.

3. Enable stopword transformations via server settings. Note that SQL Server 2008 still

refers to this as “noise word” transformations. You can change this setting via sp_configure:

EXECUTE sp_configure 'show advanced options', 1;

RECONFIGURE WITH OVERRIDE;

GO

EXECUTE sp_configure 'transform noise words', 1;

RECONFIGURE WITH OVERRIDE;

GO

After you change the transform noise words server option, SQL Server replaces stopwords

with a wildcard asterisk (*) in search conditions. This means the search condition shown in

Listing 3-11 is transformed to '"cats" and "*"', and will return results.

Boolean Searches

As we discussed briefly in the previous section, you can use Boolean operators in your search

condition (such as AND, AND NOT, and OR for each term of your search condition). In this book

we’ll capitalize Boolean operators; however, they’re treated as case-insensitive. Boolean oper-

ators allow you to search for combinations of multiple search tokens and phrases that might

not be contiguous (right next to each other), as Listing 3-13 demonstrates. The results include

documents that contain both the words sword and shield, regardless of where they occur in the

document content, as shown in Figure 3-10.

Listing 3-13. Searching for Phrases with the AND Boolean Operator

SELECT b.Book_ID

FROM dbo.Book b

WHERE CONTAINS

(

 *,

 N'"sword" and "shield"'

);

C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S 61

Figure 3-10. Results of Boolean AND search

■Tip You can also use symbolic abbreviated forms of the Boolean operators: & for AND, | for OR, and &! for

AND NOT. The Boolean operator combination OR NOT has no significance in iFTS and is not supported.

In some cases, you may wish to search for multiple variants of a single word; for example,

center is sometimes spelled centre, so a search for center won’t return content that uses the

alternate spelling centre. Listing 3-14 shows how you can use a Boolean OR operator to search

for documents containing either spelling. Results are shown in Figure 3-11.

Listing 3-14. Using OR to Search for Phrases with Different Spellings

SELECT Book_ID

FROM dbo.Book

WHERE CONTAINS

(

 *,

 N'"center" OR "centre"'

);

You can also combine search terms using multiple Boolean expressions and group them

with parentheses. Listing 3-15 combines the phrases performing, center, and centre using the

Boolean AND and OR operators, with results shown in Figure 3-12.

62 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

Figure 3-11. Results of Boolean OR search

Listing 3-15. Searching with Multiple Boolean Expressions

SELECT Book_ID

FROM dbo.Book

WHERE CONTAINS

(

 *,

 N'"performing" AND ("center" OR "centre")'

);

Figure 3-12. Results of search with multiple Boolean expressions

In some cases, you may need to filter your search to exclude a given term. For example, in

a search for fish, you might not want to see any references to hook. In this case, you can use the

Boolean AND NOT operator to filter out any results containing the term hook. This particular

search would look like Listing 3-16. Although the sample database contains 16 books with the

word fish in them, only four of those don’t contain the word hook, as shown in Figure 3-13.

C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S 63

Listing 3-16. Using AND NOT to Exclude Search Terms

SELECT Book_ID

FROM dbo.Book

WHERE CONTAINS

(

 *,

 N'"fish" AND NOT "hook"'

);

Figure 3-13. Results of Boolean AND NOT search

Prefix Searches

The CONTAINS predicate also allows you to do basic wildcard prefix searches. This is indicated

by the wildcard asterisk (*) operator. A wildcard prefix search for the term run* returns docu-

ments containing the words run, runs, runt, running, runner—in short, anything that matches

the first part of the search argument up to the *. No stemming is done in a prefix search, so that

a search on mice* doesn’t return content containing the word mouse, for instance. The query

shown in Listing 3-17 returns matches for all words that begin with the prefix chl* , such as

chlorophyll, chlorine, and chloride. Results are shown in Figure 3-14.

Listing 3-17. Prefix Search Example

SELECT Book_ID

FROM dbo.Book

WHERE CONTAINS

(

 *,

 N'"chl*"'

);

Figure 3-14. Results of prefix search

64 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

■Note For wildcard searches to work, you must wrap the terms in double quotes. If you don’t include the

search term in double quotes, SQL Server treats the trailing asterisk as part of the search term and attempts

to match the search term exactly, trailing asterisk included. Also note that if your search phrase includes

multiple words, all of the words in the phrase are treated as wildcard prefixes. That is, a search for "al* anon"

performs a prefix search for words that begin with al* followed immediately by words that begin with anon*,

including Al Anon, alcoholics anonymous, Allan Anonymous, and many others.

One commonly requested wildcard feature is suffix searches—using the wildcard character

at the start of a search term like *ing to match all words ending in the suffix ing. SQL iFTS doesn’t

allow this type of search. If you absolutely need this type of search functionality, one approach

is to store all of your content in reverse, so “The rain in Spain stays mainly in the plain” could

be stored as “nialp eht ni ylniam syats niapS ni niar ehT”. Then if you wanted to search for

words ending in ain, you could simply reverse the search suffix and append the wildcard char-

acter to the end like this: nia*. It’s not clear why the FTS engine doesn’t support suffix-based

wildcard searching, as some other RDBMS search components do (including both DB2 and

Oracle).

Generational Searches

Generational searches are searches in which either, or all, of the following occur:

• Words are stemmed, which simply means that additional forms of the words are gener-

ated and matched, including plural nouns and verb forms. This is known as inflectional

term generation.

• Search terms are replaced via language-specific thesaurus replacement sets. This is

included in thesaurus term generation.

• Search terms are expanded via language-specific thesaurus expansion sets. This is also

part of thesaurus term generation.

Though the FREETEXT predicate that we discussed previously will automatically perform

word stemming and thesaurus expansions and replacements, the CONTAINS predicate does not.

In order to perform generational searches with CONTAINS, you have to use the FORMSOF operator

and indicate whether you want to use INFLECTIONAL or THESAURUS forms. Listing 3-18 uses the

CONTAINS inflectional term generation to match inflectional forms of the word punch, including

punch, punches, punched, and punching. Results are shown in Figure 3-15.

Listing 3-18. Inflectional Term Generation with CONTAINS

SELECT Book_ID

FROM dbo.Book

WHERE CONTAINS

(

 *,

 N'FORMSOF(INFLECTIONAL, punch)'

);

C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S 65

Figure 3-15. CONTAINS inflectional term generation search

Proximity Searches

SQL Server iFTS also allows you to perform searches that require search terms to be in close

proximity to one another. Suppose you want to locate books about the presidential role of

commander-in-chief of the armed forces. You might choose to search for the words president

and army, as shown in Listing 3-19. As you can see in Figure 3-16, the results include several

books that probably have little or nothing to do with your topic of choice. Instead, most of the

books probably refer to your keywords in passing at some point in their text.

Listing 3-19. Searching for the Phrases “president” and “army”

SELECT

 ct.[KEY],

 ct.[RANK],

 t.Title

FROM CONTAINSTABLE

(

 dbo.Book,

 *,

 N'"president" AND "army"'

) ct

INNER JOIN dbo.Book_Title bt

 ON ct.[KEY] = bt.Book_ID

INNER JOIN dbo.Title t

 ON bt.Title_ID = t.Title_ID

WHERE t.Is_Primary_Title = 1;

Figure 3-16. Results of search for “president” and “army”

66 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

As you can imagine, Mothers’ Remedies (a book about home health) is not exactly the type

of book that addresses the chief executive’s role in relation to the armed forces. You can use

proximity searches, via the NEAR operator, to return more relevant results. The theory behind

proximity search is that documents with search terms that are close to one another (like presi-

dent and army used in the example) are probably more relevant to the search topic. The NEAR

operator returns a higher RANK for matching documents when the search terms are in close

proximity to one another, and a lower RANK when the search terms are far apart. When the

search terms are separated by more than 50 words, the RANK drops to 0. Listing 3-20 performs

a proximity search and restricts the results to those with a RANK greater than 0. The results, in

Figure 3-17, show the more relevant documents found.

Listing 3-20. NEAR Proximity Search for “president” and “army”

SELECT

 ct.[KEY],

 ct.[RANK],

 t.Title

FROM CONTAINSTABLE

(

 dbo.Book,

 *,

 N'"president" NEAR "army"'

) ct

INNER JOIN dbo.Book_Title bt

 ON ct.[KEY] = bt.Book_ID

INNER JOIN dbo.Title t

 ON bt.Title_ID = t.Title_ID

WHERE t.Is_Primary_Title = 1

 AND ct.[RANK] > 0;

Figure 3-17. Books about the president and the army

The two titles returned by the query in Listing 3-20 are more likely to be relevant to the role

of president as civilian leader of the military than most of the other previous results.

■Tip As an alternative, you can use the ~ operator instead of the NEAR keyword to perform a proximity search.

C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S 67

Proximity search in iFTS has some limitations, including the following:

• The NEAR operator is internally mapped to the AND operator. The further apart your search

terms are from one another, the lower the ranking of matches returned by your proximity

search. This has a big implication for your proximity searches: the NEAR operator is

basically useless with the iFTS CONTAINS and FREETEXT predicates (it’s no different from

using the AND operator). To get a true proximity search, you need to use CONTAINSTABLE or

FREETEXTTABLE and restrict the results with a WHERE clause. Your WHERE clause predicate

should specify that the RANK column returned by the iFTS function needs to be greater

than 0 (for any proximity search match), or greater than some other value for a higher

quality match.

• The CONTAINS and FREETEXT predicate proximity operators operate differently from the

CONTAINSTABLE and the FREETEXTTABLE proximity operators. In the iFTS functions, prox-

imity is calculated into the rank. In other words, with CONTAINSTABLE and FREETEXTTABLE,

the closer your search terms are to one another, the higher the rank (all other things

being equal). By contrast, the order in which CONTAINS and FREETEXT results are returned

does not in any way reflect the separation distance of the search terms. You may find the

first row of results returned by the iFTS predicates has the search terms farthest apart,

and the next row has the search terms closest together.

• There’s no way to change the definition of “closeness” that proximity search uses. The

iFTS team worked hard to include a method to define distance separation by word,

sentence, paragraph, and so on. This functionality would’ve let you search documents

for the search phrase Dick Cheney within five words of Halliburton, for instance.

Unfortunately, due to time constraints, this feature was cut late in the SQL Server 2008

development cycle. The authors are hopeful that this much-needed feature will ship in a

service pack, or in the next version of SQL Server.

Additionally, if you use the same search term twice in a proximity search, as in "africa"

NEAR "africa", iFTS looks for two distinct instances of the search term (in this case "africa")

in close proximity to one another in the searched content. Documents containing only one

instance of the search term are not returned by the proximity search.

Weighted Searches

Sometimes you need to do a search in which two topics are hopelessly intertwined, and yet you

want to search for one topic alone. Using a Boolean AND NOT operator isn’t an option, because

it will filter out some relevant hits. What you need is a way to maximize the impact of the term

you want to include while minimizing the contribution of the term you want to exclude. In iFTS

terms, what you want is a weighted search. In this type of search, you apply weights to your

tokens to make some tokens more relevant than others.

Let's consider a search for Ike Turner (Tina’s ex-husband). Ike was a prominent musician

and producer in his own right, but Internet searches on him return results that are mostly about

his more famous ex-wife Tina Turner (a Google search, for example, returns about 1.3 million

hits). Excluding Tina returns almost 1/2 million hits. However, these results are primarily about

Ike’s life after Tina, leaving out a lot of relevant information. In other words, you don't want to

exclude Tina Turner from the search completely.

68 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

For our purposes, we’ll locate books about Caesar, the Roman emperor. There are several

books that mention Caesar in passing (Caesar not being the topic of the book). For instance,

Shakespeare’s Hamlet mentions Caesar: “Imperious Caesar, dead and turn'd to clay.” You can

add additional search terms such as Rome to the search and apply a weight to each term to

increase the relevance of the results. Listing 3-21 demonstrates. The results are shown in

Figure 3-18.

Listing 3-21. Weighted ISABOUT Search for Caesar and Rome

SELECT

 ct.[KEY],

 ct.[RANK],

 t.Title

FROM CONTAINSTABLE

(

 dbo.Book,

 *,

 N'ISABOUT("Caesar" WEIGHT(1), "Rome" WEIGHT(.1))'

) ct

INNER JOIN dbo.Book_Title bt

 ON ct.[KEY] = bt.Book_ID

INNER JOIN dbo.Title t

 ON bt.Title_ID = t.Title_ID

WHERE t.Is_Primary_Title = 1

 ORDER BY ct.[RANK] DESC;

Figure 3-18. Results of search for books about Caesar of Rome

C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S 69

As you can see, the weighted values ensure that the documents returned contain the

keywords with weights applied to them. The weighted terms are factored into the final RANK,

with the higher RANK values representing better quality matches. Shakespeare’s Antony and

Cleopatra, for instance, is a much better match than Alice’s Adventures in Wonderland, even

though both documents mention Caesar or Rome.

The WEIGHT value ranges from 0 to 1, with 1 being the highest. The weights you assign to

your search terms also affect the result rankings generated by the CONTAINSTABLE function.

Weighted terms are also valuable when you’re doing a taxonomy-based search. SQL Server

iFTS doesn’t natively support such advanced taxonomy searches, but they can be imple-

mented via third-party software in data mining and client search applications.

CONTAINSTABLE Searches

The CONTAINS and FREETEXT predicates don’t give you any method of limiting the number of

rows returned in your result sets. This has two implications: First, you may get more results

than you need, which will degrade performance on your system, and second, the results aren’t

returned in any particular order. CONTAINSTABLE and FREETEXTTABLE help alleviate this problem

by assigning a rank to each result and giving you the ability to use the top_n_by_rank argument

to only return the top n results. Listing 3-22 shows a typical usage of the CONTAINSTABLE func-

tion. Note that the results are joined back to relevant tables using the KEY column of the result

set, and the results are ordered in descending order by the RANK column. Results are shown in

Figure 3-19.

Listing 3-22. Simple CONTAINSTABLE Function Usage

SELECT

 c.[KEY],

 c.[RANK],

 t.Title

FROM dbo.Book_Title bt

INNER JOIN dbo.Title t

 ON bt.Title_ID = t.Title_ID

INNER JOIN CONTAINSTABLE

(

 dbo.Book,

 Book_Content,

 N'monster'

) c

 ON bt.Book_ID = c.[KEY]

WHERE t.Is_Primary_Title = 1

ORDER BY c.[RANK] DESC;

70 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

Figure 3-19. Results of CONTAINSTABLE search

You can also add the optional top_n_by_rank argument, as shown in Listing 3-23. In this

example, only the top five rows from the results in Figure 3-19 are returned. The results are also

sorted in descending order by rank.

Listing 3-23. CONTAINSTABLE with the top n by rank Argument

SELECT

 c.[KEY],

 c.[RANK],

 t.Title

FROM dbo.Book_Title bt

INNER JOIN dbo.Title t

 ON bt.Title_ID = t.Title_ID

INNER JOIN CONTAINSTABLE

(

 dbo.Book,

 Book_Content,

 N'monster',

 5

) c

 ON bt.Book_ID = c.[KEY]

WHERE t.Is_Primary_Title = 1;

If you return the rank, you’ll see that it’s a value between 0 and 1000. The rank value is

derived from a statistical method that attempts to assign a value to the relevance of each result.

The higher the rank, the more relevant your result; 1000 indicates a perfect match. SQL Server

iFTS uses a formula known as the Jaccard coefficient in the rank calculation.

C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S 71

Advanced Search Topics
In this section, we’ll discuss advanced search topics, including how to use the XQuery contains()

function in conjunction with iFTS and weighted column searches. In addition, we’ll introduce

taxonomy-based search and text mining concepts.

Using XQuery contains() Function

You can use the iFTS CONTAINS and FREETEXT predicates in conjunction with the XQuery contains()

function when searching XML data. One important fact to remember is that, while iFTS is case

insensitive, the XQuery contains() function is case sensitive. Ideally, you’d use contains() to

determine precisely which node of your XML document holds the matching text. Consider the

query in Listing 3-24.

Listing 3-24. Using the XQuery contains() Function

SELECT Article_Content

FROM dbo.Commentary

WHERE CONTAINS

(

 Article_Content,

 N'Bible'

)

AND Article_Content.exist(N'/article/title[contains(., "Bible")]') = 1;

The dbo.Commentary table has three XML articles in the Article_Content column that

contain the word Bible. In this example, we use the iFTS CONTAINS predicate to retrieve the

initial result set of all XML commentary entries that contain the word Bible. We then use the xml

data type exist() method in conjunction with the XQuery contains() function to further narrow

down the results to only those that have the word Bible in their title element.

Column Rank-Multiplier Searches

A frequent request on the newsgroups is the ability to search a table and return documents

with different columns weighted differently. For example, one of the authors was approached

by a web site designed to allow users to search publications by location.

The requirement the web site was struggling with was that a search for England (for example)

should return rows ranked high where the hit occurred in the City column, slightly less in

the Publication_Name column, and finally the Description column should be ranked low. The

particular formula they came up with was that a hit coming from the City should have a rank

multiplier of 5, a Publication_Name hit would be assigned a rank multiplier of 2, and a multi-

plier of 1 would be applied to hits coming from the Description column.

Listing 3-25 is a simple example of how to conduct such a search against the content in the

iFTS_Books database. For this example, we’re using a hit multiplier of 10 for hits anywhere in

the dbo.Contributor_Birth_Place table, a multiplier of 5 for hits in the Commentary column of

the dbo.Commentary table, and a multiplier of 1 for hits in the Article_Content column of the

same table. Results are shown in Figure 3-20.

72 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

Listing 3-25. Sample Column Rank-Multiplier Search

SELECT *
FROM
(
 SELECT
 Commentary_ID,
 SUM([Rank]) AS Rank
 FROM
 (
 SELECT
 bc.Commentary_ID,
 c.[RANK] * 10 AS [Rank]
 FROM FREETEXTTABLE
 (
 dbo.Contributor_Birth_Place,
 *,
 N'England'
) c
 INNER JOIN dbo.Contributor_Book cb
 ON c.[KEY] = cb.Contributor_ID
 INNER JOIN dbo.Book_Commentary bc
 ON cb.Book_ID = bc.Book_ID
 UNION ALL
 SELECT
 c.[KEY],
 c.[RANK] * 5
 FROM FREETEXTTABLE
 (
 dbo.Commentary,
 Commentary,
 N'England'
) c
 UNION ALL
 SELECT
 ac.[KEY],
 ac.[RANK]
 FROM FREETEXTTABLE
 (
 dbo.Commentary,
 Article_Content,
 N'England'
) ac
) s
 GROUP BY Commentary_ID
) s1
INNER JOIN dbo.Commentary c1
 ON c1.Commentary_ID = s1.Commentary_ID
ORDER BY [Rank] DESC;

C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S 73

Figure 3-20. Results of column rank-multiplier search

Taxonomy Search and Text Mining

Third-party providers sell taxonomies and thesauruses that define vectors for search terms. A

vector for the search term cholesterol might look like the following.

{

 (Cholesterol,10),

 (milligrams, 3),

 (reducing, 2),

 (lipoprotein, 3),

 (prevents,2),

 (cholesterol levels, 3),

 (narrowing, 2),

 (fats, 3),

 (hdl cholesterol, 3),

 (factors, 4),

 (ldl receptors, 3),

 (fatty,3),

 (ldl cholesterol, 6),

 (deciliter, 3),

 (heart disease, 7),

 (risk of heart attack, 3),

 (risk, 8),

 (saturated 3),

 (lipid, 3)

}

The numbers in this sample vector are called signatures. If the relative frequencies of

occurrence of these terms in a given body of text are close to the relative weights in this vector,

the body of text (or a portion of it) is about cholesterol. This sample vector comes from Intelli-

sophic (intellisophic.com), a vendor of taxonomies. Given a body of text, a user can do a

weighted search using this vector (normalized for a max weight of 1) and the results would

likely be about cholesterol.

Another company, Triplehop (triplehop.com, now part of Oracle), offers technology to

generate vectors that can help achieve higher relevance in search results. As an example, if

someone searches for the word bank, are they actually searching for a financial institution, a

74 C H A P T E R 3 ■ B A S I C A N D A D V A N C E D Q U E R I E S

river bank, a blood bank, an aircraft maneuver, or an expression of trust? Triplehop can run

search results through their vectors to understand the context of the search term in the search

results and subsequently categorize the search results.

Taxonomies and vectors such as these are used in text-mining operations. Text mining

operates on the principal that a topic can be reduced to a set of features, and then this set of

features can be compared to documents to see which documents meet these features. The

probability is higher that documents that closely match the features are about the given topic.

In text mining, we collect vectors or features of a topic (for example, women). These features

are derived from a known training set (for example, a body of documents written by or about

women). Once we’ve derived a training set, we run the training set against a document collec-

tion and score it for accuracy. If we get a high degree of accuracy (over 90% for example), we

believe our vector is good and can use this vector in searches to find documents about the

topic.

Using vector-based searches to determine context or features is sometimes referred to as

a bag of words approach. Demographics can be inferred by searching for terms that are exclu-

sive to females (for example, my husband, my breasts, and so on), and then determining other

features that are exclusive to women from a document collection. After this, vectors can be

created to do weighted searches to determine gender. To continue our example, research has

been done that indicates women use more adverbs and adjectives in their writing than men.

This information can be used to create additional training sets to generate vectors.

Summary
In this chapter, we looked at using the CONTAINS and FREETEXT predicates, and the CONTAINSTABLE

and FREETEXTTABLE rowset functions. For keyword-type searches, use CONTAINS and CONSTAINSTABLE.

For other types of searches, use FREETEXT and FREETEXTTABLE. If you want ranked results, you

have to use the CONTAINSTABLE and FREETEXTTABLE rowset functions. CONTAINS and CONTAINSTABLE

have many parameters that allow you to control how strict or fuzzy you want your searches to

be. In general, CONTAINS and CONTAINSTABLE are faster than FREETEXT and FREETEXTTABLE, as the

algorithm is marginally faster and CONTAINS searches generally return fewer rows.

75

■ ■ ■

C H A P T E R 4

Client Applications

Everything should be made as simple as possible, but not simpler.

——Albert Einstein (attributed)

One of the challenges you’ll face when designing iFTS-enabled applications is making them

as simple as possible for your end users to access the full power of full-text search. While it’s a

relatively simple matter to perform a basic FREETEXT or CONTAINS query for user-supplied search

terms or phrases, Web-based search engines have had a huge impact on the level of user sophis-

tication. Users of search applications now demand features above and beyond basic term or

phrase searches, including hit highlighting and access to advanced options through a simple

interface. In this chapter, we’ll discuss some methods to make your IFTS-enabled client appli-

cations simple yet powerful.

Hit Highlighting
Hit highlighting is standard fare for search applications. Simply put, hit highlighting is the

process of highlighting key words or phrases in search results to make it apparent to your users

that there was in fact a good match, along with an indication where one or more matches

occurred in the results. With the new sys.dm_fts_parser dynamic management function (DMF),

you can add simple SQL Server-based hit highlighting functionality to your applications, to

provide additional context to your iFTS results.

The Procedure

Hit highlighting can be performed through stored procedures, client-side SQL code, or client-

side or middle-tier client code (using .NET for example). Listing 4-1 is a simple stored procedure

that performs hit highlighting using T-SQL on the server. The advantage to this method is that

the hit highlighting logic, which must access the raw document data, is physically located close

to the data. This eliminates the overhead associated with transferring large documents between

the server and middle-tier or client-side applications.

76 C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S

Listing 4-1. Simple Hit Highlighting Procedure

CREATE PROCEDURE SimpleCommentaryHighlight

 @SearchTerm nvarchar(100),

 @Style nvarchar(200)

AS

BEGIN

 CREATE TABLE #match_docs

 (

 doc_id bigint NOT NULL PRIMARY KEY

);

 INSERT INTO #match_docs

 (

 doc_id

)

 SELECT DISTINCT

 Commentary_ID

 FROM Commentary

 WHERE FREETEXT

 (

 Commentary,

 @SearchTerm,

 LANGUAGE N'English'

);

 DECLARE @db_id int = DB_ID(),

 @table_id int = OBJECT_ID(N'Commentary'),

 @column_id int =

 (

 SELECT

 column_id

 FROM sys.columns

 WHERE object_id = OBJECT_ID(N'Commentary')

 AND name = N'Commentary'

);

 SELECT

 s.Commentary_ID,

 t.Title,

 MIN

 (

 N'...' + SUBSTRING

 (

 REPLACE

 (

 c.Commentary,

 s.Display_Term,

C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S 77

 N'' + s.Display_Term + ''

),

 s.Pos - 512,

 s.Length + 1024

) + N'...'

) AS Snippet

 FROM

 (

 SELECT DISTINCT

 c.Commentary_ID,

 w.Display_Term,

 PATINDEX

 (

 N'%[^a-z]' + w.Display_Term + N'[^a-z]%',

 c.Commentary

) AS Pos,

 LEN(w.Display_Term) AS Length

 FROM sys.dm_fts_index_keywords_by_document

 (

 @db_id,

 @table_id

) w

 INNER JOIN dbo.Commentary c

 ON w.document_id = c.Commentary_ID

 WHERE w.column_id = @column_id

 AND EXISTS

 (

 SELECT 1

 FROM #match_docs m

 WHERE m.doc_id = w.document_id

)

 AND EXISTS

 (

 SELECT 1

 FROM sys.dm_fts_parser

 (

 N'FORMSOF(FREETEXT, "' + @SearchTerm + N'")',

 1033,

 0,

 1

) p

 WHERE p.Display_Term = w.Display_Term

)

) s

 INNER JOIN dbo.Commentary c

 ON s.Commentary_ID = c.Commentary_ID

78 C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S

 INNER JOIN dbo.Book_Commentary bc

 ON c.Commentary_ID = bc.Commentary_ID

 INNER JOIN dbo.Book_Title bt

 ON bc.Book_ID = bt.Book_ID

 INNER JOIN dbo.Title t

 ON bt.Title_ID = t.Title_ID

 WHERE t.Is_Primary_Title = 1

 GROUP BY

 s.Commentary_ID,

 t.Title;

 DROP TABLE #match_docs;

END;

■Note Although this procedure focuses on searching the dbo.Commentary table, it can be modified to

search other tables as well. This procedure exists in the iFTS_Books sample database.

The SimpleCommentaryHighlight procedure accepts two parameters: a search term and an

HTML style to use in highlighting matches. Listing 4-2 shows a simple example of how to call

the stored procedure from Listing 4-1 to search for the term write. The results are shown in

Figure 4-1.

Listing 4-2. Calling the Hit Highlighting Stored Procedure

EXECUTE SimpleCommentaryHighlight N'write',

 N'background-color:yellow; font-weight:bold';

Figure 4-1. Results of hit highlighting procedure

C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S 79

The procedure in Listing 4-1 performs a full-text search against the Commentary column

of the dbo.Commentary table for the search terms you supply, storing the IDs of the matching

documents in a temporary table:

 CREATE TABLE #match_docs

 (

 doc_id bigint NOT NULL PRIMARY KEY

);

 INSERT INTO #match_docs

 (

 doc_id

)

 SELECT DISTINCT

 Commentary_ID

 FROM Commentary

 WHERE FREETEXT

 (

 Commentary,

 @SearchTerm,

 LANGUAGE N'English'

);

The procedure then retrieves the current database ID, the object ID for the dbo.Commentary

table, and the column ID of the Commentary column. All of this information will be used later in

the procedure by the DMFs:

 DECLARE @db_id int = DB_ID(),

 @table_id int = OBJECT_ID(N'Commentary'),

 @column_id int =

 (

 SELECT

 column_id

 FROM sys.columns

 WHERE object_id = OBJECT_ID(N'Commentary')

 AND name = N'Commentary'

);

The final query—shown next—retrieves information about the match and a 1KB snippet

of the text that contains matching terms. The SELECT clause of the query returns information

about the match, including the ID of the commentary entry, the title of the book that the

commentary item relates to, and a snippet of text from the matching commentary. The <span

style="..."> HTML tag with the specified style is added to the matching terms:

 SELECT

 s.Commentary_ID,

 t.Title,

 MIN

80 C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S

 (

 N'...' + SUBSTRING

 (

 REPLACE

 (

 c.Commentary,

 s.Display_Term,

 N'' + s.Display_Term + ''

),

 s.Pos - 512,

 s.Length + 1024

) + N'...'

) AS Snippet

The FROM clause uses the sys.dm_fts_index_keywords_by_document DMF to retrieve matching

terms directly from the full-text index. The query uses sys.dm_fts_parser to grab all the inflec-

tional and thesaurus forms of the search term to ensure that inflectional forms are matched.

The PATINDEX function is used to locate matches for the inflectional forms within the text of

the Commentary column. Finally, the query joins to other tables as necessary to retrieve book

title information. The following is the FROM clause showing the logic just described, as well as

the joins:

 FROM

 (

 SELECT DISTINCT

 c.Commentary_ID,

 w.Display_Term,

 PATINDEX

 (

 N'%[^a-z]' + w.Display_Term + N'[^a-z]%',

 c.Commentary

) AS Pos,

 LEN(w.Display_Term) AS Length

 FROM sys.dm_fts_index_keywords_by_document

 (

 @db_id,

 @table_id

) w

 INNER JOIN dbo.Commentary c

 ON w.document_id = c.Commentary_ID

 WHERE w.column_id = @column_id

 AND EXISTS

 (

 SELECT 1

 FROM #match_docs m

 WHERE m.doc_id = w.document_id

)

 AND EXISTS

C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S 81

 (

 SELECT 1

 FROM sys.dm_fts_parser

 (

 N'FORMSOF(FREETEXT, "' + @SearchTerm + N'")',

 1033,

 0,

 1

) p

 WHERE p.Display_Term = w.Display_Term

)

) s

 INNER JOIN dbo.Commentary c

 ON s.Commentary_ID = c.Commentary_ID

 INNER JOIN dbo.Book_Commentary bc

 ON c.Commentary_ID = bc.Commentary_ID

 INNER JOIN dbo.Book_Title bt

 ON bc.Book_ID = bt.Book_ID

 INNER JOIN dbo.Title t

 ON bt.Title_ID = t.Title_ID

 WHERE t.Is_Primary_Title = 1

 GROUP BY

 s.Commentary_ID,

 t.Title;

HIT HIGHLIGHTING EFFICIENCY

Microsoft Index Server, through which SQL Server iFTS’s lineage can be traced, provides built-in hit high-

lighting functionality that can be accessed through Internet Information Server (IIS) extensions. Surprisingly

enough, this hit highlighting functionality is very similar to the methods presented here. Essentially, Index

Server reparses matching documents using the relevant word breakers and stemmers to find hits. It then adds

HTML tags to matching terms and returns the result. As you can imagine, this isn’t the most efficient solution,

particularly for large documents. A much more efficient solution for hit highlighting would be to store the exact

character position of the matching term in the full-text index and expose it to your developers. This would

eliminate the need to reprocess complete documents just to find hit locations. The tradeoff, of course, is the

additional storage space required to save this additional information. You could, however, create your own

inverted index on top of SQL Server 2008’s to store the character positions of matching terms. But this would

result in the storage of a not insignificant amount of duplicate information, as well as duplicated effort. The

authors hold out the hope that the iFTS team will see the wisdom of exposing the start character position of

matching terms in documents to make hit highlighting faster, more efficient, and more precise. We hope that

this functionality, or similar functionality, will be added to a future version of SQL Server.

82 C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S

Calling the Procedure

On the client side, you can use the .NET SqlClient, SqlCommand, and SqlDataReader to perform

hit highlighting queries and display results. The simple Windows Forms hit highlighting appli-

cation we included in the sample downloads uses the stored procedure in Listing 4-1 to return

hit highlighted results. Listing 4-3 is the heart of the procedure—it calls the hit highlighting

procedure and displays the results. After a client query, the results are formatted in HTML and

displayed in a Windows Forms WebBrowser control. Figure 4-2 shows the hit-highlighted results

of a search for the term write.

Listing 4-3. Client Call to Hit Highlighting Procedure

string sqlConString = "SERVER=SQL2008;" +

 "INITIAL CATALOG=iFTS_Books;" +

 "INTEGRATED SECURITY=SSPI;";

private void SearchButton_Click(object sender, EventArgs e)

{

 SqlConnection sqlCon = null;

 SqlCommand sqlCmd = null;

 SqlDataReader sqlDr = null;

 try

 {

 sqlCon = new SqlConnection(sqlConString);

 sqlCon.Open();

 sqlCmd = new SqlCommand

 (

 "dbo.SimpleCommentaryHighlight",

 sqlCon

);

 sqlCmd.CommandType = CommandType.StoredProcedure;

 sqlCmd.Parameters.Add

 (

 "@SearchTerm",

 SqlDbType.NVarChar,

 100

).Value = SearchText.Text;

 sqlCmd.Parameters.Add

 (

 "@Style",

 SqlDbType.NVarChar,

 200

).Value = "background-color:yellow; font-weight:bold;";

C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S 83

 sqlDr = sqlCmd.ExecuteReader();

 string Results = "";

 int RowCount = 0;

 while (sqlDr.Read())

 {

 RowCount++;

 if (RowCount % 2 == 1)

 Results += "<p style='background-color:#ffffff'>";

 else

 Results += "<p style='background-color:#C0C0C0'>";

 Results += "" + sqlDr["Title"].ToString() + "
";

 Results += sqlDr["Snippet"].ToString() + "</p>";

 }

 Results = "<html><body>" +

 String.Format

 (

 "<p style='background-color:#FBB917'>" +

 "Total Results Found: {0}</p>",

 RowCount

) +

 Results +

 "</body></html>";

 ResultWebBrowser.DocumentText = Results;

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

 finally

 {

 if (sqlDr != null)

 sqlDr.Dispose();

 if (sqlCmd != null)

 sqlCmd.Dispose();

 if (sqlCon != null)

 sqlCon.Dispose();

 }

}

84 C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S

Figure 4-2. Sample query with hit-highlighted results

The concept of hit highlighting is simplified in this example, and you’ll undoubtedly find

situations in which the highlighted text returned is not the actual text that matched the search

term (though it will be similar). An example is the search term men, which highlights Clemens

in the commentary for the book Grimm’s Fairy Tales. An actual match for the term men also

exists in this particular commentary, and it is this match that’s returned by iFTS queries. The

hit highlighting procedure, however, uses a simple method of locating matches that can result

in some nonmatching terms being partially highlighted.

Search Engine–Style Search
You have three main options when designing a front-end interface for your iFTS-based search

applications:

1. You can ignore SQL Server’s advanced iFTS search features and instead allow only

simple FREETEXT or basic CONTAINS searches of lists of keywords entered by your users.

This option doesn’t allow users to perform searches that exclude words or phrases,

return proximity-based matches, or use other advanced iFTS search features. Many

front-end search applications for SQL Server full-text search implement this type of

simplistic search functionality because it’s quick and easy to implement, with little

support required.

2. You can force users to learn advanced iFTS search clause features. This option allows

users to perform more advanced searches, but also introduces a greater possibility for

errors and higher support costs. The problem is that users have to learn a new search

syntax, loaded down with additional keywords and a somewhat strict grammar. Con-

sider the following simple query, which searches for inflectional forms of the words fish

and hook:

 CONTAINS(*, ' FORMSOF(INFLECTIONAL, fish) & FORMSOF(INFLECTIONAL, hook) '

C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S 85

In addition to getting the somewhat complex syntax exactly right, your users have to

learn all the new keywords and a whole new method of searching for content with this

option.

3. You can build on the knowledge that your users already have. In other words, allow your

users to enter search queries in the syntax of their favorite search engine and program-

matically convert it to the more complex iFTS CONTAINS syntax required by SQL Server

behind the scenes. This option makes for an intuitive and simple user interface, making

a more pleasurable overall user experience. You also gain greater control over user input,

while allowing users to take advantage of whatever advanced functionality you deem

necessary. The downside to this is that you have to do some development work, although

the development work can be greatly simplified with the proper tools.

Thanks to Internet search engines such as Yahoo! and Google, search application users are

more sophisticated and demanding than ever. Modern users have a wealth of search knowledge,

and they know how search should work. By implementing option 3 from the prior list, you can

put that knowledge of search to use within your organization. You’ll save on training and support

costs and create easy-to-use search applications your users will be able to sit down and use

right out of the box. In this section, we’ll discuss how to create your own search engine style

interface.

The key to a successful search engine–style interface is to make the syntax simple but

full-featured. Consider the Google search box for a moment. This search box is the essence of

simplicity, using very few operators. Google’s operators are intuitive. The preceding – unary

operator, for instance, excludes a term from the search, while the OR keyword allows you to find

pages containing either of the search terms on both sides of the operator. Our goal in designing

a search engine style interface for iFTS will be to implement the same type of intuitive search

syntax and operators.

We’ll actually be creating a small toy language for defining Google-style queries. There are

two important aspects to language: syntax, or the rules of language construction, and semantics,

or what the components of the language actually do. We’ll describe the language, including

both syntax and semantics, in the following sections.

Defining a Grammar

A grammar is simply a set of rules that define the syntax of a language, whether it’s a computer

language or natural (human) language. The syntax doesn’t have any inherent implied meaning

or perform any actions by itself; that’s the domain of semantics, which we’ll cover later in this

chapter. Fortunately for us, computer language grammars tend to be more rigid in their rules

and construction than human language. You can actually define an explicit syntax for even the

most complex Google-style queries, quite simply, using standard notations. We’ll build that

grammar here and use it as the building block for our Google-style query engine.

The first step in defining our grammar is to decide the operators and constructs we’ll

allow. To keep in line with our goal of making the interface simple to use, we’ll use the popular

Google search engine query syntax as the basis for our query engine. We’ll support all of the

operators in Table 4-1.

86 C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S

This simple set of operators and constructs includes most of the basic operators available

via the Google search engine, with a few slight changes and additions to take advantage of

additional iFTS functionality. For example, we’ve made the following changes to Google’s

basic syntax:

• The <...> syntax takes advantage of iFTS proximity search functionality.

• The (...) syntax is an intuitive syntax for changing the order of precedence of logical

operators.

• The | and & symbols, in addition to the and and or keywords, give the user additional

simple options based on their personal preferences.

• The wildcard * character has a slightly modified behavior compared to the Google

wildcard.

■Tip The Google Help: Cheat Sheet, which describes the Google search query syntax that we used as a

basis for our grammar, is located at http://www.google.com/help/cheatsheet.html.

Table 4-1. Custom Search Engine Operators

Operator Description

term A search term is a single word. Search terms will be searched for using the iFTS
inflectional search option.

term* The trailing asterisk wildcard character on a term will perform a prefix search.

"phrase" A phrase is one or more words enclosed in quotes. A phrase will be searched for
using an iFTS phrase search.

+ A term or phrase prefixed with the plus operator performs an exact search; no
inflectional or thesaurus forms will be found.

- A term or phrase prefixed with the minus operator excludes the term or phrase
from the search. This is equivalent to the iFTS AND NOT operator.

~ A term prefixed with the tilde operator performs a thesaurus synonym search.

<...> Multiple terms or phrases can be included in angle brackets. The query engine
will generate iFTS proximity searches using the NEAR operator for these terms and
phrases.

and The and keyword, or the symbol &, can be used between terms and phrases to
indicate a logical AND operation. If you don’t include a logical operator between
terms and phrases, and will be the default.

or The or keyword, or the symbol |, can be used between terms and phrases to indi-
cate a logical OR operation. The logical AND operator takes precedence over
logical OR.

(...) Parentheses can be used to group expressions and to change the order of prece-
dence of operators.

C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S 87

Note that in our example we won’t override or circumvent normal SQL iFTS behavior in

our query engine to make it operate in a more Google-like fashion—all iFTS query rules and

behaviors still apply. We will, however, supplement the interface by providing end users with a

syntax that is simpler and more intuitive than the standard iFTS syntax.

Extended Backus-Naur Form

After we define our operators, the next step is to explicitly define the syntax of the grammar.

The standard method for defining a grammar is Extended Backus-Naur Form (EBNF). In EBNF,

named productions are shown to the left of a ::= operator, while the components that make

up those productions are shown to the right. You can think of the ::= operator in the EBNF

form as meaning “is composed of,” where the nonterminal symbol on the left side is composed

of the symbols on the right side. We’ll use a simplified variation of EBNF to express our

grammar here:

Query ::= OrExpression

OrExpression ::= AndExpression

 | OrExpression ('or' | '|') AndExpression

AndExpression ::= PrimaryExpression

 | AndExpression { 'and' | '&' } PrimaryExpression

PrimaryExpression ::= Term

 | '~' Term

 | Phrase

 | '(' OrExpression ')'

 | '<' (Term | Phrase)+ '>'

ExactExpression ::= '+' Term

 | '+' Phrase

Term ::= ('A'...'Z'|'0'...'9'|'!'|'@'|'#'|'$'|'%'|'^'|'*'|'_'|'''|'.'|'?')+

Phrase ::= '"' (string characters)+ '"'

The following details apply to this grammar representation:

• The pipe symbol | is used on the right side of the ::= symbol to indicate that the non-

terminal on the left side can be any of the items on the right side. This symbol can be

read to represent “or.”

• Parentheses () are used to group choices on the right side, indicating that one of the

items in parentheses should be selected to complete the production.

• Braces { } are used to indicate optional items on the right side.

• Apostrophes ' ' are used to enclose character literals, so that '<' indicates that the

literal character < is required to complete the production.

88 C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S

• The plus sign + is used to indicate that one or more of the preceding items is required

to complete the production. For example, the production (Term | Phrase)+ indicates

that one or more combinations of Term and Phrase nonterminals need to be present to

complete the production. You can think of the trailing plus sign as having the same

meaning as the regular expression + (“one or more”) symbol.

• The abbreviation string characters is used to indicate that any printable characters are

allowed within the production.

As you can see from the EBNF form, the grammar we’re trying to produce here is fairly

simple in nature, containing only seven logical productions. By contrast, the EBNF grammar

specification for the T-SQL language is extremely complex, taking dozens of pages to print out

in full.

■Tip For reference, you can view the T-SQL language grammar in BOL. It’s actually spread out over

hundreds of pages, in manageable chunks, in the “Syntax” section at the top of pages in the “Transact-SQL

Reference” section.

Implementing the Grammar with Irony

After we’ve defined our grammar, it’s time to get into the implementation details. After researching

several alternatives, we decided to use the Irony .NET parser created by .NET guru Roman

Ivantsov. We chose Irony because of its simplicity and because it automatically produces an

abstract syntax tree (AST), which is an in-memory tree structure we’ll need to convert the user’s

input to something intelligible by SQL Server. We’ll talk more about the AST later.

Our first step is to download and compile the Irony .NET library from http://www.codeplex.com/

irony. Then we create a new C# project and add a reference to Irony as shown in Figure 4-3.

Figure 4-3. Adding a reference to the Irony library to a C# project

C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S 89

After adding a reference to the Irony library, we add a reference to the Irony.Compiler

namespace in the code and then define the query engine grammar in a class named SearchGrammar,

as shown in Listing 4-4. Note that the SearchGrammar class is derived from the Irony Grammar class.

