
www.allitebooks.com

http:///
http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http:///
http://www.allitebooks.org

v

Contents at a Glance

About the Author ...xiii

About the Technical Reviewer .. xv

Acknowledgments .. xvii

Introduction ... xix

Chapter 1: Getting Started with Hibernate OGM ■ ..1

Chapter 2: Hibernate OGM and MongoDB ■ ..23

Chapter 3: Bootstrapping Hibernate OGM ■ ..37

Chapter 4: Hibernate OGM at Work ■ ..51

Chapter 5: Hibernate OGM and JPA 2.0 Annotations ■ ...121

Chapter 6: Hibernate OGM Querying MongoDB ■ ..205

Chapter 7: MongoDB e-Commerce Database Model ■ ..241

Chapter 8: MongoDB e-Commerce Database Querying ■ ...269

Chapter 9: Migrate MongoDB Database to Cloud ■ ..283

Chapter 10: Migrating RafaEShop Application on OpenShift ■ ...297

Index ...355

www.allitebooks.com

http:///
http://www.allitebooks.org

xix

Introduction

his book covers all the important aspects of developing Hibernate OGM-MongoDB applications. It provides clear
instructions for getting the most out of the Hibernate OGM-MongoDB duo and ofers many examples of integrating
Hibernate OGM by means of both the Hibernate Native API and the Java Persistence API. You will learn how to
develop desktop, web, and enterprise applications for the most popular web and enterprise servers, such as
Tomcat, JBoss AS, and Glassish AS. You’ll see how to take advantage of Hibernate OGM-MongoDB together with
many common technologies, such as JSF, Spring, Seam, EJB, and more. Finally, you’ll learn how to migrate to the
cloud—MongoHQ, MongoLab, and OpenShift.

Who This Book Is For
his book is for experienced Java developers who are interested in exploring Hibernate solutions for NoSQL databases.
For the opening chapters (Chapters 1–3), it’s enough to be familiar with the main aspects of the ORM paradigm,
the Hibernate Native API, and JPA. he book provides brief overviews of these concepts. Starting with Chapter 4,
you should have some knowledge about developing web applications (using NetBeans or Eclipse) deployed under
the Tomcat, JBoss AS, or GlassFish AS servers. Moreover, you need to be familiar with the Java technologies and
frameworks that are commonly used in web applications, such as servlets, EJB, JSF, JSP, Seam, Spring, and so on.

How This Book Is Structured
Here’s the main focus of each chapter:

Chapter 1: Getting Started with Hibernate OGM
his chapter provides a brief introduction to the Hibernate OGM world. In the irst part of the chapter, I discuss the
Hibernate OGM architecture, its current features, and what we can expect in terms of future support. I then ofer
several alternatives for downloading, installing, and coniguring Hibernate OGM and MongoDB.

Chapter 2: Hibernate OGM and MongoDB
In this chapter, I deine more clearly the relationship between Hibernate OGM and MongoDB by focusing on how
Hibernate OGM works with MongoDB. You learn how data is stored, how primary keys and associations are mapped,
and how to deal with transactions and queries.

Chapter 3: Bootstrapping Hibernate OGM
his chapter shows how Hibernate OGM can be bootstrapped by means of the Hibernate Native API and JPA.

www.allitebooks.com

http:///
http://www.allitebooks.org

■ INTRODUCTION

xx

Chapter 4: Hibernate OGM at Work
his is one of the most important chapters. You learn how to integrate Hibernate OGM and MongoDB in the most
common web and enterprise Java applications deployed on diferent servers. Here is the entire list of applications:

•	 Java	SE	and	Mongo	DB—a	“Hello	world”	example

•	 Hibernate	OGM	(via	Hibernate	Native	API)	in	a	non-JTA	environment	(JDBC	Transactions,	
Tomcat 7)

•	 Hibernate	OGM	(via	Hibernate	Native	API)	in	a	standalone	JTA	environment	(JBoss	JTA,	
Tomcat 7)

•	 Hibernate	OGM	(via	Hibernate	Native	API)	in	a	built-in	JTA	environment	(no	EJB,	GlassFish	3)

•	 Hibernate	OGM	(via	Hibernate	Native	API)	in	a	built-in	JTA	environment	(EJB/BMT,	GlassFish	3)

•	 Hibernate	OGM	(via	Hibernate	Native	API)	in	a	built-in	JTA	environment	(EJB/CMT,	GlassFish	3)

•	 Hibernate	OGM	(via	JPA)	in	a	built-in	JTA	environment	(GlassFish	AS	3)

•	 Hibernate	OGM	(via	JPA)	in	a	built-in	JTA	environment	(JBoss	AS	7)

•	 Hibernate	OGM	(via	JPA)	in	a	built-in	JTA	environment	(JBoss	AS	7	and	Seam	application)

•	 Hibernate	OGM	(via	JPA)	in	a	built-in	JTA	environment	(GlassFish	and	Spring	application)

•	 Hibernate	OGM	(via	JPA)	JPA/JTA	in	a	standalone	JTA	environment	(Tomcat)

•	 Hibernate	OGM	in	a	non-	JTA	environment	(RESOURCE_LOCAL,	Apache	Tomcat	7)	

Chapter 5: Hibernate OGM and JPA 2.0 Annotations
Mapping Java entities in Hibernate OGM can be divided into supported and non-supported annotations.
In this chapter, I show the supported annotations, as well as how much of each annotation is supported.

Chapter 6: Hibernate OGM Querying MongoDB
his chapter explores the querying capabilities of Hibernate OGM. I start with a MongoDB native query and progress
to complex queries written with Hibernate Search and Apache Lucene.

Chapter 7: MongoDB e-Commerce Database Model
At this point in the book, you will have acquired suicent expertise to develop a real application that involves
Hibernate OGM and MongoDB. An e-commerce web site is a good start and an interesting study case, so in this
chapter I adapt a classic SQL database model to the Hibernate OGM and MongoDB style. I also examine aspects of
e-commerce database architecture.

Chapter 8: MongoDB e-Commerce Database Querying
After you develop a MongoDB e-commerce database model, it’s time to sketch and implement the main
e-commerce-speciic queries. In this chapter, I use Hibernate Search and Apache Lucene to write such queries.
he result is a complete e-commerce application named RafaEShop.

www.allitebooks.com

http:///
http://www.allitebooks.org

■ INTRODUCTION

xxi

Chapter 9: Migrate MongoDB Database to Cloud
In this chapter, you learn how to migrate the MongoDB e-commerce database developed in Chapter 7 into two
clouds: MongoHQ and MongoLab.

Chapter 10: Migrating RafaEShop Application on OpenShift
his inal chapter is a detailed guide for migrating the e-commerce RafaEShop application to the OpenShift cloud on
two enterprise servers: JBoss AS and GlassFish AS.

Downloading the Code
he code for the examples shown in this book is available on the Apress web site, www.apress.com. You’ll ind the link
on	the	book’s	information	page	under	the	Source	Code/Downloads	tab.	his	tab	is	located	underneath	the	Related	
Titles section of the page.

Contacting the Author
Should you have any questions or comments—or even spot a mistake you think I should know about—you can
contact me at leoprivacy@yahoo.com.

www.allitebooks.com

http://www.apress.com
http://leoprivacy@yahoo.com
http:///
http://www.allitebooks.org

1

CHAPTER 1

Getting Started with Hibernate OGM

Chances are, you’re familiar with Hibernate ORM, a powerful, robust tool for converting data between relational
databases (RDBMS) and object-oriented programming languages. As an object-relational mapping (ORM)
framework, Hibernate ORM works with SQL stores. In recent years, however, developers have become interested in
NoSQL databases, which are optimized for storing and retrieving enormous quantities of data. NoSQL databases tend
to be non-relational, open-source, horizontally scalable, distributed, and schema-free.

There are a number of ways to describe NoSQL stores, but they are generally classified by data model, particularly
the following:

Document stores (Mongo DB, RavenDB, CouchDB and more)•

Wide column stores (Hypertable, Cassandra, HBase and more)•

Key value/tuple stores (DynamoDB, LevelDB, Redis, Ryak and more)•

Graph databases (Neo4J, GraphBase, InfoGrid and more)•

These are also common:

Multimodel databases (OrientDB, ArangoDB and more)•

Object databases (db4o, Versant and more)•

Grid and cloud databases (GigaSpaces, Infinispan and more)•

XML databases (eXist, Sedna and more)•

Clearly, NoSQL stores are complex and very diverse. Some have significant user bases, while others are barely
known. And each has its own strong points and weaknesses. You could even say that NoSQL is such a keenly disputed
topic that programmers talk about it more than they actually use it.

That’s likely to change, however, with the recent release of the Hibernate OGM (Object Grid Mapper) project,
which offers a complete Java Persistence API (JPA) engine for storing data in NoSQL stores. This project gives a real
boost to Java developers looking to exploit NoSQL stores, since it provides a common interface—the well-known
JPA programming model—as a front end to various NoSQL approaches. Hibernate OGM is based on the Hibernate
ORM Core engine, reuses the Java Persistence Query Language (JP-QL) as an interface for querying stored data, and
already provides support for three NoSQL stores: MongoDB, Ehcache, and Infinispan, and Apache Cassandra should
see support in the future. Despite the youth of the project, the aims of the Hibernate OGM team guarantee it has huge
potential in the future—and a lot of work to accomplish.

www.allitebooks.com

http:///
http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

2

Features and Expectations
As this book is written, the latest Hibernate OGM distribution is 4.0.0 Beta2, which already successfully provides
a common interface for different NoSQL approaches; rapid scaling of a data store up or down; independence from the
underlying store technology; and Hibernate Search. Here’s what Hibernate OGM supports so far:

Storing data in document stores (MongoDB)•

storing data in key/value stores (Infinispan's data grid and Ehcache)•

Create, Read, Update and Delete (CRUD) operations for JPA entities•

Polymorphic entities (support for superclasses, subclasses, and so forth)•

Embeddable objects (for example, embeddable classes, annotated in JPA with • @Embeddable;
collections of instances of embeddable classes, annotated in JPA with @ElementCollection)

Basic types (such as numbers, • String, URL, Date, enums)

Associations (• @ManyToOne, @OneToOne, @OneToMany and @ManyToMany)

Bidirectional associations•

Collections (• Set, List, Map, etc)

Hibernate Search's full-text queries•

JPA and native Hibernate ORM API (Hibernate OGM can be bootstrapped via JPA or via •
Hibernate Session, as I’ll show you in Chapter 3.)

In the future, Hibernate OGM will support:

Other key/value pair systems•

Other NoSQL engines•

Declarative denormalization•

Complex JP-QL queries, including to-many joins and aggregation•

Fronting existing JPA applications•

Note ■ Denormalization is a database technique for speeding up the read process. The idea is to reduce the number of

joins in queries as much as possible; joins slow read performance because data must be picked up from multiple tables

without disrupting their associations. While normalization promotes splitting related data into multiple associated tables,

denormalization encourages adding a small number of redundancies to limit joins. Even if some data gets duplicated,

performance generally improves.

Hibernate OGM Architecture
Because Hibernate OGM uses the existing Hibernate ORM modules as much as possible, the OGM architecture
essentially extends the ORM architecture by plugging different components in and out. Hibernate ORM converts and
persists data between relational databases and object-oriented programming languages using a set of interfaces and
classes. These include the JDBC layer, used for connecting to databases and sending queries, and the Persisters
and Loaders interfaces, responsible for persisting and loading entities and collections, as shown in Figure 1-1.

www.allitebooks.com

http:///
http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

3

Hibernate OGM is meant to accomplish the same goals, but using NoSQL stores. Thus, Hibernate OGM doesn't
need the JDBC layer anymore and instead comes with two new elements: a datastore provider and a datastore dialect,
as shown in Figure 1-2. Both of these act as adaptors between Hibernate OGM Core and the NoSQL store. (A datastore
is an adaptor that connects the core mapping engine with the specific NoSQL technology.)

Figure 1-1. Hibernate ORM Architecture

Figure 1-2. Hibernate OGM datastore provider and datastore dialect

The datastore provider is responsible for managing connections to NoSQL stores, while the datastore dialect
manages communications with NoSQL storage engines. Practically, these notions are materialized in two interfaces,
org.hibernate.ogm.datastore.spi.DatastoreProvider and org.hibernate.ogm.dialect.GridDialect. The
DatastoreProvider interface is responsible for starting, maintaining, and stopping a store connection, while the
GridDialect interface deals with data persistence in NoSQL stores. Moreover, the Persisters and Loaders interfaces
were rewritten to support NoSQL store features.

Currently there are four implementations of DatastoreProvider:

• EhcacheDatastoreProvider (for NoSQL Encache)

• InfinispanDatastoreProvider (for NoSQL Infinispan)

• MongoDBDatastoreProvider (for NoSQL MongoDB)

• MapDatastoreProvider (for testing purposes)

www.allitebooks.com

http:///
http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

4

There are five implementations of GridDialect for abstracting Hibernate OGM from a particular grid
implementation:

• EhcacheDialect (for EhCache)

• InfinispanDialect (for Infinispan)

• MongoDBDialect (for MongoDB)

• HashMapDialect (for testing)

• GridDialectLogger (for logging calls performed on the real dialect)

Note ■ If you decide to write a new datastore, you have to implement a DatastoreProvider and a GridDialect.

Find more details about this at https://community.jboss.org/wiki/HowToWriteADatastoreInHibernateOGM.

Persisting Data
Through the modified Loaders and Persisters interfaces, Hibernate OGM is capable of saving data to NoSQL stores.
Before doing so, however, OGM needs to represent and store the data internally. For this purpose, Hibernate OGM
retains as much as it can of the relational database concepts, and adapts these notions according to its needs. Some
concepts, like storing entities, follow the relational model fairly completely, while others, like storing associations,
do so partially. Data, therefore, is stored as basic types (entities are stored as tuples); the notions of primary key and
foreign key are still employed; and the application data model and the store data model relationships are abstractly
maintained through notions like table and column.

OGM uses the tuple to represent the basic unit of data. Tuples are meant to conceptually store entities as a
Map<String, Object>. The key is the column name (the entity property/field or the @Column annotation value) and
the value is the column value as a primitive type (see Figure 1-3).

Figure 1-3. The Hibernate OGM tuple

www.allitebooks.com

https://community.jboss.org/wiki/HowToWriteADatastoreInHibernateOGM
http:///
http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

5

Note ■ Java collections are represented as a list of tuples. The specific key is composed of the name of the table

containing the collection, and column names and column values representing the foreign key.

Figure 1-5 shows the relational database model of a many-to-many association.

Figure 1-4. Hibernate OGM storing an entity instance

Each tuple, representing an entity instance, is stored in a specific key. An entity instance is identified with a
specific key lookup composed of the table name, the primary key column name(s), and the primary key column
value(s). See Figure 1-4.

http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

6

Associations in Hibernate OGM, in contrast, are stored as sets of tuples of type Map<String, Object>. For
example, for a many-to-many association, each tuple stores a pair of foreign keys. Hibernate OGM stores the
information necessary to navigate from an entity to its associations in a specific key composed of the table name
and the column name(s) and value(s) representing the foreign key to the entity we come from. This @ManyToMany
association is stored internally by Hibernate OGM as shown in Figure 1-6. (You can see the association tuples
starting with row 8.) This approach fosters reachable data via key lookups, but it has disadvantages: that data may be
redundant since the information has to be stored for both sides of the association.

Figure 1-5. Relational database model of a many-to-many association

http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

7

Figure 1-6. Hibernate OGM data grid of a many-to-many relationship

Hibernate OGM stores JPA entities as tuples instead of serializable blobs. This is much closer to the relational
model. There are a few disadvantages in serializing entities:

Entities that are in associations with other entities must be also be stored, very possibly •
resulting in a big graph.

It’s hard to guarantee object identity or even consistency among duplicated objects.•

It’s hard to add or remove a property or include a superclass and deal with deserialization •
issues.

Note ■ Hibernate OGM stores seeds (when identifiers requires seeds) in the value whose key is composed of the table

name and the column name and column value representing the segment.

Obviously, this representation is not common to all NoSQL stores. It’s different, for instance, for MongoDB,
which is a document-oriented store. In such cases, GridDialect is used, and its main task consists of converting this
representation into the expected representation for the NoSQL store. For MongoDB, the MongoDBDialect converts it
into MongoDB documents.

Note ■ Since NoSQL stores are not aware of the schema notion, Hibernate OGM tuples are not tied to schemas.

http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

8

Querying Data
Of course, Hibernate OGM needs to offer a powerful querying data engine and, at the time of this writing, this is
implemented in a number of different ways depending on the nature of the query and the NoSQL querying support.

CRUD operations are the responsibility of the Hibernate ORM engine and they follow a straightforward process.
Independently of JPA or the Hibernate Native API, Hibernate ORM delegates persistence and load queries to the OGM
engine, which delegates CRUD operations to DatastoreProvider/GridDialect, which interacts with the NoSQL store.
Figure 1-7 depicts this process.

Figure 1-7. Hibernate OGM and CRUD operations

Figure 1-8. Hibernate OGM and JP-QL simple queries (NoSQL with query support)

Because Hibernate OGM wants to offer the entire JPA, it needs to support JP-QL queries. This implies a
sophisticated query engine (QE) that should be sensitive to the particular NoSQL store querying capabilities and to
JP-QL query complexity. The most optimistic instance is NoSQL with query capabilities and simple JP-QL queries.
In this case, the query is delegated to the NoSQL-specific query translator, and the results are managed by Hibernate
OGM to compose the specific objects (see Figure 1-8).

A less optimistic case arises when a NoSQL store does not support the current query. In this case, the JBoss Teiid
data virtualization system intervenes to split the JP-QL query into simple queries that can be executed by the data
store. (See www.jboss.org/teiid for more information). Teiid also processes the results to obtain the final query
result, as Figure 1-9 shows.

http://www.jboss.org/teiid
http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

9

The worst case is a NoSQL store that has little or no query support. Since this is a hard case, it requires heavy
artillery, like Hibernate Search, an enterprise full-text search tool based on Hibernate Core and Apache Lucene.
Basically, the Hibernate Search Indexing Engine receives events from the Hibernate ORM Core and keeps the entity
indexing process up to date, while the JP-QL Query Parser delegates query translation to the Hibernate Search Query
Engine (for simple queries) or to Teiid (for intermediate to complex queries), and executes them using Lucene indexes
(see Figure 1-10). In addition, Hibernate Search provides clustering support and an object-oriented abstraction that
includes a query domain-specific language (DSL).

Figure 1-9. Hibernate OGM and JP-QL complex queries

Figure 1-10. Hibernate OGM and JP-QL queries (little or no NoSQL support)

Get the Hibernate OGM Distribution
At the time of writing, the Hibernate OGM distribution was 4.0.0.Beta2. The best way to get it with full documentation,
sources, and dependencies is to access www.hibernate.org/subprojects/ogm.html and download the corresponding
ZIP/TGZ archive.

Unfortunately, this isn’t as simple as it might seem. Since the focus of this book is Hibernate OGM and MongoDB,
you’ll want to locate the JARs dedicated to “connecting” OGM with MongoDB: hibernate-ogm-mongodb-x.jar and
mongo-java-driver-x.jar. (MongoDB has client support for most programming languages; this is the MongoDB Java
driver developed by MongoDB team and used by Hibernate OGM to interact with MongoDB). In Hibernate
OGM version 4.0.0.Beta1, you’ll find these JARs in the \hibernate-ogm-4.0.0.Beta1\dist\lib\mongodb folder:
hibernate-ogm-mongodb-4.0.0.Beta1.jar and mongo-java-driver-2.8.0.jar. In Hibernate OGM version 4.0.0.Beta2,
the \mongodb folder is missing, so the new JARs are not bundled out of the box.

http://www.hibernate.org/subprojects/ogm.html
http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

10

This means you can still use hibernate-ogm-mongodb-4.0.0.Beta1.jar and mongo-java-driver-2.8.0.jar with
Hibernate OGM 4.0.0.Beta2, or you can compile the source code of Hibernate OGM 4.0.0.Beta2 to obtain the newest
snapshots. For compiling the code, visit www.sourceforge.net/projects/hibernate/files/hibernate-ogm/4.0.0.Beta2/.
I have compiled the code and obtained the MongoDB JAR, named hibernate-ogm-mongodb-4.0.0-SNAPSHOT.

If you take a look at the Hibernate OGM change log shown in Figure 1-11, you’ll see that Hibernate OGM 4.0.0.Beta2
has been upgraded to support MongoDB Java Driver 2.9.x. This means that if you decide to compile the code and use the
resulting snapshot of the MongoDB profile, you can also add a 2.9.x MongoDB Java driver, instead of 2.8.x.

Figure 1-11. Hibernate OGM change log

For this book, I chose to use the Hibernate OGM 4.0.0.Beta2 with Hibernate OGM for MongoDB 4.0.0.Beta1.

Getting Hibernate OGM from the Maven Central Repository
You can also download Hibernate OGM from the Maven Central Repository (www.search.maven.org/). Search for
“hibernate ogm,” which will return what you see in Figure 1-12.

http://www.sourceforge.net/projects/hibernate/files/hibernate-ogm/4.0.0.Beta2/
http://www.search.maven.org/
http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

11

As you can see, it’s very easy to dowload the Hibernate OGM core and profiles, including the MongoDB profile.
You can download the JARs or the POMs (Project Object Model) files.

Getting Hibernate OGM from the Maven Command Line
Hibernate OGM is also available from the Apache Maven command line. Obviously, Maven must be installed and
configured on your computer. First, you have to modify your settings.xml document, which is stored in the Maven local
repository .m2 folder (the default location). For Unix/Mac OS X users, this folder should be ~/.m2; for Windows users,
it’s C:\Documents and Settings\{your username}\.m2 or C:\Users\{your username}\.m2. If the settings.xml
file doesn’t already exist, you should create it in this folder, as shown in Listing 1-1. (If you already have this file, just
modify its contents accordingly.)

Note ■ If it seems too complicated to create or modify settings.xml since it’s so verbose, you can simply use

<repository> and <dependency> tags in your pom.xml.

Listing 1-1. Settings.xml

<?xml version="1.0" encoding="UTF-8"?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <!-- jboss.org config start -->
 <profiles>
 <profile>
 <id>jboss-public-repository</id>
 <repositories>
 <repository>
 <id>jboss-public-repository-group</id>
 <name>JBoss Public Maven Repository Group</name>

Figure 1-12. Hibernate OGM distribution listed in Maven Central Repository

http://maven.apache.org/SETTINGS/1.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd
http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

12

 <url>https://repository.jboss.org/nexus/content/groups/public-jboss/</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>jboss-public-repository-group</id>
 <name>JBoss Public Maven Repository Group</name>
 <url>https://repository.jboss.org/nexus/content/groups/public-jboss/</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 <profile>
 <id>jboss-deprecated-repository</id>
 <repositories>
 <repository>
 <id>jboss-deprecated-repository</id>
 <name>JBoss Deprecated Maven Repository</name>
 <url>https://repository.jboss.org/nexus/content/repositories/deprecated/</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 </repository>
 </repositories>
 </profile>
 <!-- jboss.org config end -->
 </profiles>

https://repository.jboss.org/nexus/content/groups/public-jboss/%3C
https://repository.jboss.org/nexus/content/groups/public-jboss/%3C/
https://repository.jboss.org/nexus/content/repositories/deprecated/%3C
http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

13

 <!-- jboss.org config start -->
 <activeProfiles>
 <activeProfile>jboss-public-repository</activeProfile>
 </activeProfiles>
 <!-- jboss.org config end -->
</settings>

Note ■ You can modify the default location of the Maven local repository by adding into settings.xml the tag

localRepository, like this: <localRepository>new_repository_path</localRepository>.

Next, you need to create a pom.xml file. Obviously, this file’s content depends on what you want to obtain from
the Hibernate OGM repository. For example, the pom.xml in Listing 1-2 will download the Hibernate OGM Core
distribution (including dependencies) and store it locally in D:/Hibernate_OGM (you can also use the default ./m2
folder, but this makes it much clearer and easier to navigate).

Listing 1-2. Pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>maven.hibernate.ogm</groupId>
 <artifactId>Maven_HOGM</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>pom</packaging>
 <name>Maven_HOGM</name>
 <dependencies>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-core</artifactId>
 <version>4.0.0.Beta2</version>
 </dependency>
 </dependencies>
 <build>
 <directory>D:/Hibernate_OGM</directory>
 <defaultGoal>dependency:copy-dependencies</defaultGoal>
 </build>
</project>

The final step consists of executing the Maven mvn command. To do so, open a command prompt, navigate to the
folder containing the pom.xml file, and run the mvn command (see Figure 1-13). After a few seconds, you should find
the Hibernate OGM binary (including dependencies) in the path specified in the pom.xml file.

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

14

Adding MongoDB Artifacts
Now you know how to obtain the Hibernate OGM 4.0.0.Beta2 Core (and dependencies), but without any NoSQL data
store artifacts. Currently, you can add artifacts for the following NoSQL stores: Ehcache, Infinispan, and MongoDB.
Since our focus is Hibernate OGM and MongoDB, you’ll need to add MongoDB artifacts by placing the following
dependency into the pom.xml file:

...
<dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-mongodb</artifactId>
 <version>4.0.0.Beta1</version>
 </dependency>
...

Figure 1-13. Running the mvn command

www.allitebooks.com

http:///
http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

15

Note ■ For Infinispan, just replace the artifact id with hibernate-ogm-infinispan, and for Ehcache with

hibernate-ogm-ehcache.

Now, running the mvn command again will add two more JARs, hibernate-ogm-mongodb-4.0.0.Beta1.jar and
mongo-java-driver-2.8.0.jar, as shown in Figure 1-14. The MongoDB drivers are also available for download as
JARs at www.mongodb.org/display/DOCS/Drivers address.

Figure 1-14. Running the mvn command after adding MongoDB artifacts

http://www.mongodb.org/display/DOCS/Drivers
http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

16

Getting a Hibernate OGM Distribution Using the NetBeans IDE
If you’re a NetBeans fan, it’s much simpler to use Maven from a NetBeans Maven project. This section describes the
main steps in creating such a project to obtain the Hibernate OGM distribution as a NetBeans Library ready to be
used in other projects. Launch NetBeans (I tested on NetBeans 7.2.1) and follow these steps:

1. From the File menu, select the New Project option. In the New Project wizard, select
Maven in the Categories list and POM Project in the Projects list, as shown in Figure 1-15.

Figure 1-15. Creating a POM project with NetBeans 7

Note■ If Maven isn’t available in your NetBeans distribution, you can install it by following the tutorial about third-party

plug-in installations at http://wiki.netbeans.org/InstallingAPlugin.

2. Type the project name (Maven_HOGM), select the project location (D:\Apress\apps\
NetBeans), type the group id (maven.hibernate.ogm) and the version (1.0-SNAPSHOT)
and click Finish as shown in Figure 1-16. (Note that I’ve used example names and
locations here. Feel free to choose your own.) The empty project will be created and listed
under the Projects panel.

http://wiki.netbeans.org/InstallingAPlugin
http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

17

 3. Expand the Maven_HOGM | Project Files node and locate pom.xml and settings.xml.
If settings.xml isn’t listed, right-click on the Project Files node, select Create settings.xml
(as shown in Figure 1-17), and fill the file with the appropriate content.

Figure 1-16. Setting the project name and location

Figure 1-17. Creating the settings.xml file from NetBeans 7

 4. Edit pom.xml according to your needs. At this point, both files should be ready to be
processed by Maven.

 5. Right-click on the Maven-HOGM node and select Clean and Build. Wait until the task ends
successfully, then expand the Maven_OGM | Dependencies node to see the downloaded JARs.

http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

18

 6. Now you can create a NetBeans library. (I recommend that you create this library
because the applications developed with NetBeans, in later chapters, refer to it.) From
the NetBeans main menu, select Tools | Ant Libraries. In the Ant Library Manager,
click the New Library button, provide a name for the library, such as Hibernate OGM
Core and MongoDB, and click OK. Next, click on the Add JAR/Folder button and navigate to
the JARs (if you followed my example path, you’ll find them in D:\Hibernate_OGM\
dependency, as shown in Figure 1-18). Select all of the JARs and add them to this library.
Click OK to finish creating the library.

Figure 1-18. Creating a user library for Hibernate OGM and MongoDB

Now you can easily integrate the Hibernate OGM/MongoDB distribution into any of your NetBeans projects by
adding Hibernate OGM Core/Hibernate OGM Core and MongoDB library into your project libraries.

The complete application is available in the Apress repository. It’s a NetBeans project named Maven_HOGM.

http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

19

Getting the Hibernate OGM Distribution Using the Eclipse IDE
If you’re an Eclipse fan, it’s much simpler to use Maven from an Eclipse Maven project. This section describes the
main steps for creating such a project to obtain the Hibernate OGM distribution as an Eclipse library ready to be used
in other projects. So launch Eclipse (we tested on Eclipse JUNO) and follow these steps:

 1. From the File menu, select New | Other. In the New wizard, expand the Maven node and
select Maven Project as shown in Figure 1-19. Click Next.

Figure 1-19. Creating a new Maven project with Eclipse JUNO

If Maven isn’t available in your Eclipse distribution, you can either download a standalone Maven distribution
and install it from Window | Preferences | Maven | Installations, or you can install Maven for Eclipse from the
Eclipse Marketplace, which you’ll find on the Help menu. Once you locate Maven in the Marketplace, follow the
wizard to complete the installation (see Figure 1-20).

http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

20

 2. Check the box labeled Create a simple project (skip archetype selection). You can
choose the default workspace and click Next.

 3. Type the group id (maven.hibernate.ogm) and artifact id (Maven_HOGM). Click he Finish
button and wait until the project has been successfully created and is listed in the Package
Explorer panel.

 4. Manually update or create the settings.xml file in the maven local repository.

 5. Locate pom.xml in the Maven_HOGM project and double-click it.

 6. Next, in the editor, switch to the pom.xml tab where you’ll see a pom.xml skeleton. Add to it
the missing parts from your pom.xml and save the project (see Figure 1-21).

Figure 1-20. Creating a new Maven project with Eclipse JUNO

http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

21

 7. In the Package Explorer panel, right-click the project name and select Run As | Maven build.
When the process ends successfully, you should see the Hibernate OGM distribution
(including dependencies) under the path defined by the <directory> tag in pom.xml.

 8. Select Preferences in the Window menu. In the tree on the left, expand the Java | Build
Path node and select User Libraries.

 9. Click the New button to create a new library. Type a name for the new library, such as
Hibernate OGM Core and MongoDB, and click the OK.

 10. Click the Add External JARs button and navigate to the folder where the Hibernate OGM
distribution was downloaded. Select all of the JARs and add them to the library. Click OK.

Now you can easily integrate Hibernate OGM/MongoDB distribution into any of your Eclipse projects by adding
Hibernate OGM Core/Hibernate OGM Core and MongoDB library into your project build path.

Note ■ If you’d prefer to create the entire project with Maven, just add the Hibernate OGM dependencies accordingly.

All you have to do is add the corresponding <repository> and <dependency> tags.

The complete application is available in the Apress repository. It’s an Eclipse project named Maven_HOGM.

Obtain the MongoDB Distribution
When this book was written, the recommended MongoDB distribution was version 2.2.2 (I chose this version
because is “preferred” by Hibernate OGM and OpenShift). You can easily download it from the official web site at
http://www.mongodb.org/. You’ll find the installation steps at http://docs.mongodb.org/manual/installation/.

Figure 1-21. Editing pom.xml file in Eclipse JUNO

http://www.mongodb.org/
http://docs.mongodb.org/manual/installation/
http:///

CHAPTER 1 ■ GETTING STARTED WITH HIBERNATE OGM

22

The examples in this book were developed and tested under the 64-bit versions of Windows 7 and 8, for which the
installation is straightforward.

After downloading and installing the MongoDB distribution, you’re ready to see if the MongoDB server starts
and responds to commands. Open a command prompt, navigate to the {MONGODB_HOME}/bin folder and type mongod
--dbpath ../ command to start the server (the --dbpath option indicates the location of the /data/db folder you
manually created in the {MONGODB_HOME} folder, following installation guide). If there are no errors, open another
command prompt, navigate to the same folder, and type mongo. If you see something similar to what’s shown in
Figure 1-22, MongoDB was successfully installed.

Figure 1-22. Checking MongoDB server availability

To test more thoroughly, try the commands from the Getting Started tutorial at http://docs.mongodb.org/
manual/tutorial/getting-started/. You can easily shut down the MongoDB server by pressing CTRL-C.

Summary
In this introductory chapter we took the first steps toward understanding and using Hibernate OGM. We looked at
Hibernate OGM concepts, features and aims, as well as giving a brief overview of the Hibernate OGM architecture.
(It’s important to know how things are managed internally if you want to understand the next chapter).

You then saw how to obtain the Hibernate OGM distribution as a ZIP/TGZ, as a command-line Maven project,
and as a NetBeans/Eclipse Maven based project. Finally, you learned how to install a MongoDB distribution and how
to add the corresponding JARs to the Hibernate OGM distribution.

http://docs.mongodb.org/manual/tutorial/getting-started/
http://docs.mongodb.org/manual/tutorial/getting-started/
http:///

23

CHAPTER 2

Hibernate OGM and MongoDB

By now, you should have some idea of the general scope and architecture of Hibernate OGM. In Chapter 1,
I discussed how Hibernate OGM works with generic NoSQL stores, and I spoke about its general focus and how you
represent, persist, and query data. In addition, you learned how to obtain a Hibernate OGM distribution, and you’ve
installed a MongoDB NoSQL store and performed a simple command-line test to verify that the MongoDB server
responds correctly.

In this chapter, I’ll define more clearly the relationship between Hibernate OGM and MongoDB. Instead of
generic possibilities, I’ll focus on how Hibernate OGM works with the MongoDB store, and you’ll see how much of
MongoDB can be “swallowed” by Hibernate OGM and some MongoDB drawbacks that force Hibernate OGM to work
overtime to manage them.

Configuring MongoDB-Hibernate OGM Properties
Hibernate OGM becomes aware of MongoDB when you provide a bundle of configuration properties. If you’ve
worked before with Hibernate ORM, you’re already familiar with these kinds of properties. In particular, there are
three ways of setting these properties, as you’ll see in the next chapters:

declarative, through the • hibernate.cfg.xml configuration file

programmatically, through Hibernate native APIs•

declarative, through the • persistence.xml configuration file in JPA context

Note ■ Remember, we’re using Hibernate OGM 4.0.0.Beta.2 with Hibernate OGM for MongoDB 4.0.0.Beta1 and the

Java driver for MongoDB 2.8.0.

Let’s take look at the properties that enable Hibernate OGM to work with MongoDB.

hibernate.ogm.datastore.provider

As you know from Chapter 1, Hibernate OGM currently supports several NoSQL stores, including MongoDB. This
property value is how you let Hibernate OGM know which NoSQL store you want to use. For MongoDB, the value of
this property must be set to mongodb.

hibernate.ogm.mongodb.host

http:///

CHAPTER 2 ■ HIBERNATE OGM AND MONGODB

24

Next, Hibernate OGM needs to locate the MongoDB server instance. First, it must locate the hostname, which is
represented by the IP address of the machine that hosts the MongoDB instance. By default, the value of this property
is 127.0.0.1, which equivalent to localhost, and it can be set through the MongoDB driver as well:

Mongo mongo = new Mongo("127.0.0.1");
Mongo mongo = new Mongo(new ServerAddress("127.0.0.1"));

hibernate.ogm.mongodb.port

And what is a hostname without a port? By default, the MongoDB instance runs on port number 27017, but you
can use any other MongoDB port as long as you specify it as the value of this property. If you are using the MongoDB
driver directly, the port is typically set like this:

Mongo mongo = new Mongo("127.0.0.1", 27017);
Mongo mongo = new Mongo(new ServerAddress("127.0.0.1", 27017));

hibernate.ogm.mongodb.database

Now Hibernate OGM can locate MongoDB through its host and port. You also have to specify the database to
connect to. If you indicate a database name that doesn’t exist, a new database with that name will be automatically
created (there’s no default value for this property). You can also connect using the MongoDB driver, like this:

DB db = mongo.getDB("database_name");
Mongo db = new Mongo(new DBAddress("127.0.0.1", 27017, "database_name"));

hibernate.ogm.mongodb.username
hibernate.ogm.mongodb.password

These two properties represent authentication credentials. They have no default values and usually appear
together to authenticate a user against the MongoDB server (though if you set the password without setting the
username, Hibernate OGM will ignore the hibernate.ogm.mongodb.password property). You can also use the
MongoDB driver to set authentication credentials, like so:

boolean auth = db.authenticate("username", "password".toCharArray());

hibernate.ogm.mongodb.safe

Note that this property is a little tricky. MongoDB isn’t adept at transactions; it doesn’t do rollback and can’t
guarantee that the inserted data is, in fact, in the database since the driver doesn’t wait for the write operation to be
applied before returning. Behind the great speed advantage—resulting from the fact that the driver performs a write
behind to the MongoDB server—lurks a dangerous trap that can lose data.

The MongoDB team knew of this drawback, so it developed a new feature called Write Concerns to tell
MongoDB how important a piece of data is. This is also used to indicate the initial state of the data, the default write,
(WriteConcern.NORMAL).

MongoDB defines several levels of data importance, but Hibernate OGM lets you switch between the default
write and write safe write concerns.

With write safe, the driver doesn’t return immediately; it waits for the write operation to succeed before returning.
Obviously, this can have serious consequences for performance. You can set this value using the hibernate.ogm.
mongodb.safe property. By default, the value of this property is true, which means write safe is active, but you can set
it to false if loss of writes is not a major concern for your case.

www.allitebooks.com

http:///
http://www.allitebooks.org

CHAPTER 2 ■ HIBERNATE OGM AND MONGODB

25

Here’s how to use the MongoDB driver directly to set write safe:

DB db = mongo.getDB("database_name");
DBCollection dbCollection = db.getCollection("collection_name");
dbCollection.setWriteConcern(WriteConcern.SAFE);
dbCollection.insert(piece_of_data);
//or, shortly
dbCollection.insert(piece_of_data, WriteConcern.SAFE);

Note ■ Currently, Hibernate OGM only lets you enable the write safe MongoDB write concern (WriteConcern.SAFE).

Strategies like Write FSYNC_SAFE (WriteConcern.FSYNC_SAFE), Write JOURNAL_SAFE (WriteConcern.JOURNAL_SAFE),

and Write Majority (WriteConcern.MAJORITY) are thus controllable only through MongoDB driver.

hibernate.ogm.mongodb.connection_timeout

MongoDB supports a few timeout options for different kinds of time-consuming operations. Currently, Hibernate

OGM exposes through this property the MongoDB option connectTimeout (see com.mongodb.MongoOptions). This
is expressed in milliseconds and represents the timeout used by the driver when the connection to the MongoDB
instance is initiated. By default, Hibernate OGM sets it to 5000 milliseconds to override the driver default of 0 (which
means no timeout). You can set this property as follows:

mongo.getMongoOptions().connectTimeout=n_miliseconds;

hibernate.ogm.mongodb.associations.store

This property defines the way Hibernate OGM stores information relating to associations. The accepted values
are: IN_ENTITY, COLLECTION, and GLOBAL_COLLECTION. I’ll discuss these three strategies a little later in this chapter.

hibernate.ogm.datastore.grid_dialect

This is an optional property that’s usually ignored because the datastore provider chooses the best grid dialect
automatically. But if you want to override the recommended value, you have to specify the fully qualified class name
of the GridDialect implementation. For MongoDB, the correct value is org.hibernate.ogm.dialect.mongodb.
MongoDBDialect.

This is the set of properties that Hibernate OGM uses for configuring a connection to MongoDB server. At this
point, you have access to the essential settings for creating decent communications with the MongoDB server.
In future OGM releases, we can hope to be able to access many more settings for the MongoDB driver.

Data Storing Representation
As you know, the relational data model is useless in terms of MongoDB, which is a document-based database system;
all records (data) in MongoDB are documents. But, even so, MongoDB has to keep a conceptual correspondence
between relational terms and its own notions. Therefore, instead of tables, MongoDB uses collections and instead of

http:///

CHAPTER 2 ■ HIBERNATE OGM AND MONGODB

26

records, it uses documents (collections contain documents). MongoDB documents are BSON (Binary JSON—binary-
encoded serialization of JSON-like documents) objects and have the following structure:

{
 field1: value1,
 field2: value2,
 field3: value3,
 ...
 fieldN: valueN
}

Storing Entities
OK, but we are still storing and retrieving Java entities, right? Yes, the answer is definitely yes! If Hibernate ORM provides
complete support for transforming Java entities into relational tables, Hibernate OGM provides complete support for
transforming Java entities into MongoDB collections. Each entity represents a MongoDB collection; each entity instance
represents a MongoDB document; and each entity property will be translated into a document field (see Figure 2-1).

Figure 2-1. Storing a Java object in a MongoDB document

The Hibernate OGM team worked hard to store data as naturally as possible for MongoDB so that third-party
applications can exploit this data without Hibernate OGM assistance. For example, let’s suppose we have a POJO
class like the one in Listing 2-1. (I’m sure you’ve stored tons of Java objects like this into relational databases, so I’m
providing no details about this simple class.)

Listing 2-1. A POJO Class

import java.util.Date;

public class Players {

 private int id;
 private String name;
 private String surname;
 private int age;
 private Date birth;

http:///

CHAPTER 2 ■ HIBERNATE OGM AND MONGODB

27

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getSurname() {
 return surname;
 }

 public void setSurname(String surname) {
 this.surname = surname;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public Date getBirth() {
 return birth;
 }

 public void setBirth(Date birth) {
 this.birth = birth;
 }
}

Now, suppose an instance of this POJO is stored into the MongoDB players collection using Hibernate OGM,
like this:

{
 "_id": 1,
 "age": 26,
 "birth": ISODate("1986-06-03T15:43:37.763Z"),
 "name": "Nadal",
 "surname": "Rafael"
}

http:///

CHAPTER 2 ■ HIBERNATE OGM AND MONGODB

28

This is exactly what you obtain if you manually store via the MongoDB shell with the following command:

>db.players.insert(
 {
 _id: 1,
 age: 26,
 birth: new ISODate("1986-06-03T15:43:37.763Z"),
 name: "Nadal",
 surname: "Rafael"
 }
)

Practically, there’s no difference in the result. You can’t tell if the document was generated by Hibernate OGM or
inserted through the MongoDB shell. That’s great! Moreover, Hibernate OGM knows how to transform this result back
into an instance of the POJO. That’s even greater! And you won’t feel any programmatic discomfort, since Hibernate
OGM doesn’t require you write any underlying MongoDB code. That’s the greatest!

Storing Primary Keys
A MongoDB document or collection has a very flexible structure. It supports simple objects: the embedding of objects
and arrays within other objects and arrays; different kinds of documents in the same collection; and more, but it
also contains a document field especially reserved for storing primary keys. This field is named _id and its value
can be any information as long as it’s unique. If you don’t set _id to anything, the value will be set automatically to
“MongoDB Id Object”.

Hibernate OGM recognizes these specifications when storing identifiers into a MongoDB database; it lets you use
identifiers of any Java type, even composite identifiers, and it always stores them into the reserved _id field.

Figure 2-2 shows some identifiers of different Java types and how they look in MongoDB.

Figure 2-2. Correspondence between Java-style primary keys and MongoDB identifiers

http:///

CHAPTER 2 ■ HIBERNATE OGM AND MONGODB

29

Storing Associations
Probably the most powerful feature of relational databases relies on associations. Any database of any meaningful
capability take advantages of associations: one-to-one, one-to-many, many-to-one, and many-to-many.
In the relational model, associations require storing additional information, known as navigation information
for associations.

For example, in a bidirectional many-to-many association, the relational model usually uses three tables, two
tables for data and an additional table, known as a junction table. The junction table holds a composite key that
consists of the two foreign key fields that refer to the primary keys of both data tables (see Figure 2-3). Note that the
same pair of foreign keys can only occur once.

Figure 2-3. A bidirectional many-to-many association, shown in a relational model representation

In a MongoDB many-to-many association, you store the junction table as a document. Hibernate OGM provides
three solutions to accomplish this: IN_ENTITY, COLLECTION, and GLOBAL_COLLECTION. To better understand these
strategies, let’s improvise a simple scenario—two relational tables (Players and Tournaments) populated respectively
with three players, two tournaments, and a many-to-many association as shown in Figure 2-4. (The first and second
players, P1 and P2, participate in both tournaments, T1 and T2, and the third player (P3) participates only in the
second tournament, T2. Or, from the other side of the association, the first tournament, T1, includes the first and
second players, P1 and P2, and the second tournament,T2, includes the first, second, and third players, P1, P2, and P3.)

Figure 2-4. A bidirectional many-to-many association in a relational model representation—test case

http:///

CHAPTER 2 ■ HIBERNATE OGM AND MONGODB

30

Now, let’s look at the Hibernate OGM strategies for storing associations, using this test case. We want to observe
how the junction table is stored in MongoDB based on the selected strategy. We’ll begin with the default strategy,
IN_ENTITY, and continue with GLOBAL_COLLECTION, and finally COLLECTION.

In JPA terms, the main ways to represent this relational model are: the Players entity defines a primary key
field named idPlayers and is the owner of the association; the Tournaments entity defines a primary key named
idTournaments and is the non-owner side of the association—it contains the mappedBy element. Moreover,
the Players entity defines a Java collection of Tournaments, named tournaments, and the Tournaments entity defines
a Java collection of Players, named players.

IN_ENTITY

The default strategy for storing navigation information for associations is named IN_ENTITY. In this case, Hibernate
OGM stores the primary key of the other side of the association (the foreign key) into:

a field if the mapping concerns a single object.•

an embedded collection if the mapping concerns a collection.•

Running the relational scenario for MongoDB using the IN_ENTITY strategy reveals the results shown in Figure 2-5
and Figure 2-6.

Figure 2-5. Hibernate OGM-IN_ENTITY strategy result (Players collection)

http:///

CHAPTER 2 ■ HIBERNATE OGM AND MONGODB

31

Figure 2-5 shows the MongoDB Players collection corresponding to the Players relational table; as you can
see, each collection’s document contains part of the association as an embedded collection. (The Players collection
contains the part of the junction table that references the Tournaments collection.)

Note ■ The simplest way to explore a MongoDB collection from the shell is to call the find method, which returns all

documents from the specified collection. In addition, calling the pretty method results in the output being nicely format-

ted. When a collection contains more documents than fit in a shell window, you need to type the it command, which

supports document pagination.

The Players collection shows three main documents with the _id set as 1, 2, and 3, and each document
encapsulates the corresponding foreign keys in a field named like the Java collection declared by the owner side
(tournaments). Each document in the embedded collection contains a foreign key value stored in a field whose name
is composed of the Java collection name declared by the owner side (tournaments) concatenated with an underscore
and the non-owner side primary key field name (idTournaments).

The Tournaments collection, which corresponds to the Tournaments relational table, is like a reflection of the
Players collection—the Players primary keys become Tournaments foreign keys (the Tournaments collection
contains the part of the junction table that references the Players collection). Figure 2-6 shows the contents of the
Tournaments collections.

The Tournaments collection includes two main documents with the _id set as 1 and 2. Each one encapsulates the
corresponding foreign keys in a field named like the Java collection declared by the non-owner side (players). Each
document of the embedded collection contains a foreign key value stored in a field whose name is composed of the
Java collection name declared by non-owner side (players) concatenated with an underscore and the owner side
primary key field name (idPlayers).

Figure 2-6. Hibernate OGM-IN_ENTITY strategy result (tournaments collection)

http:///

CHAPTER 2 ■ HIBERNATE OGM AND MONGODB

32

In the unidirectional case, only the collection representing the owner side will contain navigation information for
the association.

You can use this strategy of storing navigation information for associations by setting the hibernate.ogm.
mongodb.associations.store configuration property to the value IN_ENTITY. Actually, this is the default value of this
property.

GLOBAL_COLLECTION

When you don’t want to store the navigation information for associations into an entity’s collections, you can choose
the GLOBAL_COLLECTION strategy (or COLLECTION, as you’ll see in the next section). In this case, Hibernate OGM creates
an extra collection named Associations, especially designed to store all navigation information. The documents
of this collection have a particular structure composed of two parts. The first part contains a composite identifier,
_id, made up of two fields whose values represent the primary key of the association owner and the name of the
association table; the second part contains a field, named rows, which stores foreign keys in an embedded collection.
For bidirectional associations, another document is created where the ids are reversed.

Running our relational scenario for MongoDB and the GLOBAL_COLLECTION strategy reveals the results shown in
Figure 2-7 and Figure 2-8.

Figure 2-7. Hibernate OGM-GLOBAL_COLLECTION strategy result (Players and Tournaments collections)

http:///

CHAPTER 2 ■ HIBERNATE OGM AND MONGODB

33

In Figure 2-7, you can see that the Players and Tournaments collections contain only pure information, no
navigation information.

The extra, unique collection that contains the navigation association is named Associations and is listed
in Figure 2-8.

This is a bidirectional association. The owner side (Players) is mapped on the left side of Figure 2-8 and the
non-owner side (Tournaments) is mapped on the right side of Figure 2-8. In a unidirectional association, only the owner
side exists.

Now, focus on the nested document under the first _id field (Figure 2-8, left side). The first field name,
players_idPlayers, is composed from the corresponding Java collection name defined in the non-owner side
(players), or, for unidirectional associations, the collection name representing the owner side (Players) concatenated
with an underscore and the name of the field representing the primary key of the owner side (idPlayers). The second
field name is table; its value is composed of the collection name representing the the owner side concatenated with
an underscore and the collection name representing the non-owner side (Players_Tournaments). The rows nested
collection contains one document per foreign key. Each foreign key is stored in a field whose name is composed of the
corresponding Java collection name defined in the owner side (tournaments) concatenated with an underscore and
the primary key field name of the non-owner side (idTournaments). As a consequence of bidirectionality, things get
reversed, as shown on the right side of Figure 2-8.

You can use this strategy for storing navigation information for associations by setting the hibernate.ogm.
mongodb.associations.store configuration property to the value GLOBAL_COLLECTION.

COLLECTION

If GLOBAL_COLLECTION stores all the navigation information in one global collection, the COLLECTION strategy is less
global and creates one MongoDB collection per association. For example, in our scenario, there will be one extra
collection named associations_Players_Tournaments. In this strategy, each collection is prefixed with the word
associations followed by the name of the association table. Using this convention makes it easy to differentiate the
associations collections from the other collections.

Figure 2-8. Hibernate OGM-GLOBAL_COLLECTION strategy result (Associatins collection)

http:///

CHAPTER 2 ■ HIBERNATE OGM AND MONGODB

34

The documents of this collection have a particular structure composed of two parts. The first part contains the
primary key of the association owner and the second part contains a field, named rows, which stores all foreign keys
in an embedded collection. For each foreign key there’s a document in the embedded collection. For bidirectional
cases, another document is created where the ids are reversed.

If you’re familiar with the relational model this strategy should seem closer to your experience. In Figure 2-9, you
can see the partial content of associations_Players_Tournaments collection—the navigation information for the
owner side (Players).

Figure 2-9. Hibernate OGM-COLLECTION strategy result (associations_Players_Tournaments collection)

You can easily see that the collection structure is the same as in the GLOBAL_COLLECTION case. The only difference
is that the _id field no longer contains the association table name in a field named table, which is logical since the
association table name is a part of the collection name (associations_Players_Tournaments).

You can use this strategy of storing navigation information for associations by setting the hibernate.ogm.
mongodb.associations.store configuration property to the value COLLECTION.

Note ■ Based on this example, you can easily intuit how the associations are represented in one-to-one, one-to-many,

and many-to-one cases. Keep in mind that collections and field names can be altered by JPA annotations, like @Column,

@Table, @JoinTable and so on. The example I presented doesn’t use such annotations.

From the JPA perspective, when a bidirectional association doesn’t define the owning side (using the mappedBy element),

Hibernate OGM considers each side to be an individual association. In other words, you’ll obtain two

associations instead of one in such cases. For example, the COLLECTION strategy will produce two collections for storing

two associations.

Now, it’s up to you to decide which strategy better meets your needs.

www.allitebooks.com

http:///
http://www.allitebooks.org

CHAPTER 2 ■ HIBERNATE OGM AND MONGODB

35

Managing Transactions
Before switching from a relational model system to a NoSQL platform like Mongo DB, it’s important to understand
the differences between them, and the advantages and drawbacks of each in the context of your application needs.
Knowing only that MongoDB doesn’t support SQL, while relational models don’t support collections and documents,
can lead to serious problems in application implementation. This is actually the fundamental difference between
the two, but there are many others, including the amount of space consumed and the time necessary to perform
statements, caching, indexing, and, probably the most painful, managing transactions.

Many pioneer projects with MongoDB fail miserably when the developers realize that data transactional integrity
is a must, because MongoDB doesn’t support transactions. MongoDB follows this directive: “write operations are
atomic on the level of a single document: no single write operation can atomically affect more than one document
or more than one collection.” It also provides the two-phase commit mechanism for simulating transactions over
multiple documents. You’ll find more details at www.docs.mongodb.org/manual/tutorial/perform-two-phase-
commits/. But both mechanisms omit the most powerful feature of transactional systems—the rollback operation.

Thus, if you need transactions, using MongoDB can be a delicate or even inappropriate choice. MongoDB is not
an alternative to SQL as a “fashion” choice and should be used only if it satisfies your application needs better than an
RDBMS. You should choose MongoDB when your database model doesn’t imply transactions or when you can shape
your database model not to need transactions.

Hibernate OGM can’t provide the rollback facility, but it does diminish the transactions issue by querying all
changes before applying them during flush. For this, OGM recommends using transaction demarcations to trigger the
flush operation on commit.

Managing Queries
Hibernate OGM provides three solutions for executing queries against a MongoDB database:

Partial JP-QL support•

Hibernate Search•

Native MongoDB queries•

Each of these will be discussed and demonstrated in Chapter 6.

Summary
Though this is a short chapter, it contains plenty of information. I presented the rules that govern the relationship
between Hibernate OGM and MongoDB. You saw how to configure MongoDB from Hibernate OGM and how data
can be persisted in MongoDB according to the OGM implementation. In addition, I described the MongoDB view of
transactions and finished with a quick enumeration of the query mechanism supported by Hibernate OGM.

http://www.docs.mongodb.org/manual/tutorial/perform-two-phase-commits/
http://www.docs.mongodb.org/manual/tutorial/perform-two-phase-commits/
http:///

37

CHAPTER 3

Bootstrapping Hibernate OGM

Since Hibernate OGM acts as a JPA implementation for NoSQL data stores, it’s obvious we can bootstrap it through
JPA. Moreover, it can be bootstrapped through the Hibernate Native APIs as well. No matter which way you choose to
bootstrap Hibernate OGM, it’s strongly recommended you use it in a Java Transaction API (JTA) environment, even if
you’re not using Java EE.

Before getting into the actual bootstrapping process, let’s take a brief look at these specifications. You’ll want to
keep the main features of these technologies in mind over the course of the next sections and chapters. Of course,
if you’re already a guru, you can skip ahead.

Brief Overview of JPA
The Java Persistence API aims to provide support for operations that store, update, and map data from relational
databases to Java objects and vice versa. You could say that JPA is the perfect tool for developers who have decided to
work directly with objects rather than with SQL statements (the ORM paradigm).

Note■ Object-relational mapping is a programming technique that provides a virtual object layer between relational

databases and object-oriented programming languages. Programming languages read from and write to relational

databases through this layer. Instead of writing SQL statements to interact with your database, you use objects. Moreover,

the code is much cleaner and easier to read, since it is not “plumbed” with SQL statements. As this book is written, the

JPA specification has several implementations or persistence providers. Some are popular, tested, and stable (EclipseLink,

Hibernate and Apache OpenJPA), while others may be less common but have very high benchmark performances

(BatooJPA). EclipseLink is the reference implementation of JPA and it works, as every JPA implementation should, in

both Java EE environments and standalone Java applications.

JPA is easy to use, thanks to persistence metadata that defines the relationships between Java objects and
database tables. You are probably familiar with persistence metadata as JDK 5.0 annotations or XDoclet-style
annotations at the language level, which are type safe and checked at compile time. It could be said that JPA
annotations are actually plain JDK 5.0 annotations. Some hide complex tasks. One such annotation is
javax.persistence.Entity (@Entity annotation), which is used to mark a POJO Java class that should be persisted
in a database—each class annotated with @Entity is stored into a table and each table row is an entity class instance.
Entities must define primary keys (a simple or complex primary key, explicitly specified or auto-generated if the
@GeneratedValue annotation is present). Entities must not be final and must define a constructor with no arguments.
The table name can reflect the class name or it can be explicitly provided through @Table annotation, like
@Table(name="my_table_name").

http:///

CHAPTER 3 ■ BOOTSTRAPPING HIBERNATE OGM

38

An entity class defines a set of fields and each field defaults to a table’s column that has the same name as the
field; you can alter this using the @Column annotation, such as @Column(name="my_column_name"). JPA can access
fields through getter and setter methods. Fields annotated with @Transient won’t be persisted while the other fields
are persisted by default.

Entity classes are where you define relationships between and among classes (tables). Classes can have
one-to-one (@OneToOne), one-to-many (@OneToMany), many-to-one (@ManyToOne), and many-to-many (@ManyToMany)
relationships with other classes. When two classes store references to each other, the relationship is bidirectional and
you must specify the owning side of the relationship in the other class with the element mappedBy. When the reference
is only from one class to another and not vice versa, the relationship is unidirectional and the mappedBy element isn’t
necessary.