Listing 4-4. Search Grammar in Irony Form

...

using Irony.Compiler;

...

public class SearchGrammar : Grammar

{

 public SearchGrammar()

 {

 // Terminals

 var Term = new IdentifierTerminal("Term", "!@#$%^*_'.?",

 "!@#$%^*_'.?0123456789");

 var Phrase = new StringLiteral("Phrase");

 // NonTerminals

 var OrExpression = new NonTerminal("OrExpression");

 var OrOperator = new NonTerminal("OrOperator");

 var AndExpression = new NonTerminal("AndExpression");

 var AndOperator = new NonTerminal("AndOperator");

 var ExcludeOperator = new NonTerminal("ExcludeOperator");

 var PrimaryExpression = new NonTerminal("PrimaryExpression");

 var ThesaurusExpression = new NonTerminal("ThesaurusExpression");

 var ThesaurusOperator = new NonTerminal("ThesaurusOperator");

 var ExactOperator = new NonTerminal("ExactOperator");

 var ExactExpression = new NonTerminal("ExactExpression");

 var ParenthesizedExpression = new NonTerminal("ParenthesizedExpression");

 var ProximityExpression = new NonTerminal("ProximityExpression");

 var ProximityList = new NonTerminal("ProximityList");

 this.Root = OrExpression;

 OrExpression.Rule = AndExpression

 | OrExpression + OrOperator + AndExpression;

 OrOperator.Rule = Symbol("or") | "|";

 AndExpression.Rule = PrimaryExpression

 | AndExpression + AndOperator + PrimaryExpression;

 AndOperator.Rule = Empty

 | "and"

 | "&"

 | ExcludeOperator;

 ExcludeOperator.Rule = Symbol("-");

90 C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S

 PrimaryExpression.Rule = Term

 | ThesaurusExpression

 | ExactExpression

 | ParenthesizedExpression

 | Phrase

 | ProximityExpression;

 ThesaurusExpression.Rule = ThesaurusOperator + Term;

 ThesaurusOperator.Rule = Symbol("~");

 ExactExpression.Rule = ExactOperator + Term

 | ExactOperator + Phrase;

 ExactOperator.Rule = Symbol("+");

 ParenthesizedExpression.Rule = "(" + OrExpression + ")";

 ProximityExpression.Rule = "<" + ProximityList + ">";

 MakePlusRule(ProximityList, Term);

 RegisterPunctuation("<", ">", "(", ")");

 }

 ...

}

The Irony grammar follows the EBNF grammar fairly closely; however, to implement some

of the productions the Irony implementation requires more nonterminals.

With the SearchGrammar class in place, Irony can parse our grammar, recognizing and

returning nonterminals and tokens with which it will build an AST. The AST is a treelike data

structure that Irony builds with the tokens you supply. Consider the sample Google-style query

string +fish (sticks or hook) -catfish. The AST produced by this query, after Irony performs

lexical analysis on the string, is shown in Figure 4-4.

■Tip The AST shown in Figure 4-4 was produced by the Irony Grammar Explorer, which is also available for

download from http://www.codeplex.com/irony.

As you can see in the AST, Irony parses the tokens and symbols out of the input string and

places them in a proper hierarchical structure. It is through this hierarchical tree structure that

we’ll generate the final iFTS CONTAINSTABLE clause to query the database.

C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S 91

Figure 4-4. AST produced by a sample query fed into the new search query grammar

Generating the iFTS Query

The final step in the process is to convert the nodes of the AST into an iFTS CONTAINS clause to

query the database. There are several methods of parsing an AST, including advanced tech-

niques such as implementing the visitor pattern with separate classes for every type of node.

Because our grammar is simple, however, we’ll go the easy route and implement a simple

recursive function that will begin parsing the AST at the root node and will call itself recursively

traversing every node of the tree. Listing 4-5 is the ConvertQuery function, which accepts the

root node of the AST and returns the constructed CONTAINSTABLE search query string. We’ll

show how to call this function and utilize the results in the following sections.

Listing 4-5. Converting a Recursive AST Traversal Function

public static string ConvertQuery(AstNode node, TermType type)

{

 string result = "";

 // Note that some nonterminals don't actually get into the AST tree,

 // because of some of Irony's optimizations - punctuation stripping and

 // node bubbling. For example, in ParenthesizedExpression parentheses

 // symbols get stripped off as punctuation, and the child expression node

 // (parenthesized content) replaces the parent ParExpr node (the

 // child is "bubbled up").

 switch (node.Term.Name)

92 C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S

 {

 case "OrExpression":

 result = "(" + ConvertQuery(node.ChildNodes[0], type) + " OR " +

 ConvertQuery(node.ChildNodes[2], type) + ")";

 break;

 case "AndExpression":

 AstNode tmp2 = node.ChildNodes[1];

 string opName = tmp2.Term.Name;

 string andop = "";

 if (opName == "-")

 {

 andop += " AND NOT ";

 }

 else

 {

 andop = " AND ";

 }

 result = "(" + ConvertQuery(node.ChildNodes[0], type) + andop +

 ConvertQuery(node.ChildNodes[2]) + ")";

 break;

 case "PrimaryExpression":

 result = "(" + ConvertQuery(node.ChildNodes[0], type) + ")";

 break;

 case "ProximityList":

 string[] tmp = new string[node.ChildNodes.Count];

 type = TermType.Exact;

 for (int i = 0; i < node.ChildNodes.Count; i++)

 {

 tmp[i] = ConvertQuery(node.ChildNodes[i], type);

 }

 result = "(" + string.Join(" NEAR ", tmp) + ")";

 type = TermType.Inflectional;

 break;

 case "Phrase":

 result = '"' + ((Token)node).ValueString + '"';

 break;

 case "ThesaurusExpression":

 result = " FORMSOF (THESAURUS, " +

 ((Token)node.ChildNodes[1]).ValueString + ") ";

 break;

C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S 93

 case "ExactExpression":

 result = " \"" + ((Token)node.ChildNodes[1]).ValueString + "\" ";

 break;

 case "Term":

 switch (type)

 {

 case TermType.Inflectional:

 result = ((Token)node).ValueString;

 if (result.EndsWith("*"))

 result = "\"" + result + "\"";

 else

 result = " FORMSOF (INFLECTIONAL, " + result + ") ";

 break;

 case TermType.Exact:

 result = ((Token)node).ValueString;

 break;

 }

 break;

 // This should never happen, even if input string is garbage

 default:

 throw new ApplicationException("Converter failed: unexpected term: " +

 node.Term.Name + ". Please investigate.");

 }

 return result;

}

SPECIAL HANDLING IN THE AST

One tradeoff that’s sometimes made in simple grammar implementations is putting special handling in the

AST traversal and parsing routines instead of trying to code everything directly in the grammar itself. As an

example, to keep our grammar implementation simple, we’ve left some rules out of the grammar and instead

handled them in the AST traversal/iFTS query creation function.

In one instance, we decided that special handling for the trailing wildcard * character in search terms

should be handled during AST traversal instead of directly in the grammar definition itself. Differentiating

between the unary - operator and the logical AND operators is also performed in the AST traversal function,

since the unary - operator maps directly to the iFTS AND NOT operator.

94 C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S

Converting a Google-Style Query

Using the Irony grammar we’ve created is relatively simple. You basically need to create a

couple of object instances and call a few methods of those instances. A simple call to the

ConvertQuery function consists of first creating a SearchGrammar and a LanguageCompiler object:

 SearchGrammar _grammar;

 LanguageCompiler _compiler;

You then pass the source query to the LanguageCompiler object, which returns a fully

formed AST. Then, assuming no errors occurred, you call the ConvertQuery method of the

SearchGrammar object to convert the AST to a proper iFTS query:

 AstNode root = _compiler.Parse(SourceQueryText.Text.ToLower());

 if (!CheckParseErrors()) return;

 FtsQueryTextBox.Text = SearchGrammar.ConvertQuery

 (

 root,

 SearchGrammar.TermType.Inflectional

);

Finally, you call the static ExecuteQuery method of the SearchGrammar class to actually

execute the iFTS query against the target database. In the following sample code, we use the

ExecuteQuery method to populate a DataTable, which we then display in a DataGridView

control:

 DataTable dt = SearchGrammar.ExecuteQuery(FtsQueryTextBox.Text);

 ResultsDataGridView.DataSource = dt;

Querying with the New Grammar

In the sample download files, we’ve included a sample Windows Forms application that

puts the sample grammar we’ve built in this section to use. The application accepts a search

engine–style query, converts it to an iFTS CONTAINSTABLE query, displays the iFTS version of the

query, and executes the query against dbo.Book table of the iFTS_Books database. Results are

returned in a DataGridView control, as shown in Figure 4-5.

■Tip We chose to implement a simple Windows application in this example to avoid the set up and config-

uration associated with web applications, but there’s no reason similar .NET code can’t be created using

ASP.NET to provide similar web- or intranet-based search functionality against SQL Server.

C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S 95

Figure 4-5. Sample search engine–style query converted to iFTS query

The static ExecuteQuery method of the SearchGrammar class is responsible for opening a

database connection, executing the iFTS query against the database, and returning the results

as a DataTable. The CONTAINSTABLE SQL query generated and executed by the ExecuteQuery

method looks like the following:

 SELECT ct.[RANK] AS Rank,

 t.Title,

 b.Book_ID

 FROM CONTAINSTABLE

 (

 dbo.Book,

 *,

 @ftsQuery

) AS ct

 INNER JOIN dbo.Book b

 ON ct.[KEY] = b.[Book_ID]

 INNER JOIN dbo.Book_Title bt

 ON b.Book_ID = bt.Book_ID

 INNER JOIN dbo.Title t

 ON bt.Title_ID = t.Title_ID

 WHERE t.Is_Primary_Title = 1

 AND ct.[RANK] > 0;

Note that we generate a CONTAINSTABLE query and check for RANK > 0. This is important for

the use of the iFTS NEAR operator, since it’s essentially useless with the normal CONTAINS oper-

ator. Also note that the results of the CONTAINSTABLE function are joined back to the dbo.Book

table and other supporting tables to retrieve related information about the results.

The example in Figure 4-5 demonstrates the following simple search engine–style query:

<fish hook> or (dog -cat)

96 C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S

This query indicates the user wants to locate all documents in which either of the following

conditions are true:

• The words fish and hook appear in close proximity to one another.

• The word dog appears but the word cat does not appear.

The resulting iFTS CONTAINS query looks like the following:

((fish NEAR hook) OR (FORMSOF (INFLECTIONAL, dog)

 AND NOT FORMSOF (INFLECTIONAL, cat)))

The following are some additional queries that demonstrate the conversion capabilities of

the query conversion engine.

• Trying to find: the exact word love, inflectional forms of the word money, and excluding

the word diamond.

Search query: +love money -diamond

iFTS query: (("love" AND FORMSOF (INFLECTIONAL, money)) AND NOT FORMSOF

(INFLECTIONAL, diamond))

• Trying to find: the exact phrase dogs and cats, or the exact phrase cats and dogs.

Search query: "cats and dogs" or "dogs and cats"

iFTS query: ("cats and dogs" OR "dogs and cats")

• Trying to find: all words that begin with fish, excluding the exact word fishing.

Search query: fish* -"fishing"

iFTS Query: ("fish*" AND NOT "fishing")

• Trying to find: all documents with any inflectional form of the word president, and either

of the following: thesaurus forms of the word run or the words election and primary in

close proximity to one another.

Search query: president (~run or <election primary>)

iFTS Query: (FORMSOF (INFLECTIONAL, president) AND (FORMSOF (THESAURUS, run)

OR (election NEAR primary)))

By using Irony and a well-constructed grammar, you can allow your users to generate

complex and intricate queries using a relatively simple syntax that they’re already familiar with.

Summary
In this chapter, we looked at some of the nifty client-side features that you can add to iFTS to

make database searches easier and more intuitive for your end users. This will give you several

benefits. You can minimize end user training, ramp-up time, and ongoing support; and you

can also improve overall productivity by providing your end users with a more intuitive and

easier to use interface.

C H A P T E R 4 ■ C L I E N T A P P L I C A T I O N S 97

First we looked at simple hit highlighting of iFTS results. For data from which the plain text

is accessible, you can easily add this common feature that search users expect. While we demon-

strated this functionality using simple T-SQL statements and functions, more advanced

functionality can be achieved through use of SQL CLR functions. Additionally, other methods

can be employed to optimize hit highlighting functionality for speed (with a tradeoff of more

storage, however).

To round out the chapter, we looked at another bit of commonly requested functionality:

Google-style search queries. For our example, we created a simple Google-based search query

grammar that we implemented in C# with the Irony parser. Adding this type of functionality

adds a whole new level of functionality for your end users, providing them with the right mix of

power and simplicity that they’ve come to expect.

The authors would like to thank Roman Ivantsov, creator of Irony and C# programmer

extraordinaire, for reviewing and advising on our initial Irony grammar and the initial draft of

the AST traversal function.

99

■ ■ ■

C H A P T E R 5

Multilingual Searching

Drawing on my fine command of the English language, I said nothing.

—Robert Benchley

We’ve focused largely on English as spoken in the United States throughout this book, owing

largely to the fact that it’s the authors’ native tongue. We’ve given some brief examples of queries

in other languages. SQL Server 2008 iFTS natively supports 48 languages (three additional

languages are supported but disabled by default), and can support even more languages

through the use of third-party filters and word breakers.

While it can’t hurt to be a polyglot (someone who speaks many languages), it’s unlikely

that the members of your DBA and development teams are fluent in the 48 languages that

shipped with SQL Server 2008 iFTS. Fortunately for us, knowledge of several different languages

is not essential to developing a multilingual full-text search solution. Instead, having team

members who have an understanding of language fundamentals is probably one of the most

useful tools for taking advantage of SQL Server iFTS multilingual options.

This is not to belittle the advantages of having staff members who are fluent in the languages

your SQL FTS search solution supports. For example, if a Chinese user searches for Chinese

content on your web site and doesn’t find what she’s looking for, she’ll go to a web site that

does. If she’s a customer and doesn’t find the product she’s looking for on your web site, but

finds it somewhere else, the odds are good she won’t return to your site again.

CHINESE LANGUAGE BUG FIXES

In our example at the beginning of this section, we specifically chose to cite the Chinese language not only

because of the large potential customer base, but because there were some bugs in the Chinese word breaker

that shipped with SQL Server 2005. These bugs have been fixed in SQL Server 2008 iFTS. The fact that there

were bugs in the SQL Server 2005 Chinese language word breaker was brought to our attention by a developer

who is a fluent speaker of Chinese. This developer couldn’t retrieve specific content indexed in Chinese on

SQL Server 2005, but with his help we were able to use the new dynamic management functions (DMFs)

in SQL Server 2008 to validate that the situation has been corrected.

100 C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G

In this chapter, we’ll dig deeper into the concept of multilingual full-text searching in SQL

Server 2008. After reading this chapter, you’ll have a good understanding of how iFTS multilingual

features work and some information you can use to implement your own iFTS-enabled multi-

lingual search solutions. But we begin with a short history of written language to provide

background on some of the issues that iFTS faces when indexing and searching multilingual

content.

A Brief History of Written Language
Wikipedia defines written language as “the representation of a language (symbols of communi-

cation and the elements used to manipulate them) by means of a writing system.” Evolutionary

linguists speculate that the earliest forms of communication consisted of prehistoric pictorial

representations of objects—picture drawings known as pictograms. Cave drawings dating back

to more than 32,000 years ago provide some of the earliest known pictograms. Figure 5-1 is a

prehistoric cave drawing of a horse from the Lascaux cave complex in France. The drawing is

estimated to be more than 16,000 years old.

Figure 5-1. Prehistoric cave painting from Lascaux, France

As man advanced in sophistication, pictogram systems increased in complexity to the

point that they became unwieldy. Pictograms were subsequently replaced with Neolithic

proto-writing systems of the 7th millennium B.C.E. These proto-writing systems replaced

complex pictographic writing systems with simpler logographic systems that utilized ideo-

graphic and mnemonic symbols. The Vin�a signs of southeastern Europe are one of the most

famous examples of a Neolithic proto-writing system. Figure 5-2 is a depiction of a clay vessel

with Vin�a asigns on it.

Figure 5-2. Depiction of an unearthed clay vessel with
Vin�a signs drawn on it

C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G 101

Over time, even these advancements in written communication proved inadequate. While

ideographic symbols may be adequate to represent physical objects, they aren’t up to the task

of describing abstract concepts such as justice and beauty. Most writing systems, over time,

evolved into using alphabetic characters that were used to represent phonetic sounds, syllables,

or ideas; or in some cases, all three. Egyptian hieroglyphs, for instance, used a phonetic-based

alphabet in which symbols represented sounds. Figure 5-3 shows the name Cleopatra written

in Egyptian hieroglyphs.

Figure 5-3. “Cleopatra” written in Egyptian hieroglyphs

The formal Egyptian hieroglyph alphabet was unwieldy; so much so that the Egyptian

scribes used a simpler demotic alphabet for informal correspondence. Modern languages

incorporate a wide range of ideas from ancient languages. Western written languages tend to

consist of alphabets that roughly represent phonemes, the smallest structural units of a language

that have meaning. Eastern languages, such as Traditional Chinese, are logographic in nature;

individual characters represent entire words or ideas. Figure 5-4 shows the Traditional Chinese

symbol for Tree and the English word representing the same.

Figure 5-4. Traditional Chinese and English words for “Tree”

iFTS and Language Complexity
In addition to different alphabets and writing systems, iFTS must deal with myriad issues that

increase the complexity of indexing and querying textual content. Every language has rules of

syntax to define the structural relationships between symbols. SQL Server iFTS must first deal

with these syntactical constructs at the symbol level via language-specific word breakers. Word

breakers encapsulate a wide array of complex language-specific rules that are applied to break

textual data into words and tokens. We’ll discuss the rules that affect word breaking, tokenization,

and querying in the sections that follow.

102 C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G

Writing Symbols and Alphabets

Because of the diversity of languages, the SQL Server iFTS indexer must be able to handle many

different alphabets and writing systems to allow users to find what they’re looking for. For most

writing systems, this means using whitespace and punctuation to break the text stream into

tokens. In Chinese, and some other Far Eastern alphabets, a single character may express a

complete idea that requires multiple alphabetic characters in a Western language. With Chinese,

the indexer must do more work to extract searchable tokens from character strings. Consider

the following Chinese character string:

11 Microsoft SQL Server 2008
,

In English, this translates to the following:

This 11-page paper discusses how Microsoft SQL Server 2008 provides a flexible solu-
tion for storing unstructured data and combining it with relational data to build
comprehensive solutions that encompass the full range of data across an organization.

The whitespace in the Chinese version is sparse and doesn’t map well to indexing the

dozens of words and ideas in the translated English version. In addition, the Chinese word

breaker has to deal with both single-character and multicharacter tokens. The Traditional

Chinese (LCID 1028) word breaker derives 42 tokens from the Chinese text, as shown:

11, 2008, microsoft, server, sql, , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , , , ,

, , and

As you can see, the Chinese word breaker handles the concept of word boundaries much

differently than the English word breaker. While the English word breaker can rely heavily on

punctuation and whitespace to define word boundaries, the Chinese language offers no such

luxury.

Languages such as Arabic are at the other extreme. In Arabic, whitespace generally delimits

words, but some letters such as the Arabic A (alif) are nearly always followed by whitespace—even

in the middle of word. The Arabic phrase Allahu akbar (God is greatest) demonstrates the use

of whitespace after the letter alif (�).

���� ����

In some cases, a word is used to indicate a sentence end in Arabic. For example, the

following two Arabic tokens represent the exact same word, both meaning house in English:

��	

��

	

The difference between these Arabic words is that the second form is used exclusively at

the end of sentences. Language-specific word breakers must take these word breaking rules

into consideration at both index and query time.

C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G 103

Bidirectional Writing and Capitalization

While many languages such as Spanish and English are written from left to right, other languages

such as Arabic and Hebrew are written from right to left. Language-specific rules in the word

breaker must deal with these differences in writing direction to ensure that words are read and

tokenized in the same direction that they were written.

Also, for many languages, capitalization doesn’t inherently affect word-breaking activity.

In the English language, the token Marie-Claire generates exactly four inflectional form tokens:

marie, claire, marieclaires, and marieclaire. Likewise, the lowercase form, marie-claire, generates

the same four tokens. To the English word breaker, capitalization is unimportant to the word-

breaking process.

■Note Although capitalization is inherently unimportant for word breaking in most languages, we’ll discuss

some instances in which iFTS imposes its own rules on handling capitalization later in this section.

There are exceptions to every rule, however; and in this case the exception is French. The

French word breaker generates six inflectional forms of the token Marie-Claire when the phrase

is capitalized. When the token is not capitalized, as in marie-claire, the French word breaker

generates no less than 49 inflectional forms. Listing 5-1 invokes the French word breaker to break

both the capitalized and noncapitalized forms of the token Marie-Claire, proving once and for all

that the French take their capitals very seriously. Partial results are shown in Figure 5-5.

Listing 5-1. Breaking Marie-Claire in French

SELECT *

FROM sys.dm_fts_parser

(

 N'FORMSOF(FREETEXT, marie-claire)',

 1036,

 NULL,

 0

);

SELECT *

FROM sys.dm_fts_parser

(

 N'FORMSOF(FREETEXT, Marie-Claire)',

 1036,

 NULL,

 0

);

104 C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G

Figure 5-5. Partial results of breaking the token “Marie-Claire” in French

Although capitalization is unimportant for word-breaking purposes in most languages,

SQL Server iFTS imposes its own rules on capitalization of acronyms. The English word breaker

will tokenize the capitalized acronym F.B.I. as both FBI and F.B.I. This is done to maximize recall,

since users might search for either token when looking for documents related to the Federal

Bureau of Investigation. By contrast, the lowercase version of the acronym, f.b.i., indexes only the

individual characters f, b, and i. Similarly, the lowercase token fbi will only be indexed as fbi.

■Tip These capitalization rules are different for different languages. While the English word breaker returns

f, b, and i when breaking f.b.i., the French word breaker returns both f.b.i. and fbi.

The reasoning behind these somewhat exotic capitalization rules is based in large part on

popular style guide recommendations. The idea is that when a user types in an all-uppercase

acronym, she’s really searching for an acronym; when searching for all-lowercase characters,

the assumption is that she’s searching for a something other than an acronym—a “real word.”

These somewhat complicated rules are designed to help minimize the number of false positives

returned by iFTS. As we pointed out in the preceding tip, these particular rules do vary widely

from one language to another.

Hyphenation and Compound Words

Each word breaker handles hyphenation issues based on the rules of the target language. Some

languages such as Dutch simply break a hyphenated word into its constituent components and

proceed to index the constituent words. The Dutch word breaker will break the token merry-

go-round into three separate words: merry, go, and round. The English word breaker, on the

other hand, generates four tokens: merry, go, round, and merrygoround.

Some languages have intricate rules built in to handle compound and composite word

indexing. Consider the German word Herzkreislaufwiederbelebung (literally “heart cycle revival,”

also known as CPR to the English-speaking world). The German word breaker breaks this word

C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G 105

into four constituent German words: herzkreislaufwiederbelebung, herz, kreislauf, and wieder-

belebung. The idea is that a search for any of these constituent words should return documents

containing the composite word as well, increasing recall. The English word breaker, on the other

hand, refuses to acknowledge the German rules, and returns only a single token of the full word

for indexing.

Nonalphanumeric Characters and Accent Marks

Language-specific word breakers also defer to the base language in dealing with whitespace

and nonalphabetic characters. In English, the period character is used as a decimal point in

numeric values; however, in some European countries the comma character is used for the

same purpose. As an example, the German word breaker turns the token 3,14 into 3,14 and

nn3d14. The English word breaker, on the other hand, treats the comma as a token separator

and generates four tokens from 3,14; namely 3, nn3, 14, and nn14. We previously discussed

numeric token indexing in Chapter 3.

The word breakers for most languages break words at whitespace and punctuation. The

English word breaker will break the phrase four score and ten at whitespace and return the tokens

four, score, and, and ten. A token like http://www.microsoft.com is indexed as http, www, microsoft,

and com by the English word breaker. A search for Microsoft will return content containing the

URL http://www.microsoft.com, which is a desirable behavior. The English word breaker divides

sergey@google.com into three tokens: sergey, google, and com.

The rules for characters followed by nonalphanumeric characters are somewhat convo-

luted (at least in English). The English word breaker accepts the token C# and returns C#. The

lowercase token c#, however, is indexed as c with the # character stripped off. The uppercase

token C++ and lowercase token c++, on the other hand, are both indexed as c++.

Accent and diacritic marks carry varying degrees of significance for different languages. At

one extreme is the English language, in which accents and diacritics are by and large unimportant

and unnecessary. Except for a few imported words used in the occasional Madison Avenue

advertising campaign or as the name for a trendy restaurant, accent marks have fallen out of

favor in the English language. At the other end of the scale is the French language, in which an

accent mark can mean the difference between eating salty peanuts (arachides salés) and eating

dirty peanuts (arachides sales). We highly recommend sticking to the salty peanuts.

Token Position Context

Different languages may apply context to token position in the source text. Consider the

Chinese phrase (Traditional Chinese Version in English). This phrase is broken up

by the Chinese word breaker into three separate symbols: , , and . By rearranging

the characters in the phrase to read (a somewhat nonsensical translation of In article

traditional form version), the Chinese word breaker generates four separate symbols: , ,

, and . By contrast, in English the phrase Traditional Chinese Version is broken up into the

words Traditional, Chinese, and Version. Changing the order of tokens in the English phrase

(Chinese Version Traditional, for example) doesn’t change the tokens that are output by the

English word breaker.

106 C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G

INDEXING METHODOLOGIES

In passing, we should note that some search engines use various methods to locate and index the stems of

the words it retrieves from the source text. The iFTS team has chosen not to use this method to index words,

as it tends to lower precision. Indexing stems of words, such as the stem interest for the word interesting, also

introduces additional complexities during the lexical analysis phase of indexing. Other search utilities, such as

Lucene, do provide this type of functionality via add-ons. But even on Lucene and other search engines, this

isn’t the preferred indexing methodology.

Generational Forms

Generational forms encompass both inflectional forms (for example, verb conjugations and

plural nouns) and thesaurus replacements and expansions. Inflectional forms are language-

specific, consisting of potentially thousands of rules for stemming words.

Consider the Arabic language, which has some complex semantics associated with it.

Statistical studies have shown that on average, there are four different concepts expressed in

the derivatives of a single Arabic root. In some cases, Arabic roots such as ��� have as many as

a dozen or more derivatives (in English: accept, okay, subscribe, kiss, and so on). Because Arabic

is a highly derivational and inflectional language, the Arabic word breaker includes additional

logic to group word derivatives and then to limit results returned to only those derivatives that

fall into the same group as the search term itself.

Other languages, such as English, greatly simplify plural noun generation and verb conjuga-

tion through the use of affix (suffix) rules. All languages in general—and English in particular—are

full of exceptions. Consider the infinitive go, one of two suppletive English verbs (the other is be).

While many simple past tense verbs can be created by adding the affix -ed to the infinitive (for

example, fished, cooked, watched), the past simple tense of go is went, a word with no apparent

relationship to the infinitive form. The English word breaker and stemmer must maintain

lists of these types of exceptions and the logic to properly apply them in order to be effective.

Thesaurus replacements and expansions are another story. These types of generational

forms are essentially user-defined, and are useful for implementing custom search functionality.

For instance, if your users tend to search for domain-specific specialized words (such as legal

and medical terms), you can map them to their more mundane equivalents using thesauruses.

Likewise, if you need to add functionality to search for words that aren’t covered by the word

breaker and stemmer for your language (such as slang terms), the thesaurus can help you fulfill

this need. We discuss thesaurus expansion and replacement in Chapter 8.

Gender

Though English largely ignores gender-specificity in words, with the exception of nouns and

pronouns specifically defined to evoke gender-specific ideals, gender plays an important role

in other languages. In English, we see throwbacks to gender-specific idioms, such as the words

fisherman and mailman, and an implicit association of certain ideals with gender (such as

referring to sailing ships with feminine pronouns). In the worst case, these gender-specific

words can be overcome through the use of thesauruses. For instance, you could include an

expansion rule in your thesaurus to automatically expand your search for the word fisherman

to include the word fisherwoman.

C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G 107

SQL Server iFTS automatically includes stemming logic that accommodates gender rules

for other languages where gender plays a more important role. Consider the word flaco (skinny,

masculine). When the Spanish stemmer sees this word, it generates inflectional forms that

include both the masculine gendered versions of the word (flaco, flacos) and the feminine

gendered versions (flaca, flacas). If you referred to a man with the word flaca, odds are good

that he would take offense at being called a skinny girl.

Gender plays a role in nouns as well. Consider the Spanish words barco and barca, which

both mean ship. If you asked for a barco, you’d get a big ship, whereas a barca would be much

smaller. Though not as important for English (where a ship is a ship), gender plays an impor-

tant role when querying multilingual content in many languages.

Storing Multilingual Data
Now that we have an understanding of the issues and complexities involved in searching multi-

lingual text, it’s time to dive into the details of storage and search. There are several methods

you can use to prepare your database to store multilingual data; in this section, we’ll introduce

the methods and tools at your disposal. SQL Server iFTS supports 48 languages by default (and

three additional languages not installed by default) as listed in Table 5-1.

Table 5-1. SQL Server 2008 iFTS-Supported Languages

Language Name

Arabic Bengali (India) Brazilian

British English1 Bulgarian Catalan

Chinese (Hong Kong SAR, PRC)1 Chinese (Macau SAR)1 Chinese (Singapore)1

Croatian Danish2 Dutch

English1 French German

Gujarati Hebrew Hindi

Icelandic Indonesian Italian

Japanese Kannada Korean1

Latvian Lithuanian Malay - Malaysia

Malayalam Marathi Neutral

Norwegian (Bokmål) Polish2 Portuguese

Punjabi Romanian Russian

Serbian (Cyrillic) Serbian (Latin) Simplified Chinese1

Slovak Slovenian Spanish

Swedish Tamil Telugu

Thai1 Traditional Chinese1 Turkish2

Ukrainian Urdu Vietnamese

1Word breaker is unchanged from the SQL Server 2005 version.
2Language is supported in SQL Server 2008, but not installed by default.

108 C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G

Storing Plain Text

One of the first tasks you’ll need to consider when storing multilingual data is your choice of

character sets. When storing purely textual data, you must choose the correct code page. Code

pages are used to map a specific set of characters to numeric code-point values. Most code pages

support only small 7- or 8-bit code points, allowing you to represent only 128 or 256 characters.

By contrast, the Chinese language Kagnxi dictionary contains more than 49,000 characters

(although it’s estimated that full Chinese language literacy requires a working knowledge of

only three to four thousand characters). When designing multilingual database applications

that store textual data, it’s advantageous to store text as Unicode. Unicode can map more than

1 million characters to its code points, enough to represent every written language known to

man with plenty of room to spare.

SQL provides two data types designed to store Unicode: nchar and nvarchar. These data

types require double the storage space of their non-Unicode counterparts, char and varchar,

but can represent all your multilingual and internationalized text. We’ve demonstrated the use

of nvarchar and nchar in several tables in the iFTS_Books sample database. For instance, the

Commentary column of the dbo.Commentary table is defined as nvarchar, so that multilingual text

can be adequately represented. Listing 5-2 shows the CREATE TABLE statement that builds the

dbo.Commentary table.

Listing 5-2. Create dbo.Commentary Table

CREATE TABLE [dbo].[Commentary]

(

 Commentary_ID int NOT NULL CONSTRAINT PK_Commentary PRIMARY KEY CLUSTERED,

 Commentary nvarchar(max) NOT NULL,

 Article_Content xml NULL

);

GO

Storing XML

XML data can be stored in an xml data type column or a varbinary column. We’ll cover the details

of storing XML data in Chapter 6. The XML word breaker goes above and beyond the plain-text

word breakers, in that it allows you to store data from multiple languages in the same XML

document. The XML filter actually respects the xml:lang attribute, which allows you to specify

the language of the content of your XML element. When the XML filter encounters an xml:lang

attribute, it launches the appropriate word breaker for the language indicated. Consider the

XML document in Listing 5-3, which uses the xml:lang attribute to specify that the XML content

is Japanese.

Listing 5-3. Sample Japanese XML Content

<article xml:lang = "ja">

 <date>2008-06-15</date>

 <title> </title>

C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G 109

 <section id = "Lead">

 <para>

 ��, :Elements 3

 Euclid

 </para>

 <para>

 13

 </para>

 <para>

 <list>

 1. :

 2. :

 3. :

 4. : �������	

 5. :

 6. :

 7. :

 8. :

 9. :

 10. :

 11. :

 12. : �
�

 13. :

 </list>

 </para>

 </section>

</article>

The XML filter will recognize the xml:lang = "ja" attribute in the article tag, and it will

subsequently launch the Japanese language word breaker. There’s currently no comprehensive

list of xml:lang tags that map to LCIDs available, so we decided to compile one based on currently

available information. Table 5-2 lists the iFTS supported languages and their equivalent xml:lang

attribute values. We also created a table in the iFTS_Books database, called dbo.Xml_Lang_Code,

which includes the xml:lang to LCID mappings as well.

■Tip Most of the codes appended to the end of the xml:lang language codes are two-character country

codes taken from the ISO 3166 standard. There are some exceptions, however. The zh-Hans and zh-Hant

codes, which represent Simplified Chinese and Traditional Chinese alphabets, respectively, are two examples. In

the past, zh-CN was used to indicate Simplified Chinese and zh-TW was used to indicate Traditional Chinese.

These uses have been deprecated in favor of the new tags.

110 C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G

The XML filter can launch the appropriate language-specific word breaker at indexing

time, but it has no effect on breaking and stemming at query time. In other words, if you index

the Japanese language XML in Listing 5-3, the content will be properly indexed according to

the Japanese language word breaking and indexing rules. However, if you attempt to perform

Table 5-2. Commonly Used xml:lang Attribute Values and Corresponding LCIDs

xml:lang Value LCID Description xml:lang Value LCID Description

ar 1025 Arabic bg 1026 Bulgarian

bn 1093 Bengali (India) ca 1027 Catalan

de 1031 German en-GB 2057 UK (Interna-
tional) English

en-US 1033 US English es 3082 Spanish

fr 1036 French gu 1095 Gujarati

he 1037 Hebrew hi 1081 Hindi

hr 1050 Croatian id 1057 Indonesian

is 1039 Icelandic it 1040 Italian

ja 1041 Japanese kn 1099 Kannada

ko 1042 Korean lt 1063 Lithuanian

lv 1062 Latvian ml 1100 Malayalam

mr 1102 Marathi ms 1086 Malay (Malaysia)

nl 1043 Dutch no 1044 Norwegian

pa 1094 Punjabi pt 2070 Portugese

pt-BR 1046 Brazilian ro 1048 Romanian

ru 1049 Russian sk 1051 Slovak

sl 1060 Slovenian sr-Cyrl 3098 Serbian (Cyrillic)

sr-Latn 2074 Serbian (Latin) sv 1053 Swedish

ta 1097 Tamil te 1098 Telugu

th 1054 Thai vi 1066 Vietnamese

uk 1058 Ukranian ur 1056 Urdu

zh-Hans 2052 Simplified
Chinese

zh-Hant 1028 Traditional
Chinese

zh-HK 3076 Chinese (Hong
Kong, People’s
Republic of
China)

zh-MO 5124 Chinese (Macau,
Special Adminis-
trative Region)

zh-SG 4100 Chinese
(Singapore)

C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G 111

a search and specify English as the search language, the English language word breaking and

stemming rules will be applied to your query string. This mismatch between indexing language

and query language can result in poor recall of your multilingual documents.

Storing HTML Documents

HTML documents can be stored as varbinary documents with an .html document type identifier.

You can use the MS.LOCALE meta tag to define the language of the entire HTML document. The

downside is that for HTML documents written in multiple languages, the language specifies

that the document is written in only one language. Like the XML filter, the HTML filter launches

the appropriate language-specific word breaker to tokenize your HTML content. Listing 5-4

shows a simple German language HTML document with the MS.LOCALE meta tag.

Listing 5-4. German-Language HTML Document with MS.LOCALE Meta Tag

<html>

 <head>

 <title>Deutsches Wörterbuch</title>

 <meta name = "MS.LOCALE" content = "DE"/>

 </head>

 <body>

 <h1>Deutsches Wörterbuch</h1>

 <p>

 Das Deutsche Wörterbuch (DWB) oder auch Der Grimm

 ist das größte deutsche Wörterbuch, mit insgesamt 33 Bänden. Es

 wurde von den Brüdern Grimm begonnen und erst 1960, nach über 120

 Jahren, vollendet.

 </p>

 <h2>Aufgabe und Entstehungsgeschichte</h2>

 <p>

 Die Herausgabe des Deutschen Wörterbuchs war das ehrgeizigste

 sprachwissenschaftliche Arbeitsvorhaben, dem sich die Brüder Grimm,

 die deutschen Philologen Jacob und Wilhelm Grimm, stellten.

 </p>

 <p>

 Es handelt sich um ein klassisches Belegwörterbuch, das in aller

 Gründlichkeit die Herkunft jedes deutschen Wortes und seinen Gebrauch

 erläutern will. Das Ziel des DWB, so stellten es sich die Brüder vor,

 sollte es sein, dass sich der einfache Bürger der nationalen

 Gemeinsamkeit in der deutschen Sprache vergewissern konnte, da es zu

 Beginn der Arbeit am DWB noch kein politisch vereinigtes Deutschland,

 sondern nur viele Kleinstaaten gab.

 </p>

 </body>

</html>

112 C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G

The <meta name = "MS.LOCALE" content = "DE"/> tag specifies that the content of the HTML

document is written in German. This meta tag causes the HTML filter to launch the German

language word breaker to index this content.

Storing Microsoft Office Documents

Several Microsoft Office documents, most notably MS Word documents, allow you to mark text or

documents as language-specific. Microsoft Office documents are stored in varbinary columns with

a type indicator column that specifies that type of document stored in the content column. We

introduced this in Chapter 3, and we’ll discuss the details of storing binary document data in

Chapter 6. The Microsoft Office document filter respects the language settings you indicate

within your document, and it will launch the appropriate filters during the indexing process.

Storing Other Document Types

Other document types, specifically those that are indexed with third-party filters, have varying

levels of support for indexing multilingual content. The Adobe PDF filter, for instance, is known

to have limited support for indexing multilingual documents. All of these document types are

essentially stored as varbinary content with a type indicator column. If you want to determine

whether third-party filters for specific document types support multilanguage indexing, you’ll

have to check the documentation provided by the manufacturer.

Detecting Content Language

You may not always have the luxury of knowing in advance what language your content is written

in. There are some sophisticated language detection algorithms available for automating the

process of determining the language of your content. Most of these methods involve looking at

the content and detecting words and character fragments that are specific to different languages,

then tagging the content as such. Dale Gerdemann of the University of Tübingen evaluated

language identification methods in a lecture, available at http://www.sfs.uni-tuebingen.de/

iscl/Theses/kranig.pdf.

A quick and dirty approach that works well for the “big six” western languages (English,

French, German, Italian, Spanish, and Dutch) is to count letter sequences, accents, and noise

word occurrences in the content (or a small portion of it, such as the first 500 or 1,000 characters).

You can analyze text for specific documents, but keep in mind that frequently Web-based content

will contain a large amount of English content, even when the author’s primary language is not

English. For instance, many Taiwanese bloggers post in combinations of both English and

Traditional Chinese. This makes automated language identification more difficult.

Designing Tables to Store Multilingual Content
When iFTS indexes content, it doesn’t store any language-specific metadata with the tokens it

adds to the full-text index. This means that there’s no mechanism for applying language-specific

rules to indexed content after it’s already been indexed. In fact, language-specific rules are

applied at only two distinct times:

C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G 113

1. A limited set of language-specific rules (whitespace handling, hyphenation, and so

forth) are applied during the word breaking portion of the population process.

2. The full set of language-specific rules, possibly including stemming and thesaurus

expansions and replacements, are applied to your search phrase at query time.

Each full-text indexed column can only be designated with a single LCID. So how can you

design a table to hold documents and content from multiple languages with different language-

specific indexing rules and different character sets? One obvious approach is to create a separate

table for every language. Listing 5-5 creates three separate tables, one each for English, Spanish,

and German content. Note that we advise against using this method (for reasons we’ll detail

shortly), and these tables don’t exist in the iFTS_Books database.

Listing 5-5. Separate Tables for Each Language

CREATE TABLE dbo.Book_EN

(

 Book_ID int NOT NULL PRIMARY KEY,

 Content varbinary(max),

 File_Ext nvarchar(4)

);

GO

CREATE TABLE dbo.Book_ES

(

 Book_ID int NOT NULL PRIMARY KEY,

 Content varbinary(max),

 File_Ext nvarchar(4)

);

GO

CREATE TABLE dbo.Book_DE

(

 Book_ID int NOT NULL PRIMARY KEY,

 Content varbinary(max),

 File_Ext nvarchar(4)

);

GO

With this method of breaking content up into separate language-specific tables, you can

ensure that all content will be indexed properly according to the rules of the language, and that

all queries for language-specific content will properly match up with the proper content. However,

this method represents a logistical and maintenance nightmare. Maintaining content in all of

these separate tables is a complex undertaking, and adding support for additional languages is

overly complicated. Even querying can be daunting with this method of storing multilanguage

content.

114 C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G

The next method essentially represents the same type of underlying architecture, but

instead of creating language-specific tables, you would create language-specific columns in the

same table. Using this method, your table would contain multiple varbinary(max) columns,

each designated to hold content written in a different language. Listing 5-6 creates a denormal-

ized dbo.Book_Denorm table that uses this method of storing multilanguage content. Again, we

advise against this method of storing multilanguage data, and this table doesn’t exist in the

iFTS_Books database.

Listing 5-6. Creating the Denormalized dbo.Book_Denorm Table

CREATE TABLE dbo.Book_Denorm

(

 Book_ID int NOT NULL CONSTRAINT PK_Book_Denorm PRIMARY KEY,

 Content_DE varbinary(max),

 File_Ext_DE nvarchar(4),

 Content_EN varbinary(max),

 File_Ext_EN nvarchar(4),

 Content_ES varbinary(max),

 File_Ext_ES nvarchar(4)

);

GO

This method offers no improvement over the language-specific separate tables architecture.

As with that design, using language-specific columns for content represents a less-than-optimal

design. The problem again is that maintenance and administration are severely complicated

by the fact that your indexed content is stored in multiple places. You also have to contend

with multiple full-text indexes to index the same content, which can cause administrative

headaches.

A better method, and the method we recommend, is to store an LCID with your content.

This LCID can be used to narrow your full-text searches to only the content that’s relevant to

the language you’re interested in. Listing 5-7 shows a simplified version of the CREATE TABLE

statement for the dbo.Book table we’ve created in the iFTS_Books database. By “simplified,” we

mean to indicate that we’ve removed the FILESTREAM attribute and some additional columns

that aren’t relevant to demonstrating the concept of marking content with an LCID.

Listing 5-7. Create Simplified dbo.Book Table

CREATE TABLE dbo.Book

(

 Book_ID int NOT NULL CONSTRANT PK_Book PRIMARY KEY,

 Book_LCID int NOT NULL,

 Book_Content varbinary(max) NOT NULL

);

GO

C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G 115

Using this method, you can use iFTS to search the table in English. You can ensure that

there’s no mismatch between the English search phrase and the English-specific content in the

full-text index by limiting the scope of your search to only that content marked with Book_LCID

= 1033. Listing 5-8 is a simple query against the dbo.Book table, searching for the German word

gift (English translation: poison). Seventeen hits are returned, as shown in Figure 5-6.

Listing 5-8. Searching for the German Word “gift”

SELECT

 Book_ID,

 Book_LCID

FROM dbo.Book

WHERE FREETEXT

(

 *,

 N'gift',

 LANGUAGE 1031

);

GO

Figure 5-6. Results of search for German word “gift”

You’ll notice in the results shown in Figure 5-6 that several English language documents

were returned. It’s highly unlikely that the English language (LCID 1033) results for gift have

anything to do with the German (LCID 1031) hits for gift. In order to improve the accuracy of

results, we have to narrow the search down to only consider the German-language documents

during the search. We do this in the WHERE clause, as shown in Listing 5-9. The results are shown

in Figure 5-7.

Listing 5-9. Restricting German Word Search to Only German Documents

SELECT

 Book_ID,

 Book_LCID

FROM dbo.Book

WHERE FREETEXT

116 C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G

(

 *,

 N'gift',

 LANGUAGE 1031

)

AND Book_LCID = 1031;

GO

Figure 5-7. Results of German word search against only
German language content

You can retrieve all content from the English and German content stored in the column

that relates to the German word gift and the English equivalent word poison by unioning the

results of two language-specific queries together. This is shown in Listing 5-10. Note that

the individual queries use the language-specific words gift and poison to represent the same

concept differently in each query. The results are shown in Figure 5-8.

Listing 5-10. Combining the Results for an English and German Search in One Result Set

SELECT

 Book_ID,

 Book_LCID

FROM dbo.Book

WHERE FREETEXT

(

 *,

 N'gift',

 LANGUAGE 1031

)

AND Book_LCID = 1031

UNION ALL

SELECT

 Book_ID,

 Book_LCID

FROM dbo.Book

WHERE FREETEXT

C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G 117

(

 *,

 N'poison',

 LANGUAGE 1033

)

AND Book_LCID = 1033;

GO

Figure 5-8. Results of combined multilanguage result set

Likewise, you can add more language-specific terms representing the same concept and

union the results together into a single result set. The downside to storing all of your content in

a single column is that, during the indexing process, the declared language of the column is the

default language for all content stored in that column. This means that, unless your content is

stored in a format such as HTML or XML that honors language-specific markup, the content

will be broken into tokens using the default column language word breakers.

■Tip Note that you can override the default language for the column by storing language-aware content

such as XML or Word documents in the column, as we described previously.

We recommend using a combination of storing LCIDs with your content and storing

language-specific tags or markup in your content (when possible) in order to maximize the

precision and accuracy of your results. By storing this additional metadata with your content,

you can maximize your results and store all of your content in a single column, which greatly

simplifies administration, maintenance, and querying over the alternatives.

118 C H A P T E R 5 ■ M U L T I L I N G U A L S E A R C H I N G

Summary
There are several aspects that need to be considered when creating multilanguage full-text

search solutions. In this chapter, we briefly discussed the history of written language and

explored several of the issues that you’ll face in implementing your own iFTS-based multi-

language applications. We also talked about how iFTS handles these issues. Finally, we provided

recommendations for multilanguage content storage and optimizing database design. In the

next chapter, we’ll consider the methods that SQL Server provides for storing, manipulating,

managing, indexing, and retrieving large object (LOB) data.

119

■ ■ ■

C H A P T E R 6

Indexing BLOBs

Now that we have all this useful information, it would be nice to be able to do some-
thing with it.

—Unix User’s Manual

SQL Server 2008 continues the improved support for large object (LOB) data that was intro-

duced in SQL Server 2005. This improvement is driven by Microsoft’s vision for data as well as

customer demand. When SQL Server 2000 was first released, it was estimated that all the digital

data in the world totaled 1 petabyte (1 million terabytes). Estimates done in 2007 revised that

figure to upward of 7 petabytes of digital data stored around the world. Today it appears that

everyone has his own personal terabyte, much of it unstructured data. Documents today are

born digitally, live digitally, and die digitally—they live their entire life inside a database and

sometimes never have a paper representation.

It wasn’t too long ago that data analysis always came up short. Essential data was often not

recorded, not collected, not warehoused, not accessible, sometimes not recoverable, and all

too often not kept (in other words, deleted). Information Technology (IT) has matured and

there’s been a realization that data, and the information that can be derived from it, are the

currency of the kingdom. Business intelligence can now provide actionable insights into data

that simply weren’t possible before. Frequently digital data is stored in its native format in the

database; with the most common format being XML. Today the challenge is not only storing

and managing more data efficiently, but being able to search it and have the data reveal itself

to the searcher.

The improved LOB data type support in SQL Server 2008 is centered around the new

generation of LOB data types, including varchar(max), nvarchar(max), varbinary(max), and

xml. SQL Server 2008 improves on binary large object (BLOB) data type support by providing

FILESTREAM access for varbinary(max) data. SQL Server FILESTREAM allows you to store, manip-

ulate, and stream BLOB data from an NTFS file system using T-SQL statements and the

OpenSqlFilestream API. The real advantage to FILESTREAM is that you can not only store and

manipulate the LOB data stored in your database using T-SQL commands, you can retrieve it

directly from the file system using ADO.Net without having to read the binary data into the SQL

Server cache. In case you missed it—you can access the varbinary data you stored in the data-

base through the file system!

In this chapter, we’ll discuss indexing varbinary(max) BLOB data, both with and without

FILESTREAM, xml data, and character LOB data.

120 C H A P T E R 6 ■ I N D E X I N G B L O B S

LOB Data
SQL Server’s storage mechanisms have historically made storing LOB data an interesting (and

frustrating) exercise. SQL Server stores data in 8KB pages and 64KB extents (composed of eight

consecutive pages). In prior versions of SQL Server, the image, text, and ntext data types provided

support for LOB data. Using these data types effectively, however, was kludgy at best. SQL

Server 2008 supports the newer generation of easier-to-use varbinary(max), varchar(max),

and nvarchar(max) data types (first introduced in SQL Server 2005) that replace the old LOB

data types.

■Tip The image, text, and ntext data types are deprecated and shouldn’t be used for new development.

Use varbinary(max), varchar(max), and nvarchar(max) instead.

While the non-LOB data types such as varchar(n) and varbinary(n) max out at 8,000 bytes

of storage, the LOB data types in SQL Server 2008 allow you to store up to 2.1GB of data in a

single variable or column instance. This is particularly useful when used in conjunction with

iFTS to index large documents. The iFTS_Books database has several LOB data type columns

that demonstrate a variety of LOB full-text indexing options:

• The dbo.Commentary table has a Commentary column defined as an nvarchar(max). This

column contains additional commentary text describing the books in the database.

• The dbo.Commentary table also has an xml data type column called Article_Content that

holds articles about books and book-related topics in XML format.

• The dbo.Book table Book_Content column is a varbinary(max) column with the FILESTREAM

attribute. This column contains the actual content of each book stored in the database.

Character LOB Data
The varchar(max) and nvarchar(max) data) and nvarchar(max) data types are used to store

character data. Character large object (CLOB) and national character large object (NCLOB) data

consists of character data stored in varchar(max) and nvarchar(max) type columns, respectively.

The Commentary column of the dbo.Commentary column stores NCLOB data in an nvarchar(max)

column.

■Note “National character” is the name given to internationalized character data by the ISO SQL Standard.

SQL Server stores national character data as Unicode in the nchar and nvarchar data types.

You can use SELECT queries and DML statements to query and manipulate your CLOB and

NCLOB data just like any other non-LOB data types. Internally, SQL Server uses Unicode to

store nvarchar(max) data. You need to use nvarchar(max) to support non-ASCII character sets,

C H A P T E R 6 ■ I N D E X I N G B L O B S 121

including Chinese, Russian, Arabic, and Hindi, among many others. In other words, while

Western alphabets can be represented fully using the 7-bit ASCII character set, Unicode can be

used to represent non-Western alphabets. For non-Western alphabets, Unicode represents

each character as a 16-bit (double-byte) code point. The Unicode system encapsulates all

known alphabets.

■Note Although ASCII requires only 7 bits to represent characters, some collation settings may require use

of the 8th bit in each byte to represent characters with accents or other diacritic marks.

Some restrictions apply to full-text indexing character or national character data in a

varchar(max) or nvarchar(max) column, including the following:

• You can only use the plain text filter on a column, so you can’t properly full-text index

other document types such as word-processing documents and spreadsheets.

• You can only apply a single language/LCID to a column, and only the word-stemmer for

that language will be applied to the column.

These are essentially the same restrictions as on non-LOB character type columns. The

advantage to the varchar(max) and nvarchar(max) data types over non-LOB character data

types is that each row can contain up to 2.1 billion bytes of data.

In the case of the Commentary column, the LCID of the column’s full-text index is 1033

(English). This means that the word breaker and stemmer applied to the column will use

English language rules to perform linguistic analysis when you perform a full-text search

against the column. Consider the search query in Listing 6-1, which looks for inflected forms of

the English word go. The results are shown in Figure 6-1.

Listing 6-1. Full-text Query for “Go”

SELECT

 Commentary_ID,

 Commentary

FROM dbo.Commentary

WHERE FREETEXT

(

 Commentary,

 N'go'

);

Figure 6-1. Result of full-text query for “go”

122 C H A P T E R 6 ■ I N D E X I N G B L O B S

The row with Commentary_ID 36 is returned, since the Commentary column contains the

word went, an inflected form of the word go in English.

XML LOB Data
The dbo.Commentary table also contains an xml data type column. Like the other LOB data

types, the xml data type can hold up to 2.1GB of data. However, unlike the varchar(max) and

nvarchar(max) data types, the xml data type’s capacity is not directly related to the length of the

character representation of the XML data. The xml data type uses an internal representation

based on the XQuery/XPath Data Model (XDM), which tends to be generally more compact

than nvarchar-based XML data representations. You can test this with a query like the one

shown in Listing 6-2; results are shown in Figure 6-2.

■Tip The xml data type uses Unicode representations for character data and stores numeric and other data

in compact binary representations.

Listing 6-2. Comparing the Length of xml Data Type Columns and nvarchar(max) Representations

SELECT

 Commentary_ID,

 DATALENGTH(Article_Content) AS XML_Length,

 DATALENGTH

 (

 CAST

 (

 Article_Content AS nvarchar(max)

)

) AS Char_Length

FROM dbo.Commentary;

Figure 6-2. Comparing the lengths of xml data type and character-based representations

C H A P T E R 6 ■ I N D E X I N G B L O B S 123

An advantage of full-text indexing XML data is the XML word breaker, which respects

xml:lang language identifier tags in your XML data. This means that you can store language-

specific XML data in different rows of the same column, as we’ve done in the Article_Content

column of the dbo.Commentary table. You can see the xml:lang attribute used on the root

<article> tags of the Article_Content XML data with a simple query like the one in Listing 6-3.

Results are shown in Figure 6-3.

Listing 6-3. Viewing Article_Content XML Data in the dbo.Commentary Table

SELECT

 Commentary_ID,

 Article_Content

FROM dbo.Commentary;

Figure 6-3. The xml:lang attribute was applied to the root level of many
Article_Content XML entries.

While you can store XML documents in varbinary(max) data type columns and full-text

index and search them there, to take advantage of xml data type features (such as the built-in

XQuery support), you must store your XML in xml data type columns.

The xml:lang attribute in the sample XML is assigned a two-character language code as

defined by the Internet Assigned Numbers Authority (IANA). The IANA language registry is

based on the ISO 639-2 standard for language representation codes. (You can see the complete

language code registry at http://www.iana.org/assignments/language-subtag-registry.) The

xml:lang attribute allows you to add to the language code, so that, for example, en-US would

indicate that data is in US English, while en-GB indicates international English—English as it’s

written everywhere else in the world. We provide a table listing SQL Server 2008–supported

xml:lang codes and their corresponding LCIDs in Chapter 5.

The main difference between how full-text indexes handle XML data and other data types

is how the word breaker works. When you create a full-text index on an xml data type column,

the XML word breaker disregards element tags and attributes, indexing only the data contained

in the elements. So, if you ran a full-text search for the word synthesised against the column,

iFTS would return no results, despite the fact that Commentary_ID 8 contains the following

element in the Article_Content data:

<section id="Synthesised plot synopsis">

 . . .

</section>

124 C H A P T E R 6 ■ I N D E X I N G B L O B S

Full-text querying the xml data type column is exactly like querying any other column.

Listing 6-4 shows a full-text query for the word city, with partial results shown in Figure 6-4.

Note that we’ve truncated the results significantly to clearly show examples of matching XML

data in these results.

Listing 6-4. Full-Text Querying XML Data for “city”

SELECT

 Commentary_ID,

 Article_Content

FROM dbo.Commentary

WHERE FREETEXT

(

 Article_Content,

 N'city',

 LANGUAGE 1033

);

Figure 6-4. Results of full-text query for “city”

You can also search for words in alternate languages against this column, as shown in

Listing 6-5. The first query searches for the Spanish word abogados (“lawyers” in English), and

the second query searches for the Japanese word (“character” or literally “characteristic

quality” in English). The results are shown in Figure 6-5, with the XML data truncated to high-

light the matches.

Listing 6-5. Full-Text Query Against Non-English XML Data

SELECT Commentary_ID, Article_Content

FROM dbo.Commentary

WHERE FREETEXT

(

 Article_Content,

 N'abogados',

 LANGUAGE 3082

);

C H A P T E R 6 ■ I N D E X I N G B L O B S 125

SELECT

 Commentary_ID,

 Article_Content

FROM dbo.Commentary

WHERE FREETEXT

(

 Article_Content,

 N' ',

 LANGUAGE 1041

);

Figure 6-5. Results of full-text queries against non-English XML data

The xml:lang attribute doesn’t restrict full-text searches to specific languages. With regard

to full-text search, the xml:lang attribute applies the proper word breakers when populating a

full-text index. If you perform a search for the word Africa, as shown in Listing 6-6, iFTS will

locate it in both English and Spanish XML data. The results are shown in Figure 6-6, truncated

to highlight the matching XML data.

Listing 6-6. Searching for “Africa”

SELECT

 Commentary_ID,

 Article_Content

FROM dbo.Commentary

WHERE FREETEXT

(

 Article_Content,

 N'Africa',

 LANGUAGE 1033

);

Figure 6-6. Results of search for “Africa”

126 C H A P T E R 6 ■ I N D E X I N G B L O B S

EAST ASIAN LANGUAGE SUPPORT

In order to properly display East Asian language characters, such as the Japanese characters in Listing 6-5,

you may need to install East Asian language support for your Windows OS installation. This option is available

in the Control Panel, under Regional and Language Options. The following is a screenshot of the Regional and

Language Options window from Windows XP; it’s nearly identical on Windows Server 2003.

The option to Install files for East Asian languages is available under the Languages tab. Check this box

and click OK to install the support files. You’ll need the original installation CDs during the installation. Once

you’ve installed East Asian language support, you may need to restart your computer.

East Asian language support must be installed to display East Asian character sets (Japanese, Chinese,

and so on) in SSMS and other Windows applications. Without East Asian language support installed, Windows

will display the characters of these languages as small empty squares on the screen.

Note that even though we specified language LCID 1033 (English) in the query, the results

returned XML data that was marked with xml:lang attributes for both English (en) and Spanish

(es). We covered how this works in greater detail in Chapter 5, but to briefly explain it here,

search terms are stemmed in the chosen language, and then the full-text index is consulted to

find matches. The full-text index doesn’t store any language-specific metadata for the words

that it stores.

C H A P T E R 6 ■ I N D E X I N G B L O B S 127

Binary LOB Data
In addition to character and XML data, SQL Server allows you to create full-text indexes on

BLOB data in the form of varbinary(max) columns. The varbinary(max) data type is intended

to store binary data, which means that if you query the column directly, you’ll be unable to

read the data in the image column, as it’s in binary format.

■Tip You can also create full-text indexes on BLOB data in image data type columns. However, the image

data type is deprecated and should be avoided in future development work.

The varbinary(max) data type is important to iFTS, as you can store a variety of document

types in this column and indicate the type of data stored in another column, referred to as the

type column. The type column tells the iFTS indexer which filter to launch to extract text and

property data from the varbinary(max) column.

When you index BLOB data, specifying the type column is mandatory. The type column is

a character data type column that holds a set of predefined file extensions which associate your

full-text indexed BLOB data to a specific filter. The type column is essentially a column containing

the file extension your document would have if it were stored in the file system. The filters (also

referred to as iFilters because of their dependence on the IFilter programming interface) were

originally developed for Microsoft’s Index Server product, a search server designed to index

documents stored in the file system. Index Server identified document formats by looking at

the file extension and then launching the correct filter, a model that was carried over to SQL

Server full-text search.

If the contents of the image column contain OLE-structured storage documents, another

filter may be launched. For example, if you store a TIFF image in an MS Word document, the

Word filter will be used to extract the text data and properties in the document, while a TIFF

filter will be used to run optical character recognition (OCR) software to extract any textual

data that might be in the TIFF image.

You can store plain text documents, MS Word documents, XML fragments, PDF files, and

JPEG images in a varbinary(max) data type column and the SQL FTS indexer will extract all text

data from these documents. Note that only the NTFS properties of a JPEG image will be

omitted by the NFTS file properties filter, and these properties won’t be stored in the index.

■Note In the example given, the filter will also properly recognize dates, numbers, and currency figures,

and will store them with additional metadata indicating the type of content. However, despite this additional

metadata, you can still only query the data as text.

128 C H A P T E R 6 ■ I N D E X I N G B L O B S

SQL Server 2008 iFTS can recognize 50 different document types, including those listed in

Table 6-1. You can retrieve a full listing of document types supported by your SQL Server 2008

instance by querying the sys.fulltext_document_types catalog view.

When you store an MS Word document in a varbinary(max) column, the full-text search

engine uses the type column value of .doc to launch the MS Office filter to index the document

content. Because it’s a language-aware file type, the MS Office filter launches the appropriate

word breakers for any languages marked in the document content.

MARKING LANGUAGE-SPECIFIC TEXT IN MS WORD

You can mark text as language-specific in MS Word documents by highlighting the appropriate text and

selecting Tools ➤ Language ➤ Set Language. Other language-aware document types have different methods

for marking language-specific text. By default Word will select the language that matches your operating

system’s Regional and Language Options configuration. If the computer you’re creating your Word documents

on has a different language setting than the language you want to create your document in, you’ll have to

select appropriate styles or create a language-specific template. Other language-aware document types have

different methods for marking language-specific text. You’ll have to check the documentation to determine the

proper method for marking language-specific text.

The dbo.Book table in the sample database contains the full content of several books in

BLOB format in the Book_Content column, which is declared as varbinary(max) with the

FILESTREAM option. The Book_File_Ext column is the type column that contains the associated

file extensions. If you query this table, you’ll notice that the column contains MS Word, XML,

Table 6-1. Some Common iFTS BLOB File Formats

Extension Document Type Language-Aware

.doc MS Word Document Yes

.html, .htm HTML Document Yes (ms.locale META tag)

.pdf Adobe Acrobat PDF Document Yes*

.ppt MS PowerPoint Document Yes

.rtf Rich Text Document No

.txt Plain Text Document No

.vsd MS Visio Diagram Yes*

.xls MS Excel Spreadsheet Yes

.xml XML Document Yes (xml:lang attribute)

* The filters for these file formats aren’t installed with SQL Server 2008 by default. We’ll discuss where to

obtain filters that support these file formats in Chapter 10.

C H A P T E R 6 ■ I N D E X I N G B L O B S 129

plain text, PDF, and LaTeX documents. We don’t recommend directly querying the

Book_Content column, since it contains several very large documents. Querying this column

directly could cause SSMS to become unresponsive as it tries to retrieve the large BLOB

documents.

■Tip By default, SQL Server 2008 doesn’t have filters for PDF and LaTeX documents. We’ll discuss adding

support for both of these file formats in detail in Chapter 10.

Querying the Book_Content column is the same as querying any other LOB data type

column. Listing 6-7 queries the Book_Content column for references to Yorick (as in “Alas, poor

Yorick! I knew him, Horatio . . .”). Results are shown in Figure 6-7.

Listing 6-7. Searching for “Yorick”

SELECT

 b.Book_ID,

 t.Title,

 t.Title_LCID,

 b.Book_File_Ext,

 b.Book_LCID

FROM dbo.Book b

INNER JOIN dbo.Book_Title bt

 ON b.Book_ID = bt.Book_ID

INNER JOIN dbo.Title t

 ON bt.Title_ID = t.Title_ID

WHERE FREETEXT

(

 b.Book_Content,

 N'Yorick'

)

AND t.Is_Primary_Title = 1;

Figure 6-7. Alas, Yorick has been found.

As you can see in Figure 6-7, Yorick was located in two versions of the classic tale of Hamlet

that we’ve stored in the database—the English plain text version (LCID 1033) and the French

MS Word document version (LCID 1036).

130 C H A P T E R 6 ■ I N D E X I N G B L O B S

FILESTREAM BLOB Data
The FILESTREAM option is new to SQL Server 2008. Everyone has an opinion on whether BLOBs

belong in the file system or the database, with many options designed to try to find a middle

ground between the two ideas. In the Microsoft Research paper “To BLOB or Not To BLOB:

Large Object Storage in a Database or a Filesystem” (http://research.microsoft.com/research/

pubs/view.aspx?msr_tr_id=MSR-TR-2006-45), Jim Gray and company made specific recom-

mendations about when to store BLOB data in the database and when to store it in the file

system.

Prior to SQL Server 2008, it was common to store BLOB data in the file system with only

pointers (file paths) to the BLOB files maintained in the database. Typically, this involved

creating a nested hierarchy of subfolders—which maximizes efficiencies of scale offered by the

NFTS file format and optimizes throughput when enumerating large numbers of files in a

directory. This was especially true in SQL Server 2000 and before, since the old-style image data

type was extremely kludgy to work with.

Managing BLOB data in the file system can often be more efficient than storing it in the

database. By default, Windows NTFS (NT File System) is designed to stream large quantities of

BLOB data more efficiently than SQL Server, which itself excels at managing non-LOB data

sets. In SQL Server 2005, the new varbinary(max) data type made managing BLOB data in SQL

Server easier than was previously possible, but the difference in efficiency between SQL Server

BLOB data management and NTFS BLOB streaming was still a significant factor for applica-

tions that had to store large quantities of BLOB data on the server.

On the down side, storing BLOB data in the file system introduced a new layer of custom-

built abstraction into the mix. Storing data in the file system meant it was up to the database

developer to create techniques to keep the file system and database file paths in sync. When-

ever a file was deleted or a file name was changed on the file system, the database had to be

updated, or if file information was changed in the database, the file stored in the file system

had to be changed to reflect that. A lot of companies made a lot of money creating and selling

document management systems that, at their core, performed this most basic of functions. On

the flip side, disaster recovery, including the most basic backup and restore methodologies, is

simplified greatly when BLOB data is stored in the database.

With the introduction of FILESTREAM functionality in SQL Server 2008, there’s a new solu-

tion to this problem. Basically, SQL Server allows you to create a varbinary(max) column and

decorate it with a FILESTREAM attribute. You can use standard T-SQL query and DML statements

to manipulate the column like any other varbinary(max) column.

The difference is in how SQL Server manages your FILESTREAM data. Under the hood, SQL

Server stores your FILESTREAM BLOBs in the file system, taking advantage of NTFS’s content-

streaming capabilities. You don’t have to worry about keeping the contents of the file system

and the database in sync; SQL Server handles that for you. Additionally, SQL Server takes

advantage of NTFS’s transactional capabilities during T-SQL DML statements, so you get file

system transactions thrown in for free.

Efficiency Advantages

FILESTREAM can offer performance advantages over SQL Server’s internal BLOB storage mech-

anisms. To demonstrate, we ran several rounds of DML statements and queries against two tables:

one with a FILESTREAM-enabled varbinary(max) column and the second with a varbinary(max)

C H A P T E R 6 ■ I N D E X I N G B L O B S 131

column that’s not FILESTREAM-enabled. We ran these tests on a Xeon 64-bit dual-processor

(3GHz) server with 6GB of memory dedicated to the SQL Server instance. The results of our

simple test on the table that’s not FILESTREAM-enabled are shown in Figure 6-8.

Figure 6-8. Efficiency of BLOB data actions without FILESTREAM

As you can see, the number of actions completed per second drops dramatically as the size

of the BLOB data increases. At 0.25MB, we were able to complete approximately 1,200 SELECT

queries per second against the table; at 100MB, that number dropped to less than 2 per second.

We ran the same test against a FILESTREAM-enabled table and got the results shown in Figure 6-9.

Figure 6-9. Efficiency of BLOB data actions with FILESTREAM

As you can see in this figure, the efficiency of most BLOB actions starts out slightly lower

than the equivalent non-FILESTREAM actions for smaller files. As the BLOB sizes increase beyond

1MB, however, the FILESTREAM-enabled versions show improved efficiency over the non-

FILESTREAM versions. In fact, the sweet spot in our tests appeared to be somewhere between

1MB and 10MB. Note also that DELETE operations on a FILESTREAM-enabled table are extremely

132 C H A P T E R 6 ■ I N D E X I N G B L O B S

fast, since the operation simply invokes operating system functionality to delete the under-

lying file. We agree with Microsoft’s recommendation that FILESTREAM increases the efficiency

of T-SQL access and manipulation for BLOBs greater than 1MB in size, and we strongly recom-

mend FILESTREAM for storage of BLOBs larger than 10MB.

FILESTREAM Requirements

The first requirement for FILESTREAM access is NTFS. You can’t create a FILESTREAM on an old

FAT (File Allocation Table) file system. Next, you have to configure SQL Server to enable

FILESTREAM functionality. You can use the SQL Server Configuration Manager utility to easily

enable and configure FILESTREAM access.

To access the FILESTREAM configuration options, right-click on the SQL Server service in

the Configuration Manager and select Properties from the pop-up context menu. In the Prop-

erties window, click on the FILESTREAM tab and select the appropriate options. In Figure 6-10,

we’ve selected the following options:

1. The Enable FILESTREAM for Transact-SQL access option turns on FILESTREAM access

and makes it available for T-SQL querying and DML access.

2. The Enable FILESTREAM for file I/O streaming access option exposes the FILESTREAM

access for local streaming I/O.

3. When you choose the Enable FILESTREAM for file I/O streaming access option, you

must choose a Windows share name that will be used to expose the FILESTREAM for

streaming I/O.

4. Finally there’s an option to Allow remote clients to have streaming access to FILESTREAM

data. This option allows you to expose the FILESTREAM data to remote client connections.

Figure 6-10. Configuring FILESTREAM access in the SQL Server Configuration Manager

C H A P T E R 6 ■ I N D E X I N G B L O B S 133

After you enable FILESTREAM access in the SQL Server Configuration Manager, you need to

set the access level in T-SQL using sp_configure, as shown in Listing 6-8.

Listing 6-8. Setting FILESTREAM Access Level in T-SQL

EXEC sp_configure 'filestream_access_level', 2;

GO

RECONFIGURE;

GO

You can use sp_configure to set the FILESTREAM access level to one of the levels shown in

Table 6-2.

After you’ve enabled FILESTREAM access, you must create a FILESTREAM filegroup in which

to store your data. You can do this with the CREATE DATABASE or ALTER DATABASE statements.

Listing 6-9 shows the CREATE DATABASE statement used to create the iFTS_Books sample data-

base, with the clause that creates the FILESTREAM filegroup in bold.

Listing 6-9. Creating a Database with a FILESTREAM Filegroup

CREATE DATABASE iFTS_Books

ON PRIMARY

(

 NAME = N'iFTS_Books',

 FILENAME = N'C:\iFTS_Books\iFTS_Books_Data.mdf',

 SIZE = 43904KB,

 MAXSIZE = UNLIMITED,

 FILEGROWTH = 1024KB

),

FILEGROUP FileStreamGroup
CONTAINS FILESTREAM
DEFAULT
(
 NAME = N'iFTS_Books_FileStream',
 FILENAME = N'C:\iFTS_Books\iFTS_Books_FileStream'
)

Table 6-2. FILESTREAM Access Levels

Level Description

0 Disables FILESTREAM support for the SQL Server
instance

1 Enables FILESTREAM access via T-SQL for the SQL
Server instance

2 Enables FILESTREAM access via T-SQL and via the file
system for the SQL Server instance

134 C H A P T E R 6 ■ I N D E X I N G B L O B S

LOG ON

(

 NAME = N'iFTS_Books_log',

 FILENAME = N'C:\iFTS_Books\iFTS_Books_Log.ldf',

 SIZE = 1024KB,

 MAXSIZE = 2048GB,

 FILEGROWTH = 10%

);

GO

In the CONTAINS FILESTREAM clause, the NAME is the logical name for the FILESTREAM and

must be unique within the database. The FILENAME for a FILESTREAM is the path to the folder

where FILESTREAM BLOB data will be stored. The path up to the last folder must exist prior to

creation, and the last folder must not exist at creation time (it will be created automatically).

Once you’ve enabled FILESTREAM access on the SQL Server instance and created the

FILESTREAM filegroup, you can create tables with FILESTREAM-enabled varbinary(max) columns.

Listing 6-10 shows the CREATE TABLE statement for the dbo.Book table, which contains a

FILESTREAM-enabled varbinary(max) column.

Listing 6-10. CREATE TABLE Statement for FILESTREAM-Enabled dbo.Book Table

CREATE TABLE dbo.Book

(

 Book_ID int NOT NULL,

 Book_GUID uniqueidentifier ROWGUIDCOL NOT NULL,
 Book_LCID int NOT NULL,

 Book_Subject_ID tinyint NOT NULL,

 Book_Class_Code nchar(1),

 Book_Subclass_Code nvarchar(3) NOT NULL,

 Book_Content varbinary(max) FILESTREAM NOT NULL,
 Book_File_Ext nvarchar(4) NOT NULL,

 Book_Image_Name nvarchar(100),

 Book_Image varbinary(max),

 Change_Track_Version timestamp,

 CONSTRAINT PK_Book PRIMARY KEY CLUSTERED

 (

 Book_ID ASC

),

 UNIQUE NONCLUSTERED
 (
 Book_GUID ASC
)
);

GO

The Book_Content column of the dbo.Book table is a varbinary(max) column decorated

with the FILESTREAM attribute. This means that any data that’s stored in the column will auto-

matically be stored on the NTFS file system and managed by SQL Server. A particular requirement

of FILESTREAM-enabled tables is that they must contain a uniqueidentifier ROWGUIDCOL column

C H A P T E R 6 ■ I N D E X I N G B L O B S 135

with a unique constraint declared on it. The dbo.Book table declares the Book_GUID column,

which has a unique constraint declared on it. Once you’ve created a FILESTREAM-enabled table,

you can query and manipulate it using T-SQL just like any other table.

FILESTREAM AND 8.3 NAMES

For backward compatibility with older 16-bit applications, NTFS automatically creates 8.3-format file names.

An 8.3 file name is simply a name with a maximum length of 12 characters: up to 8 characters for the main

file name, a period, and an extension up to 3 characters in length.

The 8.3 file name creation and enumeration process can cause considerable performance degradation

in a directory with thousands of files stored in it. Because of this, if you store a large number of documents

(thousands of files) in a FILESTREAM-enabled varbinary(max) column, you may suffer performance prob-

lems due to 8.3 naming. To avoid or resolve this issue, simply turn off NTFS 8.3 name creation with the

fsutil.exe command-line utility on Windows XP or Windows Server 2003. The fsutil.exe command

looks like this:

fsutil.exe behavior set disable8dot3 1

For more information on disabling NTFS 8.3 naming, see Microsoft Knowledge Base article #121007 at

http://support.microsoft.com.

T-SQL Access

As we discussed, once you’ve enabled FILESTREAM access on your SQL Server instance, you can

query and manipulate your FILESTREAM-enabled columns using standard T-SQL query and DML

statements. Listing 6-11 retrieves the plain text version of Hamlet in the database using a

simple SELECT query, with partial results shown in Figure 6-11.

Listing 6-11. Querying a FILESTREAM-Enabled Column

SELECT

 b.Book_ID,

 CAST

 (

 b.Book_Content AS nvarchar(max)

) AS Book_Content

FROM dbo.Book b

WHERE b.Book_ID = 9;

Figure 6-11. Plain text version of Hamlet queried from FILESTREAM-enabled column

136 C H A P T E R 6 ■ I N D E X I N G B L O B S

You can also issue UPDATE, DELETE, INSERT, and MERGE statements against the FILESTREAM-

enabled column. The sample code in Listing 6-12 inserts Lincoln’s Gettysburg Address into the

dbo.Book table, queries it, and then deletes it to demonstrate running DML actions against

the FILESTREAM-enabled Book_Content column. The results are shown in Figure 6-12.

Listing 6-12. Performing DML Actions Against a FILESTREAM-Enabled Column

INSERT INTO dbo.Book

(

 Book_ID,

 Book_GUID,

 Book_LCID,

 Book_Class_Code,

 Book_Subclass_Code,

 Book_Content,

 Book_File_Ext,

 Book_Image_Name,

 Book_Image

)

VALUES

(

 100,

 NEWID(),

 1033,

 N'E',

 N'E',

 CAST

 (

 N'Four score and seven years ago our fathers brought forth on this

 continent a new nation, conceived in Liberty, and dedicated to the

 proposition that all men are created equal.

 Now we are engaged in a great civil war, testing whether that nation,

 or any nation, so conceived and so dedicated, can long endure. We are

 met on a great battle-field of that war. We have come to dedicate a

 portion of that field, as a final resting place for those who here

 gave their lives that that nation might live. It is altogether

 fitting and proper that we should do this.

 But, in a larger sense, we cannot dedicate—we cannot consecrate—we

 cannot hallow—this ground. The brave men, living and dead, who

 struggled here, have consecrated it, far above our poor power to add

 or detract. The world will little note, nor long remember what we

 say here, but it can never forget what they did here. It is for us

 the living, rather, to be dedicated here to the unfinished work which

 they who fought here have thus far so nobly advanced. It is rather

C H A P T E R 6 ■ I N D E X I N G B L O B S 137

 for us to be here dedicated to the great task remaining before us—

 that from these honored dead we take increased devotion to that cause

 for which they gave the last full measure of devotion—that we here

 highly resolve that these dead shall not have died in vain—that

 this nation, under God, shall have a new birth of freedom—and that

 government of the people, by the people, for the people, shall not

 perish from the earth.' AS varbinary(max)

),

 N'.txt',

 NULL,

 NULL

);

GO

SELECT

 Book_ID,

 CAST(Book_Content AS nvarchar(max)) AS Book_Content

FROM dbo.Book

WHERE Book_ID = 100;

GO

DELETE FROM dbo.Book

WHERE Book_ID = 100;

GO

Figure 6-12. Result of DML action against a FILESTREAM-enabled column

When you delete a row from a table that has a FILESTREAM-enabled column in it, or set the

value of the column to NULL, the underlying file in the file system is deleted. You can also wrap

DML statements that modify FILESTREAM data in an explicit T-SQL transaction. SQL Server

ensures the durability of FILESTREAM BLOBs when the transaction is committed. If you roll back

the transaction, the DML statements that affect the FILESTREAM BLOBs are rolled back as well.

Storage Considerations

Each instance of BLOB data that you store in a FILESTREAM-enabled column is physically stored

as a file in the file system. Figure 6-13 shows the iFTS_Books database FILESTREAM files as viewed

through Windows Explorer.

138 C H A P T E R 6 ■ I N D E X I N G B L O B S

Figure 6-13. FILESTREAM files stored in the file system

Each file shown in Figure 6-13 represents a single FILESTREAM data BLOB stored in the

dbo.Book table. If you’ve exposed your FILESTREAM data for file system access, SQL Server

exposes the data via Windows file sharing. The FILESTREAM-enabled varbinary(max) column

exposes the PathName() method to return the full logical path to the FILESTREAM files. This

feature is useful if you’re using the OpenSqlFilestream API to access FILESTREAM data from

client applications. Listing 6-13 uses the PathName() method to retrieve the full path to the file

containing the book A Connecticut Yankee In King Arthur’s Court, with the result following.

Note that the path returned by your SQL Server when running this sample may differ from the

result shown here.

Listing 6-13. Retrieving Full Path to A Connecticut Yankee in King Arthur’s Court

SELECT

 Book_Content.PathName()

FROM dbo.Book

WHERE Book_ID = 3;

\\SQL2008\MSSQLSERVER\v1\iFTS_Books\dbo\Book\Book_Content\E36D2F0D-➥

F690-4F34-A59D-738E22D2A0DC

Bear in mind that the files stored in the file system by FILESTREAM are not encrypted by SQL

Server, even if you’re using the SQL Server Transparent Data Encryption (TDE) option to

encrypt your entire database. Also, you can’t use the Write() method of the varbinary(max)

data type to perform T-SQL–chunked updates to FILESTREAM data. Setting a FILESTREAM-

enabled value to NULL deletes the underlying file from the file system.

C H A P T E R 6 ■ I N D E X I N G B L O B S 139

OpenSqlFilestream API
As mentioned previously, one of the advantages of SQL Server 2008 FILESTREAM storage is the

ability to stream data using NTFS. In fact, you can use the OpenSqlFilestream API to stream

FILESTREAM data directly from the file system, bypassing SQL Server’s cache and freeing up

server resources for other processes. Although OpenSqlFilestream is a native Win32 API, the

.NET Framework provides a managed wrapper in the form of the

System.Data.SqlTypes.SqlFileStream class.

To demonstrate OpenSqlFilestream functionality on the client side, we created a simple

C# application. Our application executes a full-text search query against the iFTS_Books

sample database, displays a list of matching titles, and allows you to download and open any

of the matching documents through the OpenSqlFilestream API. In this section, we’ll highlight

the code that pertains to retrieving FILESTREAM data from SQL Server.

■Note The full code listing is available in the sample downloads file, available at www.apress.com.

We’ll begin our discussion of client-side FILESTREAM access by demonstrating the sample

application in action. Then we’ll highlight and describe the portions of code that are critical to

using the OpenSqlFilestream API in your own code.

The sample application displays a simple Windows form that allows you to perform a full-

text search against the iFTS_Books database by entering search terms in the Enter Search String

text box and clicking the Search button. All titles that match the search criteria you enter are

displayed in a DataGridView control once the search completes. Figure 6-14 shows the results

of a full-text search for the word fish.

Figure 6-14. Results of search for “fish”

140 C H A P T E R 6 ■ I N D E X I N G B L O B S

You can click on any of the hyperlinks in the Title column of the DataGridView to retrieve

the document from the server via the OpenSqlFilestream API. Once the file is downloaded from

the server and saved to the local file system, it is automatically opened, as shown in Figure 6-15.

Figure 6-15. Downloading and opening a file with the OpenSqlFilestream API

The key FILESTREAM functionality of this application consists of three major operations:

1. Retrieving a pathname to the FILESTREAM file from SQL Server.

2. Getting a SQL Server FILESTREAM transaction context ID for the operation.

3. Using the OpenSqlFilestream API to stream the data back to the client via NTFS.

The first operation is performed by the query that’s sent to SQL Server when you enter a

search term and click Search. The query that is generated is shown in Listing 6-14.

Listing 6-14. Full-Text Search Query Generated by Sample Application

SELECT

 b.Book_ID,

 t.Title,

 b.Book_Content.PathName() AS FilePath,

 b.Book_File_Ext

FROM dbo.Book b

INNER JOIN dbo.Book_Title bt

 ON b.Book_ID = bt.Book_ID

INNER JOIN dbo.Title t

 ON bt.Title_ID = t.Title_ID

WHERE FREETEXT(Book_Content, @SearchString)

 AND t.Is_Primary_Title = 1;

C H A P T E R 6 ■ I N D E X I N G B L O B S 141

The FilePath column uses the PathName() method of the FILESTREAM-enabled b.Book_Content

column to return the logical UNC path to the FILESTREAM files for each matching title returned

by the query. This fulfills the first requirement: retrieving the pathname for the FILESTREAM files.

Once you click on a hyperlink in the DataGridView, the application begins the process of

downloading the file. We designed the GetFile method to perform this function asynchronously

to keep the user interface (UI) responsive. The asynchronous nature of the sample code adds

some additional complexity, but the basic requirements are the same whether your application

is synchronous or asynchronous. The first step is to open a connection to SQL Server, begin a

transaction, and retrieve a FILESTREAM transaction context with the GET_FILESTREAM_TRANSACTION_

CONTEXT function. This function returns a varbinary(max) token that represents the context of

the current FILESTREAM transaction. The varbinary result of this function maps to a .NET byte

array. Listing 6-15 shows the portion of the GetFile method that gets the FILESTREAM trans-

action context.

Listing 6-15. Getting a FILESTREAM Transaction Context

// This method retrieves a file with the OpenSqlFileStream API

private void GetFile

 (

 string filePath,

 string fileType

)

{

 ...

 try

 {

 ...

 // Create and open a new SQL connection. This is required because the

 // FILESTREAM requires a SQL Server transaction context, so we need

 // to create a transaction, which means we need an open connection

 sqlConnection = new SqlConnection

 (

 connectionString

);

 sqlConnection.Open();

 // Create a SQL Server transaction context over the connection

 SqlTransaction sqlTransaction = sqlConnection.BeginTransaction

 (

 "fileStreamTx"

);

142 C H A P T E R 6 ■ I N D E X I N G B L O B S

 // Use the T-SQL GET_FILESTREAM_TRANSACTION_CONTEXT() function

 // to get the transaction context identifier from SQL Server. The

 // transaction context is returned as a varbinary value, which

 // maps to the .NET byte array.

 sqlCommand = new SqlCommand

 (

 "SELECT GET_FILESTREAM_TRANSACTION_CONTEXT();",

 sqlConnection,

 sqlTransaction

);

 byte[] transactionContext = (byte[])sqlCommand.ExecuteScalar();

...

}

After the code retrieves a FILESTREAM transaction context from SQL Server, it uses the

SqlFileStream class, which acts as a managed wrapper around the OpenSqlFileStream API, to

retrieve the FILESTREAM data from SQL Server. The data is retrieved into a .NET byte array buffer

in 4KB increments. As the data is buffered on the client, it’s written back out to a file in the local

file system using a .NET BinaryWriter. Listing 6-16 shows the portion of the GetFile method

that’s concerned with retrieving the actual data via the OpenSqlFilestream API.

Listing 6-16. Retrieving a File with the OpenSqlFilestream API

// This method retrieves a file with the OpenSqlFileStream API

private void GetFile

 (

 string filePath,

 string fileType

)

{

 ...

 // Here we use the managed SqlFileStream wrapper to retrieve the data

 sqlFileStream = new SqlFileStream

 (

 filePath,

 transactionContext,

 FileAccess.Read

);

 // A 4KB buffer to hold the SqlFileStream data as it's retrieved

 byte [] buffer = new byte[4096];

C H A P T E R 6 ■ I N D E X I N G B L O B S 143

 // Progress status variables

 long fileLength = sqlFileStream.Length; // Length of data to retrieve

 long totalBytesRead = 0; // Total bytes retrieved

 int bytesBuffered = 0; // Bytes buffered currently

 // Write the data back out to the local file system in a BinaryWriter

 // as it's retrieved

 binaryWriter = new BinaryWriter

 (

 File.Open(destinationFileName, FileMode.Create)

 // Create/overwrite existing file of same name

);

 // Keep going until the total bytes received is equal to the total

 // bytes expected

 while (totalBytesRead != fileLength)

 {

 // Buffer 4 KB of data at a time, and write to output file as

 // soon as data is received

 bytesBuffered = sqlFileStream.Read(buffer, 0, 4096);

 binaryWriter.Write(buffer, 0, bytesBuffered);

 totalBytesRead += bytesBuffered;

 ...

 }

 ...

 return;

}

Since this method is called asynchronously, there’s some additional required code in the

Callback method. In addition to cleaning up and disposing of SQL Server connectivity-related

objects, the application needs to either commit or roll back the transaction created for the

OpenSqlFilestream API. This is important, since failing to commit or roll back the transaction

can result in server-side resource leaks. This method also calls another helper routine to open

the file that was retrieved to the local file system, as shown in Listing 6-17.

Listing 6-17. Callback Method Performs Cleanup

private void Callback

(

 IAsyncResult iar

)

{

144 C H A P T E R 6 ■ I N D E X I N G B L O B S

 ...

 // Do all the cleanup

 ...

 if (sqlCommand != null)

 {

 if (sqlCommand.Transaction != null)

 sqlCommand.Transaction.Commit();

 sqlCommand.Dispose();

 }

 ...

 // Opens the file on the local file system

 OpenFile(destinationFileName);

}

The rest of the program is support code designed to support asynchronous data retrieval

and provide feedback to the user, in order to keep the UI responsive and improve the overall

user experience.

Summary
In this chapter, we talked about how to full-text index LOB data in SQL Server 2008. In SQL

Server 7.0 and 2000, full-text indexing LOB data presented several challenges that the new

generation of LOB data types helps overcome. The varchar(max), nvarchar(max), varbinary(max),

and xml data types collectively provide significant improvements over their deprecated SQL 2000

counterparts.

We also discussed SQL Server 2008’s powerful new FILESTREAM feature, which leverages

the power of NTFS to efficiently store and stream unstructured BLOB data from the file system.

FILESTREAM functionality can provide a significant performance boost for manipulating and

streaming large BLOB data (greater than 1MB in size). We discussed the performance benefits

and demonstrated FILESTREAM-enabled column usage.

Finally, we demonstrated use of the OpenSqlFilestream API via the .NET SqlFileStream

managed wrapper class. This API helps you improve client application performance and server

efficiency by allowing you to access FILESTREAM data while keeping SQL Server resources free

for use by other users and processes.