Once you have the entities that reflect the database tables, you need an entity manager (an interface between
the application and the persistence context, what the Hibernate documentation describes as a “set of entity instances
in which for any persistent entity identity there is a unique entity instance,” or, more succinctly, all the entities of one
entity manager capable of providing methods for storing, retrieving, merging, and finding objects in the database.
In practice, this is the javax.persistence.EntityManager, which is automatically provided in Java EE environments,
such GlassFish or JBoss. If you’re in a non-Java EE environment, such as Tomcat or Java SE, you have to manage the
EntityManager lifecycle on your own.

The set of entities (usually logically related) that can be managed by a given EntityManager instance is defined
as a persistence unit, each of which has a unique name and resides in an XML document named persistence.xml.
Persistence.xml is a standard configuration file for JPA. It contains the JPA provider, the JTA or non-JTA data source,
the database connection information, such as driver, user, password, DDL generation, and more. (In a Java SE
application, this file is usually saved in the source directory in a folder named META-INF, while in a web application
it’s typically stored in the /src/conf folder, but, depending on application architecture, it can be located in other
places). A persistence.xml file may contain multiple persistence units; based on the one your application uses,
the server will know against which database to execute queries. In other words, through a persistence unit the
EntityManagerFactory, used by the application to obtain an application-managed entity manager, is configured for
a set of entities. You can look at this as a portable way to instantiate an EntityManagerFactory in JPA.

Figure 3-1 shows the relationships among the main components of the JPA architecture.

Figure 3-1. Relationships among the main components of the JPA architecture

Well, that was pretty quick. Now let’s take a look at JTA.

http:///

CHAPTER 3 ■ BOOTSTRAPPING HIBERNATE OGM

39

Brief Overview of JTA
The Java Transaction API (JTA) enables distributed transactions. Basically, a transaction consists of a set of tasks
(for example, SQL statements) that must be processed as an inseparable unit. This is an atomic operation and, in fact,
the rule of “one task for all and all tasks for one” is a transaction’s overriding principle. Transactions are characterized
by ACID properties, as follows:

• Atomicity requires that if any of the tasks fail then the transaction fails and it is rolled back.
If all tasks are successfully executed, the transaction is committed. In other words,
a transaction is an all-or-nothing proposition.

• Consistency ensures that any committed transaction will leave the database in a valid state
(written data must be valid according to all defined rules).

• Isolation means that your transaction is yours and yours alone; no other transaction can touch
it because the database uses a locking mechanism to protect the transaction until it ends,
successfully or otherwise. There are four levels of isolation:

• Read Uncommitted: your transaction can read the uncommitted data of other
transactions (never recommended in a multi-threaded environment).

• Read Committed: your transaction can never read uncommitted data of other
transactions.

• Repeatable: your transaction will get the same data on multiple reads of the same rows
until it ends.

• Serializable: this level of isolation guarantees that everything you touch (all tables)
remains unchanged during a transaction. It’s the strictest isolation level and, with the
most overhead, it causes the most performance bottlenecks.

• Durability guarantees that any committed transactions are safe, after system crashes.

These concepts are very important since transactions typically modify shared resources.
Generally, there are two ways of managing transactions:

Container Managed Transactions (CMT) use deployment descriptors or annotations •
(transaction attributes). In this case, the container is responsible for starting, committing,
and rolling back a transaction. This is the declarative technique of demarcating transactions.
In EJB containers, you can explicitly indicate a container-managed transaction using the
annotation @TransactionManagement, like this:

@TransactionManagement(TransactionManagementType.CONTAINER)

Moreover, you can tell the EJB container how to handle the transaction via the •
@TransactionAttribute annotation, which supports six values: REQUIRED (default),
REQUIRES_NEW, SUPPORTS, MANDATORY, NOT_SUPPORTED, NEVER. For example, you can set
MANDATORY like this:

@TransactionAttribute(TransactionAttributeType.MANDATORY)

Bean Managed Transactions (BMT) require you to explicitly (programmatically) start, commit, •
and roll back transactions. This is the programmatic technique of demarcating transactions.
In EJB containers, you can explicitly indicate a bean-managed transaction via the annotation
@TransactionManagement, like this:

@TransactionManagement(TransactionManagementType.BEAN)

http:///

CHAPTER 3 ■ BOOTSTRAPPING HIBERNATE OGM

40

And there are two types of transactions:

• local transactions access and update data on a single networked resource (one database).

• distributed transactions access and update data on two or more networked resources
(multiple databases).

Programmatically speaking, JTA is a high-level API for accessing transactions based on three main interfaces:

• UserTransaction: The javax.transaction.UserTransaction interface allows developers to
control transaction boundaries programmatically. To demarcate a JTA transaction, you invoke
the begin, commit, and rollback methods of this interface.

• TransactionManager: The javax.transaction.TransactionManager allows the application
server to control transaction boundaries.

• XAResource: The javax.transaction.xa.XAResource is a Java mapping of the standard XA
interface based on the X/Open CAE Specification. You can find more details about XA at
www.en.wikipedia.org/wiki/X/Open_XA and about XAResource and at
www.docs.oracle.com/javaee/6/api/javax/transaction/xa/XAResource.html.

And that was a quick look at JTA.

MongoDB and Transactions
MongoDB does not support transactions, and this might seem like a limitation that cancels any potential benefit.
MongoDB supports atomicity only when the changes affect a single document or multiple subdocuments of a single
document. When changes (such as write operations) affect multiple documents, they are not applied atomically,
which may lead to inconsistent data, other operations that interleave, and so on. Obviously, since the changes
to multiple documents are not atomic, rollback is not applicable.

MongoDB does better with regard to consistency and durability. MongoDB write operations can be made
consistent across connections. Moreover, MongoDB supports near-real-time replication, so it’s possible to ensure an
operation has been replicated before returning.

Hibernate OGM mitigates MongoDB’s lack of support for transactions by queuing all changes before applying them
during flush time. Even though MongoDB doesn’t support transactions, Hibernate OGM recommends using transaction
demarcations to trigger the flush operation transparently (on commit). But, as the official documentation indicates, rollback
is not an option. Therefore, the applications developed in this book will use JTA, as Hibernate OGM recommends.

Note ■ Based on the limitations I’ve noted, it’s easy to conclude that MongoDB can’t meet our application’s needs. But, let’s

consider why we might jump to that conclusion. Are we too addicted to complex database schema designs, with many joins and

tables that require transactions, and queries that are hard to write and manage? It’s far from my aim to debate such questions

here, but maybe you’ll take a little time to think about them and find the correct answers for your applications.

Brief Overview of Hibernate Native API
Applications that use the Hibernate API directly are known as native Hibernate applications. Developing a native
Hibernate application consists of a few straightforward steps in which you:

define persistence classes•

specify properties and mapping documents•

load these into the application’s configuration•

http://www.en.wikipedia.org/wiki/X/Open_XA
http://www.docs.oracle.com/javaee/6/api/javax/transaction/xa/XAResource.html
http:///

CHAPTER 3 ■ BOOTSTRAPPING HIBERNATE OGM

41

based on this configuration, create a session factory•

obtain (open) sessions from the session factory•

execute queries and transactions•

The starting point and core of the Native API is the org.hibernate.cfg.Configuration class, which uses the
properties and mapping documents (.properties, .cfg.xml and hbm.xml files) to create org.hibernate.SessionFactory,
a thread-safe object that’s instantiated once and provides a factory for obtaining sessions (org.hibernate.Session).
Session instances are used to execute transactions (JTA) and/or queries.

Figure 3-2 represents the Hibernate Native API architecture.

Figure 3-2. Hibernate Native API architecture

Bootstrapping Hibernate OGM Using JPA
Bootstrapping Hibernate OGM using JPA is the simplest case, since Hibernate OGM acts as a persistence provider.
As noted earlier, the persistence provider is specified in the persistence.xml file within a persistence unit. The
contents of persistence.xml may differ depending on how certain variables are defined, such as environment
(Java EE, Java SE); JTA or non-JTA; database-specific requirements; server configurations; and so on. I tried to write a
persistence.xml file for Hibernate OGM that contains the minimum mandatory settings.

 1. The first step is to write a persistence.xml skeleton, which (in a Java SE/EE application)
generally looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
...
</persistence>

This file is typically saved in the source directory in a folder named META-INF, though in a
web application it’s usually saved in the /src/conf folder.

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 3 ■ BOOTSTRAPPING HIBERNATE OGM

42

Next, you add a persistence unit; you can name it whatever you want. JPA implementations
can either manage transactions themselves through RESOURCE_LOCAL, or have them
managed by the application server’s JTA implementation. You use the transaction-type
attribute to specify whether the entity managers provided by the entity manager factory for
the persistence unit should be JTA or resource-local. Here I’ll indicate the transaction type
as JTA, because we want to use a JTA entity manager. (Whatever the server environment,
Hibernate OGM recommends using JTA).

<persistence-unit name="{PU_NAME}" transaction-type="JTA">
</persistence-unit>
...

Remember to not use RESOURCE_LOCAL (a resource-local entity manager) as it uses basic
JDBC-level transactions and is more specific to Java SE applications, while JTA is the
default in Java EE environments.

 2. Now you need to specify the persistence provider. You’re probably familiar with providers
like EclipseLink 2.0 for GlassFish v3, Hibernate 4 for JBoss AS 7, OpenJPA for WebSphere
6 and 7, and OpenJPA/KODO for WebLogic. For Hibernate OGM, the provider is named
org.hibernate.ogm.jpa.HibernateOgmPersistence and it can be explicitly added into
persistence.xml, like so:

...
<provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
...

 3. Now we’ve come to the properties section of persistence.xml. The first property to set is
the JTA platform using hibernate.transaction.jta.platform. This property can have
the following values (these classes belong to Hibernate core; they are the transaction
managers as deployed on different application servers):

JBoss Application Server 7 (• www.jboss.org/as7)1
org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform

Bitronix JTA Transaction Manager (• www.docs.codehaus.org/display/BTM/Home)
org.hibernate.service.jta.platform.internal.BitronixJtaPlatform

Borland Enterprise Server 6.0 (• www.techpubs.borland.com/am/bes/v6/)
org.hibernate.service.jta.platform.internal.BorlandEnterpriseServerJtaPlatform

JBoss Transactions (standalone JTA transaction manager known to work with •
org.jboss.jbossts:jbossjta:4.9.0.GA; not for use with Jboss AS 7)
(www.jboss.org/jbosstm)
org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform

JOnAS OSGi Enterprise Server (OW2) (• www.jonas.ow2.org/xwiki/bin/view/Main/)
org.hibernate.service.jta.platform.internal.JOnASJtaPlatform

1InApril 2013 Red Hat, Inc. announced that the next generation of JBoss Application Server would be known as Wildfly. See
http://gb.redhat.com/about/news/press-archive/2013/4/red-hat-reveals-plans-for-its-next-generation-java-
application-server-project.

http://www.jboss.org/as7
http://www.docs.codehaus.org/display/BTM/Home
http://www.techpubs.borland.com/am/bes/v6/
http://www.jboss.org/jbosstm
http://www.jonas.ow2.org/xwiki/bin/view/Main/
http://gb.redhat.com/about/news/press-archive/2013/4/red-hat-reveals-plans-for-its-next-generation-java-application-server-project
http://gb.redhat.com/about/news/press-archive/2013/4/red-hat-reveals-plans-for-its-next-generation-java-application-server-project
http:///

CHAPTER 3 ■ BOOTSTRAPPING HIBERNATE OGM

43

Java Open Transaction Manager (JOTM), a standalone transaction manager •
(www.jotm.objectweb.org/)
org.hibernate.service.jta.platform.internal.JOTMJtaPlatform

JRun 4 Application Server (• www.adobe.com/products/jrun/)
org.hibernate.service.jta.platform.internal.JRun4JtaPlatform

• NoJtaPlatform class, a no-op version for use when no JTA has been configured
(www.docs.jboss.org/hibernate/orm/4.0/javadocs/org/hibernate/service/jta/
platform/internal/NoJtaPlatform.html)
org.hibernate.service.jta.platform.internal.NoJtaPlatform

Oracle Application Server 10• g (OC4J)
(www.oracle.com/technetwork/middleware/ias/index-099846.html)
org.hibernate.service.jta.platform.internal.OC4JJtaPlatform

Caucho Resin Application Server (• www.caucho.com/)
org.hibernate.service.jta.platform.internal.ResinJtaPlatform

Sun ONE Application Server 7 (This transaction manager also works with GlassFish v3 •
Application Server) (www.docs.oracle.com/cd/E19957-01/817-2180-10/pt_chap1.html)
org.hibernate.service.jta.platform.internal.SunOneJtaPlatform

Weblogic Application Server (• www.oracle.com/us/products/middleware/cloud-app-
foundation/weblogic/overview/index.html)
org.hibernate.service.jta.platform.internal.WeblogicJtaPlatform

WebSphere Application Server version 6 •
(www-01.ibm.com/software/webservers/appserv/was/)
org.hibernate.service.jta.platform.internal.WebSphereExtendedJtaPlatform

WebSphere Application Server versions 4, 5.0 and 5.1 •
(www-01.ibm.com/software/webservers/appserv/was/)
org.hibernate.service.jta.platform.internal.WebSphereJtaPlatform

Transaction Manager Lookup Bridge, a bridge to legacy (and deprecated) •
org.hibernate.transaction.TransactionManagerLookup implementations
(www.docs.jboss.org/hibernate/orm/4.0/javadocs/org/hibernate/service/jta/
platform/internal/TransactionManagerLookupBridge.html)
org.hibernate.service.jta.platform.internal.TransactionManagerLookupBridge

Orion Application Server - it seems that this server does not exist any more•
org.hibernate.service.jta.platform.internal.OrionJtaPlatform

Note ■ Keep in mind that these values were valid when this book was written. They were available in Hibernate 4.1,

but it’s quite possible they will change in the future. You can check the list in the Hibernate Developer Guide,

at www.docs.jboss.org/hibernate/orm/4.1/devguide/en-US/html_single/.

Here’s an example of setting the JTA platform for Caucho Resin:

...
<property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.ResinJtaPlatform"/>
...

http://www.jotm.objectweb.org/
http://www.adobe.com/products/jrun/
http://www.docs.jboss.org/hibernate/orm/4.0/javadocs/org/hibernate/service/jta/platform/internal/NoJtaPlatform.html
http://www.docs.jboss.org/hibernate/orm/4.0/javadocs/org/hibernate/service/jta/platform/internal/NoJtaPlatform.html
http://www.oracle.com/technetwork/middleware/ias/index-099846.html
http://www.caucho.com/
http://www.docs.oracle.com/cd/E19957-01/817-2180-10/pt_chap1.html
http://www.oracle.com/us/products/middleware/cloud-app-foundation/weblogic/overview/index.html
http://www.oracle.com/us/products/middleware/cloud-app-foundation/weblogic/overview/index.html
http://www-01.ibm.com/software/webservers/appserv/was/
http://www-01.ibm.com/software/webservers/appserv/was/
http://www.docs.jboss.org/hibernate/orm/4.0/javadocs/org/hibernate/service/jta/platform/internal/TransactionManagerLookupBridge.html
http://www.docs.jboss.org/hibernate/orm/4.0/javadocs/org/hibernate/service/jta/platform/internal/TransactionManagerLookupBridge.html
http://www.docs.jboss.org/hibernate/orm/4.1/devguide/en-US/html_single/
http:///

CHAPTER 3 ■ BOOTSTRAPPING HIBERNATE OGM

44

The next five properties configure which NoSQL data store to use and how to connect to it.
For example, you can connect to an out-of-the-box MongoDB distribution by setting the
data store provider, grid dialect (optional), database, host and port, like this:

...
<property name="hibernate.ogm.datastore.provider" value="mongodb"/>
<property name="hibernate.ogm.datastore.grid_dialect"
 value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
<property name="hibernate.ogm.mongodb.database" value="test"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>
...

That’s it! Now we can glue the pieces together and provide a generic persistence.xml for out-of-the-box
MongoDB, as shown in Listing 3-1. In the next chapter we’ll adapt this file to fit into different environments.

Listing 3-1. A Generic persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="{PU_NAME}" transaction-type="JTA">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <properties>
 <property name="hibernate.transaction.jta.platform"
 value="{JTA_PLATFORM}"/>
 <property name="hibernate.ogm.datastore.provider" value="mongodb"/>
 <property name="hibernate.ogm.datastore.grid_dialect"
 value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
 <property name="hibernate.ogm.mongodb.database" value="test"/>
 <property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
 <property name="hibernate.ogm.mongodb.port" value="27017"/>
 </properties>
 </persistence-unit>
</persistence>

Bootstrap Hibernate OGM Using Hibernate Native API
Earlier, you saw that a native API application can be developed by following a few straightforward steps. Three of these
steps—loading properties and mapping files into the application; creating a global thread-safe SessionFactory for the
current configuration; and obtaining Sessions (single-threaded units of work) through SessionFactory—are usually
implemented in the well-known HibernateUtil class. (You can write this class, but you also can find it on Internet in
different "shapes.") Invariably, in this class, you’ll have some lines of code similar to this (for Hibernate 3):

private static final SessionFactory sessionFactory;
...
sessionFactory = new Configuration().configure().buildSessionFactory();
...

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 3 ■ BOOTSTRAPPING HIBERNATE OGM

45

Look at the second line, which builds the SessionFactory through an instance of the org.hibernate.cfg.
Configuration class. Actually, this is the entry point to setting Hibernate OGM to work with Native API, because
instead of using the org.hibernate.cfg.Configuration class, which is specific to Hibernate ORM, you need to use
the org.hibernate.ogm.cfg.OgmConfiguration class. Therefore, that second line will become:

...
sessionFactory = new OgmConfiguration().configure().buildSessionFactory();
...

Starting with Hibernate 4, this code will present a warning about the deprecated method buildSessionFactory().
In this case, the javadoc recommends using the form buildSessionFactory(ServiceRegistry serviceRegistry).
So if you are using Hibernate 4 (recommended), replace the previous code with this:

private static final SessionFactory sessionFactory;
private static final ServiceRegistry serviceRegistry;
...
OgmConfiguration cfgogm = new OgmConfiguration();
cfgogm.configure();
serviceRegistry = new ServiceRegistryBuilder().
applySettings(cfgogm.getProperties()).buildServiceRegistry();
sessionFactory = cfgogm.buildSessionFactory(serviceRegistry);
...

This approach (using either Hibernate 3 or 4) requires a hibernate.cfg.xml file that contains specific
configurations. For Hibernate OGM, the file needs to contain the correct transaction strategy and the correct
transaction manager lookup strategy. You have to specify a factory class for Transaction instances by setting the
Hibernate configuration property hibernate.transaction.factory_class. The accepted values are:

• org.hibernate.transaction.JDBCTransactionFactory—this is the default value and it
delegates to database (JDBC) transactions.

• org.hibernate.transaction.JTATransactionFactory —with this, bean-managed
transactions are used, which means you must manually demarcate transaction boundaries.

• org.hibernate.transaction.CMTTransactionFactory—this value delegates to container-
managed JTA transactions.

Programmatically, you can achieve this setting like this:

...
OgmConfiguration cfgogm = new OgmConfiguration();
...
cfgogm.setProperty(Environment.TRANSACTION_STRATEGY,
"{TRANSACTION_STRATEGY}");
...

Next, you have to specify the JTA platform by setting the property named hibernate.transaction.jta.platform.
The value of this property must consist of the fully qualified class name of the lookup implementation. The acceptable
values were listed earlier in the "Bootstrap Hibernate OGM Using JPA" section.

www.allitebooks.com

http:///
http://www.allitebooks.org

CHAPTER 3 ■ BOOTSTRAPPING HIBERNATE OGM

46

Programmatically, you can achieve this setting like this:

...
OgmConfiguration cfgogm = new OgmConfiguration();
...
cfgogm.setProperty(Environment.JTA_PLATFORM,"{JTA_PLATFORM}");
...

Finally, you need configure which NoSQL data store you want to use and how to connect to it.
For an out-of-the-box MongoDB distribution, you need to set the data store provider, grid dialect (optional),

database, host and port, like this:

...
<property name="hibernate.ogm.datastore.provider">mongodb</property>
<property name="hibernate.ogm.mongodb.database">test</property>
<property name="hibernate.ogm.datastore.grid_dialect">
 org.hibernate.ogm.dialect.mongodb.MongoDBDialect</property>
<property name="hibernate.ogm.mongodb.host">127.0.0.1</property>
<property name="hibernate.ogm.mongodb.port">27017</property>
...

Programmatically, you can achieve these settings with the code in Listing 3-2.

Listing 3-2. Configuring MongoDB as the Data Store
...
OgmConfiguration cfgogm = new OgmConfiguration();
...
cfgogm.setProperty("hibernate.ogm.datastore.provider","mongodb");
cfgogm.setProperty("hibernate.ogm.mongodb.database","test");
cfgogm.setProperty("hibernate.ogm.datastore.grid_dialect ","
 org.hibernate.ogm.dialect.mongodb.MongoDBDialect");
cfgogm.setProperty("hibernate.ogm.mongodb.host","127.0.0.1");
cfgogm.setProperty("hibernate.ogm.mongodb.port","27017");
...

Therefore, if you are using non-programmatically settings then the hibernate.cfg.xml may look like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <property name="hibernate.transaction.factory_class">
 {TRANSACTION_STRATEGY}
 </property>
 <property name="hibernate.transaction.jta.platform">
 {JTA_PLATFORM}
 </property>
 <property name="hibernate.ogm.datastore.provider">mongodb</property>
 <property name="hibernate.ogm.mongodb.database">test</property>
 <property name="hibernate.ogm.datastore.grid_dialect">
 org.hibernate.ogm.dialect.mongodb.MongoDBDialect</property>

http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd
http:///

CHAPTER 3 ■ BOOTSTRAPPING HIBERNATE OGM

47

 <property name="hibernate.ogm.mongodb.host">127.0.0.1</property>
 <property name="hibernate.ogm.mongodb.port">27017</property>
 <mapping resource="..."/>
 ...
 </session-factory>
</hibernate-configuration>

Listing 3-3 shows the HibernateUtil class that uses this configuration file.

Listing 3-3. HibernateUtil

import java.util.logging.Level;
import java.util.logging.Logger;
import org.hibernate.SessionFactory;
import org.hibernate.ogm.cfg.OgmConfiguration;
import org.hibernate.service.ServiceRegistry;
import org.hibernate.service.ServiceRegistryBuilder;

/**
 * HibernateUtil class (based on hibernate.cfg.xml)
 *
 */
public class HibernateUtil {

 private static final Logger log = Logger.getLogger(HibernateUtil.class.getName());
 private static final SessionFactory sessionFactory;
 private static final ServiceRegistry serviceRegistry;

 static {
 try {
 // create a new instance of OmgConfiguration
 OgmConfiguration cfgogm = new OgmConfiguration();

 //process configuration and mapping files
 cfgogm.configure();
 // create the SessionFactory
 serviceRegistry = new ServiceRegistryBuilder().
 applySettings(cfgogm.getProperties()).buildServiceRegistry();
 sessionFactory = cfgogm.buildSessionFactory(serviceRegistry);
 } catch (Throwable ex) {
 log.log(Level.SEVERE,
 "Initial SessionFactory creation failed !", ex);
 throw new ExceptionInInitializerError(ex);
 }
 }

 public static SessionFactory getSessionFactory() {
 return sessionFactory;
 }
}

http:///

CHAPTER 3 ■ BOOTSTRAPPING HIBERNATE OGM

48

If you’re using programmatic settings, you don’t need a hibernate.cfg.xml file and your HibernateUtil will
look like what’s shown in Listing 3-4.

Listing 3-4. A HibernateUtil Class That Doesn’t Need Hibernate.cfg.xml

import java.util.logging.Level;
import java.util.logging.Logger;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Environment;
import org.hibernate.ogm.cfg.OgmConfiguration;
import org.hibernate.service.ServiceRegistry;
import org.hibernate.service.ServiceRegistryBuilder;

/**
 * HibernateUtil class (no need of hibernate.cfg.xml)
 *
 */
public class HibernateUtil {

 private static final Logger log = Logger.getLogger(HibernateUtil.class.getName());
 private static final SessionFactory sessionFactory;
 private static final ServiceRegistry serviceRegistry;

 static {
 try {
 // create a new instance of OmgConfiguration
 OgmConfiguration cfgogm = new OgmConfiguration();

 // enable transaction strategy
 cfgogm.setProperty(Environment.TRANSACTION_STRATEGY,
 "{TRANSACTION_STRATEGY}");
 // specify JTA platform
 cfgogm.setProperty(Environment.JTA_PLATFORM, "{JTA_PLATFORM}");

 //configure MongoDB connection
 cfgogm.setProperty("hibernate.ogm.datastore.provider", "mongodb");
 cfgogm.setProperty("hibernate.ogm.datastore.grid_dialect",
 "org.hibernate.ogm.dialect.mongodb.MongoDBDialect");
 cfgogm.setProperty("hibernate.ogm.mongodb.database", "test");
 cfgogm.setProperty("hibernate.ogm.mongodb.host", "127.0.0.1");
 cfgogm.setProperty("hibernate.ogm.mongodb.port", "27017");

 //add our annotated class
 cfgogm.addAnnotatedClass(*.class);

 // create the SessionFactory
 serviceRegistry = new ServiceRegistryBuilder().
 applySettings(cfgogm.getProperties()).buildServiceRegistry();
 sessionFactory = cfgogm.buildSessionFactory(serviceRegistry);

http:///

CHAPTER 3 ■ BOOTSTRAPPING HIBERNATE OGM

49

 } catch (Throwable ex) {
 log.log(Level.SEVERE,
 "Initial SessionFactory creation failed !", ex);
 throw new ExceptionInInitializerError(ex);
 }
 }

 public static SessionFactory getSessionFactory() {
 return sessionFactory;
 }
}

Now, the Hibernate Native API presented in Figure 3-2 can be redrawn as in Figure 3-3.

Figure 3-3. Hibernate Native API architecture in Hibernate OGM

Note ■ Setting up Infinispan with the default configuration (org/hibernate/ogm/datastore/infinispan/

default-config.xml) can be accomplished by specifying the value of the hibernate.ogm.datastore.provider

property as infinispan. And you can set up Ehcache with the default configuration (org/hibernate/ogm/datastore/

ehcache/default-ehcache.xml) by setting the same property to Ehcache. For these two NoSQL products, Hibernate

OGM also supports a specific property for indicating an XML configuration file. For Infinispan, this property is called

hibernate.ogm.infinispan.configuration_resourcename and for Ehcache it’s hibernate.ogm.ehcache.configuration_

resourcename. For Infinispan and Ehcache, therefore, you don’t need to set dialect, database, port and host.

http:///

CHAPTER 3 ■ BOOTSTRAPPING HIBERNATE OGM

50

Hibernate OGM Obsolete Configuration Options
With the advent of Hibernate OGM, a set of options from Hibernate ORM are no longer available. Therefore,
in accordance with the Hibernate OGM specification, the following options should not be used in OGM
environments:

• hibernate.dialect

• hibernate.connection.* and in particular hibernate.connection.provider_class

• hibernate.show_sql and hibernate.format_sql

• hibernate.default_schema and hibernate.default_catalog

• hibernate.use_sql_comments

• hibernate.jdbc.*

• hibernate.hbm2ddl.auto and hibernate.hbm2ddl.import_file

Summary
After a brief look at the Java Persistence API (JPA), Java Transaction API (JTA), and Hibernate Native API, you saw how
to bootstrap Hibernate OGM using JPA and Hibernate Native API. You learned how to write a generic persistence.
xml and how to implement a HibernateUtil class for Hibernate OGM. Finally, you saw the list of Hibernate ORM
configuration properties that are no longer available in Hibernate OGM.

http:///

51

CHAPTER 4

Hibernate OGM at Work

So far, you’ve learned that Hibernate OGM can be used via Java Persistence APIs or Hibernate Native APIs. Moreover,
you understand the principles for accomplishing Hibernate OGM bootstrapping and you’ve looked at some relevant
code snippets. Obviously, jumping from those code snippets to real applications requires more than copying and
pasting, since you have to deal with the integration process and each environment’s specific features and settings.

Trying to give an example that exactly matches each individual programmer’s needs would be hopelessly
overambitious, but what I can do is to provide a series of examples that use Hibernate OGM. In this chapter, I’ll show you
some out-of-the-box Hibernate OGM applications deployable on Java EE 6 servers (such as JBoss and GlassFish) and
on Web servers (such as Tomcat), using frameworks like Seam and Spring and specifications like EJB. In addition to the
kernel technologies that interact directly with Hibernate OGM, we’ll use some development tools, IDEs like NetBeans
and Eclipse, as well as Maven, JBoss Forge, Ant and so on, which help us build the applications with a minimum of effort.
Consider these tools as my choice and not a must. You can use any other tools that yield the same results.

The entire set of applications share some simple business logic that stores a random integer in a MongoDB
collection—we’ll call this integer a lucky number. As you’ll see, the stored integer is not even solicited from the
user; it’s randomly generated when the user presses a button (each press generates and stores a new integer). The
point of this trivial business logic is to keep the application code as simple as possible and focus on Hibernate
OGM integration into the context. What we’re really concerned with is successfully binding Hibernate OGM to an
application context and setting up interaction with MongoDB. In later chapters, we’ll have plenty of time to discuss
advanced setting for MongoDB, storage principles, JP-QL, Hibernate Search, and so on.

General Prerequisites
Before we start, make sure you’ve correctly installed MongoDB (as you saw in the Chapter 1) and that you have the
Hibernate OGM JARs available, including the JARs needed for MongoDB support (locally or through Maven artifacts).
The rest of the tools, such as application servers, frameworks, IDEs and so on, can be installed separately according
to your needs; you probably won’t be interested in all of the following examples. In any case, for testing the complete
suite of applications from this chapter, you’ll need the following:

Java EE 6•

JDK 1.7•

GlassFish AS 3 (bundled with NetBeans 7.2.1 or 7.3)•

JBoss AS 7 (should be installed separately)•

Apache Tomcat 7 (bundled with NetBeans 7.2.1 or 7.3)•

NetBeans 7.2.1 or 7.3 (recommended with GlassFish AS 3 and Tomcat 7)•

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

52

Eclipse JUNO (JBoss AS 7 can be configured under this Eclipse distribution through JBoss •
AS Tools)

MongoDB 2.2.2 (you should have this installed from Chapter 1)•

Hibernate OGM 4.0.0.Beta2 (from Chapter 1, you should have a NetBeans and Eclipse library •
named Hibernate OGM Core and MongoDB)

MongoDB Java Driver 2.8.0 (this is present in Hibernate OGM Core and MongoDB library)•

JBoss JTA 4.16.4 Final•

Forge 1.0.5 or 1.3.1 (standalone or running as an Eclipse plug-in)•

Spring 3.3.1 (bundled with NetBeans 7.2.1 or 7.3)•

Moreover, before you start, you may find it helpful to know that:

Each application presented in this chapter can be downloaded from the Apress repository. •
Each application includes a small paragraph that describes the application name and the
technical conditions under which it was tested. In other words, there’s no need for you to
reconstruct each application as you read this book, unless you want to.

The examples show you how to integrate MongoDB and Hibernate OGM in different kinds •
of applications that involve several technologies. As you know, such applications need many
additional files—XML configuration files, XHTML pages, servlets, managed beans, controllers
and so on. I tried to keep the code as clean as possible to make it easier to understand how to
integrate MongoDB and Hibernate OGM, so I’ve skipped the “spaghetti” code that isn’t relevant.
Furthermore, I don’t try to teach you how to create a servlet, a session bean, or an XHTML page,
or how to write a web.xml file. I assume you already know how, probably with NetBeans, Eclipse
or another IDE. Don’t expect to see a step-by-step NetBeans or Eclipse tutorial.

Note ■ For the applications developed as Apache Maven projects, don’t forget to edit settings.xml as you saw in

Chapter 1. Or, if you think that settings.xml is too verbose, you can simply use <repository> tags in your pom.xml.

Keep in mind, though, that missing repositories will cause errors.

Java SE and MongoDB—the Hello World Example
We’ll start our series of applications with an exception: the first application won’t involve Hibernate OGM. This application
is actually just a quick test to make sure that the MongoDB server is running and responds to a connection attempt. Consider
this our Hello World application for Java-MongoDB novices. You can skip it if you think it’s a waste of your time. Otherwise,
let’s go!

This is the simplest Java SE/MongoDB example ever—it simply stores a random number into a MongoDB collection.

Prerequisites

MongoDB 2.2.2•

MongoDB Java driver 2.8.0 (mongo-java-driver-2.8.0.jar)•

JDK 1.7•

NetBeans 7.2.1 (or Eclipse JUNO)•

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

53

Developing
After launching NetBeans, create a new project consisting of a simple Maven Java application and name it
HelloWorld. In the New Java Application wizard, type HelloWorld for the Artifact Id, and hello.world.mongodb
for the Group Id and Package. Once you see the project listed in the Projects window, edit the pom.xml file (which
must be under the Project Files node). In the pom.xml file, add the MongoDB Java driver, version 2.8.0, by pasting in
the following code:

<dependencies>
 <dependency>
 <groupId>org.mongodb</groupId>
 <artifactId>mongo-java-driver</artifactId>
 <version>2.8.0</version>
</dependency>
..
<dependencies>

Now save the project and the driver JAR will be listed under the Dependencies node.

Note ■ If you’re not a Maven fan, create a simple Java application and download the MongoDB Java driver 2.8.0 from

GitHub, https://github.com/mongodb/mongo-java-driver/downloads. Obviously, in this case, you have to add it

manually to the Libraries node.

Now the necessary libraries are available. Next, edit the application’s main class. If you didn’t rename it, it’s
listed as App.java in the Source Packages node of the hello.world.mongodb.helloworld package. Under the main
method, insert the following code, step by step:

 1. Connect to the MongoDB store at localhost (127.0.0.1) on default port, 270127

Mongo mongo = new Mongo("127.0.0.1", 27017);

 2. Create a MongoDB database named helloworld_db. Most likely this database will be
automatically created by MongoDB since it doesn’t exist.

DB db = mongo.getDB("helloworld_db");

 3. Create a MongoDB collection named helloworld. This collection will probably be created
automatically in the helloworld_db database by MongoDB since it doesn’t exist.

DBCollection dbCollection = db.getCollection("helloworld");

 4. Create a document for storing a key/value pair. The key is just text and the value is the
generated number.

 BasicDBObject basicDBObject = new BasicDBObject();
 basicDBObject.put("Lucky number", new Random().nextInt(1000));

https://github.com/mongodb/mongo-java-driver/downloads
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

54

 5. Save the pair to the helloworld collection:

dbCollection.insert(basicDBObject);

Done!
Now, put those five steps together. Listing 4-1 shows the result.

Listing 4-1. The Hello World Example

package hello.world.mongodb.helloworld;

import com.mongodb.BasicDBObject;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.Mongo;
import com.mongodb.MongoException;
import java.net.UnknownHostException;
import java.util.Random;

/**
 * Hello world!
 *
 */
public class App {

 public static void main(String[] args) {
 try {
 // connect to the MongoDB store
 Mongo mongo = new Mongo("127.0.0.1", 27017);

 // get the MongoDB database, helloworld_db
 DB db = mongo.getDB("helloworld_db");

 //get the MongoDB collection named helloworld
 DBCollection dbCollection = db.getCollection("helloworld");

 // create a document for storing a key/value pair
 BasicDBObject basicDBObject = new BasicDBObject();
 basicDBObject.put("Lucky number", new Random().nextInt(1000));

 // save the pair into helloworld collection
 dbCollection.insert(basicDBObject);

 System.out.println("MongoDB has stored the lucky number!");

 } catch (UnknownHostException e) {
 System.err.println("ERROR: " + e.getMessage());
 } catch (MongoException e) {
 System.err.println("ERROR: " + e.getMessage());
 }
 }
}

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

55

Testing
Start the MongoDB server as in Chapter 1. Next, since you are in NetBeans (or Eclipse), there’s a Run button that does the
magic. Run the application and if you get the message “MongoDB has stored the lucky number!”, everything worked perfectly.

Open a command prompt and type the commands shown in Figure 4-1 to see the results of your work.

Figure 4-1. Checking the “helloworld” collection content

If you don’t obtain similar results, there’s a problem that must be fixed before creating the next application.
The complete Hello World application is available in the Apress repository and, of course, is named HelloWorld.

It comes as a NetBeans project and was tested under JDK 1.7 and MongoDB 2.2.2.

Hibernate OGM via Hibernate Native API
Once you’ve checked that MongoDB is ready to serve your applications, it’s time to move on to Hibernate OGM. In
this section, we’ll develop a series of applications that involve Hibernate OGM using the Hibernate Native API. Here
are the applications we’ll develop:

Hibernate OGM in a non-JTA environment (JDBC Transactions, Apache Tomcat 7)•

Hibernate OGM in a standalone JTA environment (JBoss JTA, Apache Tomcat 7)•

Hibernate OGM in a built-in JTA environment (no EJB, GlassFish AS 3)•

Hibernate OGM in a built-in JTA environment (EJB 3/BMT, GlassFish AS 3)•

Hibernate OGM in a built-in JTA environment (EJB 3/CMT, GlassFish AS 3)•

Hibernate OGM in a Non-JTA Environment (JDBC Transactions,
Apache Tomcat 7)
This application will bootstrap Hibernate OGM via Hibernate Native API in a non-JTA environment. Instead of JTA,
we’ll use the old-style JDBC transactions. Actually, instead of calling the JDBC API directly, we’ll use Hibernate’s
Transaction API and the built-in session-per-request functionality. The application will be deployable under an Apache
Tomcat 7 web container.

Note ■ When Hibernate OGM is used in a non-JTA environment, the rollback feature is not guaranteed. This is why

the Hibernate OGM team doesn’t recommend this environment for the Hibernate OGM 4.0.0.Beta2 release, but there are

hopes that this situation will become more favorable in the next releases. Since we are using MongoDB, which does not

support transactions, this is a less concern for us.

www.allitebooks.com

http:///
http://www.allitebooks.org

CHAPTER 4 ■ HIBERNATE OGM AT WORK

56

Prerequisites

MongoDB 2.2.2•

Hibernate OGM 4.0.0.Beta2•

JDK 1.7•

NetBeans 7.2.1 (or Eclipse JUNO)•

Apache Tomcat 7•

Developing

After launching NetBeans, create a new project consisting of an empty Maven web application and name it
HOGMviaHNAPI_JDBC_Tomcat7. In the New Web Application wizard, type hogm.hnapi for the Group Id and Package
fields. Don’t forget to select the Apache Tomcat 7 web server for deployment of this application. Once you see the
project listed in Projects window, edit the pom.xml file (which must be under the Project Files node). In the pom.xml
file, add the Hibernate OGM distribution (including MongoDB support) by pasting in the following dependencies:

<dependencies>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-core</artifactId>
 <version>4.0.0.Beta2</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-mongodb</artifactId>
 <version>4.0.0.Beta1</version>
 </dependency>
...
<dependencies>

Now save the project and the MongoDB Java driver JAR will be listed under the Dependencies node.

Coding the Application

Now we’re ready to add some code. We start with a simple POJO class, which has the ability to represent objects in
the database. As you can see in Listing 4-2, the class contains a single field (apart from primary key field), named
luckynumber and the well-known getter and setter methods.

Listing 4-2. The LuckyNumberPojo Class

package hogm.hnapi.pojo;

public class LuckyNumberPojo {

 private String id;
 private int luckynumber;

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

57

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }

 public int getLuckynumber() {
 return luckynumber;
 }

 public void setLuckynumber(int luckynumber) {
 this.luckynumber = luckynumber;
 }
}

Most applications that use Hibernate require a special class named HibernateUtil, a helper class that provides
access to the SessionFactory everywhere in the code. There are many versions available for Hibernate ORM on the
Internet, like the one from the CaveatEmptor demo. For Hibernate OGM, we can develop a HibernateUtil based on
the simplest of the versions for Hibernate ORM, which usually looks like what’s shown in Listing 4-3. You’re probably
familiar with it and have used it many times in Hibernate 3.

Listing 4-3. A Basic HibernateUtil Class for Hibernate ORM

import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class HibernateUtil {

 private static final SessionFactory sessionFactory;

 static {
 try {
 sessionFactory = new
 Configuration().configure().buildSessionFactory();
 } catch (Throwable ex) {
 System.err.println("Initial SessionFactory creation failed." + ex);
 throw new ExceptionInInitializerError(ex);
 }
 }

 public static SessionFactory getSessionFactory() {
 return sessionFactory;
 }
}

Now, developing a HibernateUtil for Hibernate OGM is a task based on two main modifications of this source.
First, instead of creating a new instance of the Configuration class, we need to instantiate the OgmConfiguration
class, which is used to configure the Hibernate OGM environment. And second, starting with Hibernate 4, the session
factory has to be obtained through a service registry passed to the buildSessionFactory method. With these in mind,
the code can be easily transformed into a HibernateUtil for Hibernate OGM, as shown in Listing 4-4.

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

58

Listing 4-4. A HibernateUtil Class for Hibernate OGM

package hogm.hnapi.util.with.hibernate.cfg;

import java.util.logging.Level;
import java.util.logging.Logger;
import org.hibernate.SessionFactory;
import org.hibernate.ogm.cfg.OgmConfiguration;
import org.hibernate.service.ServiceRegistry;
import org.hibernate.service.ServiceRegistryBuilder;

public class HibernateUtil {

 private static final Logger log =
 Logger.getLogger(HibernateUtil.class.getName());
 private static final SessionFactory sessionFactory;
 private static final ServiceRegistry serviceRegistry;

 static {
 try {
 // create a new instance of OmgConfiguration
 OgmConfiguration cfgogm = new OgmConfiguration();

 // process configuration and mapping files
 cfgogm.configure();
 // create the SessionFactory
 serviceRegistry = new ServiceRegistryBuilder().
 applySettings(cfgogm.getProperties()).buildServiceRegistry();
 sessionFactory = cfgogm.buildSessionFactory(serviceRegistry);
 } catch (Throwable ex) {
 log.log(Level.SEVERE,
 "Initial SessionFactory creation failed !", ex);
 throw new ExceptionInInitializerError(ex);
 }
 }

 public static SessionFactory getSessionFactory() {
 return sessionFactory;
 }
}

To get a valid session factory from this HibernateUtil, we need to build the Hibernate configuration file
(hibernate.cfg.xml) and the corresponding mapping files (*.hbm.xml). As you know, the hibernate.cfg.xml file
contains the main information for adjusting the Hibernate environment and database connection. Since we’re in a
non-JTA environment and are following the well-known Hibernate thread-bound strategy (Hibernate binds the current
session to the current Java thread), we start by setting two properties that are mandatory for accessing this strategy:

<property name="hibernate.transaction.factory_class">
 org.hibernate.transaction.JDBCTransactionFactory
</property>
<property name="hibernate.current_session_context_class">
 thread
</property>

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

59

The next five properties are the top priority for us since they represent the MongoDB configuration, so we
specify the datastore provider, dialect, the name of the database to connect to, the MongoDB server host, and the
port (we’ll use the localhost and the MongoDB server’s default port of 27017):

<property name="hibernate.ogm.datastore.provider">mongodb</property>
<property name="hibernate.ogm.datastore.grid_dialect">
 org.hibernate.ogm.dialect.mongodb.MongoDBDialect</property>
<property name="hibernate.ogm.mongodb.database">tomcat_db</property>
<property name="hibernate.ogm.mongodb.host">127.0.0.1</property>
<property name="hibernate.ogm.mongodb.port">27017</property>

Finally, we add the mapping resource, which, in this case, is represented by the single class, LuckyNumberPojo.
Add this final line:

<mapping resource="/LuckyNumberPojo.hbm.xml"/>

to the end of hibernate.cfg.xml to get the code shown in Listing 4-5.

Listing 4-5. A Hibernate Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <property name="hibernate.transaction.factory_class">
 org.hibernate.transaction.JDBCTransactionFactory</property>
 <property name="hibernate.current_session_context_class">thread</property>
 <property name="hibernate.ogm.datastore.provider">mongodb</property>
 <property name="hibernate.ogm.datastore.grid_dialect">
 org.hibernate.ogm.dialect.mongodb.MongoDBDialect</property>
 <property name="hibernate.ogm.mongodb.database">tomcat_db</property>
 <property name="hibernate.ogm.mongodb.host">127.0.0.1</property>
 <property name="hibernate.ogm.mongodb.port">27017</property>
 <mapping resource="/LuckyNumberPojo.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

The file hibernate.cfg.xml must reside in the root of the classpath when the web app is started. In a Maven
project, like this one, it should be saved in the src/main/resources directory (in NetBeans, this directory can be
found in the Other Sources node). In a non-Maven application, save the file in the WEB-INF/classes directory.

Writing LuckyNumberPojo.hbm.xml is our next goal. Since we have an ordinary POJO, the task is simple. First,
we describe the primary key field and the generator as UUID2. (This generates an IETF RFC 4122-compliant
(variant 2) 128-bit UUID. More details are available at www.ietf.org/rfc/rfc4122.txt.) Then we describe the
luckynumber field. The result is shown in Listing 4-6.

Listing 4-6. LuckyNumberPojo.hbm.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">

http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd
http://www.ietf.org/rfc/rfc4122.txt
http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

60

<hibernate-mapping>
 <class name="hogm.hnapi.pojo.LuckyNumberPojo" table="jdbc">
 <id name="id" type="string">
 <column name="id" />
 <generator class="uuid2" />
 </id>
 <property name="luckynumber" type="int">
 <column name="luckynumber"/>
 </property>
 </class>
</hibernate-mapping>

This file should go in the same folder as hibernate.cfg.xml.
The assignment table="jdbc" creates a collection named jdbc in MongoDB. If you want to create a collection

named XXX.jdbc, you can add catalog="XXX", like this:

<class name="hogm.hnapi.pojo.LuckyNumberPojo" table="jdbc" catalog="XXX">

Finally, we’ve reached the point where we can add some business logic. We’ll write a DAO class that persists
the lucky numbers into the database. Such a class would typically contain, at the least, methods for all the CRUD
operations. However, all we need is a method for the persist operation. Actually, there are two implementations
of persist, one per opening session strategy. As you know, Hibernate provides both the getCurrentSession and
openSession methods for obtaining the current session. Calling getCurrentSession returns the “current” session
bound by Hibernate behind the scenes to the transaction scope, or opens a new session when getCurrentSession
is called for the first time. The session is available everywhere in the code as long as the transaction runs, and it is
automatically closed and flushed when the transaction ends. If you want to flush and close the session explicitly,
you have to use the openSession method. Listing 4-7 shows our DAO class with two persist methods, one for
getCurrentSession and one for openSession. Both use declarative demarcation of transactions boundaries, using
org.hibernate.Session methods such as beginTransaction and commit.

Listing 4-7. The DAO Class with Two persist Methods

package hogm.hnapi.dao;

import hogm.hnapi.pojo.LuckyNumberPojo;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.hibernate.Session;

public class LuckyNumberDAO {

 private static final Logger log = Logger.getLogger(LuckyNumberDAO.class.getName());

 /**
 * Insert data (use getCurrentSession and POJO)
 *
 * @param transientInstance
 * @throws Exception
 */

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

61

 public void persist_cs_with_cfg(LuckyNumberPojo transientInstance) throws java.lang.Exception {

 log.log(Level.INFO, "Persisting LuckyNumberPojo instance ...");
 Session session = hogm.hnapi.util.with.hibernate.cfg.HibernateUtil.
 getSessionFactory().getCurrentSession();
 try {
 session.beginTransaction();
 session.persist(transientInstance);
 session.getTransaction().commit();

 log.log(Level.INFO, "Persist successful ...");
 } catch (RuntimeException re) {
 session.getTransaction().rollback();
 log.log(Level.SEVERE, "Persist failed ...", re);
 throw re;
 }
 }

 /**
 * Insert data (use openSession and POJO)
 *
 * @param transientInstance
 * @throws Exception
 */
 public void persist_os_with_cfg(LuckyNumberPojo transientInstance) throws java.lang.Exception {

 log.log(Level.INFO, "Persisting LuckyNumberPojo instance ...");
 Session session = hogm.hnapi.util.with.hibernate.cfg.HibernateUtil.
 getSessionFactory().openSession();

 try {
 session.beginTransaction();
 session.persist(transientInstance);
 session.flush(); // flush happens automatically anyway
 session.getTransaction().commit();

 log.log(Level.INFO, "Persist successful...");
 } catch (RuntimeException re) {
 session.getTransaction().rollback();
 log.log(Level.SEVERE, "Persist failed...", re);
 throw re;
 } finally {
 session.close();
 }
 }
}

Note ■ Though it’s not listed here, the source code for this application (available in the Apress repository) also

demonstrates using an entity instead of a POJO, and replacing hibernate.cfg.xml with programmatic configuration

in the HibernateUtil class.

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

62

We’re almost done! A simple user interface and a servlet are all we have left to implement. When the user presses a
button in the interface, an empty form is submitted to the servlet, which calls our DAO class (either persist_cs_with_cfg
or persist_os_with_cfg) to store the generated lucky number into the database. The main snippet of code from the
servlet is shown in Listing 4-8.

Listing 4-8. The Lucky Number Servlet

package hogm.hnapi.servlet;
...
@WebServlet(name = "LuckyNumberServlet", urlPatterns = {"/LuckyNumberServlet"})
public class LuckyNumberServlet extends HttpServlet {
 ...
 protected void processRequest(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException, Exception {
 ...
 LuckyNumberDAO luckyNumberDAO = new LuckyNumberDAO();
 LuckyNumberPojo luckyNumberPojo = new LuckyNumberPojo();
 luckyNumberPojo.setLuckynumber(new Random().nextInt(1000000));

 luckyNumberDAO.persist_cs_with_cfg(luckyNumberPojo);
 // luckyNumberDAO.persist_os_with_cfg(luckyNumberPojo);
 ...
 }
}

And the HTML form that’s submitted to this servlet is also extremely simple. The code goes on the index.jsp
page, which, in a NetBeans project, is listed under the Web Pages node of the project).

...
<form action="./LuckyNumberServlet" method="POST">
 <input type="submit" value="Generate Lucky Number">
</form>
...
Done!

Testing

Start the MongoDB server as you saw in Chapter 1. Next, since you’re in a NetBeans/Tomcat (or Eclipse/Tomcat)
environment, just save the project and click the Run (or Run on Server in Eclipse) button to start Tomcat and deploy
and run the application. If the application starts successfully, you’ll see in the browser something like what’s shown
in Figure 4-2.

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

63

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(tomcat_db) collection (jdbc). Open a command prompt and type the commands shown in Figure 4-3 to see the
results of your work. This lets you monitor Tomcat log messages in case anything unwanted happens.

Figure 4-2. Running the HOGMviaHNAPI_JDBC_Tomcat7 application

Figure 4-3. Checking the “jdbc” collection content

The complete source code for this application, which is called HOGMviaHNAPI_JDBC_Tomcat7, is available in the
Apress repository. It comes as a NetBeans project and it was tested under Tomcat 7. (I used the Tomcat bundled with
NetBeans 7.2.1.)

Hibernate OGM in a Standalone JTA Environment (JBoss JTA,
Apache Tomcat 7)
Our next application will bootstrap Hibernate OGM via the Hibernate Native API in a standalone JTA environment.
As you’ll see, Hibernate works in any environment that uses JTA and, in fact, can automatically bind the current
session to the current JTA transaction. Since Tomcat is not a J2EE environment, it does not provide an automatic
JTA transaction manager, so we have to choose a standalone implementation of JTA. There are several open source
implementations, such as JOTM, Bitronix JTA, and Atomikos, but I prefer the JBoss JTA. It’s part of the well-known
JBoss TS (Arjuna Transaction Service) that comes with a very robust implementation of JTA and JTS APIs.

Now let’s see what the prerequisites for this application are.

Prerequisites

MongoDB 2.2.2•

Hibernate OGM 4.0.0.Beta2•

JBoss JTA 4.16.4 Final•

JDK 1.7•

NetBeans 7.2.1 (or Eclipse JUNO)•

Apache Tomcat 7•

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

64

Developing

Launch NetBeans and create a new project consisting of an empty Maven web application and name it
HOGMviaHNAPI_JTA_Tomcat7. In the New Web Application wizard, type hogm.hnapi for the Group Id and Package
fields. Don’t forget to select the Apache Tomcat 7 web server for deploying this application. Once you see the project
listed in the Projects window, edit the pom.xml file (which must be under the Project Files node). In pom.xml,
add the Hibernate OGM distribution (including MongoDB support) by pasting in the following dependencies.

<dependencies>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-core</artifactId>
 <version>4.0.0.Beta2</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-mongodb</artifactId>
 <version>4.0.0.Beta1</version>
 </dependency>
...
<dependencies>

Now save the project and the driver JAR will be listed under the Dependencies node.
We still need to add JARs for JBoss JTA in the application classpath, so now add this dependency:

<dependencies>
 <dependency>
 <groupId>org.jboss.jbossts</groupId>
 <artifactId>jbossjta</artifactId>
 <version>4.16.4.Final</version>
 </dependency>
...
<dependencies>

Coding the Application

We have all the necessary artifacts now so it’s time to start developing the application. First we’ll create a basic entity
class that can represent objects in the database. The class will contain just a single field (apart from the primary key),
which is named luckynumber. You should be familiar with these kind of entities, which are, technically speaking, just
annotated POJOs. (For more details, refer back to Chapter 2.) Listing 4-9 shows the LuckyNumberEntity class.

Listing 4-9. The LuckyNumberEntity Class

package hogm.hnapi.pojo;

import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.Table;
import org.hibernate.annotations.GenericGenerator;

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

65

@Entity
@Table(name="jta")
public class LuckyNumberEntity implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(generator = "uuid")
 @GenericGenerator(name="uuid", strategy="uuid2")
 private String id;

 @Column(name="luckynumber", nullable=false)
 private int luckynumber;

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }

 public int getLuckynumber() {
 return luckynumber;
 }

 public void setLuckynumber(int luckynumber) {
 this.luckynumber = luckynumber;
 }
}

In the previous application, we used a simple POJO, and we developed a HibernateUtil class especially designed
to obtain a session factory anywhere in the code based on hibernate.cfg.xml and mapping files. In this application,
we’ll take another approach—we’ll use an entity (a POJO extended with JDK 5 annotations) and a HibernateUtil that
provides a session factory configured programmatically. In other words, no hibernate.cfg.xml and no mapping files.

There are several configuration properties specific to our application. First of all, we tell Hibernate we want to
use manual transaction demarcation by setting the hibernate.transaction.factory_class to
org.hibernate.transaction.JTATransactionFactory and hibernate.current_session_context_class to jta.
Programmatically speaking, these properties are mapped as constant values in the org.hibernate.cfg.Environment
class:

...
// create a new instance of OmgConfiguration
OgmConfiguration cfgogm = new OgmConfiguration();

cfgogm.setProperty(Environment.TRANSACTION_STRATEGY,
 "org.hibernate.transaction.JTATransactionFactory");
cfgogm.setProperty(Environment.CURRENT_SESSION_CONTEXT_CLASS, "jta");
...

www.allitebooks.com

http:///
http://www.allitebooks.org

CHAPTER 4 ■ HIBERNATE OGM AT WORK

66

Next, we specify the JTA platform, JBoss JTA. To do so, we add the following:

cfgogm.setProperty(Environment.JTA_PLATFORM,
"org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform");

Notice that we set the JBoss JTA standalone distribution, not the one used by the JBoss AS.
According to the JBoss TS documentation, in order to select the local JBoss JTA implementation, you need to

specify two properties, com.arjuna.ats.jta.jtaTMImplementation and com.arjuna.ats.jta.jtaUTImplementation.
Since these properties aren’t part of Hibernate environment, they don’t have correlates in the Environment class. You
can specify them like this:

cfgogm.setProperty("com.arjuna.ats.jta.jtaTMImplementation",
"com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple");
cfgogm.setProperty("com.arjuna.ats.jta.jtaUTImplementation",
"com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple");

Next, we configure the MongoDB connection: the datastore provider, the dialect, the name of the database to
connect to, the host and the port (we will use the localhost and the default MongoDB server port of 27017):

cfgogm.setProperty("hibernate.ogm.datastore.provider", "mongodb");
cfgogm.setProperty("hibernate.ogm.datastore.grid_dialect",
 "org.hibernate.ogm.dialect.mongodb.MongoDBDialect");
cfgogm.setProperty("hibernate.ogm.mongodb.database", "tomcat_db");
cfgogm.setProperty("hibernate.ogm.mongodb.host", "127.0.0.1");
cfgogm.setProperty("hibernate.ogm.mongodb.port", "27017");

Finally, we add our entity into the equation, dropping the LuckyNumberEntity.hbm.xml mapping file:

cfgogm.addAnnotatedClass(hogm.hnapi.pojo.LuckyNumberEntity.class);

Now add all of these configuration properties into the HibernateUtil class specific to the OGM distribution to
get the code shown in Listing 4-10. Note that I discussed this class in more detail in the previous application.