In the next chapter, we’ll discuss iFTS stopwords and stoplists, which allow you to specify

that iFTS should ignore specific words during the indexing process.

145

■ ■ ■

C H A P T E R 7

Stoplists

Sick I am of idle words, past all reconciling, . . .

—George du Maurier

All versions of SQL Server that have supported full-text search have included an option to

ignore certain words that are considered unimportant for search purposes. In SQL Server 2005

and earlier, this option was known as the noise word list. Noise word lists were language-specific

text files stored in the file system. In SQL Server 2008, noise word lists have been replaced by

stoplists, which are likewise composed of words, known as stopwords, that are unimportant for

search. Unlike noise word lists, stoplists are stored in the database rather than in the file system.

SQL Server 2008 also provides T-SQL language improvements designed to make stoplists more

flexible than noise word lists and to facilitate and ease their management.

In SQL Server 2005 and prior versions, FTS utilized noise word lists to indicate words that

should be ignored during full-text searches. These noise word lists were stored as plain text

files under SQL Server’s MSSQL\FTDATA directory with names like noiseXXX.txt, where the XXX

indicates a three-letter language code such as ENU for U.S. English and JPN for Japanese. In prior

versions of SQL Server, you were allowed a single noise word list per supported language.

SQL Server 2008 changes this with stoplists. Stoplists are stored in the database instead of

the file system, and you can create as many stoplists as you like for any supported language.

The only limitation is that you can assign only one stoplist to any given full-text index.

The reasons for creating or using a stoplist include the following:

• To prevent your full-text indexes from becoming bloated with unnecessary and

unimportant words

• To improve the quality of full-text search results by eliminating unimportant word

matches from the results

• To increase the efficiency of full-text searches by eliminating searching and stemming

of irrelevant words

In this chapter we’ll discuss the creation, management, and use of stoplists in SQL Server 2008.

System Stoplists
By default, SQL Server 2008 provides system stoplists for most languages that iFTS supports.

Table 7-1 lists the default iFTS-supported languages that don’t have a system stoplist.

146 C H A P T E R 7 ■ S T O P L I S T S

In addition, there are a few languages that have a stoplist installed, but aren’t supported by

default in iFTS. These languages are listed in Table 7-2.

The system stoplists include single-digit numbers, individual letters of the alphabet, and

words that are considered generally uninformative for purposes of full-text search. The English

(LCID 1033) stoplist, for instance, has 154 entries, including words such as you, an, the, and

our. You can view the system stoplists by querying the sys.fulltext_system_stopwords catalog

view. This view returns a column with the stopword entries from the system stoplists and a

language_id column with the LCID of each entry. Listing 7-1 shows how to query the English

language system stoplist, with partial results shown in Figure 7-1.

Listing 7-1. Querying the English Language System Stoplist

SELECT *

FROM sys.fulltext_system_stopwords

WHERE language_id = 1033;

You can specify that a full-text index use the system stoplist by adding the WITH STOPLIST

= SYSTEM clause to your CREATE FULLTEXT INDEX or ALTER FULLTEXT INDEX statements. If you

don’t specify a stoplist when you create a full-text index, SQL Server defaults to the system

stoplist.

■Tip If you don’t want your full-text index to use a stoplist at all, use the WITH STOPLIST = OFF clause

when you create it.

Table 7-1. Supported Languages Without a System Stoplist

LCID Language Name

1042 Korean

1066 Vietnamese

3076 Chinese (Hong Kong SAR, PRC)

4100 Chinese (Singapore)

5124 Chinese (Macau SAR)

Table 7-2. System Stoplists for Languages Not Supported by Default

LCID Language Name

1030 Danish

1045 Polish

1055 Turkish

C H A P T E R 7 ■ S T O P L I S T S 147

Figure 7-1. Viewing the English language system stoplist

Creating Custom Stoplists
You can create and manage custom stoplists in SQL Server 2008, using either the SSMS GUI or

T-SQL statements. When you create a custom stoplist, you can either create an empty stoplist

or base it on a system stoplist. To create a custom stoplist in the SSMS GUI, right-click on

Storage ➤ Full Text Stoplists in the Object Explorer. Then select New Full-Text Stoplist... from

the pop-up context menu, as shown in Figure 7-2.

Figure 7-2. Creating a new full-text stoplist in SSMS

The New Full-Text Stoplist window allows you to name your full-text stoplist, specify a

database principal as the owner of the stoplist, and choose whether your stoplist will initially

be empty or be populated from an existing stoplist. In Figure 7-3, we’ve created a custom

stoplist named NoFish_Stoplist with dbo as the owner. The stoplist will be initially populated

from the system stoplist.

148 C H A P T E R 7 ■ S T O P L I S T S

Figure 7-3. Defining a custom stoplist in the New Full-Text Stoplist window

After you’ve created a custom stoplist, you can add or remove stopwords from the stoplist

by right-clicking the name of the stoplist in the Object Explorer and selecting Properties from

the pop-up context menu, as shown in Figure 7-4.

Figure 7-4. Accessing the Full-Text Stoplist Properties window

The Full-Text Stoplist Properties window allows you to perform the following stoplist

management activities from the Action drop-down list:

• Add stopword allows you to add a stopword to the stoplist for a specific language.

• Delete stopword allows you to delete a stopword from the stoplist for a specific language.

C H A P T E R 7 ■ S T O P L I S T S 149

• Delete all stopwords allows you to delete all stopwords from the stoplist for a specific

language.

• Clear stoplist allows you to delete all stopwords from the stoplist for all languages.

In Figure 7-5, we demonstrate how to add the word fish to the NoFish_Stoplist.

Figure 7-5. Adding “fish” to a stoplist

Once you’ve created a custom stoplist, you can use the SSMS Create Full-Text Index

wizard to create a new full-text index that uses it. You can also assign it to an existing full-text

index by right-clicking on the full-text indexed table and selecting Full-Text index ➤ Properties,

as shown in Figure 7-6.

Figure 7-6. Selecting Full-Text Index Properties

150 C H A P T E R 7 ■ S T O P L I S T S

In the Full-Text Index Properties window, you can assign a custom stoplist to the full-text

index, as shown in Figure 7-7.

Figure 7-7. Assigning a custom stoplist to an existing full-text index

■Caution If your full-text index is set for automatic change tracking, changing the stoplist will kick off a

full population.

Managing Stoplists
SQL Server 2008 provides three catalog views that are useful for retrieving the contents of system

and custom stoplists. The sys.fulltext_stoplists catalog view returns a list of the names and

IDs of all the custom stoplists in the current database. The sys.fulltext_system_stopwords

catalog view returns a list of all the stopwords in the system stoplist, along with their associated

languages. Listing 7-2 retrieves the full list of stopwords in the system stoplist in all languages.

Partial results are shown in Figure 7-8.

Listing 7-2. Retrieving All Stopwords from the System Stoplist

SELECT *

FROM sys.fulltext_system_stopwords;

C H A P T E R 7 ■ S T O P L I S T S 151

Figure 7-8. Stopwords in the system stoplist

The sys.fulltext_stopwords catalog view is the custom stoplist equivalent of the

sys.fulltext_system_stopwords catalog view. The sys.fulltext_stopwords view returns all

stopwords in all custom stoplists, for all languages, in the current database. Let’s create a

simple scalar user-defined function (UDF) that performs a function similar to the OBJECT_ID

system function for custom stoplists. This function will help support retrieval of stoplists by

name and provide by-name capability for stoplist dynamic management functions (DMFs),

which we’ll describe in upcoming chapters. The dbo.Stoplist_ID function, shown in Listing 7-3,

accepts a custom stoplist name and returns the ID for that stoplist.

Listing 7-3. UDF to Return a Stoplist ID by Name

CREATE FUNCTION dbo.Stoplist_ID

(

 @name sysname

)

RETURNS int

AS

BEGIN

 RETURN

 (

 SELECT stoplist_id

 FROM sys.fulltext_stoplists

 WHERE name = @name

);

END;

In Listing 7-4, we use the dbo.Stoplist_ID function with the sys.fulltext_stopwords catalog

view to return the stopwords in the NoFish_Stoplist. Partial results are shown in Figure 7-9. We’ll

use the dbo.Stoplist_ID function again in Chapter 9 to simplify the process of passing a stoplist

ID to full-text search DMFs that accept it as a parameter.

152 C H A P T E R 7 ■ S T O P L I S T S

Listing 7-4. Viewing the Stopwords in the NoFish_Stoplist Custom Stoplist

USE iFTS_Books;

GO

SELECT *

FROM sys.fulltext_stopwords

WHERE stoplist_id = dbo.Stoplist_ID(N'NoFish_Stoplist');

Figure 7-9. Stopwords in a custom stoplist

You might need to script your custom stoplist creation and management actions. SQL

Server provides a variety of T-SQL statements to administer stoplists, including statements to

create, drop, and modify stoplists, as well as additional clauses on the CREATE FULLTEXT INDEX

and ALTER FULLTEXT INDEX statements that let you assign stoplists to new or existing full-text

indexes, respectively. Listing 7-5 uses T-SQL statements to create the NoFish_Stoplist, add the

word fish to it, and assign it to the existing full-text index on the dbo.Book table.

Listing 7-5. Creating a Custom Stoplist and Assigning It to a Full-Text Index

USE iFTS_Books;

GO

CREATE FULLTEXT STOPLIST NoFish_Stoplist

FROM SYSTEM STOPLIST

AUTHORIZATION dbo;

ALTER FULLTEXT STOPLIST NoFish_Stoplist

ADD 'fish' LANGUAGE 1033;

ALTER FULLTEXT INDEX ON dbo.Book

SET STOPLIST = NoFish_Stoplist;

In Listing 7-5, we created a stoplist based on the system stoplist. With the CREATE FULLTEXT

STOPLIST statement, you can also specify that a stoplist be created empty or populated from

another existing stoplist.

C H A P T E R 7 ■ S T O P L I S T S 153

We used the ALTER FULLTEXT STOPLIST statement to add the stopword fish to the stoplist.

The ALTER FULLTEXT STOPLIST statement also allows you to drop individual stopwords, all stop-

words for a specific language, or all stopwords for all languages from your stoplist with its DROP

clause.

Finally, we used the ALTER FULLTEXT INDEX statement’s SET STOPLIST clause to set the

stoplist for the full-text index on the dbo.Book table to NoFish_Stoplist.

■Tip Stopwords are limited to a maximum token length of 64 characters.

Adding individual stopwords to a stoplist can be a tedious process, since you have to

issue a separate ALTER FULLTEXT STOPLIST statement for each stopword. We’ve created the

dbo.Add_Stopwords stored procedure in Listing 7-6 to make it easier to add multiple stopwords

to a custom stoplist with a single statement. Note that this procedure already exists in the

iFTS_Books sample database.

Listing 7-6. The dbo.Add_Stopwords Procedure

USE iFTS_Books;

GO

CREATE PROCEDURE dbo.Add_Stopwords

(

 @stoplist sysname,

 @words nvarchar(max),

 @lcid int = 1033

)

AS

BEGIN

 SET @words = N',' + REPLACE(@words, N';', N'') + N',';

 CREATE TABLE #Stopwords

 (

 Word nvarchar(64)

);

 WITH Numbers (n)

 AS

 (

 SELECT 1

 UNION ALL

 SELECT n + 1

 FROM Numbers

 WHERE n < LEN(@words)

154 C H A P T E R 7 ■ S T O P L I S T S

)

 INSERT INTO #Stopwords (Word)

 SELECT

 SUBSTRING

 (

 @words,

 n + 1,

 CHARINDEX(N',', @words, n + 1) - n - 1

)

 FROM Numbers

 WHERE SUBSTRING(@words, n, 1) = N','

 AND n < LEN(@words)

 OPTION (MAXRECURSION 0);

 DECLARE Stopword_Cursor CURSOR

 FORWARD_ONLY READ_ONLY

 FOR

 SELECT LTRIM(RTRIM(Word)) AS Word

 FROM #Stopwords

 WHERE LEN(Word) > 0;

 OPEN Stopword_Cursor;

 DECLARE @sql nvarchar(400),

 @word nvarchar(64);

 FETCH NEXT

 FROM StopWord_Cursor

 INTO @word;

 WHILE @@FETCH_STATUS = 0

 BEGIN

 IF NOT EXISTS

 (

 SELECT 1

 FROM sys.fulltext_stopwords fsw

 WHERE fsw.stoplist_id = dbo.Stoplist_ID(@stoplist)

 AND fsw.stopword = @word

 AND fsw.language_id = @lcid

)

 BEGIN

 SET @sql = N'ALTER FULLTEXT STOPLIST ' +

 QUOTENAME(@stoplist) +

 N' ADD ' + QUOTENAME(@word, '''') +

 N' LANGUAGE ' + CAST(@lcid AS nvarchar(4)) + ';';

C H A P T E R 7 ■ S T O P L I S T S 155

 EXEC (@sql);

 END;

 FETCH NEXT

 FROM StopWord_Cursor

 INTO @word;

 END;

 CLOSE StopWord_Cursor;

 DEALLOCATE StopWord_Cursor;

END;

GO

The dbo.Add_Stopwords stored procedure accepts three parameters: the name of the

stoplist you want to modify, a comma-delimited list of stopwords to add to the stoplist, and an

LCID code (the default is 1033 [English]). The procedure uses a CTE and the built-in T-SQL

string manipulation functions to split the comma-delimited list into separate words that are

inserted into a temporary table:

 SET @words = N',' + REPLACE(@words, N';', N'') + N',';

 CREATE TABLE #Stopwords

 (

 Word nvarchar(64)

);

 WITH Numbers (n)

 AS

 (

 SELECT 1

 UNION ALL

 SELECT n + 1

 FROM Numbers

 WHERE n < LEN(@words)

)

 INSERT INTO #Stopwords (Word)

 SELECT

 SUBSTRING

 (

 @words,

 n + 1,

 CHARINDEX(N',', @words, n + 1) - n - 1

)

156 C H A P T E R 7 ■ S T O P L I S T S

 FROM Numbers

 WHERE SUBSTRING(@words, n, 1) = N','

 AND n < LEN(@words)

 OPTION (MAXRECURSION 0);

Once all the stopwords are in the temporary table, the procedure uses a cursor to iterate

the rows, and uses the sys.fulltext_stopwords catalog view to see if the stopword already

exists in the custom stoplist. If the word doesn’t already exist, the stored procedure creates a

dynamic SQL ALTER FULLTEXT STOPLIST statement for each word. Each dynamic SQL statement

is executed as it’s created:

 DECLARE Stopword_Cursor CURSOR

 FORWARD_ONLY READ_ONLY

 FOR

 SELECT LTRIM(RTRIM(Word)) AS Word

 FROM #Stopwords

 WHERE LEN(Word) > 0;

 OPEN Stopword_Cursor;

 DECLARE @sql nvarchar(400),

 @word nvarchar(64);

 FETCH NEXT

 FROM StopWord_Cursor

 INTO @word;

 WHILE @@FETCH_STATUS = 0

 BEGIN

 IF NOT EXISTS

 (

 SELECT 1

 FROM sys.fulltext_stopwords fsw

 WHERE fsw.stoplist_id = dbo.Stoplist_ID(@stoplist)

 AND fsw.stopword = @word

 AND fsw.language_id = @lcid

)

 BEGIN

 SET @sql = N'ALTER FULLTEXT STOPLIST ' +

 QUOTENAME(@stoplist) +

 N' ADD ' + QUOTENAME(@word, '''') +

 N' LANGUAGE ' + CAST(@lcid AS nvarchar(4)) + ';';

 EXEC (@sql);

 END;

C H A P T E R 7 ■ S T O P L I S T S 157

 FETCH NEXT

 FROM StopWord_Cursor

 INTO @word;

 END;

 CLOSE StopWord_Cursor;

 DEALLOCATE StopWord_Cursor;

We’ve also included some simple protections against SQL injection in this code, removing

semicolon characters from the comma-delimited list of words and using the QUOTENAME function

to quote both the stoplist name and the stopwords. Listing 7-7 uses the dbo.Add_Stopwords

procedure to add multiple words to the NoFish_Stoplist at once.

Listing 7-7. Using dbo.Add_Stopwords to Add Multiple Stopwords to a Stoplist

EXEC dbo.Add_Stopwords 'NoFish_Stoplist', 'monkey,banana,catfish', 1033;

You can also create simple convenience functions like this one to remove multiple stop-

words in a given language from the stoplist, or even to add and remove multiple stopwords

from multiple languages on the stoplist.

Upgrading Noise Word Lists to Stoplists
When you upgrade a full-text catalog from a SQL Server 2005 database, SQL Server doesn’t

upgrade your old noise word lists automatically. It will copy the noise word lists to the

MSSQL\FTData\FTNoiseThesaurusBak subdirectory under your SQL Server 2008 installation

directory, but that’s about it. If you only used the default system noise word lists in SQL Server

2005, you won’t need to upgrade your old noise word lists, since the SQL Server 2008 system

stoplists have equivalent content.

If you customized your old noise word lists, however, you’ll need to create a custom stoplist

and import the old noise words into the stoplist. SQL Server doesn’t provide a standard utility

to perform this function, but it’s easy enough to create one with the OPENROWSET rowset provider.

Listing 7-8 is a stored procedure we created for the purpose of upgrading old noise word lists.

The dbo.Upgrade_Noisewords procedure creates a custom stoplist and imports your noise word

files into it. The procedure accepts three parameters:

1. @Stoplist: This is the name of the stoplist you want to import your noise words into. If

a stoplist with this name doesn’t exist, it’s created for you automatically.

2. @Path: The full path to the directory containing the old noise word files.

3. @LCID: The LCID of the noise word file you wish to import. If you specify a valid LCID,

such as 1033 for English, the corresponding noise word file (in this case noiseENU.txt) is

imported. If you set this parameter to NULL, all supported noise word files are imported.

158 C H A P T E R 7 ■ S T O P L I S T S

Listing 7-8. Procedure to Upgrade Existing Noise Word Lists to Stoplists

CREATE PROCEDURE dbo.Upgrade_Noisewords

(

 @Stoplist sysname,

 @Path nvarchar(2000),

 @LCID int

)

AS

BEGIN

 -- First create a temp table that maps noise word file three-letter

 -- codes to the proper LCIDs

 CREATE TABLE #ThreeLetterCode

 (

 Code nvarchar(3) NOT NULL PRIMARY KEY,

 LCID int NOT NULL

);

 INSERT INTO #ThreeLetterCode

 (

 Code,

 LCID

)

 VALUES (N'CHS', 2052), (N'CHT', 1028), (N'DAN', 1030), (N'DEU', 1031),

 (N'ENG', 2057), (N'ENU', 1033), (N'ESN', 3082), (N'FRA', 1036),

 (N'ITA', 1040), (N'JPN', 1041), (N'KOR', 1042), (N'NEU', 0),

 (N'NLD', 1043), (N'PLK', 1045), (N'PTB', 1046), (N'PTS', 2070),

 (N'RUS', 1049), (N'SVE', 1053), (N'THA', 1054), (N'TRK', 1055);

 -- Next see if a stoplist with the specified name exists.

 -- If not, create it with dynamic SQL

 DECLARE @Sql nvarchar(2000);

 IF NOT EXISTS

 (

 SELECT 1

 FROM sys.fulltext_stoplists

 WHERE name = @Stoplist

)

 BEGIN

 SET @Sql = N'CREATE FULLTEXT STOPLIST ' +

 QUOTENAME(@Stoplist) + N';';

C H A P T E R 7 ■ S T O P L I S T S 159

 EXEC (@sql);

 END;

 -- Declare a cursor that iterates the possible three-letter codes we

 -- previously stored in the temp table. The inner join to the

 -- sys.fulltext_languages catalog view ensures we only try to import

 -- noise word lists for languages supported on this instance

 DECLARE File_Cursor CURSOR

 FORWARD_ONLY READ_ONLY

 FOR

 SELECT

 tlc.Code,

 tlc.LCID

 FROM #ThreeLetterCode tlc

 INNER JOIN sys.fulltext_languages fl

 ON tlc.LCID = fl.LCID

 WHERE tlc.LCID = COALESCE(@LCID, tlc.LCID);

 -- Open the cursor and iterate the three-letter codes, importing the

 -- files and adding them to the stoplist

 OPEN File_Cursor;

 DECLARE @Code nvarchar(3),

 @Language int;

 FETCH NEXT

 FROM File_Cursor

 INTO

 @Code,

 @Language;

 WHILE @@FETCH_STATUS = 0

 BEGIN

 -- The file is initially imported as a binary file since some of the

 -- files can be Unicode while others might not

 DECLARE @BinFile varbinary(max),

 @Words nvarchar(max);

 -- OPENROWSET is used to import the file as a BLOB

 SELECT @Sql = N'SELECT @BinFile = BulkColumn ' +

 N'FROM OPENROWSET(BULK ' +

160 C H A P T E R 7 ■ S T O P L I S T S

 QUOTENAME(@Path + N'\noise' + @Code + N'.txt', '''') +

 N', SINGLE_BLOB) AS x;';

 EXEC dbo.sp_executesql @Sql,

 N'@BinFile varbinary(max) OUTPUT',

 @BinFile = @BinFile OUTPUT;

 -- If the BLOB has the byte order mark (0xFFFE) at the start, it will

 -- be cast to nvarchar(max), otherwise varchar(max). The varchar(max)

 -- is then implicitly cast to nvarchar(max)

 SET @Words = CASE SUBSTRING(@BinFile, 1, 2)

 WHEN 0xFFFE THEN CAST(@BinFile AS nvarchar(max))

 ELSE CAST(@BinFile AS varchar(max))

 END;

 -- This series of nested REPLACE functions removes carriage returns,

 -- line feeds, extra spaces, and the "?about" that occurs in some files.

 -- It also replaces spaces with commas to create a comma-separated list.

 SELECT @Words = REPLACE

 (

 REPLACE

 (

 REPLACE

 (

 REPLACE

 (

 REPLACE(@Words, 0x0a, N' '), 0x0d, N' '

), N' ', N' '

), N' ', N','

), N'?about,', N''

);

 -- The dbo.Add_Stopwords procedure adds the comma-separated list of

 -- stopwords to the stoplist

 EXEC dbo.Add_Stopwords @Stoplist,

 @Words,

 @Language;

 FETCH NEXT

 FROM File_Cursor

 INTO

 @Code,

 @Language;

C H A P T E R 7 ■ S T O P L I S T S 161

 END;

 CLOSE File_Cursor;

 DEALLOCATE File_Cursor;

END;

GO

The procedure identifies which files need to be loaded and uses a cursor to iterate the list.

It then loads each noise word file from a predetermined list as a varbinary(max) BLOB via the

OPENROWSET function.

If the BLOB that gets loaded in starts with the Unicode byte order mark (BOM), 0xFFFE, it’s

converted to an nvarchar(max). If the file isn’t Unicode, it’s first converted to varchar(max) and

subsequently converted to nvarchar(max) via an implicit conversion.

Each file is then “parsed” with a series of nested REPLACE function calls. The REPLACE func-

tions eliminate carriage returns and line feeds, double spaces, and the “?isabout” entry that

occurs in some noise word files. The procedure then converts all single spaces to commas,

creating a comma-delimited list of noise words.

After each file is converted to a comma-delimited list, the procedure calls the dbo.Add_

StopWords procedure to add the noise words to your stoplist. Listing 7-9 calls dbo.Upgrade_

Noisewords to import a SQL Server 2005 English noise word file to a SQL Server 2008 stoplist

named English_Stopwords.

Listing 7-9. Upgrading an English Noise Word File to a Stoplist

EXEC dbo.Upgrade_Noisewords N'English_Stopwords',

 N'C:\iFTS_Books\NoiseWords',

 1033;

Stoplist Behavior
SQL Server iFTS stoplists behave in some interesting and noteworthy ways in relation to your

full-text indexes and queries. In this section, we’ll discuss how stoplists and the stopwords they

contain are used to shrink the overall size of the full-text index and make query processing

more efficient.

Stoplists and Indexing

When you create or populate a full-text index, SQL Server uses the stoplist associated with the

index to ignore instances of the stopwords during full-text indexing. Basically, iFTS won’t index

any stopwords it encounters during the indexing process. SQL Server will only ignore exact

matches of the stopwords, however. Going back to our example from earlier in the chapter,

we added the word fish to a custom stoplist named NoFish_Stoplist. After assigning the

NoFish_Stoplist custom stoplist to the dbo.Book table, you can use the sys.dm_fts_index_

keywords_by_document DMF to verify that fish wasn’t included in the full-text index. (We’ll discuss

this and other full-text DMFs in detail in Chapter 9.) Listing 7-10 retrieves the full-text-indexed

words that begin with the first four characters fish, with partial results shown in Figure 7-10.

162 C H A P T E R 7 ■ S T O P L I S T S

■Note As we mentioned previously, when you change the stoplist assigned to a full-text index that has

automatic change tracking turned on, SQL Server kicks off a full population. There may be a delay between

when you change the stoplist assignment and when SQL Server completes the full population.

Listing 7-10. Retrieving Words from the Full-Text Index with the Prefix “fish”

SELECT *

FROM sys.dm_fts_index_keywords_by_document

(

 DB_ID(),

 OBJECT_ID('dbo.Book')

)

WHERE display_term LIKE N'fish%';

Figure 7-10. Viewing indexed words with the prefix “fish” after adding a custom stoplist

After applying the custom stoplist to the dbo.Book table, the word fish no longer appears in

the full-text index; however, note that inflectional forms of the word fish (such as fishes, fished,

and fishing) are still indexed by iFTS.

Stoplists and Queries

When you define a stoplist and assign it to your full-text index as we’ve done in this chapter,

queries for exact words (such as CONTAINS predicate queries without the FORMSOF predicate)

against the full-text index will result in no matches being found. You can see this by executing

a simple iFTS CONTAINS query, as shown in Listing 7-11. The query returns no matching rows,

since the custom stoplist containing the word fish is assigned to the full-text index on the

dbo.Book table.

Listing 7-11. Simple CONTAINS Query for “fish”

SELECT Book_Id

FROM dbo.Book

WHERE CONTAINS (*, '"fish"');

C H A P T E R 7 ■ S T O P L I S T S 163

If, however, you perform a generational term search for the word fish, SQL Server will

match inflectional terms of the word. Listing 7-12 uses FREETEXT to perform a generational term

search and returns the IDs of books that contain inflectional forms of the word fish. Partial

results are shown in Figure 7-11.

Listing 7-12. Searching for Inflectional Forms of “fish”

SELECT Book_ID

FROM dbo.Book

WHERE FREETEXT(*, 'fish');

Figure 7-11. Results of generational term query for the word fish, with stoplist

One of the interesting aspects of the interaction between the stoplist and the generational

search terms is that stopwords aren’t stripped from your full-text search predicates. Instead,

your full-text search terms are first stemmed to find thesaurus and inflectional forms. Once the

stemming is complete, the exact match form of the stopword is marked for exclusion from the

search. Listing 7-13 uses the sys.dm_fts_parser DMF to show the inflectional forms that SQL

Server generates against NoFish_Stoplist for this generational term query. The results are

shown in Figure 7-12.

■Tip We’ll discuss the sys.dm_fts_parser DMF in detail in Chapter 9. This useful function provides

some insight into how SQL Server stems words during a search. It also provides information about which

words iFTS will try to match and which it will ignore.

Listing 7-13. Viewing Inflectional Forms of the Word Fish Against the Stoplist

SELECT *

FROM sys.dm_fts_parser

(

 N'FORMSOF(INFLECTIONAL, fish)',

164 C H A P T E R 7 ■ S T O P L I S T S

 1033,

 dbo.Stoplist_ID(N'NoFish_Stoplist'),

 1

);

Figure 7-12. Inflectional forms generated by the word “fish,” against a stoplist

Note that, despite the word fish being in the NoFish_Stoplist custom stoplist, the stemmer

still generates the inflectional forms fishes, fished, and fishing. Note also in the special_term

column that Exact Match is indicated for each of these words. The word fish, however, is

marked as a Noise Word, indicating that it won’t be matched during the search.

■Note We’re not sure why the iFTS team chose to use the term Noise Word in this DMF to describe what

they now call stopwords. This particular DMF is subject to change, however, and perhaps this disconnect will

be addressed in a future release.

Summary
In prior versions of SQL Server, noise word files gave us a means to exclude certain words from

full-text indexes and subsequent full-text searches. In SQL Server 2008, these noise word files,

formerly stored in the file system, have been replaced with stoplists that are stored in the data-

base. You can create and manage custom stoplists using standard T-SQL CREATE, ALTER, and

DROP FULLTEXT STOPLIST DDL statements. Stoplists provide several benefits, including less

bloated full-text indexes, more efficient full-text search queries, and the ability to specifically

exclude words that you deem unnecessary for your full-text searches.

In this chapter, we talked about how to create and manage stoplists, and how to upgrade

your existing noise word files to SQL Server 2008 stoplists. We provided procedures to simplify

the tasks of adding multiple stopwords to your stoplists and upgrading your existing noise

word lists. We also discussed the effects of stoplists and stopwords on your full-text indexes

and full-text search queries.

In the next chapter, we’ll continue the discussion of iFTS support for generational terms as

we introduce full-text thesauruses.

165

■ ■ ■

C H A P T E R 8

Thesauruses

What’s another word for thesaurus?

—Steven Wright

SQL Server provides powerful full-text search thesauruses that can be used for customizing

searches for relevant text. Using thesauruses, you can define two types of custom pattern-

based rules:

• Expansions that can automatically expand the scope of your searches to include addi-

tional relevant search terms.

• Replacements that substitute your search terms with other specified terms.

Thesaurus files are language-specific and can be modified to suit your specific needs. In

this chapter, we’ll discuss thesaurus management, options, and improvements to thesaurus

functionality in SQL Server 2008.

Thesaurus Files
SQL Server uses language-specific XML thesaurus files stored in the file system. These files are

stored in the MSSQL\FTData subdirectory under the SQL Server installation directory. Each

thesaurus is named using the format ts<language>.xml, where <language> is a three-character

language code or global for the global thesaurus. Figure 8-1 shows a partial listing of the

contents of the MSSQL\FTData directory.

THESAURUSES IN THE DATABASE

One of the ultimate goals of the iFTS team is to move thesaurus files out of the file system and into the data-

base, in much the same way that noise words have been moved into the database in the form of stoplists.

Unfortunately for us, time constraints kept the iFTS team from incorporating this into SQL Server 2008. We can

expect thesaurus files to be incorporated completely into the database in a future release.

166 C H A P T E R 8 ■ T H E S A U R U S E S

Figure 8-1. XML thesaurus files in MSSQL\FTData subdirectory

The thesaurus files for SQL Server 2008 follow the format shown in Listing 8-1.

Listing 8-1. Sample Thesaurus File

<XML ID = "Microsoft Search Thesaurus">

 <thesaurus xmlns = "x-schema:tsSchema.xml">

 <diacritics_sensitive>0</diacritics_sensitive>

 <expansion>

 _{aqua}

 _{azure}

 _{aquamarine}

 _{indigo}

 _{teal}

 _{cobalt}

 _{navy}

 _{blue}

 </expansion>

 <replacement>

 <pat>fl</pat>

 <pat>fla</pat>

 <pat>flor</pat>

 _{florida}

 </replacement>

C H A P T E R 8 ■ T H E S A U R U S E S 167

 <expansion>

 _{skirmish}

 _{scuffle}

 _{battle}

 _{fight}

 </replacement>

 </thesaurus>

</XML>

The <diacritics_sensitive> element accepts a value of 0 or 1 indicating whether the words

in the thesaurus should be sensitive to accent marks and other diacritical marks. A value of 0

makes the thesaurus insensitive to diacritical marks, while a value of 1 turns diacritic sensitivity

on. When diacritic sensitivity is turned off, the thesaurus treats words such as resume and

resumé as equivalent. It will also treat the same word with other accent marks as equivalent, so

that if you accented the first é in résumé it would be treated as equivalent to both resumé and

resume.

The <expansion> element defines an expansion set, which will expand your search to

include all of the terms in the expansion set when any of the terms is included in your search.

The <replacement> element defines a replacement set that automatically replaces any matching

terms in your query with a single substitution term. The individual terms defined in the thesaurus

are limited to 512 characters each (which should be more than enough in most situations).

We’ll discuss both expansion sets and replacement sets in greater detail later in the chapter.

Editing and Loading Thesaurus Files

The default thesaurus files that are installed with SQL Server 2008 show the structure of the file

with a few simple <expansion> and <replacement> elements, but the contents of the sample

files are commented out with the XML comment node delimiters (<!-- and -->). Because the

contents are commented out, the default thesaurus files have no effect on your full-text search

queries. The default contents of the English language (LCID 1033) thesaurus file, tsenu.xml, are

shown in Listing 8-2.

■Tip If you decide to edit the sample thesaurus files, be sure to remove the XML <!-- and --> comment

node delimiters or your changes will have no effect.

Listing 8-2. Default tsenu.xml Thesaurus File

<XML ID = "Microsoft Search Thesaurus">

 <!--

 Commented out (SQL Server 2008)

 <thesaurus xmlns = "x-schema:tsSchema.xml">

 <diacritics_sensitive>0</diacritics_sensitive>

 <expansion>

168 C H A P T E R 8 ■ T H E S A U R U S E S

 _{Internet Explorer}

 _{IE}

 _{IE5}

 </expansion>

 <replacement>

 <pat>NT5</pat>

 <pat>W2K</pat>

 _{Windows 2000}

 </replacement>

 <expansion>

 _{run}

 _{jog}

 </expansion>

 </thesaurus>

 -->

</XML>

The root <XML> element has an ID attribute that is set to Microsoft Search Thesaurus. The ID

attribute is not mandatory, and doesn’t appear to affect the functionality of the thesaurus files

if you change it to another value or remove it altogether.

■Note The <XML> root element is poorly named. According to the World Wide Web Consortium (W3C) XML

recommendation, no elements should have a name that begins with the letters “XML” (in that order, in any

upper- or lowercased combination). There are no plans to make the thesaurus files compliant with this

requirement of the standard at this time.

The <thesaurus> element sits below the <XML> root element and acts as a container for the

diacritic sensitivity setting and the expansion and replacement sets. The <thesaurus> element

must have its XML namespace set to x-schema:tsSchema.xml. This is mandatory—not setting

the XML namespace for this element, or setting it to an incorrect URI, will result in your

thesaurus file being ignored and having no effect on your queries.

You can edit XML thesaurus files using a simple text editor such as Notepad or a more

specialized XML editor such as Altova XMLSpy.

■Caution The authors ran into problems saving thesaurus files with an older version of the TextPad editor.

Specifically, TextPad didn’t save the Unicode byte order mark at the beginning of the file, which caused prob-

lems at load time. This issue appears to be resolved in newer versions of TextPad.

C H A P T E R 8 ■ T H E S A U R U S E S 169

When you save your thesaurus files to the MSSQL\FTData subdirectory, make sure you save

it with a name following the ts<language>.xml convention. Also, the thesaurus files must be

saved in Unicode format with the byte order mark. The byte order mark should be automati-

cally added to the file by your editor when you save it in Unicode format.

■Tip During the upgrade process, existing thesaurus files are copied to the MSSQL\FTData\

FTNoiseThesaurusBak subdirectory of your SQL Server installation directory. You can simply copy

your existing SQL Server 2005 thesaurus files from this subdirectory to the MSSQL\FTData subdirectory

to start using them with SQL Server 2008.

After you’ve edited and saved your custom thesaurus files, you can reload them using the

new system stored procedure sys.sp_fulltext_load_thesaurus_file. This procedure accepts

up to two parameters:

• A mandatory int LCID parameter indicating which file should be loaded. The LCID is

mapped to a language-specific thesaurus file; for instance, LCID 1033 is mapped to the

English language thesaurus file tsenu.xml.

• An optional bit parameter indicating whether the thesaurus file should be loaded if it

has been previously loaded. If you set this parameter to 0 (the default), the thesaurus file

is reloaded whether it was previously loaded or not. A value of 1 will cause the thesaurus

file to be loaded only if it wasn’t previously loaded. Note that this second optional

parameter is currently undocumented in BOL, but it is detected by SSMS Intellisense.

This new procedure is very useful, particularly when modifying and testing thesaurus files.

In prior versions of SQL Server, a change to a thesaurus file required the full-text search service

to be restarted in order to pick up the changes. Debugging a thesaurus file was a time-consuming

process. The new sys.sp_fulltext_load_thesaurus_file procedure eliminates the need to

restart any services. As soon as you execute this procedure, the file is loaded and SQL Server

automatically picks up the changes. Listing 8-3 loads the English language thesaurus file into

SQL Server. Note that only members of the serveradmin fixed server role or the system admin-

istrator can execute this procedure.

Listing 8-3. Loading the English Language Thesaurus File

EXEC sys.sp_fulltext_load_thesaurus_file 1033;

You can modify which XML file is used by changing the entry in HKEY_LOCAL_MACHINE\

SOFTWARE\Microsoft\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSearch\

Language\XXX, where XXX is your language.

170 C H A P T E R 8 ■ T H E S A U R U S E S

THESAURUS CACHING

When SQL Server 2008 loads thesaurus files, it caches them in internal tables in the tempdb database. SQL

Server uses lazy caching, meaning that the query engine checks to see whether the correct thesaurus has

been loaded the first time it’s needed, at query time. If the correct thesaurus isn’t loaded yet, SQL Server auto-

matically loads it. You can override this behavior in SQL Server 2008 by using the sys.sp_fulltext_

load_thesaurus_file procedure to load your thesaurus files on demand.

One notable change from SQL Server 2005 thesaurus files is that the former tsneu.xml file

(neutral language thesaurus file) has been renamed tsglobal.xml (global thesaurus file). To

load the global thesaurus file, specify LCID 0 when you execute the sys.sp_fulltext_load_

thesaurus_file procedure. We’ll discuss how the global thesaurus file acts in concert with the

language-specific local thesaurus files later in this chapter.

Unfortunately, SQL Server 2008 doesn’t offer much in the way of error reporting when

there’s a problem with your thesaurus files. It will report errors in the following three

situations:

• If the thesaurus file isn’t a well-formed XML document, you’ll receive an error message

indicating that the file can’t be loaded.

• If the thesaurus file for the LCID you specify doesn’t exist, you’ll likewise receive an error
message indicating that the file can’t be loaded.

• If the thesaurus file duplicates one or more phrases in expansion or replacement sections,

you’ll receive an informational warning that the duplicate rule “causes ambiguity” and

“hence the phrase will be ignored.”

When ambiguous rules are encountered, expansion rules take precedence over replace-

ment rules. Consider the ambiguous thesaurus in Listing 8-4, which contains multiple rules for

the term fl.

Listing 8-4. Ambiguous Thesaurus File

<XML ID="Microsoft Search Thesaurus">

 <thesaurus xmlns="x-schema:tsSchema.xml">

 <diacritics_sensitive>0</diacritics_sensitive>

 <replacement>

 <pat>fl</pat>

 <pat>fla</pat>

 _{florida}

 </replacement>

 <expansion>

 _{fl}

 _{floor}

 </expansion>

 <expansion>

C H A P T E R 8 ■ T H E S A U R U S E S 171

 _{fl}

 _{fluid}

 </expansion>

 </thesaurus>

</XML>

The thesaurus in Listing 8-4 contains one replacement rule and two expansion rules for

the term fl. The expansion rules take precedence over the replacement rule, so the replace-

ment rule is ignored. The two expansion rules can be indicated using the form E(fl, floor) and

E(fl, fluid). In this format, the E indicates that the rule is an expansion rule. The expansion

terms are shown as a list in parentheses. Any of the terms will be expanded to all of the terms in

the list. Of the two expansion rules, the one that’s defined first, E(fl, floor), is used; the other rule

is ignored. When you try to load an ambiguous thesaurus file like the one shown in Listing 8-4,

SQL Server returns only a generic warning message like the following; it’s up to you to manually

locate and fix the offending rules:

Informational: Ignoring duplicate thesaurus rule 'fl' while loading thesaurus

file for LCID 0. A duplicate thesaurus phrase was encountered in either the

<sub> section of an expansion rule or the <pat> section of a replacement rule.

This causes an ambiguity and hence this phrase will be ignored.

In almost every other instance of problems with your thesaurus files, including incorrect

element names or failure to use the correct Uniform Resource Indicator (URI) for the <thesaurus>

element namespace, attempting to load and use your thesaurus file will fail silently. We’ve

created the dbo.Validate_Thesaurus_File procedure to load and validate your thesaurus files

against rules similar to the ones SQL Server 2008 applies when loading your thesaurus files.

Simply pass this procedure the full pathname to a thesaurus file and it will validate the thesaurus

file for you. The full source listing for the dbo.Validate_Thesaurus_File procedure is available

in the sample code download for this book. Because the listing is lengthy, we’re not going to

reproduce it in its entirety. Instead we’ll discuss the types of errors it catches and show an

example of usage here.

■Tip Complete code listings for this procedure, and other code found throughout this book, is available at

www.apress.com in the Downloads section.

One of the goals of the dbo.Validate_Thesaurus_File procedure was to give complete

information about the types of errors and problems in thesaurus files that cause them not to

load/work properly. The dbo.Validate_Thesaurus_File procedure can capture the following

types of errors:

• File format (non-Unicode with byte order mark) errors

• Well-formedness errors (for example, multiple root elements)

• Thesaurus files with no <XML> root element

172 C H A P T E R 8 ■ T H E S A U R U S E S

• Improper XML namespace on <thesaurus> element

• Invalid values in <diacritics_sensitive> element

• Ambiguous expansion and replacement rules

The procedure also gives you useful warnings about other thesaurus file content that

might load with no errors, but could cause unexpected results. In addition, the procedure

attempts to tell you where it encounters errors in the XML file by numbering your elements (in

XML document order). Listing 8-5 demonstrates a call to dbo.Validate_Thesaurus_File to vali-

date the tsglobal.xml global thesaurus file.

Listing 8-5. Validating the tsglobal.xml Global Thesaurus File

EXEC dbo.Validate_Thesaurus_File N'C:\Program Files\Microsoft SQL➥

 Server\MSSQL10.MSSQLSERVER\MSSQL\FTData\tsglobal.xml';

The following are the results, after we introduced some problems into our tsglobal.xml

file:

WARNING: The <diacritics_sensitive> element #1 under <thesaurus> element #1

is defined under the namespace URI "wrong-schema" but the namespace URI needs

to be "x-schema:tsSchema.xml". The thesaurus file should load properly, but

this element may be ignored resulting in unexpected query results.

WARNING: Ambiguous term found: [Term = "fl": <thesaurus> #1, <expansion>

#1]. Your thesaurus file should load properly, but some ambiguous rules will

be ignored.

WARNING: Ambiguous term found: [Term = "fl": <thesaurus> #1, <expansion>

#4]. Your thesaurus file should load properly, but some ambiguous rules will

be ignored.

WARNING: Ambiguous term found: [Term = "fl": <thesaurus> #1, <replacement>

#1]. Your thesaurus file should load properly, but some ambiguous rules will

be ignored.

WARNING: Ambiguous term found: [Term = "fla": <thesaurus> #1, <expansion>

#3]. Your thesaurus file should load properly, but some ambiguous rules will

be ignored.

WARNING: Ambiguous term found: [Term = "fla": <thesaurus> #1, <replacement>

#2]. Your thesaurus file should load properly, but some ambiguous rules will

be ignored.

Total Error Count = 0

Total Warning Count = 6

We hope this procedure will come in handy for troubleshooting iFTS thesaurus file problems.

C H A P T E R 8 ■ T H E S A U R U S E S 173

■Tip Because SQL Server 2008 uses the xml data type to load and parse your thesaurus file content, it will

throw an exception if your XML thesaurus file is not well-formed. Mismatched and improperly nested tags, for

instance, will raise an exception.

Expansion Sets

An expansion set in the thesaurus file is defined by <sub> tags contained within an <expansion>

tag. If any of the words contained in the <sub> tags are encountered, your search is automati-

cally expanded to include all other words defined in the expansion set. You can include as

many expansion sets as you want in a SQL Server 2008 XML thesaurus file, but each expansion

set word is limited to 512 Unicode characters. Through expansion sets, you gain the ability to

search for multiple synonyms of any given search term, as shown in Figure 8-2.

Figure 8-2. Logical view of expansion set operation

In the previous example in Listing 8-1, we included an expansion set with several

synonyms for the word blue:

 <expansion>

 _{aqua}

 _{azure}

 _{aquamarine}

 _{indigo}

 _{teal}

 _{cobalt}

 _{navy}

 _{blue}

 </expansion>

With this expansion set, performing a search for any of the synonyms (the word aqua, for

instance) results in your search being automatically broadened to include all of the words in

the expansion set. Consider the CONTAINS query in Listing 8-6.

Lorem ipsum dolor sit amet,

consectetur adipisicing elit, sed

do eiusmod tempor incididunt ut

labore et dolore magna aliqua. Ut

enim ad minim veniam, quis

nostrud exercitation ullamco

laboris nisi ut aliquip ex ea

commodo consequat. Duis aute

irure dolor in reprehenderit in

m

e

u

re

m

ru

ri

m

m

e

u

e

a

u

is

m

d

m

c

us

e

a

u

s

mo

d

c

s

ad

d

s

o

o

i

ct

sm

e

d

d

n

od

o

p

te

m

et

d

n

d

ol

p

e

m

t

e

n

d

lo

ps

et

m

t

m

e

i

o

o

s

t

o

d

m

ex

s

o

or

u

u

o

d

m

x

s

o

r

u

u

d

do

mi

xe

i

c

um

r

d

o

in

e

c

i

m

r

ol

n

er

u

co

n

m

a

t

lo

ni

r

u

o

n

m

a

te

o

im

c

ut

on

n

ad

e

o

m

c

t

n

r

d

d

e

r

m

it

a

ns

r

d

d

m

re

m

t

a

s

e

o

i

m

e

ta

a

se

e

o

p

m

e

v

a

l

e

p

ol

p

p

m

v

at

i

eq

p

lo

pi

p

m

ve

ti

q

q

pr

o

is

po

m

e

io

q

q

re

or

s

o

m

en

o

u

u

e

r s

sic

or i

ag

nia

on

uip

uat

ehe

aqua

Expansion Set

aqua

Search Term

Full-Text Index

azure

aquamarine

indigo

teal

cobalt

navy

blue

174 C H A P T E R 8 ■ T H E S A U R U S E S

Listing 8-6. CONTAINS Query with Thesaurus Expansion

SELECT Book_ID

FROM dbo.Book

WHERE CONTAINS

(

 Book_Content,

 N'FORMSOF(THESAURUS, aqua)'

);

With the expansion set we defined earlier in this section, this query is internally expanded

to the equivalent query in Listing 8-7.

Listing 8-7. CONTAINS Query After Thesaurus Expansion

SELECT Book_ID

FROM dbo.Book

WHERE CONTAINS

(

 Book_Content,

 N'"aqua" OR "azure" OR "aquamarine" OR "indigo" OR "teal" OR "cobalt"➥

 "navy" OR "blue"'

);

This automatic expansion can be verified with the new sys.dm_fts_parser DMF, using a

query like the one in Listing 8-8. The results are shown in Figure 8-3.

Listing 8-8. Verifying Thesaurus Expansions with sys.dm_fts_parser

SELECT *

FROM sys.dm_fts_parser

(

 N'FORMSOF(THESAURUS, aqua)',

 1033,

 null,

 0

);

Figure 8-3. Viewing the thesaurus expansions for the search term aqua

C H A P T E R 8 ■ T H E S A U R U S E S 175

Replacement Sets
Replacement sets provide an alternative to expansion sets. Like expansion sets, replacement

sets are defined using XML in the thesaurus files. Replacement sets also have the same

512-character limitation on terms. You can define replacement sets with <pat> and <sub> tags

contained within a <replacement> tag. Though they’re defined in the same thesaurus files,

replacement sets behave differently from expansion sets. While expansion sets automatically

expand your search to include every search term in the set, replacement sets simply replace

your search term with another search term per your definition. Where expansion sets are

commonly used to define synonyms for words, replacement sets are useful for redefining

acronyms and abbreviations in your searches. Replacement sets operate on search terms in the

manner shown in Figure 8-4.

Figure 8-4. Logical view of replacement set operation

In Listing 8-1, we created the replacement set shown in Figure 8-4, replacing various

search term abbreviations for Florida with the word florida, as shown:

 <replacement>

 <pat>fl</pat>

 <pat>fla</pat>

 <pat>flor</pat>

 _{florida}

 </replacement>

With this replacement set, performing a search for any of the defined abbreviations results

in a search for the word florida. Note that the original search term is completely replaced in the

search, so that the original search term is not included in the final search. Listing 8-9 shows a

simple CONTAINS query with thesaurus replacement.

Listing 8-9. CONTAINS Query with Thesaurus Replacement

SELECT Book_ID

FROM dbo.Book

WHERE CONTAINS

(

 Book_Content,

 N'FORMSOF(THESAURUS, fl)'

);

Lorem ipsum dolor sit amet,

consectetur adipisicing elit, sed

do eiusmod tempor incididunt ut

labore et dolore magna aliqua. Ut

enim ad minim veniam, quis

nostrud exercitation ullamco

laboris nisi ut aliquip ex ea

commodo consequat. Duis aute

irure dolor in reprehenderit in

m

e

iu

re

m

ru

ri

m

m

e

u

e

a

u

is

m

d

m

c

us

e

a

u

s

mo

d

c

s

e

ad

d

s

o

o

i

ct

sm

e

d

d

n

od

o

p

te

m

et

d

n

d

ol

p

e

m

t

e

n

d

lo

ps

et

m

t

m

e

i

o

o

s

t

o

d

m

ex

s

o

or

u

u

o

d

m

x

s

o

r

u

u

d

do

mi

xe

i

c

um

r

d

o

in

e

c

i

m

r

ol

n

er

u

co

n

m

a

t

lo

ni

r

u

o

n

m

a

te

o

im

c

ut

on

n

ad

e

o

m

c

t

n

r

d

d

e

r

m

it

a

ns

r

d

d

m

re

m

t

a

s

e

o

i

m

e

ta

a

se

e

o

p

m

e

v

a

l

e

p

ol

p

p

m

v

at

i

eq

p

o

pi

p

m

ve

ti

q

q

pr

o

is

po

m

e

io

q

q

re

or

s

o

m

en

o

u

u

e

r s

sic

or i

ag

nia

on

uip

uat

ehe

Replacement

Patterns

fl

Search Term

florida

Sub Term

Replacement Set Full-Text Index

fl

fla

flor

176 C H A P T E R 8 ■ T H E S A U R U S E S

The replacement set we defined earlier in this section replaces the search term fl with the

replacement term florida, resulting in SQL Server treating the query as the equivalent shown in

Listing 8-10. Note that the query in Listing 8-10 is simply a representative query; it shows how

SQL Server evaluates the thesaurus-replacement query in Listing 8-9 with the previously

defined replacement rules in place.

Listing 8-10. CONTAINS Query After Thesaurus Replacement

SELECT Book_ID

FROM dbo.Book

WHERE CONTAINS

(

 Book_Content,

 N'"florida"'

);

As with expansion sets, you can verify replacement set activity with the sys.dm_fts_parser

DMF, as shown in Listing 8-11. The results are shown in Figure 8-5.

Listing 8-11. Verifying Thesaurus Replacements with sys.dm_fts_parser

SELECT *

FROM sys.dm_fts_parser

(

 N'FORMSOF(THESAURUS, fl)',

 1033,

 NULL,

 0

);

Figure 8-5. Viewing thesaurus replacement for the search term “fl”

Global and Local Thesauruses
SQL Server 2005 had the neutral language thesaurus (tsneu.xml), which was used when you

specified an LCID of 0. SQL Server 2008 replaces the neutral language thesaurus with the global

thesaurus (tsglobal.xml). Like the neutral language thesaurus, the global thesaurus is used

when you specify an LCID of 0. Unlike the neutral language thesaurus, the global thesaurus

now works in tandem with local language thesauruses no matter which language you specify in

C H A P T E R 8 ■ T H E S A U R U S E S 177

your query. When you specify a full-text search with thesaurus expansion, the global thesaurus

is consulted in addition to the local language thesaurus, regardless of which language you indi-

cate. As an example, consider the following replacement rule as a global thesaurus entry:

 <replacement>

 <pat>ca</pat>

 _{california}

 </replacement>

This replacement rule in the global thesaurus can be indicated using the form: R(ca �

california). In this format. the R indicates a replacement rule, and the term to the right of the

arrow in parentheses replace the term (or terms) to the left of the arrow. This particular rule

causes the search term ca to be replaced with the term california. When added to the global

thesaurus, this replacement rule is applied no matter what language you’re using to search. In

addition to the global thesaurus, the local thesaurus for the specified search language is also

consulted by iFTS. If the global thesaurus and the local language thesaurus for the language

specified in the query contain overlapping rules, the local thesaurus rules take precedence over

the global thesaurus. Consider if the following replacement rule were placed in the English

language thesaurus (tsenu.xml):

 <replacement>

 <pat>ca</pat>

 _{canada}

 </replacement>

This replacement rule can be indicated using the form R(ca � canada). Even if the conflicting

replacement rule for the search term ca, R(ca � california), is defined in the global thesaurus,

the local replacement rule R(ca � canada) takes precedence and will be used by the full-text

query engine.

A Practical Example
As a practical example of full-text thesaurus usage, we’ve implemented a simple thesaurus that

accounts for “oddities” in the works of William “The Bard” Shakespeare. Shakespeare’s works

were written in Early Modern English, quite different from English in its current incarnations.

Because of this, there are a lot of differences in spelling that we would consider anomalous in

Modern English. Many words have extraneous e’s at the end, for example.

Another issue with Shakespeare’s works is in the typography of the age. Many commonly

used words in printing were prepacked into clichés, or entire words contained on single slugs

of metal. Because printing press letters were expensive, printers often ran out of certain letters

and clichés during print runs. Rather than spending money on additional sets of letters, it was

a common practice of the time to substitute similar-looking letters for one another. Probably

the most common example is the substitution of the letter u for the letter v, and vice versa.

Shakespeare’s original printed works are full of such substitutions, and many scholars prefer

178 C H A P T E R 8 ■ T H E S A U R U S E S

the faithful reproduction of these “canonical errors.” Consider the following lines from The

Tragedie of Hamlet:

Fran. Nay answer me: Stand & vnfold your selfe

Bar. Long liue the King

Fran. Barnardo?

Bar. He

Fran. You come most carefully vpon your houre

With this in mind, we’ve introduced some Shakespearean texts in the iFTS_Books database

that are reproduced with these types of canonical errors. Our thesaurus example will convert

some of these spelling anomalies to their modern equivalents. The following thesaurus entries

represent a sample from our Shakespearean English thesaurus (LCID 1033):

<expansion>

 _{appeare}

 _{appear}

</expansion>

<expansion>

 _{approue}

 _{approve}

</expansion>

<expansion>

 _{beleefe}

 _{belief}

</expansion>

<expansion>

 _{Faiery}

 _{Faire}

 _{Fairy}

</expansion>

<expansion>

 _{haue}

 _{have}

</expansion>

This thesaurus uses expansion rules to accommodate archaic spellings of words such as

E(belief, beleefe) and canonical typographical anomalies such as E(upon, vpon). With this

thesaurus loaded, searches for the modern spellings of these words will also locate the archaic

spellings, and vice versa. We’ve included a larger Shakespearean thesaurus in the sample

download files for this book under the \Shakespeare subdirectory.

In addition to accounting for archaic language spellings and anomalies, thesaurus files are

useful for expanding modern abbreviations and acronyms, and for retrieving matches for

words that are synonymous with your search term. All of this can be used to make your data-

base searches more intelligent and increase overall recall.

C H A P T E R 8 ■ T H E S A U R U S E S 179

Translation

You can also use the thesaurus as a simple translator. With simple replacement rules, you can

easily translate commonly used foreign words into the target language in much the same way

that the previous example converted archaic English words into modern English. Consider the

following sample thesaurus entries that replace Latin words with their English equivalents:

 <replacement>

 <pat>octoginta</pat>

 _{eighty}

 </replacement>

 <replacement>

 <pat>irrito</pat>

 _{provoke}

 _{annoy}

 _{excite}

 _{stimulate}

 _{aggravate}

 </replacement>

Because replacement rules are used in this example, the original Latin word is lost in the

search, but the equivalent English terms are used to fulfill the search. You can use expansion

and rules to widen your searches to include alternative methods of representing words as well.

Consider the following expansion rules, which expand searches on Chinese words to automat-

ically include both pinyin and English equivalents:

PINYIN: “SPELL-SOUND”

Pinyin literally means “spell-sound.” It’s a system of Romanization, where Chinese words are represented

using Latin alphabet characters. Each syllable of a Chinese word has a tone, or pitch movement, which is

important to the meaning of the word. As an example, the Chinese word “ma” can refer to either a mother or

a horse, depending on the tone used. Pinyin makes extensive use of diacritical marks to differentiate the tone

of syllables.

<expansion>

 _{guójìxiàngqí}

 _{chess}

</expansion>

<expansion>

 _{m�}

 _{knight}

</expansion>

<expansion>

180 C H A P T E R 8 ■ T H E S A U R U S E S

 _{b�ng}

 _{pawn}

</expansion>

Using these sample thesaurus entries, you can search for chess-related terms using Tradi-

tional Chinese words or their pinyin or English equivalents. A search for any of these terms will

be automatically expanded to include the alternate versions of the same group when thesaurus

expansion is used. Refer to Chapter 5 for a detailed discussion of multilingual searches.

Word Bags

Thesauruses can also be used to expand a search using words that aren’t necessarily synonyms,

but might be closely related to the search term. This might be useful in applications where you

want to automatically expand a search to include associated documents or products. For

instance, when a user searches for pancakes, you might want to return related results that

include associated products such as syrup. Consider the following sample thesaurus that

expands selected product searches:

 <expansion>

 _{pancakes}

 _{syrup}

 _{bacon}

 _{eggs}

 </expansion>

 <expansion>

 _{ham}

 _{cheese}

 _{bread}

 _{lettuce}

 _{tomato}

 </expansion>

This type of expansion is useful when you’re attempting to make intelligent guesses at

what a user really wants when she types in a given search term, or for applications in which you

want to try to upsell products based on the user’s current area of interest (as determined by her

search terms).

Additional Considerations
There are additional considerations that you need to take into account when you define your

full-text thesauruses, such as case sensitivity, accent sensitivity, nonrecursion, and other

aspects. Let’s discuss these aspects of full-text thesaurus creation.

Accent and Case Sensitivity

As we mentioned previously, the <diacritics_sensitive> element in your thesaurus files defines

your thesaurus’s sensitivity to diacritical marks, including accent marks. Your thesaurus’s

diacritics sensitivity setting should be set in sync with your full-text catalog’s accent sensitivity

C H A P T E R 8 ■ T H E S A U R U S E S 181

setting. If your full-text catalog is using accent insensitivity, your thesaurus should have

<diacritics_sensitive> set to 0; if your full-text catalog is accent sensitive, the thesaurus

<diacritics_sensitive> setting should be 1. A mismatch between your full-text catalog’s

accent sensitivity and the thesaurus’s <diacritics_sensitive> setting can result in accented

search terms in your query not being matched by accented terms in your full-text index. A

mismatch in accent sensitivity settings will also cause accented expansions and replacements

to cause missed search matches.

The full-text thesaurus is always treated as case insensitive, regardless of your database

collation settings. Even in a case-sensitive database, a full-text search for the capitalized search

term TV will match a thesaurus rule for the lowercase term tv.

Nonrecursion

Thesaurus definitions are nonrecursive, meaning that one rule doesn’t recursively invoke

additional rules. Consider the following sample thesaurus replacement rules:

 <replacement>

 <pat>fl</pat>

 _{fla}

 </replacement>

 <replacement>

 <pat>fla</pat>

 _{florida}

 </replacement>

In this example, the rule R(fl � fla) replaces the search term fl with the search term fla.

There’s an additional rule, R(fla � florida), which is not invoked by the previous replacement

rule. Listing 8-12 verifies this thesaurus rule application with the sys.dm_fts_parser DMF. As

you can see in Figure 8-6, the search term fl is replaced with fla, but the replacement rule for fla

is not invoked.

Listing 8-12. Verifying Thesaurus Expansion with sys.dm_fts_parser

SELECT

 special_term,

 display_term,

 expansion_type,

 source_term

FROM sys.dm_fts_parser

(

 N'FORMSOF(THESAURUS, "fl")',

 1033,

 NULL,

 0

);

182 C H A P T E R 8 ■ T H E S A U R U S E S

Figure 8-6. Viewing thesaurus replacement rule

Overlapping Rules

As we discussed previously in this chapter, ambiguous replacement and expansion rules in a

thesaurus are dealt with at load time. However, it’s possible to have overlapping rules that

aren’t considered ambiguous by the full-text search engine. An overlapping rule is one where

some search terms are shared between the <pat> elements of replacement rules and the <sub>

elements of expansion rules. In the following example, for instance, the rule R(fl oz � fluid

ounces) overlaps with the rule R(fl � florida), because they have the search term fl in common:

 <replacement>

 <pat>fl oz</pat>

 _{fluid ounces}

 </replacement>

 <replacement>

 <pat>fl</pat>

 _{fla}

 </replacement>

If you perform a search for terms that have overlapping rules, the longest matching rule

wins. In this instance, a search for 16 fl oz will trigger the fl oz replacement rule, while a search

for fl state will trigger the fl rule. If two overlapping replacement rules happen to have the same

length, the first one in the thesaurus is used.

Stoplists

Full-text thesaurus entries take precedence over stopwords contained in stoplists. Consider

the sample thesaurus entries from the previous section, for instance. These entries specify two

replacement rules: R(fl oz � fluid ounces) and R(fl � fla). If you added the search term fl to

your stoplist, these two rules that contain that search term will still be applied. Only after

your thesaurus replacements and expansions are applied does the stoplist come into play,

since stopwords aren’t stored in the full-text index. It’s a good idea to not put stopwords in

<sub> entries of replacement rules, since they’ll find no match in the full-text index. Stopwords

in the <sub> entries of expansion rules will also find no matches in the full-text index, but they

may be used as the point of entry for expansion to include other terms in the search.

C H A P T E R 8 ■ T H E S A U R U S E S 183

General Recommendations

Microsoft makes some general recommendations regarding thesaurus files, including the

following:

• Avoid using special characters in your thesaurus entries to avoid unexpected word

breaker behavior.

• Thesaurus entries can’t be empty strings or composed of strings of special characters

that can be converted to empty strings by the word breaker.

In addition, when loading a full-text index with the sys.sp_fulltext_load_thesaurus_file

procedure, the full-text thesaurus is loaded into a SQL Server xml data type instance. This has

two implications:

1. There’s an upper limit of 2.1GB of storage for any given thesaurus file. Since the file

is being loaded into an xml data type instance, however, the actual XML file could be

larger. As a practical matter, though, a large thesaurus file (greater than 10MB) could

take a considerable amount of time to load and parse.

2. The XML thesaurus file has to follow most of the rules for well-formedness. The

element tags must be properly nested, special characters must be properly entitized

(converted to XML entities such as > for the > character), attribute values quoted,

and so on. We say the thesaurus file has to follow most of the rules for well-formedness

because it technically doesn’t have to have a single root element, but subsequent root-

level elements after the first <XML> element are ignored.

Summary
SQL Server 2008 full-text search thesauruses allow you to expand user search terms to include

search term synonyms and replacements. Although the ultimate goal of the iFTS team is to

integrate thesauruses into the database, in much the same way that they’ve integrated stoplists,

time constraints prevented it for this release. For now, we have to manage thesauruses as XML

files in the file system. Even so, SQL Server 2008 provides the new sys.sp_fulltext_thesaurus_file

procedure to load thesaurus files on demand without the service restart required in previous

releases.

We discussed expansion and replacement rules in thesaurus files and how they affect your

queries. We talked about the new global thesaurus files and how they work in tandem with your

local language-specific thesaurus files. We also addressed some of the issues you need to keep

in mind when designing your thesauruses, such as accent sensitivity and overlapping rules.

In the next chapter, we’ll continue the discussion of new iFTS features available through

SQL Server 2008’s catalog views and dynamic management views and functions.

185

■ ■ ■

C H A P T E R 9

iFTS Dynamic Management
Views and Functions

What is written clearly is not worth much, it’s the transparency that counts.

—Louis-Ferdinand Celine

Historically speaking, transparency hasn’t been a strong suit of SQL Server FTS. The problem

was that there were no tools available to lay out the inner workings of the FTS engine. This was

partially due to the fact that the FTS engine was a completely separate service from the SQL

Server service. FTS has long been treated as an opaque “black box”—you push data through it

and expect the results to come out in the proper form on the other end.

However, as many people have found over the years, despite the best intentions and plan-

ning, what you get out of the black box is not necessarily what you expect. Simply put, the black

box paradigm is not an adequate model for developers and administrators trying to optimize

and troubleshoot FTS problems.

SQL Server 2008 provides several new dynamic management views (DMVs), dynamic

management functions (DMFs), catalog views, and other methods of retrieving iFTS-specific

state information and metadata. The new DMVs and DMFs, in particular, provide insight into

the inner workings of iFTS. You can now query your full-text indexes and see exactly what SQL

Server has come up with after word-breaking your documents. Or you can see what SQL Server

sees after it parses a full-text search query.

These features bring an unprecedented level of transparency and insight to iFTS, and will

make troubleshooting, debugging, optimizing, and studying the internal details of iFTS easier

than ever. In this chapter, we’ll discuss the new transparency provided by these features and

explore how you can use them in your own development and administration work.

186 C H A P T E R 9 ■ I F T S D Y N A M I C M A N A G E ME N T V I E W S A N D F U N C T I O N S

DMVs and DMFs
The list of exciting new iFTS features in SQL Server 2008 includes several DMVs and DMFs that

provide insight into the inner workings of iFTS. Among these are DMFs that show the result of

word and phrase parsing and stemming, index population, and iFTS memory usage. In this

section, we’ll discuss these DMVs and DMFs.

Looking Inside the Full-Text Index

SQL Server 2008 provides two new DMFs that provide a view into your populated full-text indexes.

We used these DMFs back in Chapter 4 to demonstrate hit highlighting; we’ll explore them in

greater detail here. The sys.dm_fts_index_keywords DMF accepts a database ID and a table

object ID, returning the contents of the full-text index in relational format. This DMF returns

the following four columns:

• keyword is an internal hexadecimal representation of the indexed keyword used by iFTS.

• display_term is a human readable representation of the indexed keyword.

• column_id is the ID of the source column for the indexed keyword.

• document_count is the number of documents (rows) containing the indexed keyword.

Listing 9-1 uses the sys.dm_fts_index_keywords DMF to retrieve the full-text index entries

for the dbo.Book table. The results are returned in decreasing order of occurrence, as shown in

Figure 9-1.

Listing 9-1. Retrieving dbo.Book Full-Text Index Entries in Decreasing Order of Occurrence

SELECT *

FROM sys.dm_fts_index_keywords

(

 DB_ID(N'iFTS_Books'),

 OBJECT_ID(N'dbo.Book')

)

ORDER BY document_count DESC;

The sys.dm_fts_index_keywords_by_document DMF also accepts a database ID and table

object ID. This DMF is similar in functionality to the sys.dm_fts_index_keywords DMF, except

that it provides a greater level of granularity by indicating the document IDs in which the

indexed keywords were found. The sys.dm_fts_index_keywords_by_document DMF returns all

of the columns returned by sys.dm_fts_index_keywords, with two exceptions:

• document_id is an additional column containing the ID of the document (or row) in

which the indexed keyword was found.

• occurrence_count replaces the document_count column and indicates how many times

the indexed keyword was found in the current document (or row).

C H A P T E R 9 ■ I F T S D Y N A M I C M AN AG E M E N T V I E W S A N D F U N C T I O N S 187

Figure 9-1. Contents of dbo.Book full-text index (partial)

This DMF can be used to determine, for instance, how many indexed keywords your

individual documents (or rows) contain. Listing 9-2 demonstrates this, with results shown in

Figure 9-2.

Listing 9-2. Retrieving the Number of Indexed Keywords per Document

SELECT

 document_id,

 SUM(occurrence_count) AS keywords_per_document

FROM sys.dm_fts_index_keywords_by_document

(

 DB_ID(N'iFTS_Books'),

 OBJECT_ID(N'dbo.Book')

)

GROUP BY document_id

ORDER BY SUM(occurrence_count) DESC;

Figure 9-2. Partial list of number of keywords per document

188 C H A P T E R 9 ■ I F T S D Y N A M I C M A N A G E ME N T V I E W S A N D F U N C T I O N S

These two DMFs are useful in situations where you need to peek under the hood to see

exactly what iFTS has indexed. Useful scenarios include simple applications like the hit high-

lighter in Chapter 4, or when testing custom filters like the one we’ll develop in Chapter 10.

Parsing Text

In previous versions of SQL Server, there was no easy way to test FTS’s parsing and stemming

functionality. While you could make educated guesses and assumptions about exactly what

the parser and stemmers were producing, and you could test the results they produced, actually

doing so could result in a lot of hard-to-find issues. SQL Server 2008 provides the sys.dm_fts_parser

DMF to bring clarity to this situation, allowing you to see exactly what the parser and stemmer

are producing for any given search query string. This DMF accepts a query string, LCID, stoplist

ID, and accent-sensitivity indicator as parameters. It returns several columns:

• keyword is the internal hexadecimal representation of a keyword returned by the word

breaker.

• group_id is an ID that indicates the logical group in the search query from which the

keyword was extracted.

• phrase_id is an ID that indicates groupings of alternative forms of compound words; the

compound word data-base is broken into two groups, with group 1 containing the words

data and base, while group 2 contains the word data-base.

• occurrence is a positional indicator that returns the order of each term in the parsing

result; in the phrase all good things, the word all has occurrence ID 1, good has ID 2, and

things is assigned ID 3.

• special_term gives some additional characteristics about the term, including whether

the keyword is an exact match, noise word, end of sentence, end of paragraph, or end

of chapter.

• display_term is the human-readable form of the keyword as produced by the word

breaker and stemmer.

• expansion_type tells you whether the keyword is an exact keyword from the search query

(type 0), or the result of inflectional expansion (type 2) or thesaurus expansion/replace-

ment (type 4).

• source_term is the source term or phrase from which the keyword was extracted or

generated.

The query string that you pass into this DMF can be a CONTAINS style query, which we described

in Chapter 3. You can also use the FORMSOF(FREETEXT, ...) option to perform FREETEXT-style

inflectional form generation and thesaurus expansions and replacement. Listing 9-3 uses

sys.dm_fts_parser to parse a FREETEXT-style query using the English language (LCID 1033), the

default stoplist, and no accent sensitivity. The results are shown in Figure 9-3.

C H A P T E R 9 ■ I F T S D Y N A M I C M AN AG E M E N T V I E W S A N D F U N C T I O N S 189

Listing 9-3. Inflectional-Style Parsing with sys.dm_fts_parser

SELECT *

FROM sys.dm_fts_parser

(

 N'FORMSOF(INFLECTIONAL, "a penny saved")',

 1033,

 NULL,

 0

);

Figure 9-3. Results of sys.dm_fts_parser query parsing

We demonstrated use of sys.dm_fts_parser in the hit-highlighter example in Chapter 4.

This DMF is also useful for debugging custom filters, word breakers, and stemmers.

Accessing Full-Text Index Entries

One of the most significant new advances in iFTS is the ability to store full-text indexes directly

in the database. This improvement also makes it easier to access the contents of the full-text

indexes via normal SQL queries. The sys.dm_fts_index_keywords DMF accepts a database ID

and object ID for a table, and retrieves the contents of the full-text index for that table. The

columns returned by this DMF include the following:

• keyword is the hexadecimal representation of the indexed keyword used internally by iFTS.

• display_term is the human-readable indexed keyword.

• column_id is the ID of the column from which the indexed keyword was sourced.

• document_count is a count of the number of documents (or rows) in which the keyword

was found in the source table.

Listing 9-4 shows the DMF in action, accessing the full-text index entries from the dbo.Book

table. Partial results are shown in Figure 9-4.

190 C H A P T E R 9 ■ I F T S D Y N A M I C M A N A G E ME N T V I E W S A N D F U N C T I O N S

Listing 9-4. Accessing Full-Text Index Entries for the dbo.Book Table

SELECT *

FROM sys.dm_fts_index_keywords

(

 DB_ID(N'iFTS_Books'),

 OBJECT_ID(N'dbo.Book')

);

Figure 9-4. Partial listing of keyword entries in dbo.Book full-text index

The sys.dm_fts_index_keywords_by_document DMF is similar to the sys.dm_fts_index_keywords

DMF, in that it returns full-text index entries for a given table. The sys.dm_fts_index_

keywords_by_document DMF, however, gives you a greater level of granularity by returning

information about full-text index entries on a per-document basis. The sys.dm_fts_index_

keywords_by_document DMF returns the keyword, display_term, and column_id columns that

are returned by the sys.dm_fts_index_keywords DMF. The sys.dm_fts_index_keywords_by_

document DMF returns an additional document_id column with the ID of the document from

which the keyword was sourced, and adds an additional occurrence_count column that tells

you how many times the keyword appears in the given document. Listing 9-5 shows this DMF

in action, with partial results shown in Figure 9-5.

Listing 9-5. Accessing Full-Text Index Entries on a Per-Document Basis

SELECT *

FROM sys.dm_fts_index_keywords_by_document

(

 DB_ID(N'iFTS_Books'),

 OBJECT_ID(N'dbo.Book')

);

C H A P T E R 9 ■ I F T S D Y N A M I C M AN AG E M E N T V I E W S A N D F U N C T I O N S 191

Figure 9-5. Full-text entries per document for the dbo.Book table

Retrieving Population Information

SQL Server 2008 provides additional information about one of the most important processes in

iFTS: the population process. You can use four of the new DMVs to gather information about

full-text index populations currently in progress. This information can be used to diagnose and

troubleshoot full-text index population slowness and other issues related to memory pressure

and resource problems on the server. You can also use these DMVs for more mundane admin-

istrative tasks related to monitoring full-text index population.

The diagram in Figure 9-6 shows the relationships of the new full-text index population

DMVs and a few iFTS-specific catalog views. The iFTS-specific DMVs provide point-in-time

population information and don’t retain historical information about populations.

■Note We’ll discuss IFTS-specific catalog views in the “Catalog Views” section of this chapter.

The first iFTS-specific population DMV is the sys.dm_fts_active_catalogs DMV. This

DMV allows you to list all of the active full-text catalogs that are currently undergoing some

population activity on the server. Listing 9-6 queries the sys.dm_fts_active_catalogs DMV and

returns the list of catalogs currently being populated on my local server, as shown in Figure 9-7.

Note that your results will vary. This DMV returns status information and counts of various

population specific items, such as the number of threads currently working on a full-text

catalog and the number of full-text indexes being populated, among others.

192 C H A P T E R 9 ■ I F T S D Y N A M I C M A N A G E ME N T V I E W S A N D F U N C T I O N S

Figure 9-6. iFTS-specific population DMVs and their relationships

Listing 9-6. Querying sys.dm_fts_active_catalogs

SELECT

 fc.name AS catalog_name,

 d.name AS database_name,

 ac.name,

 CASE ac.is_paused

 WHEN 1 THEN N'Yes'

 ELSE N'No'

 END AS is_paused,

 CASE ac.status

 WHEN 0 THEN N'Initializing'

 WHEN 1 THEN N'Ready'

 WHEN 2 THEN N'Paused'

 WHEN 3 THEN N'Temporary error'

 WHEN 4 THEN N'Remount needed'

 WHEN 5 THEN N'Shutdown'

 WHEN 6 THEN N'Quiesced for backup'

 WHEN 7 THEN N'Backup is done through catalog'

 WHEN 8 THEN N'Catalog is corrupt'

 ELSE N'Unknown'

 END AS status,

sys.dm_fts_outstanding_batches

database_id

catalog_id

table_id

batch_id

sys.dm_fts_index_population

database_id

catalog_id

memory_address

sys.tables

object_id

sys.databases

database_id

sys.fulltext_catalogs

fulltext_catalog_id

sys.dm_fts_population_ranges

parent_memory_address

sys.dm_fts_active_catalogs

database_id

catalog_id

C H A P T E R 9 ■ I F T S D Y N A M I C M AN AG E M E N T V I E W S A N D F U N C T I O N S 193

 ac.status_description,

 ac.worker_count,

 ac.active_fts_index_count,

 ac.auto_population_count,

 ac.manual_population_count,

 ac.full_incremental_population_count,

 ac.row_count_in_thousands,

 CASE ac.is_importing

 WHEN 1 THEN N'Yes'

 ELSE N'No'

 END AS is_importing

FROM sys.dm_fts_active_catalogs ac

INNER JOIN sys.fulltext_catalogs fc

 ON ac.catalog_id = fc.fulltext_catalog_id

INNER JOIN sys.databases d

 ON ac.database_id = d.database_id;

Figure 9-7. Catalogs currently undergoing population activity

The sys.dm_fts_outstanding_batches DMV gives you information about all outstanding

population batches, or set of rows being populated, for each full-text catalog. This is useful for

troubleshooting population issues and determining resource usage. Listing 9-7 returns a count

of the number of outstanding batches in full-text catalogs currently being populated. The results

are shown in Figure 9-8. Note again that your results may vary from those shown; if there are

no currently outstanding batches, the DMV returns no rows.

Listing 9-7. Retrieving the Number of Full-Text Index Population Batches

SELECT

 OBJECT_NAME(ob.table_id) AS table_name,

 fc.name AS catalog_name,

 COUNT(*) AS outstanding_batches

FROM sys.dm_fts_outstanding_batches ob

INNER JOIN sys.fulltext_catalogs fc

 ON ob.catalog_id = fc.fulltext_catalog_id

INNER JOIN sys.databases d

 ON ob.database_id = d.database_id

GROUP BY

 ob.table_id,

 fc.name;

194 C H A P T E R 9 ■ I F T S D Y N A M I C M A N A G E ME N T V I E W S A N D F U N C T I O N S

Figure 9-8. Counts of outstanding full-text index population batches

As you can see in Figure 9-8, there are currently 10 batches outstanding in the current

population process. These numbers will change throughout the population batches, as

currently outstanding batches are finished and new batches are started.

The sys.dm_fts_index_populations DMV is useful for retrieving information about the

currently running index population, including the number of parallelized ranges that have

been created and completed for the current population. Listing 9-8 returns the population

status during a catalog rebuild. Results are shown in Figure 9-9. Once again, your results

will vary.

Listing 9-8. Listing Populations Currently in Progress

SELECT

 fc.name AS catalog_name,

 d.name AS database_name,

 ip.population_type,

 ip.population_type_description,

 SUM(ip.range_count) AS ranges,

 SUM(ip.completed_range_count) AS completed_ranges

FROM sys.dm_fts_index_population ip

INNER JOIN sys.fulltext_catalogs fc

 ON ip.catalog_id = fc.fulltext_catalog_id

INNER JOIN sys.databases d

 ON ip.database_id = d.database_id

GROUP BY

 fc.name,

 d.name,

 ip.population_type,

 ip.population_type_description;

C H A P T E R 9 ■ I F T S D Y N A M I C M AN AG E M E N T V I E W S A N D F U N C T I O N S 195

Figure 9-9. Populations in progress during a catalog rebuild

The sys.dm_fts_population_ranges DMV returns even greater detail concerning the

current population process. Specifically, this DMV returns addresses of memory buffers,

session ID information, the number of rows processed, retry status, and an error count. All of

this information is particularly useful for deep troubleshooting of specific problems, such as

failure to complete the population process. Listing 9-9 uses sys.dm_fts_population_ranges to

retrieve this troubleshooting information. Figure 9-10 shows partial results of this query. Once

again, you can expect your results to vary, and rows are returned only when a full-text popula-

tion is in progress.

Listing 9-9. Retrieving Additional Troubleshooting Information with

sys.dm_fts_population_ranges

SELECT *

FROM sys.dm_fts_population_ranges;

Figure 9-10. Partial result of additional iFTS troubleshooting information

Services and Memory Usage

SQL Server 2008 provides additional DMVs that retrieve information about memory buffers

currently in use by the full-text crawl process and the activity of the full-text daemon hosts on

the server instance. Listing 9-10 uses the sys.dm_fts_hosts DMV to retrieve information about

full-text daemon hosts on the current instance, with results shown in Figure 9-11. The IDs

returned by this DMV will be different for each machine.

196 C H A P T E R 9 ■ I F T S D Y N A M I C M A N A G E ME N T V I E W S A N D F U N C T I O N S

Listing 9-10. Retrieving Full-Text Daemon Host Information

SELECT *

FROM sys.dm_fts_fdhosts;

Figure 9-11. Full-text deamon host information

The sys.dm_fts_memory_pools DMV returns information about shared memory pools

available to the Full-Text Gatherer component. These memory pools represent the memory

available for the full-text crawl and full-text crawl range processes. Listing 9-11 retrieves the

memory pool information. Results are shown in Figure 9-12. As you probably expect by now

from these DMVs, your results will vary from those shown depending on full-text population

activity on your server.

Listing 9-11. Retrieving Full-Text Gatherer Shared Memory Pool Information

SELECT *

FROM sys.dm_fts_memory_pools;

Figure 9-12. Available Full-Text Gatherer memory pools

Closely related to sys.dm_fts_memory_pools, the sys.dm_fts_memory_buffers DMV returns

information about the memory buffers that compose the Full-Text Gatherer’s shared memory

pools. This DMV allows you to see the amount of memory currently in use during the popula-

tion process. Listing 9-12 retrieves information about memory buffers currently in use during

the population process. Figure 9-13 shows the results. Once more, you can expect your results

to be different from those shown here, depending on your full-text index population activity.

You can use this information to troubleshoot population issues related to memory pressure.

Listing 9-12. Retrieving Population Process Memory Buffer Information

SELECT *

FROM sys.dm_fts_memory_buffers;

C H A P T E R 9 ■ I F T S D Y N A M I C M AN AG E M E N T V I E W S A N D F U N C T I O N S 197

Figure 9-13. Viewing memory buffer information during a full-text index population

Catalog Views
Whereas DMVs provide server state information for a specific point in time, catalog views

return metadata about server instances, databases, and database objects. The database engine

uses this metadata internally to manage server instances and databases, and to fulfill queries

and other requests. While SQL Server can use any number of various data structures to store

this data internally, catalog views are designed to allow you to access it via T-SQL in read-only

tabular data structures. SQL Server 2008 provides several iFTS-specific catalog views that

provide information about full-text catalogs, indexes, and stoplists required by iFTS. We’ll look

at these iFTS-specific catalog views in this section.

Listing Full-Text Catalogs

The sys.fulltext_catalogs catalog view returns a single row for each full-text catalog in

the current database. The information returned includes the ID of the catalog, the name of the

catalog, the accent sensitivity setting, whether the catalog is the default catalog, and the data-

base principal defined as the catalog owner.

■Caution In addition, the sys.fulltext_catalogs catalog view also returns the ID of the filegroup

where the catalog was created, the ID of the full-text file associated with the catalog, and the file system path

of where the catalog was created. These columns are deprecated and will be removed in a future version of

SQL Server; avoid using them in future work.

Listing 9-13 retrieves the list of full-text catalogs in the current database. The results are

shown in Figure 9-14.

198 C H A P T E R 9 ■ I F T S D Y N A M I C M A N A G E ME N T V I E W S A N D F U N C T I O N S

Listing 9-13. Retrieving the List of Full-Text Catalogs

SELECT

 fulltext_catalog_id,

 name,

 is_default,

 is_accent_sensitivity_on,

 principal_id,

 is_importing

FROM sys.fulltext_catalogs;

Figure 9-14. All full-text catalogs in the iFTS_Books database

Retrieving Full-Text Index Metadata

SQL Server 2008 provides several iFTS-specific catalog views that allow you to peek under the

hood to enumerate your full-text indexes and the related tables, columns, and relational indexes.

We’ve used some of these catalog views in previous examples, but we’ll explain them in greater

detail in this section.

The first catalog view, sys.fulltext_indexes, returns a single row for each full-text index

in the current database. The information reported includes the ID of the table to which the full-

text index belongs, the catalog ID, the ID of the stoplist associated with the full-text index, and

change tracking and current full-text index crawl status. Listing 9-14 uses the sys.fulltext_

indexes catalog view to retrieve the full-text index information for the current database. The

results are shown in Figure 9-15.

■Tip When joining to the sys.fulltext_stoplists catalog view, an outer join is necessary, since the

default SYSTEM stoplist doesn’t have an entry in the catalog view.

Listing 9-14. Retrieving Full-Text Index Information

SELECT

 t.name AS table_name,

 c.name AS catalog_name,

 i.unique_index_id,

 CASE i.is_enabled

 WHEN 1 THEN N'Yes'

 ELSE N'No'

 END AS is_enabled,

C H A P T E R 9 ■ I F T S D Y N A M I C M AN AG E M E N T V I E W S A N D F U N C T I O N S 199

 i.change_tracking_state_desc AS change_tracking,

 CASE i.has_crawl_completed

 WHEN 1 THEN N'Yes'

 ELSE N'No'

 END AS crawl_complete,

 COALESCE(s.name, N'**SYSTEM**') AS stoplist_name

FROM sys.fulltext_indexes i

INNER JOIN sys.tables t

 ON i.object_id = t.object_id

INNER JOIN sys.fulltext_catalogs c

 ON i.fulltext_catalog_id = c.fulltext_catalog_id

LEFT JOIN sys.fulltext_stoplists s

 ON i.stoplist_id = s.stoplist_id;

Figure 9-15. Full-text index information for iFTS_Books database

The sys.fulltext_index_catalog_usages catalog view returns only a few columns. The

data returned by the catalog view represents the full-text catalog to full-text index mappings, and

the full-text index to relational index usages. Listing 9-15 retrieves all of this mapping informa-

tion from the catalog view and joins the results to other relevant catalog views in order to display

the information in human-readable format. Results are shown in Figure 9-16.

Listing 9-15. Retrieving Full-Text Index to Relational Index Relationships

SELECT

 t.name AS table_name,

 c.name AS catalog_name,

 i.name AS index_name,

 i.type_desc

FROM sys.fulltext_index_catalog_usages icu

INNER JOIN sys.tables t

 ON icu.object_id = t.object_id

INNER JOIN sys.fulltext_catalogs c

 ON icu.fulltext_catalog_id = c.fulltext_catalog_id

INNER JOIN sys.indexes i

 ON icu.object_id = i.object_id

 AND icu.index_id = i.index_id;

200 C H A P T E R 9 ■ I F T S D Y N A M I C M A N A G E ME N T V I E W S A N D F U N C T I O N S

Figure 9-16. IFTS relational index usage

While the sys.fulltext_index_catalog_usages catalog view gives you a picture of the

relational indexes used by the full-text indexes, the sys.fulltext_index_columns catalog view

provides insight into the actual relational columns being indexed by the full-text indexes. You

can join the rows returned by the sys.fulltext_index_columns to the sys.columns catalog view

in order to retrieve column metadata for each full-text index. This information is particularly

useful for administrative tasks such as scripting full-text index DML statements or displaying

the relationships between full-text indexes and relational columns in a GUI application.

Listing 9-16 retrieves the column information for all the full-text indexes in the iFTS_Books

database, with results shown in Figure 9-17.