Listing 4-10. Another HibernateUtil Class

package hogm.hnapi.util.without.hibernate.cfg;

import java.util.logging.Level;
import java.util.logging.Logger;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Environment;
import org.hibernate.ogm.cfg.OgmConfiguration;
import org.hibernate.service.ServiceRegistry;
import org.hibernate.service.ServiceRegistryBuilder;

public class HibernateUtil {

 private static final Logger log = Logger.getLogger(HibernateUtil.class.getName());
 private static final SessionFactory sessionFactory;
 private static final ServiceRegistry serviceRegistry;

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

67

 static {
 try {
 // create a new instance of OmgConfiguration
 OgmConfiguration cfgogm = new OgmConfiguration();

 // enable JTA strategy
 cfgogm.setProperty(Environment.TRANSACTION_STRATEGY,
 "org.hibernate.transaction.JTATransactionFactory");
 cfgogm.setProperty(Environment.CURRENT_SESSION_CONTEXT_CLASS, "jta");

 // specify JTA platform
 cfgogm.setProperty(Environment.JTA_PLATFORM,
 "org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform");

 // in order to select the local JBoss JTA implementation it is necessary to specify
these properties

 cfgogm.setProperty("com.arjuna.ats.jta.jtaTMImplementation",
 "com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple");
 cfgogm.setProperty("com.arjuna.ats.jta.jtaUTImplementation",
 "com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple");

 //configure MongoDB connection
 cfgogm.setProperty("hibernate.ogm.datastore.provider", "mongodb");
 cfgogm.setProperty("hibernate.ogm.datastore.grid_dialect",
 "org.hibernate.ogm.dialect.mongodb.MongoDBDialect");
 //you can ignore this setting
 cfgogm.setProperty("hibernate.ogm.mongodb.database", "tomcat_db");
 cfgogm.setProperty("hibernate.ogm.mongodb.host", "127.0.0.1");
 cfgogm.setProperty("hibernate.ogm.mongodb.port", "27017");

 //add our annotated class
 cfgogm.addAnnotatedClass(hogm.hnapi.pojo.LuckyNumberEntity.class);

 // create the SessionFactory
 serviceRegistry = new ServiceRegistryBuilder().applySettings(cfgogm.getProperties()).
 buildServiceRegistry();
 sessionFactory = cfgogm.buildSessionFactory(serviceRegistry);
 } catch (Throwable ex) {
 log.log(Level.SEVERE, "Initial SessionFactory creation failed !", ex);
 throw new ExceptionInInitializerError(ex);
 }
 }

 public static SessionFactory getSessionFactory() {
 return sessionFactory;
 }
}

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

68

Well, so far we have the entity and the session factory provider. The next part is very interesting, because we start
developing the DAO class. This means using JBoss JTA to demarcate transactions, and for this we focus on two JBoss
JTA classes:

• com.arjuna.ats.jta.UserTransaction—This class automatically associates newly created
transactions with the invoking thread, and exposes methods like begin, commit, and
rollback for controlling the transaction boundaries. It also provides a static method named
userTransaction that returns a javax.transaction.UserTransaction representing user
transactions:

javax.transaction.UserTransaction tx = com.arjuna.ats.jta.UserTransaction.userTransaction();

• com.arjuna.ats.jta.TransactionManager—This is an interface that allows the application
server to control transaction boundaries. It also provides methods like begin, commit,
and rollback, but it’s especially designed for application servers that can initialize the
transaction manager and call it to demarcate transactions for you. You can obtain the
javax.transaction.TransactionManager through transactionManager method, like so:

javax.transaction.TransactionManager tx = com.arjuna.ats.jta.TransactionManager.transactionManager();

If you prefer the Hibernate getCurrentSession approach for getting current Session, you can implement a DAO
method of persisting lucky numbers into the database using JBoss JTA, as shown in Listing 4-11.

Listing 4-11. The LuckyNumberDAO Class - getCurrentSession Approach

package hogm.hnapi.dao;
...
public class LuckyNumberDAO {
 ...
 private static final Logger log =
 Logger.getLogger(LuckyNumberDAO.class.getName());
 ...
 public void persist_cs_without_cfg(LuckyNumberEntity transientInstance) throws
 java.lang.Exception {

 log.log(Level.INFO, "Persisting LuckyNumberEntity instance ...");

 // javax.transaction.TransactionManager tx =
 com.arjuna.ats.jta.TransactionManager.transactionManager();
 javax.transaction.UserTransaction tx = com.arjuna.ats.jta.UserTransaction.userTransaction();

 try {
 tx.begin();
 hogm.hnapi.util.without.hibernate.cfg.HibernateUtil.getSessionFactory().
 getCurrentSession().persist(transientInstance);
 tx.commit();

 log.log(Level.INFO, "Persist successful...");
 } catch (RuntimeException re) {

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

69

 tx.rollback();
 log.log(Level.SEVERE, "Persist failed...", re);
 throw re;
 }
 }
}

But, if you want to control the session flush and close by yourself, choose the Hibernate openSession approach,
which can be interwoven with JBoss JTA in almost the same manner, as in Listing 4-12.

Listing 4-12. The LuckyNumberDAO Class - openSession Approach

package hogm.hnapi.dao;
...
public class LuckyNumberDAO {
 ...
 private static final Logger log =
 Logger.getLogger(LuckyNumberDAO.class.getName());
 ...
 public void persist_os_without_cfg(LuckyNumberEntity transientInstance) throws
 java.lang.Exception {

 log.log(Level.INFO, "Persisting LuckyNumberEntity instance ...");

 // javax.transaction.TransactionManager tx =
 com.arjuna.ats.jta.TransactionManager.transactionManager();
 javax.transaction.UserTransaction tx = com.arjuna.ats.jta.UserTransaction.userTransaction();
 Session session = hogm.hnapi.util.without.hibernate.cfg.HibernateUtil.
 getSessionFactory().openSession();

 try {
 tx.begin();
 session.persist(transientInstance);
 session.flush();
 tx.commit();

 log.log(Level.INFO, "Persist successful...");
 } catch (RuntimeException re) {
 tx.rollback();
 log.log(Level.SEVERE, "Persist failed...", re);
 throw re;
 } finally {
 session.close();
 }
 }
}

The application is almost finished. Its main parts are available and we just need to add a servlet to call the DAO
methods, as well as a simple user interface to submit an empty form to this servlet. The main snippet of code from
LuckyNumberServlet is shown in Listing 4-13.

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

70

Listing 4-13. A Snippet from LuckyNumberServlet

package hogm.hnapi.servlet;
...
@WebServlet(name = "LuckyNumberServlet", urlPatterns = {"/LuckyNumberServlet"})
public class LuckyNumberServlet extends HttpServlet {
...

 protected void processRequest(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException, Exception {
 ...
 LuckyNumberDAO luckyNumberDAO = new LuckyNumberDAO();
 LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
 luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));

 luckyNumberDAO.persist_cs_without_cfg(luckyNumberEntity);
 // luckyNumberDAO.persist_os_without_cfg(luckyNumberEntity);
 ...
 }
}

And here’s the form that interacts with this servlet (in index.jsp):

...
<form action="./LuckyNumberServlet" method="POST">
 <input type="submit" value="Generate Lucky Number">
</form>
...

Done!

Testing

Begin by starting the MongoDB server as in Chapter 1. Next, since you’re in a NetBeans/Tomcat (or Eclipse/Tomcat)
environment, just save the project and click the Run (or Run on Server in Eclipse) button to start Tomcat and deploy
and run the application. If the application successfully starts, you’ll see in your browser something similar to what’s
shown in Figure 4-4.

Figure 4-4. Running the HOGMviaHNAPI_JTA_Tomcat7 application

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

71

Press the Generate Lucky Number button a few times for persisting some lucky numbers into the MongoDB
database (tomcat_db) collection (jta). Open a command prompt and type the commands shown in Figure 4-5 to see
the result of your work. As before, you can monitor Tomcat log messages to see if anything unwanted happens.

Figure 4-5. Checking the jta collection content

The complete source code for this application, called HOGMviaHNAPI_JTA_Tomcat7, is available in the Apress
repository. It comes as a NetBeans project and it was tested under Tomcat 7 (I used the Tomcat bundled to
NetBeans 7.2.1).

Hibernate OGM in a Built-in JTA Environment (no EJB, GlassFish AS 3)
In the previous example, we developed an application based on a standalone JTA environment. We can reuse most
of the code to write the same kind of application, but based this time on a built-in JTA environment provider, like
GlassFish v3 AS. As you probably know, this is a fully compatible J2EE application server that automatically handles
(through a JTA TransactionManager) the transaction lifecycle for each data source. In other words, we will develop
the same application as in the last section, but instead of using and configuring JBoss JTA, we will use the JTA
transaction manager provided by the container. Notice that we are still manually demarcating transaction boundaries;
this is not a container managed transaction (CMT) strategy.

Prerequisites

MongoDB 2.2.2•

Hibernate OGM 4.0.0.Beta2•

JDK 1.7•

NetBeans 7.2.1 (or Eclipse JUNO)•

GlassFish 3.1.2.2•

Developing

After launching NetBeans, create a new project consisting of an empty Maven web application and name it
HOGMviaHNAPI_JTA_GlassFish3. In the New Web Application wizard, type hogm.hnapi for the Group Id and Package
fields, and select GlassFish web server for deploying this application. Now, just follow the scenario from the preceding
section. We’ll make some small but important modifications.

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

72

Coding the Application

After adding Hibernate OGM/Mongo DB JARs (using Maven as in the previous example), create the same
LuckyNumberEntity entity. Continue by writing the HibernateUtil class shown in Listing 4-14.

Listing 4-14. A Modified HibernateUtil Class

 package hogm.hnapi.util.without.hibernate.cfg;

import java.util.logging.Level;
import java.util.logging.Logger;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Environment;
import org.hibernate.ogm.cfg.OgmConfiguration;
import org.hibernate.service.ServiceRegistry;
import org.hibernate.service.ServiceRegistryBuilder;

public class HibernateUtil {

 private static final Logger log = Logger.getLogger(HibernateUtil.class.getName());
 private static final SessionFactory sessionFactory;
 private static final ServiceRegistry serviceRegistry;

 static {
 try {
 // create a new instance of OmgConfiguration
 OgmConfiguration cfgogm = new OgmConfiguration();

 // enable JTA strategy
 cfgogm.setProperty(Environment.TRANSACTION_STRATEGY,
 "org.hibernate.transaction.JTATransactionFactory");
 cfgogm.setProperty(Environment.CURRENT_SESSION_CONTEXT_CLASS, "jta");

 // specify JTA platform
 cfgogm.setProperty(Environment.JTA_PLATFORM,
 "org.hibernate.service.jta.platform.internal.SunOneJtaPlatform");

 //configure MongoDB connection
 cfgogm.setProperty("hibernate.ogm.datastore.provider", "mongodb");
 cfgogm.setProperty("hibernate.ogm.datastore.grid_dialect",
 "org.hibernate.ogm.dialect.mongodb.MongoDBDialect");
 //you can ignore this setting
 cfgogm.setProperty("hibernate.ogm.mongodb.database", "glassfish_db");
 cfgogm.setProperty("hibernate.ogm.mongodb.host", "127.0.0.1");
 cfgogm.setProperty("hibernate.ogm.mongodb.port", "27017");

 //add our annotated class
 cfgogm.addAnnotatedClass(hogm.hnapi.pojo.LuckyNumberEntity.class);

 // create the SessionFactory
 serviceRegistry = new ServiceRegistryBuilder().applySettings(cfgogm.getProperties()).
 buildServiceRegistry();

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

73

 sessionFactory = cfgogm.buildSessionFactory(serviceRegistry);
 } catch (Throwable ex) {
 log.log(Level.SEVERE, "Initial SessionFactory creation failed !", ex);
 throw new ExceptionInInitializerError(ex);
 }
 }

 public static SessionFactory getSessionFactory() {
 return sessionFactory;
 }
}

As you can see, the relevant code is shown in bold:

cfgogm.setProperty(Environment.JTA_PLATFORM,
 "org.hibernate.service.jta.platform.internal.SunOneJtaPlatform");

This code tells Hibernate the JTA platform to be used. Obviously, we want to use the built-in JTA platform,
which, for GlassFish v3 AS is org.hibernate.service.jta.platform.internal.SunOneJtaPlatform.
 No library or JAR is needed; everything is provided by the container. You can easily modify this property
(hibernate.transaction.jta.platform) for other supported containers (the JTA built-in platform) by checking
the list of available JTA platforms in Chapter 2. For example, if you deploy this application under JBoss 7 AS, the
built-in JTA platform is org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform; don’t
confuse this JTA with the standalone JBoss JTA platform.

If you decide to use hibernate.cfg.xml, add the JTA platform, like this:

<property name="hibernate.transaction.jta.platform">
 org.hibernate.service.jta.platform.internal.SunOneJtaPlatform</property>

Now let’s develop the DAO class. If you followed the earlier applications, you know we are focusing only on
persisting objects into a database in Hibernate sessions obtained using the getCurrentSession or openSession
methods. As you know, Hibernate can automatically bind the current session to the current JTA transaction, but
for this we need to take control of the transaction itself and add the corresponding demarcation boundaries.
To accomplish this task in a J2EE environment, we can simply take advantage of the standard JNDI subcontext
java:comp/UserTransaction. The javax.transaction.UserTransaction should be available in java:comp/
UserTransaction, following the J2EE specification:

UserTransaction tx = (UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");

Now, for the getCurrentSession approach, we can call the begin, commit, and rollback methods shown in
Listing 4-15.

Listing 4-15. The getCurrentSession Approach

package hogm.hnapi.dao;
...
public class LuckyNumberDAO {
...
private static final Logger log =
 Logger.getLogger(LuckyNumberDAO.class.getName());
 ...

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

74

 public void persist_cs_without_cfg(LuckyNumberEntity transientInstance) throws
 java.lang.Exception {

 log.log(Level.INFO, "Persisting LuckyNumberEntity instance ...");

 UserTransaction tx = (UserTransaction) new
 InitialContext().lookup("java:comp/UserTransaction");

 try {
 tx.begin();
 hogm.hnapi.util.without.hibernate.cfg.HibernateUtil.getSessionFactory().
 getCurrentSession().persist(transientInstance);
 tx.commit();

 log.log(Level.INFO, "Persist successful...");
 } catch (RuntimeException re) {
 tx.rollback();
 log.log(Level.SEVERE, "Persist failed...", re);
 throw re;
 }
 }
}

Or, if you prefer openSession, use the approach in Listing 4-16.

Listing 4-16. The openSession Approach

package hogm.hnapi.dao;
...
public class LuckyNumberDAO {
...
private static final Logger log =
 Logger.getLogger(LuckyNumberDAO.class.getName());
 ...
 public void persist_os_without_cfg(LuckyNumberEntity transientInstance) throws
 java.lang.Exception {

 log.log(Level.INFO, "Persisting LuckyNumberEntity instance ...");

 UserTransaction tx = (UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");
 Session session = hogm.hnapi.util.without.hibernate.cfg.HibernateUtil.
 getSessionFactory().openSession();

 try {
 tx.begin();
 session.persist(transientInstance);
 session.flush();
 tx.commit();

 log.log(Level.INFO, "Persist successful...");
 } catch (RuntimeException re) {

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

75

 tx.rollback();
 log.log(Level.SEVERE, "Persist failed...", re);
 throw re;
 } finally {
 session.close();
 }
 }
}

Now the entire Hibernate OGM mechanism is set. All that remains is to add a simple user interface that submits
an “empty” form to a basic JSF bean (replace this with a servlet if you aren’t a JSF fan) that communicates with the
DAO class. Listing 4-17 shows the code that interacts with the DAO class.

Listing 4-17. The TestManagedBean Class

package hogm.hnapi.jsf;
 ...
 public class TestManagedBean {
 ...
 public void persistAction() throws Exception {
 ...
 LuckyNumberDAO luckyNumberDAO = new LuckyNumberDAO();
 LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
 luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));

 luckyNumberDAO.persist_cs_without_cfg(luckyNumberEntity);
 // luckyNumberDAO.persist_os_without_cfg(luckyNumberEntity);
 ...
 }
}

And here’s code for the user form, which goes on the index.xhtml page:

...
<h:form>
 <h:commandButton action="#{bean.persistAction()}" value="Generate Lucky Number"/>
</h:form>
...

That’s it!

Testing

Now start the MongoDB server as you saw in Chapter 1. Next, since you’re in a NetBeans/GlassFish (or Eclipse/GlassFish)
environment, just save the project and click the Run (or Run on Server in Eclipse) button to start GlassFish and
deploy and run the application. If the application successfully starts, you’ll see in your browser something similar to
what’s shown in Figure 4-6.

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

76

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(glassfish_db) collection (jta). Open a command prompt and type the commands from Figure 4-7 to see the results
of your work. You can also monitor GlassFish log messages in case anything unwanted happens.

Figure 4-7. Checking the jta collection content

Figure 4-6. Running the HOGMviaHNAPI_JTA_GlassFish3 application

The complete source code for this application is named HOGMviaHNAPI_JTA_GlassFish3 and is available in the
Apress repository. It comes as a NetBeans project and was tested it under GlassFish 3 (I used the GlassFish bundled
with NetBeans 7.2.1).

Hibernate OGM in a Built-in JTA Environment (EJB 3/BMT, GlassFish AS 3)
In the previous example, we developed an application based on the GlassFish 3 built-in JTA environment. You saw
how to obtain the current transaction via lookup in the JNDI subcontext java:comp/UserTransaction and manually
demarcate transaction boundaries in a plain DAO class. Now we’re going to develop the same kind of application, but
this time we’ll use an EJB component annotated as a bean managed transaction (BMT).

Prerequisites

MongoDB 2.2.2•

Hibernate OGM 4.0.0.Beta1•

JDK 1.7•

NetBeans 7.2.1 (or Eclipse JUNO)•

GlassFish 3.1.2.2•

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

77

Developing

After launching NetBeans, create a new project consisting of an empty Maven web application and name it
HOGMviaHNAPI_JTA_EJB_BMT_GlassFish3. In the New Web Application wizard, type hogm.hnapi for the Group Id and
Package fields. Don’t forget to select the GlassFish web server for deployment of this application. Notice that even if we’re
going to add an EJB component, we won’t be creating an enterprise application to separate the web module from the EJB
module. We prefer a web application because we want to have the ability to call web components from the EJB component.

Coding the Application

After adding Hibernate OGM/Mongo DB JARs (using Maven as in previous examples) create the well-known
LuckyNumberEntity entity (this time use @Table(name="bmt"), or the POJO version, LuckyNumberPojo, if you want
to use hibernate.cfg.xml). Continue by writing the HibernateUtil class, enabling the JTA strategy and adding the
GlassFish 3 built-in JTA platform:

OgmConfiguration cfgogm = new OgmConfiguration();
...
cfgogm.setProperty(Environment.TRANSACTION_STRATEGY,
 "org.hibernate.transaction.JTATransactionFactory");
cfgogm.setProperty(Environment.CURRENT_SESSION_CONTEXT_CLASS, "jta");
cfgogm.setProperty(Environment.JTA_PLATFORM,
 "org.hibernate.service.jta.platform.internal.SunOneJtaPlatform");

Or, if you prefer using the hibernate.cfg.xml file, add it there (in this case, don’t forget to write the
LuckyNumberPojo.hbm.xml and specify table="bmt"):

<property name="hibernate.transaction.factory_class">
 org.hibernate.transaction.JTATransactionFactory</property>
<property name="hibernate.current_session_context_class">jta</property>
<property name="hibernate.transaction.jta.platform">
 org.hibernate.service.jta.platform.internal.SunOneJtaPlatform</property>

Next, add a stateless bean (an EJB component) named BMTBean; there’s no need to create an interface for it.
Since code inside EJB methods is executed in a transaction by default, we have to modify this by adding the
@TransactionManagement statement, as in the following:

package hogm.hnapi.ejb;
...
@Stateless
@TransactionManagement(TransactionManagementType.BEAN)
public class BMTBean {
...

You can find more details about this annotation in Chapter 2.
Now we have control over transaction boundaries. All we need is the UserTransaction that can be obtained

using the @Resource annotation, like this:

@Resource
private UserTransaction userTransaction;

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

78

Note ■ You can also obtain the UserTransaction through EJBContext, via JNDI lookup or even through a CDI

injection mechanism (@Inject UserTransaction). It’s always a good idea to consult the official documentation of the

J2EE implementation before choosing your approach.

Now, we can easily call the UserTransaction.begin, commit and setRollbackOnly methods to control the
transactions with the MongoDB database via Hibernate OGM sessions obtained from getCurrentSession or
openSession. (If it sounds like MongoDB supports transactions, it doesn’t. Remember, we’re using this approach
because the OGM documentation recommends using transaction demarcations, even with MongoDB.) For example,
we can store a lucky number, as shown in Listing 4-18. Note that the code contains both cases—using entity and POJO.

Listing 4-18. Two Ways to Store a Lucky Number - the BMT Approach

package hogm.hnapi.ejb;

import hogm.hnapi.pojo.LuckyNumberEntity;
import hogm.hnapi.pojo.LuckyNumberPojo;
import java.util.Random;
import javax.annotation.Resource;
import javax.ejb.Stateless;
import javax.ejb.TransactionManagement;
import javax.ejb.TransactionManagementType;
import javax.inject.Named;
import javax.transaction.SystemException;
import javax.transaction.UserTransaction;
import org.jboss.logging.Logger;

@Stateless
@Named("bean")
@TransactionManagement(TransactionManagementType.BEAN)
public class BMTBean {

 @Resource
 private UserTransaction userTransaction;
 private static final Logger log = Logger.getLogger(BMTBean.class.getName());

 public void persistAction() {

 log.info("Persisting LuckyNumberEntity instance ...");

 LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
 luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));
 LuckyNumberPojo luckyNumberPojo = new LuckyNumberPojo();
 luckyNumberPojo.setLuckynumber(new Random().nextInt(1000000));

 try {
 // Start the transaction
 userTransaction.begin();

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

79

 hogm.hnapi.util.without.hibernate.cfg.HibernateUtil.getSessionFactory().
 getCurrentSession().persist(luckyNumberEntity);
 hogm.hnapi.util.with.hibernate.cfg.HibernateUtil.getSessionFactory().
 getCurrentSession().persist(luckyNumberPojo);

 //persist here through openSession method

 // Commit the transaction
 userTransaction.commit();
 } catch (Exception ex) {
 try {
 //Rollback the transaction
 userTransaction.setRollbackOnly();
 } catch (IllegalStateException ex1) {
 log.log(Logger.Level.ERROR, ex1, ex1);
 } catch (SystemException ex1) {
 log.log(Logger.Level.ERROR, ex1, ex1);
 }
 }
 log.info("Persist successful ...");
 }
}

To run this application, we choose to activate the JSF framework and CDI support (by adding the corresponding
beans.xml in the /WEB-INF folder). We have annotated the EJB component with @Named("bean")—as shown in the
code—and we call it from the application start page using a simple JSF form, like this (index.xhtml):

...
<h:form>
 <h:commandButton action="#{bean.persistAction()}"
 value="Generate Lucky Number"/>
</h:form>
...

Testing

Start the MongoDB server as you saw in Chapter 1. Next, since you’re in a NetBeans/GlassFish (or Eclipse/GlassFish)
environment, save the project and click the Run (or Run on Server in Eclipse) button to start GlassFish and deploy
and run the application. If the application successfully starts, you’ll see in your browser something like what’s shown
in Figure 4-8.

Figure 4-8. Running the HOGMviaHNAPI_JTA_EJB_BMT_GlassFish3 application

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

80

Press the Generate Lucky Number button a few times to persist some lucky numbers to the MongoDB database
(glassfish_db) collection, (bmt). For each press, two new documents are inserted, one for enitity and one for POJO.
Open a command prompt and type the commands from Figure 4-9 to see the results of your work. You can also
monitor GlassFish log messages in case anything unwanted happens.

Figure 4-9. Checking the bmt collection content

The complete source code for this application is available in the Apress repository and is named
HOGMviaHNAPI_JTA_EJB_BMT_GlassFish3. It comes as a NetBeans project and it was tested under GlassFish 3
(I used the GlassFish bundled to NetBeans 7.2.1).

Hibernate OGM in a Built-in JTA Environment (EJB 3/CMT, GlassFish AS 3)
In the previous example we developed an application based on the GlassFish 3 built-in JTA environment and a bean
managed transaction (BMT). We can easily transform this application into a container managed transaction (CMT)
by applying a few essential changes. I could just tell you to “check the previous example and modify this, modify that . . . ”,
but if you’re not interested in the previous application, you probably wouldn’t find that too appealing. So I’ll try to
provide as much information as possible here and ask you to copy from the previous application only the parts that
have been repeated several times in this chapter.

Prerequisites

MongoDB 2.2.2•

Hibernate OGM 4.0.0.Beta1•

JDK 1.7•

NetBeans 7.2.1 (or Eclipse JUNO)•

GlassFish 3.1.2.2•

Developing

After launching NetBeans, create a new project consisting of an empty Maven web application and name it
HOGMviaHNAPI_JTA_EJB_CMT_GlassFish3. In the New Web Application wizard, type hogm.hnapi for the Group Id and
Package fields. Don’t forget to select the GlassFish web server for deploying this application. Note that even though we’re
adding an EJB component, we won’t create an enterprise application to separate the web module from the EJB module.
We prefer a web application because we want to have the ability to call web components from the EJB component.

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

81

Coding the Application

After adding Hibernate OGM/MongoDB JARs (using Maven as in previous examples), create the well-known
LuckyNumberEntity entity (this time use @Table(name="cmt"), or the POJO version, LuckyNumberPojo, if you want to
use hibernate.cfg.xml). Continue by writing the HibernateUtil class, enabling the CMT strategy and adding the
GlassFish 3 built-in JTA platform:

OgmConfiguration cfgogm = new OgmConfiguration();
 ...
cfgogm.setProperty(Environment.TRANSACTION_STRATEGY,
 "org.hibernate.transaction.CMTTransactionFactory");
cfgogm.setProperty(Environment.JTA_PLATFORM,
 "org.hibernate.service.jta.platform.internal.SunOneJtaPlatform");

Or, if you prefer using the hibernate.cfg.xml file, add it there (in this case, don’t forget to write the
LuckyNumberPojo.hbm.xml and specify table="cmt"):

<property name="hibernate.transaction.factory_class">
 org.hibernate.transaction.CMTTransactionFactory</property>
<property name="hibernate.transaction.jta.platform">
 org.hibernate.service.jta.platform.internal.SunOneJtaPlatform</property>

Add a stateless bean (an EJB component) named CMTBean (no need to create an interface for it). Since the code
in the EJB methods is executed in a transaction by default, we don’t need to interfere. However, just for fun, we can
manually provide the annotations that are already default—@TransactionManagement and @TransactionAttribute.
More details about this annotation can be found in Chapter 2.

Now we can easily take advantage of the CMT strategy and use Hibernate OGM sessions obtained from the
getCurrentSession or openSession methods to store lucky numbers in the MongoDB database, as shown in Listing 4-19.
Note that the code contains both cases—using entity and POJO.

Listing 4-19. Two Ways to Store a Lucky Number—the CMT Approach

package hogm.hnapi.ejb;

import hogm.hnapi.pojo.LuckyNumberEntity; //entity case
import hogm.hnapi.pojo.LuckyNumberPojo; //POJO case
import java.util.Random;
import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.ejb.TransactionManagement;
import javax.ejb.TransactionManagementType;
import javax.inject.Named;
import org.jboss.logging.Logger;

@Stateless
@Named("bean")
@TransactionManagement(TransactionManagementType.CONTAINER) //this is the default
public class CMTBean {

 private static final Logger log = Logger.getLogger(CMTBean.class.getName());

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

82

 @TransactionAttribute(TransactionAttributeType.REQUIRED) //this is the default
 public void persistAction() {

 log.info("Persisting LuckyNumberEntity instance ...");

 LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
 luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));
 LuckyNumberPojo luckyNumberPojo = new LuckyNumberPojo();
 luckyNumberPojo.setLuckynumber(new Random().nextInt(1000000));

 hogm.hnapi.util.without.hibernate.cfg.HibernateUtil.getSessionFactory().
 getCurrentSession().persist(luckyNumberEntity);
 hogm.hnapi.util.with.hibernate.cfg.HibernateUtil.getSessionFactory().
 getCurrentSession().persist(luckyNumberPojo);
 //persist here through openSession method
 log.info("Persist successful ...");
 }
}

To run this application, we’ll activate the JSF framework and CDI support (by adding the corresponding beans.xml
in the /WEB-INF folder). We have annotated the EJB component with @Named("bean")—as shown in the code—and we
call it from the application start page using a simple JSF form, like this (index.xhtml):

...
<h:form>
 <h:commandButton action="#{bean.persistAction()}"
 value="Generate Lucky Number"/>
</h:form>
...

Testing

Start the MongoDB server as in Chapter 1. Next, since you’re in a NetBeans/GlassFish (or Eclipse/GlassFish) environment,
just save the project and click the Run (or Run on Server in Eclipse) button to start GlassFish and deploy
and run the application. If the application successfully starts, you’ll see in the browser something similar to what’s
shown in Figure 4-10.

Figure 4-10. Running the HOGMviaHNAPI_JTA_EJB_CMT_GlassFish3 application

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(glassfish_db) collection (cmt). For each press, two new documents are inserted, one for the enitity and one for the
POJO. Open a command prompt and type the commands from Figure 4-11 to see the results of your work. You can
monitor GlassFish log messages in case anything unwanted happens.

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

83

The complete source code for this application is named HOGMviaHNAPI_JTA_EJB_CMT_GlassFish3 and is available
in the Apress repository. It comes as a NetBeans project and was tested under GlassFish 3 (I used the GlassFish
bundled to NetBeans 7.2.1).

Hibernate OGM via the Java Persistence API (JPA 2.0)
Hibernate OGM can also be bootstrapped via JPA. This is very useful since it doesn’t involve any knowledge of
Hibernate ORM and doesn’t require any code related to Hibernate. Practically, if you’ve used JPA before (no matter
which implementation), it should be a piece of cake to configure Hibernate OGM as your JPA provider.

In this section you’ll see a set of applications that will exploit Hibernate OGM as a JPA provider under different
architectures and technologies. You will see how it works in a:

built-in JTA environment (EJB 3, GlassFish AS 3)•

built-in JTA environment (EJB 3, JBoss AS 7)•

standalone JTA environment (Apache Tomcat 7)•

built-in JTA environment (JBoss AS 7 and Seam 3 application)•

built-in JTA environment (GlassFish 3 and Spring 3 application)•

non-JTA environment (RESOURCE_LOCAL, Apache Tomcat 7)•

Hibernate OGM in a Built-in JTA Environment (EJB 3, GlassFish AS 3)
We start with an enterprise application (known as EAR—Enterprise Archive) deployed on GlassFish AS. This is one of
the classic heavy applications in the Java world that’s used quite often and usually involves several technologies, like
JPA, JSF, Struts, EJB, Hibernate, Spring and so on. Web technologies go into one module (the WAR module) and EJB
components in another (the EJB module). The WAR module has access to the EJB module, but not vice versa. From
a programmer’s perspective, the core of JPA consists of an XML file, named persistence.xml, which goes in the EJB
module as a configuration file. So, let’s see how this file looks for Hibernate OGM acting as a JPA provider.

Prerequisites

MongoDB 2.2.2•

Hibernate OGM 4.0.0.Beta2•

JDK 1.7•

NetBeans 7.2.1 (or Eclipse JUNO)•

GlassFish 3.1.2.2•

Figure 4-11. Checking the “cmt” collection content

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

84

Developing

After launching NetBeans, create a new project consisting of an empty Maven enterprise application and name it
HOGMviaJPA_EE_GlassFish. In the New Enterprise Application wizard, type hogm for the Group Id and Package
fields, and select the GlassFish application server for deploying this application. Once you see the project in the
Projects window, you can edit the pom.xml file in the HOGMviaJPA_EE_GlassFish-ear project module (it has to be
under Project Files node). In the pom.xml, add the Hibernate OGM distribution (including MongoDB support) by
pasting in the following dependencies:

<dependencies>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-core</artifactId>
 <version>4.0.0.Beta2</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-mongodb</artifactId>
 <version>4.0.0.Beta1</version>
 </dependency>
...
<dependencies>

Now save the project and the MongoDB Java driver JAR will be listed under the Dependencies node.

Coding the Application

Now, we have all the needed artifacts, so we’re ready to add some code. First, in the HOGMviaJPA_EE_GlassFish-ejb
module, we develop a basic entity class that has the ability to represent objects in the database. It contains a single
field (apart from the primary key field) named luckynumber. (You should be familiar with these kind of entities, which
are, technically speaking, just annotated POJOs. You can find more details in Chapter 2.) Listing 4-20 shows the code
for the LuckyNumberEntity class.

Listing 4-20. The LuckyNumberEntity Class

package hogm.jpa.entities;

import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name = "jpa")
public class LuckyNumberEntity implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

85

 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 @Column(name = "luckynumber", nullable = false)
 private int luckynumber;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public int getLuckynumber() {
 return luckynumber;
 }

 public void setLuckynumber(int luckynumber) {
 this.luckynumber = luckynumber;
 }
}

Let’s continue with the main point of our interest, integrating Hibernate OGM as a JPA provider. You can start
by creating a persistence.xml skeleton using the NetBeans wizard. This will provide an “empty” persistence unit
for the GlassFish default data source (which is most convenient, since we don’t actually need it) or no data source.
From the Hibernate OGM perspective, this data source is not needed and never used, but depending on the situation
you may need to specify an existing data source as it’s a JPA requirement. (According to the JPA 1.0/2.0 specification,
“A transaction-type of JTA assumes that a JTA data source will be provided—either as specified by the jta-data-source
element or provided by the container.”) To be certain, you’ll have to test it yourself. As far as I can tell, there’s no need
to specify a data source; leave that field empty in the NetBeans wizard and you’ll obtain a persistence.xml skeleton
without a data source involved—no <jta-data-source> tag. If you get related errors on this, then add the default data
source in GlassFish, like this:

...
<!-- out of the box data source for GlassFish v3-->
<jta-data-source>jdbc/sample</jta-data-source>
...

We also rename the persistence unit to HOGM_JPA_GLASSFISH_PU and indicate the transaction type as JTA.
This is recommended. Remember that we have two possible values: RESOURCE_LOCAL indicates that transactions
will be managed by the JPA provider implementation, and JTA indicates that transactions will be managed by the
application server (GlassFish in this case). Finally, we specify the list of entities managed by this persistence unit.

In addition, we are adding Hibernate OGM as the JPA provider. This is very easy and fast, since all it requires is
adding the <provider> tag, like this:

...
<provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
...

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

86

By default, NetBeans will auto-detect entities and will add into persistence.xml the tag <exclude-unlisted-classes>,
which defaults to false—all entity beans in the archive managed by this persistence unit. You can leave it that way, or
delete this tag and add the entity class explicitly:

...
<class>hogm.jpa.entites.LuckyNumberEntity</class>
...

Since we’re in a JTA environment, the JTA platform should be automatically detected and used without our
intervention. But, to be sure, you can set the hibernate.transaction.jta.platform property accordingly:

...
<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.SunOneJtaPlatform"/>
...

We’re almost done. We just need to configure the MongoDB connection (the provider, dialect (optional), database
name, host, and port). Once we’ve done that, we have the entire persistence.xml file, as shown in Listing 4-21.

Listing 4-21. persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

<persistence-unit name="HOGM_JPA_GLASSFISH_PU" transaction-type="JTA">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <class>hogm.jpa.entities.LuckyNumberEntity</class>
 <properties>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.SunOneJtaPlatform"/>
 <property name="hibernate.ogm.datastore.provider" value="mongodb"/>
 <property name="hibernate.ogm.datastore.grid_dialect"
 value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
 <property name="hibernate.ogm.mongodb.database" value="glassfish_db"/>
 <property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
 <property name="hibernate.ogm.mongodb.port" value="27017"/>
 </properties>
 </persistence-unit>
</persistence>

Hibernate OGM is now ready to serve our application as the JPA provider.
This is an enterprise application, so an EJB component (transactional by default) is perfect for exploiting the

brand-new entity manager provided by OGM. The CMTBean implements the business logic for storing lucky numbers
into a MongoDB database (no need for a local or remote interface), as shown in Listing 4-22.

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

87

Listing 4-22. The CMTBean Class

package hogm.jpa.ejb;

import hogm.jpa.entities.LuckyNumberEntity;
import java.util.Random;
import javax.ejb.Stateless;
import javax.inject.Named;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

@Stateless
@Named("bean")
public class CMTBean {

 @PersistenceContext(unitName = "HOGM_JPA_GLASSFISH_PU")
 private EntityManager em;

 public void persistAction() {
 LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
 luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));

 em.persist(luckyNumberEntity);
 }
}

Finally, we need some glue code to obtain a functional application. As you see, the EJB component was annotated
with @Named, which means you need to activate CDI support by adding the beans.xml file. NetBeans will do that for
you if you push the right buttons, but you can also add it manually. In a Maven project, in the *-ejb module, beans.xml
should be placed in the src/main/resources folder (under the Other Resource node). And in the *-war module,
beans.xml should be placed in the /WEB-INF folder (under the Web Pages node). Add beans.xml in both places.

Calling the EJB through CDI can be done from a JSF form—you need to activate the JSF framework:

...
<h:form>
 <h:commandButton action="#{bean.persistAction()}" value="Generate Lucky Number"/>
</h:form>
...

And it’s done!

Testing

Start the MongoDB server as you saw in Chapter 1. Next, since you are in a NetBeans/GlassFish (or Eclipse/GlassFish)
environment, just save the project and select the HOGMviaJPA_EE_GlassFish-ear node. Click the Run (or Run on
Server in Eclipse) button to start Glassfish and to deploy and run the application. If the application successfully starts,
you’ll see in your browser something like what’s shown in Figure 4-12.

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

88

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(glassfish_db) collection (jpa). Open a command prompt and type the commands from Figure 4-13 to see the result
of your work. You can monitor GlassFish log messages in case anything unwanted happens.

Figure 4-13. Checking jpa collection content

Figure 4-12. Running the HOGMviaJPA_EE_GlassFish application

Note ■ Ignore the hibernate_sequences collection, since is not relevant for the moment. You’ll learn how and

why it appears in Chapter 5.

The complete source code for this application is named HOGMviaJPA_EE_GlassFish and is available in the
Apress repository. It comes as a NetBeans project and was tested under GlassFish 3 (I used the GlassFish bundled to
NetBeans 7.2.1).

Hibernate OGM in a Built-in JTA Environment (EJB 3, JBoss AS 7)
In this section you’ll see how to run the application developed in the preceding section, but using JBoss AS rather than
GlassFish AS. Unfortunately, it won’t work as is under the JBoss application server, so you need to adjust a few things
at application server level and add several modifications in the persistence.xml file.

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

89

Prerequisites

MongoDB 2.2.2•

Hibernate OGM 4.0.0.Beta2•

JDK 1.7•

Eclipse JUNO•

JBoss AS 7.1•

Developing

There’s an unwritten rule that GlassFish fans prefer the NetBeans IDE and JBoss AS fans like to work with the Eclipse
IDE. Obviously, this is not mandatory. After all, we’re talking about enterprise applications that are independent
of IDEs and should work under any certified EE application server. Still, chances are good that you agree with this
association, and that’s why we’ll develop the JBoss AS applications using the Eclipse IDE. So, after launching Eclipse,
create a new project consisting of an empty Enterprise Application Project named HOGMviaJPA_EE_JbossAS.
Select EAR version 6.0 and JBoss AS 7.1 with the default configuration of target runtime. Add the Web and EJB
modules, named HOGMviaJPA_EE_JBossAS-web and HOGMviaJPA_EE_JBossAS-ejb.

Note ■ I used the Eclipse JUNO distribution and added JBoss AS 7.1 via the JBoss AS Tools plug-in, because this

application server isn’t available by default in JUNO (the link I used was www.download.jboss.org/jbosstools/updates/

development/indigo/). Feel free to use any other Eclipse distribution, as long as it’s bound to JBoss AS 7.1.

For now, we’ll leave this application as is and switch our attention to the JBoss AS 7 modules because we need to
configure the Hibernate OGM JARs as a module inside the application server. Without this module, we won’t be able
to successfully deploy a Hibernate OGM-contained application.

First, locate three JARs: hibernate-ogm-core-4.0.0.Beta2.jar, hibernate-ogm-mongodb-4.0.0.Beta1.jar and
mongo-java-driver-2.8.0.jar. Next, browse the {JBOSSAS_HOME}/modules/org/hibernate path and create a new folder
named ogm. Copy the three JARs to this new folder, and also add to this folder the module.xml file shown in Listing 4-23.

Listing 4-23. module.xml

<module xmlns="urn:jboss:module:1.1" name="org.hibernate" slot="ogm">
 <resources>
 <resource-root path="hibernate-ogm-mongodb-4.0.0.Beta1.jar"/>
 <resource-root path="hibernate-ogm-core-4.0.0.Beta2.jar"/>
 <resource-root path="mongo-java-driver-2.8.0.jar"/>
 </resources>

 <dependencies>
 <module name="org.jboss.as.jpa.hibernate" slot="4"/>
 <module name="org.hibernate" slot="main" export="true" />
 <module name="javax.api"/>
 <module name="javax.persistence.api"/>
 <module name="javax.transaction.api"/>
 <module name="javax.validation.api"/>
 <module name="org.infinispan"/>
 <module name="org.javassist"/>

http://www.download.jboss.org/jbosstools/updates/development/indigo/
http://www.download.jboss.org/jbosstools/updates/development/indigo/
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

90

 <module name="org.jboss.logging"/>
 </dependencies>
</module>

Save the file. We have to do one more thing here—add Hibernate 4.1.9 in place of 4.0.1 in the module. First, locate
the following JARs: hibernate-core-4.1.9.Final.jar and hibernate-entitymanager-4.1.9.Final.jar and then
browse the {JBOSSAS_HOME}/modules/org/hibernate/main path. Now, replace the old JARs with these ones, or just
add these. Edit the module.xml file in the same folder and replace the old references accordingly:

<module xmlns="urn:jboss:module:1.1" name="org.hibernate">
 <resources>
 <resource-root path="hibernate-core-4.1.9.Final.jar"/>
 <resource-root path="hibernate-entitymanager-4.1.9.Final.jar"/>
 <resource-root path="hibernate-commons-annotations-4.0.1.Final.jar"/>
 <resource-root path="hibernate-infinispan-4.0.1.Final.jar"/>
 <!-- Insert resources here -->
 </resources>
...

Done! We finished everything necessary for preparing JBoss AS 7.1 for Hibernate OGM applications.

Coding the Application

Now, we can switch back to application development and, more specifically, to the persistence.xml file, which must
undergo some significant modification, as you’ll see in the next paragraphs. To add this file, you can use the Eclipse
IDE wizard, like this:

In • Project Explorer, locate the HOGMviaJPA_EE_JBossAS-ejb module. Right-click on it and select
Properties from the context menu. Navigate to Project Facets in the Properties window and
locate the JPA facet. Select it and you should see something like what’s shown in Figure 4-14.

Figure 4-14. Adding the JPA facet

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

91

We are especially interested in the bottom text, • "Further configuration required ..."
(or it might say "Further configuration available ..."). Click on that text to open the
Modify Faceted Project window. We have to choose the JPA implementation, which is
Hibernate OGM. Select Generic 2.0 as the Platform and User Library as the Type in the JPA
Implementation section.

Next, we have to specify the Hibernate OGM and MongoDB libraries. If you followed along •
in the Chapter 1 section “Getting Hibernate OGM Distribution Using the Eclipse IDE,” you
should have the Hibernate OGM Core and MongoDB library. Select it and click OK, as shown
in Figure 4-15. If you don’t have this library, create it now. Click Apply and OK to return to the
main application screen.

Figure 4-15. Select the JPA implementation

Now you should see an empty persistence.xml leaf under the HOGMviaJPA_EE_JBossAS-ejb | JPA Content
node. Open this file in the editor and let’s add what we need:

Rename the persistence unit to • HOGM_JPA_JBOSSAS_PU and set the transaction type as JTA:

<persistence-unit name="HOGM_JPA_JBOSSAS_PU" transaction-type="JTA">

Specify the JPA provider as Hibernate OGM using the • <provider> tag:

<provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>

Add the entities that can be managed by the • EntityManager instance defined by the
persistence unit (in our case, a single entity named LuckyNumberEntity :

<class>hogm.jpa.entities.LuckyNumberEntity</class>

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

92

Optionally, indicate the JTA platform. Normally, this is auto-detected in an EE environment. •
Notice that for JBoss AS 7, the correct value is:

 org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform

It’s not the value used for JBoss JTA standalone.

<property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform"/>

By default, JPA applications will use Hibernate integration classes that are configured in the JBoss •
AS 7 integration adapter module, unless you add the property jboss.as.jpa.adapterModule set
to another value to your persistence.xml properties list. The value of this property represents
the name of the Hibernate integration classes that help the application server to work with the
persistence provider. In our case, we need the Hibernate integration classes 4, so we use the
following setting:

<property name="jboss.as.jpa.adapterModule" value="org.jboss.as.jpa.hibernate:4"/>

We also need to add the property • jboss.as.jpa.providerModule to indicate that we want
Hibernate OGM to be used. This is the module we have added manually earlier in this section:

<property name="jboss.as.jpa.providerModule" value="org.hibernate:ogm"/>

Further, we need to disable class transformers for the persistence unit (by default, class enhancing •
or rewriting is permitted). For this, set the jboss.as.jpa.classtransformer to false:

<property name="jboss.as.jpa.classtransformer" value="false"/>

Next, turn off automatic Envers event listeners registration by setting the •
hibernate.listeners.envers.autoRegister property to false:

<property name="hibernate.listeners.envers.autoRegister" value="false"/>

Finally, configure the MongoDB connection (provider, dialect (optional), database name, host, and •
port). Once you’ve done that, the entire persistence.xml file is available, shown in Listing 4-24.

Listing 4-24. persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

 <persistence-unit name="HOGM_JPA_JBOSSAS_PU" transaction-type="JTA">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <class>hogm.jpa.entities.LuckyNumberEntity</class>
 <properties>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform"/>
 <property name="jboss.as.jpa.adapterModule" value="org.jboss.as.jpa.hibernate:4"/>

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

93

 <property name="jboss.as.jpa.providerModule" value="org.hibernate:ogm"/>
 <property name="jboss.as.jpa.classtransformer" value="false"/>
 <property name="hibernate.listeners.envers.autoRegister" value="false"/>
 <property name="hibernate.ogm.datastore.provider" value="mongodb"/>
 <property name="hibernate.ogm.datastore.grid_dialect"
 value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
 <property name="hibernate.ogm.mongodb.database" value="jbossas_db"/>
 <property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
 <property name="hibernate.ogm.mongodb.port" value="27017"/>
 </properties>
 </persistence-unit>
</persistence>

Regarding the fact that there is no data source specified, remember, as I pointed out earlier, Hibernate OGM
doesn’t need a data source. However, in some cases a data source must be specified to conform to JPA specification.
For JBoss AS 7.1, the simplest way to provide a data source (in case you get related errors, which I didn’t) is to add the
out-of-the-box data source, like this:

...
<!-- out of the box data source for GlassFish v3-->
<jta-data-source> java:jboss/datasources/ExampleDS</jta-data-source>
...

At this point, I can say that we are respecting every single JBoss AS 7 requirement for running Hibernate
OGM applications.

Next, you have to add the application code (the LuckyNumberEntity entity, the CMTBean EJB component
(don’t forget to change the unit name to HOGM_JPA_JBOSSAS_PU), and the index.xhtml web page) discussed in the
previous example, and to add the CDI and JSF settings (which can be selected from the Project Facets wizard).
When you’re done, you should be able to deploy and run the application without any unpleasant events. To do this,
I used JBoss AS Tools for Eclipse JUNO, but you can do it however you like.

Testing

Start the MongoDB server as in Chapter 1. Next, since you’re in an Eclipse/JBoss AS (or NetBeans/JBoss AS)
environment, just save the project and select Run on Server (or Run, in NetBeans) to deploy and run the application.
If the application successfully starts, you’ll see in the browser something similar to what’s shown in Figure 4-16.

Figure 4-16. Running the HOGMviaJPA_EE_JBossAS Application

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

94

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(jbossas_db) collection (jpa). Open a command prompt and type the commands from Figure 4-17 to see the results
of your work. You can monitor JBoss AS log messages in case anything unwanted happens.

Figure 4-17. Checking jpa collection content

Note ■ You will see how and why the hibernate_sequences collection appears in Chapter 5.

The complete source code for this application is named HOGMviaJPA_EE_JBossAS and is available in the Apress
repository. It comes as an Eclipse project and it was tested under JBoss AS 7.1.

Hibernate OGM in a Standalone JTA environment (Apache Tomcat 7)
Earlier in this chapter we created a Hibernate OGM via Hibernate Native API that was deployed in a standalone JTA
environment with a Tomcat 7 web server. In this section, we will replace the Hibernate Native API part with the Java
Persistence API. Instead of Hibernate Session, we’ll use an EntityManager.

Prerequisites

MongoDB 2.2.2•

Hibernate OGM 4.0.0.Beta1•

JDK 1.7•

NetBeans 7.2.1 (or Eclipse JUNO)•

Apache Tomcat 7•

Developing

After launching NetBeans, create a new project consisting of an empty Maven web application and name it
HOGMviaJPAJTA_Tomcat7. In the New Web Application wizard, type hogm.hnapi for the Group Id and Package fields
and select Apache Tomcat 7 web server for deploying this application. When you see the project in the Projects
window, edit the pom.xml file (which must be under the Project Files node). In the pom.xml file, add the Hibernate
OGM (including MongoDB support) and JBoss JTA (JTA standalone from JBoss) distributions by pasting in the
following dependencies:

<dependencies>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

95

 <artifactId>hibernate-ogm-core</artifactId>
 <version>4.0.0.Beta2</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-mongodb</artifactId>
 <version>4.0.0.Beta1</version>
 </dependency>
 <dependency>
 <groupId>org.jboss.jbossts</groupId>
 <artifactId>jbossjta</artifactId>
 <version>4.16.4.Final</version>
 </dependency>
...
<dependencies>

Now save the project and the driver JAR will be listed under the Dependencies node.

Coding the Application

Now add the well-known entity named LuckyNumberEntity. You can find this in the previous examples; it’s a simple
POJO annotated with @Entity, @Table(name="jpa"), with a primary key field, named id, of type String and
generated using a UUID2 generator, and an int field named luckynumber.

Next, we’ll write the persistence.xml file. In a Maven project, place this file in the Other Sources/src/
main/resources/META-INF folder and start by naming the persistence unit as HOGM_JPA_JTA_TOMCAT_PU and the
transaction type as JTA:

<persistence-unit name="HOGM_JPA_JTA_TOMCAT_PU" transaction-type="JTA">
...

Set Hibernate OGM as the JPA provider by adding the <provider> tag:

<provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>

Add the entity class in this persistence unit using the <class> attribute:

<class>hogm.hnapi.entities.LuckyNumberEntity</class>

Next, we need to specify the JTA platform—JBoss JTA. Do this by adding the following:

<property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform"/>

Notice that we specified the JBoss JTA standalone distribution, not the one used by the JBoss AS.
The JBoss TS documentation indicates that, in order to select the local JBoss JTA implementation, you have to specify

two properties: com.arjuna.ats.jta.jtaTMImplementation and com.arjuna.ats.jta.jtaUTImplementation.
We can specify them like this:

<property name="com.arjuna.ats.jta.jtaTMImplementation"
 value="com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple"/>
<property name="com.arjuna.ats.jta.jtaUTImplementation"
 value="com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple"/>

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

96

Now we’ll configure the MongoDB connection using the datastore provider, the dialect, the name of the
database to connect to, and the host and port (we will use the localhost and the default MongoDB server port, 27017).
Putting everything together, we get the persistence.xml file shown in Listing 4-25.

Listing 4-25. Persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="HOGM_JPA_JTA_TOMCAT_PU" transaction-type="JTA">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <class>hogm.hnapi.entities.LuckyNumberEntity</class>
 <properties>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.
JBossStandAloneJtaPlatform"/>
 <property name="com.arjuna.ats.jta.jtaTMImplementation"
 value="com.arjuna.ats.internal.jta.transaction.arjunacore.
TransactionManagerImple"/>
 <property name="com.arjuna.ats.jta.jtaUTImplementation"
 value="com.arjuna.ats.internal.jta.transaction.arjunacore.
UserTransactionImple"/>
 <property name="hibernate.ogm.datastore.provider" value="mongodb"/>
 <property name="hibernate.ogm.datastore.grid_dialect"
 value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
 <property name="hibernate.ogm.mongodb.database" value="tomcat_db"/>
 <property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
 <property name="hibernate.ogm.mongodb.port" value="27017"/>
 </properties>
 </persistence-unit>
</persistence>

At this point, we have one entity and the corresponding persistence unit, so it’s time to add a DAO class for
storing lucky numbers into the MongoDB database. First, based on this persistence unit (HOGM_JPA_JTA_TOMCAT_PU),
we need to obtain an entity manager factory, and an entity manager from this factory, like so:

private static final EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("HOGM_JPA_JTA_TOMCAT_PU");
private final EntityManager em = emf.createEntityManager();

Now the entity manager is ready to join a transaction and execute statements against the MongoDB database
(in our case, persist statements), but for this we need to obtain the user transaction for setting the transaction boundaries.
We’ve done this before in a previous application, but in case you don’t remember, it can be done in at least two ways:

using the static method • transactionManager:

javax.transaction.TransactionManager tx = com.arjuna.ats.jta.TransactionManager.transactionManager();

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

97

using the static method • userTransaction:

javax.transaction.UserTransaction tx = com.arjuna.ats.jta.UserTransaction.userTransaction();

Note■ The TransactionManager interface allows the application server to control transaction boundaries on behalf

of the application being managed, while the UserTransaction interface allows applications to control transaction boundaries.

Obviously, when the application controls transaction boundaries, you can use both of these, but when you allow the

application server to control transaction boundaries, you must use TransactionManager.

Now, you can demarcate a persist statement with the begin, commit, and rollback methods for controlling the
transaction flow. After a transaction begins (when the begin method is called), the entity manager must join it by
calling the joinTransaction method, like this:

...
tx.begin();
em.joinTransaction();
em.persist(transientInstance);
tx.commit();
...

Supply the code for clearing and closing the entity manager, a few messages for monitoring the application flow,
and you’ll get the DAO class shown in Listing 4-26.

Listing 4-26. The LuckyNumberDAO Class

package hogm.hnapi.dao;

import hogm.hnapi.entities.LuckyNumberEntity;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;

public class LuckyNumberDAO {

 private static final Logger log = Logger.getLogger(LuckyNumberDAO.class.getName());
 private static final EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("HOGM_JPA_JTA_TOMCAT_PU");
 private final EntityManager em = emf.createEntityManager();

 public void persistAction(LuckyNumberEntity transientInstance) throws java.lang.Exception {

 log.log(Level.INFO, "Persisting LuckyNumberEntity instance ...");

 javax.transaction.TransactionManager tx =
 com.arjuna.ats.jta.TransactionManager.transactionManager();
 // javax.transaction.UserTransaction tx = com.arjuna.ats.jta.UserTransaction.userTransaction();

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

98

 try {
 tx.begin();
 em.joinTransaction();
 em.persist(transientInstance);
 tx.commit();

 log.log(Level.INFO, "Persist successful ...");
 } catch (Exception re) {
 tx.rollback();

 log.log(Level.SEVERE, "Persist failed ...", re);
 throw re;
 } finally {
 if (em != null) {
 em.clear();
 em.close();
 }
 }
 }
}

The important part is done! We just have to add a simple servlet for working with the DAO class, like this:

package hogm.hnapi.servlet;
...
@WebServlet(name = "LuckyNumberServlet", urlPatterns = {"/LuckyNumberServlet"})

public class LuckyNumberServlet extends HttpServlet {
...
protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException, Exception {
 ...
 LuckyNumberDAO luckyNumberDAO = new LuckyNumberDAO();
 LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
 luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));

 luckyNumberDAO.persistAction(luckyNumberEntity);
 ...
 }
}

And a trivial JSP page (index.jsp) that sends empty requests to our servlet:

...
<form action="./LuckyNumberServlet" method="POST">
 <input type="submit" value="Generate Lucky Number">
</form>
...

Done!

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

99

Testing

Start the MongoDB server as in Chapter 1. Next, since you’re in a NetBeans/Tomcat (or Eclipse/Tomcat) environment,
just save the project and click the Run (or Run on Server in Eclipse) button to start Tomcat and deploy and run the
application. If the application starts successfully, you’ll see in your browser something similar to what’s shown in
Figure 4-18.

Figure 4-18. Running the HOGMviaJPAJTA_Tomcat7 application

Figure 4-19. Checking jpa collection content

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(tomcat_db) collection (jpa). Open a command prompt and type the commands from Figure 4-19 to see the results of
your work. You can monitor Tomcat log messages in case anything unwanted happens.

The complete source code for this application is named HOGMviaJPAJTA_Tomcat7 and is available in the Apress
repository. It comes as a NetBeans project and was tested under GlassFish AS 3.

Hibernate OGM in a Built-in JTA Environment (JBoss AS 7 and Seam 3
Application)
I saved for the end of this chapter two applications that involve Seam and Spring, two powerful and popular J2EE
frameworks. As a Seam fan, I’ve seen Seam become a mature and robust framework, transforming in version 3 into
“a collection of modules and developer tooling tailored for Java EE 6 application development, with CDI as the central piece.”

Thanks to the modular framework structure and the CDI injection mechanism, you can create Seam 3
applications that involve only the modules you need. In the next application, we use a single Seam 3 module called
Seam Persistence (this is the module closest to our subject), which “brings transactions and persistence to managed

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

100

beans, provides a simplified transaction API, and hooks transaction propagation events to the CDI event bus.” Among
the many features of Seam Persistence, two stand out:

Seam Managed Persistence Context—This is a built-in Seam component capable of managing •
entity managers (EntityManagers for JPA; it will work even in an SE environment because
the Seam Persistence extensions will bootstrap the EntityManagerFactory) and sessions
(Sessions for Hibernate). Moreover, it provides stability and robustness both outside and
inside an EE container.