Listing 9-16. Retrieving Full-Text Index Column Information

SELECT

 t.name AS table_name,

 c.name AS column_name,

 c.column_id,

 ic.language_id

FROM sys.fulltext_index_columns ic

INNER JOIN sys.tables t

 ON ic.object_id = t.object_id

INNER JOIN sys.columns c

 ON ic.object_id = c.object_id

 AND ic.column_id = c.column_id

ORDER BY

 t.name,

 c.name,

 c.column_id;

C H A P T E R 9 ■ I F T S D Y N A M I C M AN AG E M E N T V I E W S A N D F U N C T I O N S 201

Figure 9-17. Full-text index column information

Full-text indexes are stored in inverted index structures known as fragments. You can use

the sys.fulltext_index_fragments catalog view to look at the fragments currently in use. By

querying this catalog view for queryable fragments, you can determine whether an index

reorganization or rebuild will help performance. A queryable fragment is one that has a status

of 4 (Closed. Ready for query) or 6 (Being used for merge input and ready for query). If your query

returns a large number of fragments for a given index, a reorganization can help improve

query performance. Listing 9-17 demonstrates this by querying for all queryable fragments

in the current database, with results shown in Figure 9-18. Your results will vary from those

shown in Figure 9-18, depending on the number and size of queryable fragments in your

database.

Listing 9-17. Returning the Number of Queryable Fragments

SELECT *

FROM sys.fulltext_index_fragments

WHERE status IN (4, 6);

202 C H A P T E R 9 ■ I F T S D Y N A M I C M A N A G E ME N T V I E W S A N D F U N C T I O N S

Figure 9-18. List of queryable fragments in the iFTS_Books database

Revealing Stoplists

Like full-text indexes, stoplists are stored in the database by SQL Server 2008. There are three

new catalog views that provide insight into the contents of the system stoplist and user stoplists.

The sys.fulltext_system_stopwords catalog view allows you to view the default system stop-

word entries. Listing 9-18 lists all of the stopwords in the English (LCID 1033) system stoplist,

with partial results shown in Figure 9-19.

Listing 9-18. Listing English (LCID 1033) System Stoplist Information

SELECT *

FROM sys.fulltext_system_stopwords

WHERE language_id = 1033;

Figure 9-19. Partial English system stoplist

C H A P T E R 9 ■ I F T S D Y N A M I C M AN AG E M E N T V I E W S A N D F U N C T I O N S 203

The sys.fulltext_stoplists catalog view returns a list of user-defined stoplists. Note

that the default system stoplists aren’t included in the results of this catalog view. Listing 9-19

retrieves the list of user-defined stoplists, with the result shown in Figure 9-20. Your results

may vary from those shown, depending on how many user-defined stoplists you’ve created in

your database.

■Tip To get the results like those shown in Figure 9-20, you need to create a user-defined stoplist like the

NoFish_Stoplist we created in Chapter 7.

Listing 9-19. Retrieving the Names of All User-Defined Stoplists

SELECT *

FROM sys.fulltext_stoplists;

Figure 9-20. User-defined stoplists listing

The sys.fulltext_stopwords catalog view returns a list of stopwords that comprise the

user-defined full-text stoplists. You can join sys.fulltext_stopwords to the sys.fulltext_stoplists

catalog view in order to retrieve the contents of user-defined stoplists by name. Listing 9-20

shows how to retrieve the contents of the NoFish_Stoplist in this way, with partial results

shown in Figure 9-21.

Listing 9-20. Retrieving the Contents of a User-Defined Stoplist

SELECT sw.*

FROM sys.fulltext_stoplists sl

INNER JOIN sys.fulltext_stopwords sw

 ON sl.stoplist_id = sw.stoplist_id

WHERE sl.name = N'NoFish_Stoplist'

 AND sw.language_id = 1033;

204 C H A P T E R 9 ■ I F T S D Y N A M I C M A N A G E ME N T V I E W S A N D F U N C T I O N S

Figure 9-21. English (LCID 1033) user-defined stoplist entries

Viewing Supported Languages and Document Types

SQL Server 2008 provides two additional iFTS-specific catalog views that return information

about supported languages and document types. The sys.fulltext_languages catalog view

retrieves all iFTS supported languages on an instance of SQL Server. Listing 9-21 returns a list

of all supported languages for a SQL Server instance, with partial results shown in Figure 9-22.

Listing 9-21. Retrieving List of iFTS-Supported Languages

SELECT *

FROM sys.fulltext_languages

ORDER BY name;

Figure 9-22. List of iFTS-supported languages

■Tip The iFTS_Books database includes a table called dbo.XML_Lang_Code that maps a number of

LCID codes to XML language (xml:lang attribute) codes.

You can also return a list of supported document types on an instance of SQL Server with

the sys.fulltext_document_types catalog view. This is particularly useful after installing new

C H A P T E R 9 ■ I F T S D Y N A M I C M AN AG E M E N T V I E W S A N D F U N C T I O N S 205

filter components, to ensure that they’ve been properly registered with your SQL Server

instance. Listing 9-22 queries the sys.fulltext_document_types catalog view, with partial

results shown in Figure 9-23.

Listing 9-22. Retrieving a List of Supported iFTS Document Types

SELECT *

FROM sys.fulltext_document_types;

Figure 9-23. List of supported iFTS document types

Summary
SQL Server 2008 iFTS integration with the SQL query engine provides significant advantages

over prior versions of FTS. In addition to the performance, administration, flexibility, and

management benefits, this tighter integration with the database provides several opportunities

for greater transparency into the inner workings of iFTS. In prior releases of SQL Server, FTS

was somewhat of a black box, and full-text search administration and querying in general was

somewhat of an arcane black art.

Microsoft has taken advantage of SQL Server 2008’s new iFTS architecture by providing us

with several iFTS-specific DMFs, DMVs, and catalog views. These new system functions and

views provide more insight into the inner workings of iFTS than prior releases of SQL Server.

This new transparency demystifies full-text search, making it easier to understand, query,

administer, fine-tune, and troubleshoot. In this chapter, we discussed these new tools and the

insight they can provide into the inner workings of your iFTS implementations.

In the next chapter, we’ll discuss IFTS filters, including commercially developed filters and

custom filter design and development.

207

■ ■ ■

C H A P T E R 1 0

Filters

The wise ones fashioned speech with their thought, sifting it as grain is sifted
through a sieve.

— Buddha

In the first chapter, we introduced the interrelated components that enable SQL Server iFTS

functionality. In this chapter, we’ll explore filter components in detail and provide an overview

of other components, including the gatherer and protocol handlers, word breakers, and stem-

mers. We’ll discuss the different types of filters available for use with SQL Server 2008 iFTS,

including standard filters that come with SQL Server 2008 and third-party filters. We’ll also

show you how to create your own custom filters.

Introducing Filters
Filters are responsible for parsing data and returning chunks of content text and name/value

property pairs. For purposes of security and stability, filters are run outside of the SQL Server

process space. They’re managed by the filter daemon process, which is kicked off by the

gatherer, which is the component responsible for managing full-text index population, during

the indexing process. Where the protocol handler is data source–specific (in the case of iFTS, the

protocol handler is specific to SQL Server), filters are content-specific; that is, each filter handles

specific content formats. Regular character content in SQL Server is indexed using the built-in

plain text filter, xml data type content is indexed using the XML filter, and varbinary(max)

content is filtered based on a corresponding file extension stored in a file type column.

■Note We discussed filtering xml and varbinary(max) content in Chapter 6.

Standard Filters

SQL Server 2008 comes with several standard filters, supporting more than 50 different types

of file content out of the box. Table 10-1 is a short listing of some of the more commonly used

standard filters and the file types they support.

208 C H A P T E R 1 0 ■ F I L T E R S

In addition to the standard filters, Microsoft provides the Microsoft Filter Pack for

free download at http://download.microsoft.com. This filter pack works with several Micro-

soft products, including SQL Server 2008, and provides built-in support for indexing Microsoft

Office 2007 documents (.DOCX, .XLSX, and so on), Visio documents (.VSD, .VSDX), and even

compressed Zip files (.ZIP).

Third-Party Filters

If the standard filters don’t cover all the content types that you need to index, there are a variety

of third-party filters available to fill the void. Filters are available from several different vendors,

including the following:

• Adobe PDF filters are available from www.adobe.com and www.foxitsoftware.com.

• An AutoCAD DWG filter is available at www.dwgifilter.com.

• A WordPerfect filter is available at www.corel.com.

There are several web sites that compile listings of available filters and filter developers;

some filters are available for free while others can be bought commercially. A sample of these

sites include Hilary Cotter’s www.indexserverfaq.com site, the Document Locator site at

www.documentlocator.com/Support/IFilters, and the iFilterShop site at www.ifiltershop.com.

We’ve included sample PDF content in the iFTS_Books database to demonstrate the instal-

lation and use of a free third-party filter. Though Adobe offers older versions of its PDF filter for

separate download from the Adobe web site, the newest versions of the Adobe PDF filter are

downloaded and installed as part of Acrobat Reader. To demonstrate third-party filter func-

tionality, we downloaded and installed Acrobat Reader 9.0. To install the Adobe PDF filter and

index PDF content, perform the following steps:

1. Download and install Adobe Acrobat Reader from www.adobe.com. Follow the wizard

prompts as necessary.

2. The Adobe PDF filter is not exclusive to SQL Server. You install it and treat it like an

operating system (OS) resource. You need to set your SQL Server full-text service to load

OS resources with the following statement:

 EXEC sys.sp_fulltext_service 'load_os_resources', 1;

 GO

Table 10-1. Standard SQL Server 2008 Filters

Filter Name File Extension Description

Plain text filter .TXT Plain ASCII and Unicode text filter, no special
handling or markup

Office document
filter

.DOC, .XLS,

.PPS
Microsoft Office documents

HTML filter .HTM, .HTML HTML documents

XML filter .XML XML documents

C H A P T E R 1 0 ■ F I L T E R S 209

3. In prior versions of SQL Server, installing a new FTS filter required a restart of the full-

text service. In SQL Server 2008, no restart is required; you just need to execute the fol-

lowing statement to update the SQL Server full-text service with the new filter:

 EXEC sys.sp_fulltext_service 'update_languages', NULL;

4. Finally, you can verify the installation and registration with SQL Server iFTS by executing

the following query (partial results are shown in Figure 10-1):

 SELECT

 document_type,

 class_id,

 path

 FROM sys.fulltext_document_types

 WHERE document_type = N'.pdf';

Figure 10-1. Verifying installation and registration of the Adobe PDF filter

■Caution Prior versions of the Adobe PDF filter were designed and developed as apartment threaded,

which can cause performance and other issues when running in the multithreaded SQL iFTS environment. We

recommend using the newer versions of the Adobe PDF filter when possible.

After installing the Adobe PDF filter, your full-text indexes will automatically update if you

have them set for automatic change tracking. Otherwise, you’ll need to kick off a full popula-

tion manually.

Custom Filters

If you need to filter content for which the standard filters won’t work and there are no available

third-party filters, you can create a custom filter to index your content. Custom filter creation

is made possible through the magic of the Component Object Model (COM). Successfully

implementing a custom filter requires knowledge of a wide range of unmanaged coding tech-

nologies, including the following:

• C++ and object-oriented programming for Windows

• Development for COM interfaces and COM DLL component registration

• Multithreaded programming techniques

210 C H A P T E R 1 0 ■ F I L T E R S

In addition, knowledge of memory management techniques in unmanaged code is essen-

tial to filter development. Knowledge of standard libraries such as the Microsoft Foundation

Class (MFC) library, Active Template Library (ATL), and Standard Template Library (STL) is

extremely useful for filter development.

Custom Filter Development
Windows exposes several interfaces for designing your own custom full-text search components,

including the IFilter interface, which is the basis for filters. In this section, we’ll create a

simple custom filter to index the content of LaTeX documents.

■Tip Full-text search filters are often called iFilters because they’re created based on the IFilter interface.

LaTeX (usually pronounced “LAY-tek”) is a superset of Donald Knuth’s TeX (pronounced

“tek”) typesetting system. TeX was originally designed as a markup system for the production

of high-quality typesetting in documents. LaTeX was built on top of TeX to abstract away some

of the more mundane tasks required to create TeX documents. A simple LaTeX document is

shown in Listing 10-1.

Listing 10-1. Simple LaTeX Document

%%%

%

% Comments always begin with a % sign

% Everything after the % sign on the current line is ignored

%

%%%

\documentclass[12pt]{article} % here we set up some document metadata

\title{Simple \LaTeX{} Document}

\author{Michael Coles and Hilary Cotter}

\date{July 19, 2008}

\begin{document} % let the document begin!

\maketitle

\LaTeX{} documents are created from plain text documents with special

typesetting markup included. In fact we created this sample document in

\textbf{notepad}.

\section{Why Use \LaTeX{}?}

\LaTeX{} is used extensively in the world of academic publishing because of its

ability to perfectly typeset technical information like the formula for the area

C H A P T E R 1 0 ■ F I L T E R S 211

of a circle: $a = \pi r^2$ or the length of the hypotenuse of a right triangle

$c = \sqrt{a^2 + b^2}$.

\section{The \LaTeX{} Filter}

When creating a filter for \LaTeX{} we need to keep in mind that there are

several typesetting tags and additional markup that need to be taken into

consideration. \LaTeX{} recognizes over 5,000 special markup tags and symbols;

we will consider only a few of these for our filter sample.

\section{Acknowledgments}

Big thanks to Dr. Knuth and the folks at The \LaTeX{} Project

(\emph{http://www.latex-project.org}).

\section{The End}

Good bye!

\end{document}

After rendering this document with a LaTeX typesetting program, we get the result shown

in Figure 10-2.

Filter Interfaces

Now that we’ve given a brief overview of what LaTeX is and what it does, we’ll look at the inter-

faces we need to implement to design a simple filter for LaTeX content. We’ve chosen to use

the sample plain text filter for simple content, which is included as part of the Windows 2003

Platform Software Development Kit (SDK), as a starting point for our example LaTeX filter.

We’ll begin the design phase with a discussion of COM interfaces that the filter must implement.

■Tip The Windows 2003 Platform SDK includes a few different examples of source code for custom filters,

and is available for download from www.microsoft.com. We recommend downloading the Platform SDK

and familiarizing yourself with the source code before you undertake a new custom filter project.

Filters implement the IFilter interface and one or more of the IPersistFile, IPersistStream,

and IPersistStorage interfaces. Each filter DLL must also contain a COM class factory derived

from the IClassFactory interface. In addition, the filter DLL must export four functions—

DllRegisterServer, DllUnregisterServer, DllGetClassObject, and DllCanUnloadNow—as shown

in Figure 10-3.

212 C H A P T E R 1 0 ■ F I L T E R S

Figure 10-2. A rendered sample LaTeX document

The IClassFactory, IFilter, IPersistFile, IPersistStream, and IPersistStorage inter-

faces all inherit from the COM IUnknown interface. IUnknown provides the following three virtual

methods that must be implemented by the user:

• IUnknown::QueryInterface, which returns pointers to supported interfaces

• IUnknown::AddRef, which increments the reference count for the class

• IUnknown::Release, which decrements the reference count for the class

C H A P T E R 1 0 ■ F I L T E R S 213

Figure 10-3. Filter DLL classes, interfaces, and exported functions

Every COM class must maintain a count of the number of current references to the inter-

face pointer. When the reference count drops to 0, the memory for the interface is released.

The IClassFactory interface implements the following two additional methods for the

creation and management of objects:

• IClassFactory::CreateInstance, which creates an uninitialized object

• IClassFactory::LockServer, which locks the object server in memory to enhance

performance

In addition to IUnknown, the IPersist* interfaces also inherit from the IPersist interface.

IPersist implements only a single method, IPersist::GetClassID, which returns a class iden-

tifier (CLSID) of the object. The IPersist* interfaces require that you implement methods to

load and save data, as well as to check for changes to your source data during processing. In our

sample, we’ll be implementing the IPersistFile interface, which requires implementation of

the following methods:

• IPersistFile::Load, which opens the specified file and initializes an object from the

file’s contents

• IPersistFile::Save, which saves the object to the specified file

• IPersistFile::SaveCompleted, which informs the object that it’s safe to write to its file

• IPersistFile::IsDirty, which checks to see if the data in the file has changed since it

was last saved

• IPersistFile::GetCurFile, which retrieves the path to the current file

Since we’re creating a filter specifically for the SQL Server iFTS, we’ll create nonfunctional

stubs for many of the IPersistFile methods; the only method we’re really concerned with for

SQL Server iFTS is the IPersistFile::Load method.

The IFilter interface is where the real action happens. IFilter provides methods to initialize

a filtering session, read chunks of data from the data source, and return text and values from the

chunks of data. The IFilter interface requires implementation of the following five methods:

• IFilter::Init, which initializes a filtering session

• IFilter::GetChunk, which positions the filter at the beginning of the first, or subsequent,

chunk of data

Exported FunctionsInterfaces Filter DLL

DllRegisterServer

DllUnregisterServer

DllGetClassObject

DllCanUnloadNowIFilter

IClassFactory

IPersistFile
IPersistStream

IPersistsStorage

COM Filter

Class Factory

COM Filter

Class

214 C H A P T E R 1 0 ■ F I L T E R S

• IFilter::GetText, which retrieves text from the current data chunk

• IFilter::GetValue, which retrieves a value from the current data chunk

• IFilter::BindRegion, which is reserved for future use

Custom Filter Design

The design for the LaTeX filter is relatively simple. We simply open up the data source, read the

data one chunk at a time, and parse the data, returning one line of textual data at a time. This

is shown in simplified form as a flowchart in Figure 10-4.

Figure 10-4. Simplified LaTeX filter processing

We say the design is relatively simple in this case because the data is simple plain text with

textual markup. The textual data also has a natural break for pieces of text—the line break. All

of this simplifies processing to the point of a basic nested loop. The outer loop of this process

retrieves chunks of data from the source file and places them in a buffer. The inner loop returns

single lines of data from the chunk buffer. The actual implementation is slightly more complex,

since markup and some other details need to be properly handled, but overall the majority of

the filter’s functionality can be described with this simple processing model.

Our LaTeX filter implementation is based on the simple filter example provided in the

Windows 2003 Platform SDK. The simple filter example grabs chunks of data from the source

document and returns each chunk as text. The Platform SDK simple filter doesn’t account for

line breaks, comments, or markup—all of which must be accounted for in the LaTeX filter. The

items we’ll consider in the sample LaTeX filter include the following:

Create filter class instance

(use class factory)
Open source document

Close source document

End of chunk?

No

Read data chunk from

source document

Parse line of text from

data chunk and return

Begin

End

Source document

End of source

document?

No

YesYes

C H A P T E R 1 0 ■ F I L T E R S 215

• The % character indicates the start of a comment. All characters after the % will be

ignored, up to the end of the current line.

• The \ character indicates the start of a markup tag. There are two types of tags we’ll

consider: tags that have additional information in trailing braces ({}) and tags that don’t

have trailing braces. For this example, we won’t be doing anything special with markup

tags other than consuming and disposing of their content. In a more complex filter,

however, you might want to grab the content of specific markup tags and return it as

name/value property pairs.

• The carriage return (0x0d) and line feed (0x0a) characters both indicate an end-of-line

condition. The end-of-line condition requires special handling, since comments and

some tags can end with the end of a line of text.

The filter implementation requires two classes to be implemented: the filter class factory

and the filter class, which we’ll describe in the sections following. We’ll implement this filter in

C++ and compile to native code based on the Microsoft filter team’s recommendations.

Although .NET-based filter components are being tested in various forms, the filter team has

recommended that filters be developed using C++/COM and compiled to native code.

Filter Class Factory

The CTeXFilterCF class is the LaTeX filter class factory. The sole purpose of this class factory is

to build instances of the CTeXFilter class. The header file for this class is shown in Listing 10-2.

Listing 10-2. CTeXFilterCF Header File

class CTeXFilterCF : public IClassFactory

{

public:

 virtual SCODE STDMETHODCALLTYPE QueryInterface

 (

 REFIID riid,

 void ** ppvObject

);

 virtual ULONG STDMETHODCALLTYPE AddRef();

 virtual ULONG STDMETHODCALLTYPE Release();

 virtual SCODE STDMETHODCALLTYPE CreateInstance

 (

 IUnknown * pUnkOuter,

 REFIID riid, void ** ppvObject

);

 virtual SCODE STDMETHODCALLTYPE LockServer

 (

 BOOL fLock

);

private:

216 C H A P T E R 1 0 ■ F I L T E R S

 friend SCODE STDMETHODCALLTYPE DllGetClassObject

 (

 REFCLSID cid,

 REFIID iid,

 void ** ppvObj

);

 CTeXFilterCF();

 ~CTeXFilterCF();

 long InstanceCount;

};

As you can see by the header declarations, the CTeXFilterCF class factory implements all of

the IClassFactory interface methods. The CTeXFilterCF::CreateInstance method, shown in

Listing 10-3, is the main method of this class. CreateInstance instantiates a new instance of the

CTeXFilter class to filter content.

■Tip Using standard COM protocol, a successful COM operation returns the S_OK code and a failure returns

an E_error code. You’ll notice the use of these return codes in many of the COM-based methods.

Listing 10-3. CTeXFilterCF::CreateInstance Class

SCODE STDMETHODCALLTYPE CTeXFilterCF::CreateInstance

(

 IUnknown * pUnkOuter,

 REFIID riid,

 void ** ppvObject

)

{

 CTeXFilter *pIUnk = 0;

 if (0 != pUnkOuter)

 return CLASS_E_NOAGGREGATION;

 pIUnk = new CTeXFilter();

 if (0 != pIUnk)

 {

 if (SUCCEEDED(pIUnk->QueryInterface(riid, ppvObject)))

 {

 // Release extra refcount from QueryInterface

C H A P T E R 1 0 ■ F I L T E R S 217

 pIUnk->Release();

 }

 else

 {

 delete pIUnk;

 return E_UNEXPECTED;

 }

 }

 else

 return E_OUTOFMEMORY;

 return S_OK;

}

The CTeXFilterCF::AddRef and CTeXFilterCF::Release methods are important as well.

These two COM methods maintain the reference count, removing the interface from memory

when the reference count reaches 0. Listing 10-4 shows the AddRef and Release methods. These

methods use the InterlockedIncrement and InterlockedDecrement functions to synchronize

multithreaded access to the InstanceCount variable.

Listing 10-4. CTeXFilterCF::AddRef and CTeXFilterCF::Release Methods

ULONG STDMETHODCALLTYPE CTeXFilterCF::AddRef()

{

 return InterlockedIncrement(&InstanceCount);

}

ULONG STDMETHODCALLTYPE CTeXFilterCF::Release()

{

 ULONG Tmp = InterlockedDecrement(&InstanceCount);

 if (Tmp == 0)

 delete this;

 return Tmp;

}

The CTeXFilterCF::QueryInterface method is the implementation of the COM QueryInterface

method, as required by the IUnknown interface. This method returns pointers to interfaces

supported by this class. Listing 10-5 shows the implementation of QueryInterface.

Listing 10-5. CTeXFilterCF::QueryInterface Method

SCODE STDMETHODCALLTYPE CTeXFilterCF::QueryInterface

(

 REFIID riid,

 void ** ppvObject

)

218 C H A P T E R 1 0 ■ F I L T E R S

{

 IUnknown *pUnkTemp;

 if (IID_IClassFactory == riid)

 pUnkTemp = (IUnknown *)(IClassFactory *)this;

 else if (IID_IUnknown == riid)

 pUnkTemp = (IUnknown *)this;

 else

 {

 *ppvObject = NULL;

 return E_NOINTERFACE;

 }

 *ppvObject = (void *)pUnkTemp;

 pUnkTemp->AddRef();

 return S_OK;

}

The DllCanUnloadNow method informs SQL Server whether the filter DLL can be unloaded.

To conserve memory, SQL Server will automatically unload the filter DLL if it hasn’t been used

for an extended period of time. Listing 10-6 shows the DllCanUnloadNow method.

Listing 10-6. DllCanUnloadNow Method

extern "C" SCODE STDMETHODCALLTYPE DllCanUnloadNow

(

 void

)

{

 if (0 >= InstanceCount)

 return S_OK;

 else

 return S_FALSE;

}

The DllMain method is the DLL entry point method, called when the DLL is initially loaded

or unloaded. Listing 10-7 is the DllMain method exposed by the filter DLL.

Listing 10-7. DllMain Method

extern "C" BOOL WINAPI DllMain

(

 HINSTANCE hInstance,

 DWORD fdwReason,

 LPVOID lpvReserved

)

C H A P T E R 1 0 ■ F I L T E R S 219

{

 if (DLL_PROCESS_ATTACH == fdwReason)

 DisableThreadLibraryCalls(hInstance);

 return TRUE;

}

The DllGetClassObject method is a method that COM calls internally to load and create

an instance of the COM object. You won’t call this method directly, but it’s used by the COM

CoLoadLibrary function, which is called in turn by the COM CoGetClassObject function.

Listing 10-8 is the DllGetClassObject method.

Listing 10-8. DllGetClassObject Method

extern "C" SCODE STDMETHODCALLTYPE DllGetClassObject

(

 REFCLSID cid,

 REFIID iid,

 void ** ppvObj

)

{

 IUnknown *pResult = 0;

 if (CLSID_CTeXFilter == cid)

 pResult = (IUnknown *)new CTeXFilterCF;

 else

 return CLASS_E_CLASSNOTAVAILABLE;

 if (0 != pResult)

 {

 If (SUCCEEDED(pResult->QueryInterface(iid, ppvObj)))

 // Release extra refcount from QueryInterface

 pResult->Release();

 else

 {

 delete pResult;

 return E_UNEXPECTED;

 }

 }

 else

 return E_OUTOFMEMORY;

 return S_OK;

}

220 C H A P T E R 1 0 ■ F I L T E R S

Filter Class

The filter class factory, CTeXFilterCF, creates instances of the filter class, CTeXFilter. The

CTeXFilter class performs the actual filtering we discussed previously. This class implements

both the standard COM IUnknown management methods and additional methods to perform

the following three main filtering functions:

1. Open the source data for reading.

2. Read the source data in chunks.

3. Process the chunks, handling comments and markup tags, returning one line at a time.

The first step to implementing the filter is to define a CLSID for the filter class. The CLSID

can be generated from the command line with the GUIDGEN utility, which is located in the bin

subdirectory of the Platform SDK. Figure 10-5 shows the GUIDGEN utility in action.

Figure 10-5. Using the GUIDGEN utility to generate a CLSID

The CLSID is added to the registry during installation so the OS can locate and create

instances of the CTeXFilter class as needed. The CLSID we generated for the CTeXFilter class

is {6fc40ad8-8657-4429-a816-abef6974b763}. Listing 10-9 defines the CLSID as a GUID constant.

Listing 10-9. Defining the CLSID As a Constant

// CTeXFilter Class ID

// {6fc40ad8-8657-4429-a816-abef6974b763}

GUID const CLSID_CTeXFilter =

C H A P T E R 1 0 ■ F I L T E R S 221

{

 0x6fc40ad8,

 0x8657,

 0x4429,

 {0xa8, 0x16, 0xab, 0xef, 0x69, 0x74, 0xb7, 0x63}

};

The CTeXFilter class implements both the IFilter and IPersistFile interfaces. Apart

from the COM interface methods, the CTeXFilter class implements several methods and flags

required to process the source data. The flags exposed include end-of-line and end-of-buffer

indicators, among others. Listing 10-10 shows the header for the CTeXFilter class.

Listing 10-10. CTeXFilter Class Header

// CTeXFilter filter class

class CTeXFilter :

 public IFilter,

 public IPersistFile

{

public:

 virtual SCODE STDMETHODCALLTYPE QueryInterface

 (

 REFIID riid,

 void ** ppvObject

);

 virtual ULONG STDMETHODCALLTYPE AddRef();

 virtual ULONG STDMETHODCALLTYPE Release();

 virtual SCODE STDMETHODCALLTYPE Init

 (

 ULONG grfFlags,

 ULONG cAttributes,

 FULLPROPSPEC const * aAttributes,

 ULONG * pFlags

);

 virtual SCODE STDMETHODCALLTYPE GetChunk

 (

 STAT_CHUNK * pStat

);

 virtual SCODE STDMETHODCALLTYPE GetText

 (

 ULONG * pcwcBuffer,

 WCHAR * awcBuffer

);

 virtual SCODE STDMETHODCALLTYPE GetValue

222 C H A P T E R 1 0 ■ F I L T E R S

 (

 PROPVARIANT ** ppPropValue

);

 virtual SCODE STDMETHODCALLTYPE BindRegion

 (

 FILTERREGION origPos,

 REFIID riid,

 void ** ppunk

);

 virtual SCODE STDMETHODCALLTYPE GetClassID

 (

 CLSID * pClassID

);

 virtual SCODE STDMETHODCALLTYPE IsDirty();

 virtual SCODE STDMETHODCALLTYPE Load

 (

 LPCWSTR pszFileName,

 DWORD dwMode

);

 virtual SCODE STDMETHODCALLTYPE Save

 (

 LPCWSTR pszFileName,

 BOOL fRemember

);

 virtual SCODE STDMETHODCALLTYPE SaveCompleted

 (

 LPCWSTR pszFileName

);

 virtual SCODE STDMETHODCALLTYPE GetCurFile

 (

 LPWSTR * ppszFileName

);

private:

 friend class CTeXFilterCF; // Class Factory

 CTeXFilter(); // Ctor

 ~CTeXFilter(); // Dtor

 bool CTeXFilter::Eob() { return _Eob; }; // Return end of block flag

 bool CTeXFilter::Eol() { return _Eol; }; // Return end of line flag

 // Convert Code Page to Wide Character

 SCODE CTeXFilter::ConvertCP2Wide

C H A P T E R 1 0 ■ F I L T E R S 223

 (

 char * SourceBuffer,

 ULONG CodePage,

 ULONG BufferLength

);

 WCHAR CTeXFilter::GetChar(); // Get a character from the buffer

 // Unget a character from the buffer

 void CTeXFilter::UngetChar(WCHAR Wch)

 {

 UngotChar = Wch;

 UngetPending = true;

 };

 void CTeXFilter::GetMarkup(); // Get markup from the buffer

 void CTeXFilter::DoMarkup(); // Do markup

 void CTeXFilter::EatLine(); // Eat remaining characters on the current line

 void CTeXFilter::EatBraces(); // Eat everything within the nested braces

 // following, including the braces

 bool In_Markup_Flag; // Currently within markup flag

 std::wstring Markup_Tag; // Markup tag

 int BraceLevel; // Brace nesting level flag

 HANDLE FileHandle; // Handle to the input file

 long Refs; // Reference count

 WCHAR * FileName; // Name of input file to filter

 ULONG ChunkID; // Current chunk id

 ULONG CodePage; // Current default codepage

 bool Contents_Req_Flag; // Contents requested flag

 bool _Eof; // End of file flag

 WCHAR * Chunk_Buffer; // Chunk buffer

 WCHAR * CurrentChar; // Current character pointer

 ULONG Chunk_Length; // Length of current chunk

 ULONG Chunk_Read_Pos; // Read position within current chunk

 bool UngetPending; // Unget character pending flag

 WCHAR UngotChar; // Ungot character

 bool In_Comment_Flag; // Currently within a comment flag

 bool _Eol; // End of line flag

 bool _Eob; // End of block flag

};

The CTeXFilter class exposes the CTeXFilter::Init method to initialize an instance of the

class. The Init method opens the source document, sets appropriate flags, and prepares to

read the source data in chunks. Listing 10-11 shows the CTeXFilter::Init method.

224 C H A P T E R 1 0 ■ F I L T E R S

Listing 10-11. CTeXFilter::Init Method

SCODE STDMETHODCALLTYPE CTeXFilter::Init

(

 ULONG grfFlags,

 ULONG cAttributes,

 FULLPROPSPEC const * aAttributes,

 ULONG * pFlags

)

{

 // Ignore flags for text canonicalization (text is unformatted)

 // Check for proper attributes request and recognize only "contents"

 if (0 < cAttributes)

 {

 ULONG ulNumAttr;

 if (0 == aAttributes)

 return E_INVALIDARG;

 for (ulNumAttr = 0; ulNumAttr < cAttributes; ulNumAttr++)

 {

 if (guidStorage == aAttributes[ulNumAttr].guidPropSet &&

 PID_STG_CONTENTS == aAttributes[ulNumAttr].psProperty.propid)

 break;

 }

 if (ulNumAttr < cAttributes)

 _Contents_Req_Flag = true;

 else

 _Contents_Req_Flag = false;

 }

 else if (0 == grfFlags ||

 (grfFlags & IFILTER_INIT_APPLY_INDEX_ATTRIBUTES))

 _Contents_Req_Flag = true;

 else

 _Contents_Req_Flag = false;

 _Eof = false;

 // Open the file previously specified in call to IPersistFile::Load

 if (0 != FileName)

 {

 if (INVALID_HANDLE_VALUE != FileHandle)

C H A P T E R 1 0 ■ F I L T E R S 225

 {

 CloseHandle (FileHandle);

 FileHandle = INVALID_HANDLE_VALUE;

 }

 FileHandle = CreateFile

 (

 (LPCWSTR)FileName,

 GENERIC_READ,

 FILE_SHARE_READ | FILE_SHARE_DELETE,

 0,

 OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,

 0

);

 if (FileHandle == INVALID_HANDLE_VALUE)

 return FILTER_E_ACCESS;

 }

 else

 return E_FAIL;

 // Enumerate OLE properties, since any NTFS file can have them

 *pFlags = IFILTER_FLAGS_OLE_PROPERTIES;

 // Re-initialize

 ChunkID = 1;

 return S_OK;

}

The CTeXFilter::GetChunk method retrieves the source data in chunks of 10,000 bytes. Each

chunk is read into a chunk buffer in turn. After a chunk is read into the buffer, it’s converted to

wide-character (Unicode) form using the current ANSI code page. The support function

ConvertCP2Wide provides this conversion functionality. After the buffer conversion all subsequent

manipulations are performed, and results are returned, in Unicode.

SQL Server automatically calls the filter’s GetChunk method when you indicate that all text

has been returned from the current chunk. When all chunks have been processed, the GetChunk

method returns the FILTER_E_END_OF_CHUNKS status. If a chunk has been successfully retrieved,

GetChunk returns S_OK. Listing 10-12 shows the CTeXFilter::GetChunk method.

Listing 10-12. CTeXFilter::GetChunk Method

SCODE STDMETHODCALLTYPE CTeXFilter::GetChunk

(

 STAT_CHUNK * pStat

)

226 C H A P T E R 1 0 ■ F I L T E R S

{

 if (FileHandle == INVALID_HANDLE_VALUE)

 return FILTER_E_ACCESS;

 // Read characters from single-byte file

 char InBuffer[TEXT_FILTER_CHUNK_SIZE];

 if (!ReadFile

 (

 FileHandle,

 InBuffer,

 TEXT_FILTER_CHUNK_SIZE,

 &Chunk_Length,

 NULL

)

)

 return FILTER_E_ACCESS;

 else if (Chunk_Length == 0)

 _Eof = true;

 if (!Contents_Req_Flag || _Eof)

 return FILTER_E_END_OF_CHUNKS;

 ConvertCP2Wide(InBuffer, CodePage, Chunk_Length);

 // Set chunk description

 pStat->idChunk = ChunkID;

 pStat->breakType = CHUNK_NO_BREAK;

 pStat->flags = CHUNK_TEXT;

 pStat->locale = GetSystemDefaultLCID();

 pStat->attribute.guidPropSet = guidStorage;

 pStat->attribute.psProperty.ulKind = PRSPEC_PROPID;

 pStat->attribute.psProperty.propid = PID_STG_CONTENTS;

 pStat->idChunkSource = ChunkID;

 pStat->cwcStartSource = 0;

 pStat->cwcLenSource = 0;

 ChunkID++;

 Chunk_Read_Pos = 0;

 CurrentChar = Chunk_Buffer;

 return S_OK;

}

Once the source buffer has been populated and converted to Unicode, it’s time to start

reading the text from the buffer line by line. The CTeXFilter::GetText method provides this

functionality. Once the buffer has been filled with GetChunk, SQL Server calls the GetText

C H A P T E R 1 0 ■ F I L T E R S 227

method continuously until the buffer has been depleted. It’s within the GetText method that

we perform special processing, such as recognizing comments, markup tags, and special

characters. During processing, we also process end-of-line and end-of-buffer conditions.

Listing 10-13 shows the GetText method.

Listing 10-13. CTeXFilter::GetText Method

SCODE STDMETHODCALLTYPE CTeXFilter::GetText

(

 ULONG * GetText_Buffer_Length,

 WCHAR * GetText_Buffer

)

{

 if (Chunk_Buffer == NULL) // If buffer is empty, return no more text status

 return FILTER_E_NO_MORE_TEXT;

 // Initialize variables

 ULONG GetText_Write_Pos = 0;

 ULONG Output_Buffer_Length = *(GetText_Buffer_Length);

 bool Done_Flag = false;

 // Grab the first char, and continue grabbing chars until

 // end of buffer, output buffer full, or other done indicator

 WCHAR Wch = GetChar();

 while (

 (GetText_Write_Pos < Output_Buffer_Length) &&

 (!Eob()) &&

 (!Done_Flag)

)

 {

 if (!In_Comment_Flag) // If not in a comment then check these

 {

 if (Wch == '\\') // Look for a markup tag leading backslash

 {

 Markup_Tag = L"";

 GetMarkup(); // Get the markup tag

 Wch = ' ';

 }

 if (In_Markup_Flag) // If in a markup tag already, continue

 // getting markup

 {

 GetMarkup();

 Wch = ' ';

 }

 if (Wch == '%') // If a comment start, set in comment flag

228 C H A P T E R 1 0 ■ F I L T E R S

 {

 *(GetText_Buffer + GetText_Write_Pos) = ' ';

 In_Comment_Flag = true;

 }

 else if (Eol()) // If at end of line then done flag

 {

 *(GetText_Buffer + GetText_Write_Pos) = Wch;

 In_Comment_Flag = false;

 Done_Flag = true;

 }

 else // Otherwise just output the char to the buffer

 {

 *(GetText_Buffer + GetText_Write_Pos) = Wch;

 }

 GetText_Write_Pos++; // Increment output buffer pointer

 }

 else

 {

 if (Eol()) // If at end of line then done

 {

 In_Comment_Flag = false;

 Done_Flag = true;

 *(GetText_Buffer + GetText_Write_Pos) = Wch;

 GetText_Write_Pos++;

 }

 }

 Wch = GetChar(); // Get next character

 }

 // Set the output text buffer length

 *GetText_Buffer_Length = GetText_Write_Pos;

 // If the output buffer length is 0, delete the buffer

 if (GetText_Write_Pos == 0)

 {

 delete Chunk_Buffer;

 Chunk_Buffer = NULL;

 return FILTER_E_NO_MORE_TEXT;

 }

 return S_OK;

}

The GetText method depends on several private functions, including the following:

• GetChar, which retrieves the text from the buffer one character at a time

• UngetChar, which puts a single character back on the buffer

• GetMarkup, which reads and subsequently processes markup tags

C H A P T E R 1 0 ■ F I L T E R S 229

As each line of the buffer is read and processed, it’s written back to the output buffer. The

output buffer and the number of characters in the output buffer are both returned when a call

to GetText completes. The text returned by GetText is subsequently fed into word breakers to

complete the indexing process.

CHUNKING AND EFFICIENCY

Data is read in chunks for efficiency reasons. If you had to read an entire 50, 100, or 500 MB file into memory

all at once in order to index it, you’d tie up a lot of server resources, including CPU and memory, for an

extended period of time. Multiply that by 10, 100, or 1,000 files of that size and you could cause a serious drain

on your server until indexing completes. By reading the data in small chunks of well-defined size, you get the

benefit of being able to amortize the resource cost of indexing over a longer period of time, ensuring that

filtering and indexing documents doesn’t bring your server to its knees. Chunking does introduce some

complexities, however, which we’ll describe later in this section.

While the design for the GetText routine is relatively simple, it’s complicated by the fact that you’re

retrieving the text from the file in chunks. You essentially have to maintain some state information between

calls to GetText. For instance, if GetText is in the middle of a comment in the buffer when the method ends

due to an end of buffer condition, and you haven’t reached the end of line yet, GetText needs to resume

reading the comment once the buffer has been refreshed with a new chunk.

To keep this example simple, we decided to simply retrieve the data a single line at a time with GetText;

however, more complex design patterns are possible. For instance, it’s possible to populate an internal

memory structure, such as a linked list or b-tree, with the contents of structured source data in the index.

Subsequent calls to GetText could be used to traverse the in-memory structure and return elements from

memory.

The balance of the remaining filter code represents support functions, such as EatLine and

EatBraces, which grab characters from the input buffer in response to calls from the DoMarkup

routine. The DoMarkup routine itself handles LaTeX markup tags.

Compiling and Installing the Filter

There are four steps required to compile and install a filter for SQL Server 2008 iFTS:

1. Compile the source code.

2. Copy the DLL to the Windows\System32 directory.

3. Register the DLL on the server and create appropriate registry entries.

4. Configure SQL Server to load unsigned system resources.

We’ll cover all of these steps in this section. To perform the first step, filter compilation,

simply load the TeXFilt solution into Visual Studio and choose Build ➤ Compile from the

menu, as illustrated in Figure 10-6.

230 C H A P T E R 1 0 ■ F I L T E R S

Figure 10-6. Compiling TeXFilt solution

The result of compiling the solution is a DLL called TeXFilt.dll. To perform the second

and third steps, copy the filter file to the Windows\System32 directory and run regsvr32 on it, as

shown in Figure 10-7.

Figure 10-7. Copying the DLL to the System32 directory and registering it

C H A P T E R 1 0 ■ F I L T E R S 231

Filter DLL registration for SQL Server also requires that additional registry entries be

created. Although these additional registry entries are often included in the registration methods

of the DLL, we’ve decided to separate them out into a separate TeXFilt.reg file because it’s

easier to read. After copying the DLL and running regsvr32, double-click the TeXFilt.reg file

to install the appropriate registry entries. The registry entries are shown in Listing 10-14.

Listing 10-14. TeXFilt.reg Filter Registry Entries

Windows Registry Editor Version 5.00

[HKEY_CLASSES_ROOT\.tex]

@="LaTeX.Document"

[HKEY_CLASSES_ROOT\.tex\PersistentHandler]

@="{51BFBAD1-09B0-4BD4-9509-FD09E26FF32A}"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\LaTeX.Document]

@="Class for LaTeX Documents"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\LaTeX.Document\CLSID]

@="{098f2470-bae0-11cd-b579-08002b30bfeb}"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{098f2470-bae0-11cd-b579-➥

08002b30bfeb}]

@="LaTeX Document Files"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{098f2470-bae0-11cd-b579-➥

08002b30bfeb}\CLSID]

@="{51BFBAD1-09B0-4BD4-9509-FD09E26FF32A}"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{51BFBAD1-09B0-4BD4-9509-➥

FD09E26FF32A}]

@="LaTeX Document Persistent Handler"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{51BFBAD1-09B0-4BD4-9509-➥

FD09E26FF32A}\PersistentAddinsRegistered\{89bcb740-6119-101a-bcb7-00dd010655af}]

@="{6fc40ad8-8657-4429-a816-abef6974b763}"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{6fc40ad8-8657-4429-a816-➥

abef6974b763}]

@="LaTeX Document Filter"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{6fc40ad8-8657-4429-a816-➥

abef6974b763}\InprocServer32]

@="c:\\windows\\system32\\TeXFilt.dll"

232 C H A P T E R 1 0 ■ F I L T E R S

When SQL Server needs to index a document, it traverses the registry to match the docu-

ment type with the appropriate filter. Figure 10-8 shows a simplified version of how SQL Server

uses the registry to connect the file extension .tex to the TeXFilt.dll filter.

Figure 10-8. Traversing the registry to relate a file extension to the appropriate filter DLL

On the SQL Server side, you need to tell SQL Server to load OS resources and turn off signa-

ture verifications for iFTS components. Listing 10-15 shows a script that will do this for you.

Listing 10-15. Configuring SQL Server to Load Unsigned Filters

EXEC sys.sp_fulltext_service N'load_os_resources', 1;

GO

EXEC sys.sp_fulltext_service N'verify_signature', 0;

GO

EXEC sys.sp_fulltext_service N'update_languages', NULL;

GO

Testing the Filter

You can use the utilities provided in the Platform SDK to test your custom filters. The Platform

SDK provides three tools for testing your filters, all located in the Platform SDK bin subdirec-

tory. The first tool is filtreg.exe. Running this tool at the command line shows you a list of all

registered filters on the computer, as shown in Figure 10-9. This is useful for determining

whether your filter is installed correctly. The LaTeX filter is shown highlighted in the figure.