Declarative transactions—Seam has upgraded the EJB 3 well-known • @TransactionAttribute
to provide declarative transactions for plain beans and, even cooler, this works outside the EE
container where EJBs are totally unknown.

If you add to these two features simplicity of configuration and integration, you realize Seam Persistence really rocks!
So, let’s write an application that uses Seam 3 (the Seam Persistence module) and Hibernate OGM as JPA.

Prerequisites

MongoDB 2.2.2•

Hibernate OGM 4.0.0.Beta2•

JDK 1.7•

Eclipse JUNO•

Forge 1.0.5 or 1.1.3•

JBoss AS 7•

Developing

Our first concern was how to start a Seam Persistence project, because there are several possibilities. For example,
you can add the Seam Persistence distribution through Maven artifacts:

<dependencies>
 <dependency>
 <groupId>org.jboss.seam.persistence</groupId>
 <artifactId>seam-persistence-api</artifactId>
 <version>${seam.persistence.version}</version>
</dependency>
<dependency>
 <groupId>org.jboss.seam.persistence</groupId>
 <artifactId>seam-persistence-impl</artifactId>
 <version>${seam.persistence.version}</version>
</dependency>
<dependency>
 <groupId>org.jboss.seam.solder</groupId>
 <artifactId>seam-solder</artifactId>
 <version>${seam.solder.version}</version>
</dependency>

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

101

<dependency>
 <groupId>org.jboss.seam.xml</groupId>
 <artifactId>seam-xml-config</artifactId>
 <version>${seam.xml.version}</version>
 </dependency>
 ...
</dependencies>

Or, even better, you could use JBoss Tools for Eclipse or Seam Forge Tools for Eclipse (actually Seam Forge Tools
is now available as a sub-tool of JBoss Tools). However, for our needs the decision was clear: We’ll use the Seam
Forge Tools plug-in (www.forge.jboss.org/) for Eclipse JUNO. You may well already have it installed in your Eclipse
distribution, or outside Eclipse, and have used it many times, but if you’re new to Forge and you want to install it
quickly, go to the Help|Install New Software window, add the JBoss Tools repository
(http://download.jboss.org/jbosstools/updates/development/indigo/) or select it from the list), expand the
Abridged JBoss Tools 3.3 node, and select Forge Tools (see Figure 4-20).

Figure 4-20. Install Forge Tools for Eclipse

Follow the steps in the wizard to install it and then restart the IDE. Now, from the Window | Show View window,
you can activate the Forge | Forge Console. Initially Forge is not running, but it can be started by pressing the little
green triangle on the Forge bar (Figure 4-21).

http://www.forge.jboss.org/
http://download.jboss.org/jbosstools/updates/development/indigo/
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

102

The big advantage of using Forge is that you don’t need to read tons of tutorials, since it’s just a shell for tooling
and automation at the command line. There are no complicated wizards, settings, XMLs configurations, or anything,
just a sheaf of commands that generate entire projects, including Seam and EE, in seconds.

Coding the Application

I’m going to assume that you’re looking at a Seam Forge console right now. (This is recommended under Eclipse,
because it lets you see the project creation progress after each typed command.) Let’s insert the necessary commands
for generating a new Seam 3 project with the Seam Persistence module.

First we need to install the Seam Persistence plug-in for Forge outside the project context (if it’s not present).
This can be easily accomplished with the following command:

forge install-plugin seam-persistence --version 3.1.0.Final

Now we can insert commands for creating the new project:

Create a new project named • HOGMviaJPA_SEAM3:

new-project --named HOGMviaJPA_SEAM3

Add to the new project the JavaServer Faces scaffold (answer yes to all questions):•

scaffold setup

Select which JBoss Java EE version to install. In the list of versions, locate •
org.jboss.spec:jboss-javaee-6.0:pom::3.0.1.Final and type the number in front of it
(if this is not available, then select the most recent final version).

After a bunch of success messages, you’ll see the question “• Create scaffold in which
sub-directory of web-root?”. Type main.

Install the Seam Persistence module:•

seam-persistence setup

You’ll be asked to indicate which version to install. Locate the •
org.jboss.seam.persistence:seam-persistence:::3.1.0.Final version and type the
number in front of it (if this is not available, select the most recent final version).

Figure 4-21. Forge Console in Eclipse

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

103

Install the Seam Managed Persistence Context:•

seam-persistence install-managed-persistence-context

You’ll be prompted to specify the package and class name for the Persistence Context •
Producer. Just press the Enter key for each question to accept the default suggestions.

Activate declarative transactions support by typing:•

seam-persistence enable-declarative-tx

Generate an entity class—the • LuckyNumberEntity class (accept the suggested package name
by pressing the Enter key):

entity --named LuckyNumberEntity

Add the field • luckynumber to the entity by typing:

field int --named luckynumber

Done! We have all the components we need, so we’re ready to build our project. Type:•

build

If the build ends successfully, you’ve done a great job and the project should be visible under Project Explorer
tab in the Eclipse IDE. Don’t worry about the red “x” that marks the project as having errors—this happens because
the persistence.xml file is empty. (And even if you don’t have that red “x,” you still need to populate persistence.xml
with the correct settings.)

Let’s get rid of this annoying error using an Eclipse IDE wizard. In Project Explorer, locate the HOGMviaJPA_SEAM3
project node and right-click on it and select Properties from the context menu. Now, follow the instructions from the
“Coding the Application” part of the “Hibernate OGM in a Built-in JTA Environment (EJB 3, JBoss AS 7)” section of this
chapter to get the persistence.xml content shown in Listing 4-27.

Listing 4-27. persistence.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.0"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="HOGM_JPA_SEAM3_PU" transaction-type="JTA">

 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <class>com.example.HOGMviaJPA_SEAM3.model.LuckyNumberEntity</class>
 <properties>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform"/>
 <property name="jboss.as.jpa.adapterModule" value="org.jboss.as.jpa.hibernate:4"/>
 <property name="jboss.as.jpa.providerModule" value="org.hibernate:ogm"/>
 <property name="jboss.as.jpa.classtransformer" value="false"/>
 <property name="hibernate.listeners.envers.autoRegister" value="false"/>
 <property name="hibernate.ogm.datastore.provider" value="mongodb"/>

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

104

 <property name="hibernate.ogm.datastore.grid_dialect"
 value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
 <property name="hibernate.ogm.mongodb.database" value="jbossas_db"/>
 <property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
 <property name="hibernate.ogm.mongodb.port" value="27017"/>
 </properties>
 </persistence-unit>
</persistence>

Note ■ Before you save and build, edit the LuckyNumberEntity by adding a line that says @Table(name="seam").

Save and build the project with the Forge build command and the error will disappear.
Now we need to add the business logic for persisting lucky numbers into the MongoDB database, and I think an

EJB component is exactly what we need because we can make good use of its CDI features. First, create a new package
named com.example.HOGMviaJPA_SEAM3.view under Java sources (src/main/java), with an empty stateless bean
inside named CMTBean. If you create the stateless bean from the Eclipse wizard, select the Session Bean (EJB 3.x) leaf,
under the EJB node.

Now we’re going to use the Seam Managed Persistence Context. If you’re not familiar with it, you might think it
leads to a mass of spaghetti code to glue it into our EJB component. But keep in mind that all we need to do is to use
the CDI @Inject annotation to obtain a Seam managed EntityManager:

@Inject @Forge EntityManager em;

The @Forge represents a CDI qualifier (both the Seam Managed Persistence Context factory class and the
qualifier class were generated by Seam Forge and placed in the package com.example.HOGMviaJPA_SEAM3, under the
Java sources src/main/java).

Note ■ We didn't use the declarative transaction feature (even though we installed it) because we’re in an EE environment

and EJBs are by default transactional.

That single line of code does all the work of injecting and managing our entity manager. Next, we’ll use the most
common approach for giving life to the persisting process:

...
public void persistAction() {
 LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
 luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));
 em.persist(luckyNumberEntity);
 }
...

Finally, we annotate our EJB component with @Named to make it visible in a simple JSF form. Listing 4-28 shows
the complete EJB code.

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

105

Listing 4-28. The Complete EJB Code

package com.example.HOGMviaJPA_SEAM3.view;

import java.io.Serializable;
import java.util.Random;
import javax.ejb.Stateful;
import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.inject.Named;
import javax.persistence.EntityManager;

import com.example.HOGMviaJPA_SEAM3.Forge;
import com.example.HOGMviaJPA_SEAM3.model.LuckyNumberEntity;

@Named("bean")
@Stateful
@RequestScoped
public class CMTBean implements Serializable
{
 private static final long serialVersionUID = 1L;

 @Inject @Forge EntityManager em;

 public void persistAction() {
 LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
 luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));
 em.persist(luckyNumberEntity);
 }
}

Calling the persistAction method with a LuckyNumberEntity instance can be easily accomplished by adding
a few modifications to the index.xhtml file generated by Seam Forge under src/main/webapp/main/index.xhtml.
The first modification involves using the Taglib directives for importing the JSF tag library; use XML syntax for this
(see the bold code):

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 template="/resources/scaffold/pageTemplate.xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
...

Second, slip the next form into the code somewhere—I paste it in the <ui:define> tag. Since this is just an
example, I kept the generated design:

...
<ui:define name="subheader">
<h:form>
 <h:commandButton action="#{bean.persistAction()}" value="Generate Lucky Number"/>
</h:form>
</ui:define>
...

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

106

Finally, specify the application start page. Edit the web.xml file (under src/main/webapp/WEB-INF folder) and
add this code at the end:

...
<welcome-file-list>
 <welcome-file>faces/main/index.xhtml</welcome-file>
</welcome-file-list>
...

Save and build the project again (use the Forge Console) and that’s it!

Testing

Start the MongoDB server as in Chapter 1. Next, since you’re in an Eclipse/JBoss AS (or NetBeans/JBoss AS)
environment, just save the project and click the Run on Server (or Run in NetBeans) button to start JBoss AS and
deploy and run the application. If the application successfully starts, you’ll see in your browser something like what’s
shown in Figure 4-22.

Figure 4-22. Running the HOGMviaJPA_SEAM3 application

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(jbossas_db) collection (seam). Open a command prompt and type the commands from Figure 4-23 to see the results
of your work. You can monitor JBoss AS log messages in case anything unwanted happens.

Figure 4-23. Checking the seam collection content

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

107

The complete source code for this application is is named HOGMviaJPA_SEAM3 and it’s available in the Apress
repository. It comes as an Eclipse project and was tested under JBoss AS 7.

Hibernate OGM in a Built-in JTA Environment (GlassFish 3
and Spring 3 Application)
One of the best open source Java enterprise frameworks on the market, with millions of fans, is Spring, especially
distribution 3. In this section, we will develop an application that integrates Spring 3 and Hibernate OGM via JPA.
Since you’re reading this section, you’re probably a Spring fan and the application may look pretty simple to you. Keep
in mind that the point here is showing you how to add Hibernate OGM into this equation. So, let’s persist some lucky
numbers using Spring and Hibernate OGM.

Prerequisites

MongoDB 2.2.2•

Hibernate OGM 4.0.0.Beta2•

JDK 1.7•

NetBeans IDE 7.2.1 (or Eclipse JUNO)•

Spring 3.1.1•

GlassFish 3.1.2.2•

Developing

After launching NetBeans, create a new project consisting of an empty Web Application (notice that we won’t use
Maven for this application) and name it HOGMviaJPA_Spring3. Select GlassFish AS for deploying this application and
add the Spring Web MVC framework from the NetBeans wizard.

Once you have the project under Projects window, you need to provide a few more JARs aside from the Spring
3.1.1 JARs that were automatically added by NetBeans. Begin with the Hibernate OGM/MongoDB JARs, which should
be available in the Hibernate OGM Core and MongoDB user library created in Chapter 1. Continue with two JARs you
can download from the Internet: asm-3.1.jar (http://asm.ow2.org/) and aopalliance.jar
(http://aopalliance.sourceforge.net/).

Now you have all the necessary JARs and we can start coding.

Coding the Application

We’ll start by developing the entity class and the persistence.xml. The entity class that feeds our MongoDB database
with lucky numbers code, shown in Listing 4-29, is pretty straightforward.

Listing 4-29. The Entity Class

package hogm.spring;

import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;

http://asm.ow2.org/
http://aopalliance.sourceforge.net/
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

108

import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name = "spring")
public class LuckyNumberEntity implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 @Column(name = "luckynumber", nullable = false)
 private int luckynumber;

 public LuckyNumberEntity() {
 }

 public int getLuckynumber() {
 return luckynumber;
 }

 public void setLuckynumber(int luckynumber) {
 this.luckynumber = luckynumber;
 }

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }
}

Add an empty persistence.xml. The persistence.xml contains a single persistence unit, HOGMviaJPA_SPRING3_PU
and a transaction type defined as JTA:

<persistence-unit name="HOGMviaJPA_SPRING3_PU" transaction-type="JTA">
...

Next, specify Hibernate OGM as the JPA provider by adding the <provider> tag:

<provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>

Add the entity class in Listing 4-28 to this persistence unit using the <class> attribute:

<class>hogm.spring.LuckyNumberEntity</class>

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

109

Specify the JTA platform using the hibernate.transaction.jta.platform property. The value of this property
can be found in the list in Chapter 2. For GlassFish AS, use:

...
<property name="hibernate.transaction.jta.platform" value="org.hibernate.service.jta.platform.
internal.SunOneJtaPlatform"/>
...

We’re almost done; we just need to configure the MongoDB connection (provider, dialect (optional), database
name, host, and port). Once we’ve done that, we have the entire persistence.xml file as shown in Listing 4-30.

Listing 4-30. persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

 <persistence-unit name="HOGMviaJPA_SPRING3_PU" transaction-type="JTA">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <class>hogm.spring.LuckyNumberEntity</class>
 <properties>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.SunOneJtaPlatform"/>
 <property name="hibernate.ogm.datastore.provider" value="mongodb"/>
 <property name="hibernate.ogm.datastore.grid_dialect"
 value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
 <property name="hibernate.ogm.mongodb.database" value="glassfish_db"/>
 <property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
 <property name="hibernate.ogm.mongodb.port" value="27017"/>
 </properties>
 </persistence-unit>
</persistence>

Now, we’re ready to add some DAO business logic to take advantage of the JPA settings. For this, we can write
a simple Spring component (annotating the class with @Component) that injects an EntityManager and implements a
transactional persist method, like the following:

package hogm.spring;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import org.springframework.stereotype.Component;
import org.springframework.transaction.annotation.Transactional;

@Component
public class LuckyNumberDAO {

 @PersistenceContext
 private EntityManager em;

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

110

 @Transactional
 public void persist(LuckyNumberEntity luckyNumberEntity) {
 em.persist(luckyNumberEntity);
 }
}

Notice that we used the @Transactional annotation, since we want Spring to wrap that method in a transaction.
To create a classical Spring application, we need a Spring controller (annotating the class with @Controller)

capable of receiving HTTP requests from multiple users and able to participate in an MVC workflow. Our controller
will receive HTTP GET requests for its users and, for each request, will generate a new lucky number that becomes
a parameter passed to the DAO persist method. For this, we use the @Autowired annotation that lets the container
automatically wire beans—in our case, the LuckyNumberDAO bean shown in Listing 4-31.

Listing 4-31. The LuckyNumberDAO Bean

package hogm.spring;

import java.util.Random;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.ModelMap;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@Controller
public class LuckyNumberController {

 @Autowired
 private LuckyNumberDAO luckyNumberDao;

 @RequestMapping(value = "/", method = RequestMethod.GET)
 public String index(ModelMap map) {
 LuckyNumberEntity luckyNumberEntity = new LuckyNumberEntity();
 luckyNumberEntity.setLuckynumber(new Random().nextInt(1000000));

 luckyNumberDao.persist(luckyNumberEntity);

 return "index";
 }
}

The user can fire HTTP GET requests using the Spring form we added to the WEB-INF/jsp/index.jsp page.
We use the Taglib directives to import the Spring tag library:

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>
...
<form:form method="GET" commandName="/">
 <input type="submit" value="Generate Lucky Number" />
</form:form>
...

http://www.springframework.org/tags/form
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

111

Almost done. Two more XML configuration files and we’ll be ready to run the application. The well-known
dispatcher-servlet.xml, shown in Listing 4-32, needs to contain several settings, for example to enable the Spring
MVC @Controller programming model and to define the entity manager factory (notice that we indicate our Hibernate
OGM persistence unit name) and the Spring JTA transaction manager (it should be placed in the WEB-INF folder).

Listing 4-32. dispatcher-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd">

 <context:component-scan base-package="hogm.spring" />
 <context:annotation-config/>
 <mvc:annotation-driven />
 <tx:annotation-driven transaction-manager="txManager" />

 <bean id="jspViewResolver"
 class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="viewClass"
 value="org.springframework.web.servlet.view.JstlView" />
 <property name="prefix" value="/WEB-INF/jsp/" />
 <property name="suffix" value=".jsp" />
 </bean>

 <bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
 <property name="persistenceUnitName" value="HOGMviaJPA_SPRING3_PU"/>
 </bean>

 <bean id="txManager" class="org.springframework.transaction.jta.JtaTransactionManager">
 </bean>
</beans>

Finally, the generated web.xml should be adjusted accordingly, as shown in Listing 4-33. It should be placed in
the WEB-INF folder.

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/p
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

112

Listing 4-33. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/dispatcher-servlet.xml</param-value>
 </context-param>
 <listener>
 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
 </listener>
 <servlet>
 <servlet-name>dispatcher</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <load-on-startup>2</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>dispatcher</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>
 30
 </session-timeout>
 </session-config>
 <welcome-file-list>
 <welcome-file>/</welcome-file>
 </welcome-file-list>
</web-app>

Done!

Note ■ Spring also supports NoSQL datastores, like MongoDB, without Hibernate OGM. For more details, visit

www.springsource.org/spring-data/mongodb.

Testing

Start the MongoDB server as you saw in Chapter 1. Next, since you’re in a NetBeans/GlassFish (or Eclipse/GlassFish)
environment, just save the project and click the Run (or Run on Server in Eclipse) button to start GlassFish and
deploy and run the application. If the application successfully starts, you’ll see in the browser something like what’s
shown in Figure 4-24.

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd
http://www.springsource.org/spring-data/mongodb
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

113

Figure 4-25. Checking the spring collection content

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(glassfish_db) collection (spring). Open a command prompt and type the commands from Figure 4-25 to see the
result of your work. You can monitor GlassFish log messages in case anything unwanted happens.

Figure 4-24. Running HOGMviaJPA_SPRING3 application

The complete source code for this application is named HOGMviaJPA_SPRING3 and is available in the Apress
repository. It comes as a NetBeans project and it was tested under GlassFish AS 3.

Hibernate OGM in a non-JTA Environment (RESOURCE_LOCAL,
Apache Tomcat 7)
In this section we’ll develop a Hibernate OGM application that will run in a not-recommended condition and
environment—this is why we saved it for last. The basic idea is that we will use a transaction of type RESOURCE_LOCAL
in an non-EE environment (in a Tomcat web container). In other words, we will have the JPA provider implementation
manage transactions in a non-JTA container (it doesn’t provide a JTA implementation and so it obviously doesn’t offer
automatic transaction management).

Hibernate OGM documentation doesn’t recommend using OGM outside a JTA environment (built-in or
standalone). But, the fact that it’s not recommended doesn’t mean it doesn’t work (especially for MongoDB which
doesn’t support transactions). Thus we can try it and draw some conclusions.

Prerequisites

MongoDB 2.2.2•

Hibernate OGM 4.0.0.Beta2•

JDK 1.7•

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

114

NetBeans 7.2.1 (or Eclipse JUNO)•

Apache Tomcat 7•

Developing

After launching NetBeans, create a new project consisting of an empty Maven web application and name it
HOGMviaJPA_RESOURCELOCAL_Tomcat7. In the New Web Application wizard, type hogm.hnapi for the Group Id and
Package fields and select the Tomcat application server for deploying this application. Once you see the project listed
in the Projects window, you need to edit the pom.xml file (it has to be under Project Files node). In the pom.xml
file, add the Hibernate OGM distribution (including MongoDB support) by pasting in the well-known dependencies.

Coding the Application

We start by developing the entity class and the persistence.xml. The entity class (LuckyNumberEntity) that feeds
our MongoDB databases with lucky numbers code is pretty straightforward and we’ve used it in almost all of the
preceding examples. We can therefore skip the listing here (just remember to use @Table(name="jpa_rl")). Next, we
focus on persistence.xml, which goes in the Other Sources/src/main/resources/META-INF) folder. As you can see
in Listing 4-34, it has no JTA platform specified, no special settings, just the transaction-type set as RESOURCE_LOCAL
and the MongoDB connection settings.

Listing 4-34. persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="HOGM_JPA_RESOURCE_LOCAL_PU" transaction-
 type="RESOURCE_LOCAL">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <class>hogm.hnapi.entities.LuckyNumberEntity</class>
 <properties>
 <property name="hibernate.ogm.datastore.provider" value="mongodb"/>
 <property name="hibernate.ogm.datastore.grid_dialect"
 value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
 <property name="hibernate.ogm.mongodb.database" value="tomcat_db"/>
 <property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
 <property name="hibernate.ogm.mongodb.port" value="27017"/>
 </properties>
 </persistence-unit>
</persistence>

Now we develop the DAO class responsible for persisting the lucky numbers in the MongoDB database, as shown
in Listing 4-35. As you can see, we need some plumbing code since we’re using the transaction mechanism provided
by the JPA provider, which in our case is Hibernate OGM. The transaction methods begin, commit, and rollback are
provided through the EntityManager.

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

115

Listing 4-35. The LuckyNumberDAO Class

package hogm.hnapi.dao;

import hogm.hnapi.entities.LuckyNumberEntity;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;

public class LuckyNumberDAO {

 private static final Logger log = Logger.getLogger(LuckyNumberDAO.class.getName());
 private static EntityManagerFactory emf = Persistence.createEntityManagerFactory
("HOGM_JPA_RESOURCE_LOCAL_PU");
 private EntityManager em = emf.createEntityManager();

 public void persistAction(LuckyNumberEntity transientInstance) throws java.lang.Exception {

 log.log(Level.INFO, "Persisting LuckyNumberEntity instance ...");

 try {
 em.getTransaction().begin();
 em.persist(transientInstance);
 em.getTransaction().commit();

 log.log(Level.INFO, "Persist successful...");
 } catch (Exception re) {
 em.getTransaction().rollback();

 log.log(Level.SEVERE, "Persist failed...", re);
 throw re;
 } finally {
 if (em != null) {
 em.clear();
 em.close();
 }
 }
 }
}

Now suppose we have the piece of code that “connects” the user with the DAO class (a servlet and a simple
XHTML page) and we run the application and see an error, like this:

Caused by: java.lang.ClassNotFoundException: Could not load requested class :
com.arjuna.ats.jta.TransactionManager

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

116

This error contains two hints for us: First, the JPA provider doesn’t find any JTA implementation (normal, since
we are in a non-JTA environment) and second, the JPA provider is looking, by default, for a JBoss JTA implementation.
Therefore, we need to add JBoss JTA JARs, and we have to add the corresponding Maven artifacts in the pom.xml file:

<dependency>
 <groupId>org.jboss.jbossts</groupId>
 <artifactId>jbossjta</artifactId>
 <version>4.16.4.Final</version>
</dependency>

Now, run the application again and everything should work fine (don’t forget the web page and the servlet—you
can copy them from previous projects, or simply download the application from the Apress repository).

Testing

Start the MongoDB server as you saw in Chapter 1. Next, since you’re in a NetBeans/Tomcat (or Eclipse/Tomcat)
environment, just save the project and click the Run (or Run on Server in Eclipse) button to start Tomcat and deploy
and run the application. If the application successfully starts, you’ll see in your browser something like what’s shown
in Figure 4-26.

Figure 4-26. Running the HOGMviaJPA_RESOURCELOCAL_Tomcat7 application

Press the Generate Lucky Number button a few times to persist some lucky numbers into the MongoDB database
(tomcat_db) collection (jpa_rl). Open a command prompt and type the commands from Figure 4-27 to see the result
of your work. You can monitor Tomcat log messages in case anything unwanted happens.

Figure 4-27. Checking the jpa_rl collection content

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

117

The complete source code for this application is named HOGMviaJPA_RESOURCELOCAL_Tomcat7 and it’s
available in the Apress repository. It comes as a NetBeans project and was tested under Tomcat 7.

With this example, we finish the set of applications based on bootstrapping Hibernate OGM via both Hibernate
Native API and JPA.

If you are not a Maven fan, but still want to test these applications, you can manually add the needed JARs under
the Libraries node (in NetBeans/Eclipse) and compile and run the application using the NetBeans/Eclipse interface
tools (as discussed in the section in Chapter 1) for getting the Hibernate OGM and MongoDB JARs locally).

If you’re not a fan of IDEs either, you can edit the source code in your favorite editor, even Notepad, and compile
the applications manually using Ant from the command line. For example, the Ant script (build.xml) in Listing 4-36
can be used to compile an application deployed under Tomcat. Just install Ant (http://ant.apache.org/) and put it
in your classpath. Place the Ant script in the application root folder, open a command prompt, navigate to that folder
and type build. This will compile the application and build the application WAR:

Listing 4-36. build.xml

<project name="hibernate" default="war">

<property name="sourcedir" value="${basedir}/WEB-INF/src"/>
<property name="targetdir" value="${basedir}/WEB-INF/classes"/>
<property name="librarydir" value="${basedir}/WEB-INF/lib"/>
<property name="builddir" value="${basedir}/build"/>

<path id="libraries">
 <fileset dir="${librarydir}">
 <include name="*.jar"/>
 </fileset>
</path>

<target name="clean">
 <delete dir="${targetdir}"/>
 <mkdir dir="${targetdir}"/>
 <delete dir="${builddir}"/>
 <mkdir dir="${builddir}"/>
</target>

<target name="compile" depends="clean, copy-resources">
 <javac srcdir="${sourcedir}"
 destdir="${targetdir}"
 classpathref="libraries"/>
</target>

<target name="copy-resources">
 <copy todir="${targetdir}">
 <fileset dir="${sourcedir}">
 <exclude name="**/*.java"/>
 </fileset>
 </copy>
</target>

http://ant.apache.org/
http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

118

<target name="war" depends="compile">
 <jar jarfile="${builddir}/{app_name}.war" basedir="${basedir}"/>
 </target>

</project>

Obviously, you have to deal with application server and browser start/stop maneuvers.

Synthesis
Developing and testing these applications gave birth to this section. After analyzing these applications, we can come
to some general conclusions regarding Hibernate OGM and MongoDB when integrated in different application
environments. Clearly, Hibernate OGM is capable of running in many different environments and architectures and
can be used with a number of frameworks and tools.

Moreover, depending on the environment (especially EE and JTA standalone) and the bootstrapping (via
Hibernate Native API or JPA), we can extract a bunch of mandatory and/or recommended settings that Hibernate
OGM needs for correctly serving Java applications.

Hibernate OGM via JPA in an EE Container
When you use Hibernate OGM via JPA in an EE container, you’ll want to include the following settings in the
persistence.xml file:

Set the transaction type to JTA using the • transaction-type JTA attribute of the
persistence-unit tag.

Set the JTA platform to the correct EE container using the • hibernate.transaction.jta.
platform property.

Specify a JTA data source. This should be tested and can be skipped in some cases. For •
GlassFish you can use the built-in data source jdbc/sample (this is the associated JNDI
name) and for JBoss AS you can use java:/DefaultDS (prior to version 7) or java:jboss/
datasources/ExampleDS (version 7 and above). The data source is specified using the
jta-data-source tag.

Hibernate OGM via Hibernate Native API in an EE Container
When you use Hibernate OGM via Hibernate Native API in an EE container, you should include the following settings
in the hibernate.cfg.xml file (or a programmatic version of it):

Set the property • hibernate.transaction.factory_class to org.hibernate.transaction.
JTATransactionFactory, if you manually demarcate transaction boundaries, or to org.
hibernate.transaction.CMTTransactionFactory, if you use declarative transaction demarcation.

Set the property • hibernate.current_session_context_class to jpa to indicate the strategy
for scoping the “current” Session instances.

Set the JTA platform to the correct EE container using the • hibernate.transaction.jta.
platform property

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

119

Hibernate OGM via JPA in Standalone JTA
When you use Hibernate OGM via JPA in an non-EE container (standalone JTA, like Tomcat), you should include the
following settings in persistence.xml file:

Set the transaction type to JTA using the • transaction-type JTA attribute of the persistence-
unit tag.

Set the JTA platform (this is the standalone JTA—JOTM, JBoss JTA, Bitronix, and so forth—not •
a container built-in to JTA) using the hibernate.transaction.jta.platform property.

Check the documentation specific to the selected standalone JTA because it may require some •
specific properties to be set.

Hibernate OGM via Hibernate Native API in Standalone JTA
When you use Hibernate OGM via Hibernate Native API in a non-EE container (a standalone JTA, like Tomcat),
you should include the following settings in the hibernate.cfg.xml file (or a programmatic version of it):

Set the property • hibernate.transaction.factory_class to org.hibernate.transaction.
JTATransactionFactory, if you manually demarcate transaction boundaries, or to org.
hibernate.transaction.CMTTransactionFactory, if you use declarative transaction demarcation.

Set the property • hibernate.current_session_context_class to jpa to indicate the strategy
for scoping the current Session instances.

Set the JTA platform (this is the standalone JTA—JOTM, JBoss JTA, Bitronix, and so forth—not •
a container built-in to JTA) using the hibernate.transaction.jta.platform property.

Check the documentation specific to the selected standalone JTA because it may require some •
specific properties to be set.

Hibernate OGM via JPA in Non-JTA
When you use Hibernate OGM via JPA in a non-JTA environment (like Tomcat), you should include the following
settings in persistence.xml file:

Set the transaction type to • RESOURCE_LOCAL using the transaction-type JTA attribute of
persistence-unit tag.

Don’t specify any JTA platform, but provide the JBoss JTA JARs to the application.•

Manage both the • EntityManager and its JTA-transaction by yourself.

Hibernate OGM via Hibernate Native API in Non-JTA
When you use Hibernate OGM via Hibernate Native API in a non-JTA environment (like Tomcat), you should include
the following settings in the hibernate.cfg.xml file (or a programmatic version of it):

Set the property • hibernate.transaction.factory_class to org.hibernate.transaction.
JDBCTransactionFactory.

Set the property • hibernate.current_session_context_class to thread.

Use Hibernate’s Transaction and the built-in • session-per-request functionality instead of calling
the JDBC API.

http:///

CHAPTER 4 ■ HIBERNATE OGM AT WORK

120

Note ■ Values accepted by the hibernate.transaction.jta.platform property (indicating the JTA platform) are

available in Chapter 2 in the section “Bootstrap Hibernate OGM Using JPA”.

Summary
In this chapter, you saw how to integrate Hibernate OGM with different kinds of applications by varying the container
environment, bootstrapping procedure, and involved frameworks and tools. The list of applications presented in this
chapter includes:

Java SE and Mongo DB—the HelloWorld Example•

Hibernate OGM (via Hibernate Native API) in a non-JTA environment (JDBC Transactions, •
Tomcat 7)

Hibernate OGM (via Hibernate Native API) in a standalone JTA environment (JBoss JTA, •
Tomcat 7)

Hibernate OGM (via Hibernate Native API) in a built-in JTA environment (no EJB, GlassFish 3)•

Hibernate OGM (via Hibernate Native API) in a built-in JTA environment (EJB/BMT, GlassFish 3)•

Hibernate OGM (via Hibernate Native API) in a built-in JTA environment (EJB/CMT, GlassFish 3)•

Hibernate OGM (via JPA) in a built-in JTA environment (GlassFish AS 3)•

Hibernate OGM (via JPA) in a built-in JTA environment (JBoss AS 7)•

Hibernate OGM (via JPA) in a built-in JTA environment (JBoss AS 7 and Seam application)•

Hibernate OGM (via JPA) in a built-in JTA environment (GlassFish and Spring application)•

Hibernate OGM (via JPA) JPA/JTA in a standalone JTA environment (Tomcat)•

Hibernate OGM in a non- JTA environment (RESOURCE_LOCAL, Apache Tomcat 7)•

http:///

121

CHAPTER 5

Hibernate OGM and JPA 2.0
Annotations

Mapping Java entities in Hibernate OGM can be divided into supported and non-supported annotations. Practically,
Hibernate OGM supports the mandatory annotations like @Entity and @Id, as well as all the commonly used
annotations like @Table and @Column. However, in the 4.0.0.Beta2 release, it doesn’t support some “pretentious”
annotations, like @Inheritance and @DiscriminatorColumn. Unsupported annotations may cause errors or work
inappropriately, or may be entirely ignored.

Hibernate OGM translates each entity in accordance with the official specification, but adapted to MongoDB
capabilities. This means that some annotations will work exactly as expected, while others will have some limitations,
and a few may not work at all. Since Hibernate OGM has the responsibility for creating a symbiosis between JPA
annotations and MongoDB storage, it’s no surprise that it will take more time and releases to make this symbiosis
work smoothly in practice.

I’ll start off with a brief discussion of Java supported types in OGM, then move on to the eager/lazy loading
mechanism and cascading facility. Then we’ll follow a simple scenario to explore the annotations: a brief overview, a
look at OGM support, some case studies, and, finally the results of that annotation in MongoDB after passing through
Hibernate OGM. In previous chapters, especially in Chapter 4, you saw some Java entities and some of the supported
annotations. In this chapter, we’ll take a closer look at those and at more annotations, such as @Id, @Column, @Table,
@Embedded, @Enumerated, @Temporal. Finally, we’ll delve into association annotations.

Java Supported Types
Java entities go hand in hand with Java types since they encapsulate all kinds of data: numbers, strings, URLs, objects,
custom types, and so on. Practically, each persistable field of an entity is characterized by a Java type and must be
represented in a MongoDB document field. One of the main concerns of Hibernate OGM, therefore, was (and is) to
provide as much support as possible for Java types.

According to the official documentation, Hibernate OGM 4.0.0.Beta.2 supports the following Java types (though
this list may change in future releases):

Boolean•

Byte•

Calendar (may change)•

Class (may change)•

Date (may change)•

Double•

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

122

Integer•

Long•

Byte Array•

String•

These types are supported natively. Other supported types, such as BigDecimal, BigInteger, URL, and UUID, are
stored in MongoDB as strings.

Eager and Lazy Loading Considerations
As you probably know, JPA can load data from a database eagerly (fetch immediately) or lazily (fetch when needed).
These notions usually come into play when two (or more) entities are involved in an association. For example, if one
entity is the parent and the other is the child (meaning that the parent entity defines a collection of child entities), the
possibilities are:

eager loading—a child is fetched when its parent is fetched.•

lazy loading—a child is fetched only when you try to access it.•

Eager loading is natively supported in all JPA implementations, while lazy loading is implementented in different
ways or not supported. Hibernate (including Hibernate OGM) supports lazy loading using proxy objects instead of
instances of the entity classes.

Hibernate uses proxies as a solution for “breaking up” the interconnected data received from a database into
smaller pieces that can be easily stored in memory. It may be useful to be aware that Hibernate dynamically generates
proxies for objects that are lazily loaded. Chances are, you aren’t aware of proxy objects, and won’t be until you get
some exceptions of type LazyInitializationException, or until you try to test lazy loading in a debugger and notice
the presence of some not-null objects with null properties. Not knowing when you’re “working” on a proxy object
instead of an entity object can cause weird results or exceptions. We’ll discuss this more later on in the chapter.

Cascadable Operations Considerations
Since version 1.0, JPA supports cascadable operations. Put simply, if you apply some operations to an entity and
those operations can be propagated to an associated entity, those operations are cascadable. JPA has five cascadable
operations: persist, merge, remove, refresh, and detach (the last was added in JPA 2.0).

Programmatically, you can indicate which operations should be persisted using the Java enum CascadeType
(http://docs.oracle.com/javaee/6/api/javax/persistence/CascadeType.html). For example, you can indicate
that the persist and merge operations should be persisted in one-to-many associations:

...
@OneToMany(cascade = {CascadeType.PERSIST,CascadeType.MERGE},
 mappedBy = "...")
 public Set<...> get...() {
 return this...;
 }
...

4

http://docs.oracle.com/javaee/6/api/javax/persistence/CascadeType.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

123

When all five operations should be propagated, use CascadeType.ALL:

...
@OneToMany(cascade = {CascadeType.ALL},
 mappedBy = "...")
 public Set<...> get...() {
 return this...;
 }
...

Hibernate OGM supports all cascadable operations and everything works as expected. In this chapter, you’ll see
several examples and you may be inspired to explore cascading techniques on those examples yourself.

Entity Mapping
Let’s take look now at entity mapping in Hibernate OGM. More specifically, let’s see how Hibernate OGM maps
JPA 2.0 annotations, including annotations for persistable classes and for fields and relationships. I won’t follow a strict
JPA 2.0 classification of annotations, but rather an approach that allows me to introduce annotations one by one,
so I can test the entity at each step based only on the annotations we’ve already seen.

Note ■ For testing purposes I used a MongoDB database named mapping_entities_db. Before performing each test,

you should drop all the existing collections from this database (you can use the db.dropDatabase command). Otherwise,

you may get various errors, depending on the test.

Let’s begin!

@Entity Annotation
Mapped by the javax.persistence.Entity annotation.

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Entity.html.

Brief Overview

@Entity marks a class as an entity. By default, the entity name is the same as the annotated unqualified class name,
but it can be replaced using the name element (for example, @Entity(name="MyEntityName")).

OGM Support

Hibernate OGM, like any other entity consumer, uses this annotation simply as a flag to recognize an entity class, so it
has no direct effect on the persistence layer, MongoDB in our case.

http://docs.oracle.com/javaee/6/api/javax/persistence/Entity.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

124

Example

import javax.persistence.Entity;
...

@Entity
public class PlayerEntity implements Serializable {
...

In this case, the entity name is PlayerEntity.

@Id Annotation
Mapped by the javax.persistence.Id annotation.

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Id.html.

Brief Overview

The @Id annotation is applied to an entity field (or property) to mark it as the primary key of that entity. Primary
key values are set explicitly, or automatically using generators (dedicated algorithms) that guarantee uniqueness,
consistency, and scalability. Usually, primary key types are represented as numbers or strings, but they can also
be dates.

MongoDB is aware of primary keys and has a reserved field for them, _id (as you know from Chapter 2). If _id
value is not specified, MongoDB automatically fills it with "MongoDB Id Object". But you can put any unique info into
this field (a number, a timestamp, a string, and so forth).

OGM Support

Hibernate OGM supports the @Id annotation and a consistent set of generators, including the four standard JPA
generators. Some of the Hibernate generators are available as well, through a generic generator; they will be listed
later. For maximum scalability, Hibernate OGM recommends generators based on UUID (either uuid or uuid2). You’ll
also see some of the supported id generators and their effects in MongoDB, but, obviously, it’s impossible to cover
all kinds of generators. Remember to test your own generators (custom generators, for example). That I omitted a
generator here doesn’t mean it is, or is not, supported.

Example of a Simple @Id

By “simple @Id” I mean a primary key that doesn’t have an explicit generator. In this case, you have to manually
set a unique id value for each entity instance you need to persist, otherwise an error of type “org.hibernate.
HibernateException: trying to insert an already existing entity” will result from the persisting operation.

As long as you set the primary keys correctly, everything works perfectly and the data can be found in MongoDB.
For example, the following Players entity uses a simple @Id of type int:

import javax.persistence.Id;
...

@Entity
public class Players implements Serializable {

http://docs.oracle.com/javaee/6/api/javax/persistence/Id.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

125

 @Id
 private int id;
 private String name;
 private String surname;
 private int age;

 //constructors, getters and setters
...
}

Next, I create three Players and use the setId method to manually specify ids 1, 2 and 3. Persist these Players
into a MongoDB collection and you’ll obtain three documents, as shown in Figure 5-1.

Example of @Id and the AUTO Strategy

JPA comes with four strategies that can be applied to primary key generation: AUTO, IDENTITY, SEQUENCE and TABLE.
AUTO lets the persistence provider choose the right strategy with respect to the database (table, sequence, or identity).
Normally, this is the primary key generation strategy that’s the default for the database. Thus, if you used AUTO,
Hibernate OGM should pick the appropriate strategy based on the underlying database—MongoDB (which, in
this case would be sequence). This strategy has the advantage of making the code very portable, though database
migration can become an issue.

You can set the AUTO strategy using the @GeneratedValue annotation, like this:

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
...

@Entity
public class Players implements Serializable {

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private int id;
 private String name;
 private String surname;
 private int age;

 //constructors, getters and setters
...
}

I’ll now persist a few instances of this entity using Hibernate OGM, with the result in MongoDB shown
in Figure 5-2.

Figure 5-1. Persisting three Players instances into a MongoDB collection

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

126

Notice that when a document is persisted, Hibernate OGM tells the database to insert a sequentially generated
number using a behind-the-scene collection, named hibernate_sequences. After inserting five documents (records),
the content of hibernate_sequences is similar to what you see in Figure 5-3. As you can see, it stores the id value for
the next insert.

Example of @Id and IDENTITY strategy

The IDENTITY strategy requires the persistence provider to assign primary keys (of type short (Short), int
(Integer) or long (Long)) for the entity using a database identity column. In relational databases (MySQL, Microsoft
SQL Server, IBM DB2, HypersonicSQL, and Sybase), tables usually contain an auto-increment column that tells the
database to insert a sequentially generated number when a record is inserted. Attaching the IDENTITY strategy to the
auto-increment column enables the entity to automatically generate a sequential number as the primary key when
inserted into the database. In the MongoDB world, you’re essentially leveraging the generated _id from MongoDB as
the primary key for the persisted object.

Hibernate OGM supports this strategy, but since it acts exactly like the AUTO strategy, OGM doesn’t use the
generated _id from MongoDB as the primary key for the persisted object. In any case, it’s a well-known fact that this
strategy has some problems, especially with regard to portability and performance.

Setting the IDENTITY strategy can be accomplished using the @GeneratedValue annotation, like this:

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
...

@Entity
public class Players implements Serializable {

 @Id
 @GeneratedValue(strategy=GenerationType.IDENTITY)
 private Long id;
 private String name;
 private String surname;
 private int age;

 //constructors, getters and setters
...
}

Figure 5-2. Persisting several Players instances into a MongoDB collection

Figure 5-3. The hibernate_sequences collection content

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

127

If you persist several instances of the Players entity using Hibernate OGM, MongoDB will reveal the Players
collection, as shown in Figure 5-4.

Actually, I expected to see something more like this (and no hibernate_sequences collection):

{ "_id" : ObjectId("4eaafff900694710bfb8fa5b"),
 "id" : NumberLong(1),
 ...
}

or, even better:

{ "_id" : ObjectId("4eaafff900694710bfb8fa5b"),
 ...
}

Note■ More details about ObjectId and how it’s generated are available in the MongoDB official documentation at:

http://docs.mongodb.org/manual/reference/object-id/

Example of @Id and the SEQUENCE strategy

The SEQUENCE strategy (called seqhilo in Hibernate) requires the persistence provider to assign primary keys (of
type short, int, or long) for the entity using a database sequence. Instead of generating a primary key value during
commit, this strategy generates groups of primary keys before commit, which is useful when the primary key value
is needed earlier. (It’s possible that some of the IDs in a given allocation will not be used, which can cause gaps in
sequence values.)

Hibernate OGM supports this strategy by keeping the sequence information in a collection named hibernate_
sequences. To show how this strategy works, I’ve configured a sequence generator with an initial value of 5 and a size
allocation (the number of primary keys in a group) of 2, using the @SequenceGenerator annotation, like this:

@SequenceGenerator(name="mongodb_sequence", initialValue=5, allocationSize=2)

Figure 5-4. Persisting several Players instances into a MongoDB collection using the IDENTITY strategy

http://docs.mongodb.org/manual/reference/object-id/
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

128

Next, I defined an int primary key and indicated the SEQUENCE strategy:

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.SequenceGenerator;
...

@Entity
@SequenceGenerator(name="mongodb_sequence", initialValue=5, allocationSize=2)
public class Players implements Serializable {

 @Id
 @GeneratedValue(strategy=GenerationType.SEQUENCE, generator="mongodb_sequence")
 private int id;
 private String name;
 private String surname;
 private int age;

 //constructors, getters and setters
...
}

After persisting the first object, the hibernate_sequences and Players collections look like what’s shown
in Figure 5-5.

Notice that the id of the first object (document) is the initial value of the generated sequence, while the generated
sequence allocation size is calculated as the (allocation size * 2) + initial value, which is (2*2) + 5 = 9 (sequence_value field).

I then persisted three more objects and the result is shown in Figure 5-6.

So, when I persisted an object with id equal to 7, the sequence automatically increased with the allocation size
value—2. Here the process is redundant.

Note that you can add the optional catalog element to the sequence generator:

@SequenceGenerator(name="mongodb_sequence", catalog="MONGO",
 initialValue=5, allocationSize=2)

Figure 5-5. Persisting one Players instance into a MongoDB collection using the SEQUENCE strategy

Figure 5-6. Persisting three more Players instances into a MongoDB collection using the SEQUENCE strategy

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

129

Now, the hibernate_sequences collection name becomes MONGO.hibernate_sequences.
Moreover, if you add a schema element, like this:

@SequenceGenerator(name="mongodb_sequence", catalog="MONGO",
 schema="MONGOSEQ", initialValue=5, allocationSize=2)

Then, the hibernate_sequences collection name becomes MONGO.MONGOSEQ.hibernate_sequences.
Everything seems to work as expected!

Example of @Id and TABLE Strategy

The TABLE strategy (called MultipleHiLoPerTableGenerator in Hibernate) requires the persistence provider to assign
primary keys (of type short, int or long) for the entity using an underlying database table. This strategy is very widely
used thanks to excellent performance, portability, and clustering. JPA providers are free to decide which approach to
use to accomplish this task. The generator can be configured using the standard @TableGenerator annotation.

Hibernate OGM supports this strategy by creating a collection named hibernate_sequences; for MongoDB, the
underlying table is a collection. To show how this strategy works, I’ve configured a table generator with an initial value
of 5 and a size allocation (the number of primary keys in a group) of 2 using the @TableGenerator annotation, like this:

@TableGenerator(name="mongodb_table", initialValue=5, allocationSize=2)

Next, I define an int primary key and indicate the TABLE strategy, as shown in Listing 5-1.

Listing 5-1. Using the TABLE Strategy

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.TableGenerator;
...

@Entity
@TableGenerator(name="mongodb_table", initialValue=5, allocationSize=2)
public class Players implements Serializable {

 @Id
 @GeneratedValue(strategy=GenerationType.TABLE, generator="mongodb_table")
 private int id;
 private String name;
 private String surname;
 private int age;

 //constructors, getters and setters
...
}

After persisting the first object, the hibernate_sequences and Players collections have the content shown
in Figure 5-7.

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

130

Notice that the id of the first object (document) is the initial value + 1, while the sequence allocation size is
calculated as the (allocation size * 2) + initial value + 1, which is (2*2) + 5 + 1= 10 (sequence_value field).

Next, I persisted three more objects and got the results shown in Figure 5-8:

So, when I persisted the object with id equal to 8, the sequence was automatically increased by 1 + the allocation
size value, by 3. For this, the process is redundant.

Notice that you can change the name of the hibernate_sequences by adding the table element in a table
generator:

@TableGenerator(name="mongodb_table", table="pk_table", initialValue=5, allocationSize=2)

Example of @Id and GenericGenerator—UUID and UUID2

UUID and UUID2 are two of the many generators Hibernate provides in addition to the four standard JPA generators.
UUID generates a 128-bit UUID based on a custom algorithm, while UUID2 generates an IETF RFC 4122-compliant
(variant 2) 128-bit UUID. For MongoDB, these kinds of primary keys are represented as strings.

Hibernate OGM supports both generators, but in some environments, UUID generates some warnings. In
GlassFish, for example, using the UUID generator throws this warning: “WARN: HHH000409: Using org.hibernate.
id.UUIDHexGenerator which does not generate IETF RFC 4122 compliant UUID values; consider using org.hibernate.
id.UUIDGenerator instead”. In simple translation, “use UUID2”. So it’s better to use UUID2, as shown in Listing 5-2.

Listing 5-2. Using UUID2

import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import org.hibernate.annotations.GenericGenerator;
...

@Entity
@GenericGenerator(name="mongodb_uuidgg", strategy="uuid2")
public class Players implements Serializable {

 @Id
 @GeneratedValue(generator="mongodb_uuidgg")
 private String id;
 private String name;

Figure 5-8. Persisting three more Players instances to a MongoDB collection using the TABLE strategy

Figure 5-7. Persisting one Players instance to a MongoDB collection using the TABLE strategy

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

131

 private String surname;
 private int age;

 //constructors, getters and setters
...
}

If I now persist several instances of the Players entity using Hibernate OGM, MongoDB will reveal the Players
collection shown in Figure 5-9.

Example of @Id and Custom Generator

Sometimes, all the primary key generators in the world are just not enough to meet the needs of the application.
In such cases, a custom generator becomes mandatory, but before writing one, you need to know if your persistence
environment will support it. In this case, Hibernate OGM and MongoDB worked perfectly with my custom generator,
as you’ll see.

Creating a new Hibernate custom generator is a very simple task if you follow these steps:

create a new class that implements the • org.hibernate.id.IdentifierGenerator interface

override the • IdentifierGenerator.generate method; provide the generator business logic
and return the new primary key as a Serializable object

Based on these two steps, I wrote a custom generator that creates primary keys of type: XXXX_long-number (for
example, SFGZ_3495832849584739405). Listing 5-3 shows the custom generator.

Listing 5-3. A Custom Primary Key Generator

package hogm.mongodb.generator;

import java.io.Serializable;
import java.util.Random;
import org.hibernate.HibernateException;
import org.hibernate.engine.spi.SessionImplementor;
import org.hibernate.id.IdentifierGenerator;

Figure 5-9. Persisting several Players instances into a MongoDB collection using the UUID2 strategy

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

132

public class CustomGenerator implements IdentifierGenerator {

 @Override
 public Serializable generate(SessionImplementor sessionImplementor,
 Object object) throws HibernateException {

 Random rnd = new Random();
 String str = "";

 for (int i = 0; i <= 3; i++) {
 str = str + (char) (rnd.nextInt(26) + 'a');
 }

 str = str + "_";
 str = str + String.valueOf(rnd.nextLong());
 str=str.toUpperCase();

 return str;
 }
}

Testing the custom generator is pretty straightforward. First, I use the @GenericGenerator annotation and
indicate the custom generator’s fully qualified class name as the generator strategy:

@GenericGenerator(name="mongodb_custom_generator",
 strategy="hogm.mongodb.generator.CustomGenerator")

Next, I define a String primary key field and use the @GeneratedValue annotation shown in Listing 5-4.

Listing 5-4. Using the GeneratedValue Annotation

import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import org.hibernate.annotations.GenericGenerator;
...

@Entity
@GenericGenerator(name="mongodb_custom_generator",
 strategy="hogm.mongodb.generator.CustomGenerator")

public class Players implements Serializable {

 @Id
 @GeneratedValue(generator="mongodb_custom_generator")
 private String id;
 private String name;
 private String surname;
 private int age;

 //constructors, getters and setters
...
}

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

133

Again, I persist several instances of the Players entity using Hibernate OGM, and MongoDB reveals the Players
collection in Figure 5-10.

The complete application that demonstrates @Id annotation is available in the Apress repository and is named
HOGM_MONGODB_Id. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@EmbeddedId Annotation
Mapped by the javax.persistence.EmbeddedId annotation.

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/EmbeddedId.html.

Brief Overview

The @EmbeddedId annotation denotes a composite primary key that’s an embeddable class. You are forced to write
a new serializable class that must: be annotated with the @Embeddable annotation (no need of @Entity or other
annotations for this class); define primary key fields; and define getters and setters for the primary key fields.
@Embeddable allows you to specify a class whose instances are stored as an intrinsic part of the owning entity.
The entity itself must define a primary key field of the type of the class annotated with @Embeddable. This field should
be annotated with @EmbeddedId.

If you prefer this kind of composite key, there’s no need to specify the @Id annotation anymore. For MongoDB, a
composite key should be stored in the _id field as an embedded document.

OGM Support

Hibernate OGM supports composite keys defined with the @EmbeddedId annotation. It transforms the Java composite
key into an embedded document in the _id field of MongoDB and the primary key fields become the embedded
document fields.

Figure 5-10. Persisting several Players instances into a MongoDB collection using a custom generator

http://docs.oracle.com/javaee/6/api/javax/persistence/EmbeddedId.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

134

Example

Creating this kind of composite key comprises two main steps: first, you write the serializable primary key class and
annotate it with @Embeddable, and, second, you choose the appropriate entity property or persistence field that will
become the composite primary key and annotate it with @EmbeddedId. For example, suppose you have a primary
key class:

import javax.persistence.Embeddable;
...

@Embeddable
public class RankingAndPrizeE implements Serializable {

 private int ranking;
 private String prize;

 //constructors, getters and setters
...
}

Then, in the Players entity, you create a composite primary key field:

import javax.persistence.EmbeddedId;
...

@Entity
public class Players implements Serializable {

 @EmbeddedId
 private RankingAndPrizeE id;
 private String name;
 private String surname;
 private int age;

 //constructors, getters and setters
...
}

Now persist several instances of the Players entity using Hibernate OGM, and MongoDB will reveal the Players
collection shown in Figure 5-11.

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

135

The complete application that demonstrates the @EmbeddedId annotation is available in the Apress repository
and is named HOGM_MONGODB_Id. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@IdClass Annotation
Mapped by the javax.persistence.IdClass annotation.

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/IdClass.html.

Brief Overview

The @IdClass annotation denotes a composite primary key that is mapped to multiple fields or properties of the
entity. This approach forces you to write a new serializable class that defines the primary key fields and overrides
the equals and hashCode methods. The primary key fields defined in the primary key class must also appear in the
entity class in exactly the same way, except that they must have getter and setter methods. Moreover, the entity class is
annotated with @IdClass.

If you prefer this kind of composite key, you’ll have multiple @Id annotations in the entity—one per primary key
field. For MongoDB, a composite key should be stored in the _id field as an embedded document.

OGM Support

Hibernate OGM supports composite keys defined with the @IdClass annotation. It transforms the Java composite
key into an embedded document in the MongoDB _id field and the primary key fields become the embedded
document fields.

Figure 5-11. Defining a composite key using @EmbeddedId

http://docs.oracle.com/javaee/6/api/javax/persistence/IdClass.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

136

Example

Creating this kind of composite key comprises two main steps: first, you write the serializable primary key class and,
second, you annotate the entity class with @IdClass and define the primary keys fields as in the primary keys class.
The first step is shown in Listing 5-5.

Listing 5-5. The Serializable Primary Key Class

package hogm.mongodb.entity;

import java.io.Serializable;

public class RankingAndPrizeC implements Serializable {

 private int ranking;
 private String prize;

 public RankingAndPrizeC() {
 }

 @Override
 public boolean equals(Object arg0) {

 //implement equals here
 return false;
 }

 @Override
 public int hashCode() {

 //implement hashCode here
 return 0;
 }
}

And the second step is shown in Listing 5-6.

Listing 5-6. Define the Primary Keys Fields

import javax.persistence.Id;
import javax.persistence.IdClass;
...

@Entity
@IdClass(hogm.mongodb.entity.RankingAndPrizeC.class)
public class Players implements Serializable {

 @Id
 private int ranking;
 @Id
 private String prize;
 private String name;

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

137

 private String surname;
 private int age;

 //constructors, getters and setters
...

Now persist several instances of the Players entity using Hibernate OGM. MongoDB will reveal the the Players
collection shown in Figure 5-12.

The complete application that demonstrates the @IdClass annotation is available in the Apress repository and is
named HOGM_MONGODB_Id. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@Table Annotation
Mapped by the javax.persistence.Table annotation.

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Table.html.

Brief Overview

In a relational database, each entity is represented as a table (known as a primary table) whose name is, by default,
the same as the entity (an unqualified entity class name). If you want to set another name for a table, you can use the
@Table annotation and the name element. You can also specify a catalog and a schema by adding the catalog and
schema elements.

MongoDB associates the notion of table with collection. The default collection name is the same as the
mapped entity.

OGM Support

Hibernate OGM supports @Table annotation. It will supply the name element value as the name of the corresponding
collection. Moreover, if you specify the catalog element as well, Hibernate OGM will add the catalog value as a
prefix to the schema name (or collection name, if the schema is missing) and will separate it from the schema name

Figure 5-12. Define a composite key using @IdClass

http://docs.oracle.com/javaee/6/api/javax/persistence/Table.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

138

(or collection name) with a dot. And if you specify the schema element, Hibernate OGM will add the schema value
between the catalog name (if that exists) and the collection name separated by dots. As you can see, when catalog,
schema, and collection names are present, Hibernate OGM concatenates a final name based on the relational model
hierarchy: catalogs contain schemas, and schemas contain tables.

Example

Testing @Table annotation is a straightforward task, since all you need to do is add this annotation at the class level
and see what happens. Here’s the Players entity annotated with @Table:

import javax.persistence.Table;
...

@Entity
@Table(catalog="ATP", schema="public", name="atp_players")
public class Players implements Serializable {

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private int id;
 private String name;
 private String surname;
 private int age;

 //constructors, getters and setters
 ...
}

Figure 5-13 shows the effect of the @Table annotation on MongoDB:

Figure 5-13. Mapping @Table annotation in MongoDB

The complete application that demonstrates the @Table annotation is available in the Apress repository and is
named HOGM_MONGODB_TableColumn. It comes as a NetBeans project and it was test it under GlassFish 3 AS.

@Column Annotation
Mapped by the javax.persistence.Column annotation.

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Column.html.

http://docs.oracle.com/javaee/6/api/javax/persistence/Column.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

139

Brief Overview

In a relational database, each entity’s persistent property or field is represented in the database as a column of the
corresponding table, and the field name provides the column name. You can explicitly provide a column name
(different from the field name) by annotating its field with the @Column annotation and specifying the desired name
as the value of the name element. Moreover, the @Column elements let you set some data restrictions, such as length
(using the length element), whether the database column is nullable (the nullable element), and so on. All of the
supported elements are listed in the official documentation.

MongoDB stores each entity instance as a document. Each document is made of the document’s fields that are
characterized by name and value. Apart from the reserved _id field, the rest of the document’s field names reflect the
entity persistence property or field names (or, from the relational model perspective, the column names).

OGM Support

Hibernate OGM supports the @Column annotation. It will supply each name element value as the name of the
corresponding document’s field. Besides name, the rest of @Column elements seem to be ignored. Moreover, adding an
@Column annotation to the primary key persistence field will be ignored and the MongoDB _id field name will be used
instead, so you can use any name you like for the primary key field in the entity.

Example

Testing @Column annotation is a straightforward task, since all you need to do is add this annotation at field (or
property) level and see what happens. Here’s the Players entity annotated with @Column:

import javax.persistence.Column;
...

@Entity
@Table(catalog="ATP", schema="public", name="atp_players")
public class Players implements Serializable {

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private int id;
 @Column(name="player_name")
 private String name;
 @Column(name="player_surname")
 private String surname;
 @Column(name="player_age")
 private int age;

 //constructors, getters and setters
 ...
}

Figure 5-14 shows the effect of @Column annotation on MongoDB.

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

140

The complete application for demonstrating the @Column annotation is available in the Apress repository and is
named HOGM_MONGODB_TableColumn. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@Temporal Annotation
Mapped by the javax.persistence.Temporal annotation.

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Temporal.html.

Brief Overview

@Temporal annotation indicates a persistence field or property that represents a date, time, or date-time (timestamp)
value. The supported values are of type java.util.Date and java.util.Calendar. The type used in mapping
java.util.Date or java.util.Calendar can be indicated using TemporalType as DATE (mapped as java.sql.Date),
TIME (mapped as java.sql.Time) or TIMESTAMP (mapped as java.sql.Timestamp).

MongoDB supports date/time fields in its documents. MongoDB dates follow the format defined by the BSON
official documentation (see http://bsonspec.org/#/specification) and they can be created in MongoDB shell
using Date or ISODate constructors, like this:

var mydate = new Date()
var mydate = new Date("Sun Feb 16 2013")
var mydate = new Date("Sun Feb 16 2013 08:22:05")
var mydate_iso = ISODate()
var mydate_iso = ISODate("2013-02-16T08:22:05")

OGM Support

Hibernate OGM supports the @Temporal annotation. Each temporal field (independent of its type) will be
converted into a MongoDB ISO date consisting of year, month, day, hour, minute, and second (year-month-
dayThour:minute:second). For example, a Java date defined using the Gregorian calendar would look like this:

private static final Calendar calendar = GregorianCalendar.getInstance();
calendar.clear();
calendar.set(1987, Calendar.MAY, 22); //22.05.1987

That date is represented in MongoDB like this:

ISODate("1987-05-22T00:00:00Z")

Figure 5-14. Mapping @Column annotation in MongoDB

http://docs.oracle.com/javaee/6/api/javax/persistence/Temporal.html
http://bsonspec.org/#/specification
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

141

Notice that in this example I didn’t indicate the hour, minute and second. Adding a sample time transforms the
calendar settings to this:

calendar.set(1987, Calendar.MAY, 22, 12, 40, 01); //22.05.1987 12:40:01

And the MongoDB representation becomes:

ISODate("1987-05-22T12:40:01Z")

If you don’t clear the calendar settings by calling the clear method, and you don’t specify a time (hour, minute
and second), the current time will be automatically set.

Example

First I define in the entity a java.util.Date field representing each player’s birthday. Then I annotate it with
@Temporal (javax.persistence.TemporalType.DATE), as you can see in Listing 5-7.

Listing 5-7. Defining a Field to Represent Each Player’s Birthday

import java.util.Date;
import javax.persistence.Temporal;
...

@Entity
@Table(catalog="ATP", schema="public", name="atp_players")
public class Players implements Serializable {

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private int id;
 @Column(name="player_name")
 private String name;
 @Column(name="player_surname")
 private String surname;
 @Column(name="player_age")
 private int age;
 @Temporal(javax.persistence.TemporalType.DATE)
 private Date birth;

 //constructors, getters and setters
...
}

Second, I defined the players’ birthdays using the Gregorian calendar, like this:

private static final Calendar calendar = GregorianCalendar.getInstance();
calendar.clear();
calendar.set(1987, Calendar.MAY, 22); //22.05.1987
calendar.clear();
calendar.set(1981, Calendar.AUGUST, 8); //08.08.1981
...

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

142

The complete application for demonstrating the @Temporal annotation is available in the Apress repository and is
named HOGM_MONGODB_Temporal. It comes as a NetBeans project and it was test it under GlassFish 3 AS.

@Transient Annotation
Mapped by the javax.persistence.Transient annotation.

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Transient.html.

Brief Overview

First, a word of caution: If you’re not familiar with @Transient annotation, be carefully not to confuse it with the
Java transient keyword. The transient keyword is used to indicate non-serializable fields, while the @Transient
annotation is specific to JPA and indicates fields that must not be persisted to the underlying database. Moreover, this
annotation doesn’t imply any support from the database; only the JPA provider should know how to deal with it.

OGM Support

Hibernate OGM supports the @Transient annotation. When an entity class is passed to OGM, it persists only the
fields that are not annotated with @Transient.

Example

Here I’ve annotated some of the Players entity fields with @Transient, like so:

import javax.persistence.Transient;
...

@Entity
@Table(catalog="ATP", schema="public", name="atp_players")
public class Players implements Serializable {

Now I’ll persist several instances of the Players entity using Hibernate OGM. MongoDB will reveal the Players
collection shown in Figure 5-15. Notice the birth document field.

Figure 5-15. Mapping the @Temporal annotation in MongoDB

http://docs.oracle.com/javaee/6/api/javax/persistence/Transient.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

143

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private int id;
 @Column(name="player_name")
 private String name;
 @Column(name="player_surname")
 private String surname;
 @Column(name="player_age")
 @Transient
 private int age;
 @Temporal(javax.persistence.TemporalType.DATE)
 @Transient
 private Date birth;

 //constructors, getters and setters
...
}

If you persist several instances of the Players entity using Hibernate OGM, MongoDB will reveal the Players
collection shown in Figure 5-16. Notice that the age and birth document fields are missing, which means that OGM
does not persist them based on the @Transient state.

The complete application for demonstrating the @Transient annotation is available in the Apress repository and
is named HOGM_MONGODB_Transient. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@Embedded and @Embeddable Annotations
Mapped by the javax.persistence.Embedded and javax.persistence.Embeddable annotations.

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Embedded.html

http://docs.oracle.com/javaee/6/api/javax/persistence/Embeddable.html

Brief Overview

When a persistence field or property is annotated with @Embedded, this denotes an instance of an embeddable
class. This class is not an entity and doesn’t have an id or table; it’s just a logical part of the entity that contains the
embedded field, and it was intentionally separated and marked as embeddable using the @Embeddable annotation at
the class level. The reasons for separation vary, from the wish to have straightforward code to not wanting to persist
the embeddable part, and thus marking its fields as transient using the @Transient annotation. By default, each
non-transient property or field of the embedded object is mapped to the database table for the entity.

From the MongoDB perspective, embeddable objects are stored as nested documents within the entity’s
documents.

Figure 5-16. Mapping @Transient annotation in MongoDB

http://docs.oracle.com/javaee/6/api/javax/persistence/Embedded.html
http://docs.oracle.com/javaee/6/api/javax/persistence/Embeddable.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

144

OGM Support

Hibernate OGM supports @Embedded and @Embeddable annotations. Moreover, as you can see here, Hibernate OGM
also supports the @Transient annotation for embeddable fields (mapped by javax.persistence.Transient, with
more details at http://docs.oracle.com/javaee/6/api/javax/persistence/Transient.html). OGM knows how to
convert each instance of the embeddable class into a nested document inside the document representing each owner
entity instance. Any field of the embeddable class that is annotated as transient will not be persisted in the nested
document.

Don’t try to use the @SecondaryTable annotation (javax.persistence.SecondaryTable) because OGM doesn’t
support it.

Example

First, I define an embeddable class that contains some details for each player: birthplace, residence, height, weight,
and so on. The class is very simple, but the @Embeddable annotations makes it special:

import javax.persistence.Embeddable;
...

@Embeddable
public class Details implements Serializable {

 private String birthplace;
 private String residence;
 private String height;
 private String weight;
 private String plays;
 private int turnedpro;
 private String coach;
 private String website;

 //constructors, getters and setters
...
}

Next, in the Players entity, I create a field of type Details and annotate it as @Embedded, as Listing 5-8 shows.

Listing 5-8. Creating the Embedded Details Field

import javax.persistence.Embedded;
...

@Entity
@Table(catalog="ATP", schema="public", name="atp_players")
public class Players implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private int id;
 @Column(name="player_name")

http://docs.oracle.com/javaee/6/api/javax/persistence/Transient.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

145

 private String name;
 @Column(name="player_surname")
 private String surname;
 @Column(name="player_age")
 private int age;
 @Temporal(javax.persistence.TemporalType.DATE)
 private Date birth;
 @Embedded
 private Details details;

 //constructors, getters and setters
...
}

If you now persist several instances of the Players entity using Hibernate OGM, MongoDB will reveal the
Players collection shown in Figure 5-17. Note the nested document.

I’ve also annotated the embeddable fields birthplace and residence as transient:

import javax.persistence.Transient;
...

@Embeddable
public class Details implements Serializable {

 @Transient
 private String birthplace;
 @Transient
 private String residence;
...
}

Figure 5-17. Mapping @Embeddable and @Embedded annotations in MongoDB

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

146

For the sake of completeness, it’s worth noting that if you annotate all the embeddable fields as transient, OGM
will completely skip the nested document, as you can see in Figure 5-19.

I persisted more players and Hibernate OGM worked perfectly. The transient fields were not persisted, as you can
see in Figure 5-18.

Figure 5-18. Using @Transient for a few embeddable fields (or properties)

Figure 5-19. Using @Transient for all embeddable fields (or properties)

The complete application that demonstrates the @Embeddable and @Embedded annotations is available in the
Apress repository and is named HOGM_MONGODB_Embedded. It comes as a NetBeans project and was tested under
GlassFish 3 AS.

Note ■ An embeddable object can be shared among multiple classes. In a relational model, this feature is supported

by allowing each embedded mapping to override the columns used in the embeddable, which is accomplished using the

@AttributeOverride annotation. In MongoDB and Hibernate OGM, you don’t need to override columns. Everything will work

as expected without any special treatment; just use @Embedded in each class you want to embed the same embeddable class.

@Enumerated Annotation
Mapped by the javax.persistence.Enumerated annotation.

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Enumerated.html.

http://docs.oracle.com/javaee/6/api/javax/persistence/Enumerated.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

147

Brief Overview

Sometimes a Java enum type can be appropriate for representing a column in the database. JPA provides conversion
between database columns and Java enum types via the @Enumerated annotation. An enum type is, by default, ordinal;
it persists the enumerated type property or field as an integer, but it can also be made a string by setting the EnumType
value as STRING.

MongoDB treats a column that stores Java enum type values as an ordinary document field.

OGM Support

Hibernate OGM supports the @Enumerated annotation. It knows how to convert a Java enum type into a MongoDB
document field and how to restore it. Both EnumType.ORDINAL and EnumType.STRING are supported. OGM stores
STRING values in MongoDB between quotes, to indicate string values. ORDINAL values, on the other hand, are stored
without quotes, indicating numeric values.

Example

First, I define a Java enum type representing the highest ranking of our players in the history of the ATP World Tour.
Then I define the corresponding field that will be persisted or restored by Hibernate OGM and I mark it with the
@Enumerated annotation. Listing 5-9 shows part of the code for the entity.

Listing 5-9. A Java Enum Type

import javax.persistence.EnumType;
import javax.persistence.Enumerated;
...

@Entity
@Table(catalog="ATP", schema="public", name="atp_players")
public class Players implements Serializable {

 public static enum Ratings {

 FIRST,
 SECOND,
 THIRD,
 FOURTH,
 FIFTH,
 SIXTH,
 SEVENTH,
 EIGHTH,
 NINTH,
 TENTH
 }

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private int id;
 @Column(name="player_name")
 private String name;

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

148

 @Column(name="player_surname")
 private String surname;
 @Column(name="player_age")
 private int age;
 @Temporal(javax.persistence.TemporalType.DATE)
 private Date birth;
 @Column(name="player_best_rating")
 @Enumerated(EnumType.STRING)
 private Ratings best_rating;

//constructors, getters and setters
...
}

As usual, I now persist several instances of the Players entity using Hibernate OGM, and MongoDB reveals the
Players collection shown in Figure 5-20.

The complete application that demonstrates the @Enumerated annotation is available in the Apress repository
and is named HOGM_MONGODB_Enumerated. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@Cacheable Annotation
Mapped by the javax.persistence.Cacheable annotation.

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Cacheable.html.

Brief Overview

Caching is one of the most important ways of increasing performance, by reducing database traffic when executing
queries, joins, and so on. As you may know, JPA 2.0 contains two levels of cache:

The • first-level cache is not directly related to performance and is meant for reducing the
number of queries in transactions. It’s also known as the persistent context cache and it lives as
long as the persistence context lives, usually until the end of transaction. When the persistent
context is closed, the first-level cache is cleared, and further queries must use the database
again. See Figure 5-21.

Figure 5-20. Mapping @Enumerated in MongoDB

http://docs.oracle.com/javaee/6/api/javax/persistence/Cacheable.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

149

By default, entities are not part of the second-level cache. JPA 2.0 provides the @Cacheable annotation that can
be used to explicitly inform the JPA provider about cacheable or non-cacheable entities. The @Cacheable annotation
takes a Boolean value (true is the default for cacheable entities; false, for non-cacheable entities). After spreading

The • second-level cache is directly related to performance. In this case, the caching mechanism
is placed between the persistence context and the database and it acts a server-side device
to keep objects loaded into memory. With this approach, the objects are available for the
entire application directly from memory without involving the database. The JPA provider is
responsible for implementing the second-level cache, but the implementation itself is pretty
subjective, because the specification is not very clear. Therefore, each implementation is free
to decide how to implement caching capabilities and how sophisticated they will be. See
Figure 5-22.

Figure 5-21. JPA 2.0 first-level cache

Figure 5-22. JPA 2.0 second-level cache

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

150

the @Cacheable annotation over the desired entities, you must tell the JPA provider which caching mechanism to use
and, for this, you must add into the persistence.xml file the shared-cache-mode tag. The supported values are:

• NONE - no caching

• ENABLE_SELECTIVE—caching for all entities annotated with @Cacheable(true)

• DISABLE_SELECTIVE—caching for all entities except those annotated with @Cacheable(false)

• ALL—caching for all entities

• UNSPECIFIED—undefined behavior (might be the JPA provider default option)

OGM Support

Hibernate OGM supports the @Cacheable annotation and the shared-cache-mode tag. As you probably know, there
are several second-level cache providers for Hibernate, such as EHCache, OSCache, and Infinispan. Each of these
cache providers comes with some specific settings and specific features, has strong points and gaps, and provides
better or worse performance. But it’s not our focus here to look at the different cache providers, so we’ve arbitrarily
chosen EHCache to test the Hibernate OGM support for the @Cacheable annotation and the shared-cache-mode tag.
Feel free to use any other supported second-level cache provider.

Example

You might be interested only in the final result and conclusions but, if you want to reproduce the same test, here are
the main steps for setting up the EHCache second-level cache. (If you’ve never used Hibernate OGM and a second-
level cache, this is a good opportunity to try them out.)

 1. In order to use EHCache with Hibernate OGM and MongoDB, you need to add several
JARs to your application’s libraries, in addition to the Hibernate OGM distribution
and MongoDB driver. The additional JARs are: ehcache-core-2.4.3.jar, hibernate-
ehcache-4.1.4.Final.jar, slf4j-api-1.6.1.jar (all available in the optional JARs set
of the Hibernate 4.1.4 Final distribution) and slf4j-simple-1.6.1.jar (which you can
download from http://www.java2s.com/Code/Jar/s/Downloadslf4jsimple161jar.htm).

 2. Next, you have to write the persistence.xml file. You have to:

set the • shared-cache-mode as ENABLE_SELECTIVE (only the entities annotated as
@Cacheable(true) will be cached).

turn on the second-level cache and query cache.•

indicate the second-level cache provider class.•

set up the region factory class.•

specify the location of the EHCache configuration file, • ehcache.xml, to be used by the
cache provider/region-factory (the ehcache.xml content is not really relevant so I won’t
list it here. You can check it out in the Apress repository under the application named
HOGM_MONGODB_Cache).

set the JTA platform.•

add specific properties for configuring the MongoDB connection.•

If you complete these steps, you’ll end up with a persistence.xml file, like the one in Listing 5-10.

http://www.java2s.com/Code/Jar/s/Downloadslf4jsimple161jar.htm
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

151

Listing 5-10. Persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="HOGM_MONGODB_L2Cache-ejbPU" transaction-type="JTA">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <class>hogm.mongodb.entity.Players</class>
 <class>hogm.mongodb.entity.Tournaments</class>
 <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>
 <properties>
 <property name="hibernate.cache.use_second_level_cache" value="true"/>
 <property name="hibernate.cache.use_query_cache" value="true"/>
 <property name="hibernate.cache.provider_class"
 value="org.hibernate.cache.EhCacheProvider"/>
 <property name="hibernate.cache.region.factory_class"
 value="org.hibernate.cache.ehcache.SingletonEhCacheRegionFactory"/>
 <property name="hibernate.cache.provider_configuration_file_resource_path"
 value="ehcache.xml"/>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.SunOneJtaPlatform"/>
 <property name="hibernate.ogm.datastore.provider" value="mongodb"/>
 <property name="hibernate.ogm.datastore.grid_dialect"
 value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
 <property name="hibernate.ogm.mongodb.database" value="mapping_entities_db"/>
 <property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
 <property name="hibernate.ogm.mongodb.port" value="27017"/>
 </properties>
 </persistence-unit>
</persistence>

Notice that there are two entities specified in the persistence.xml file—Players and Tournaments. In order to
test the ENABLE_SELECTIVE caching mechanism, I’ve annotated the Players entity with @Cacheable(true) and the
Tournaments entity with @Cacheable(false). Our test will check to make sure the Players objects are cacheable,
while the Tournaments objects should not be cacheable. Here’s the listing for the Players entity:

import javax.persistence.Cacheable;
...

@Entity
@Cacheable(true)
@Table(catalog = "ATP", schema = "public", name = "atp_players")
public class Players implements Serializable {

 //fields declaration
 //constructors, getters and setters
...
}

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

152

And, the listing for the Tournaments entity is:

import javax.persistence.Cacheable;

@Entity
@Cacheable(false)
public class Tournaments implements Serializable {

 //fields declaration
 //constructors, getters and setters
...
}

Before starting to write the test, you need to populate the MongoDB collections associated with these two entities
with at least five documents each, with ids 1, 2, 3, 4 and 5 (you’ll see why we need five documents in the test section).
When that’s done, you’re ready to write a simple JUnit test to check whether the second-level cache is working. To
do this, you need to use the second-level cache API, which is pretty poor but at least it allows us to query and remove
entities from the cache using the javax.persistence.Cache interface. It provides the method contains for checking
whether the cache contains data for the given entity and two methods for removing data from cache: evict for
removing a particular entity and evictAll for clearing the cache.

So, we are ready to write the test. All we need is a simple scenario for the Players and Tournaments entities,
like this:

Use the • contains method to check whether the Players objects are in the cache (this should
return false).

Use the • EntityManager find method to query the Players objects (this query is executed
against the MongoDB database and the extracted objects should be placed in the second-level
cache, thanks to ENABLE_SELECTIVE effect).

Call the • contains method again to check whether the Players objects are in the cache (this
should return true).

Use the • evict method to remove the Players objects from the cache.

Check whether the • Players objects were removed from the cache when the contains method
was called again (this should return false).

The scenario for Tournaments follows:

Use the • contains method to check whether the Tournaments objects are in cache (this should
return false).

Use the • EntityManager find method to query the Tournaments objects (this query is executed
against the MongoDB database and the extracted objects should NOT be placed in second-
level cache thanks to ENABLE_SELECTIVE effect).

Call the • contains method again to check whether the Tournaments objects are in the cache
(this should return false).

Clear the cache by calling the • evictAll method.

Finally, translate the scenario into a JUnit test, like the one in Listing 5-11.

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

153

Listing 5-11. A JUnit Test

package tests;

import hogm.mongodb.entity.Players;
import hogm.mongodb.entity.Tournaments;
import javax.persistence.Cache;
import javax.persistence.CacheRetrieveMode;
import javax.persistence.CacheStoreMode;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;
import org.junit.After;
import org.junit.AfterClass;
import static org.junit.Assert.*;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;

public class CacheTest {

 private static EntityManagerFactory emf;
 private EntityManager em;

 public CacheTest() {
 }

 @BeforeClass
 public static void setUpClass() {
 }

 @AfterClass
 public static void tearDownClass() {
 }

 @Before
 public void setUp() {
 emf = Persistence.createEntityManagerFactory("HOGM_MONGODB_L2Cache-ejbPU");
 em = emf.createEntityManager();

 em.setProperty("javax.persistence.cache.retrieveMode", CacheRetrieveMode.USE);
 em.setProperty("javax.persistence.cache.storeMode", CacheStoreMode.USE);
 }

 @After
 public void tearDown() {
 if (em != null) {
 em.clear();
 em.close();
 }
 }

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

154

 @Test
 public void testCache_ENABLE_SELECTIVE() {

 Cache cache = em.getEntityManagerFactory().getCache();

 //TESTING PLAYERS OBJECT CACHING

 // players objects shouldn't be in second-level cache at this moment
 for (int i = 1; i < 5; i++) {
 assertFalse(cache.contains(Players.class, i));
 }

 // finding the players objects should place them into second-level cache
 for (int i = 1; i < 5; i++) {
 em.find(Players.class, i);
 }

 // players objects should be in second-level cache at this moment,
 // but we delete them from cache one by one
 for (int i = 1; i < 5; i++) {
 assertTrue(cache.contains(Players.class, i));
 cache.evict(Players.class, i);
 }

 // players objects shouldn't be in second-level cache at this moment
 for (int i = 1; i < 5; i++) {
 assertFalse(cache.contains(Players.class, i));
 }

 //TESTING TOURNAMENTS OBJECT CACHING

 // tournaments objects shouldn't be in second-level cache at this moment
 for (int i = 1; i < 5; i++) {
 assertFalse(cache.contains(Tournaments.class, i));
 }

 // finding the tournaments objects shouldn't place them into second-level cache
 for (int i = 1; i < 5; i++) {
 em.find(Tournaments.class, i);
 }

 // players objects shouldn't be in second-level cache at this moment either
 for (int i = 1; i < 5; i++) {
 assertFalse(cache.contains(Tournaments.class, i));
 }

 cache.evictAll();
 }
}

And the result of the test is 100 percent favorable, as shown in Figure 5-23, which means that Hibernate OGM
supports @Cacheable and shared-cache-mode.

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

155

In addition, you can easily test DISABLE_SELECTIVE and ALL by writing your own scenarios.
Note that you can programmatically control the cache behavior on retrieving and storing entities by setting the

following EntityManager properties (within the setUp method, as in Listing 5-11). For the sake of completeness I set
them to default values (USE), but I also tested BYPASS and REFRESH values and everything worked as expected:

• javax.persistence.cache.retrieveMode controls how data is read from the cache for calls to
the EntityManager.find method and from queries. It defaults to the value USE, which means
that data is retrieved from the second-level cache, if available. If it’s not available, the data is
retrieved from the database. You can easily bypass the second-level cache and go directly to
database by specifying the value BYPASS.

• javax.persistence.cache.storeMode controls how data is stored in the cache. It defaults to
the USE value, which means that the cache data is created or updated when data is read from
or committed to the database without refreshing the cache upon a database read. Forcing the
refresh is available by setting the REFRESH value. Finally, you can leave the cache unmodified
by setting the BYPASS value.

Everything you need to know to understand the JPA 2.0 second-level cache API is nicely condensed in the Java EE 6
tutorial available at http://docs.oracle.com/javaee/6/tutorial/doc/gkjia.html.

The complete application for demonstrating the @Cacheable annotation is available in the Apress repository and
is named HOGM_MONGODB_Cache. It comes as a NetBeans project and it was tested under GlassFish 3 AS.

@MappedSuperclass Annotation
Mapped by the javax.persistence.MappedSuperclass annotation.

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/MappedSuperclass.html.

Figure 5-23. Testing @Cacheable annotation

http://docs.oracle.com/javaee/6/tutorial/doc/gkjia.html
http://docs.oracle.com/javaee/6/api/javax/persistence/MappedSuperclass.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

156

Brief Overview

The scope of a mapped superclass is to feed its subclasses with common behavior and properties or fields mappings.
It’s similar to table per class inheritance, but doesn’t allow querying, persisting, or relationships with the superclass
(this is the big disadvantage of this approach). Also known as the concrete class, a mapped superclass is not an entity
and it doesn’t have a separate table in database. Mapping information may be overridden in the corresponding
subclasses using the AttributeOverride and AssociationOverride annotations (or corresponding XML elements).
The subclasses are entities, so they are responsible for defining tables.

MongoDB will contain one collection per entity (per subclass) and documents will look exactly as the fields were
declared in entities (including the inherited ones). If you look at a collection’s content, nothing betrays the existence
of the mapped superclass.

OGM Support

Hibernate OGM supports the @MappedSuperclass annotation. It knows how to convert each subclass into a MongoDB
collection and populate it with documents that contain the unified fields (inherited fields + entity fields).

Example

My example is based on a simple, common scenario. I start with some kind of generic or abstract object, like the
players. “Players” is a very generic notion, since there are many kinds of players—tennis players, baseball players and
so on. All players have some common characteristics, such as name, surname, age, and birthday, and some particular
characteristics specific to their discipline (category).

Instead of repeating the common characteristics for each kind of player entity, we can place them in a superclass,
an abstract class annotated with @MappedSuperclass. Then, for each category of players, we can define an entity that
inherits the common characteristics from the superclass and provide more specific characteristics.

So, the mapped superclass is called Players and looks like this:

import javax.persistence.MappedSuperclass;
...

@MappedSuperclass
public abstract class Players implements Serializable {

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 protected int id;
 @Column(name="player_name")
 protected String name;
 @Column(name="player_surname")
 protected String surname;
 @Column(name="player_age")
 protected int age;
 @Temporal(javax.persistence.TemporalType.DATE)
 protected Date birth;

 //getters and setters
...
}

t

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

157

Next, we set up two categories of players: tennis players and baseball players. One distinguishing characteristic of
a tennis player might be which hand he or she uses to play. For a baseball player, it might be the position on the team.
So, we can write the TennisPlayers entity to inherit the superclass field and create a new one, like below:

import javax.persistence.AttributeOverride;
...

@Entity
@AttributeOverride(name="age", column=@Column(name="tenis_player_age"))
public class TennisPlayers extends Players implements Serializable {

 protected String handplay;

 //constructors, getters and setters
...
}

Following the rule, the BaseballPlayers entity is listed below:

import javax.persistence.AttributeOverride;
...

@Entity
@AttributeOverride(name="age", column=@Column(name="baseball_player_age"))
public class BaseballPlayers extends Players implements Serializable {

 protected String position;

 //constructors, getters and setters
...
}

Now persist several instances of the TennisPlayers and BaseballPlayers entities using Hibernate OGM.
MongoDB will reveal the TennisPlayers and BaseballPlayers collections, as shown in Figure 5-24. Notice the
inherited fields and the new fields together in the documents, and the effect of @AttributeOverride annotation:

Figure 5-24. Testing @MappedSuperclass annotation in MongoDB

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

158

The complete application that demonstrates the @MappedSuperclass annotation is available in the Apress
repository and is named HOGM_MONGODB_MappedSuperclass. It comes as a NetBeans project and it was tested under
GlassFish 3 AS.

@ElementCollection Annotation
Mapped by the javax.persistence.ElementCollection annotation.

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/ElementCollection.html

Brief Overview

The @ElementCollection annotation is used to indicate a collection of instances (a basic Java type or embeddable
class). Don’t confuse Java collections with MongoDB collections. The Java collection data is stored in a separate table
(the collection table) that can be specified using the @CollectionTable annotation, which indicates the collection
table name and any joins. Since the data is stored in a separate table, this is not similar to @Embeddable objects that
are embedded in the source object’s table. It’s more like a one-to-many embeddable relationship. A key feature of
@ElementCollection is its ability to easily define collections of simple values (objects) without defining new classes
but having separate tables for them. A drawback is that you can’t control the propagation level of persisting, merging,
or removing data, since the target objects are strictly related to the source objects and they act as one. Nevertheless,
the fetch type (EAGER and LAZY) is available, so you can load source objects without the target objects.

OGM Support

Hibernate OGM provides partial support for the @ElementCollection annotation. Though I encountered no errors
or bugs during testing, it doesn’t really do what the specification says. The @CollectionTable annotation is not
supported and the Java collection data is stored in MongoDB as nested collections in the entity collection, not in
separate collections.

Example

To demonstrate @ElementCollection for a collection of embeddable class instances, I defined a simple class
representing, for each player, the list of tournaments won or finals played in 2012:

import javax.persistence.Embeddable;
...

@Embeddable
public class Wins2012 implements Serializable {

 private String titlesfinals;

 //constructors, getters and setters
...
}

Typically, such a class would contain more than one field, but for testing purposes there’s no need to add
more fields.

In addition, for a collection of simple objects, I used a List<String> to hold the ranking history for each player
between 2008 and 2012.

http://docs.oracle.com/javaee/6/api/javax/persistence/ElementCollection.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

159

Both collections were defined in the Players entity, as shown in Listing 5-12 (elements like targetClass (“the
basic or embeddable class that is the element type of the collection”) and fetch (“whether the collection should be lazily
loaded or must be eagerly fetched”) are optional).

Listing 5-12. Defining Two Collections

import javax.persistence.AttributeOverride;
import javax.persistence.AttributeOverrides;
import javax.persistence.FetchType;
...

@Entity
@Table(catalog = "ATP", schema = "public", name = "atp_players")
public class Players implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;
 @Column(name = "player_name")
 private String name;
 @Column(name = "player_surname")
 private String surname;
 @Column(name = "player_age")
 private int age;
 @Temporal(javax.persistence.TemporalType.DATE)
 private Date birth;
 @ElementCollection(targetClass=hogm.mongodb.entity.Wins2012.class,
 fetch = FetchType.EAGER)
 @CollectionTable(name = "EC_TABLE") //not supported by OGM
 @AttributeOverrides({
 @AttributeOverride(name = "titlesfinals",
 column = @Column(name = "EC_titlesfinals"))
 })
 private List<Wins2012> wins = new ArrayList<Wins2012>();
 @ElementCollection(targetClass=java.lang.String.class,
 fetch = FetchType.LAZY)
 @CollectionTable(name = "RANKING_TABLE") //not supported by OGM
 private List<String> rankinghistory08_12 = new ArrayList<String>();

//constructors, getters and setters
...
}

Next, I persist a few Players instances and the result is shown in Figure 5-25. Notice that there are no separate
MongoDB collections for the two Java collections—the @AttributeOverrides worked perfectly.

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

160

The complete application for demonstrating the @ElementCollection annotation is available in the Apress
repository and is named HOGM_MONGODB_ElementCollection. It comes as a NetBeans project and was tested under
GlassFish 3 AS. Before you continue with this section, please download the corresponding NetBeans project and
ensure that you can successfully run the application under GlassFish AS 3.

While testing, you may have noticed in the web GUI a button labeled, “Go to see lazy loading (you need a
document with _id:1).” If you press this button, the wins collection is loaded using the EAGER mechanism and the
rankinghistory08_12 collection is loaded using the LAZY mechanism (for a single player, with id:1). The result will
be similar to what’s shown in Figure 5-26.

Figure 5-25. Testing @ElementCollection annotation in MongoDB

Figure 5-26. Testing LAZY loading for @ElementCollection annotation in MongoDB

The results in Figure 5-26 give rise to an obvious question: how do I know that the wins collection was loaded
eagerly and the rankinghistory08_12 was loaded lazily? In other words, how do I know that lazy loading worked?

Well, such questions are common when Hibernate (including Hibernate OGM) JPA is involved, because the
proxy objects used by Hibernate behind the scene can be confusing. Nevertheless, the question as to whether lazy
loading is working can be solved in several ways. You can choose to write JUnit tests to monitor database transfers

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

161

or any other complex solutions, or you can create a simple test, like the one I’ll describe. Note that this test was
performed in the NetBeans IDE and is specific to the example presented in this section, but it can be easily adjusted to
other cases. Here are the steps in the test:

Set • FetchType.EAGER for both collections, wins and rankinghistory08_12.

In the • hogm.mongodb.ejb.SampleBean stateless bean, locate the following line of code in
method loadAction:

 Players p = em.find(Players.class, 1);

After this line, place a NetBeans line breakpoint as shown in Figure • 5-27.

Figure 5-27. Adding a line breakpoint in NetBeans

Figure 5-28. The Variables window in NetBeans

Deploy and start the application in debug mode (press the Debug Project button on NetBeans •
toolbar).

After the application starts, press the button labeled “Go to see lazy loading (you need a •
document with _id:1)”. This will cause debugger to execute the code until the line breakpoint
and leave the application suspended at that point.

The • Players instance is loaded and the p variable is listed in NetBeans debugger (see the
Variables window in Figure 5-28). Don’t expand the p tree node, since this will be interpreted
as an explicit request to see the p content.

Next, shut down the MongoDB server (you can press Ctrl+C in server shell).•

Now you can expand the • p node and the wins and rankinghistory08_12 sub-nodes as shown
in Figure 5-29. Since the MongoDB server is closed, and the collections data is available, we
can conclude that the data was eagerly loaded.

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

162

Next, close the application, stop the debugger and restart the MongoDB server.•

Set • FetchType.LAZY for the rankinghistory08_12 collection and FetchType.EAGER for wins
collection.

Again, start the application in debugging mode.•

After the application starts, press the button labeled “Go to see lazy loading (you need a •
document with _id:1)”.

In the NetBeans • Variables window, you should see a collapsed tree node representing the
p variable. Don’t expand the node.

Again, shut down the MongoDB server.•

Now, expand the • p node and the wins and rankinghistory08_12 sub-nodes as shown in
Figure 5-30. Notice that the wins collection contains data, since it was eagerly loaded, but
the rankinghistory08_12 node reveals an error indicating it can’t connect to the MongoDB
server. This means that the data for the rankinghistory08_12 collection wasn’t loaded eagerly
and it should be loaded now, when you explicitly expanded the rankinghistory08_12 node.
Therefore, lazy loading is working in Hibernate OGM.

Figure 5-29. Expanding the “p” node

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

163

You can easily perform similar tests for other cases, such as for associations.

JPA Lifecycle Events @EntityListeners, @ExcludeDefaultListeners,
@ExcludeSuperclassListeners Annotations
Mapped by the javax.persistence.EntityListeners, javax.persistence.ExcludeDefaultListeners and
javax.persistence.ExcludeSuperclassListeners annotations.

Official documentation:

http://docs.oracle.com/javaee/6/api/javax/persistence/EntityListeners.html
http://docs.oracle.com/javaee/6/api/javax/persistence/ExcludeDefaultListeners.html
http://docs.oracle.com/javaee/6/api/javax/persistence/ExcludeSuperclassListeners.html

Brief Overview

JPA comes with a set of callback methods that reflect the lifecycle of entities. In a practical sense, an entity lifecycle
consists of a suite of events, like persist, update, remove, and so on. For each event, JPA lets you define a supported
callback method and when an event is fired, JPA automatically calls the corresponding callback method. You are
responsible for writing the callback method implementation.

When callback methods are defined within the entity body, they are internal callback methods and when they are
defined outside the entity body, in a separate class, they are external callback methods. In addition, default callback
methods are listeners that can be applied by default to all the entity classes. To relate these concepts to annotations,
here are the typical cases:

Internal callback methods don’t need annotations. The callback methods are simply defined •
in the entity body or mapped superclasses.

External callback methods don’t need annotations. But, the entities and mapped superclasses •
that use these methods need to be annotated with @EntityListeners({ExternalListener_1.class,
ExternalListeners_2.class, ...}).

Figure 5-30. Expanding the “p” node

http://docs.oracle.com/javaee/6/api/javax/persistence/EntityListeners.html
http://docs.oracle.com/javaee/6/api/javax/persistence/ExcludeDefaultListeners.html
http://docs.oracle.com/javaee/6/api/javax/persistence/ExcludeSuperclassListeners.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

164

Default callback methods don’t need annotations. Actually there are no annotations for •
these callbacks; that’s why the default listeners are defined in an XML file named orm.xml,
which goes in the same location as persistence.xml or in any other location indicated in
persistence.xml.

Default listeners are applied by default to all the entity classes. You can turn off this behavior •
for an entity by annotating it with @ExcludeDefaultListeners.

By default, entities inherit the callback methods from their mapped superclasses (the •
invocation of superclass listeners is inherited in the entity class). You can obtain the opposite
effect by annotating the entity class with @ExcludeSuperclassListeners. Moreover, you can
override the mapped superclasses callback methods in subclasses.

The internal callback methods can be marked with the following annotations:

• @PrePersist is executed before a new entity is persisted (added to the EntityManager).

• @PostPersist is executed after storing a new entity in the database (during commit or flush).

• @PostLoad is executed after an entity has been retrieved from the database.

• @PreUpdate is executed when an entity is identified as modified by the EntityManager.

• @PostUpdate is executed after updating an entity in the database (during commit or flush).

• @PreRemove is executed when an entity is marked for removal in the EntityManager.

• @PostRemove is executed after deleting an entity from the database (during commit or flush).

The external callback methods and default callback methods are the same except that they take one argument
that specifies the entity that’s the source of the lifecycle event.

Note that when all listeners appear in an application, there’s a strict order of invocation. Default callback
methods happen first, external callback methods are second, and internal callback methods execute last.

OGM Support

Hibernate OGM supports @EntityListeners, @ExcludeDefaultListeners, and @ExcludeSuperclassListeners
annotations. It also supports listeners for entities and for mapped superclasses.

Example

For this example I used the classes defined in the section about mapped superclasses—the abstract mapped
superclass, Players, and the two entities, TennisPlayers and BaseballPlayers. With these three classes, I can test
the listeners quite well. Notice that the callback methods mark their presence only through some log messages.

In order of invocation, I defined first a default listener in the orm.xml file (don’t forget to save this file in the same
location as persistence.xml):

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd" version="1.0">
 <persistence-unit-metadata>
 <persistence-unit-defaults>

http://java.sun.com/xml/ns/persistence/orm
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

165

 <entity-listeners>
 <entity-listener class="hogm.mongodb.listeners.DefaultListener" />
 </entity-listeners>
 </persistence-unit-defaults>
 </persistence-unit-metadata>
</entity-mappings>

The hogm.mongodb.listeners.DefaultListener implements only the onPrePersist and onPostPersist
methods, as shown in Listing 5-13.

Listing 5-13. The onPrePersist and onPostPersist Methods

package hogm.mongodb.listeners;

import java.util.logging.Level;
import java.util.logging.Logger;
import javax.persistence.PostPersist;
import javax.persistence.PrePersist;

public class DefaultListener {

 @PrePersist
 void onPrePersist(Object o) {
 Logger.getLogger(DefaultListener.class.getName()).
 log(Level.INFO, "PREPARING THE PERSIST SOME OBJECT ...");
 }

 @PostPersist
 void onPostPersist(Object o) {
 Logger.getLogger(DefaultListener.class.getName()).
 log(Level.INFO, "AN OBJECT WAS PERSISTED ...");
 }
}

By default, these methods will be called for all three entities when an object is persisted.
I also define two external listeners, one to implement the callback methods specific to update operations

and the other for delete operations. These listeners will be available only for the BaseballPlayers entity, using the
@EntityListeners annotation. The first listener is shown in Listing 5-14.

Listing 5-14. The Update Listener

package hogm.mongodb.listeners;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.persistence.PostUpdate;
import javax.persistence.PreUpdate;

public class BaseballExternalUpdateListeners {

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

166

 @PreUpdate
 void onPreUpdate(Object o) {
 Logger.getLogger(BaseballExternalUpdateListeners.class.getName()).log(Level.INFO,
 "PREPARING THE UPDATE THE FIRST BASEBALL PLAYER OBJECT ...{0}", o.toString());
 }

 @PostUpdate
 void onPostUpdate(Object o) {
 Logger.getLogger(BaseballExternalUpdateListeners.class.getName()).log(Level.INFO,
 "THE FIRST BASEBALL PLAYER OBJECT WAS UPDATED...{0}", o.toString());
 }
}

And the second one is in Listing 5-15.

Listing 5-15. The Delete Listener

package hogm.mongodb.listeners;

import java.util.logging.Level;
import java.util.logging.Logger;
import javax.persistence.PostRemove;
import javax.persistence.PreRemove;

public class BaseballExternalRemoveListeners {

 @PreRemove
 void onPreRemove(Object o) {
 Logger.getLogger(BaseballExternalRemoveListeners.class.getName()).log(Level.INFO,
 "PREPARING THE DELETE FOR THE FIRST BASEBALL PLAYER OBJECT ...{0}", o.toString());
 }

 @PostRemove
 void onPostRemove(Object o) {
 Logger.getLogger(BaseballExternalRemoveListeners.class.getName()).log(Level.INFO,
 "THE FIRST TENNIS PLAYER OBJECT WAS REMOVED ...{0}", o.toString());
 }
}

The mapped superclass, Players, will reject default listeners and implement three internal callback methods:
onPrePersist, onPostPersist and onPostLoad. These listeners are inherited only by the BaseballPlayers entity,
because the TennisPlayers entity will be annotated with @ExcludeSuperclassListeners. The Players mapped
superclass is shown in Listing 5-16.

Listing 5-16. The Players Mapped Superclass

package hogm.mongodb.entity;

import java.io.Serializable;
import java.util.Date;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.persistence.Column;

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

167

import javax.persistence.ExcludeDefaultListeners;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.MappedSuperclass;
import javax.persistence.PostLoad;
import javax.persistence.PostPersist;
import javax.persistence.PrePersist;
import javax.persistence.Temporal;

@MappedSuperclass
@ExcludeDefaultListeners
public abstract class Players implements Serializable {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 protected int id;
 @Column(name = "player_name")
 protected String name;
 @Column(name = "player_surname")
 protected String surname;
 @Column(name = "player_age")
 protected int age;
 @Temporal(javax.persistence.TemporalType.DATE)
 protected Date birth;

 @PrePersist
 void onPrePersist() {
 Logger.getLogger(Players.class.getName()).log(Level.INFO,
 "PREPARING THE PERSIST A (BASEBALL) PLAYER OBJECT ...");
 }

 @PostPersist
 void onPostPersist() {
 Logger.getLogger(Players.class.getName()).log(Level.INFO,
 "THE (BASEBALL) PLAYER OBJECT WAS PERSISTED ...");
 }

 @PostLoad
 void onPostLoad() {
 Logger.getLogger(Players.class.getName()).log(Level.INFO,
 "THE FIRST (BASEBALL) PLAYER OBJECT WAS LOADED ...");
 }

 //constructors, getters and setters
...
}

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

168

Next up is the TennisPlayers entity, shown in Listing 5-17. It will implement all the internal listeners and
accept the default listeners but not the superclass listeners (notice the presence of @ExcludeSuperclassListeners
annotations:

Listing 5-17. The TennisPlayers Entity

import java.io.Serializable;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.persistence.AttributeOverride;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.ExcludeSuperclassListeners;
import javax.persistence.PostLoad;
import javax.persistence.PostPersist;
import javax.persistence.PostRemove;
import javax.persistence.PostUpdate;
import javax.persistence.PrePersist;
import javax.persistence.PreRemove;
import javax.persistence.PreUpdate;

@Entity
@ExcludeSuperclassListeners
@AttributeOverride(name = "age", column =
@Column(name = "tenis_player_age"))
public class TennisPlayers extends Players implements Serializable {

 protected String handplay;

 @PrePersist
 @Override
 void onPrePersist() {
 Logger.getLogger(TennisPlayers.class.getName()).log(Level.INFO,
 "PREPARING THE PERSIST A TENNIS PLAYER OBJECT ...");
 }

 @PostPersist
 @Override
 void onPostPersist() {
 Logger.getLogger(TennisPlayers.class.getName()).log(Level.INFO,
 "THE TENNIS PLAYER OBJECT WAS PERSISTED ...");
 }

 @PostLoad
 @Override
 void onPostLoad() {
 Logger.getLogger(TennisPlayers.class.getName()).log(Level.INFO,
 "THE FIRST TENNIS PLAYER OBJECT WAS LOADED ...");
 }

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

169

 @PreUpdate
 void onPreUpdate() {
 Logger.getLogger(TennisPlayers.class.getName()).log(Level.INFO,
 "PREPARING THE UPDATE THE FIRST TENNIS PLAYER OBJECT ...");
 }

 @PostUpdate
 void onPostUpdate() {
 Logger.getLogger(TennisPlayers.class.getName()).log(Level.INFO,
 "THE FIRST TENNIS PLAYER OBJECT WAS UPDATED...");
 }

 @PreRemove
 void onPreRemove() {
 Logger.getLogger(TennisPlayers.class.getName()).log(Level.INFO,
 "PREPARING THE DELETE FOR THE FIRST TENNIS PLAYER OBJECT ...");
 }

 @PostRemove
 void onPostRemove() {
 Logger.getLogger(TennisPlayers.class.getName()).log(Level.INFO,
 "THE FIRST TENNIS PLAYER OBJECT WAS REMOVED ...");
 }

 public String getHandplay() {
 return handplay;
 }

 //constructors, getters and setters
...
}

And, finally, the BaseballPlayers entity is shown in Listing 5-18. It doesn’t define any internal listeners. It uses
the defined external listeners, specified using the @EntityListeners annotation, and inherits the listeners from the
mapped superclass. It will not accept default listeners, since the mapped superclass excludes default listeners.

Listing 5-18. The BaseballPlayers Entity

package hogm.mongodb.entity;

import hogm.mongodb.listeners.BaseballExternalRemoveListeners;
import hogm.mongodb.listeners.BaseballExternalUpdateListeners;
import java.io.Serializable;
import javax.persistence.AttributeOverride;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.EntityListeners;

@Entity
@EntityListeners({BaseballExternalUpdateListeners.class,
 BaseballExternalRemoveListeners.class})

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

170

@AttributeOverride(name = "age", column =
@Column(name = "baseball_player_age"))
public class BaseballPlayers extends Players implements Serializable {

 protected String position;

 //constructors, getters and setters
...

Done! I know it’s confusing, but testing all three annotations for entities and mapped superclasses in a single
application is pretty sophisticated. In a real application you wouldn’t mix all of this stuff together. Figure 5-31 should
help to clarify things.

Here’s the simple scenario I tested:

Insert two tennis players and one baseball player.•

Load first tennis player.•

Update first tennis player.•

Delete first tennis player.•

Update first baseball player.•

Load first baseball player.•

Delete second tennis player.•

Delete first baseball player.•

In Figure 5-32, you can see each step from the listener’s call perspective. It looks like Hibernate OGM has done
a great job and everything works exactly as expected and each callback method was called at the appropriate moment.

Figure 5-31. Testing JPA listeners

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

171

The complete application that demonstrates the JPA listeners is available in the Apress repository and is named
HOGM_MONGODB_Listeners. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@Version Annotation
Mapped by the javax.persistence.Version annotation.

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Version.html

Brief Overview

An @Version field or property has a double role: to guarantee data integrity when performing merge operations
(updates) and to provide optimistic concurrency control. Version fields (only one version field per entity class
is allowed) team well with JPA optimistic locking, which is applied on transaction commit and is responsible for
checking every object to be updated or deleted. The goal is to avoid possible conflicts that can occur when JPA deals
with simultaneous updates to the same data by two concurrent threads (users). When a conflict arises, the persistent
provider throws an exception. In other words, optimistic locking assumes that the data will not be modified between
read-write data operations.

The field annotated with @Version is persisted to the database with an initial value of, usually, 0 and it’s
automatically incremented (usually by 1) for each update operation (the calling of the merge method). Practically,
when JPA “bakes” an entity update statement, it adds to the WHERE clause, beside the update scope, the right “words”
for incrementing the version field and for matching the old version value (the read value):

UPDATE table_name SET field_1 = value_1, ... field_n = value_n, version = (version + 1)
WHERE id = some_id and version = read_version

Figure 5-32. Results of testing JPA listeners

http://docs.oracle.com/javaee/6/api/javax/persistence/Version.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

172

If, in the meantime, the same entity is updated by another user (thread), the persistence provider will throw an
OptimisticLockException since it can’t locate the correct old version value. Optimistic locking can provide better
scalability, but the drawback is that the user/application must refresh and retry failed updates.

Optimistic locking is specific to JPA 1.0 and is the most common style (used and recommended) of locking.
JPA 2.0 also comes with pessimistic locking, which locks the database row when data is being read or written to.
This is rarely used, though, since it can hinder scalability and cause deadlocks and risk states. Both optimistic and
pessimistic locking are layered on top of @Version annotation and are controllable through the JPA API.

More details about JPA 2.0 locking can be found in this excellent article, “JPA 2.0 Concurrency and locking”
(https://blogs.oracle.com/carolmcdonald/entry/jpa_2_0_concurrency_and).

OGM Support

Hibernate OGM supports @Version annotation and the field annotated with @Version is stored in MongoDB like any
other field. You can also control locking mechanisms using the EntityManager find, refresh, and lock methods.
Since OGM doesn’t support native query or named queries, you can’t use the Query and NamedQuery locking methods.

Example

First, I define an @Version field in the Players entity, as shown in Listing 5-19. I named it version and set it as type
Long (you can choose from int, Integer, short, Short, long, java.sql.Timestamp).

Listing 5-19. Defining the @Version Field

import javax.persistence.Version;
...

@Entity
@Table(name = "atp_players")
public class Players implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;
 @Version
 private Long version;
 @Column(name = "player_name")
 private String name;
 @Column(name = "player_surname")
 private String surname;
 @Column(name = "player_age")
 private int age;
 private int facade; //used for simulating updated

 public Long getVersion() {
 return version;
 }

https://blogs.oracle.com/carolmcdonald/entry/jpa_2_0_concurrency_and
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

173

 protected void setVersion(Long version) {
 this.version = version;
 }

 //constructors, getters and setters
...
}

Notice that since the @Version field should not normally be modified by the application, the corresponding setter
method was declared protected.

Now, let’s check if the @Version field is automatically incremented on each update operation. For this, persist
some players and find a reason to call the merge method several times, for example, to update the facade field with
some random numbers. While merging, monitor the atp_players collection documents in the MongoDB shell. In
Figure 5-33, the left side presents the document (_id:1) before calling merge for first time. On the right-side, notice
that after I called merge three times, the value of the version field grew from 0 to 3.

So, OGM successfully increased the version field each time merge was called.

Note ■ If you can’t obtain a document with _id:1, you should drop the hibernate_sequences collection and repeat

the persist operation. You need this _id:1 because in the next test we use the EntityManager find method with

this id. I realize that using auto-generated keys and the find method like this is unusual and not realistic, but it’s just for

teaching purposes.

Testing whether the optimistic locking is actually working (LockModeType.OPTIMISTIC) is not simple; it usually
requires writing a JUnit test to simulate concurrent transactions. However, I prefer to a different approach and I want
to shape a stateful bean according to the following scenario:

Declare a stateful bean and inject the OGM • EntityManager; as a session bean, it will maintain
the conversational state over multiple requests:

@Named("bean")
@Stateful
@SessionScoped
public class SampleBean {

 @PersistenceContext(unitName = "PU_name")
 private EntityManager em;
...

Figure 5-33. Monitoring version field incrementation while calling the merge method

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

174

Declare two • Players objects, p1 and p2:

Players p1 = null;
Players p2 = null;

Create a business method that populates • p1 with the first player in the database and displays
the read version field. Note that I specified the locking mode as OPTIMISTIC (which is the
default):

public void read_OPTIMISTIC_Action_1() {
 p1 = em.find(Players.class, 1, LockModeType.OPTIMISTIC);
 Logger.getLogger(SampleBean.class.getName()).
 log(Level.INFO, "READ 1, version={0}", p1.getVersion());
 }

Repeat the previous step for • p2:

public void read_OPTIMISTIC_Action_2() {
 p2 = em.find(Players.class, 1, LockModeType.OPTIMISTIC);
 Logger.getLogger(SampleBean.class.getName()).
 log(Level.INFO, "READ 2, version={0}", p2.getVersion());
 }

Create a business method for updating • p1. After the update, read p1 again and display the
version. This was incremented by 1 and the update is successfully accomplished since the
document wasn’t modified between read and write operations:

public void update_OPTIMISTIC_Action_1() {
 p1.setFacade(new Random().nextInt(1000000));
 em.merge(p1);
 em.flush();
 p1 = em.find(Players.class, 1, LockModeType.OPTIMISTIC);
 Logger.getLogger(SampleBean.class.getName()).
 log(Level.INFO, "UPDATE 1, version={0}", p1.getVersion());
 }

Write a business method for updating • p2. Before calling merge, display the read version. This
value should be smaller than the current version in the database, indicating that between p2
read and write operations, another thread has modified the document. Therefore, when the
merge method is called, I’ll get an OptimisticLockException:

public void update_OPTIMISTIC_Action_2() {
 Logger.getLogger(SampleBean.class.getName()).
 log(Level.INFO, "UPDATE 2, version={0}", p2.getVersion());
 p2.setFacade(new Random().nextInt(1000000));
 em.merge(p2);
 em.flush();
 //there is no need to check version,
 // now the OptimisticLockException exception should be on screen
 }

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

175

For a successful test, I need to call these four methods precisely in order: read_OPTIMISTIC_Action_1(),
read_OPTIMISTIC_Action_2(), update_OPTIMISTIC_Action_1() and update_OPTIMISTIC_Action_2(). The output
of GlassFish log is shown in Figure 5-34.

If I change LockModeType.OPTIMISTIC into LockModeType.OPTIMISTIC_FORCE_INCREMENT, I can easily test the
optimistic force-increment mechanism. If you ran the preceding test, drop all the atp_players collections and again,
persist one Players instance. Then use one of the next two method call sequences: read_OPTIMISTIC_Action_1,
read_OPTIMISTIC_Action_2, update_OPTIMISTIC_Action_1 or read_OPTIMISTIC_Action_1, read_OPTIMISTIC_
Action_2, update_OPTIMISTIC_Action_2, update_OPTIMISTIC_Action_1. Because the version field is incremented
before each commit, not just for the updates commit, you’ll see something like what’s shown in Figure 5-35 (the first
call sequence).

The complete application that demonstrates the @Version annotation is available in the Apress repository and is
named HOGM_MONGODB_Version. It comes as a NetBeans project and was tested under GlassFish 3 AS.

Figure 5-34. Obtaining the OptimisticLockException for LockModeType.OPTIMISTIC

Figure 5-35. Obtaining the OptimisticLockException for LockModeType. OPTIMISTIC_FORCE_INCREMENT

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

176

@Access Annotation
Mapped by the javax.persistence.Access annotation

Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/Access.html

Brief Overview

By default, an entity provides data to be persisted through its persistent fields. Moreover, when data is extracted from
a database, it populates the same persistent fields. In annotations terms, this is @Access(AccessType.FIELD). Another
approach involves obtaining the data to persist by accessing fields indirectly as properties, using get methods.
Similarly, the extracted data populates entity through the set methods. In annotations terms, this is
@Access(AccessType.PROPERTY).

In JPA 1.x, the access type was restricted to be a field or property based on the entity hierarchy. Starting with JPA 2.0,
an embeddable class can have an access type different from the access type of the entity in which it’s embedded.

OGM Support

Hibernate OGM supports the @Access annotation according to the JPA 2.0 specification. It can extract data to persist
from an embeddable class via one access type and from the entity via the other access type. Of course, I’m talking
about the entity that embeds the embeddable class.

Example

For this example, I define an embeddable class, named Details:

import javax.persistence.Access;
import javax.persistence.AccessType;
...

@Embeddable
@Access(AccessType.FIELD)
public class Details implements Serializable {

 private String birthplace;
 private String residence;
 private String height;
 private String weight;
 private String plays;
 private int turnedpro;
 private String coach;
 private String website;

 //constructors, getters and setters
...
}

Note the @Access annotation. (I chose arbitrarily to use the access type FIELD). Now the entity, named Players
is annotated with @Access(AccessType.PROPERTY). In order to use property access, I need to provide get and
set methods based on the Java bean property convention for non-transient fields. I must also move all the JPA
annotations from the field level to their getters. Listing 5-20 shows the complete listing for the Players entity.

http://docs.oracle.com/javaee/6/api/javax/persistence/Access.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

177

Listing 5-20. The Complete Players Entity

import javax.persistence.Access;
import javax.persistence.AccessType;
...