■Tip Microsoft supplies several tools, utilities, and code samples in the Windows Platform SDK. The

Platform SDK can be downloaded for free from www.microsoft.com/downloads. We highly recommend

downloading and installing the Platform SDK if you’re developing custom filters and other iFTS components.

C H A P T E R 1 0 ■ F I L T E R S 233

Figure 10-9. Filtreg.exe registered filter list

The second tool is filtdump.exe. This tool takes the name of a document as a parameter.

It automatically loads the correct filter based on the file extension and filters the document

contents. The result is that you see exactly the type of output SQL Server iFTS gets when it

invokes the filter on documents of the same type. This is particularly useful for troubleshooting

the GetChunk and GetText methods. Figure 10-10 shows the output of filtdump.exe on the

Sample.tex document.

Figure 10-10. Results of filtdump.exe

234 C H A P T E R 1 0 ■ F I L T E R S

The ifilttst.exe filter test utility is located in the bin\winnt subdirectory of the Platform

SDK. This tool accepts command-line switches such as /i to specify an input file name, /d to

specify a file dump, and /l to specify logging to a file. The following command line shows how

to run ifilttst.exe on the Sample.tex file:

ifilttst /i Sample.tex /d /l

The results are output to the following files:

• Sample.tex.dmp: a dump file that contains the output of the filter produced by

ifilttst.exe

• Sample.tex.log: a log file that shows the result of all the calls to the filter methods that

ifilttst.exe tests

Figure 10-11 shows a portion of the Sample.tex.log file generated by ifilttst.exe.

Figure 10-11. Results of ifilttst.exe

In addition to the tools that come free with the Platform SDK, there’s a tool called IFilter

Explorer, available from Citeknet at www.citeknet.com. This tool lets you view all of the filters

installed on your computer, for all applications that use them. Figure 10-12 shows the IFilter

Explorer in action.

C H A P T E R 1 0 ■ F I L T E R S 235

Figure 10-12. Citeknet IFilter Explorer

Gatherer and Protocol Handler
The gatherer and protocol handler are two closely related components. The protocol handler

is a data source–specific component that feeds the gatherer during full-text crawl operations.

The protocol handler component supplied with SQL Server is specific to SQL Server, and

provides connectivity and communication capabilities between SQL Server and iFTS. Because

of its data source–specific functionality, it’s unlikely that you’ll need to create a custom protocol

handler for SQL Server; generally the need for custom protocol handlers is based on a require-

ment to use Indexing Service to index data in a custom data source.

The gatherer component is responsible for scheduling and driving full-text index popula-

tion. The gatherer works in conjunction with the full-text crawl threads, in turn launching the

filter daemon process that manages filters.

236 C H A P T E R 1 0 ■ F I L T E R S

Word Breakers and Stemmers
Word breakers are language-specific components that literally break up the text returned by

the IFilter::GetText method into individual words. The rules that define exactly what consti-

tutes a word vary depending on the language. Consider the following two sys.dm_fts_parser

queries:

-- Parse 'data-base' in English

SELECT *

FROM sys.dm_fts_parser('data-base', 1033, 0, 0);

-- Parse 'data-base' in German

SELECT *

FROM sys.dm_fts_parser('data-base', 1031, 0, 0);

The English and German word breakers in this instance treat the hyphen differently. The

English word breaker breaks the word into three pieces: data, base, and database. The German

word breaker enforces a more strict interpretation of the hyphen, returning only data and base.

The word breaker feeds its words into the stemmer to retrieve stemmed versions of the

words. The stemmer takes your words and returns variants, including verb conjugations and

pluralized nouns, based on a language-specific dictionary lookup. For instance, the stemmer is

responsible for returning the search terms goes, going, gone, and went when you specify a

search for the inflectional forms of the word go. We discuss inflectional word forms in detail in

Chapter 3.

The word breaker and stemmer are so closely interrelated that they’re implemented

within the same DLL. Like filters, word breakers and stemmers are COM-based. Word breakers

implement the IWordBreaker interface, while stemmers implement the IStemmer interface.

■Note Both of these interfaces are documented at Microsoft’s MSDN web site:

http://msdn.microsoft.com.

The Platform SDK includes a simple example of a word breaker and stemmer combination

DLL, referred to as the language resource sample (or lrsample for short). The lrsample shows

how to create a simple word breaker that recognizes word-breaking characters and tokenizes

words from input. It also includes a simple stemmer that performs a dictionary lookup to

return inflectional forms of a small set of words.

■Tip It’s unlikely that you’ll encounter a need to create custom word breakers and stemmers. The excep-

tions are if you decide to implement support for a language that’s currently not supported by iFTS, or if your

business is a third-party provider of such tools.

C H A P T E R 1 0 ■ F I L T E R S 237

Summary
In this chapter, we discussed the details of full-text search components including filters, word

breakers, and stemmers. We talked about the built-in iFTS filters, as well as additional filters

available from Microsoft and third parties, and then demonstrated the creation of your own

COM-based filters. We detailed the COM implementation including the interfaces you must

implement in order to create a custom filter.

We also discussed word breakers and stemmers, which are language-specific. Generally

speaking, the only time you’ll need to install or create a custom word breaker or stemmer is for

specialized applications, such as implementing support for a language that’s not supported by

default.

239

■ ■ ■

C H A P T E R 1 1

Advanced Search Techniques

A computer will do what you tell it to do, but that may be much different from what you
had in mind.

—Joseph Weizenbaum

The focus of this book has been on full-text search, specifically the SQL Server 2008 iFTS

implementation. Full-text search falls into a class of search technologies known as fuzzy

search. The main idea behind fuzzy search is that the computer should accept user requests

and return what the user actually wants, which as we all know is not necessarily the same as

what was asked for. While iFTS is a highly optimized and proven technology for performing

fuzzy searches on documents and large blocks of textual information stored in the database,

it’s not ideal for other types of searches. We’ll explore some of these additional search require-

ments in this chapter and provide sample code to fulfill these needs.

Spelling Suggestion and Correction
A common user request is for a means of taking user input and suggesting spelling corrections

for misspelled words. If your user inputs cw, for instance, you might want to suggest possible

corrections such as cow and caw. Many proposed solutions for this problem introduce ineffi-

ciencies, because they involve prefix and mid-string wildcard searches that don’t work well

with most indexing structures.

Though not natively supported by SQL Server, there is a data structure that provides an

excellent facility for this type of fuzzy matching. The ternary search tree has the efficiency of a

string prefix tree (or trie, which is a “digital tree”) with the space efficiency of a binary tree.

Unlike binary trees, in which each node has two child nodes, each node in a ternary search tree

has three child nodes: a low child node, a high child node, and a middle child node. Figure 11-1

shows the structure of a small ternary search tree. This ternary search tree contains five short

words: cash, caw, cow, dog, and fish. Note that although each node logically has three child

nodes, we’ve eliminated all empty child nodes from the diagram to keep the representation

simple.

240 C H A P T E R 1 1 ■ A D V AN CE D SE A R C H T E C H N I Q U E S

Figure 11-1. Ternary search tree structure

The ternary search tree has some interesting properties that we can take advantage of to

implement spelling suggestion and spell checking functionality, including the following:

• Each node of the tree stores a single character for comparison, making searches of the

tree extremely efficient.

• Ternary search trees can quickly retrieve words containing single-character wildcards.

• Words that are similar tend to group together within the tree structure. It’s this last property,

known as a near neighbors, that we’ll exploit to create a SQL Server–based spelling

suggestion feature.

Hamming Distance

When you search for word suggestions based on a given input string, how do you measure the

similarity of dictionary words against the input string? The answer is Hamming distance. The

Hamming distance of two strings (strings of characters or strings of bits, in fact) of equal length

is the number of differences between them. Another way of thinking about Hamming distance

is the number of actions required to convert one string to another. Converting the word cow to

dog, for instance, requires two changes: replacing the initial c with the letter d and replacing the

final w with the letter g. Therefore, the Hamming distance (or edit distance) between these two

words is 2.

■Note The edit distance between two strings is the difference between them, as measured by the number

of deletions, insertions, replacements (and in some algorithms, two-character transpositions) required to

convert one string into another. Edit distance is actually a generalization of Hamming distance, though the

terms can be used nearly interchangeably for our purposes.

C H A P T E R 1 1 ■ A D V A N C E D S E A R C H T E C H N I Q U E S 241

Spelling Suggestion Implementation

We decided to implement a ternary search tree–based spelling suggestion feature for SQL CLR

in C#. We used the excellent C# ternary search tree implementation by Jonathan de Halleux,

with only a few minor modifications, as the basis for our SQL CLR assembly. We won’t dive

deeply into the ternary search tree implementation, but Jonathan’s source code is available for

download at http://www.codeproject.com/KB/recipes/tst.aspx if you want to get into the details.

The iFTS_Books database contains a table called dbo.Dictionary. This dictionary contains

more than 43,000 words from the “alternate unofficial” 12Dicts dictionary, compiled by

Kevin Atkinson. The 12Dicts dictionary and other dictionaries are available for download at

ftp://ftp.gnu.org/gnu/aspell/dict/0index.html. The assembly we’ve created for spelling

suggestion, called SpellCheck, has four public methods that are exposed as SQL CLR stored

procedures:

• The ReloadDictionary procedure loads the dictionary from the dbo.Dictionary table

into the internal ternary search tree structure. Populating the tree involves opening a

context connection to the database and querying the dbo.Dictionary table to get all

the dictionary entries.

• The GetDictionary procedure lists all of the dictionary entries stored in the internal

ternary search tree structure. This is useful for debugging purposes, since the recom-

posed ternary search tree contents should match the contents of the dbo.Dictionary

table.

• The GetSuggestions procedure accepts two parameters: an input string and an edit

distance. This procedure traverses the ternary search tree and returns all entries that

are within the specified edit distance of the input string. The procedure also returns a

column containing the actual calculated edit distance, so you can see exactly how far

apart the dictionary entries are from your input string.

• The GetMatch procedure is a bonus procedure we’ve included to demonstrate the ternary

search tree’s wildcard searching ability. The procedure accepts a single parameter, an

input string, which can contain ? wildcard characters. The wildcard characters match a

single character in the string, so that c?w will match the dictionary words cow and caw.

SQL CLR SHARED STATE

In order to make the code as efficient as possible, the SQL CLR assembly stores a static ternary search tree in

memory. This introduces the practical issue of maintaining shared state within the assembly, something that

SQL CLR takes very seriously. One issue with shared state is maintaining integrity when multiple users are

simultaneously updating and accessing the shared state. Based on our design, updating the static ternary

search tree is an all-at-once operation. Dealing with simultaneous updates isn’t as big an issue as it would

otherwise be.

The other issue is that SQL Server can unload an AppDomain completely at any point if an error occurs

or if memory pressure demands it. Because of this, we perform a check every time you run the GetSuggestions

or GetMatch procedure to see if the ternary search tree is populated. If not, the assembly kicks off the method that

populates the tree.

242 C H A P T E R 1 1 ■ A D V AN CE D SE A R C H T E C H N I Q U E S

When you run the GetSuggestions procedure as in Listing 11-1, it returns results like those

shown in Figure 11-2.

Listing 11-1. Getting Suggestions for the String “cow”

EXEC dbo.GetSuggestions 'cow', 2;

Figure 11-2. Suggestions within an edit distance of two for the word “cow”

For this example, the procedure returns 23 suggestions. Note that the suggestions returned

are all less than the edit distance specified in the query. A distance of 0 represents an exact

match. You can use the Distance column to sort results in client applications based on rele-

vance. If you expand the search by increasing the edit distance, you’ll get significantly larger

numbers of results. As a rule, we’d recommend using an edit distance of 2 or 3 in most instances

to keep the result set manageable.

We’ve also included a C# Windows forms spell check client in the download code. When

you run this sample client in Visual Studio, it automatically retrieves word suggestions from

SQL Server as you type. You can also change the sensitivity level, which adjusts edit distance

specified in the stored procedure calls. This type of utility is easily adaptable to Web 2.0–style

applications, where this type of functionality is demanded by sophisticated users. Figure 11-3

shows a sample of the client application in action.

The bonus procedure we’ve included, GetMatch, demonstrates simple wildcard searching

with the ternary search tree. Listing 11-2 calls this procedure to return all words from the

dictionary that are five characters long, begin with the letter c, and contain the letter d in

the third position. The second, fourth, and fifth characters are unknown, as represented by the

wildcard ? character. The results are shown in Figure 11-4.

C H A P T E R 1 1 ■ A D V A N C E D S E A R C H T E C H N I Q U E S 243

Figure 11-3. Word suggestions for the word “fsh” in a client application

Listing 11-2. Wildcard Search in the Ternary Search Tree

EXEC dbo.GetMatch 'c?d??';

Figure 11-4. Wildcard search against the ternary search tree

Name Searching
Another area in which fuzzy search techniques are often needed, but where full-text search

doesn’t necessarily help, is name-based searching. Searching for customer or other informa-

tion in a database by name is a common scenario. Unfortunately, there are many factors at

play, not the least of which is the countless number of ways to pronounce different words with

similar spellings. This is particularly bad with surnames, which are often derived from other

languages with different (often regional) pronunciation rules from English.

244 C H A P T E R 1 1 ■ A D V AN CE D SE A R C H T E C H N I Q U E S

Another problem, particularly with the English language, is the dizzying array of excep-

tions to every rule in the language. George Bernard Shaw used the made-up word ghoti as an

example to demonstrate some of the strange rules of English. Ghoti is an imagined alternate

spelling for the word fish. This alternate spelling applies the following rules of English:

• gh is pronounced f as in cough.

• o is pronounced i as in women.

• ti is pronounced sh as in nation.

Although ghoti is a contrived example, it encapsulates many of the problems involved in

name-based searching. The fact of the matter is that someone searching for a name pronounced

“jeer-a-dell-ee” might have to search for several variations including Jeradelli, Jaerardeli,

Ghiradelli, Jheradeli, and possibly many others. Wouldn’t it be great if you could enter a search

string that approximated the sound of a name and still locate the necessary customer (or other)

records? One answer to this problem is phonetic search.

Phonetic Search
Phonetic search includes methods of encoding words as their phonetic equivalents. It’s imple-

mented by algorithms that attempt to approximate the pronunciation of words. Back in the

early 20th century, Robert Russell and Margaret O’Dell patented a sound-based indexing

system known as Soundex. The Soundex system was designed for indexing U.S. Census Bureau

records from the late 19th century. Many modern phonetic algorithms are based, to some

degree, on Soundex.

Of course, Soundex has many shortcomings, not the least of which is its simplicity, which

was actually its prime asset before the age of computers. Soundex encoding was designed so

that it could be performed by clerks with varying levels of education. The rules had to be

formulaic in their simplicity, easy to memorize, and capable of being implemented with the

most rudimentary of tools (for example, with pencil, paper, and an occasional preprinted

template). This simplicity doesn’t work well these days, due in large part to a great increase in

surnames of non–Western European origin.

Fortunately for us, several people have developed more advanced Soundex replacements,

all of which improve upon the algorithm in some areas but inherit some of Soundex’s limita-

tions in other areas. In this section, we’ll discuss some of these phonetic search algorithms.

Soundex

SQL Server includes a version of the Soundex algorithm natively via the SOUNDEX function.

When you pass a string to the SOUNDEX function, it returns a four-character phonetic encoding.

Soundex codes consist of an alphabetic character followed by three numbers, each representing

a grouping of letters that are pronounced similarly. For instance, the letters B, F, P, and V are all

grouped together and converted to a numeric code of 1.

SQL Server also provides Soundex match scoring via the DIFFERENCE function. The DIFFERENCE

function accepts two strings, Soundex-encodes them, and then compares the encoded values.

DIFFERENCE returns values between 0 (worst match) and 4 (best match). Listing 11-3 uses the

C H A P T E R 1 1 ■ A D V A N C E D S E A R C H T E C H N I Q U E S 245

DIFFERENCE and SOUNDEX functions to retrieve surnames from the dbo.Surnames table that have

a Soundex code close to the code for Johnson. Partial results are shown in Figure 11-5.

Listing 11-3. Using SQL Server’s SOUNDEX and DIFFERENCE Functions

SELECT

 Id,

 Surname,

 SOUNDEX(Surname) AS Surname_Soundex,

 DIFFERENCE(Surname, N'Johnson') AS Soundex_Difference

FROM dbo.Surnames

WHERE DIFFERENCE(Surname, N'Johnson') >= 3;

Figure 11-5. Surnames matched for closeness by Soundex

As you can see from the matches that Soundex returns—most people wouldn’t tell you

that James sounds like Cunningham—Soundex is not the most accurate algorithm available. In

fact, Soundex is infamous for returning a lot of false positives and poor matches. There are

other algorithms available including improvements to Soundex, such as the NYSIIS algorithm

we’ll cover in the next section.

NYSIIS

The New York State Identification and Intelligence System (NYSIIS) was created as a Soundex

replacement in 1970. NYSIIS performs a function similar to Soundex; namely, it creates a

phonetic version of an input name. The phonetic version is a rough representation of the way

a name is pronounced. Consider Table 11-1, which contrasts the phonetic encodings gener-

ated by both the NYSIIS and Soundex algorithms for the same surnames.

246 C H A P T E R 1 1 ■ A D V AN CE D SE A R C H T E C H N I Q U E S

Even though NYSIIS is based on Soundex, the differences in encoding rules used result in

quite different encodings in many instances. For one thing, NYSIIS preserves the relative posi-

tioning of vowels within a phonetic encoding (it replaces vowels with A). Name prefixes are

also encoded using different rules. For instance, NYSIIS replaces the letter K with C, while

Soundex always preserves the first letter. Suffix handling is different as well, since NYSIIS strips

trailing S characters and trailing vowels.

We’ve implemented the NYSIIS algorithm within a SQL CLR user-defined function called

dbo.NYSIIS in the iFTS_Books sample database. For testing purposes, we’ve included the

dbo.Surnames table, which contains the most common 88,000 surnames in the United States as

reported by the U.S. Census Bureau. This table contains both a Surname column with plain-text

surnames and a Surname_NYSIIS column with the NYSIIS-encoded versions. Listing 11-4

demonstrates a simple search against this table for names that sound like Rambo, courtesy of

the dbo.NYSIIS function. Results are shown in Figure 11-6.

Table 11-1. Comparison of NYSIIS and Soundex Sample Phonetic Encodings

Surname NYSIIS Soundex

BARRIOS BAR B620

BURROWS BAR B620

BARRAZ BAR B620

CALE CAL C400

COLAS CAL C420

COLES CAL C420

KOHLES CAL K420

DUNN DAN D500

DEAN DAN D500

DENNIS DAN D520

DOWNS DAN D520

PILON PALAN P450

PULLINS PALAN P452

PULLIN PALAN P450

PALIN PALAN P450

SIMS SAN S520

SIMMS SAN S520

SAMS SAN S520

C H A P T E R 1 1 ■ A D V A N C E D S E A R C H T E C H N I Q U E S 247

Listing 11-4. Searching for Names That Sound Like “Rambo”

SELECT

 Surname,

 Surname_NYSIIS

FROM dbo.Surnames

WHERE Surname_NYSIIS = dbo.NYSIIS(N'Rambo');

Figure 11-6. Names that sound like “Rambo”

As you can see from the results in Figure 11-6, NYSIIS returns better-quality results than

Soundex.

String Similarity Metrics
String similarity calculations are another tool that can be used to perform fuzzy searches. String

similarity is based on similarities between the spelling of two words, rather than pronunciation.

String similarity is useful for narrowing down results returned by phonetic search algorithms,

or for other situations where you need to calculate the difference between strings.

Longest Common Subsequence

The longest common subsequence or LCS algorithm is used to calculate the similarity between

two strings. LCS compares two strings and retrieves the character subsets they share in common,

while maintaining the order of characters. As an example, the LCS for the strings Joseph and

Joel is calculated as shown in Figure 11-7.

The two strings are compared character by character using LCS, and all characters that

appear in both strings (in order, though not necessarily contiguous) are combined to create the

LCS. Note that, even though the word Joseph has an S between the O and the E, the E is still

considered part of the LCS. The LCS gives you a good approximate calculation of the difference

between two strings and provides a good scoring mechanism for calculating a numeric simi-

larity score. LCS and LCS variants are commonly used in a wide variety of applications and

utilities (such as diff) that compare files and report their differences.

248 C H A P T E R 1 1 ■ A D V AN CE D SE A R C H T E C H N I Q U E S

Figure 11-7. LCS for Joseph and Joel

■Note Longest common subsequence is not the same as longest common substring, though they are

easily confused. Longest common substring is actually a specialized application of the longest common

subsequence algorithm. Longest common substring requires all characters matched to be contiguous (with

no intervening characters in the sequence).

We’ve implemented the LCS algorithm as a SQL CLR user-defined function named dbo.LCS.

The function accepts two strings and returns their LCS. In addition, we’ve included a function

called dbo.ScoreLCS that calculates the LCS for two strings and returns a similarity score. The

similarity score is between 0.0 and 1.0, representing the range between no match and a perfect

match. This score is calculated by dividing the length of the LCS by the length of the longer

input string. Listing 11-5 calculates the LCS and an LCS score for the words Joseph and Joel. The

results are shown in Figure 11-8.

Listing 11-5. Calculating LCS and Score for Two Strings

SELECT

 dbo.LCS

 (

 N'Joel',

 N'Joseph'

) AS LCS,

 dbo.ScoreLCS

 (

 N'Joel',

 N'Joseph'

) AS Score;

C H A P T E R 1 1 ■ A D V A N C E D S E A R C H T E C H N I Q U E S 249

Figure 11-8. LCS and score for the words Joel and Joseph

LCS is useful for calculating a similarity metric between two strings; however, it’s a rather

inefficient algorithm of complexity O(mn), where m and n are the lengths of the two input

strings. This algorithm literally builds a matrix with dimensions [m, n], and populates the

matrix as it calculates the similarity between the two strings. Because of this complexity, we

recommend using another method to narrow down your result set before applying a string

similarity algorithm such as LCS to further narrow down your results.

Edit Distance

Another algorithm, closely related to LCS, is edit distance. As we mentioned previously in this

chapter, edit distance is a generalized form of Hamming distance. Like Hamming distance and

LCS, edit distance is a measure of the similarity (or difference) between two strings.

We’ve implemented an edit distance algorithm known as the Damerau-Levenshtein Edit

Distance as a SQL CLR function. This algorithm acts on two input strings in a manner similar

to LCS, by building a matrix. Unlike LCS, Damerau-Levenshtein counts the number of opera-

tions required to convert one input string into another. The algorithm accounts for four types

of operations:

• Insertions: An insertion is a single character that must be inserted into one string to turn

it into the other string. For instance, the word you needs to have the letter r inserted to

turn it into the word your.

• Deletions: A deletion is a single character that must be deleted from one string to turn it

into the other string. As an example, the word places needs to have the letter s deleted to

turn it into the word place.

• Replacements: A replacement is a single character that must be replaced in one string to

turn it into the other string. The letter u must be replaced with a in the word mush to turn

it into the word mash, for instance.

• Transpositions: A transposition is a side-by-side swap of two characters in one string to

turn it into the other string. Consider the word cast, which requires a transposition of the

letters s and t to turn it into the word cats.

The Damerau-Levenshtein Edit Distance algorithm is implemented as the function

dbo.DamLev. You can call this function with two strings to calculate the edit distance between

them. Listing 11-6 calculates the edit distance between the words lastly and listen. The results

are shown in Figure 11-9.

250 C H A P T E R 1 1 ■ A D V AN CE D SE A R C H T E C H N I Q U E S

Listing 11-6. Calculating Damerau-Levenshtein Edit Distance Between the Words “lastly” and “listen”

SELECT dbo.DamLev

(

 N'lastly',

 N'listen'

);

Figure 11-9. Edit distance between “lastly” and “listen”

Like the LCS algorithm, Damerau-Levenshtein has a complexity of O(mn), where m and n

are the lengths of the two input strings. Because of this, we recommend narrowing down your

result set using another method before calculating the edit distance between results.

N-Grams

The complexity of the edit distance and LCS algorithms is generally O(mn), where m and n are

the lengths of the two input strings being compared. These algorithms are computationally

intensive and aren’t efficient for on-the-fly calculations on large data sets. Another algorithm

for string comparison that’s much more flexible and efficient in T-SQL set-based programming

is the n-gram algorithm.

The n-gram algorithm requires preprocessing of the strings to be compared. All strings are

divided into sequences of contiguous letters of length n (generally a length of 3 or 4, trigrams

and quadgrams, are used). By preprocessing the search strings and storing the n-grams in the

database, you can use T-SQL’s set-based operators to efficiently locate matching approximate

strings. Consider Figure 11-10, which shows the trigrams for the surname Richardson.

The dbo.GetNGrams SQL CLR function divides a word into n-grams. This function accepts

two parameters: a string to process and the length of the n-grams to produce. The result is a

table of n-grams, each with an ID number starting with 0 for the first n-gram and increasing

from left to right. Listing 11-7 uses the dbo.GetNGrams function to retrieve trigrams for the

surname Richardson. Results are shown in Figure 11-11.

Listing 11-7. Retrieving N-Grams for the Surname Richardson

SELECT *

FROM dbo.GetNGrams

(

 3,

 N'Richardson'

);

C H A P T E R 1 1 ■ A D V A N C E D S E A R C H T E C H N I Q U E S 251

Figure 11-10. The surname Richardson divided into a set of trigrams

Figure 11-11. Trigrams produced by dbo.GetNGrams for the
surname Richardson

Once the words are divided into n-grams, you can store them in a table and use simple and

efficient T-SQL inner joins to find approximate matches for given strings. The trade-off for

n-gram efficiency is increased preprocessing and storage requirements, but the results tend

to be both fast and accurate.

The dbo.GetTriGramMatches function performs exactly this type of join against the

dbo.Surnames_TriGrams table to retrieve approximate matches for an input surname. The proce-

dure accepts a surname to match and a minimum quality score. The results are returned as a

table with the ID for matching surname, the surname itself, and the quality score. The proce-

dure calculates Dice’s coefficient to determine the quality of matches. Only matches that have

a quality greater than, or equal to, the minimum specified quality score are returned.

252 C H A P T E R 1 1 ■ A D V AN CE D SE A R C H T E C H N I Q U E S

The dbo.GetTriGramMatches function is designed as a T-SQL table-valued function and

begins with the following function header and results table definitions:

CREATE FUNCTION dbo.GetTrigramMatches

(

 @Surname nvarchar(128),

 @Quality decimal(10, 4)

)

RETURNS @r TABLE

(

 Id int PRIMARY KEY NOT NULL,

 Surname nvarchar(128),

 Quality decimal(10, 4)

)

The body of the function begins by retrieving the count of trigrams produced by the

surname that was passed in as a parameter:

 DECLARE @i decimal(10, 4);

 SELECT @i = COUNT(*)

 FROM dbo.GetNGrams(3, @Surname);

The function then declares a CTE that performs the bulk of the work, joining the trigrams

of the name passed in as a parameter to the dbo.SurnameTriGrams table. The CTE returns three

columns: an ID for each surname matched, the matching surname, and Dice’s coefficient for

matching surnames as a quality metric:

 WITH NGramCTE

 (

 Id,

 Surname,

 Quality

)

 AS

 (

 SELECT

 t.Surname_Id AS Id,

 s.Surname AS Surname,

 COUNT(t.Surname_Id) * 2.0 / (@i +

 (

 SELECT COUNT(*)

 FROM SurnameTriGrams s1

 WHERE s1.Surname_Id = t.Surname_Id

)) AS Quality

C H A P T E R 1 1 ■ A D V A N C E D S E A R C H T E C H N I Q U E S 253

 FROM SurnameTriGrams t

 INNER JOIN Surnames s

 ON t.Surname_ID = s.Id

 WHERE EXISTS

 (

 SELECT 1

 FROM dbo.GetNGrams(3, @Surname) g

 WHERE g.NGram = t.NGram

)

 GROUP BY

 t.Surname_Id,

 s.Surname

)

Finally, the function inserts the results of the CTE into the results table, but only where the

quality metric is greater than, or equal to, the minimum quality value passed in as a parameter:

 INSERT INTO @r

 (

 Id,

 Surname,

 Quality

)

 SELECT

 Id,

 Surname,

 Quality

 FROM NGramCTE

 WHERE Quality >= @Quality;

Listing 11-8 shows how to use the dbo.GetTriGramMatches function to retrieve a list of

trigram matches for the surname Smith with quality of at least 0.6. Results are shown in

Figure 11-12.

Listing 11-8. Retrieving Trigram Matches for the Surname Smith with Quality of at Least 0.6

SELECT *

FROM dbo.GetTriGramMatches

(

 N'Smith',

 0.6

);

254 C H A P T E R 1 1 ■ A D V AN CE D SE A R C H T E C H N I Q U E S

Figure 11-12. Results of trigram matches for surname Smith

Because the dbo.GetTriGramMatches function uses set-based processing, order is consid-

ered unimportant. However, you can increase the accuracy of your results by using positional

information in your queries. The dbo.GetTriGramMatches_Distance function performs the same

function as dbo.GetTriGramMatches, but it further narrows the results by accepting a distance

parameter. The distance calculation enforces another rule on the comparison: matching trigrams

must fall within similar relative positions in both strings. The dbo.GetTriGramMatches_Distance

function is similar to dbo.GetTriGramMatches, but it includes a BETWEEN predicate in the CTE to

limit matching trigrams to those that fall within a specific distance:

 SELECT

 t.Surname_ID AS Id,

 s.Surname AS Surname,

 COUNT(t.Surname_Id) * 2.0 / (@i +

 (

 SELECT COUNT(*)

 FROM dbo.SurnameTriGrams s1

 WHERE s1.Surname_Id = t.Surname_Id

)) AS Quality

 FROM SurnameTriGrams t

 INNER JOIN Surnames s

 ON t.Surname_Id = s.Id

 WHERE EXISTS

C H A P T E R 1 1 ■ A D V A N C E D S E A R C H T E C H N I Q U E S 255

 (

 SELECT 1

 FROM dbo.GetNGrams(3, @Surname) g

 WHERE g.NGram = t.NGram

 AND g.Id BETWEEN t.NGram_Id - @Distance AND t.NGram_Id + @Distance

)

 GROUP BY

 t.Surname_Id,

 s.Surname

Listing 11-9 refines the example in Listing 11-8 by specifying a distance of 1, which means

that equal trigrams must fall within the range of -1 to +1 positions of each other in both strings

to be counted as a match. The results of Listing 11-9 are shown in Figure 11-13. Note that the

results have been reduced significantly by narrowing the n-gram relative distances.

Listing 11-9. Retrieving Trigram Matches with a Distance Indicator

SELECT *

FROM GetTriGramMatches_Distance

(

 N'Smith',

 0.6,

 1

);

Figure 11-13. Results of n-gram matches for the surname Smith with additional distance
restriction

N-gram matches are a particularly useful method for finding similarity between strings.

When n-grams are treated as sets, their implementation can be quite efficient in T-SQL.

256 C H A P T E R 1 1 ■ A D V AN CE D SE A R C H T E C H N I Q U E S

Summary
While full-text search, and SQL Server 2008’s iFTS implementation, is great for fuzzy searching

of textual data and documents, it’s not necessarily the right tool for name-based fuzzy searching.

The particular requirements of name-based searching are entirely different from the require-

ments for document-based searching, so different technology is needed.

In this chapter, we looked at a variety of approximate search technologies that go beyond

what full-text search offers. First, we looked at using ternary search trees for spelling suggestion

and correction applications. While SQL Server doesn’t expose built-in support for ternary

search trees, SQL CLR allows us to extend our SQL Server database to support this capability

via .NET code.

We also considered simple phonetic matching with SQL Server’s built-in SOUNDEX and

DIFFERENCE functions. Then we looked at achieving better quality phonetic matches with the

more modern NYSIIS phonetic algorithm.

String similarity metrics provide yet another method of fuzzy string matching. We looked

at several string similarity algorithms, including the longest common subsequence algorithm,

Damerau-Levenshtein Edit Distance, and n-gram matching. We also provided SQL CLR and

T-SQL code to implement the wide variety of fuzzy searching algorithms we covered in this

chapter.

The authors would like to thank Jonathan de Halleux for providing the base .NET ternary

search tree implementation, and Kevin Atkinson for providing the unofficial 12Dicts dictionary;

both of which were used in the spelling suggestion application example.

257

■ ■ ■

A P P E N D I X A

Glossary

If you wish to converse with me, define your terms.

—Voltaire

During our journey through the functionality in SQL Server 2008 iFTS, we’ve encountered

several terms that may not be familiar and widespread in use. Part of this has to do with the fact

that, until this release of SQL Server, full-text search was something of a black art. Only a select

few were expert enough at it to take full advantage of the power it provided. In addition, iFTS

has removed some terms from the Microsoft full-text lexicon and added new words—some

replacements, others brand new. In this appendix, we’ll provide definitions for a selection of

iFTS-related and other terms that we’ve used throughout this book.

BLOB
BLOB is an acronym for binary large object data. BLOB data can consist of binary documents,

graphic images, and other binary data. See also LOB, CLOB, NCLOB.

Catalog Views
Catalog views are system views that return information about database objects and catalog

metadata. Some of this information isn’t accessible through any other means. SQL Server

2008 supports some iFTS-specific catalog views.

CLOB
CLOB is an acronym for character large object data. CLOB data consists of large text documents.

See also LOB, BLOB, NCLOB.

CONTAINS Predicate
SQL Server 2008 supports the CONTAINS predicate, which allows the use of several advanced

full-text search options such as inflectional form generation, weighted searches, thesaurus

expansions and replacements, phrase searches, and proximity searches. See also FREETEXT

predicate, CONTAINSTABLE function.

258 A P P E N D I X A ■ G LO S S A R Y

CONTAINSTABLE Function
The CONTAINSTABLE function supports full-text searching with the same options as the

CONTAINS predicate, but it returns a table of IDs and rank values for the results. See

also CONTAINS predicate.

Crawl
See population.

Damerau-Levenshtein Edit Distance
The Damerau-Levenshtein Edit Distance algorithm is used to calculate the difference

between two strings. Damerau-Levenshtein calculates the number of operations needed

to convert one string to another string. The operations counted include deletions, insertions,

single-character replacements, and two-character transpositions.

Diacritics Sensitivity
Full-text catalogs (and the indexes they contain) and thesauruses can be made sensitive or

insensitive to diacritical marks through the diacritics sensitivity setting. Diacritical marks

include grave and acute accent marks, cedilla, and other distinguishing marks.

Dice’s Coefficient
Dice’s Coefficient is a similarity measure that can be calculated using the following formula:

where |x| is the number of matching n-grams of two given strings, and |s| and |t| are the

number of n-grams in each of the two strings. Dice’s Coefficient always falls between 0.0 and

1.0, with 1.0 representing the best match possible.

DocId
The DocId, or Document ID, is an integer surrogate key used by SQL Server to map a table’s

primary key to the data stored in the full-text index. If you use an integer primary key on your

table, SQL Server can eliminate the extra DocId mapping for better performance.

Document
Documents are textual or binary entities indexed and returned by full-text searches.

Dynamic Management Views and Functions
Dynamic Management Views (DMVs) and Dynamic Management Functions (DMFs) return

server state information that you can use to retrieve server state information. SQL Server

2008 supports some iFTS-specific DMVs and DMFs.

A P P E N D I X A ■ G L O S S A R Y 259

Edit Distance
Edit distance is a more sophisticated generalization of Hamming distance. Edit distance is

calculated by determining the number of operations required to convert one character

string into another character string. See also Hamming distance, Damerau-Levenshtein Edit

Distance.

Expansion Set
A thesaurus expansion set recognizes a word or token and expands the search to include

additional words or terms. See also replacement set.

Filestream
SQL Server 2008 supports filestream, which is a mechanism for storing BLOB data in the

NTFS file system but accessing and managing the data via T-SQL statements and the

OpenSqlFileStream API. See also BLOB.

Filter
Filters are content-type–specific components that are designed to extract useful data from

text-based or binary data. Filters are designed to ignore binary or textual content that is

unimportant for purposes of full-text search. Filters invoke language-specific word breakers

to tokenize content deemed important for full-text search purposes. See also word breaker.

Filter Daemon Host Process
The filter daemon host process (fdhost.exe) is external to the SQL Server process. For security

and stability of the SQL Server process, the filter daemon is used to load external filter

components.

FREETEXT Predicate
SQL Server 2008 supports the FREETEXT predicate, which performs a full-text search with

automatic inflectional form generation and thesaurus expansions and replacements. See

also CONTAINS predicate, FREETEXTTABLE function.

FREETEXTTABLE Function
The FREETEXTTABLE function supports full-text searching with the same options as the FREETEXT

predicate, but it returns a table of IDs and rank values for the results. See also FREETEXT

predicate.

Full-Text Catalog
In SQL Server 2008, the full-text catalog is simply a logical grouping of one or more full-text

indexes. The full-text catalog also defines the diacritics sensitivity settings for the full-text indexes

it contains. See also full-text index, diacritics sensitivity.

Full-Text Index
A full-text index is an inverted index of one or more documents. SQL Server may store a full-

text index entirely in memory or in disk storage. See also full-text catalog, inverted index.

260 A P P E N D I X A ■ G LO S S A R Y

Full-Text Search
Full-text search encompasses a variety of techniques used to search textual data and docu-

ments. SQL Server 2008 implements full-text search technology in the form of iFTS. See also

Integrated Full-Text Search.

Fuzzy Search
Fuzzy search encompasses a variety of techniques for searching textual data for approxi-

mate matches. Fuzzy search encompasses such technologies as full-text search, phonetic

search, substring matching, wildcard searching, n-gram matching, and other approximate

or inexact search techniques.

Gatherer
The gatherer component retrieves textual and binary data from database tables, streaming

the content to filters for indexing.

Generational Searches
Generational searches are searches that generate inflectional forms of search terms. See also

inflectional forms.

Hamming Distance
Hamming distance is a measure of the difference between two strings of characters or bits.

Hamming distance is determined by calculating the number of operations to turn one string

into another string. See also edit distance.

IFilter
IFilter is the COM-based interface used by iFTS filter components. Sometimes filters are

referred to as IFilters. See also filter.

Inflectional Forms
Inflectional forms of words include plural nouns, verb conjugations, and other word forms.

SQL Server iFTS can generate inflectional forms of words during searches. See also generation.

Integrated Full-Text Search
Integrated Full-Text Search, or iFTS, is the newest version of full-text search functionality

available in SQL Server. This version is available beginning with SQL Server 2008 and sports

several improvements, including in-database index and stoplist storage, new DMVs and

DMFs, and additional functionality not available in prior releases of SQL Server.

Inverted Index
An index structure that stores mapping information from content, such as tokens in docu-

ments or text, to their locations. In terms of iFTS, the full-text index is stored as an inverted

index that stores mappings from tokens to the rows that contain them. See also full-text index.

A P P E N D I X A ■ G L O S S A R Y 261

Jaccard Coefficient
The Jaccard Coefficient is used to calculate rankings for weighted CONTAINS searches in iFTS.

See also CONTAINS predicate, weighted search.

LOB
LOB is an acronym for large object data. SQL Server can store and manage large object data

(such as documents and images) up to 2.1GB in size. LOB data can be further divided into

BLOB, CLOB, or NCLOB data. See also BLOB, CLOB, NCLOB.

Longest Common Substring
The longest common substring (LCS) algorithm is a fuzzy search algorithm that returns all

characters that two strings have in common, where order is preserved. The substrings can

have intermediate characters that aren’t part of the common substrings.

N-Gram
The n-gram string matching algorithm is an approximate search algorithm. The n-gram

algorithm divides given words into sequences of characters of equal length known as n-grams.

It then tries to determine the number of exact n-grams that the words have in common. An

n-gram can be of any length, but they’re generally of length 3 or 4 (trigrams and quadgrams).

NCLOB
NCLOB is an acronym for national character large object data. NCLOB data consists of large

national character (Unicode) text documents. See also LOB, BLOB, CLOB.

Noise Words
Noise words were used in previous versions of SQL Server to eliminate extraneous, unhelpful

words from full-text searches. Stopwords replace noise words in SQL Server 2008. See also

stopwords.

NYSIIS
NYSIIS, the New York State Identification and Intelligence System, was introduced in 1970

as an improved version of the Soundex phonetic algorithm. See also Soundex.

Occurrence
SQL Server’s full-text indexes store the relative offsets of instances of words. The first occur-

rence of a given word in a document is occurrence 1, the next is occurrence 2, and so on.

Okapi BM25
The Okapi BM25 method is an alternate search results ranking method used by iFTS to rank

FREETEXT searches. See also FREETEXT predicate.

Phonetic Search
Phonetic search is a method of searching for words that sound similar to one another.

262 A P P E N D I X A ■ G LO S S A R Y

Phrase Search
Phrases are multiword tokens that are considered as a single atomic unit for purposes of

search.

Population
Population is the process of tokenizing documents and textual data and filling full-text

indexes with words returned by the word breaker component. See also word breaker.

Prefix Search
A prefix search is one in which a word has the wildcard * character at the end. Prefix searches

will locate words that begin with the given prefix.

Protocol Handler
The protocol handler is an application-specific component that pulls data from memory

using the gatherer and coordinates full-text index filtering and population.

Proximity Search
Proximity searching is the process of searching for words that are close to one another, or

within a specified number of words or characters from one another. The SQL Server CONTAINS

predicate supports proximity searching. See also CONTAINS predicate.

Replacement Set
Replacement sets are defined in iFTS thesaurus files to perform wholesale replacement of

specific search terms with other words or terms. See also expansion set.

Simple Term
A simple term is a simple word or phrase to be used in full-text search.

Soundex
Soundex is a 90-year-old algorithm for indexing names by sound. In Soundex, a name is

converted to a four-character code that begins with an alphabetic character and includes

three additional numeric digits. See also NYSIIS.

SQL Server Process
The SQL Server process (sqlserver.exe) is the process that hosts the SQL Server query engine

and the full-text query engine. Note that in versions of SQL Server prior to SQL Server 2008,

the full-text query engine was separated from the SQL Server process.

Stoplists
Stoplists are lists of stopwords stored in SQL Server. Stoplists can be associated with full-text

indexes in SQL Server. See also stopwords.

A P P E N D I X A ■ G L O S S A R Y 263

Stopwords
Stopwords are tokens that are specifically considered useless for terms of full-text search.

Stopwords are generally words that occur frequently in a given language and don’t add value

during a search of textual data. SQL Server includes several default system-defined stop-

words including and, the, and an, among others. See also stoplists, noise words.

Ternary Search Tree
The ternary search tree is a three-way data structure that combines the speed and efficiency

of digital search tries and binary search trees. Ternary search trees are useful for performing

near neighbor approximate searches.

Thesaurus
SQL Server iFTS supports an XML thesaurus containing replacement and expansion sets

to increase the breadth of full-text searches for specified words. See also expansion sets,

replacement sets.

Token
Tokens are the atomic sequences of characters returned by the word breaker component as

it applies language-specific word-breaking rules to textual data. See also word breaker.

Type Column
To index BLOB data, iFTS requires that you specify a type column containing a document

extension that indicates the type of content contained in the binary data. A type column

might include entries such as .doc for a Word document or .xml for an XML document. The

value in the type column determines which filter iFTS uses to index the given document. See

also BLOB.

Weighted Search
A weighted search is one in which some search terms are assigned greater importance than

others. In iFTS, you can perform weighted searches with the CONTAINS predicate. See also

CONTAINS predicate.

Word
See token.

Word Breaker
SQL Server uses components known as word breakers to tokenize textual data based on

language-specific rules. See also word stemmer.

Word Stemmer
SQL Server uses word stemmer components to generate inflectional forms of the words

tokenized by word breakers. See also word breaker.

265

■ ■ ■

A P P E N D I X B

iFTS_Books Database

The key, the whole key, and nothing but the key, so help me Codd.