@Entity
@Access(AccessType.PROPERTY)
@Table(catalog = "ATP", schema = "public", name = "atp_players")
public class Players implements Serializable {

 private int id;
 private String name;
 private String surname;
 private int age;
 private Date birth;
 private Details details;

 @Column(name = "player_name")
 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @Column(name = "player_surname")
 public String getSurname() {
 return surname;
 }

 public void setSurname(String surname) {
 this.surname = surname;
 }

 @Column(name = "player_age")
 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 @Temporal(javax.persistence.TemporalType.DATE)
 public Date getBirth() {
 return birth;
 }

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

178

 public void setBirth(Date birth) {
 this.birth = birth;
 }

 @Embedded
 public Details getDetails() {
 return details;
 }

 public void setDetails(Details details) {
 this.details = details;
 }

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }
}

Now, the entity class has the PROPERTY access type and the embeddable class has the FIELD access type. This
was not possible until JPA 2.0, because the embeddable object’s access type was determined by the access type of the
entity class in which it was declared.

Done! Make sure everything works as expected by persisting several entity instances.
The complete application that demonstrates the @Access annotation is available in the Apress repository and is

named HOGM_MONGODB_Access. It comes as a NetBeans project and was tested under GlassFish 3 AS.

Note ■ Obviously, you don’t always need to explicitly specify the access type, but sometimes you do to avoid mapping

problems. For example, you may have two entities that define different access types, but both embed the same embeddable

class. In this case, you must explicitly set the access type of the embeddable class. The same kind of situation can

occur with inheritance—each entity inherits the access type from its parent entity, which may not always be desirable.

Starting with JPA 2.0, you can explicitly override the access type locally, in any entity involved in this inheritance.

There are some misconceptions regarding the access type FIELD in Hibernate. To avoid certain “traps,” you should

know that Hibernate is fully capable of populating entities when this access type is set. A problem can occur when you

need to access those values from your code, because in this case Hibernate requires dedicated methods. This is one

of the well-known Hibernate proxy pitfalls. To learn the details, a good place to start is at

http://blog.xebia.com/2008/03/08/advanced-hibernate-proxy-pitfalls/.

http://blog.xebia.com/2008/03/08/advanced-hibernate-proxy-pitfalls/
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

179

Associations
In Chapter 2, you saw how OGM stores associations using the IN_ENTITY, GLOBAL_COLLECTION, or COLLECTION
strategies. Now I’ll discuss how OGM stores a different kind of database association. I’ll use IN_ENTITY for most of the
examples. There are several types of database associations:

One-To-One•

One-To-Many and Many-To-One•

Many-To-Many•

Direction in Entity Associations
I want to add here a short overview of direction in entity associations, because I think it will be useful for the last part
of this chapter. Entity associations have the following characteristics:

The directionality of association can be from one side (unidirectional) or from both sides •
(bidirectional) of the relationship.

In unidirectional associations, one of the sides is defined as the owning side; the opposite side •
is not aware of the association.

In bidirectional associations, both sides have references to the other side.•

In a bidirectional association, one side is defined as the owning side (the • owner), while the
opposite side is the owned side (non-owner).

Programmatically speaking, in a bidirectional association, declaration is asymmetric, meaning •
that only one side provides information about directionality by setting the mappedBy element
in the association-specific annotation. In bidirectional one-to-one and many-to-many
associations, either side can use the mappedBy element, while in a bidirectional one-to-many
association, mappedBy can’t be declared on the many-to-one side.

The value of the annotation’s element is the name of the field (or property) on the owning side •
of the association that references the entity on the owned side.

@OneToOne Annotation

Mapped by the javax.persistence.OneToOne annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/OneToOne.html

Brief Overview

In relational database terms, a one-to-one association occurs when there is exactly one record in a table that
corresponds to exactly one record in a related table; both tables contain the same number of records and each row of
the first table is linked to another row in the second table. JPA maps both unidirectional and bidirectional one-to-one
associations using @OneToOne annotation. In bidirectional associations, the non-owning side must use the mappedBy
element of the @OneToOne annotation to specify the association field or property of the owning side (either side can be
the owner). Such an association supports fetching (eager or lazy), cascading, and orphan removal.

http://docs.oracle.com/javaee/6/api/javax/persistence/OneToOne.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

180

OGM Support

Hibernate OGM supports @OneToOne annotations that conform to the JPA 2.0 specification. As you know, by default,
OGM stores data in MongoDB using the IN_ENTITY strategy, which doesn’t imply any additional collections—each
entity class is represented by a single collection. It’s easy to distinguish the following cases:

For a unidirectional one-to-one association, OGM stores the navigation information •
for associations in the collection representing the owner side of the association. Each
document from this collection contains a field for storing the corresponding foreign key.
See Figure 5-36.

For a bidirectional one-to-one association, the navigation information is stored like this: the •
collection representing the entity that uses mappedBy (the non-owner side of the association)
contains fields that store one foreign key per embedded collection, while the collection
representing the owner side of the association contains, in each document, a field that stores
the corresponding foreign key. See Figure 5-37.

Figure 5-36. IN_ENTITY: one-to-one unidirectional association

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

181

For the GLOBAL_COLLECTION strategy, there are also some straightforward cases:

For a unidirectional one-to-one association, • GLOBAL_COLLECTION has no effect (similar to
IN_ENTITY).

For a bidirectional one-to-one association, the navigation information is stored like this: the •
collection representing the entity that uses mappedBy (the non-owner side) doesn’t contain
navigation information; it’s stored in the global Associations collection. The collection
representing the owner side of the association contains, in each document, a field that stores
the corresponding foreign key. See Figure 5-38.

Figure 5-37. IN_ENTITY: one-to-one bidirectional association

Figure 5-38. GLOBAL_COLLECTION: one-to-one bidirectional association

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

182

For the COLLECTION strategy, here are the possibilities:

For unidirectional one-to-one associations, • COLLECTION has no effect (similar to IN_ENTITY).

For a bidirectional one-to-one association, the navigation information is stored like this: the •
collection representing the entity that uses mappedBy (the non-owner side of the association)
doesn’t contain navigation information; it’s stored in a separate collection prefixed with the
word associations (every such association will have a separate collection). The collection
representing the owner side of the association will contain, in each document, a field that
stores the corresponding foreign key. See Figure 5-39.

To sum up the main supported aspects of one-to-one associations, there’s support for unidirectional and
bidirectional associations; the ability to specify a column for joining an entity association or element collection (using
@JoinColumn), support for a one-to-one association from an embeddable class to another entity using @JoinTable
and @JoinColumns with the GLOBAL_COLLECTION and COLLECTION strategies, cascading(all) and orphan removal.
Moreover, OGM supports fetching using lazy loading.

Example

To illustrate one-to-one associations (unidirectional and bidirectional), I need two entities that are logically
appropriate for this purpose. For example, a tennis player entity and its web site address would have such an
association. I can thus create the entity that maps the web sites addresses:

import java.io.Serializable;
...

@Entity
@Table(name = "players_websites")
public class Websites implements Serializable {

Figure 5-39. COLLECTION: one-to-one bidirectional association

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

183

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;
 private String http_address;
 //constructors, getters and setters
...
}

Next, I create the Players entity and define a unidirectional one-to-one association:

import javax.persistence.JoinColumn;
import javax.persistence.OneToOne;
...

@Entity
@Table(name = "atp_players")
public class Players implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;
 @Column(name = "player_name")
 private String name;
 @Column(name = "player_surname")
 private String surname;
 @Column(name = "player_age")
 private int age;
 @Temporal(javax.persistence.TemporalType.DATE)
 @Column(name = "player_birth")
 private Date birth;
 @OneToOne(cascade = {CascadeType.PERSIST, CascadeType.REMOVE})
 @JoinColumn(name = "website_fk", unique = true, nullable = false, updatable = false)
 private Websites website;

 //constructors, getters and setters
...
}

Now I’ll persist several players and their web site addresses to get something like what’s shown in Figure 5-40.
Notice that each document within the atp_players collection contains a field named website_pk that stores the
foreign key from the players_websites collection. This is how OGM maps the one-to-one unidirectional association
using the IN_ENTITY strategy.

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

184

Moreover, I can easily transform this association into a bidirectional one by modifying the Websites entity,
adding the @OneToOne annotation and the mappedBy element:

import javax.persistence.OneToOne;
...

@Entity
@Table(name = "players_websites")
public class Websites implements Serializable {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;
 private String http_address;
 @OneToOne(mappedBy = "website")
 private Players player_website;

 //constructors, getters and setters
...
}

This time, the atp_players and players_websites collections look like what’s shown in Figure 5-41. As you can
see, the owner of the association, atp_players, still contains the field for storing foreign keys, while the non-owning
side, players_websites, stores the foreign keys in embedded collections.

Figure 5-40. One-to-one unidirectional association

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

185

My next goal is to create a one-to-one association from an embeddable class to another entity. For this, I need an
embeddable class that stores some player details and an entity that stores even more details. The embeddable class
will define a one-to-one association to this entity. Here’s the embeddable class, which is named Details:

import javax.persistence.Embeddable;
import javax.persistence.OneToOne;
...

@Embeddable
@Table(name = "player_details")
public class Details implements Serializable {

 private String birthplace;
 private String residence;
 private String height;
 private String weight;
 private String plays;
 private int turnedpro;
 private String coach;
 @OneToOne(cascade={CascadeType.PERSIST, CascadeType.REMOVE})
 private MoreDetails more;

 //constructors, getters and setters
...
}

The MoreDetails field references the following entity:

import java.io.Serializable;
...

Figure 5-41. One-to-one bidirecional association

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

186

@Entity
@Table(name = "player_more_details")
public class MoreDetails implements Serializable {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;
 private int ranking;
 private String prizes;
 //constructors, getters and setters
...
}

The final step consists of adding the embeddable class in the Players entity:

import javax.persistence.Embedded;

@Entity
@Table(name = "atp_players")
public class Players implements Serializable {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;
 ...
 @Embedded
 private Details details;

 //constructors, getters and setters
...
}

Now, MongoDB will reveal two collections, atp_players and player_more_details, as shown in Figure 5-42.
Notice that the atp_players nested documents (the details field), used for storing the embeddable class, contains a
field, named more_id, that stores the foreign keys referencing the player_more_details documents.

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

187

I’ve played a little with the one-to-one associations for storing, retrieving, and removing some Players instances.
In Figure 5-43, you can see a sample of GlassFish log messages resulting from a simple scenario: insert one player, list
it, delete it, and list it again. (Notice the cascading effect on persist and remove).

Figure 5-42. One-to-one association and an embeddable class

Figure 5-43. Testing one-to-one associations (persist, retrieve, list, and remove)

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

188

The complete application for demonstrating the @OneToOne annotation is available in the Apress repository and is
named HOGM_MONGODB_OneToOne. It comes as a NetBeans project and was tested under GlassFish 3 AS.

@OneToMany and @ManyToOne Annotation

Mapped by the javax.persistence.OneToMany and javax.persistence.ManyToOne annotations
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/OneToMany.html

http://docs.oracle.com/javaee/6/api/javax/persistence/ManyToOne.html

Brief Overview

In relational database terms, a one-to-many association occurs when each record in one table corresponds to many
records in a related table. The tables don’t contain the same number of records and each row from the first table is
linked to more rows in the second table. This kind of association is mapped by JPA using the @OneToMany annotation.

When rows from the second table have an inverse association back to the first table, this is a bidirectional
association and is indicated by the @ManyToOne annotation. In bidirectional associations, the mappedBy element must
be used to specify the association field or property of the entity that is the owner of the association.

Both, @OneToMany and @ManyToOne can be used in an embeddable class to specify an association to a collection of
entities, or to specify an association from the embeddable class to an entity class.

Such associations support fetching (eager or lazy), cascading, and orphan removal (only on @OneToMany, not on
@ManyToOne).

OGM Support

Hibernate OGM supports @OneToMany and @ManyToOne annotations. As you know, by default, OGM stores data
in MongoDB using the IN_ENTITY strategy, which does not imply any additional collection—each entity class is
represented by a single collection. We can easily distinguish the following cases:

For unidirectional one-to-many associations, OGM stores the navigation information for •
associations in the collection representing the owner side of the association, in fields that store
the foreign keys in embedded collections. See Figure 5-44.

Figure 5-44. IN_ENTITY: one-to-many unidirectional association

http://docs.oracle.com/javaee/6/api/javax/persistence/OneToMany.html
http://docs.oracle.com/javaee/6/api/javax/persistence/ManyToOne.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

189

For unidirectional many-to-one associations, OGM stores the navigation information in the •
collection representing the owner side of the association; each document will contain a field
for storing the corresponding foreign key. See Figure 5-45.

Figure 5-45. IN_ENTITY: many-to-one unidirectional association

Figure 5-46. IN_ENTITY: one-to-many bidirectional association

For a bidirectional one-to-many association, the navigation information is stored like this: the •
collection representing the entity that uses mappedBy (the non-owner side of the association)
will contain fields that store the foreign keys in embedded collections. The collection
representing the owner side of the association will contain, in each document, a field that
stores the corresponding foreign key. See Figure 5-46.

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

190

For the GLOBAL_COLLECTION strategy, there are also some straightforward cases:

For unidirectional one-to-many associations, OGM stores the navigation information for •
associations inside the global collection, named Associations. The collection representing
the association owner does not contain any navigation information. See Figure 5-47.

Figure 5-47. GLOBAL_COLLECION: one-to-many unidirectional association

Figure 5-48. GLOBAL_COLLECTION: one-to-many bidirectional association

For unidirectional many-to-one association, • GLOBAL_COLLECTION doesn’t have any effect. See
Figure 5-48.

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

191

For unidirectional many-to-one associations, • COLLECTION doesn’t have any effect

For a bidirectional one-to-many association, the navigation information is stored like this: the •
collection representing the entity that uses mappedBy (the non-owning @OneToMany entity)
does not contain navigation information. This information is stored in a new collection
prefixed with the word associations. The other side (the owner) will contain, in each
document, a field that stores the corresponding foreign key. See Figure 5-50.

For a bidirectional one-to-many association, the navigation information is stored like this: •
the collection representing the entity that uses mappedBy (the non-owning @OneToMany entity)
will not contain navigation information. This information is now stored in the Associations
collection. The other side (the owner) will contain, in each document, a field that stores the
corresponding foreign key.

For the COLLECTION strategy, we have:

For unidirectional one-to-many associations, OGM stores the navigation information •
for associations in a new collection prefixed with the word associations. The collection
representing the association owner does not contain navigation information. See Figure 5-49.

Figure 5-49. COLLECTION: one-to-many unidirectional association

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

192

For the main aspects of these associations, there is support for unidirectional and bidirectional associations, the
ability to specify a column for joining an entity association or element collection (@JoinColumn), support for one-to-
many/many-to-one associations from an embeddable class to another entity or collection of entities, @JoinTable and
@JoinColumns with GLOBAL_COLLECTION and COLLECTION strategies, cascading(all), orphan removal, and fetching with
lazy loading.

Example

As an example of a one-to-many association (unidirectional and bidirectional), I need two entities that should be
logically appropriate for this purpose. A tennis player who has many photos for his fans can be a good test case for a
one-to-many association, when we store the player and his photos. The photos can be mapped in the Photos entity,
like so:

import java.io.Serializable;
...

@Entity
@Table(name = "players_photos")
public class Photos implements Serializable {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;
 private String photo;

 //constructors, getters and setters
...
}

Figure 5-50. COLLECTION: one-to-many bidirectional association

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

193

Now, each player has a collection of Photos, so the Players entity should define a @OneToMany association, like this:

import javax.persistence.CascadeType;
import javax.persistence.OneToMany;
...

@Entity
@Table(name = "atp_players")
public class Players implements Serializable {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;
 ...

 @OneToMany(cascade=CascadeType.ALL)
 private Collection<Photos> photos;

 //constructors,getters and setters
...
}

Persist several players and their photos to get something similar to what’s shown in Figure 5-51. Notice that
each document in the atp_players collection contains a field named photos, which stores (in a nested collection)
the corresponding foreign keys from the players_photos collection. This is how OGM maps the one-to-many
unidirectional association using IN_ENTITY strategy.

Figure 5-51. Unidirectional one-to-many association

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

194

Because I’ve used generics to specify the element type, the associated target entity type isn’t specified. When
generics aren’t used, I need to specify the target entity class using the targetEntity element. For example, I can
redefine the @OneToMany association, like this:

...
@OneToMany(targetEntity=hogm.mongodb.entity.Photos.class, cascade=CascadeType.ALL)
 private Collection photos;
...

If you think about the association from the opposite direction, many photos belong to the same player, which
describes a unidirectional many-to-one association. Implementing such an association means we write the Players
entity like this:

import java.io.Serializable;
...

@Entity
@Table(name = "atp_players")
public class Players implements Serializable {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;
 @Column(name = "player_name")
 private String name;
 @Column(name = "player_surname")
 private String surname;
 @Column(name = "player_age")
 private int age;
 @Temporal(javax.persistence.TemporalType.DATE)
 @Column(name = "player_birth")
 private Date birth;

 //constructors, getters and setters
...
}

In addition, the Photos entity must define an @ManyToOne field (or property), like this:

import javax.persistence.JoinColumn;
import javax.persistence.ManyToOne;
...

@Entity
@Table(name = "players_photos")
public class Photos implements Serializable {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;
 private String photo;

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

195

 @ManyToOne
 @JoinColumn(name = "player_fk", unique = true, nullable = false, updatable = false)
 private Players player_photos;

 //constructors, getters and setters
...
}

Persist several players and their photos to get something like what’s shown in Figure 5-52. Notice that each
document in the players_photos collection contains a field named player_pk that stores the corresponding foreign
keys from the atp_players collection. This is how OGM maps the many-to-one unidirectional association using
IN_ENTITY strategy.

Figure 5-52. Unidirectional many-to-one association

I can easily change the unidirectional one-to-many and many-to-one association into a bidirectional one by
adjusting the Players entity (Photos remains unchanged). I need to specify the association field of the entity that is
the owner of the relationship. Therefore, in the Players entity, I make this adjustemnt:

...
@OneToMany(cascade=CascadeType.ALL, mappedBy = "player_photos")
 private Collection<Photos> photos;
...

This time, the atp_players and players_photos collections look like what’s shown in Figure 5-53.

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

196

Finally, I’ve played a little with these associations for storing, retrieving, and removing some Players instances.
In Figure 5-54, you can see a sample of GlassFish log messages following a simple scenario: insert one player, list it,
delete it, and list it again. (Notice the cascading effect on persist and remove.)

Figure 5-54. Testing one-to-many associations

Figure 5-53. Bidirectional one-to-many association

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

197

The complete application for demonstrating the @OneToMany/@ManyToOne annotations is available in the
Apress repository and is named HOGM_MONGODB_OneToMany. It comes as a NetBeans project and was tested under
GlassFish 3 AS.

@ManyToManyAnnotation

Mapped by the javax.persistence.ManyToMany annotation.
Official documentation: http://docs.oracle.com/javaee/6/api/javax/persistence/ManyToMany.html

Brief Overview

In relational database terms, a many-to-many association occurs when many records in one table each correspond to
many records in a related table. This kind of association is mapped by JPA using the @ManyToMany annotation.

When rows from the second table have an inverse association back to the first table, it’s a bidirectional
association. In a bidirectional many-to-many association, the relational model usually uses three tables, two tables
for data and an additional table known as a junction table, which holds a composite key made of two fields: the two
foreign key fields that refer to the primary keys of first and second tables. The same pair of foreign keys can occur only
once. In JPA, the junction table can be specified using the @JoinTable annotation on the owning side, which can be
either side.

Practically, in JPA, the main difference between @ManyToMany and @OneToMany is that @ManyToMany always makes
use of this intermediate relational join table to store the association, while @OneToMany can use either a join table
or a foreign key in a target object’s table referencing the source object table’s primary key. The non-owning side
(which can be either of the two sides) should use the mappedBy element to specify the association field or property
of the owning side. Technically, mappedBy will keep the database correctly updated if you only add or remove from
the owning side, but this can cause issues, such as orphans (records without links) that must be removed from the
application code. Without mappedBy, duplicate records in the join table may appear since you’ll have two different
associations. In a bidirectional many-to-many association, it is recommended you add data from both sides.

@ManyToMany can be used in an embeddable class to specify an association to a collection of entities. Such an
association supports fetching (eager or lazy) and cascading, but doesn’t support orphan removal, which is allowed
only for associations with single cardinality on the source side.

OGM Support

Hibernate OGM supports the @ManyToMany annotation. As you know, by default, OGM stores data in MongoDB using
the IN_ENTITY strategy, which does not imply any additional collection, only entity collections. For unidirectional
many-to-many associations, OGM stores the navigation information for associations in the owner collection, in
fields that store the foreign keys in embedded collections. If the association is bidirectional, both sides will contain
embedded collections for storing the corresponding navigation information (foreign keys). For the GLOBAL_COLLECTION
and COLLECTION strategies, a third collection will be used as described in Chapter 2, in the section called
"Association Storing." In the case of the COLLECTION strategy, if mappedBy is not specified, it’s assumed to be two
difference associations and you’ll get two join collections (one per association).

The main aspects of these associations include supports for unidirectional and bidirectional associations,
the ability to specify a column for joining an entity association or element collection (@JoinColumn), support for
one-to-many/many-to-one associations from an embeddable class to another collection of entities, @JoinTable and
@JoinColumns with the GLOBAL_COLLECTION and COLLECTION strategies, and cascading(all). In addition, OGM
supports fetching with lazy loading.

http://docs.oracle.com/javaee/6/api/javax/persistence/ManyToMany.html
http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

198

Example

To demonstrate a many-to-many association, I need two entities that should be logically appropriate for this purpose.
For example, a tennis player might participate in several tournaments, and each tournament would contain several
players. This can be a good test case for a many-to-many association when we store the players, the tournaments,
and the association. To start, let’s suppose that only the players are aware of the tournaments. In other words, let’s
implement a unidirectional many-to-many association.

For this, the Players entity must define an @ManyToMany association, like this:

import javax.persistence.ManyToMany;
...

@Entity
@Table(name = "atp_players")
public class Players implements Serializable {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;
 @Column(name = "player_name")
 private String name;
 @Column(name = "player_surname")
 private String surname;
 @Column(name = "player_age")
 private int age;
 @Temporal(javax.persistence.TemporalType.DATE)
 @Column(name = "player_birth")
 private Date birth;
 @ManyToMany(cascade = CascadeType.PERSIST)
 Collection<Tournaments> tournaments;

 //constructors, getters and setters
...
}

The Tournaments entity is pretty straightforward:

import java.io.Serializable;
...

@Entity
@Table(name = "atp_tournaments")
public class Tournaments implements Serializable {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;
 private String tournament;

 //constructors, getters and setters
...
}

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

199

Persist several players and tournaments and define some links from players to tournaments to get something
like what’s shown in Figure 5-55. Notice that each document in the atp_players collection contains a field named
tournaments that stores (in a nested collection) the corresponding foreign keys from the atp_tournaments collection.
This is how OGM maps the many-to-many unidirectional association using IN_ENTITY strategy.

The same kind of association can be defined from the Tournaments perspective by translating the @ManyToMany
annotation from the Players entity to the Tournaments entity and providing Players for Tournaments, instead of
Tournaments for Players.

You can easily transform this unidirectional many-to-many association into a bidirectional association. While the
Players entity remains unchanged, the Tournaments entity should be modified like this:

import javax.persistence.ManyToMany;
...

@Entity
@Table(name = "atp_tournaments")
public class Tournaments implements Serializable {

Figure 5-55. Unidirectional many-to-many association

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

200

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;
 private String tournament;
 @ManyToMany(mappedBy = "tournaments")
 Collection<Players> players;

 //constructors, getters and setters
...
}

Now, MongoDB will contain nested collections in both entity collections, atp_players and atp_tournaments.
Each nested collection will store the foreign keys of the other side. See Figure 5-56.

Figure 5-56. Bidirectional many-to-many association

Notice that in the preceding cases, I used generics, so I didn’t specify the associated target entity type. When
generics aren’t used, you need to specify the target entity class using the targetEntity element. For example, I can
redefine the @ManyToMany associations like this:

...
//in Players entity
@ManyToMany(targetEntity = hogm.mongodb.entity.Tournaments.class,cascade = CascadeType.PERSIST)
 Collection tournaments;
...
...
//in Tournaments entity
@ManyToMany(targetEntity = hogm.mongodb.entity.Players.class, mappedBy = "tournaments")
 Collection players;
...

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

201

When the GLOBAL_COLLECTION or COLLECTION strategy is preferred, I can use @JoinTable (including
@JoinColumn) on the owning side of the association to indicate the name of the association table and columns. For
GLOBAL_COLLECTION, I can use:

...
@ManyToMany(targetEntity = hogm.mongodb.entity.Tournaments.class,
 cascade = CascadeType.PERSIST)
 @JoinTable(name = "PLAYERS_AND_TOURNAMENTS", joinColumns =
 @JoinColumn(name = "PLAYER_ID", referencedColumnName = "id"),
 inverseJoinColumns =
 @JoinColumn(name = "TOURNAMENT_ID", referencedColumnName = "id"))
 Collection tournaments;
...

The result is shown in Figure 5-57.

Figure 5-57. GLOBAL_COLLECTION and @JoinTable

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

202

Finally, I played a little with these associations for storing, retrieving, and removing some Players and
Tournaments instances. You can test the entire application by downloading it from the Apress repository; it’s the
HOGM_MONGODB_ManyToMany application (notice that the application doesn’t provide orphan removal). It comes as a
NetBeans project and was tested under GlassFish 3 AS.

Unsupported JPA 2.0 Annotations
According to the Hibernate OGM Beta 4.0.0Beta 2 documentation, the following are not supported:

inheritance strategies: • @Inheritance nor @DiscriminatorColumn.

secondary tables: • @SecondaryTables, @SecondaryTable

named queries•

native queries•

And for COLLECTION, the result is shown in in Figure 5-58.

Figure 5-58. COLLECTION and @JoinTable

http:///

CHAPTER 5 ■ HIBERNATE OGM AND JPA 2.0 ANNOTATIONS

203

Summary
In this chapter, you saw how Hibernate OGM implements the JPA 2.0 annotations for working with MongoDB stores.
I discussed the main JPA 2.0 annotations and focused on the supported ones:

• @Entity

• @Id

• @EmbeddedId

• @IdClass

• @Table

• @Column

• @Temporal

• @Transient

• @Embedded and @Embeddable

• @Enumerated

• @Cacheable

• @MappedSuperclass

• @ElementCollection

• @EntityListeners, @ExcludeDefaultListeners, @ExcludeSuperclassListeners

• @Version

• @Access

• @OneToOne, @OneToMany, @ManyToOne, @ManyToMany

The list of unsupported annotations is quite short and will probably be reduced to zero on the next release.

http:///

http:///

205

CHAPTER 6

Hibernate OGM Querying MongoDB

In previous chapters, we accomplished several tasks in order to organize and store our data in NoSQL MongoDB stores.
Now we’ll make use of this data by applying different querying techniques to extract only the information we need from
a NoSQL MongoDB store.

As I noted in Chapter 1, querying a NoSQL database is a delicate and complex task—there are different situations,
and different approaches depending on the native support for NoSQL querying. For MongoDB, there are a number
of querying options; it’s up to you to choose the one that meets your needs, depending on your queries’ complexity,
performance parameters, and so on:

Native query technology, which means using the MongoDB driver querying capabilities •
without involving Hibernate OGM or any other technology.

Hibernate ORM/OGM for CRUD, in which Create/Read/Update/Delete operations are •
implemented by the Hibernate ORM engine.

Hibernate Search/Apache Lucene, which uses a full-text indexing and query engine •
(Apache Lucene). Hibernate Search is a powerful querying mechanism with great
performance and capabilities and provides a very easy-to-use bridge to Lucene. For complex
queries and indexing support, this is the right choice.

Hibernate OGM JP-QL parser, which uses uses Hibernate Search to retrieve the desired •
information from a MongoDB store, is good for simple queries. This JP-QL parser is in its
infancy, so it will need time to become powerful and support complex queries.

Other tools, such as DataNucleus, Morphia, and so on that won’t be covered in this book.•

Note ■ Currently, Hibernate OGM via Hibernate Native API doesn’t provide support for Hibernate Criteria. Moreover, it

doesn’t, via JPA, provide support for native and named queries.

We are going to delve into each of these querying possibilities and try to see how it works. We will focus on
Hibernate OGM and discuss MongoDB from this perspective. For the sake of completeness, however, we’ll start this
journey about querying MongoDB by first looking at basic MongoDB querying capabilities, and reserve the subject
of Hibernate OGM till the second part of the chapter. In this way, you’ll get a complete picture of querying MongoDB
and you’ll be better able to choose the appropriate querying solution for your needs.

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

206

MongoDB Native Query
As you probably know, MongoDB natively provides interactive support through the mongo shell (a full interactive
JavaScript environment with a database interface for MongoDB), and programmatic support through the MongoDB
driver (which is available for multiple programming languages, such as Java, Ruby, and PHP). In this section, we will
skip the shell and concentrate on querying a MongoDB store using the MongoDB driver for Java. You’ll need the 2.8.0
version of this driver, which is available for download as a JAR named mongo-java-driver-2.8.0.jar at
www.docs.mongodb.org/manual/applications/drivers/.

Before executing any query, you need to configure a MongoDB connection and create a database, then create a
collection and populate it with data. For this, please go back to the section in Chapter 4 called “Java SE and Mongo
DB—the HelloWorld Example.” Once you know how to connect and persist documents to a MongoDB store, you’re
ready to perform queries.

We’ll create a collection called players and try some queries against it. Each document stores some tennis player
data: name, surname, age, and birth date (and duplicate documents are allowed). After populating the collection with
several documents, you can start with the well-known “select all” query. You can use the find method, which returns
a cursor that contains a number of documents. As you can see, it’s very easy to iterate the results. This chunk of code
uses find to extract all documents:

...
Mongo mongo = new Mongo("127.0.0.1", 27017);
DB db = mongo.getDB("players_db");
DBCollection dbCollection = db.getCollection("players");
...
System.out.println("Find all documents in collection:");
 try (DBCursor cursor = dbCollection.find()) {
 while (cursor.hasNext()) {
 System.out.println(cursor.next());
 }
 }
...

The result of this query is shown in Figure 6-1.

Figure 6-1. All documents of the players collection

Note ■ You can count how many documents are in a collection by calling the getCount method, like this:

dbCollection.getCount();.

http://www.docs.mongodb.org/manual/applications/drivers/
http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

207

You can find a single document using the findOne method; this method doesn’t return a cursor. The snipped
code is:

...
System.out.println("Find the first document in collection:");
 DBObject first = dbCollection.findOne();
 System.out.println(first);
...

The result will be the first document from the players collection, as shown in Figure 6-2.

Figure 6-2. Extracting the first document of the players collection

You can also execute conditional queries. For example, we can extract the documents corresponding to the
player Rafael Nadal using the find method, like this:

...
System.out.println("Find Rafael Nadal documents:");
 BasicDBObject query = new BasicDBObject("name", "Nadal").append("surname", "Rafael");
 try (DBCursor cursor = dbCollection.find(query)) {
 while (cursor.hasNext()) {
 System.out.println(cursor.next());
 }
 }
...

The results are shown in Figure 6-3.

Figure 6-3. Extracting only documents containing Rafael Nadal

The find method combined with the $gt (greater than) operator lets you extract all players whose age is
greater than 25:

...
System.out.println("Find players with age > 25:");
 BasicDBObject query = new BasicDBObject("age", new BasicDBObject("$gt", 25));
 try (DBCursor cursor = dbCollection.find(query)) {
 while (cursor.hasNext()) {
 System.out.println(cursor.next());
 }
 }
...

You can see the results in Figure 6-4.

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

208

The find method combined with the $lt (less than) operator lets you extract all players whose age is less than 28:

...
System.out.println("Find players with age < 28:");
 BasicDBObject query = new BasicDBObject("age", new BasicDBObject("$lt", 28));
 try (DBCursor cursor = dbCollection.find(query)) {
 while (cursor.hasNext()) {
 System.out.println(cursor.next());
 }
 }
...

The results are shown in Figure 6-5.

Figure 6-5. Extracting only documents with age less than 28

Figure 6-4. Extracting only documents with age greater than 25

Extracting data that falls within (or outside of) an interval of values can be accomplished using the $gt and $lt,
or $gte (greater than or equal) and $lte (less than or equal) operators and the find method. For example, you can
obtain all players born between 1 January, 1982 and 31 December, 1985 like this:

...
System.out.println("JAVA - Find players with birthday between 1 January, 1982 - 31 December, 1985:");
 Calendar calendar_begin = GregorianCalendar.getInstance();
 calendar_begin.clear();
 calendar_begin.set(1982, Calendar.JANUARY, 1);
 Calendar calendar_end = GregorianCalendar.getInstance();
 calendar_end.clear();
 calendar_end.set(1985, Calendar.DECEMBER, 31);
 BasicDBObject query = new BasicDBObject("birth", new BasicDBObject("$gte",
 calendar_begin.getTime()).append("$lte", calendar_end.getTime()));
 try (DBCursor cursor = dbCollection.find(query)) {
 while (cursor.hasNext()) {
 System.out.println(cursor.next());
 }
 }
...

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

209

The results are shown in Figure 6-6:

Figure 6-6. Extracting only documents with births between 1 January, 1982 and 31 December, 1985

If you prefer to use Joda Time (a replacement for the Java date and time classes, available at
http://joda-time.sourceforge.net), you can write the query like this:

System.out.println("JODA - Find players with birthday between 1 January, 1982 - 31 December, 1985:");
 DateTime joda_calendar_begin = new DateTime(1982, 1, 1, 0, 0);
 DateTime joda_calendar_end = new DateTime(1985, 12, 31, 0, 0);
 query = new BasicDBObject("birth", new BasicDBObject("$gte",

joda_calendar_begin.toDate()).append("$lte", joda_calendar_end.toDate()));
 try (DBCursor cursor = dbCollection.find(query)) {
 while (cursor.hasNext()) {
 System.out.println(cursor.next());
 }
 }

You can also extract data with specific values using the $in operator and the find method. For example, you can
obtain all players with the ages 25, 27, and 30, like this:

...
System.out.println("Find players with ages: 25, 27, 30");
 List<Integer> list = new ArrayList<>();
 list.add(25);
 list.add(27);
 list.add(30);
 BasicDBObject query = new BasicDBObject("age", new BasicDBObject("$in", list));
 try (DBCursor cursor = dbCollection.find(query)) {
 while (cursor.hasNext()) {
 System.out.println(cursor.next());
 }
 }
...

The result are shown in Figure 6-7.

Figure 6-7. Extracting only documents with age equal to 25, 27, or 30

http://joda-time.sourceforge.net/
http://joda-time.sourceforge.net/
http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

210

When you need to extract data by negation, you can use the $ne (not equal) operator and the find method. For
example, you can easily obtain all players with ages not equal to 27, like this:

...
System.out.println("Find players with ages different from: 27");
 BasicDBObject query = new BasicDBObject("age", new BasicDBObject("$ne", 27));
 try (DBCursor cursor = dbCollection.find(query)) {
 while (cursor.hasNext()) {
 System.out.println(cursor.next());
 }
 }
...

The results are shown in Figure 6-8:

Figure 6-8. Extracting only documents with age different from 27

In the previous examples, we created (inserted) and retrieved (read) data from MongoDB using MongoDB Java
driver. You can accomplish an update accomplish by calling the save method. For example, you can replace Rafael
Nadal with Rafael Nadal Parera, like this:

...
 System.out.println("UPDATING ...");
 BasicDBObject query = new BasicDBObject("name", "Nadal").append("surname", "Rafael");
 try (DBCursor cursor = dbCollection.find(query)) {
 while (cursor.hasNext()) {
 DBObject item = cursor.next();
 item.put("name", "Nadal Parera");
 dbCollection.save(item);
 }
 }
...

And you can delete data by calling the remove method. For example, you can delete all occurrences of Roger
Federer, like this:

...
 System.out.println("DELETING ...");
 BasicDBObject query = new BasicDBObject("name", "Federer").append("surname", "Roger");
 try (DBCursor cursor = dbCollection.find(query)) {
 while (cursor.hasNext()) {

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

211

 DBObject item = cursor.next();
 dbCollection.remove(item);
 }
 }
...

Note ■ For advanced queries using MongoDB drivers, see The Definitive Guide to MongoDB by Eelco Plugge,

Tim Hawkins, and Peter Membrey (Apress, 2010). Visit www.apress.com/9781430230519.

The complete application containing the preceding snippets of code is available in the Apress repository and is
named MONGODB_QUERY. It comes as a NetBeans project and was tested under Java 7.

Hibernate OGM and CRUD Operations
The four essential operations performed against a NoSQL database—Create, Read, Update and Delete—are available
in Hibernate OGM out of the box. Actually, independently of JPA or the Hibernate Native API, Hibernate ORM
delegates persistence and load queries to the OGM engine, which delegates CRUD operations to DatastoreProvider
and GridDialect, and these interact with the NoSQL store.

In Chapters 3 and 4 you saw how to develop applications based on Hibernate OGM via the Hibernate Native API
and Java Persistence API. It should be a piece of cake, therefore, to wrap the Players entity in Listing 6-1 into such an
application.

Listing 6-1. The Players Entity

package hogm.hnapi.entity;

import java.io.Serializable;
...

@Entity
@Table(name = "atp_players")
@GenericGenerator(name = "mongodb_uuidgg", strategy = "uuid2")
public class Players implements Serializable {

 @Id
 @GeneratedValue(generator = "mongodb_uuidgg")
 private String id;
 @Column(name = "player_name")
 private String name;
 @Column(name = "player_surname")
 private String surname;
 @Column(name = "player_age")
 private int age;
 @Column(name = "player_birth")
 @Temporal(javax.persistence.TemporalType.DATE)
 private Date birth;

http://www.apress.com/9781430230519
http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

212

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getSurname() {
 return surname;
 }

 public void setSurname(String surname) {
 this.surname = surname;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public Date getBirth() {
 return birth;
 }

 public void setBirth(Date birth) {
 this.birth = birth;
 }

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }
}

Once that’s done, you have access to CRUD operations. Suppose we have an instance of Players, named player.
Using Hibernate OGM via Hibernate Native API, you can obtain the Hibernate session with the

getCurrentSession or openSession methods.

To persist the • player instance, use the persist method:

HibernateUtil.getSessionFactory().getCurrentSession().persist(player);

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

213

To update the • player instance, use the merge method:

HibernateUtil.getSessionFactory().getCurrentSession().merge(player);

To find the • player instance by id, use the find method:

HibernateUtil.getSessionFactory().getCurrentSession().get(Players.class, id);

To delete the • player instance, use the delete method:

HibernateUtil.getSessionFactory().getCurrentSession().delete(player);

You can try all of these methods in a sample application named HOGM_MONGODB_HNAPI_CRUD, available in the
Apress repository. It comes as a NetBeans project and was tested under GlassFish 3 AS. The interface application looks
like Figure 6-9.

Figure 6-9. Testing Hibernate OGM and CRUD operations

Using Hibernate OGM via the Java Persistence API (em stands for EntityManager):

To persist the • player instance, use the persist method:

em.persist(player);

To update the • player instance, use the merge method:

em.merge(player);

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

214

To find the • player instance by id, use the find method:

em.find(Players.class, id);

To delete the • player instance, use the delete method:

em.delete (player);

You can try all of these methods in a sample application named HOGM_MONGODB_JPA_CRUD, available in the Apress
repository. It comes as a NetBeans project and was tested under GlassFish 3 AS. The interface application looks like
the one in Figure 6-9.

Hibernate Search and Apache Lucene
Basically, Hibernate/JPA and Apache Lucene deal with the same area—querying data. They both provide CRUD
operations, a basic data unit (an entity in Hibernate, a document in Lucene) and the same programming concepts.
The main difference lies in the fact that Hibernate/JPA promotes domain model-oriented programming, while
Lucene deals with only a single, built-in data model—the Document class, which is too simple to describe complex
associations. Combined, however, the two yield a higher-level API, named Hibernate Search.

Both Hibernate Search and Apache Lucene are powerful, robust technologies. While Apache Lucene is a full-text
indexing and query engine with excellent query performance, Hibernate Search brings its power to the persistence
domain model. The symbiosis works fairly well: Hibernate Search “squeezes” the query capabilities of Apache Lucene
while providing support for the domain model and the synchronization of databases and indexes, and converting
free text queries back to managed objects. Because our focus is on Hibernate OGM and MongoDB, I won’t provide
a Hibernate Search or Apache Lucene tutorial. Instead we’ll get quickly to developing examples, and I’ll supply
sufficient information for you to understand the new Hibernate Search/Apache Lucene annotations and classes,
without going into detail. We are going to combine Hibernate ORM, OGM, and Search with Apache Lucene and
MongoDB into applications with query capabilities so you can explore the complexity of the querying process. Once
you have a functional application, you’ll be able to try a wide range of queries.

We will develop two applications. The first will be a Hibernate OGM/ via Hibernate Native API application
and the second Hibernate OGM via JPA (details in Chapters 3 and 4). Both applications will follow a common,
straightforward scenario: we’ll create an entity (and the corresponding POJO, specific only to Hibernate Native API),
persist several instances to a MongoDB collection, and execute some query samples through Hibernate Search and
Apache Lucene.

The POJO is named Players and is shown in Listing 6-2 (this POJO is mapped in an hbm.xml file).

Listing 6-2. The Players Class

public class Players {

 private String id;
 private String name;
 private String surname;
 private int age;
 private Date birth;

 public String getName() {
 return name;
 }

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

215

 public void setName(String name) {
 this.name = name;
 }

 public String getSurname() {
 return surname;
 }

 public void setSurname(String surname) {
 this.surname = surname;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public Date getBirth() {
 return birth;
 }

 public void setBirth(Date birth) {
 this.birth = birth;
 }

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }
}

And thePlayers.hbm.xml fileis shown in Listing 6-3.

Listing 6-3. Players.hbm.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
 <class name="hogm.hnapi.pojo.Players" table="atp_players">
 <id name="id" type="string">
 <column name="id" />
 <generator class="uuid2" />
 </id>
 <property name="name" type="string">
 <column name="player_name"/>
 </property>

http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd
http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

216

 <property name="surname" type="string">
 <column name="player_surname"/>
 </property>
 <property name="age" type="int">
 <column name="player_age"/>
 </property>
 <property name="birth" type="date">
 <column name="player_birth"/>
 </property>
 </class>
</hibernate-mapping>

Or, if you prefer the entity version, the POJO becomes what’s shown in Listing 6-4. (This entity is used in both
applications.)

Listing 6-4. The Entity Version of Players

import java.io.Serializable;
...

@Entity
@Table(name = "atp_players")
@GenericGenerator(name = "mongodb_uuidgg", strategy = "uuid2")
public class Players implements Serializable {

 @Id
 @GeneratedValue(generator = "mongodb_uuidgg")
 private String id;
 @Column(name = "player_name")
 private String name;
 @Column(name = "player_surname")
 private String surname;
 @Column(name = "player_age")
 private int age;
 @Column(name = "player_birth")
 @Temporal(javax.persistence.TemporalType.DATE)
 private Date birth;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getSurname() {
 return surname;
 }

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

217

 public void setSurname(String surname) {
 this.surname = surname;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public Date getBirth() {
 return birth;
 }

 public void setBirth(Date birth) {
 this.birth = birth;
 }

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }
}

Common Steps
No matter which application type (OGM via the Hibernate Native API or via JPA), there are a few common steps to
add Hibernate Search or Apache Lucene support:

1. In addition to the Hibernate OGM and MongoDB library (remember it from Chapter 1),
we need to add at least two more JARs: hibernate-search-orm-4.2.0.Final.jar and
avro-1.6.3.jar. Both are available in the Hibernate Search distribution, release 4.2.0
Final. Notice that many other JARs, including Apache Lucene and Object/Lucene core
mapper, are available in Hibernate OGM and MongoDB library.

2. Next, we need to focus on our POJO (or entity) class. This is the first step to bring
Hibernate Search into the equation—Hibernate Search-specific configurations are
expressed via annotations. More precisely, we need to use a couple of annotations for
mapping the POJO (entity).

We’ll use the • @Indexed annotation to mark the Players class as indexable (searchable).
Entities that are not annotated with @Indexed will be ignored by the indexing process.

We then specify how the indexing will be done using the • @Field annotation at the field or
property level. There are a few supported attributes but, for now, it’s enough to indicate
whether the field or property is indexed (using the index attribute); whether the field
or property is analyzed (using the analyze attribute); and whether the field or property
is stored in the Lucene index (using the store attribute). More attributes and detailed
descriptions are available in the official documentation.

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

218

Since we have a • Date field, we need to know a few things about how Hibernate
Search works with dates. Dates are stored as “yyyyMMddHHmmssSSS in GMT time
(200611072203012 for Nov 7th of 2006 4:03PM and 12ms EST),” but we can specify the
appropriate resolution for storing a date in the index using the @DateBridge annotation
(the resolution can be DAY, HOUR, YEAR, MINUTE, SECOND, MONTH and MILISECOND). We use
the YEAR resolution.

For numerical fields, like • player age, we can use the @NumericField annotation.
This is optional, but it can be useful for enabling efficient range query, and in sorting,
and to speed up queries.

Finally, to indicate a field or property as the document id (primary key), we need to •
annotate it with @DocumentId. This annotation is optional for entities that already contain
an @Id annotation.

For our needs, the • @Indexed, @Field, @NumericField, @DateBridge and @DocumentId
annotations are enough to configure the indexing process. Listing 6-5 shows the Players
POJO after it has been marked with the Hibernate Search annotations.

Listing 6-5. The Players POJO with Annotations

package hogm.hnapi.pojo;

import org.hibernate.search.annotations.Analyze;
import org.hibernate.search.annotations.DateBridge;
import org.hibernate.search.annotations.DocumentId;
import org.hibernate.search.annotations.Field;
import org.hibernate.search.annotations.Index;
import org.hibernate.search.annotations.Indexed;
import org.hibernate.search.annotations.NumericField;
import org.hibernate.search.annotations.Resolution;
import org.hibernate.search.annotations.Store;
...

@Indexed
public class Players {

 @DocumentId
 private String id;
 @Field(index=Index.YES, analyze=Analyze.YES, store=Store.NO)
 private String name;
 @Field(index=Index.YES, analyze=Analyze.NO, store=Store.NO)
 private String surname;
 @NumericField
 @Field(index=Index.YES, analyze=Analyze.NO, store=Store.NO)
 private int age;
 @Field(index=Index.YES, analyze=Analyze.NO, store=Store.NO)
 @DateBridge(resolution = Resolution.YEAR)
 private Date birth;

 public String getName() {
 return name;
 }

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

219

 public void setName(String name) {
 this.name = name;
 }

 public String getSurname() {
 return surname;
 }

 public void setSurname(String surname) {
 this.surname = surname;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public Date getBirth() {
 return birth;
 }

 public void setBirth(Date birth) {
 this.birth = birth;
 }

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }
}

Or, if we apply these annotations to the Players entity, we get what’s shown in Listing 6-6.

Listing 6-6. The Entity Version of Players with Annotations

package hogm.hnapi.entity;

import org.hibernate.search.annotations.Analyze;
import org.hibernate.search.annotations.DateBridge;
import org.hibernate.search.annotations.DocumentId;
import org.hibernate.search.annotations.Field;
import org.hibernate.search.annotations.Index;
import org.hibernate.search.annotations.Indexed;
import org.hibernate.search.annotations.NumericField;
import org.hibernate.search.annotations.Resolution;
import org.hibernate.search.annotations.Store;
...

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

220

@Entity
@Indexed
@Table(name = "atp_players")
@GenericGenerator(name = "mongodb_uuidgg", strategy = "uuid2")
public class Players implements Serializable {

 private static final long serialVersionUID = 1L;
 @DocumentId
 @Id
 @GeneratedValue(generator = "mongodb_uuidgg")
 private String id;
 @Column(name = "player_name")
 @Field(index=Index.YES, analyze=Analyze.YES, store=Store.NO)
 private String name;
 @Column(name = "player_surname")
 @Field(index=Index.YES, analyze=Analyze.NO, store=Store.NO)
 private String surname;
 @Column(name = "player_age")
 @NumericField
 @Field(index=Index.YES, analyze=Analyze.NO, store=Store.NO)
 private int age;
 @Column(name = "player_birth")
 @Field(index=Index.YES, analyze=Analyze.NO, store=Store.NO)
 @DateBridge(resolution = Resolution.YEAR)
 @Temporal(javax.persistence.TemporalType.DATE)
 private Date birth;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getSurname() {
 return surname;
 }

 public void setSurname(String surname) {
 this.surname = surname;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

221

 public Date getBirth() {
 return birth;
 }

 public void setBirth(Date birth) {
 this.birth = birth;
 }

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }
}

 3. Next, we have to provide some basic configuration information in hibernate.cfg.xml (or, in
HibernateUtil) for OGM via the Hibernate Native API application, or in persistence.xml,
for OGM via JPA.

We have to specify the directory provider; for Apache Lucene, a directory represents the type and place to store
index files, and it comes bundled with a file system (FSDirectoryProvider) and an in-memory implementation
(RAMDirectoryProvider), though it also supports custom implementations. Hibernate Search is responsible for the
configuration and initialization of Lucene resources, including the directory via DirectoryProviders. We want
easy access to index files (with the ability to physically inspect indexes with external tools, like Luke), so we’ll use
the file system to store them by setting the hibernate.search.default.directory_provider property as
filesystem. Besides the directory provider, we also have to specify the default base directory for all indexes via
the hibernate.search.default.indexBase property. Finally, we can specify the locking strategy (in this case, the
filesystem-level lock) by setting the hibernate.search.default.locking_strategy property to single; this is a
Java object lock held in memory. Add these configurations in hibernate.cfg.xml (or in HibernateUtil) for OGM via
the Hibernate Native API, or in persistence.xml for OGM via JPA, like this:

//in hibernate.cfg.xml
<property name="hibernate.search.default.directory_provider">filesystem</property>
<property name="hibernate.search.default.indexBase">./Indexes</property>
<property name="hibernate.search.default.locking_strategy">single</property>...

Or:

//in HibernateUtil
OgmConfiguration cfgogm = new OgmConfiguration();
...
cfgogm.setProperty("hibernate.search.default.directory_provider","filesystem");
cfgogm.setProperty("hibernate.search.default.indexBase","./Indexes");
cfgogm.setProperty("hibernate.search.default.locking_strategy", "single");
...

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

222

Or:

...
//in persistence.xml
<property name="hibernate.search.default.directory_provider" value="filesystem"/>
<property name="hibernate.search.default.indexBase" value="./Indexes"/>
<property name="hibernate.search.default.locking_strategy" value="single"/>
...

Finally, everything is configured and we are ready to start writing Lucene queries. But, from this point on, the
code will be specific to each of the two applications. So let’s start with the OGM via Hibernate Native API application.

Hibernate Search/Apache Lucene Querying—OGM via Native API
The first goal is to write a “select all” query that will help you become familiar with Lucene style in an OGM via Native
API application. Following a step-by-step approach, we can write such a query, like this:

 1. Create an org.hibernate.search.FullTextSession. This interface will spice up the
Hibernate session with full-text search and indexing capabilities. This session provides two
ways of writing queries: using the Hibernate Search query DSL (domain search language)
or the native Lucene query. The code to accomplish this is:

FullTextSession fullTextSession =
Search.getFullTextSession(HibernateUtil.getSessionFactory().getCurrentSession());

 2. Create an org.hibernate.search.query.dsl.QueryBuilder and use the new session to

obtain a query builder that helps to simplify the query definition. Notice that we indicate
that our query affects only the Players class:

QueryBuilder queryBuilder = fullTextSession.getSearchFactory().
 buildQueryBuilder().forEntity(Players.class).get();

 3. Create a Lucene query. As you’ll see in the official documentation, there are several

ways to build a Lucene query using QueryBuilder. For this example, we can use the
queryBuilder.all method, which is a simple approach for obtaining whole documents:

org.apache.lucene.search.Query query = queryBuilder.all().createQuery();

 4. Define a sort rule (optional). We can easily define a sort rule using the Lucene sort

capabilities. For example, we might need to sort the extracted players by name:

org.apache.lucene.search.Sort sort = new Sort(new SortField("name", SortField.STRING));

 5. Wrap the Lucene query in an org.hibernate.FullTextQuery. In order to configure the

sort rule and execute the query, we need to wrap the Lucene query into a FullTextQuery,
like this:

FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(query, Players.class);

 6. Specify the object lookup method and database retrieval method. For OGM you must

specify object lookup and database retrieval methods (SKIP specifies to not check if

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

223

objects are already present in the second level cache or in the persistence context;
FIND_BY_ID loads each object by its identifier one by one):

fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND_BY_ID);

 7. Set the sort rule. You can set the sort rule by calling the setSort method:

fullTextQuery.setSort(sort);

 8. Execute the query. Finally, we execute the query and obtain the results in a java.util.List:

List<Players> results = fullTextQuery.list();

 9. Optionally, clear up the session:

fullTextSession.clear();

We can put these nine steps in a method named selectAllAction to create our first Hibernate Search/Lucene query.
You can find this method in a session bean, named SampleBean, in the package hogm.hnapi.ejb shown in Listing 6-7.

Listing 6-7. The selectAllAction Method

package hogm.hnapi.ejb;
...
public class SampleBean {
 ...
 public List<Players> selectAllAction() {

 log.info("Select all Players instance ...");

 FullTextSession fullTextSession =
 Search.getFullTextSession(HibernateUtil.getSessionFactory().getCurrentSession());
 QueryBuilder queryBuilder = fullTextSession.getSearchFactory().
 buildQueryBuilder().forEntity(Players.class).get();
 org.apache.lucene.search.Query query = queryBuilder.all().createQuery();
 org.apache.lucene.search.Sort sort = new Sort(new SortField("name", SortField.STRING));

 FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(query, Players.class);
 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);

 fullTextQuery.setSort(sort);
 List<Players> results = fullTextQuery.list();

 fullTextSession.clear();

 log.info("Search complete ...");

 return results;
 }
...
}

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

224

The nine steps can be used as a quick guide for writing many other kinds of queries. Now let’s see how to write
some common queries:

• Select all players born in 1987. This query (and similar queries) can be easily written
using three methods: queryBuilder.keyword, which indicates we’re searching for a
specific word; TermContext.onField, which specifies in which Lucene field to look; and
TermMatchingContext.matching, which tells what to look for. So, wrapping this query into a
method named selectByYearAction looks like what’s shown in Listing 6-8.

Listing 6-8. The selectByYearAction Method

package hogm.hnapi.ejb;
...
public class SampleBean {
 ...
public List<Players> selectByYearAction() {

 log.info("Search only Players instances 'born in 1987' ...");

 Calendar calendar = GregorianCalendar.getInstance(TimeZone.getTimeZone("UTC"));
 calendar.clear();

 calendar.set(Calendar.YEAR, 1987);

 FullTextSession fullTextSession =
 Search.getFullTextSession(HibernateUtil.getSessionFactory().getCurrentSession());
 QueryBuilder queryBuilder = fullTextSession.getSearchFactory().
 buildQueryBuilder().forEntity(Players.class).get();

 org.apache.lucene.search.Query query =
 queryBuilder.keyword().onField("birth").matching(calendar.getTime()).createQuery();

 FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(query, Players.class);
 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);

 List<Players> results = fullTextQuery.list();

 fullTextSession.clear();

 log.info("Search complete ...");

 return results;
 }
}

• Select only a player named Rafael Nadal. This query (and similar queries) searches for two
words in two different fields, “Rafael” and “Nadal.” The query looks for the first word in
the player_surname column (surname field), and for the second word in the player_name
column (name field). For this, you can use one of the aggregation operators, named must.
(Aggregations operators allow you to combine simple queries into more complex queries.)

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

225

Wrapping the necessary code into a method named selectRafaelNadalAction shows this.
The bool method indicates that we’ve created a Boolean query—a query that finds documents
matching Boolean combinations of other queries. (See Listing 6-9.)

Listing 6-9. The selectRafaelNadalAction Method

package hogm.hnapi.ejb;
...
public class SampleBean {
 ...
public List<Players> selectRafaelNadalAction() {

 log.info("Search only Players instances that have the name 'Nadal' and surname 'Rafael' ...");

 FullTextSession fullTextSession =
 Search.getFullTextSession(HibernateUtil.getSessionFactory().getCurrentSession());
 QueryBuilder queryBuilder = fullTextSession.getSearchFactory().
 buildQueryBuilder().forEntity(Players.class).get();
 org.apache.lucene.search.Query query = queryBuilder.bool().must(queryBuilder.keyword()
 .onField("name").matching("Nadal").createQuery()).must(queryBuilder.keyword()
 .onField("surname").matching("Rafael").createQuery()).createQuery();

 FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(query, Players.class);
 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);

 List<Players> results = fullTextQuery.list();
 fullTextSession.clear();

 log.info("Search complete ...");

 return results;
 }
}

• Select players with surnames starting with the letter ’J.’ This query (and similar queries) can be
written using wildcards. The ? represents a single character and the * represents any character
sequence. The TermContext.wildcard method indicates that a wildcard query follows.
Wrapping the necessary code into a method named selectJAction shows this.
(See Listing 6-10.)

Listing 6-10. The selectJAction Method

package hogm.hnapi.ejb;
...
public class SampleBean {
 ...
public List<Players> selectJAction() {

 log.info("Search only Players that surnames begins with 'J' ...");

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

226

 FullTextSession fullTextSession =
 Search.getFullTextSession(HibernateUtil.getSessionFactory().getCurrentSession());
 QueryBuilder queryBuilder = fullTextSession.getSearchFactory().
 buildQueryBuilder().forEntity(Players.class).get();

 org.apache.lucene.search.Query query = queryBuilder.keyword().wildcard()
 .onField("surname").matching("J*").createQuery();

 FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(query, Players.class);
 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);

 List<Players> results = fullTextQuery.list();
 fullTextSession.clear();

 log.info("Search complete ...");

 return results;
 }
}

• Select players with ages in the interval (25,28). This query (and similar queries) can be treated
as range queries. Such a query searches for a value in an interval (boundaries included or
not) or for a value below or above the interval boundary (boundaries included or not). You
indicate that a range query follows by calling the QueryBuilder.range method. The interval
is set by calling the from and to methods, and the interval’s boundaries can be excluded
by calling the excludeLimit method. Wrapping the necessary code into a method named
select25To28AgeAction will show this. (See Listing 6-11.)

Listing 6-11. The select25To28AgeAction Method

package hogm.hnapi.ejb;
...
public class SampleBean {
 ...
public List<Players> select25To28AgeAction() {

 log.info("Search only Players that have ages between 25 and 28, excluding limits ...");

 FullTextSession fullTextSession =
 Search.getFullTextSession(HibernateUtil.getSessionFactory().getCurrentSession());
 QueryBuilder queryBuilder = fullTextSession.getSearchFactory().
 buildQueryBuilder().forEntity(Players.class).get();

 org.apache.lucene.search.Query query = queryBuilder.range()
 .onField("age").from(25).to(28).excludeLimit().createQuery();

 FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(query, Players.class);
 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

227

 List<Players>results = fullTextQuery.list();
 fullTextSession.clear();

 log.info("Search complete ...");

 return results;
 }
}

Note■ As you can see, you can easy model a range using the from, to, and excludeLimit methods. Beside these,

Lucene provides the below and above methods. Using them in a logical approach, you can obtain the well-known

operators “<” (less than), “>” (greater than), “<=” (less than or equal to)”, and “>=” greater than or equal to).

There are many other kinds of queries you can write, you just have to explore more documentation about
Hibernate Search and Apache Lucene. For the queries mentioned, I developed a complete application that’s available
in the Apress repository and is named HOGM_MONGODB_HNAPI_HS. It comes as a NetBeans project and was tested under
GlassFish 3 AS. Figure 6-10 shows this application.

Figure 6-10. The HOGM_MONGODB_HNAPI_HS application

Note■ You can rebuild the index (deleting it and then reloading all entities from the database) by calling the

startAndWait method: fullTextSession.createIndexer().startAndWait();

When you have associations (or embedded objects), you need to provide a few more annotations. Associated
objects (and embedded objects) can be indexed as part of the root entity index. For this, the association is marked
with @IndexedEmbedded. When the association is bidirectional, the other side must be annotated with @ContainedIn.
This helps Hibernate Search keep up to date the associations indexing process.

For example, let’s suppose that the Players entity is in a many-to-many association with the Tournaments entity
(each player participates in multiple tournaments and each tournament contains multiple players). (And keep in mind
that POJOs annotations are specified in .hbm.xml files.) The annotated POJOs are shown in Listing 6-12 and Listing 6-13.

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

228

Listing 6-12. The Players POJO

package hogm.hnapi.pojo

import org.hibernate.search.annotations.Analyze;
import org.hibernate.search.annotations.DateBridge;
import org.hibernate.search.annotations.DocumentId;
import org.hibernate.search.annotations.Field;
import org.hibernate.search.annotations.Index;
import org.hibernate.search.annotations.Indexed;
import org.hibernate.search.annotations.IndexedEmbedded;
import org.hibernate.search.annotations.Resolution;
import org.hibernate.search.annotations.Store;
...

@Indexed
public class Players {

 @DocumentId
 private String id;
 @Field(index = Index.YES, analyze = Analyze.YES, store = Store.NO)
 private String name;
 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
 private String surname;
 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
 private int age;
 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
 @DateBridge(resolution = Resolution.YEAR)
 private Date birth;
 @IndexedEmbedded
 Collection<Tournaments> tournaments = new ArrayList<Tournaments>(0);

 //getters and setters
...
}

Listing 6-13. The Tournaments POJO

package hogm.hnapi.pojo

import org.hibernate.search.annotations.Analyze;
import org.hibernate.search.annotations.ContainedIn;
import org.hibernate.search.annotations.DocumentId;
import org.hibernate.search.annotations.Field;
import org.hibernate.search.annotations.Index;
import org.hibernate.search.annotations.Indexed;
import org.hibernate.search.annotations.Store;

@Indexed
public class Tournaments {

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

229

 @DocumentId
 private String id;
 @Field(index = Index.YES, analyze = Analyze.YES, store = Store.NO)
 private String tournament;
 @ContainedIn
 Collection<Players> players = new ArrayList<Players>(0);

 //getters and setters
...
}

Now wrap these POJOs into entities, as shown in Listing 6-14 and Listing 6-15.

Listing 6-14. The Players Entity

package hogm.hnapi.entity;

import org.hibernate.search.annotations.Analyze;
import org.hibernate.search.annotations.DateBridge;
import org.hibernate.search.annotations.DocumentId;
import org.hibernate.search.annotations.Field;
import org.hibernate.search.annotations.Index;
import org.hibernate.search.annotations.Indexed;
import org.hibernate.search.annotations.IndexedEmbedded;
import org.hibernate.search.annotations.Resolution;
import org.hibernate.search.annotations.Store;

@Entity
@Indexed
@Table(name = "atp_players")
@GenericGenerator(name = "mongodb_uuidgg", strategy = "uuid2")
public class Players implements Serializable {

 @DocumentId
 @Id
 @GeneratedValue(generator = "mongodb_uuidgg")
 private String id;
 @Column(name = "player_name")
 @Field(index = Index.YES, analyze = Analyze.YES, store = Store.NO)
 private String name;
 @Column(name = "player_surname")
 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
 private String surname;
 @Column(name = "player_age")
 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
 private int age;
 @Column(name = "player_birth")
 @Field
 @DateBridge(resolution = Resolution.YEAR)
 @Temporal(javax.persistence.TemporalType.DATE)
 private Date birth;
 @ManyToMany(cascade = CascadeType.PERSIST,fetch=FetchType.EAGER)

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

230

 @IndexedEmbedded
 private Collection<Tournaments> tournaments= new ArrayList<Tournaments>(0);

 //getters and setters
...
}

Listing 6-15. The Tournaments Entity

package hogm.hnapi.entity;

import org.hibernate.search.annotations.Analyze;
import org.hibernate.search.annotations.ContainedIn;
import org.hibernate.search.annotations.DocumentId;
import org.hibernate.search.annotations.Field;
import org.hibernate.search.annotations.Index;
import org.hibernate.search.annotations.Indexed;
import org.hibernate.search.annotations.Store;

@Entity
@Indexed
@Table(name = "atp_tournaments")
@GenericGenerator(name = "mongodb_uuidgg", strategy = "uuid2")
public class Tournaments implements Serializable {

 @DocumentId
 @Id
 @GeneratedValue(generator = "mongodb_uuidgg")
 private String id;
 @Field(index = Index.YES, analyze = Analyze.YES, store = Store.NO)
 private String tournament;
 @ManyToMany(mappedBy = "tournaments", fetch = FetchType.EAGER)
 @ContainedIn
 private Collection<Players> players = new ArrayList<Players>(0);

 //getters and setters
...
}

Now you can write Hibernate Search/Apache Lucene queries. (The official documentation can be a good place
to start testing queries for associations.) For testing purposes, I’ve integrated the preceding POJOs and entities into an
application named HOGM_MONGODB_HNAPI_ASSOCIATIONS_HS that can be downloaded from the Apress repository (there
are two queries involved). It comes as a NetBeans project and was tested under GlassFish 3 AS. Figure 6-11 shows this
application.

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

231

Note ■ You can easily drop a MongoDB database from the shell by typing the command db.dropDatabase();.

Hibernate Search/Apache Lucene Querying—OGM via JPA
Remember the “select all” query we wrote earlier? This time, we’ll write the same query for an application based on
OGM via JPA. The steps for accomplishing this task are:

 1. Create an org.hibernate.search.jpa.FullTextEntityManager. This interface spices up
the OGM EntityManager with full-text search and indexing capabilities. Here’s the code to
accomplish this (em is the EntityManager instance):

FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

 2. Create an org.hibernate.search.query.dsl.QueryBuilder. Use the new entity manager

to obtain a query builder that will help simplify the query definition. Note that you indicate
that the query affects only the Players class:

QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().
buildQueryBuilder().forEntity(Players.class).get();

Figure 6-11. The HOGM_MONGODB_HNAPI_ASSOCIATIONS_HS application

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

232

 3. Create a Lucene query. As the official documentation shows, there are several ways
to build a Lucene query using queryBuilder. For this example, we can use the
queryBuilder.all method, which is a simple approach for obtaining whole documents:

org.apache.lucene.search.Query query = queryBuilder.all().createQuery();

 4. Define a sort rule (optional). You can easily define a sort rule using the Lucene sort

capabilities. For example, you may need to sort the extracted players by name:

org.apache.lucene.search.Sort sort = new Sort(new SortField("name", SortField.STRING));

 5. Wrap the Lucene query in an org.hibernate.FullTextQuery. In order to set the sort rule

and execute the query, you need to wrap the Lucene query in a FullTextQuery, like this:

FullTextQuery fullTextQuery = fullTextEntityManager.createFullTextQuery(query, Players.class);

 6. Specify the object lookup method and the database retrieval method. For OGM, you must

specify object lookup and database retrieval methods, like this:

fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
DatabaseRetrievalMethod.FIND_BY_ID);

 7. Set the sort rule. You can set the sort rule by calling the setSort method, like so:

fullTextQuery.setSort(sort);

 8. Execute the query. Finally, you can execute the query and obtain the results in a

java.util.List:

...
List<Players> results = fullTextQuery.getResultList();
...

 9. Clear up the session (optional):

fullTextEntityManager.clear();

Now, you can put these nine steps in a method named selectAllAction to obtain the Hibernate Search/Lucene
query shown in Listing 6-16.

Listing 6-16. The selectAllAction Method

package hogm.jpa.ejb;
...
public class SampleBean {
...
public List<Players> selectAllAction() {

 log.info("Select all Players instance ...");

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

233

 FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

 QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().
 buildQueryBuilder().forEntity(Players.class).get();
 org.apache.lucene.search.Sort sort = new Sort(new SortField("name", SortField.STRING));
 org.apache.lucene.search.Query query = queryBuilder.all().createQuery();

 FullTextQuery fullTextQuery = fullTextEntityManager.createFullTextQuery(query, Players.class);
 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);

 fullTextQuery.setSort(sort);
 List<Players> results = fullTextQuery.getResultList();

 fullTextEntityManager.clear();

 log.info("Search complete ...");

 return results;
 }
}

The nine steps can be used as a quick guide for writing many other kinds of queries. In addition, you can see
how to write some common queries (these are the same queries from the section “Hibernate Search/Apache Lucene
Querying OGM via Native API,” rewritten for the OGM via JPA case).

• Select all players born in 1987. This query (and similar queries) can be easily written
using three methods: QueryBuilder.keyword, which indicates we’re searching for a
specific word; TermContext.onField, whichspecifies in which Lucene field to look; and
TermMatchingContext.matching, which tells what to look for. So, wrapping this query into a
method named selectByYearAction looks like what’s shown in Listing 6-17.

Listing 6-17. The selectByYearAction Method

package hogm.jpa.ejb;
...
public class SampleBean {
...

public List<Players> selectByYearAction() {

 log.info("Search only Players instances born in 1987 ...");

 Calendar calendar = GregorianCalendar.getInstance(TimeZone.getTimeZone("UTC"));
 calendar.clear();

 calendar.set(Calendar.YEAR, 1987);

 FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

234

 QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().
 buildQueryBuilder().forEntity(Players.class).get();

 org.apache.lucene.search.Query query = queryBuilder.keyword()
 .onField("birth").matching(calendar.getTime()).createQuery();

 FullTextQuery fullTextQuery = fullTextEntityManager.createFullTextQuery(query, Players.class);
 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);

 List<Players> results = fullTextQuery.getResultList();

 fullTextEntityManager.clear();

 log.info("Search complete ...");

 return results;
 }
}

Select only the player named Rafael Nadal.• This query (and similar queries) searches for two
words in two different fields, “Rafael” and “Nadal.” The query looks for the first word in the
player_surname column (surname field), and for the second word in the player_name column
(name field). For this, you can use one of the aggregation operators, named must. Wrapping
the necessary code into a method named selectRafaelNadalAction shows this. The bool
method indicates that we have created a Boolean query. (See Listing 6-18.)

Listing 6-18. The selectRafaelNadalAction Method

package hogm.jpa.ejb;
...
public class SampleBean {
...
public List<Players> selectRafaelNadalAction() {

 log.info("Search only Players instances that have the name 'Nadal' and surname 'Rafael' ...");

 FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);
 QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().
 buildQueryBuilder().forEntity(Players.class).get();

 org.apache.lucene.search.Query query = queryBuilder.bool().must(queryBuilder.keyword()
 .onField("name").matching("Nadal").createQuery()).must(queryBuilder.keyword()
 .onField("surname").matching("Rafael").createQuery()).createQuery();

 FullTextQuery fullTextQuery = fullTextEntityManager.createFullTextQuery(query, Players.class);
 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

235

 List<Players> results = fullTextQuery.getResultList();
 fullTextEntityManager.clear();

 log.info("Search complete ...");

 return results;
 }
}

Select players with surnames starting with the letter 'J.'• This query (and similar queries) can be
written using wildcards. The ? represents a single character and the * represents any character
sequence. The TermContext.wildcard method indicates that a wildcard query follows. Wrapping
the necessary code into a method named selectJAction will show this. (See Listing 6-19.)

Listing 6-19. The selectJAction Method

package hogm.jpa.ejb;
...
public class SampleBean {
...
public List<Players> selectJAction() {

 log.info("Search only Players that surnames begins with 'J' ...");

 FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

 QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory()
 .buildQueryBuilder().forEntity(Players.class).get();

 org.apache.lucene.search.Query query = queryBuilder.keyword().wildcard()
 .onField("surname").matching("J*").createQuery();

 FullTextQuery fullTextQuery = fullTextEntityManager.createFullTextQuery(query, Players.class);
 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);

 List<Players> results = fullTextQuery.getResultList();
 fullTextEntityManager.clear();

 log.info("Search complete ...");

 return results;
 }
}

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

236

Select players with ages in the interval (25,28)• . This query (and similar queries) can be treated
as range queries. Such a query searches for a value in an interval (boundaries included or
not) or for a value below or above the interval boundary (boundaries included or not). You
indicate that a range query follows by calling the queryBuilder.range method. The interval
is set by calling the from and to methods, and the interval’s boundaries can be excluded
by calling the excludeLimit method. Wrapping the necessary code into a method named
select25To28AgeAction will show this. (See Listing 6-20.)

Listing 6-20. The select25To28AgeAction Method

package hogm.jpa.ejb;
...
public class SampleBean {
...
public List<Players> select25To28AgeAction() {

 log.info("Search only Players that have ages between 25 and 28, excluding limits ...");

 FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

 QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory()
 .buildQueryBuilder().forEntity(Players.class).get();

 org.apache.lucene.search.Query query = queryBuilder.range().onField("age")
 .from(25).to(28).excludeLimit().createQuery();

 FullTextQuery fullTextQuery = fullTextEntityManager.createFullTextQuery(query, Players.class);
 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);

 List<Players> results = fullTextQuery.getResultList();
 fullTextEntityManager.clear();

 log.info("Search complete ...");

 return results;
 }
}

There are many other kinds of queries you can write, you just have to delve into the available documentation
about Hibernate Search and Apache Lucene. For the queries covered, I developed a complete application that’s
available in the Apress repository and is named HOGM_MONGODB_JPA_HS. It comes as a NetBeans project and was tested
under GlassFish 3 AS. Figure 6-12 shows this application.

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

237

Note■ You can rebuild the index (deleting it and then reloading all entities from the database) by calling the

startAndWait method: fullTextEntityManager.createIndexer().startAndWait();

When you have associations (or embedded objects), you need to provide a few more annotations. Associated
objects (and embedded objects) can be indexed as part of the root entity index. For this, the association is marked
with @IndexedEmbedded. When the association is bidirectional, the other side must be annotated with @ContainedIn.
This helps Hibernate Search keep the associations indexing process up to date.

For example, let’s suppose that the Players entity is in a many-to-many association with the Tournaments entity
(each player participates in multiple tournaments and each tournament contains multiple players). The annotated
Players entity listing is shown in Listing 6-21.

Listing 6-21. The Annotated Players Entity

package hogm.jpa.entity;

import org.hibernate.search.annotations.Analyze;
import org.hibernate.search.annotations.DateBridge;
import org.hibernate.search.annotations.DocumentId;
import org.hibernate.search.annotations.Field;
import org.hibernate.search.annotations.Index;
import org.hibernate.search.annotations.Indexed;
import org.hibernate.search.annotations.IndexedEmbedded;
import org.hibernate.search.annotations.Resolution;
import org.hibernate.search.annotations.Store;

@Entity
@Indexed
@Table(name = "atp_players")
@GenericGenerator(name = "mongodb_uuidgg", strategy = "uuid2")
public class Players implements Serializable {

 @DocumentId
 @Id
 @GeneratedValue(generator = "mongodb_uuidgg")
 private String id;

Figure 6-12. The HOGM_MONGODB_JPA_HS application

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

238

 @Column(name = "player_name")
 @Field(index = Index.YES, analyze = Analyze.YES, store = Store.NO)
 private String name;
 @Column(name = "player_surname")
 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
 private String surname;
 @Column(name = "player_age")
 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
 private int age;
 @Column(name = "player_birth")
 @Field
 @DateBridge(resolution = Resolution.YEAR)
 @Temporal(javax.persistence.TemporalType.DATE)
 private Date birth;
 @ManyToMany(cascade = CascadeType.PERSIST,fetch=FetchType.EAGER)
 @IndexedEmbedded
 private Collection<Tournaments> tournaments= new ArrayList<Tournaments>(0);

 //getters and setters
...
}

And the Tournaments entity is shown in Listing 6-22.

Listing 6-22. The Annotated Tournaments Entity

package hogm.jpa.entity;

import org.hibernate.search.annotations.Analyze;
import org.hibernate.search.annotations.ContainedIn;
import org.hibernate.search.annotations.DocumentId;
import org.hibernate.search.annotations.Field;
import org.hibernate.search.annotations.Index;
import org.hibernate.search.annotations.Indexed;
import org.hibernate.search.annotations.Store;

@Entity
@Indexed
@Table(name = "atp_tournaments")
@GenericGenerator(name = "mongodb_uuidgg", strategy = "uuid2")
public class Tournaments implements Serializable {

 @DocumentId
 @Id
 @GeneratedValue(generator = "mongodb_uuidgg")
 private String id;
 @Field(index = Index.YES, analyze = Analyze.YES, store = Store.NO)
 private String tournament;
 @ManyToMany(mappedBy = "tournaments", fetch = FetchType.EAGER)

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

239

 @ContainedIn
 private Collection<Players> players = new ArrayList<Players>(0);

 //getters and setters
...
}

Now you can write Hibernate Search/Apache Lucene queries. (The official documentation can be a good place
to start testing queries for associations.) For testing purposes, I’ve integrated the preceding entities into an application
named HOGM_MONGODB_JPA_ASOCIATIONS_HS that can be downloaded from the Apress repository (there are two queries
involved). It comes as a NetBeans project and was tested under GlassFish 3 AS. Figure 6-13 shows this application.

Figure 6-13. The HOGM_MONGODB_JPA_ASSOCIATIONS_HS application

We stop here, but this may be just the beginning of your exploration of the amazing power of Hibernate Search
and Apache Lucene combined. I’ve given you a starting point for querying MongoDB collections via OGM and
Hibernate Search/Apache Lucene. From this point forward, it’s up to you how much you go in the Hibernate
Search/Apache Lucene territory.

Hibernate OGM JP-QL Parser
According to the Hibernate OGM documentation, version 4.0.0Beta1 includes a JP-QL basic parser capable of
converting simple queries using Hibernate Search. Currently, there are several limitations in using it, iincluding:

No join, aggregation, or other relational operations are implied.•

The Hibernate Session API is used (JPA integration is coming).•

The target entities and properties are indexed by Hibernate Search (currently there’s •
no validation).

http:///

CHAPTER 6 ■ HIBERNATE OGM QUERYING MONGODB

240

I tried to work around these limitations, but have not been able to develop a functional application to exploit the
JP-QL parser for simple queries. I tried, for the Players entity annotated with @Indexed, @Field, and so on, a simple
query, like this:

Query query = HibernateUtil.getSessionFactory().getCurrentSession().createQuery("from Players p");

Unfortunately, my multiple approaches failed with one single and annoying error: java.lang.
NullPointerException. The indexing process seems to work fine, but the query results list is always null.

Anyway, this is not such a big issue, since the JP-QL parser is very young and, by the time you read this section,
this information may well be obsolete. The JP-QL parser may be more generous with its query support by then.
For now, you can use the MongoDB Java driver and, of course, Hibernate Search and Apache Lucene.

Summary
After all the hard work of the previous chapters, in this chapter we gathered the fruits. We were able to work with
the stored data by writing queries against MongoDB databases. In particular, in this chapter, you learned how to
write queries using Hibernate Search/Apache Lucene and the MongoDB Java driver. My aim was to provide the basic
information about writing a pure MongoDB Java driver application and an OGM via Native API and/or via
JPA application ready to query a MongoDB database.

http:///

241

CHAPTER 7

MongoDB e-Commerce
Database Model

The market for open source e-commerce software keeps on growing every year. For proof, just look at the many popular
platforms that are used today as starting points for a variety of e-commerce applications. For example, Magento, Zen Cart,
and Spree all provide database schemas ready for storing and querying categories, products, orders, inventories, and so
on. Despite the differences among these platforms, they all have something in common: they provide a SQL database.

For NoSQL stores, the e-commerce software market is a challenge, with most NoSQL stores considered
inappropriate for e-commerce. MongoDB, however, is robust and flexible, with features like support for rich data
models, indexed queries, atomic operations, and replicated writes that prompt us to ask: is MongoDB suitable for
e-commerce applications? Well, this question waits for an authoritative answer, which will probably emerge after both
the enthusiasm and misconceptions regarding MongoDB’s suitability for e-commerce application begin to wane,
and things start to calm down.

It’s generally agreed that MongoDB is fast, reduces the number of tables and associations by using documents
(which are conceptually simpler than tables), and provides flexible schemas. But it has some drawbacks that center
around transactions, consistency, and durability. SQL databases, in contrast, provide safety, but they’re not that fast,
have rigid schemas, need dozens of tables (associations), and can slow development progress (sometimes we need
to write complex queries). Nevertheless, it seems that “safety” is the operative word, since no e-seller (e-retailer)
wants to lose an order or money because of database inconsistency.

Still, “a full-featured, developer-centric e-commerce platform that makes custom code easy, with powerful templates &
expressive syntax”, named Forward (http://getfwd.com/) is ready to show everybody that MongoDB is more than
suitable for e-commerce applications. And so, on a smaller scale, I’ll try to sustain this affirmation by developing an
e-commerce data model using MongoDB, and using it in an enterprise application based on Hibernate OGM via JPA
and Hibernate Search/Apache Lucene.

In this chapter, I’ll look at converting (or adapting) a specific SQL schema for e-commerce applications to a MongoDB
schema. In Figure 7-1, you can see a database schema for a medium-complexity e-commerce application; most of the
tables are self-explanatory in an e-commerce context. The main tables are categories, products, orders, and users.

http://getfwd.com/
http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

242

The main goal is to develop a MongoDB database schema similar to the one in Figure 7-1. By similar, I mean
that we want to reproduce the main functionality (the same query capabilities), not the same tables, associations and
fields. Moreover, we will write the corresponding JPA entities for it. We’re going to use Hibernate OGM via JPA, so we’ll
need JPA annotations. And we’ll be using Hibernate Search and Apache Lucene for querying, so we’ll need Hibernate
Search-specific annotations for indexing data in Lucene.

Even if you’re not an e-retailer, you’re probably very familiar with many e-commerce terms from the client
perspective, especially categories, products, promotions, orders, shopping carts, purchase orders, payment, shipping
addresses and so on. Such terms are well-known to every Internet user, so I won’t try to explain them here.

MongoDB E-commerce Database Architecture
In Figure 7-2, you can see the MongoDB e-commerce database architecture I propose, which I named eshop_db.
The diagram contains the MongoDB collections, their associations, and the corresponding JPA entities (but not the fields).

Figure 7-1. SQL e-commerce database schema

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

243

Model the Categories Collection (categories_c)
The categories_c collection corresponds to the categories table.

Sorting the products by categories is a common capability on most e-commerce sites. Very likely, the SQL table
specific to categories stores the name of each category and a one-to-many (or, sometimes, a many-to-many) lazy
association to the table responsible for storing products. The idea is to load category names very quickly (without
their products), since they appear on the first page of the e-commerce web site. The products can be loaded later, after
the user chooses a category. But though this works in the case of SQL, in MongoDB you need to be very careful with
associations, since they may start transactions. Our aim is to avoid transactions as much as possible, so I didn’t define
any association in the categories_c collection.

I created the categories collection (categories_c) with the structure shown in Figure 7-3. As you can see, each
document stores an identifier and the category name:

Figure 7-2. MongoDB E-commerce database schema

Figure 7-3. Document sample from the categories_c collection

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

244

The JPA entity for this collection is shown in Listing 7-1.

Listing 7-1. The JPA Entity for categories_c

1 package eshop.entities;
2
3 import java.io.Serializable;
4 import javax.persistence.Column;
5 import javax.persistence.Entity;
6 import javax.persistence.GeneratedValue;
7 import javax.persistence.Id;
8 import javax.persistence.Table;
9 import org.hibernate.annotations.GenericGenerator;
10 import org.hibernate.search.annotations.Analyze;
11 import org.hibernate.search.annotations.DocumentId;
12 import org.hibernate.search.annotations.Field;
13 import org.hibernate.search.annotations.Index;
14 import org.hibernate.search.annotations.Indexed;
15 import org.hibernate.search.annotations.Store;
16
17 @Entity
18 @Indexed
19 @Table(name = "categories_c")
20 public class Categories implements Serializable {
21
22 private static final long serialVersionUID = 1L;
23 @DocumentId
24 @Id
25 @GeneratedValue(generator = "uuid")
26 @GenericGenerator(name = "uuid", strategy = "uuid2")
27 private String id;
28 @Column(name = "category_name")
29 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.YES)
30 private String category;
31
32 public String getId() {
33 return id;
34 }
35
36 public void setId(String id) {
37 this.id = id;
38 }
39
40 public String getCategory() {
41 return category;
42 }
43
44 public void setCategory(String category) {
45 this.category = category;
46 }
47
48 @Override

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

245

49 public int hashCode() {
50 int hash = 0;
51 hash += (id != null ? id.hashCode() : 0);
52 return hash;
53 }
54
55 @Override
56 public boolean equals(Object object) {
57 if (!(object instanceof Categories)) {
58 return false;
59 }
60 Categories other = (Categories) object;
61 if ((this.id == null && other.id != null) || (this.id != null &&
 !this.id.equals(other.id))) {
62 return false;
63 }
64 return true;
65 }
66
67 @Override
68 public String toString() {
69 return "eshop.entities.Categories[id=" + id + "]";
70 }
71 }
72

Notice that line 29 specifies that the category id (id field) and category name (category_name field) should be
searchable with Lucene and disables analyzers. We don’t need analyzers because we search the category as is (not by
the words it contains), and we’ll sort the categories by name (Lucene doesn’t let you analyze fields used for sorting
operations). Moreover, category names are stored in the Lucene index. This consumes space in the index, but not a
considerable amount, since you won’t want so many categories as to cause concern. This allows us to take advantage
of projection (notice that the ids are automatically stored). Using projection allows us, in the future, to add more
searchable, non-lazy fields to this collection, such as category code, category description, and so on, but still extract
only the categories names. Of course, this is just an approach (not a rule) specific to Lucene. If you choose to use JP-QL
queries (when Hibernate OGM provides support for such queries), things will be different.

Model The Products Collection (products_c)
The products_c collection corresponds to the products and productoptions tables.

In the collection dedicated to products (products_c), the document for each product stores two kinds of
information: general data, such as SKU, name, price, description and so on; and the kind of data that in a relational
model usually needs additional tables, such as a product’s gallery and a product’s options (for example, colors, sizes,
types, and so on). Instead of using additional tables and associations, I’m going to store each product’s gallery and
options in embedded collections. This makes sense, because these physical details are unique features of the product.
Moreover, the products_c collection is the owner side of the unidirectional many-to-one association with the
categories_c collection, so it stores the foreign keys of the corresponding categories.

In Figure 7-4, you can see such a document sample.

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

246

Each product will be represented by such a document. The colors and sizes embedded collections will be visible
only for products that have these options.

The JPA entity for this collection is shown in Listing 7-2.

Listing 7-2. The JPA entity for products_c

1 package eshop.entities;
2
3 import java.io.Serializable;
4 import java.util.ArrayList;
5 import java.util.List;
6 import javax.persistence.Column;
7 import javax.persistence.ElementCollection;
8 import javax.persistence.Entity;
9 import javax.persistence.FetchType;
10 import javax.persistence.GeneratedValue;
11 import javax.persistence.Id;
12 import javax.persistence.ManyToOne;
13 import javax.persistence.Table;
14 import org.hibernate.annotations.GenericGenerator;
15 import org.hibernate.search.annotations.Analyze;
16 import org.hibernate.search.annotations.DocumentId;
17 import org.hibernate.search.annotations.Field;
18 import org.hibernate.search.annotations.Index;
19 import org.hibernate.search.annotations.Indexed;
20 import org.hibernate.search.annotations.IndexedEmbedded;

Figure 7-4. Sample document from products_c collection

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

247

21 import org.hibernate.search.annotations.NumericField;
22 import org.hibernate.search.annotations.Store;
23
24 @Entity
25 @Indexed
26 @Table(name = "products_c")
27 public class Products implements Serializable {
28
29 private static final long serialVersionUID = 1L;
30 @DocumentId
31 @Id
32 @GeneratedValue(generator = "uuid")
33 @GenericGenerator(name = "uuid", strategy = "uuid2")
34 private String id;
35 @Column(name = "product_sku")
36 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
37 private String sku;
38 @Column(name = "product_name")
39 @Field(index = Index.YES, analyze = Analyze.YES, store = Store.NO)
40 private String product;
41 @Column(name = "product_price")
42 @NumericField
43 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
44 private double price;
45 @Column(name = "product_old_price")
46 @NumericField
47 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
48 private double old_price;
49 @Column(name = "product_description")
50 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
51 private String description;
52 @IndexedEmbedded
53 @ManyToOne(fetch = FetchType.LAZY)
54 private Categories category;
55 @IndexedEmbedded
56 @ElementCollection(targetClass = java.lang.String.class,
 fetch = FetchType.EAGER)
57 @Column(name = "product_gallery")
58 private List<String> gallery = new ArrayList<String>();
59 @IndexedEmbedded
60 @ElementCollection(targetClass = java.lang.String.class,
 fetch = FetchType.EAGER)
61 @Column(name = "product_colors")
62 private List<String> colors = new ArrayList<String>();
63 @IndexedEmbedded
64 @ElementCollection(targetClass = java.lang.String.class,
 fetch = FetchType.EAGER)
65 @Column(name = "product_sizes")
66 private List<String> sizes = new ArrayList<String>();
67

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

248

68 public String getId() {
69 return id;
70 }
71
72 public void setId(String id) {
73 this.id = id;
74 }
75
76 public List<String> getGallery() {
77 return gallery;
78 }
79
80 public void setGallery(List<String> gallery) {
81 this.gallery = gallery;
82 }
83
84 public double getPrice() {
85 return price;
86 }
87
88 public void setPrice(double price) {
89 this.price = price;
90 }
91
92 public double getOld_price() {
93 return old_price;
94 }
95
96 public void setOld_price(double old_price) {
97 this.old_price = old_price;
98 }
99
100 public String getProduct() {
101 return product;
102 }
103
104 public void setProduct(String product) {
105 this.product = product;
106 }
107
108 public String getSku() {
109 return sku;
110 }
111
112 public void setSku(String sku) {
113 this.sku = sku;
114 }
115

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

249

116 public String getDescription() {
117 return description;
118 }
119
120 public List<String> getColors() {
121 return colors;
122 }
123
124 public void setColors(List<String> colors) {
125 this.colors = colors;
126 }
127
128 public List<String> getSizes() {
129 return sizes;
130 }
131
132 public void setSizes(List<String> sizes) {
133 this.sizes = sizes;
134 }
135
136 public void setDescription(String description) {
137 this.description = description;
138 }
139
140 public Categories getCategory() {
141 return category;
142 }
143
144 public void setCategory(Categories category) {
145 this.category = category;
146 }
147
148 @Override
149 public int hashCode() {
150 int hash = 0;
151 hash += (id != null ? id.hashCode() : 0);
152 return hash;
153 }
154
155 @Override
156 public boolean equals(Object object) {
157 if (!(object instanceof Products)) {
158 return false;
159 }
160 Products other = (Products) object;
161 if ((this.id == null && other.id != null) || (this.id != null &&
 !this.id.equals(other.id))) {
162 return false;
163 }
164 return true;
165 }
166

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

250

167 @Override
168 public String toString() {
169 return "eshop.entities.Products[id=" + id + "]";
170 }
171 }

Let’s take a closer look at some of the main lines of code.
In line 39, the field that corresponds to the product name (product_name) is prepared for Lucene. The part we want

to note is analyze = Analyze.YES, which tells Lucene to use the default analyzer for this field. Instead of searching
for a product by name (which is usually composed of several words), we can search for it by any of the words its name
contains. This helps us easily implement a “search by product name” facility.

As you can see, in lines 42 and 48 the product prices (product_price and product_old_price) are numerical
values (doubles). It makes sense to store them as numbers instead of strings so you can perform range queries and
calculations, like subtotals, totals, currency conversions and so on. You can tell Lucene that a field represents numerical
values by annotating it with @NumericField. When a property is indexed as a numeric field, it enables efficient range
querying, and sorting is faster than doing the same query on standard @Field properties.

Lines 52-54 define a unidirectional, many-to-one association between the categories_c and products_c
collections. For Lucene, this association should be marked as @IndexedEmbedded, which is used to index associated
entities as part of the owning entity. Probably I’ve said this before, but it’s a good moment to point out again that
Lucene is not aware of associations, which is why it needs the @IndexedEmbedded and @ContainedIn annotations.
Without these annotations, associations like @ManyToMany, @*ToOne, @Embedded, and @ElementCollection will not be
indexed and, therefore, will not be searchable. Associations let you easily write Lucene queries similar to SQL queries
that contain the WHERE clause, of the type: select all products from a category where the category field equals something
(which in JP-QL is usually a join).

Lines 55-66 define the product’s options and gallery of images. For this example, we used the most common options,
color and size, but you can add more. Instead of placing them into another table and creating another association, I
prefer to store them using @ElementCollection. When a product doesn’t have color or size, it’s just skipped. MongoDB
documents allow a flexible structure, so when an option isn’t specified, the corresponding collection will not be present
in document. As a final observation, we’re loading the options and gallery using the eager mechanism, because we want
to load and display each product with its gallery and options. If you want to load the products in two phases: first a brief
overview of the products and then, by user request, the options, use the lazy mechanism instead.

Model the Customers Collection (customers_c)
The customers_c collection corresponds to the users table.

For users (potential customers), we need a separate collection for storing personal data; we name this collection
customers_c. Personal data includes information such as name, surname, e-mail address, password, addresses and
so on (obviously, you can add more fields). When a user logs into the system, you can easily indentify him by e-mail
address and password and load his profile. His orders are not loaded in the same query as his profile. They are loaded
lazily only when an explicit request is performed; this allows us to load only the requested orders, not all. Usually, a
customer checks just his most recent order status and rarely wants to view an obsolete order. Many e-commerce sites
don’t provide access to obsolete orders, only to the most recent one.

Each document (entry) in the customers_c collection looks like what’s shown in Figure 7-5.

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

251

Notice that the customer’s addresses are stored as embedded documents; this lets us provide multiple addresses
without additional tables, using fast queries and lazy loading.

The JPA entity for this collection is shown in Listing 7-3.

Listing 7-3. The JPA Entity for customers_c

1 package eshop.entities;
2
3 import eshop.embedded.Addresses;
4 import java.io.Serializable;
5 import java.util.Date;
6 import javax.persistence.Basic;
7 import javax.persistence.Column;
8 import javax.persistence.Embedded;
9 import javax.persistence.Entity;
10 import javax.persistence.FetchType;
11 import javax.persistence.GeneratedValue;
12 import javax.persistence.Id;
13 import javax.persistence.Table;
14 import javax.persistence.Temporal;
15 import org.hibernate.annotations.GenericGenerator;
16 import org.hibernate.search.annotations.Analyze;
17 import org.hibernate.search.annotations.DateBridge;
18 import org.hibernate.search.annotations.DocumentId;
19 import org.hibernate.search.annotations.Field;
20 import org.hibernate.search.annotations.Index;
21 import org.hibernate.search.annotations.Indexed;
22 import org.hibernate.search.annotations.IndexedEmbedded;
23 import org.hibernate.search.annotations.Resolution;
24 import org.hibernate.search.annotations.Store;
25
26 @Entity
27 @Indexed
28 @Table(name = "customers_c")
29 public class Customers implements Serializable {
30

Figure 7-5. Sample document from the customers_c collection

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

252

31 private static final long serialVersionUID = 1L;
32 @DocumentId
33 @Id
34 @GeneratedValue(generator = "uuid")
35 @GenericGenerator(name = "uuid", strategy = "uuid2")
36 private String id;
37 @Column(name = "customer_email")
38 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
39 private String email;
40 @Column(name = "customer_password")
41 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
42 private String password;
43 @Column(name = "customer_name")
44 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
45 private String name;
46 @Column(name = "customer_surname")
47 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
48 private String surname;
49 @DateBridge(resolution = Resolution.DAY)
50 @Temporal(javax.persistence.TemporalType.DATE)
51 @Column(name = "customer_registration")
52 private Date registration;
53 @Embedded
54 @IndexedEmbedded
55 @Basic(fetch = FetchType.LAZY)
56 private Addresses customer_address_1;
57 @Embedded
58 @IndexedEmbedded
59 @Basic(fetch = FetchType.LAZY)
60 private Addresses customer_address_2;
61
62 public String getId() {
63 return id;
64 }
65
66 public void setId(String id) {
67 this.id = id;
68 }
69
70 public String getEmail() {
71 return email;
72 }
73
74 public void setEmail(String email) {
75 this.email = email;
76 }
77
78 public String getPassword() {
79 return password;
80 }
81

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

253

82 public void setPassword(String password) {
83 this.password = password;
84 }
85
86 public String getName() {
87 return name;
88 }
89
90 public void setName(String name) {
91 this.name = name;
92 }
93
94 public String getSurname() {
95 return surname;
96 }
97
98 public void setSurname(String surname) {
99 this.surname = surname;
100 }
101
102 public Date getRegistration() {
103 return registration;
104 }
105
106 public void setRegistration(Date registration) {
107 this.registration = registration;
108 }
109
110 public Addresses getCustomer_address_1() {
111 return customer_address_1;
112 }
113
114 public void setCustomer_address_1(Addresses customer_address_1) {
115 this.customer_address_1 = customer_address_1;
116 }
117
118 public Addresses getCustomer_address_2() {
119 return customer_address_2;
120 }
121
122 public void setCustomer_address_2(Addresses customer_address_2) {
123 this.customer_address_2 = customer_address_2;
124 }
125
126 @Override
127 public int hashCode() {
128 int hash = 0;
129 hash += (id != null ? id.hashCode() : 0);
130 return hash;
131 }
132

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

254

133 @Override
134 public boolean equals(Object object) {
135 if (!(object instanceof Customers)) {
136 return false;
137 }
138 Customers other = (Customers) object;
139 if ((this.id == null && other.id != null) || (this.id != null &&
 !this.id.equals(other.id))) {
140 return false;
141 }
142 return true;
143 }
144
145 @Override
146 public String toString() {
147 return "eshop.entities.Customers[id=" + id + "]";
148 }
149 }
150

There are important aspects of this code that deserve explanation.
The code in lines 53-60 is pretty interesting. As you can see, the same embeddable object type appears twice in

the same entity (the embeddable object maps the address coordinates, city, zip, street and so on in a class named
Addresses). If you’ve used this technique with SQL and JPA providers such as EclipseLink or Hibernate, you know
you had to set at least one of the columns explicitly, because the column name default will not work. In this case,
generic JPA fixes the issue with the @AttributeOverride annotation (see www.docs.oracle.com/javaee/6/api/
javax/persistence/AttributeOverride.html). In NoSQL and Hibernate OGM, however, you don’t need to use this
adjustment to column names.

The embeddable class representing an address is shown in Listing 7-4.

Listing 7-4. The Embeddable Addresses Class

1 package eshop.embedded;
2
3 import java.io.Serializable;
4 import javax.persistence.Embeddable;
5 import org.hibernate.search.annotations.Analyze;
6 import org.hibernate.search.annotations.Field;
7 import org.hibernate.search.annotations.Index;
8 import org.hibernate.search.annotations.Store;
9
10 @Embeddable
11 public class Addresses implements Serializable {
12
13 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
14 private String city;
15 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
16 private String state;
17 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
18 private String street;
19 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
20 private String number;

http://www.docs.oracle.com/javaee/6/api/javax/persistence/AttributeOverride.html
http://www.docs.oracle.com/javaee/6/api/javax/persistence/AttributeOverride.html
http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

255

21 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
22 private String zip;
23 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
24 private String country;
25 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
26 private String phone;
27 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
28 private String fax;
29
30 public String getCity() {
31 return city;
32 }
33
34 public void setCity(String city) {
35 this.city = city;
36 }
37
38 public String getNumber() {
39 return number;
40 }
41
42 public void setNumber(String number) {
43 this.number = number;
44 }
45
46 public String getState() {
47 return state;
48 }
49
50 public void setState(String state) {
51 this.state = state;
52 }
53
54 public String getStreet() {
55 return street;
56 }
57
58 public void setStreet(String street) {
59 this.street = street;
60 }
61
62 public String getZip() {
63 return zip;
64 }
65
66 public void setZip(String zip) {
67 this.zip = zip;
68 }
69

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

256

70 public String getCountry() {
71 return country;
72 }
73
74 public void setCountry(String country) {
75 this.country = country;
76 }
77
78 public String getPhone() {
79 return phone;
80 }
81
82 public void setPhone(String phone) {
83 this.phone = phone;
84 }
85
86 public String getFax() {
87 return fax;
88 }
89
90 public void setFax(String fax) {
91 this.fax = fax;
92 }
93 }

Model The Orders Collection (orders_c)
The orders_c collection corresponds to the orders and details tables.

The orders are stored in a separate collection, named orders_c. For each order, we store status (an order can
pass through multiple statuses, such as PURCHASED, SHIPPED, CANCELED and so on); subtotal (this represents
the order value in money); order creation date; shipping address; and the order’s products. You can add more fields,
such as an order identifier (#nnnn, for example), an order friendly name, an order expiration date, and so on.

The shipping address is represented by an embedded document and the order’s products are stored as an
embedded collection. Therefore, we don’t need supplementary collections or associations, the queries are very easy
to perform, and we can load the shipping address and the order’s products either lazily or eagerly, depending on how
we implement the web site GUI.

In this collection, we need to store the foreign keys that indicate the customers who purchased the orders.
For this I defined a unidirectional many-to-one association between orders and customers.

I haven’t yet said anything about the current shopping cart—the order hasn’t been submitted yet. The shopping
cart can support multiple content modifications in a single (or multiple) session(s) of a customer, adding new
products, deleting others, clearing the cart, modifying a product’s quantity, and so forth. It’s not useful to reflect all of
these modifications in the database, since each requires at least one query for updating the “conversation” between
customer and shopping cart. For this, you can take a programmatic approach, storing the shopping cart in a customer
session, or in a view scope or conversational scope. You can also use cookies, or any specific design pattern that can
help implement this task. The idea is to modify the database only when an order is actually placed.

Of course, if your data is highly critical or you need to persist over multiple sessions (for example, if the user
might come back after a week), then it’s a good idea to persist the shopping cart to the database using a separate
collection or as a document inside the orders_c collection. After all, a shopping cart is just an order that has not
been placed, so it can be stored like a normal order with a status of, perhaps, unpurchased. If you decide to persist the
shopping cart, be careful to correctly synchronize it with the inventory. This is mandatory for preventing “overselling;”
the application must move items from inventory to the cart and back to again in some cases, for instance if the user

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

257

drops one or more products or even abandons the whole purchase. Taking a product from inventory and moving it to
the cart (or the reverse) is an operation specific to transactions, so you have to deal with rollback issues. Obviously,
if you don’t have an inventory, things are much simpler.

In Figure 7-6, you can see a document sample for an order.

Figure 7-6. Sample document from the orders_c collection

By convention, when a product does not have color or size, we store a flag like “Unavailable”.
The JPA entity for this collection is shown in Listing 7-5:

Listing 7-5. The JPA Entity for orders_c

1 package eshop.entities;
2
3 import eshop.embedded.Addresses;
4 import eshop.embedded.CartProducts;
5 import java.io.Serializable;
6 import java.util.ArrayList;
7 import java.util.Date;
8 import java.util.List;
9 import javax.persistence.AttributeOverride;
10 import javax.persistence.AttributeOverrides;
11 import javax.persistence.Basic;
12 import javax.persistence.Column;
13 import javax.persistence.ElementCollection;
14 import javax.persistence.Embedded;
15 import javax.persistence.Entity;
16 import javax.persistence.FetchType;
17 import javax.persistence.GeneratedValue;
18 import javax.persistence.Id;

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

258

19 import javax.persistence.ManyToOne;
20 import javax.persistence.Table;
21 import javax.persistence.Temporal;
22 import org.hibernate.annotations.GenericGenerator;
23 import org.hibernate.search.annotations.Analyze;
24 import org.hibernate.search.annotations.DateBridge;
25 import org.hibernate.search.annotations.DocumentId;
26 import org.hibernate.search.annotations.Field;
27 import org.hibernate.search.annotations.Index;
28 import org.hibernate.search.annotations.Indexed;
29 import org.hibernate.search.annotations.IndexedEmbedded;
30 import org.hibernate.search.annotations.NumericField;
31 import org.hibernate.search.annotations.Resolution;
32 import org.hibernate.search.annotations.Store;
33
34 @Entity
35 @Indexed
36 @Table(name = "orders_c")
37 public class Orders implements Serializable {
38
39 private static final long serialVersionUID = 1L;
40 @DocumentId
41 @Id
42 @GeneratedValue(generator = "uuid")
43 @GenericGenerator(name = "uuid", strategy = "uuid2")
44 private String id;
45 @Column(name = "order_status")
46 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
47 private String status;
48 @Column(name = "order_subtotal")
49 @NumericField
50 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
51 private double subtotal;
52 @DateBridge(resolution = Resolution.HOUR)
53 @Temporal(javax.persistence.TemporalType.DATE)
54 private Date orderdate;
55 @Embedded
56 @IndexedEmbedded
57 @Basic(fetch = FetchType.EAGER)
58 private Addresses shipping_address;
59 @IndexedEmbedded
60 @ElementCollection(targetClass = eshop.embedded.CartProducts.class,
61 fetch = FetchType.EAGER)
62 @AttributeOverrides({
63 @AttributeOverride(name = "sku",
64 column =
65 @Column(name = "product_sku")),
66 @AttributeOverride(name = "name",
67 column =
68 @Column(name = "product_name")),
69 @AttributeOverride(name = "price",

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

259

70 column =
71 @Column(name = "product_price")),
72 @AttributeOverride(name = "color",
73 column =
74 @Column(name = "product_color")),
75 @AttributeOverride(name = "size",
76 column =
77 @Column(name = "product_size")),
78 @AttributeOverride(name = "quantity",
79 column =
80 @Column(name = "product_quantity")),
81 @AttributeOverride(name = "uin",
82 column =
83 @Column(name = "unique_identification_number")),})
84 private List<CartProducts> cart = new ArrayList<CartProducts>(0);
85 @IndexedEmbedded
86 @ManyToOne(fetch = FetchType.LAZY)
87 private Customers customer;
88
89 public String getId() {
90 return id;
91 }
92
93 public void setId(String id) {
94 this.id = id;
95 }
96
97 public String getStatus() {
98 return status;
99 }
100
101 public void setStatus(String status) {
102 this.status = status;
103 }
104
105 public Addresses getShipping_address() {
106 return shipping_address;
107 }
108
109 public void setShipping_address(Addresses shipping_address) {
110 this.shipping_address = shipping_address;
111 }
112
113 public List<CartProducts> getCart() {
114 return cart;
115 }
116
117 public void setCart(List<CartProducts> cart) {
118 this.cart = cart;
119 }
120

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

260

121 public Customers getCustomer() {
122 return customer;
123 }
124
125 public void setCustomer(Customers customer) {
126 this.customer = customer;
127 }
128
129 @Override
130 public int hashCode() {
131 int hash = 0;
132 hash += (id != null ? id.hashCode() : 0);
133 return hash;
134 }
135
136 public double getSubtotal() {
137 return subtotal;
138 }
139
140 public void setSubtotal(double subtotal) {
141 this.subtotal = subtotal;
142 }
143
144 public Date getOrderdate() {
145 return orderdate;
146 }
147
148 public void setOrderdate(Date orderdate) {
149 this.orderdate = orderdate;
150 }
151
152 @Override
153 public boolean equals(Object object) {
154 if (!(object instanceof Orders)) {
155 return false;
156 }
157 Orders other = (Orders) object;
158 if ((this.id == null && other.id != null) || (this.id != null &&
 !this.id.equals(other.id))) {
159 return false;
160 }
161 return true;
162 }
163
164 @Override
165 public String toString() {
166 return "eshop.entities.Orders[id=" + id + "]";
167 }
168 }

Let’s discuss the main lines of code for this entity.

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

261

Lines 55-58 represent the mapping of the shipping address. As you can see, I prefer to use an embedded
document for each order. I loaded it eagerly, but lazy loading is also an option, depending on what you want to display
when you load an order.

From the Lucene perspective, I need the @IndexedEmbedded annotation, because I want to index this
embeddable class as part of the owning entity. The Addresses embeddable class (annotated with @Embeddable) is
shown above in Listing 7-4.

In lines 59-84, an element-collection (mapped in MongoDB as an embedded collection) stores an order’s
products. The type of the element-collection is an embeddable class. The main thing to notice here is that I’ve used
the @AttributeOverrides annotation; if we don’t override the columns names of the embeddable collection, they
default to something like cart.collection&&element.price. This is not very friendly, so @AttributeOverrides can be
very useful in such cases.

This embeddable class is named CartProducts and is shown in Listing 7-6.

Listing 7-6. The Embeddable CartProducts Class

1 package eshop.embedded;
2
3 import java.io.Serializable;
4 import javax.persistence.Embeddable;
5 import org.hibernate.search.annotations.Analyze;
6 import org.hibernate.search.annotations.Field;
7 import org.hibernate.search.annotations.Index;
8 import org.hibernate.search.annotations.NumericField;
9 import org.hibernate.search.annotations.Store;
10
11 @Embeddable
12 public class CartProducts implements Serializable {
13
14 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
15 private String sku;
16 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
17 private String name;
18 @NumericField
19 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
20 private double price;
21 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
22 private String color;
23 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
24 private String size;
25 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
26 private String quantity;
27 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.NO)
28 private String uin;
29
30 public String getSku() {
31 return sku;
32 }
33
34 public void setSku(String sku) {
35 this.sku = sku;
36 }
37

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

262

38 public String getName() {
39 return name;
40 }
41
42 public void setName(String name) {
43 this.name = name;
44 }
45
46 public double getPrice() {
47 return price;
48 }
49
50 public void setPrice(double price) {
51 this.price = price;
52 }
53
54 public String getColor() {
55 return color;
56 }
57
58 public void setColor(String color) {
59 this.color = color;
60 }
61
62 public String getSize() {
63 return size;
64 }
65
66 public void setSize(String size) {
67 this.size = size;
68 }
69
70 public String getQuantity() {
71 return quantity;
72 }
73
74 public void setQuantity(String quantity) {
75 this.quantity = quantity;
76 }
77
78 public String getUin() {
79 return uin;
80 }
81
82 public void setUin(String uin) {
83 this.uin = uin;
84 }
85 }
86

From the Lucene perspective, we need the @IndexedEmbedded annotation because we want to index this
embeddable collection in the entity owner index.

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

263

Lines 85-87 define the unidirectional association between the orders_c and customers_c collections. For Lucene,
this association should be marked as @IndexedEmbedded, which is used to index associated entities as part of the owning
entity. This association allows us to easily write Lucene queries similar to SQL queries that contain the WHERE clause, of
the type: select all orders from an order where the customer field equals something (which, in JP-QL, is usually a join).

Model The Inventory Collection (inventory_c)
This collection doesn’t have a corresponding table in Figure 7-1. Not all e-commerce sites need inventory
management. But, for those that do, MongoDB provides a few solutions. One solution is to store a separate document
for each physical product in the warehouse. This will prevent concurrent access to data, since every document will
have a unique lock on that product. In this approach, we rely on the fact that MongoDB supports atomic operations
on individual documents. For cases where the warehouse doesn’t contain too many products (and this depends on
your definition of “too many”), this approach will work quite well.

Another approach is to store a document for a group of identical products and use a field in this document to
represent the number of products. In this case, you need to deal with the situation of multiple users updating this field,
by extracting or returning a product from the same group (there’s also an administrator who occasionally repopulates
the inventory). I choose this approach and deal with concurrent updates by using optimistic locking. If you need to
lock a document for your exclusive use until you’ve finished with it, use pessimistic locking, but be carefully to avoid
(or deal with) deadlocks. In general, optimistic locking is good when you don’t expect imminent collisions but, since
the transaction is aborted (not rolled back), you need to pay the price and deal with it somehow. On the other hand,
pessimistic locking is used when a collision is anticipated, and it’s used when collisions are imminent. It can be pretty
tricky to decide which locking option to choose, but here’s a rule of thumb: use pessimistic locking if you have to
guarantee the integrity of important data, like banking data, and use optimistic locking for everything else.

The MongoDB collection for storing inventory is named inventory_c. For each group of identical products,
I’ve created a composite key from the product SKU and the color and size. Besides the id, each document contains a
numeric field for storing the number of available products, named inventory. The version field is used for optimistic
locking. See Figure 7-7.

Figure 7-7. Sample document from the customers_c collection showing the inventory field

The JPA entity for inventory_c is shown in Listing 7-7.

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

264

Listing 7-7. The JPA Entity for inventory_c

1 package eshop.entities;
2
3 import java.io.Serializable;
4 import javax.persistence.Column;
5 import javax.persistence.Entity;
6 import javax.persistence.Id;
7 import javax.persistence.IdClass;
8 import javax.persistence.Table;
9 import javax.persistence.Version;
10
11 @Entity
12 @IdClass(eshop.embedded.InventoryPK.class)
13 @Table(name = "inventory_c")
14 public class Inventory implements Serializable {
15
16 private static final long serialVersionUID = 1L;
17 @Id
18 private String sku;
19 @Id
20 private String sku_color;
21 @Id
22 private String sku_size;
23 @Version
24 private Long version;
25 @Column(name = "inventory")
26 private int inventory;
27
28 public int getInventory() {
29 return inventory;
30 }
31
32 public void setInventory(int inventory) {
33 this.inventory = inventory;
34 }
35
36 public String getSku() {
37 return sku;
38 }
39
40 public void setSku(String sku) {
41 this.sku = sku;
42 }
43
44 public String getSku_color() {
45 return sku_color;
46 }
47

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

265

48 public void setSku_color(String sku_color) {
49 this.sku_color = sku_color;
50 }
51
52 public String getSku_size() {
53 return sku_size;
54 }
55
56 public void setSku_size(String sku_size) {
57 this.sku_size = sku_size;
58 }
59
60 public Long getVersion() {
61 return version;
62 }
63
64 protected void setVersion(Long version) {
65 this.version = version;
66 }
67
68 @Override
69 public int hashCode() {
70 int hash = 7;
71 hash = 13 * hash + (this.sku != null ? this.sku.hashCode() : 0);
72 return hash;
73 }
74
75 @Override
76 public boolean equals(Object obj) {
77 if (obj == null) {
78 return false;
79 }
80 if (getClass() != obj.getClass()) {
81 return false;
82 }
83 final Inventory other = (Inventory) obj;
84 if ((this.sku == null) ? (other.sku != null) :
 !this.sku.equals(other.sku)) {
85 return false;
86 }
87 return true;
88 }
89 }

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

266

And the composite key class is:

1 package eshop.embedded;
2
3 import java.io.Serializable;
4
5 public class InventoryPK implements Serializable{
6
7 private String sku;
8 private String sku_color;
9 private String sku_size;
10
11 public InventoryPK(){
12 }
13
14 public InventoryPK(String sku, String sku_color, String sku_size) {
15 this.sku = sku;
16 this.sku_color = sku_color;
17 this.sku_size = sku_size;
18 }
19
20 @Override
21 public int hashCode() {
22 int hash = 7;
23 hash = 83 * hash + (this.sku != null ? this.sku.hashCode() : 0);
24 hash = 83 * hash + (this.sku_color != null ?
 this.sku_color.hashCode() : 0);
25 hash = 83 * hash + (this.sku_size != null ?
 this.sku_size.hashCode() : 0);
26 return hash;
27 }
28
29 @Override
30 public boolean equals(Object obj) {
31 if (obj == null) {
32 return false;
33 }
34 if (getClass() != obj.getClass()) {
35 return false;
36 }
37 final InventoryPK other = (InventoryPK) obj;
38 if ((this.sku == null) ? (other.sku != null) :
 !this.sku.equals(other.sku)) {
39 return false;
40 }
41 if ((this.sku_color == null) ? (other.sku_color != null) :
 !this.sku_color.equals(other.sku_color)) {
42 return false;
43 }
44 if ((this.sku_size == null) ? (other.sku_size != null) :

http:///

CHAPTER 7 ■ MONGODB E-COMMERCE DATABASE MODEL

267

 !this.sku_size.equals(other.sku_size)) {
45 return false;
46 }
47 return true;
48 }
49 }

Summary
In this chapter, you saw my proposal for a MongoDB e-commerce database. Of course, this is just a sketch that,
obviously, is open for improvement. I presented the proposed architecture and the database collections, and we’ve
created the necessary entities and embeddable classes. In the next chapter, we’ll continue to develop an enterprise
application based on this database architecture.

http:///

http:///

269

CHAPTER 8

MongoDB e-Commerce Database
Querying

In Chapter 7 we developed a MongoDB database model for an e-commerce application. Now we’ll write the necessary
queries for using the database and see how to perform common tasks for an e-commerce platform, including:

Display categories of products.•

Display promotional products.•

Display products from a category (with pagination).•

Search for a product by name (or by the words in the name).•

Find a customer (for login, editing the profile, saving orders, and so on).•

Save an order for synchronizing the shopping cart with the database.•

Check the inventory for a certain product and quantity.•

Restore the quantity when products are removed from shopping cart.•

Each of these tasks will be accomplished in a Hibernate Search/Apache Lucene query (since JP-QL is
insufficiently developed, we need to use the full-text search engine provided by Apache). The Hibernate Search
queries will be written in JPA style.