—Mnemonic Summary of Codd’s First Three Normal Forms (Anonymous)

While this book was still in the early planning stages, the authors set about investigating how

we could best deliver meaningful and easy-to-use code samples. We found out pretty quickly

that the official Microsoft AdventureWorks 2008 sample database wasn’t up to the task. While

AdventureWorks has been completely redesigned for the 2008 release, it doesn’t have enough

variety and quantity of information to really show off the power and improved functionality

of iFTS.

Instead of making extensive modifications to the AdventureWorks database, we decided

to create a sample database that would better suit our needs and show off the full range of iFTS

functionality. We decided to model only a couple of logical entities in this database—namely,

books and book contributors (authors, editors, illustrators, and so on). The normalized physical

model of the iFTS_Books sample database is shown in Figure B-1.

The database itself is populated with data from a variety of sources, including public domain

books in various forms and information about authors and related topics from Wikipedia

(available under terms of the GNU Free Documentation License). This raw data provided us

with a widely varied multilingual set of texts to index and query using iFTS.

In addition, we’ve included sample data to demonstrate non-iFTS functionality, such as

the phonetic search functions in Chapter 11. This data comes in the form of common surnames

from the U.S. Census Bureau’s 1990 census data and the “unofficial” 12Dicts dictionary. These

additional samples are installed separately as described in the “Installing the Phonetic Samples”

section of this chapter.

266 A P P E N D I X B ■ I F T S _ B O O K S D A T A B A S E

Figure B-1. iFTS_Books physical model

A P P E N D I X B ■ I F T S _ B O O KS D A T A B A S E 267

Installing the Sample Database
We’ve attempted to make the installation of the iFTS_Books sample database as simple as

possible. To keep the download size manageable, we decided to utilize T-SQL installation

scripts to perform the installation. All sample code and iFTS_Books installation scripts are avail-

able as a single Zip file download from www.apress.com/book/sourcecode. The installation scripts

are located in the \Sample Database subdirectory of the Zip file. To install the iFTS_Books

sample database, follow these steps:

1. Download the sample code for this book from the www.apress.com web site.

2. Unzip the contents to your local hard drive.

3. Open the Command Prompt window and change the current directory to the \Sample

Database subdirectory. As an example, if you unzip the file to the C:\Sample Code

directory on your hard drive, you would change to the C:\Sample Code\Sample Database

subdirectory in this step.

4. Run the setup.bat batch file from the command prompt. This batch file takes one or

three parameters. The first parameter is the server name. If you’re using Windows

Integrated security to connect to your SQL Server, this is all that’s necessary. If, however,

you’re using SQL Authentication, you’ll need to add two more parameters—a user name

and password to log into SQL Server. Figure B-2 shows how to call setup.bat with (local)

specified as the server name to install on the local server.

Figure B-2. Installing the iFTS_Books sample database to the local instance of SQL Server

5. The setup.bat batch file looks for a folder on your hard drive named C:\iFTS_Books. If

the directory doesn’t exist, it is created (you can manually modify the scripts to change

the installation location if you choose).

6. Setup.bat calls the sqlcmd command-line utility to execute T-SQL scripts that create the

iFTS_Books sample database, create and populate tables, define and populate full-text

indexes, and create other database objects.

268 A P P E N D I X B ■ I F T S _ B O O K S D A T A B A S E

Once the sample database has been installed, you can execute the sample code we’ve

included in this book.

Installing the Phonetic Samples
The iFTS_Books sample database also comes with the non-iFTS phonetic algorithm samples

that we described in this book. These are implemented using a combination of SQL CLR

assemblies and T-SQL functions. Assuming you’ve already downloaded and unzipped the

sample code files to your hard drive, follow these steps to install the phonetic algorithm samples:

1. Install the iFTS_Books database as discussed in the previous section.

2. Open the Command Prompt window and change the current directory to the \Phonetics

subdirectory. For example, if you unzipped to the C:\Sample Code directory, you would

change the current directory to C:\Sample Code\Phonetics.

3. Run the setup.bat batch file from the command prompt. This batch file also accepts

one parameter (server name) for Windows Integrated security and three parameters

(server name, user name, password) for SQL Authentication.

4. The setup.bat batch file uses the sqlcmd command-line utility to execute the appropriate

T-SQL installation scripts. These scripts create and load tables, register SQL CLR assem-

blies, and create T-SQL and SQL CLR user-defined functions.

After the phonetic samples are installed, you can execute the phonetic code samples from

Chapter 11.

Sample Code
In addition to the sample databases, we’ve included sample utilities throughout the book that

can utilize the iFTS_Books sample database and the phonetic algorithms demonstrated. This

source code is primarily written in T-SQL and .NET using C#.

There are some examples, however, that we created in other languages where appro-

priate. For instance, the iFTS filter sample from Chapter 10 was written in unmanaged

C++, per Microsoft’s recommendations. All non-SQL code samples provided were created

as Visual Studio 2008 solutions. You can open, compile, and execute the sample code using

Visual Studio 2008.

269

■ ■ ■

A P P E N D I X C

Vector-Space Searches

Space is big. You just won’t believe how vastly, hugely, mind-bogglingly big it is. I mean,
you may think it’s a long way down the road to the drug store, but that’s just peanuts to
space.

—Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Vector-space is an algebraic algorithm for representing text documents as vectors. Vector-space

is used by iFTS to perform weighted searches using the ISABOUT operator. We describe weighted

searches in Chapter 3. In this appendix, we’ll describe vector-space and how iFTS utilizes it.

This information is more detailed and technical, dealing with the inner workings of vector-space

search systems, which is why we decided to separate it from the general discussion of weighted

vector-space searches in iFTS.

Documents As Vectors
As we described in previous chapters, when a document is indexed by iFTS, each word is stored

in an inverted index. The index contains the document ID, word, and relative position in the

document where the word occurs. Consider a document containing the following quote from

the Roman poet Virgil:

Fortune favors the bold.

The word breaker and filter generate the token stream and remove stopwords, resulting in

the tokens shown in Figure C-1.

Figure C-1. Word breaker–generated token stream for Virgil quote

fortune

favors

bold

Tokens

270 A P P E N D I X C ■ V E C T O R - S P A C E S E A R C H E S

If we then indexed a second document containing the following Francis Bacon quote,

removing stopwords, we would get the tokens shown in Figure C-2:

Behind every great fortune there is a crime.

Figure C-2. Word breaker–generated token stream for Francis Bacon quote

Now that we’ve tokenized the source documents, the user can apply a search phrase. In

this case, we’ll use the simple search phrase bold fortune. After tokenization, the documents

and search phrase are assigned a value of 1 for each token from the stream that they contain,

and a value of 0 for each token that they don’t contain, as shown in Figure C-3.

Figure C-3. Tokens after ID assignment

By assigning zeroes and ones to the tokens in the documents and search phrase, we’re

now representing the text as single-row matrices, or vectors. The vectors are represented as

follows:

Fortune favors the bold. ➤ [0 1 0 0 1 1 0]

Behind every great fortune there is a crime. ➤ [1 0 1 1 1 0 1]

bold fortune ➤ [0 1 0 0 1 0 0]

behind

every

great

Tokens

fortune

crime

0

0

1

1

1

0

1

1

0

0

1

behind

bold

crime

every

fortune

favors

1

Virgil Quote Bacon QuoteTokens

1

0

1

0

0

1

0

Search Phase

00great

A P P E N D I X C ■ V E C T O R - S P A C E S E A R C H E S 271

Once the documents and search phrase are converted to their vector equivalents, the

differences between the documents can be calculated using the cosines between the vectors,

or another calculation of distance between vectors. The cosine distance between vectors can

be easily calculated using a simple dot product calculation. The formula is shown in Figure C-4.

Figure C-4. Dot product calculation

The mechanics of the dot product calculation are described in the “Dot Product Calculation”

sidebar in this section, and more specifics on matrix math and dot product calculations are

available at http://en.wikipedia.org/wiki/Dot_product. The essential point to take away is

that the cosine derived via the dot product calculation gives you a distance measure between

your two documents.

By calculating the dot product of the matrices, you’re essentially converting them to

Euclidean space, and you can plot them in two or three dimensions. Figure C-5 is a represen-

tation of vectors plotted in three-dimensional Euclidean space. The black arrows represent the

document and search phrase vectors, and the curved white arrows represent the distance

between vectors.

Figure C-5. Document and search phrase vectors plotted in 3D space

Bacon Quote

Search Phrase

Virgil Quote

272 A P P E N D I X C ■ V E C T O R - S P A C E S E A R C H E S

DOT PRODUCT CALCULATION

The dot product is defined by the relationship between the length and angle of two matrices. Using the formula

shown previously in Figure C-4, you can easily calculate the cosine of the angle between two documents that

have been converted to matrix representations. This gives you a basic measure of the difference, or distance,

between the two documents. The dot product formula begins with a simple matrix multiplication. Assuming V1

is the matrix that represents the text Fortune favors the bold, and V2 is the matrix for the search phrase bold

fortune, the formula begins by calculating the divisor, , as shown:

The bottom dividend consists of the magnitude of V1 multiplied by the magnitude of V2, represented as

. The magnitude of each matrix is calculated by taking the square root of the sum of all the elements in

the matrix squared. The following are the magnitude calculations for the previously multiplied vectors:

In the final calculation, you simply divide the result of the matrix multiplication by the product of the two

magnitudes. This gives you the cosine between the two matrices. Plugging the values we calculated earlier

into the dot product formula, we get the following final result:

The final result is the cosine between the two text matrices. By calculating the cosine between other

document matrices and the search phrase matrix, you can determine the relative similarity of the documents

to the search phrase. Of course, you don’t have to perform these types of calculations in vector space, as SQL

Server does this for you under the covers. SQL Server actually uses other more modernized calculations that

have been shown to give better results than these simple dot product calculations, but the basic idea is the

same.

A P P E N D I X C ■ V E C T O R - S P A C E S E A R C H E S 273

As Figure C-5 indicates, the Virgil quote is closer to the search phrase than the Bacon quote.

In the example, the search phrase shares two words in common with the Virgil quote, and has

only one word in common with the Bacon quote.

Essentially you can measure the length of the shadow cast by the document vector on the

search vector, taking the point of reference as your search vector. This is the functional equiv-

alent of doing a dot product (or inner product) on the search argument, a document collection

matrix.

In SQL Server, the older cosine method has been updated to use modern calculations,

since the cosine method doesn’t consider several factors, such as the frequency of word occur-

rence in the document. Information retrieval scientists have determined that accounting for

additional factors, such as the ratio of the frequency of each term in the document versus the

frequency of the term in the entire document collection and document length, results in better

quality results when calculating the similarity of document vectors,. For instance, a word that

is rare in a document collection but common in a given document should be weighted higher

than words that occur frequently throughout the document collection. Additionally, the

normalized length of documents should be considered when calculating similarity.

Once you have a document vector representation of a given document, it’s relatively easy

to compare this document vector to other document vectors with similar distributions of words.

For instance, a document vector for an essay on Eastern Canadian agriculture would look

nothing like a document vector for a white paper on SQL Server installation procedures. This is

because they would use completely different sets of words. However, a document vector for a

white paper on upgrading SQL Server 7 to SQL 2000 would have a lot in common with the

document vector for a white paper on installation procedures for SQL Server 2005. They would

use a lot of the same words and would result in a much closer match than the documents in the

previous example.

Informational retrieval researchers have realized this and are doing research into grouping

document vectors with similar word distributions together. They know that if your search

vector is close to another document vector (in other words, the search vector’s pattern word

distribution is similar to the document vector’s pattern), other document vectors that group

closely to a matching document vector probably contain subject matter that the searcher is

interested in. This topic is called latent semantic indexing, and such groups of document vectors

or document collections are one strategy for solving the problem of polysemy and synonymy,

which we discussed in Chapter 1. This is based on the fact that there will be similarities in the

semantics used in documents pertaining to the same subjects. In other words, documents that

are similar will have latent semantic similarities to them. (Semantics is the study of meaning in

language.)

While vector-space search functionality is often used, it does come under criticism from

some corners. The vector-space model has no formal basis in scientific theory, and is instead

based on informal observations and experience. While there are other formalized search models

based on probability theory, they don’t yield significantly better results than the vector-space

model.

275

Index

■Special Characters
% character, 215

* (wildcard asterisk), 60, 63

(.) operator, 86

{ } braces, 87

~ operator, 86

+ operator, 76–77, 80–83, 86–90, 92–93

<.> operator, 86

\ character, 215

■A
abstract syntax tree (AST), 88

accent marks, 105, 180–181

Accent sensitivity setting, 23

acronyms, 53

Active Template Library (ATL), 210

ADD clause, 37

Add stopword option, 148

administration

database full-text support, 21

full-text catalogs

CREATE FULLTEXT CATALOG

statement, 23–24

Full-Text Catalog Wizard, 21–23

overview, 21

upgrading, 24–25

full-text indexes

CREATE FULLTEXT INDEX statement,

33–35

DocId map, 33

Full-Text Indexing Wizard, 25–32

overview, 25

populating, 35–39

management

backups, 39–40

logs, 40

overview, 39

SQL Profiler events, 41–42

system procedures, 42–43

overview, 19

setup and configuration, 19–21

Adobe PDF filter, 209

advanced search techniques, 239–240

alphabets, 102

ALTER DATABASE statement, 133

ALTER FULLTEXT CATALOG statement, 23,

37

ALTER FULLTEXT INDEX statement, 28,

35–37, 39, 146, 152–153

ALTER FULLTEXT STOPLIST statement, 153,

156

analysis paralysis, 2

AND NOT operator, 62, 67, 86, 93

AND operator, 61, 67, 86, 93

apartment threaded, 209

apostrophes, 87

ar value, 110

Arabic, 102, 106

Article_Content column, 71, 123

Article_Content data, 123

Article_Content data type, 120

Article_Content XML data, 123

<article> tags, 123

AS DEFAULT option, 23

AST (abstract syntax tree), 88

ATL (Active Template Library), 210

AUTO option, 34–35

■B
BACKUP DATABASE statement, 39

backups, 39–40

bag of words approach, 74

Berry, Michel W., 16

bg value, 110

bidirectional writing, 103–104

bin subdirectory, 232

binary large object (BLOB) data

defined, 257

indexing

character large object (CLOB) data,

120–122

FILESTREAM BLOB data, 130–138

large object (LOB) data, 120

OpenSqlFilestream API, 139–144

276 ■I N D E X

overview, 119–129

XML LOB data, 122–126

bit parameter, 169

BLOB. See binary large object data

bn value, 110

BOL (Books Online), 20

Books Online (BOL), 20

Books table, 31, 33

Boolean operators, 45, 60–61

Boolean searches, 60–63

braces { }, 87

bricks, 7

Browne, Murray, 16

bugs, 99

byte array, 141–142

■C
ca value, 110

Callback method, 143

calling procedure, 82–84

capitalization, 103–104

c.Article_Content column, 50

case sensitivity, 180–181

catalog rebuild and reorganization, 37–38

catalog views

defined, 257

full-text catalogs, 197

full-text index metadata, 198–201

stoplists, 202–203

supported languages and document

types, 204–205

c.Commentary column, 50

CHANGE_TRACKING option, 35

change-tracking population, 37

char data type, 108

character large object (CLOB) data, 120–122,

257

character strings, 102

Chinese character string, 102

Chinese language, 99

Chinese word breaker, 102

Chinese words, 179

class identifier (CLSID), 213

clean_up property, 43

Clear stoplist option, 149

client applications

hit highlighting

calling procedure, 82–84

overview, 75

procedure, 75–81

overview, 10, 75

search engine-style search

defining grammar, 85–87

Extended Backus-Naur Form (EBNF),

87–88

Google-style queries, converting, 94

iFTS queries, generating, 91–93

Irony library, implementing grammar

with, 88–90

overview, 84–85

querying with new grammar, 94–96

CLOB (character large object) data, 120–122,

257

CLSID (class identifier), 213

code page, 108

CoGetClassObject function, 219

CoLoadLibrary function, 219

column rank-multiplier searches, 71–72

column_id column, 186, 189

COM (Component Object Model), 209

comment node delimiters, 167

Commentary column, 71, 79–80, 108,

120–121

Commentary_ID data, 122

compiling custom filters, 229–232

Component Object Model (COM), 209

compound words, 104–105

connect_timeout property, 43

contains() function, 71

CONTAINS FILESTREAM clause, 134

CONTAINS predicate

Boolean searches, 60–63

CONTAINSTABLE function, 69–70

defined, 257

FREETEXT query and, 48

generational searches, 64

overview, 58

phrase searches, 59–60

prefix searches, 63–64

proximity searches, 65–67

weighted searches, 67–69

CONTAINS predicate queries, 162

CONTAINS query, 75, 84–85, 91, 95–96, 162,

173, 175, 188

CONTAINSTABLE function, 47, 57, 69–70, 74,

95, 258

CONTAINSTABLE query, 94–95

CONTAINSTABLE search query string, 91

CONTAINSTABLE SQL query, 95

277■I N D E X

content language, 112

Control Panel, 126

ConvertCP2Wide function, 222, 225–226

ConvertQuery function, 91, 94

cosine method, 273

Cotter, Hilary, 208

crawl, 11, 258

CREATE DATABASE statement, 133

CREATE FULLTEXT CATALOG statement,

23–24

CREATE FULLTEXT INDEX statement, 23,

33–35, 53, 146, 152

CREATE FULLTEXT STOPLIST statement,

152

CREATE TABLE statement, 108, 114, 134

CreateInstance class, 215–216

CTeXFilter class, 215–216, 220–221, 223

CTeXFilterCF class, 215–217, 219–220, 222

CTeXFilterCF::AddRef method, 217

CTeXFilterCF::CreateInstance method, 216

CTeXFilterCF::QueryInterface method, 217

CTeXFilterCF::Release methods, 217

CTeXFilter::GetChunk method, 225

CTeXFilter::GetText method, 226

CTeXFilter::Init method, 223

currency, 54

custom filters

compiling, 229–232

design, 214

filter class, 220–229

filter class factory, 215–219

installing, 229–232

interfaces, 211–214

overview, 209–211

testing, 232–234

■D
Damerau-Levenshtein Edit Distance, 249,

258

data_timeout property, 43

database management system (DBMS), 4

Database subdirectory, 267

DATABASEPROPERTYEX function, 21

databases, 1

DataGridView control, 94, 139

dates, 54

db_owner role, 22

DBMS (database management system), 4

dbo user name, 22

dbo.Add_Stopwords procedure, 153, 155,

157, 161

dbo.Book table, 49, 53, 94–95, 114–115, 120,

128, 135, 152, 161–162, 189

dbo.Book_Denorm table, 114

dbo.Commentary column, 120

dbo.Commentary table, 71, 78–79, 108, 120,

122–123

dbo.Contributor_Birth_Place table, 71

dbo.Dictionary table, 241

dbo.GetNGrams SQL CLR function, 250

dbo.GetTriGramMatches function, 251–254

dbo.GetTriGramMatches_Distance function,

254

dbo.LCS function, 248

dbo.NYSIIS function, 246–247

dbo.ScoreLCS function, 248

dbo.Stoplist_ID function, 151

dbo.Surnames table, 245–246

dbo.Surnames_TriGrams table, 251–252

dbo.Upgrade_Noisewords procedure,

157–158, 161

dbo.Validate_Thesaurus_File procedure, 171

dbo.Xml_Lang_Code table, 109

de value, 110

Delete all stopwords option, 149

DELETE option, 131

DELETE statement, 136–137

Delete stopword option, 148

deletions, 249

demotic alphabet, 101

Description column, 71

diacritic marks, 105

diacritics sensitivity, 167, 258

<diacritics_sensitive> element, 167–172, 180

Dice’s Coefficient, 258

DIFFERENCE function, 244

DISABLE clause, 37

display_term column, 186, 188–189

Distance column, 242

DllCanUnloadNow function, 211, 218

DllGetClassObject function, 211, 216, 219

DllMain method, 218

DllRegisterServer function, 211

DllUnregisterServer function, 211

DMFs. See dynamic management functions

DMVs. See dynamic management views

.doc extension, 128

DocId (Document ID), 33, 258

278 ■I N D E X

document, 258

document vector representation, 273

document_count column, 186, 189

document_id column, 186, 190

documents as vectors, 269–273

DoMarkup routine, 229

dot product, 272

DROP clause, 37

DROP FULLTEXT CATALOG statement, 24

DROP FULLTEXT INDEX statement, 32

Dutch word breaker, 104

dynamic management functions (DMFs)

accessing full-text index entries, 189–190

defined, 258

full-text index, 186–188

parsing text, 188–189

dynamic management views (DMVs)

defined, 258

retrieving population information,

191–195

services and memory usage, 195–196

■E
E_error code, 216

East Asian language, 126

EatBraces function, 223, 229

EatLine function, 223, 229

EBNF (Extended Backus-Naur Form), 87–88

edit distance, 240, 249–259

ENABLE clause, 35, 37

en-GB value, 110

English word breaker, 104

English_Stopwords stoplist, 161

en-US value, 110

es value, 110

ExecuteQuery method, 94–95

exist() method, 71

EXISTS predicate, 46

expansion sets, 173–174, 259, 262–263

expansion_type column, 188

<expansion> element, 167

expansions, 165

Extended Backus-Naur Form (EBNF), 87–88

■F
false conjugates, 53

false friends, 53

filegroups, 29

FilePath column, 141

files, thesaurus

editing and loading, 167–172

expansion sets, 173–174

overview, 165–167

filestream, 259

FILESTREAM, xml data, 119

FILESTREAM access, 119

FILESTREAM attribute, 114, 120, 130, 134

FILESTREAM BLOB data

efficiency advantages, 130–132

FILESTREAM requirements, 132–135

overview, 130

storage considerations, 137–138

T-SQL access, 135–137

FILESTREAM option, 128, 130

filtdump.exe tool, 233

filter class, 220–229

filter class factory, 215–219

filter daemon host process, 11, 207, 259

FILTER_E_END_OF_CHUNKS status, 225

filters

custom

compiling, 229–232

design, 214

filter class, 220–229

filter class factory, 215–219

interfaces, 211–214

overview, 209–211

testing, 232–234

defined, 259

gatherer handler, 235

standard, 207–208

third-party, 208–209

word breakers, 236

filtreg.exe tool, 232

F-measure, 15

FORMSOF operator, 64

FORMSOF(FREETEXT, ...) option, 188

fr value, 110

fragments, 201

FREETEXT predicate, 45, 47–51, 64, 67,

259, 261

FREETEXT query, 48, 58, 75–77, 79, 81, 84

FREETEXTTABLE function, 47–51, 57, 67, 69,

72, 74, 259

French language, 103

FROM clause, 80

fsutil.exe command-line utility, 135

FT:Crawl Aborted event, 41

FT:Crawl Started event, 41

FT:Crawl Stopped event, 41

FTS. See SQL Server full-text search (FTS)

279■I N D E X

full population, 35–36

Full Text Catalogs folder, 21

full-text catalog, 259

Full-Text Catalog Properties window, 31

Full-Text Catalog Wizard, 21–23

full-text catalogs

CREATE FULLTEXT CATALOG statement,

23–24

Full-Text Catalog Wizard, 21–23

listing, 197

overview, 21

upgrading, 24–25

full-text filter daemon host, 20

Full-Text Index Properties window, 150

full-text indexes

crawl process, 41

CREATE FULLTEXT INDEX statement,

33–35

defined, 259

DocId map, 33

dynamic management functions (DMFs),

186–188

Full-Text Indexing Wizard, 25–32

metadata, 198–201

overview, 10, 25

populating

additional index population options, 37

catalog rebuild and reorganization,

37–38

full population, 35–36

incremental population, 36

overview, 35

scheduling populations, 38–39

update population, 37

Full-Text Indexing Wizard, 25–32, 35, 38

Full-text query processor, 10

full-text search, 260

full-text search (FTS). See SQL Server full-text

search (FTS)

Full-Text Stoplist Properties window, 148

fuzzy search, 239, 260

■G
gatherer, 235, 260

gender rules, 107

generational forms, 11, 106

generational searches, 64, 260

Gerdemann, Dale, 112

German language, 104

GET_FILESTREAM_TRANSACTION_

CONTEXT function, 141

GetChar function, 223, 227–228

GetChunk method, 221, 225–226, 233

GetDictionary procedure, 241

GetFile method, 141–142

GetMarkup function, 223, 227–228

GetMatch procedure, 241–243

GetSuggestions procedure, 241–242

GetText method, 221, 226–229, 233, 236

global thesauruses, 176–177

Google, 7

Google-style queries, 94

grammar, 85

Grammar class, 89

group_id column, 188

gu value, 110

GUID constant, 220

GUIDGEN utility, 220

■H
hamming distance, 240, 260

he value, 110

hi value, 110

hit highlighting

calling procedure, 82–84

overview, 75

procedure, 75–81

hits, 6

hr value, 110

.htm extension, 128

HTML documents, 111–112

.html extension, 128

hyphenation, 53, 55, 104–105

■I
IClassFactory interface, 211–213, 215–216,

218

IClassFactory: :LockServer method, 213

IClassFactory::CreateInstance method, 213

ID attribute, 168

id value, 110

ideographic symbols, 101

IFilter interface, 210–213, 221, 234–236

IFilter::BindRegion method, 214

IFilter::GetChunk method, 213

IFilter::GetText method, 214

IFilter::GetValue method, 214

IFilter::Init method, 213

iFilters, 127, 260

280 ■I N D E X

iFilterShop, 208

ifilttst.exe filter, 234

iFTS (Integrated Full-Text Search)

architecture, 9–13

indexing process, 11

overview, 9–11

query process, 11–13

catalog views

full-text catalogs, 197

full-text index metadata, 198–201

overview, 197

stoplists, 202–203

supported languages and document

types, 204–205

crawler, 40

defined, 260

dynamic management functions (DMFs),

186–190

dynamic management views (DMVs),

191–196

overview, 185

queries, 91–93

transparency and, 185

iFTS_Books database, 46, 71, 94, 109,

113–114, 178, 200, 208, 241,

267–268

iFTS_Books installation scripts, 267

IIS (Internet Information Server) extensions,

81

image data type, 120

Import full-text indexed data, 24

IN PATH clause, 23

incremental population, 36

index reorganization, 38

indexers, 10

indexing

BLOBs

character large object (CLOB) data,

120–122

FILESTREAM BLOB data, 130–138

large object (LOB) data, 120

OpenSqlFilestream API, 139–144

overview, 119–129

XML LOB data, 122–126

methodologies, 106

overview, 11

stoplists, 161–162

Indexing Service, 4

INFLECTIONAL form, 64

inflectional forms, 260

inflectional term generation, 64

information retrieval scientists, 6

Information Technology (IT), 119

INSERT statement, 136

insertions, 249

installing

custom filters, 229–232

protocol handler, 235

word stemmers, 236

InstanceCount variable, 217

int column, 33

int LCID parameter, 169

int primary key, 26, 34

int values, 33

Integrated Full-Text Search. See iFTS

Intellisophic, 73

InterlockedDecrement function, 217

InterlockedIncrement function, 217

Internet Information Server (IIS) extensions,

81

inverted index, 8, 260

IPersist* interface, 213

IPersistFile interface, 211–213, 221, 224

IPersistFile::GetCurFile method, 213

IPersistFile::IsDirty method, 213

IPersistFile::Load method, 213

IPersistFile::Save method, 213

IPersistFile::SaveCompleted method, 213

IPersist::GetClassID method, 213

IPersistStorage interface, 211–212

IPersistStream interface, 211–212

Irony library, 88–90

Irony.Compiler namespace, 89

is value, 110

ISABOUT operator, 269

IsFulltextEnabled database property, 21

IStemmer interface, 236

IT (Information Technology), 119

it value, 110

IUnknown interface, 212–213, 215–220

IWordBreaker interface, 236

■J
ja value, 110

Jaccard Coefficient, 261

■K
KEY column, 47, 69

keyword column, 186, 188–189

281■I N D E X

kn value, 110

ko value, 110

■L
language

Chinese, 99

complexity of

accent marks, 105

alphabets, 102

bidirectional writing, 103–104

capitalization, 103–104

compound words, 104–105

gender, 106–107

generational forms, 106

hyphenation, 104–105

nonalphanumeric characters, 105

overview, 101

symbols, 102

token position context, 105–106

East Asian, 126

French, 103

German, 104

storing multilingual data

content language, detecting, 112

HTML documents, 111–112

Microsoft Office documents, 112

overview, 107

plain text, 108

tables, designing for, 112–117

XML, 108–111

written, history of, 100–101

language argument, 51

LANGUAGE clause, 34, 53

Language Code Identifiers (LCIDs), 117

LANGUAGE keyword, 49, 51–56

language parameter, 53

language rules, 53

language_id column, 146

LanguageCompiler object, 94

Languages tab, 126

Language-specific word breakers, 105

large object (LOB) data, 1, 120, 261

latent semantic indexing, 273

LaTeX document, 210

LCIDs (Language Code Identifiers), 117

LCS (longest common subsequence), 247–249

LCS (longest common substring), 248, 261

LIKE predicate, 3

linguistic search, 3

load_os_resources property, 42

LOB (large object) data, 1, 120, 261

local thesauruses, 176–177

.log extension, 40

logographic systems, 100

logs, 40

longest common subsequence (LCS),

247–249

longest common substring (LCS), 248, 261

lt value, 110

lv value, 110

■M
MANUAL change tracking, 37

MANUAL option, 35

master merge, 11, 23, 38

master system database, 21

max data types, 4

memory usage, 195–196

MERGE statement, 136

Messages tab, 59

<meta name = "MS.LOCALE" content =

"DE"/> tag, 112

Microsoft Foundation Class (MFC) library,

210

Microsoft Office documents, 112

Microsoft Search Thesaurus, 168

ml value, 110

model system database, 21

mr value, 110

ms value, 110

MS.LOCALE meta tag, 111

MSSQL\FTDATA directory, 145

MSSQL\FTData subdirectory, 165–166, 169

MSSQL\FTData\FTNoiseThesaurusBak

subdirectory, 157, 169

MSSQL\Log directory, 40

multilingual searching

language complexity

accent marks, 105

alphabets, 102

bidirectional writing, 103–104

capitalization, 103–104

compound words, 104–105

gender, 106–107

generational forms, 106

hyphenation, 104–105

nonalphanumeric characters, 105

overview, 101

symbols, 102

token position context, 105–106

282 ■I N D E X

overview, 99–100

storing multilingual data

content language, detecting, 112

HTML documents, 111–112

Microsoft Office documents, 112

overview, 107

plain text, 108

tables, designing for, 112–117

XML, 108–111

written language, 100–101

■N
name searching, 243–244

national character large object data

(NCLOB), 120, 261

nchar data type, 108, 120, 134

NCLOB (national character large object

data), 120, 261

near neighbors, 240

NEAR operator, 48, 66

New Full-Text Stoplist window, 147

New York State Identification and

Intelligence System (NYSIIS),

245–247, 261

NFTS file properties filter, 127

n-grams, 250–255, 261

nl value, 110

NO POPULATION clause, 35

no value, 110

NoFish_Stoplist procedure, 147, 149,

151–153, 157, 161, 163–164

noise word list, 145

Noise Word lists, 157–161

noise words, 261, 263

nonalphanumeric characters, 105

nonrecursion, 181

NT File System (NTFS)

properties, 127

schemas, 5

ntext data type, 120

NTFS (NT File System)

properties, 127

schemas, 5

numbers, 54

nvarchar data type, 108, 119–122, 134–135,

137, 144

nvarchar(max) data type, 119–122, 135, 137,

144, 161

NYSIIS (New York State Identification and

Intelligence System), 245–247, 261

■O
Object Explorer window, 21

Object File System (OFS), 5

OBJECT_ID system function, 151

occurrence column, 188

occurrence_count column, 186, 190

occurrences, defined, 261

OCR (optical character recognition), 127

OFF option, 35

Office documents, 112

Office Open XML (OOXML), 2

OFS (Object File System), 5

Okapi BM25, 261

ON clause, 34

ON FILEGROUP clause, 23

OOXML (Office Open XML), 2

OPENROWSET function, 161

OpenSqlFilestream API, 139–144

OpenSqlFilestream setting, 138

operating system (OS), 208

operators

custom search engine, 86

SQL Server 2005 Remote Scan query

operator, 13

optical character recognition (OCR), 127

OR keyword, 85

OR operator, 61, 86

OS (operating system), 208

overlapping rules, 182

■P
pa value, 110

Parentheses, 87

parsing text, 188–189

<pat> tag, 171–175, 182

PathName() method, 138, 141

PATINDEX function, 80

PAUSE POPULATION option, 37

pause_indexing property, 42

.pdf extension, 128

Perform full population, 25

Personal Storage Table (PST), 5

phonemes, 101

phonetic samples, 268

phonetic search

defined, 261

NYSIIS, 245–247

overview, 244

Soundex, 244–245

“phrase” operator, 86

283■I N D E X

phrase searches

with CONTAINS predicate, 59–60

defined, 262

phrase_id column, 188

pictograms, 100

pipe symbol, 87

plain text, 108

plus sign (+), 88

polysemy, 15–16

populating full-text indexes

additional options, 37

catalog rebuild and reorganization, 37–38

full population, 35–36

incremental population, 36

overview, 35

scheduling populations, 38–39

update population, 37

population, defined, 262

.ppt extension, 128

precision, 13

predicates, defined, 46

prefix searches

with CONTAINS predicate, 63–64

defined, 262

protocol handler, 11, 235, 262

proximity searches

with CONTAINS predicate, 65–67

defined, 262

PST (Personal Storage Table), 5

pt value, 110

pt-BR value, 110

public facing, 2

Publication_Name column, 71

■Q
quadgrams, 250

queries

column rank-multiplier searches, 71–72

CONTAINS predicate

Boolean searches, 60–63

CONTAINSTABLE function, 69–70

generational searches, 64

overview, 58

phrase searches, 59–60

prefix searches, 63–64

proximity searches, 65–67

weighted searches, 67–69

FREETEXT predicate, 47–51

FREETEXTTABLE function, 47–51

LANGUAGE keyword, 51–56

overview, 45–47

stoplists, 162–164

taxonomy searches, 73–74

text mining, 73–74

top_n_by_rank argument, 56–57

XQuery contains() function, 71

query process, 11–13

QueryInterface method, 217

QUOTENAME function, 157

■R
RANK column, 47, 66, 69

RANK values, 69

REBUILD clause, 23, 38

recall, 13

Regional and Language Options, 126

Relational File System (RFS), 5

ReloadDictionary procedure, 241

REORGANIZE clause, 23

REPLACE function, 161

replacement sets, 175–176, 262

<replacement> element, 167, 175

replacements, 165, 249

Reset your full-text catalogs, 25

resource_usage property, 43

RESTORE DATABASE statement, 39

RESUME POPULATION clauses, 37

RFS (Relational File System), 5

ro value, 110

rowversion column, 36–37

.rtf extension, 128

ru value, 110

■S
S_OK code, 216

sample database, installing, 267–268

Sample.tex document, 233

Sample.tex file, 234

Sample.tex.dmp file, 234

Sample.tex.log file, 234

scheduling populations, 38–39

SDK (Software Development Kit), 211

search engine-style search

Extended Backus-Naur Form (EBNF),

87–88

Google-style queries, converting, 94

grammar

defining, 85–87

implementing with Irony library, 88–90

querying with new, 94–96

284 ■I N D E X

iFTS queries, generating, 91–93

overview, 84–85

search quality

measuring, 13–15

overview, 12

synonymy and polysemy, 15–16

search results, 6

search techniques, 239, 256

searches, vector-space, 269–273

SearchGrammar class, 89–90, 94–95

SearchSQL, 45

SELECT clause, 79

SELECT queries, 120, 131, 135

semantics, 85, 273

serveradmin fixed server role, 169

services, DMVs, 195–196

SET CHANGE_TRACKING clause, 37

SET STOPLIST clause, 37, 153

setup.bat batch file, 267–268

signatures, 73

simple terms, 262

SimpleCommentaryHighlight procedure, 78

sk value, 110

sl value, 110

Software Development Kit (SDK), 211

Soundex, 244–245, 262

sp_configure setting, 133

sp_configure system stored procedure, 53, 60

sp_fulltext_database system stored

procedure, 21

sp_fulltext_key_mappings procedure, 43

sp_fulltext_load_thesaurus_file procedure,

43

sp_fulltext_pending_changes procedure, 43

sp_fulltext_service procedure, 42–43

sp_help_fulltext_system_components

procedure, 43

 HTML tag, 79

special_term column, 164, 188

spelling suggestion and correction, 239–242

SQL CLR assembly, 241

SQL CLR function, 249

SQL FTS indexer, 127

SQL Full-text Filter Daemon Launcher

service, 20

SQL Profiler events, 41–42

SQL Server 2005 Remote Scan query

operator, 13

SQL Server 2008 iFTS-Supported Languages,

107

SQL Server Copy Database wizard, 24

SQL Server full-text search (FTS)

goals of, 6–7

history of, 4–5

iFTS architecture

indexing process, 11

overview, 9–11

query process, 11–13

mechanics of, 8–9

overview, 1–4

search quality

measuring, 13–15

overview, 12

synonymy and polysemy, 15–16

SQL Server Management Studio (SSMS) GUI

wizards, 19, 25

SQL Server process, 10, 262

SQL Server query processor, 10

SQL Server Transparent Data Encryption

(TDE) option, 138

SqlClient class, 82

sqlcmd command-line utility, 267–268

SqlCommand class, 82

SqlDataReader class, 82

SqlFileStream class, 142

SQLServer:Trace Event Statistics

performance object, 41

sr-Cyrl value, 110

sr-Latn value, 110

SSMS (SQL Server Management Studio) GUI

wizards, 19, 25

SSMS Create Full-Text Index wizard, 149

standard filters, 207–208

Standard Template Library (STL), 210

START FULL POPULATION clause, 35

START INCREMENTAL POPULATION

clause, 36

START UPDATE POPULATION clause, 37

static ternary search tree, 241

stemmers, 11

STL (Standard Template Library), 210

STOP POPULATION clause, 37

STOPLIST option, 34–35

stoplists

behavior

indexing, 161–162

285■I N D E X

overview, 161

queries, 162–164

custom, 147–150

defined, 10, 262

Full-Text Indexing Wizard, 29

managing, 150–157

revealing, 202–203

system, 145–146

thesauruses and, 182

upgrading Noise Word lists to, 157–161

stopwords, 59, 145, 164, 263

Storage folder, 21

storing, multilingual data

content language, detecting, 112

HTML documents, 111–112

Microsoft Office documents, 112

overview, 107

plain text, 108

tables, designing for, 112–117

XML, 108–111

string characters, 88

string similarity metrics, 247–255

<sub> tags, 173–175

suffix searches, 64

supported languages and document types,

viewing, 204–205

Surname_NYSIIS column, 246

sv value, 110

symbols, writing, 102

synonymy, 15–16

syntax, 85

sys.columns catalog view, 200

sys.dm_fts_active_catalogs DMV, 191

sys.dm_fts_hosts DMV, 195

sys.dm_fts_index_keywords DMF, 186,

189–190

sys.dm_fts_index_keywords_by_document

DMF, 80, 161, 186, 190

sys.dm_fts_index_populations DMV, 194

sys.dm_fts_memory_buffers DMV, 196

sys.dm_fts_memory_pools DMV, 196

sys.dm_fts_outstanding_batches DMV, 193

sys.dm_fts_parser DMF, 54, 75, 80–81, 163,

174, 176, 181, 188

sys.dm_fts_population_ranges DMV, 195

sys.fulltext_catalog_freelist internal table,

32

sys.fulltext_catalogs catalog view, 197

sys.fulltext_document_types catalog view,

34, 128, 204

sys.fulltext_index_catalog_usages catalog

view, 199–200

sys.fulltext_index_columns catalog view, 200

sys.fulltext_index_fragments catalog view,

201

sys.fulltext_index_map internal table, 32

sys.fulltext_indexes catalog view, 198

sys.fulltext_languages catalog view, 34, 204

sys.fulltext_stoplists catalog view, 150, 198,

203

sys.fulltext_stopwords catalog view, 151, 156,

203

sys.fulltext_system_stopwords catalog view,

146, 150–151, 202

sys.internal_tables catalog view, 32

sys.sp_fulltext_load_thesaurus_file

procedure, 20, 169–170, 183

system procedures, 42–43

SYSTEM stoplist, 198

system stoplists, 145–146

System.Data.SqlTypes.SqlFileStream class,

139

■T
ta value, 110

Table Valued Function, 13

tables, multilingual data storage, 112–117

taxonomy searches, 73–74

TDE (SQL Server Transparent Data

Encryption) option, 138

te value, 110

tempdb database, 21, 170

term operator, 75, 78, 80–82, 84–86, 93

term* operator, 86

ternary search tree, 239, 263

TeX documents, 210

TeXFilt.dll assembly, 230–232

TeXFilt.reg file, 231

text, storing, 108

text data type, 120

text mining, 73–74

TextPad, 168

th value, 110

THESAURUS form, 64

thesaurus term generation, 64

<thesaurus> element, 168–172

286 ■I N D E X

thesauruses

accent and case sensitivity, 180–181

defined, 10, 263

general recommendations, 183

global and local, 176–177

nonrecursion, 181

overlapping rules, 182

overview, 165

replacement sets, 175–176

stoplists, 182

thesaurus files

editing and loading, 167–172

expansion sets, 173–174

overview, 165–167

translation, 179–180

word bags, 180

third-party filters, 112, 208–209

TIFF image, 127

timestamp data type, 36

title element, 71

token position context, 105–106

tokenization, 270

tokenizing, 8

tokens, 102, 105, 117, 263

top_n_by_rank argument, 56–57, 69

Trace Properties, 41

tracking option, 28

transform noise words server option, 60

translation, 179–180

transparency, 185

transpositions, 249

trigrams, 250

Triplehop company, 73

ts<language>.xml convention, 169

tsenu.xml file, 167

tsglobal.xml file, 170, 172, 176

tsneu.xml file, 169, 170, 177

T-SQL

FILESTREAM BLOB data, 135–137

statements, 25

.txt extension, 128–137

type column, 127, 263

TYPE COLUMN clause, 34

■U
UDF (user-defined function), 151

UI (user interface), 141

uk value, 110

UngetChar function, 223, 228

uniqueidentifier column, 33

uniqueidentifier ROWGUIDCOL column,

134

update population, 37

UPDATE statement, 136

update_languages property, 42

upgrading full-text catalogs, 24–25

ur value, 110

user interface (UI), 141

user-defined function (UDF), 151

■V
varbinary column, 26, 108

varbinary data, 119

varbinary documents, 111

varbinary(max) data type, 26, 53, 114, 119,

120, 123, 127–128, 130, 134–135, 138

varchar data type column, 33, 108

varchar(max) data type, 119–122, 144

vector-space searches, 269–273

verify_signature property, 42

vi value, 110

.vsd extension, 128

■W
W3C (World Wide Web Consortium), 168

wanderworts, 53

WebBrowser control, 82

WEIGHT value, 69

weighted harmonic mean, 15

weighted searches, 67–69, 261, 263

WHERE clause, 46, 53, 67, 115

whitespace, 102

wildcard asterisk (*), 60, 63

Windows File System, 5

Windows Future Storage (WinFS), 5

Windows System Monitor, 41

Windows\System32 directory, 230

WinFS (Windows Future Storage), 5

WITH ACCENT_SENSITIVITY clause, 38

WITH clause, 34

WITH STOPLIST = OFF clause, 146

WITH STOPLIST = SYSTEM clause, 146

wizard, 29

word bags, 180

word breakers, 101, 117, 236, 259, 263

word stemmers, 236, 263

World Wide Web Consortium (W3C), 168

Write() method, 138

287■I N D E X

■X
XHTML, 2

.xls extension, 128

XML, storing, 108–111

xml column, 53

xml data type, 120, 122–124, 173

xml data type content, 207

xml data type instance, 183

.xml extension, 128

XML LOB data, 122–126

<XML> element, 168–171, 183

xml:lang = "ja" attribute, 109

xml:lang attribute, 108, 123, 125

xml:lang language identifier tags, 123

XQuery contains() function, 71