For testing the database, I developed an e-commerce web site inspired by the official e-shop of the tennis player
Rafael Nadal (www.rafaelnadal-shop.com/en). The web site is based on:

Java EE 6 (EJB 3.0, JSF 2.0)•

Hibernate OGM 4.0.0 Beta2•

MongoDB 2.2.2•

MongoDB Java Driver 2.8.0•

Hibernate Search 4.2.0 Beta 1•

Apache Lucene 3.6.0•

PrimeFaces 3.4.2•

Don’t worry if you’re not familiar with JSF or PrimeFaces. You can implement the same functionality without
them, using other approaches such as JSP and servlets. Moreover, you can drop EJB and implement the business layer
as you wish. You can also use the Hibernate Native API instead of JPA. These technologies are not essential and, as
long as you understand the e-commerce database model and the queries we’ll discuss, you can glue everything into
an e-commerce application using the technologies you prefer.

http://www.rafaelnadal-shop.com/en
http:///

CHAPTER 8 ■ MONGODB E-COMMERCE DATABASE QUERYING

270

You’ll find the complete source code for the application, named RafaEShop, in the Apress repository. The
application was developed as a NetBeans 7.2.1 project and was tested under GlassFish v3 AS. Figure 8-1 shows the
interaction of the classes.

Figure 8-1. The interaction of the classes in the RafaEShop application

Figure 8-2. The user interface for populating the eshop_db database

For localhost testing purposes, follow these steps (assuming the application is deployed and the MongoDB server
is running):

 1. Ensure you don’t have a database named eshop_db in MongoDB.

 2. Access the page http://localhost:8080/RafaEShop/faces/db.xhtml, as shown
in Figure 8-2. (Obviously, you need to adjust the address and port to reflect your
application server).

http://localhost:8080/RafaEShop/faces/db.xhtml
http:///

CHAPTER 8 ■ MONGODB E-COMMERCE DATABASE QUERYING

271

 3. Press, ONLY ONCE, the button labeled “Populate Rafael Nadal E-Shop MongoDB
Database;” pressing the button more than once will cause errors.

 4. Navigate to the web site by pressing the button labeled, “Go To Website.” This button
navigates to the web site start page.

Now you should see something like what’s shown in Figure 8-3.

Figure 8-3. The Rafael Nadal E-Shop GUI

If you need to restore the database (for whatever reason), follow these steps:

 1. Drop the eshop_db database. You can do this from the MongoDB shell, like this:

mongo eshop_db
db.dropDatabase()

 2. Navigate to the D root folder and delete the eshop folder (this is where Lucene indexes data).

 3. Repeat the steps 1-4, from above.

Now let’s “dissect” Figure 8-2 in terms of Lucene queries.

Display the Categories of Products
The first query will extract the category names and ids from the categories_c collection (the Categories entity).
The names are visible to users and the ids help identify a category in order to retrieve its products; we display the
categories sorted by name. You can find this code in EshopBean.java, shown in Listing 8-1.

http:///

CHAPTER 8 ■ MONGODB E-COMMERCE DATABASE QUERYING

272

Listing 8-1. EshopBean.java

package eshop.beans;
...
public class EShopBean {
...
public List<String> extractCategories() {

 FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

 QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().buildQueryBuilder().
 forEntity(Categories.class).get();

 org.apache.lucene.search.Query query = queryBuilder.all().createQuery();

 FullTextQuery fullTextQuery = fullTextEntityManager
 .createFullTextQuery(query, Categories.class);
 fullTextQuery.setProjection(FullTextQuery.ID, "category");
 Sort sort = new Sort(new SortField("category", SortField.STRING));
 fullTextQuery.setSort(sort);

 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);

 List<String> results = fullTextQuery.getResultList();

 return results;
 }
}

The query is pretty simple. We extract all Categories instances (sorted by category names) by projecting the
category names and ids. In Figure 8-4, you can see how categories are listed in the browser.

http:///

CHAPTER 8 ■ MONGODB E-COMMERCE DATABASE QUERYING

273

Display the Promotional Products
In addition to the category names, the first page of our web site contains a list of the promotional products; these
products can belong to different categories. This is a common approach on many e-commerce web sites, but you can
also display the newest products or the bestsellers. In this case, it’s easy to recognize the promotional products by
checking the MongoDB field product_old_price (old_price in Products entity) of the documents in the products_c
collection (the Products entity). All products with an old price bigger than 0 are assumed to be promotional products.
Therefore, the query looks like the code in Listing 8-2.

Listing 8-2. Query for Displaying Promotional Products

package eshop.beans;
...
public class EShopBean {
...
public List<Products> extractPromotionalProducts() {

 FullTextEntityManager fullTextEntityManager =
org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

 org.apache.lucene.search.Query query = NumericRangeQuery
 .newDoubleRange("old_price", 0.0d, 1000d, false, true);
 FullTextQuery fullTextQuery = fullTextEntityManager
 .createFullTextQuery(query, Products.class);
 Sort sort = new Sort(new SortField("price", SortField.DOUBLE));
 fullTextQuery.setSort(sort);

Figure 8-4. Displaying product categories

i

http:///

CHAPTER 8 ■ MONGODB E-COMMERCE DATABASE QUERYING

274

 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);

 List results = fullTextQuery.getResultList();

 return results;
 }
}

Notice that the promotional products are displayed in ascending order by price. Obviously, you can present the
products in a web browser in a number of different ways. In Figure 8-5, you can see our custom design. Notice that
promotional products have the old price to the right of the current price.

Figure 8-5. Displaying the promotional products

As you can see, we haven’t yet provided pagination for the promotional products. Next we’ll look at how to provide
pagination when displaying the products from a selected category, and you can adapt the same mechansim here.

Display the Products From a Category
When a user selects a category, we need to provide a list of the products grouped under that category. Since we have
the category id, it’s very easy to extract the products, as shown in Listing 8-3.

http:///

CHAPTER 8 ■ MONGODB E-COMMERCE DATABASE QUERYING

275

Listing 8-3. Extracting the Products

package eshop.beans;
...
public class EShopBean {
...
public Map<Integer, List<Products>> extractProducts(String id, int page) {

 FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

 QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().
 buildQueryBuilder().forEntity(Products.class).get();
 org.apache.lucene.search.Query query = queryBuilder.keyword().
 onField("category.id").matching(id).createQuery();

 FullTextQuery fullTextQuery = fullTextEntityManager
 .createFullTextQuery(query, Products.class);
 Sort sort = new Sort(new SortField("price", SortField.DOUBLE));
 fullTextQuery.setSort(sort);

 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);

 fullTextQuery.setFirstResult(page * 3);
 fullTextQuery.setMaxResults(3);
 List<Products> results = fullTextQuery.getResultList();

 Map<Integer, List<Products>> results_and_total = new HashMap<Integer, List<Products>>();
 results_and_total.put(fullTextQuery.getResultSize(), results);

 return results_and_total;
 }
}

Returning type Map<Integer, List<Products>> may look strange, but it’s actually very simple to understand.
Since a category may contain many products, we need to implement the pagination mechanism and load from the
database only one page per query (the page size is set to three products). For calculating the number of pages, we
need to know the number of products in the selected category, even if we extract only some of them. Lucene is able to
return the total number of products even if you query only for some. The total number of products is stored as the key
of the returned map, while the products list is the value of this map. Here’s what the code for this looks like:

• fullTextQuery.setFirstResult(int n); Sets the position of the first result of retrieving the
data or, in other words, it skips the first "n" elements from the result set.

• fullTextQuery.setMaxResults(int n);, which is used to set the number of results to
retrieve starting from the first result.

• fullTextQuery.getResultSize(); Returns the number of all results that match the query,
even if we retrieve only a subset of results.

http:///

CHAPTER 8 ■ MONGODB E-COMMERCE DATABASE QUERYING

276

In Figure 8-6, for example, you can see the last product from the Racquets category. Under the products list, you
can see the navigation link to the previous page and the pagination status of type current_page of total_pages:

Figure 8-6. Displaying the products of a category using pagination

Search for a Product by Name
One task an e-commerce web site has to perform is providing an easy way to search for a specific product or a number
of products without navigating through categories and pages of products. Usually, a user knows the product name or
has an idea of what he’s looking for. For example, he may know that the product is named “Babolat AeroPro Drive GT
Racquet,” or he may know only that he’s looking a “racquet.” The hard part is when the user knows only keywords that
should appear in the name of the products(s).

Many query engines handle such problems with custom queries, but Lucene was especially designed to search in
text, so searching for keywords in text is a piece of cake. The easiest way to accomplish this kind of search is to activate
the default analyzer for the product field in the Products entity (set analyze = Analyze.YES). For complex searching,
you can write your own analyzers, or mix analyzers, and so on. And you can use wildcards if you need more fine-
grained control of keywords.

The code in Listing 8-4 locates a product (or group of products) that contains a keyword (or a list of keywords
separated by spaces) within the name. (I arbitrarily chose not to sort the results.)

Listing 8-4. Locating a Product by Keyword

package eshop.beans;
...
public class EShopBean {
...
public List<Products> searchProducts(String search) {

 FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

 QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().
 buildQueryBuilder().forEntity(Products.class).get();
 org.apache.lucene.search.Query query = queryBuilder.keyword().
 onField("product").matching(search).createQuery();

http:///

CHAPTER 8 ■ MONGODB E-COMMERCE DATABASE QUERYING

277

 FullTextQuery fullTextQuery = fullTextEntityManager
 .createFullTextQuery(query, Products.class);

 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);
 fullTextQuery.setMaxResults(3);

 List results = fullTextQuery.getResultList();

 return results;
 }
}

A limitation of our search is that it returns at most three results (the first three). If you want to return more, or
even all, you will need to implement the pagination mechanism to not return too much data in a single query.

For example, I tested the search for the keyword “t-shirts” and obtained the results shown in Figure 8-7.

Figure 8-7. Searching for a product by keyword

Find a Customer By E-mail And Password
Each customer must have a unique account that contains his name, surname, e-mail address, password, and so on in
the Customers entity (the customers_c collection). When the customer logs in to the web site, views or modifies his
profile, places an order, or takes other actions, we need to be able to extract the customer details from the database.
The query in Listing 8-5 locates a customer in the customers_c collection by the e-mail address and password.

Listing 8-5. Locating a Customer

package eshop.beans;
...
public class EShopBean {
...
public Customers extractCustomer(String email, String password) {

http:///

CHAPTER 8 ■ MONGODB E-COMMERCE DATABASE QUERYING

278

 FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

 QueryBuilder queryBuilder = fullTextEntityManager.getSearchFactory().buildQueryBuilder().
 forEntity(Customers.class).get();
 org.apache.lucene.search.Query query = queryBuilder.bool().must(queryBuilder.keyword()
 .onField("email").matching(email).createQuery()).
 must(queryBuilder.keyword()
 .onField("password").matching(password).createQuery()).

createQuery();

 FullTextQuery fullTextQuery = fullTextEntityManager
 .createFullTextQuery(query, Customers.class);

 fullTextQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);

 List results = fullTextQuery.getResultList();

 if (results.isEmpty()) {
 return null;
 }

 return (Customers) results.get(0);
 }
}

Place an Order
This query does not need Lucene. When a customer places an order, the application should have the customer
(because he or she is logged in); the shipping address (it’s provided by the customer); and the shopping cart (stored in
the customer’s session). With these, it’s very easy to persist an order, like this:

package eshop.beans;
...
public class EShopBean {
...
private EntityManager em;
...
Orders new_order = new Orders();
...
//for each product
new_order.getCart().add(cart_product);
...
new_order.setShipping_address(shipping_address);
new_order.setCustomer(customer);

new_order.setOrderdate(Calendar.getInstance().getTime());
new_order.setSubtotal(payment);
new_order.setStatus("PURCHASED");

http:///

CHAPTER 8 ■ MONGODB E-COMMERCE DATABASE QUERYING

279

...
em.persist(new_order);
...
}

This query affects only a single document, providing atomicity.

Check the Inventory
A customer can add a product to his shopping cart only if the product is available in the warehouse inventory.
Programmatically speaking, this means we need to know the product details and the required quantity; check if it’s
available in the inventory; and, if it is, remove the quantity from the inventory.

However, removing from inventory can lead to inconsistent data, which is clearly undesirable. This can be
avoided by using optimistic locking (or even pessimistic locking), but there’s a price to pay when an optimistic locking
exception is thrown. A simple solution is to provide a message such as, “The product was not added to your cart. Sorry
for the inconvenience, please try again . . .”, or to wait a few seconds and repeat the query for a certain number of times
or until the product is not available in the inventory anymore. The first solution gives the customer a quick response,
while the second solution puts him in a waiting queue. I chose to return a message that urges the user to try again.
The code is shown in Listing 8-6.

Listing 8-6. Checking Inventory

package eshop.beans;
...
public class EShopBean {
...
public int checkInventory(String sku, String color, String size, int quantity) {

 InventoryPK pk = new InventoryPK(sku, color, size);

 Inventory inventory = em.find(Inventory.class, pk, LockModeType.OPTIMISTIC);
 int amount = inventory.getInventory();
 if (amount > 0) {
 if (amount >= quantity) {
 amount = amount - quantity;
 inventory.setInventory(amount);
 try {
 em.merge(inventory);
 } catch (OptimisticLockException e) {
 return -9999;
 }

 return quantity;
 } else {
 inventory.setInventory(0);
 try {
 em.merge(inventory);
 } catch (OptimisticLockException e) {
 return -9999;
 }

http:///

CHAPTER 8 ■ MONGODB E-COMMERCE DATABASE QUERYING

280

 return amount;
 }
 } else {
 return amount;
 }
 }
}

When the inventory contains fewer products than the required quantity, we add to the shopping cart only the
quantity available and inform the user with a message. Figure 8-8 shows the messages that might appear when the
user tries to add a product to his shopping cart.

Figure 8-8. Possible messages when adding a product to the shopping cart

Of course, there are many ways to improve this, such as displaying a message next to each product that says
either "In Stock" or "Not in Stock," and deactivating the Add to Cart button for the latter.

Restore the Inventory
Customers can drop products from their shopping carts before placing the order, or the session might expire if the
user get distracted and doesn’t complete the order in a timely fashion (our application doesn’t implement this case).
When this happens, we need to restore the stock by adding the dropped product back to inventory. Practically, the
process is the reverse of removing products from inventory, so the same problem of inconsistent data may arise.
Optimistic locking (or pessimistic locking) can solve this, but, again, we have to deal with a possible optimistic locking
exception. Obviously, you can’t return a message to the customer that says, “Sorry, we can’t remove the product from
your cart . . .” because that would be very annoying. In our case, we just remove the product from the shopping cart
(since it’s stored in the session) and try only once to restore the inventory. But you could repeat the query, storing the
quantity somewhere else and try to restore it later; or you could use an in-memory secondary inventory; or find any
other approach that fits your needs.

Here’s the code for restoring the inventory:

package eshop.beans;
...
public class EShopBean {
...
public int refreshInventory(String sku, String color, String size, int quantity) {

http:///

CHAPTER 8 ■ MONGODB E-COMMERCE DATABASE QUERYING

281

 InventoryPK pk = new InventoryPK(sku, color, size);

 Inventory inventory = em.find(Inventory.class, pk, LockModeType.OPTIMISTIC);
 int amount = inventory.getInventory();

 amount = amount + quantity;

 inventory.setInventory(amount);

 try {
 em.merge(inventory);
 } catch (OptimisticLockException e) {
 return -9999;
 }

 return quantity;
 }
}

When a product is removed from the shopping cart (even if the inventory could not actually be restored), the user
should see a message like the one in Figure 8-9.

Figure 8-9. Message indicating that removing a product from the shopping cart was successful

At this point, we have a set of queries that compare well with many e-commerce web sites. Obviously, there are
many others that could be added, either using this database model or by modifying the model itself.

Considerations for Developing the Admin GUI
So far, we’ve talked about the e-commerce platform only from the perspective of a customer (user). But the
administrative aspects are also important for e-commerce platforms. You can develop a powerful admin GUI based
on our database model just by writing the proper queries. For example, our database model facilitates the most
common tasks that an administrator must accomplish:

You can easily create a new category, rename or delete existing ones, and so on.•

You can insert new products into a category, delete existing products, or modify products •
characteristics.

You can view or modify customer profiles and orders.•

You can easily populate the inventory and tracking status.•

You can create several statistics regarding selling, bestsellers, and more.•

All these tasks can be accomplished atomically (affecting only one document per query).

http:///

CHAPTER 8 ■ MONGODB E-COMMERCE DATABASE QUERYING

282

Summary
In this chapter, you learned how to query the MongoDB e-commerce database modeled in Chapter 7. You saw how
easy it is to write Lucene queries to achieve the main features of an e-commerce platform and avoid transactions.
Using MongoDB atomicity per document, embedded collections, nested documents, and some tricky queries, we
were able to create an e-commerce site that provides most of the common facilities of a real e-commerce platform.
At this point, you can easily write an admin side, add a powerful login mechanism, modify certain parameters such as
the products page size, and much more.

http:///

283

CHAPTER 9

Migrate MongoDB Database to Cloud

In this chapter, you’ll see how to migrate a MongoDB database from your local computer to two cloud platforms,
MongoHQ and MongoLab. Cloud computing typically means that hardware and software resources are available as
services over a network (usually, the Internet).

I’ll show you how to migrate the MongoDB eshop_db database developed in Chapter 7 to the cloud, but you can
use any other database as long as you follow the steps in order. It’s extremely easy to adapt the process to any other
MongoDB database.

Migrating the MongoDB Database to the MongoHQ Cloud
The first cloud computing platform I’ll present is MongoHQ (www.mongohq.com/home). When you access this link, you
should see something like what’s shown in Figure 9-1.

Figure 9-1. MongoHQ cloud platform—the home page

http://www.mongohq.com/home
http:///

CHAPTER 9 ■ MIGRATE MONGODB DATABASE TO CLOUD

284

 2. Use these credentials to authenticate yourself in the MongoHQ system. Enter your e-mail
address and password and press the Sign In button, as shown in Figure 9-3.

Figure 9-2. MongoHQ cloud platform—creating a new account

Suppose you have a MongoDB database on a local computer (for example, the eshop_db database) and you want
it to run on the MongoHQ cloud platform. Here are the steps you need to follow:

 1. To create a free account, first press the Sign Up button. You’ll see a simple form like the
one in Figure 9-2. Fill out the form and create the account (for this exercise, you can skip
the credit card information).

http:///

CHAPTER 9 ■ MIGRATE MONGODB DATABASE TO CLOUD

285

 3. After you log in, you’ll see the New Database panel, where you can choose a database type.
For testing purposes, you can choose a free database, such as Sandbox or Azure Sandbox.
Once you select a database type, additional information will be provided below it. As you
can see in Figure 9-4, I chose Sandbox.

Figure 9-3. MongoHQ cloud platform—logging in

Figure 9-4. MongoHQ cloud platform—choosing the Sandbox database type

 4. After selecting the database type, scroll down and locate the Name your database input
text field. Type the name of the MongoDB database exactly as you want it to appear in the
cloud (see Figure 9-5). Then press the Create Database button and wait until the empty
database is prepared for you.

http:///

CHAPTER 9 ■ MIGRATE MONGODB DATABASE TO CLOUD

286

 5. After a few seconds, the database should be ready. A popup will inform you that the database
is empty, but you can copy an external database or a MongoHQ database or start creating
collections. In addition, the popup displays the information you need to connect to the
database either from the MongoDB shell or by using a MongoDB URI (see Figure 9-6). The
MongoDB URI is specific to each user, which means you have to adjust each command to
your own URI.

Figure 9-5. MongoHQ cloud platform—naming your MongoDB database

Figure 9-6. MongoHQ cloud platform—the MongoDB database is ready to use

 6. Right now, we don’t need this popup. To the left of it, locate the Admin tab under the
Collections tab and open it. The Admin wizard provides all the operations available for
working with the databases, including those from the popup.

 7. Now you have to create at least one user for your database. To do so, switch to the Users
tab and fill in the fields, as shown in Figure 9-7. Press the Add user button.

http:///

CHAPTER 9 ■ MIGRATE MONGODB DATABASE TO CLOUD

287

8. If the user is successfully created, you’ll see the entry, as shown in Figure 9-8.

Figure 9-7. MongoHQ cloud platform—create a new user for the MongoDB database

Figure 9-8. MongoHQ cloud platform—the new user document

9. So far, so good! Now you can export the eshop_db collections from your local computer to
the brand-new eshop_db database created in the MongoHQ cloud. You can accomplish
this task by using two MongoDB utilities: mongodump and mongorestore. Both are available
as executables in the {MongoDB_HOME}/bin folder. Start the MongoDB server, open a shell
command, and navigate to the /bin folder.

Note■ You can find more information about the mongodump and mongorestore utilities in the MongoDB Manual at

http://docs.mongodb.org/manual/reference/mongodump/ and

http://docs.mongodb.org/manual/reference/mongorestore/.

10. Use the mongodump utility to export the eshop_db database content in binary format
(you can get either JSON or CSV as the output format using the mongoexport command).
The output of this utility should be stored in a separate folder. I specified a folder named
eshop_tmp within the {MongoDB_HOME} folder (it will be automatically created). Here’s the
complete command (shown also in Figure 9-9):

mongodump -h localhost:27017 -d eshop_db -o ../eshop_tmp

http://docs.mongodb.org/manual/reference/mongodump/
http://docs.mongodb.org/manual/reference/mongorestore/
http:///

CHAPTER 9 ■ MIGRATE MONGODB DATABASE TO CLOUD

288

 11. The database, in binary format, can now be imported to the cloud using the mongorestore
utility. Basically, mongorestore is used to import the content from a binary database dump
into a specific database. Here’s the command (also shown in Figure 9-10):

mongorestore -h linus.mongohq.com:10039 -d eshop_db -u admin -p eshop ../eshop_tmp/eshop_db

Figure 9-9. Exporting the eshop_db database in binary format (still on the local computer)

Figure 9-10. Importing eshop_db database in the MongoHQ cloud

 Each collection was successfully imported. You can see the names of the collections
by navigating to the Collections tab, as shown in Figure 9-11.

http:///

CHAPTER 9 ■ MIGRATE MONGODB DATABASE TO CLOUD

289

Mission accomplished! The eshop_db database is in the MongoHQ cloud.
Notice that there are many other tasks you can accomplish in the Admin wizard: delete a database, clone a

database, create a collection, and so on. Each task is pretty intuitive and assisted by friendly MongoHQ interfaces.

Migrating the MongoDB Database to the MongoLab Cloud
MongoLab (https://mongolab.com/welcome/) is the second cloud computing platform I’ll present in this chapter.
When you access the link, you should see something like what’s shown in Figure 9-12.

Figure 9-11. The collections of eshop_db database listed in MongoHQ

Figure 9-12. MongoLab cloud platform - start page

We’ll start again from a MongoDB database, such as the eshop_db database, on a local computer. Again, you want
to make it run on the cloud. Here are the steps to do this using MongoLab:

 1. To create a free account, first press the Sign Up button. You’ll see a simple form, such as
the one in Figure 9-13. Fill out the form and create the account.

https://mongolab.com/welcome/
http:///

CHAPTER 9 ■ MIGRATE MONGODB DATABASE TO CLOUD

290

 2. Use these credentials to authenticate yourself in the MongoLab system. Fill in the
username and password and press the Log In button, as shown in Figure 9-14.

Figure 9-13. MongoLab cloud platform—creating a new account

Figure 9-14. MongoLab cloud platform—log-in form

http:///

CHAPTER 9 ■ MIGRATE MONGODB DATABASE TO CLOUD

291

 3. After logging in, you’ll see the Databases administration panel where you can create new
databases, remote connections, and dedicated clusters. For testing purposes, you can
create a new MongoDB database by pressing the Create new button in the Databases
section (see Figure 9-15).

Figure 9-15. MongoLab cloud platform—Databases section

Figure 9-16. MongoLab cloud platform—creating a new MongoDB database

 4. Next, you need to fill in some fields and make some selections in the Create Shared Plan
database wizard. Start by typing the database name as eshop_db, then select the cloud
provider. I just accepted the default. Select the free, shared plan because it’s perfect for
testing purposes. Finally, create at least one user for this database by filling in the fields
in the New database user section. I used admin for the username and eshop for the
password. Press the Create database button (see Figure 9-16).

 5. After a few seconds the database is created and listed in the Databases section, as shown
in Figure 9-17:

http:///

CHAPTER 9 ■ MIGRATE MONGODB DATABASE TO CLOUD

292

 6. Select this database to see further details, such as the connection information, collections,
system collections, users, stats, and so on (see Figure 9-18). This information is specific to
your account.

Figure 9-17. MongoLab cloud platform—the eshop_db database listed in MongoLab

Figure 9-18. MongoLab cloud platform—the eshop_db database details

You’re ready to import the eshop_db database content to the MongoLab cloud. Just as you did earlier, you can use
the mongodump and mongorestore utilities. Assuming you’ve already used mongodump to export the database content to
binary format, all you need to do is call mongorestore based on the connection information listed under the database
name, as shown in Figure 9-18. Here’s the mongostore command (also shown in Figure 9-19):

mongorestore -h ds029107.mongolab.com:29107 -d eshop_db -u admin -p eshop ../eshop_tmp/eshop_db

http:///

CHAPTER 9 ■ MIGRATE MONGODB DATABASE TO CLOUD

293

A quick page refresh will reveal the imported collection under eshop_db, as in Figure 9-20.

Figure 9-19. Importing the eshop_db database content in MongoLab cloud

Figure 9-20. The eshop_db database collections listed in MongoLab

http:///

CHAPTER 9 ■ MIGRATE MONGODB DATABASE TO CLOUD

294

Mission accomplished! The eshop_db database is now in the MongoLab cloud.
Notice that the Tools wizard provides detailed information about importing and exporting data in MongoLab.

And in addition to mongodump and mongorestore, you can also access the mongoimport and mongoexport utilities.

Connecting to the MongoHQ or MongoLab Cloud Database
You can easily test the connection to the eshop_db database deployed to the MongoHQ or MongoLab cloud as long
as you correctly integrate the connection data (host, port, user, and password) into the application context. The
application in Listing 9-1 is based on the MongoDB Java driver. It connects to the eshop_db database and displays
the collection sizes (the number of documents). Adjust the MONGO_* constants to correspond to yours if the provided
values don’t work.

Listing 9-1. Testing the Connection to the eshop_db Database

package testcloudauth;

import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.Mongo;
import com.mongodb.MongoException;
import java.net.UnknownHostException;

public class TestCloudAuth {

 //for MongoHQ
 private static final String MONGO_HOST_HQ = "linus.mongohq.com";
 private static final int MONGO_PORT_HQ = 10039;
 private static final String MONGO_USER_HQ = "admin";
 private static final String MONGO_PASSWORD_HQ = "eshop";
 private static final String MONGO_DATABASE_HQ = "eshop_db";

 //for MongoLab
 private static final String MONGO_HOST_LAB = "ds029107.mongolab.com";
 private static final int MONGO_PORT_LAB = 29107;
 private static final String MONGO_USER_LAB = "admin";
 private static final String MONGO_PASSWORD_LAB = "eshop";
 private static final String MONGO_DATABASE_LAB = "eshop_db";

 public static void main(String[] args) {
 try {

 Mongo mongo_hq = new Mongo(MONGO_HOST_HQ, MONGO_PORT_HQ);
 DB db_hq = mongo_hq.getDB(MONGO_DATABASE_HQ);
 Mongo mongo_lab = new Mongo(MONGO_HOST_LAB, MONGO_PORT_LAB);
 DB db_lab = mongo_lab.getDB(MONGO_DATABASE_LAB);

 boolean auth_hq = db_hq.authenticate(MONGO_USER_HQ,
 MONGO_PASSWORD_HQ.toCharArray());
 boolean auth_lab = db_lab.authenticate(MONGO_USER_LAB,
 MONGO_PASSWORD_LAB.toCharArray());

http:///

CHAPTER 9 ■ MIGRATE MONGODB DATABASE TO CLOUD

295

 if (auth_hq) {

 System.out.println("Connected at MongoHQ:");
 DBCollection collection_categories_c_hq = db_hq.getCollection("categories_c");
 DBCollection collection_customers_c_hq = db_hq.getCollection("customers_c");
 DBCollection collection_inventory_c_hq = db_hq.getCollection("inventory_c");
 DBCollection collection_products_c_hq = db_hq.getCollection("products_c");
 DBCollection collection_orders_c_hq = db_hq.getCollection("orders_c");
 System.out.println("TOTAL DOCUMENTS IN categories_c (MongoHQ):" +
 collection_categories_c_hq.count());
 System.out.println("TOTAL DOCUMENTS IN customers_c (MongoHQ):" +
 collection_customers_c_hq.count());
 System.out.println("TOTAL DOCUMENTS IN inventory_c (MongoHQ):" +
 collection_inventory_c_hq.count());
 System.out.println("TOTAL DOCUMENTS IN products_c (MongoHQ):" +
 collection_products_c_hq.count());
 System.out.println("TOTAL DOCUMENTS IN orders_c (MongoHQ):" +
 collection_orders_c_hq.count());
 } else {
 System.out.println("Sorry, connection to MongoHQ (eshop_db database) failed ...");
 }

 if (auth_lab) {
 System.out.println("Connected at Mongolab:");
 DBCollection collection_categories_c_lab = db_lab.getCollection("categories_c");
 DBCollection collection_customers_c_lab = db_lab.getCollection("customers_c");
 DBCollection collection_inventory_c_lab = db_lab.getCollection("inventory_c");
 DBCollection collection_products_c_lab = db_lab.getCollection("products_c");
 DBCollection collection_orders_c_lab = db_lab.getCollection("orders_c");
 System.out.println("TOTAL DOCUMENTS IN categories_c (Mongolab):" +
 collection_categories_c_lab.count());
 System.out.println("TOTAL DOCUMENTS IN customers_c (Mongolab):" +
 collection_customers_c_lab.count());
 System.out.println("TOTAL DOCUMENTS IN inventory_c (Mongolab):" +
 collection_inventory_c_lab.count());
 System.out.println("TOTAL DOCUMENTS IN products_c (Mongolab):" +
 collection_products_c_lab.count());
 System.out.println("TOTAL DOCUMENTS IN orders_c (Mongolab):" +
 collection_orders_c_lab.count());
 } else {
 System.out.println("Sorry, connection to Mongolab (eshop_db database) failed ...");
 }
 } catch (UnknownHostException | MongoException e) {
 System.err.println(e.getMessage());
 }
 }
}

If the connection is successfully established, the output will be similar to what you see in Figure 9-21.

http:///

CHAPTER 9 ■ MIGRATE MONGODB DATABASE TO CLOUD

296

The complete source code for this application, called TestMongoHQAuth, is available in the Apress repository.
It comes as a NetBeans project and was tested for the presented cases.

The same connection can be configured in Hibernate OGM via JPA or Hibernate Native API. For example, the
persistence.xml file can be modified to connect to the eshop_db database under MongoHQ, like this:

...
<property name="hibernate.ogm.mongodb.database" value="eshop_db"/>
<property name="hibernate.ogm.mongodb.host" value="linus.mongohq.com"/>
<property name="hibernate.ogm.mongodb.port" value="10039"/>
<property name="hibernate.ogm.mongodb.username" value="admin"/>
<property name="hibernate.ogm.mongodb.password" value="eshop"/>
...

Summary
In this chapter, you saw how to migrate a MongoDB database from your local computer to the MongoHQ and
MongoLab cloud platforms. In both cases, I used free accounts, and I exported the binary version of the eshop_db
database modeled in Chapter 7 to the cloud. I used the MongoDB mongodump utility to obtain the binary version of this
database, and the export was achieved using the MongoDB mongorestore utility. Moreover, you saw how to test the
connection and do some queries against each cloud provider from a Java application. The application uses the Java
MongoDB driver, but I also showed you how to configure the same connection using the JPA persistence.xml file.

Figure 9-21. Output of the TestCloudAuth application

http:///

297

CHAPTER 10

Migrating RafaEShop Application
on OpenShift

In Chapter 9 you saw how to migrate MongoDB databases to two cloud platforms—MongoHQ and MongoLab.
As their names suggest, these platforms are cloud-based, hosted database solutions dedicated to MongoDB, which
means that the applications that use these databases must be hosted in another place. But if you don’t have such a
place, or you want to have the entire application (not just the database) in the cloud, you have to focus more on cloud
computing platforms, like OpenShift from Red Hat. As quoted on the www.openshift.com web site, “OpenShift is Red
Hat’s free, auto-scaling Platform as a Service (PaaS) for applications. As an application platform in the cloud, OpenShift
manages the stack so you can focus on your code.”

OpenShift allows you to use almost any programming language, framework, and middleware, supports many
kinds of architectures and servers, provides out-of-the-box templates for various types of applications, maintains
dedicated tools for developing and migrating applications, and is always focused on assistance and documentation
for developers.

OpenShift uses the notion of a cartridge to refer to all the supported servers, frameworks, database management
systems, and so on. For example, GlassFish AS, MongoDB, MySQL, SwitchYard, Cron, RockMongo, and JBoss AS are
all cartridges, and applications are built on one or more cartridges. As you’ll see, OpenShift provides a user interface
for adding, removing, and configuring cartridges of applications, but its real power comes from the OpenShift Client
tools, known as rhc. For simple applications (like some web applications), it’s very convenient to use the OpenShift
GUI, while for more complex applications (web applications with databases, web services, and the like) a mix of both
GUI and rhc provides full control.

In this chapter, you’ll see how to migrate the RafaEShop application to the OpenShift cloud. The application was
hosted and tested on GlassFish AS 3 running on localhost, but now we’re going to migrate it to GlassFish AS 3 and
JBoss AS 7 running in the cloud. The aim is to apply the necessary modifications to the source code (the MongoDB
connection credentials, configuration files, and so on) and migrate this code to the cloud, first on GlassFish AS 3
as a Web Archive (WAR), and, second, on JBoss AS 7 as a WAR and a Maven project. At the end, you’ll have three
applications in the cloud: one deployed on GlassFish AS 3 and two deployed on JBoss AS 7.

Creating a Free Account on OpenShift
Before getting started with OpenShift, you need to create a free account at www.openshift.com/. This can be
accomplished quickly and easily by pressing the SIGN UP link, which opens a form like the one shown in Figure 10-1.

http://www.openshift.com/
http://www.openshift.com/
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

298

Notice that you have to provide a valid e-mail address because you’ll receive an e-mail from OpenShift containing
a link for activating the account (Figure 10-2).

Figure 10-1. Creating a free OpenShift account

Figure 10-2. Activating your account from e-mail

After creating and activating your account, you have to accept the legal terms and conditions. Read them and
then press the I Accept button (Figure 10-3).

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

299

Once you accept the legal terms, you’ll be redirected to your personal management console where you can see
and create applications, get help, and modify account settings (see Figure 10-4). By default, the Create Application
wizard will be active.

Figure 10-3. OpenShift legal terms

Figure 10-4. User management console tabs

From now on, the management console page can be accessed by clicking the MY APPS link on the OpenShift start
page and signing in using your e-mail address and password, as shown in Figure 10-5.

Figure 10-5. Signing in to OpenShift

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

300

If you sign in successfully, you should see the Create Application wizard (Figure 10-6). This wizard starts
automatically because you don’t yet have any application available. Once you do, the default wizard will be
My Applications. Note that a free OpenShift account allows you to have at most three applications in the cloud.
When you reach three applications, you can’t create a new one until you delete or scale down an existing one.
(The message you’ll get is: “Currently you do not have enough free gears available to create a new application. You can
either scale down or delete existing applications to free up resources.”)

Figure 10-6. OpenShift Create Application wizard

Figure 10-7. OpenShift My Account wizard

Before creating your first application, you must create a namespace that’s unique to your account and is the
suffix of the public URLs OpenShift will assign to your applications. (If you don’t create the namespace now, you’ll
be prompted for it later.) First, in your personal management console, switch to the My Account wizard, shown in
Figure 10-7. (If you don’t see this image, click on the Create a domain for your application link, in the
Domain section).

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

301

Type a valid namespace and save it. As you can see in Figure 10-7, I typed hogm. After the namespace is
successfully created, you’ll see a message like the one in Figure 10-8. (Note that in place of the Public Keys message,
you might see an SSH Keys section, with a link indicating to upload your public key to access the code.)

Figure 10-8. Domain was successfully created

There are two important messages in Figure 10-8. The first confirms that the domain was created successfully,
and the second tells you need an SSH public key to securely encrypt the connection between your local machine and
your applications. I’ll show you later how to do this from the shell so you can sign out.

At this point, you have an account and a domain, but there are a few more steps before you can start migrating
the RafaEShop application. To communicate with the OpenShift platform from the local shell, you need to install
and configure the OpenShift RHC Client Tools (rhc) on your machine. These tools, which were built and packaged
using the Ruby programming language, will help you with many tasks, such as uploading or removing applications
to or from the cloud; monitoring server status and logs; controlling available services (start/stop/restart); adding and
removing security permissions; forwarding ports, and so on. Some of the capabilities provided by these tools are also
available through OpenShift wizards, but the power of these tools goes beyond OpenShift web GUIs.

Installing the OpenShift RHC Client Tools on Windows
In this section, you’ll see how to install the OpenShift RHC Client Tools on Windows. You’ll also install the Git version
control system, which is used by rhc to provide powerful command-line support for controlling your application.

Installing Ruby
Because rhc is built and packaged using Ruby, you need to install Ruby on your computer. The recommended version
is Ruby 1.9.x; I installed Ruby 1.9.3-p392, available at http://rubyinstaller.org/downloads/. For Windows, Ruby
comes as an executable file, so the installation process is monitored and guided by an intuitive wizard. During
installation, many settings have default values that fit most cases, but you must select the “Add Ruby executables to
your PATH” check box to run Ruby from the shell (Figure 10-9).

http://rubyinstaller.org/downloads/
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

302

Note ■ If you decide to install Ruby versions later than 1.9.x (Ruby 2.0.0, for example), you might get a warning of type

“DL is deprecated, please use Fiddle” in the shell. Everything else should work as expected.

Installing Git
As quoted on the www.git-scm.com web site, “Git is a free and open source distributed version control system designed
to handle everything from small to very large projects with speed and efficiency.” OpenShift rhc needs Git to provide
version control for your source code, so you need to download and install it from www.git-scm.com/downloads.

I downloaded Git 1.8.1.2 and installed it using the installation wizard. During installation, ensure that Git is
added to your PATH so you can run it from the shell (Figure 10-10).

Figure 10-9. Installing Ruby; adding Ruby executables to your PATH

http://www.git-scm.com/
http://www.git-scm.com/downloads
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

303

If you don’t want to alter your PATH, you can use the Git Bash shell (the first radio button in Figure 10-10), which
will put a shortcut on your desktop.

Testing Ruby and Git from the Shell
Before going further, it’s a good idea to do a quick test of Ruby and Git by executing some simple commands. To test
Ruby, open a shell and type the following command, which is also shown in Figure 10-11:

ruby -e 'puts "Hello from Ruby"'

Figure 10-10. Installing Git; adding Git executables to your PATH

Figure 10-11. Testing Ruby

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

304

The output of this command is also visible in this figure.
Now type the following command, which is also shown in Figure 10-12, to test that Git was successfully installed

and is available from the shell:

git –version

Figure 10-12. Testing Git

Figure 10-13. Creating a Windows .bat file

Figure 10-14. Running the batch file

The expected output is also visible in this figure.
There are situations when adding the Ruby and Git paths to the Windows PATH during installation doesn’t have

the expected result. In such cases, Ruby and/or Git will not be available from the shell, and instead of the expected
results, you’ll get an error message stating “'ruby or git' is not recognized as an internal or external command, operable
program or batch file.” If this happens to you, keep reading. If you did get the expected results, just jump to the next
section.

This issue can be fixed in at least two ways. I like to use a batch (*.bat) file. The idea is simple:

Create a file named • autoexec.bat anywhere on your computer (the name doesn’t actually
have to be autoexec).

In this file, add a line like the • SET PATH entry in Figure 10-13, adjusting the Ruby and Git paths
to correspond to yours.

Open a shell, navigate to the location of the • .bat file, and type the file name (see Figure 10-14).

Now, Ruby should be accessible from the shell. Keep in mind that each time you open a new shell, you need to
run this command to be able to access Ruby and Git. This can be a pain, but it works. If you already have such a .bat
file, then just add these entries in the SET PATH section. For example, my autoexec.bat looks like what’s shown
in Figure 10-15.

r

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

305

Another approach is to use Windows wizards:

 1. From the Desktop, right-click My Computer and click Properties.

 2. Click the Advanced System Settings link in the left column (Figure 10-16).

Figure 10-15. Windows batch file sample for settings paths

Figure 10-16. Windows 7 Control Panel

 3. In the System Properties window, click the Environment Variables button.

 4. Locate the Path variable (Figure 10-17) and add to it the Ruby and Git paths.

Figure 10-17. Adding Ruby and Git paths in Windows 7

 5. Restart your machine and test Ruby and Git from the shell.

Installing the OpenShift Gem
Finally, we’ll install the OpenShift gem. After Ruby and Git are correctly installed, we’ll use the RubyGems package
manager (included in Ruby) to install the OpenShift client tools. This is straightforward and consists of a simple
command, gem install rhc, as shown in Figure 10-18. This command downloads and installs the rhc gem from
www.rubygems.org/gems/rhc.

http://www.rubygems.org/gems/rhc
http://www.rubygems.org/gems/rhc
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

306

After installation completes, run the rhc setup command (this is recommended when you install the rhc tools
for the first time). To do this, sign in with your e-mail address and password, then you’ll be prompted to answer a few
questions. The first is about creating a token on your disk for accessing the server without using your password. Type yes
and the token will be saved in the C:/Users/{USER}/.openshift/express.conf file, as shown in Figure 10-19.

Figure 10-18. Downloading and installing the OpenShift gem

Figure 10-19. The rhc setup shell wizard; generating a token

Remember the SSH public key needed to securely encrypt communication between your local machine and your
applications? Well, you should now be informed that you don’t have such a key and that OpenShift can create and upload
to the server an SSH key for you. Type yes; the SSH key will be saved locally in the C:/Users/{USER}/.ssh/id_rsa.pub file
and uploaded to the server, as shown in Figure 10-20.

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

307

After a few informational messages and a list of applications that can be created on OpenShift, you should see
a message like “Your client tools are now configured” (see Figure 10-21).

Figure 10-20. The rhc setup shell wizard; creating and uploading the SSH key

Figure 10-21. The rhc setup shell wizard; the configuration was successful

This message confirms that rch was successfully created and everything is set to start developing applications.
The SSH key was successfully generated and uploaded. You can check this in your personal management

console, in the My Account wizard, as shown in Figure 10-22.

Figure 10-22. Accessing your SSH key using the My Account wizard

Note■ This section describes installing the rhc tools only on Windows. But rhc can also run on other operating

systems, such as Mac OS X, Fedora 16, 17, and 18, Red Hat Enterprise Linux 6.4, Ubuntu, and more. To see how to install rhc on

these operating systems, please see the instructions at www.openshift.com/developers/rhc-client-tools-install.

http://www.openshift.com/developers/rhc-client-tools-install
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

308

Fixing a Known Issue
In Windows 7 it’s very possible to get the error “Permission denied (publickey, gssapi-keyex, gssapi-with-mic)” when
you try to execute Git commands. The easiest way to fix this is to copy the two files named id_rsa from the
C:/Users/{USER}/.ssh folder to the {GIT_HOME}/.ssh folder. This should fix the issue!

Migrating the RafaEShop Application to OpenShift
with JBoss AS 7
Now let’s see how to migrate the RafaEShop application from your computer to OpenShift cloud on JBoss AS 7. We’re
going to look at two scenarios: one for migrating this application as a WAR (Web Archive) and one as a Maven project.

Note ■ Of course, if you are interested in only one of the scenarios, only read about that one and ignore all references

to the other.

To start, though, there are several steps to complete that are common to both.
Step 1: Create a base folder. Create a folder named JBossAS on one of your local disks (such as D:/JBossAS).

We will use this as the base folder for our two scenarios.
Step 2: Create two scenario folders. In the D:/JBossAS folder, create two subfolders, one named war, and the

other named mvn.
Step 3: Create a default project based on the JBoss Application Server 7.1 cartridge.
Before deploying an application such as RafaEShop, you need to create a default JBoss Application Server 7.1

application. This is one of the cartridges supported by OpenShift, as shown in Figure 10-23.

Figure 10-23. JBoss Application Server 7.1 cartridge

This step can be accomplished from the OpenShift GUI or from the shell. I prefer the latter, so open a shell and
navigate to the D:/JBossAS/war folder. Use the rhc tools to create the new project by using the following command,
which is also shown in Figure 10-24:

rhc app create -a RafaEShopW -t jbossas-7

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

309

Note ■ During this step, you may receive the question “Are you sure you want to continue connecting (yes/no)?”

The answer is yes. OpenShift needs to add this host to the list of trusted hosts.

Switch to the D:/JBossAS/mvn folder and repeat this step, this time typing the following:

rhc app create -a RafaEShopM -t jbossas-7

Now you have two identical default applications. We’ll deploy the RafaEShop application as a WAR file under
RafaEShopW and as a Maven project under RafaEShopM.

At this point, if you check the D:/JBossAS/war and D:/JBossAS/mvn folders, you’ll see that the applications were
created in the RafaEShopW and RafaEShopM subfolders. Here you’ll find several folders and files, described in the
D:/JBossAS/war/RafaEShopW/README.txt and the D:/JBossAS/war/RafaEShopM/README.txt) files, from which I’ve
copied the following fragment:

deployments/ - location for built wars
src/ - Maven src structure
pom.xml - Maven build file
.openshift/ - location for openshift specific files
.openshift/config/ - location for configuration files such as standalone.xml (used to modify jboss config such

as datasources)

Figure 10-24. Creating the JBoss Application Server 7.1 default application

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

310

.openshift/action_hooks/pre_build - Script that gets run every git push before the build (on the CI system
if available)

.openshift/action_hooks/build - Script that gets run every git push as part of the build process (on the CI
system if available)

.openshift/action_hooks/deploy - Script that gets run every git push after build but before the app is restarted

.openshift/action_hooks/post_deploy - Script that gets run every git push after the app is restarted

.openshift/action_hooks/pre_start_jbossas-7 - Script that gets run prior to starting AS7

.openshift/action_hooks/post_start_jbossas-7 - Script that gets run after AS7 is started

.openshift/action_hooks/pre_stop_jbossas-7 - Script that gets run prior to stopping AS7

.openshift/action_hooks/post_stop_jbossas-7 - Script that gets run after AS7 is stopped

.openshift/markers - directory for files used to control application behavior. See README in markers directory
Read the entire file for complete details. The application links are available in your personal management

console, as shown in Figure 10-25. The links are functional, and they open the default welcome page of the
applications.

Figure 10-25. Two JBoss Application Server 7.1 application links

Figure 10-26. RafaEShopW application details

If you click on an application’s link, you’ll see the application details, such as the Git repository associated with
the application, and you’ll be able to manage cartridges (see Figure 10-26).

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

311

Now that you’ve seen the structure of a default JBoss Application Server 7.1 application, it’s time to go further.
Step 4: Add a MongoDB NoSQL Database 2.2 cartridge (see Figure 10-27).

Figure 10-27. MongoDB NoSQL Database 2.2 cartridge

This will add a MongoDB server instance ready to be populated with data. By default, OpenShift will create a
MongoDB database with the same name as the application. As you can see in Figure 10-27, there’s a Select button
that lets you add this cartridge using a dedicated wizard. I’ll let you explore that approach on your own, while I show
you how to do this from the shell using rhc. Use the following rhc command, which is also shown in Figure 10-28,
to add the MongoDB to the RafaEShopW application:

rhc cartridge add -a RafaEShopW -c mongodb-2.2

Figure 10-28. Adding the MongoDB NoSQL Database 2.2 cartridge using rhc tools

Repeat this step to obtain a MongoDB instance for the RafaEShopM application by switching to the D:/JBossAS/mvn
folder and typing the following command:

rhc cartridge add -a RafaEShopM -c mongodb-2.2

Notice that the MongoDB database was added and you have access to it through the listed credentials.
The MongoDB cartridge is now available in your personal management console, as shown in Figure 10-29.

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

312

Step 5: Add the RockMongo 1.1 cartridge, as shown in Figure 10-30. (This step is optional.)

Figure 10-29. MongoDB cartridge is listed in the RafaEShopW application

Figure 10-30. RockMongo 1.1 cartridge

Adding the RockMongo administration tool is not mandatory, but it can be very useful to have access to the
MongoDB database through a friendly web GUI that makes it easy to manage database content (add and delete
collections, query data, manage users, import and export data, and so on). You can add this cartridge from the shell
(for the RafaEShopW application) by using the following command, which is also shown in Figure 10-31:

rhc cartridge add -a RafaEShopW -c rockmongo-1.1

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

313

Of course, you can also try the visual approach by pressing the Select button.
After you add the RockMongo cartridge, you can access it from the listed URL

https://RafaEShopW-hogm.rhcloud.com/rockmongo/. (The credentials are the same as for the MongoDB
managed instance: user: admin, password: hi_qnUdFqEBg). In Figure 10-32, I accessed the RockMongo interface
for the MongoDB instance belonging to the RafaEShopW application.

Figure 10-31. Adding the RockMongo 1.1 cartridge using rhc tools

Figure 10-32. RockMongo interface for the RafaEShopW database

Repeat this step to add the RockMongo cartridge to the RafaEShopM application. Switch to D:/JBossAS/mvn and
type the following:

rhc cartridge add -a RafaEShopM -c rockmongo-1.1

Sign in to OpenShift to see the RockMongo cartridge, as shown in Figure 10-33.

https://rafaeshopw-hogm.rhcloud.com/rockmongo/
https://rafaeshopw-hogm.rhcloud.com/rockmongo/
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

314

Step 6: Add the org.hibernate:ogm module to JBoss AS 7.
In Chapter 4, in the section “Hibernate OGM in a built-in JTA environment (EJB 3, JBoss AS 7),” you saw how

to add in JBoss AS 7 the module for Hibernate OGM. The same module must be added to the D:/JBossAS/war/
RafaEShopW/.openshift/config/modules folder (and to the equivalent folder for RafaESHopM). Simply copy the
{JBOSS_HOME}/modules/org/hibernate/main and {JBOSS_HOME}/modules/org/hibernate/ogm folders, as shown
in Figure 10-34.

Figure 10-33. RockMongo cartridge is listed in the RafaEShopW application

Figure 10-34. Adding the Hibernate OGM-specific module to JBoss AS 7

Step 7: Adjust the persistence.xml settings. You need to modify the persistence.xml file according to your cloud
application. I recommend you work on a copy of this file. The original is located in the {RafaEShop_HOME}/src/conf
folder and currently contains the settings shown in Listing 10-1.

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

315

Listing 10-1. Original persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="HOGM_eSHOP-ejbPU" transaction-type="JTA">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <class>eshop.entities.Categories</class>
 <class>eshop.entities.Customers</class>
 <class>eshop.entities.Inventory</class>
 <class>eshop.entities.Orders</class>
 <class>eshop.entities.Products</class>
 <properties>
 <property name="hibernate.search.default.directory_provider" value="filesystem"/>
 <property name="hibernate.search.default.indexBase" value="D:/eshop"/>
 <property name="hibernate.search.default.locking_strategy" value="single"/>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.SunOneJtaPlatform"/>
 <property name="hibernate.ogm.datastore.provider" value="mongodb"/>
 <property name="hibernate.ogm.datastore.grid_dialect"
 value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
 <property name="hibernate.ogm.mongodb.database" value="eshop_db"/>
 <property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
 <property name="hibernate.ogm.mongodb.port" value="27017"/>
 </properties>
</persistence-unit>
</persistence>

You have to adjust several settings, as shown in the following set of instructions (this is specific to the
RafaEShopW application).

Apache Lucene indexes are stored in the file system, in the D:/eshop folder. You need to modify this folder path
(base folder) with a valid cloud folder path. Or, to make it much simpler, you can use a memory-based directory by
replacing the following code:

<property name="hibernate.search.default.directory_provider" value="filesystem"/>
<property name="hibernate.search.default.indexBase" value="D:/eshop"/>
<property name="hibernate.search.default.locking_strategy" value="single"/>

with this code:

<property name="hibernate.search.default.directory_provider" value="ram"/>
<property name="hibernate.search.default.locking_strategy" value="single"/>

Because the application is being deployed on JBoss AS, you need to adjust the JTA platform by replacing the
following setting:

<property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.SunOneJtaPlatform"/>

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

316

with this setting:

<property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform"/>

Also, you need to add a few properties that help JBoss AS locate and use the org.hibernate:ogm module,
as described in Chapter 4, in the section “Hibernate OGM in a built-in JTA environment (EJB 3, JBoss AS 7):”

<property name="jboss.as.jpa.adapterModule" value="org.jboss.as.jpa.hibernate:4"/>
<property name="jboss.as.jpa.providerModule" value="org.hibernate:ogm"/>
<property name="jboss.as.jpa.classtransformer" value="false"/>
<property name="hibernate.listeners.envers.autoRegister" value="false"/>

Finally, you need to set the MongoDB database name, host, port, user, and password. To do this, replace the
following code:

<property name="hibernate.ogm.mongodb.database" value="eshop_db"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>

with this code:

<property name="hibernate.ogm.mongodb.database" value="RafaEShopW"/>
<property name="hibernate.ogm.mongodb.host" value="127.7.182.129"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>
<property name="hibernate.ogm.mongodb.username" value="admin"/>
<property name="hibernate.ogm.mongodb.password" value="hi_qnUdFqEBg"/>

Note ■ The MongoDB remote server IP address can be easily obtained if you connect to the MongoDB server using

RockMongo. In Figure 10-32, you can see the IP address 127.7.182.129 listed in the Host field. The port is always 27017,

while the user and password are those used for the connection with RockMongo and provided by OpenShift when you

added the MongoDB cartridge.

The “new” persistence.xml is shown in Listing 10-2.

Listing 10-2. New persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="HOGM_eSHOP-ejbPU" transaction-type="JTA">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <class>eshop.entities.Categories</class>
 <class>eshop.entities.Customers</class>
 <class>eshop.entities.Inventory</class>
 <class>eshop.entities.Orders</class>
 <class>eshop.entities.Products</class>

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

317

 <properties>
 <property name="hibernate.search.default.directory_provider" value="ram"/>
 <property name="hibernate.search.default.locking_strategy" value="single"/>
 <property name="jboss.as.jpa.adapterModule" value="org.jboss.as.jpa.hibernate:4"/>
 <property name="jboss.as.jpa.providerModule" value="org.hibernate:ogm"/>
 <property name="jboss.as.jpa.classtransformer" value="false"/>
 <property name="hibernate.listeners.envers.autoRegister" value="false"/>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform"/>
 <property name="hibernate.ogm.datastore.provider" value="mongodb"/>
 <property name="hibernate.ogm.datastore.grid_dialect"
 value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
 <property name="hibernate.ogm.mongodb.database" value="RafaEShopW"/>
 <property name="hibernate.ogm.mongodb.host" value="127.7.182.129"/>
 <property name="hibernate.ogm.mongodb.port" value="27017"/>
 <property name="hibernate.ogm.mongodb.username" value="admin"/>
 <property name="hibernate.ogm.mongodb.password" value="hi_qnUdFqEBg"/>
 </properties>
</persistence-unit>
</persistence>

Repeat Step 7 for the RafaEShopM application. All you need to modify is the MongoDB database name and
credentials. Now, you have two persistence.xml files, one for the RafaEShopW application and one for the
RafaEShopM application. Just keep them handy.

Now we’re done with the steps that are common to both the WAR and Maven projects.

Monitoring the JBoss AS 7 Log
OpenShift will restart the JBoss AS instance for every Git commit session. More specifically, when you commit
changes, OpenShift stops the JBoss AS instance, uploads and processes the changes, and starts JBoss AS instance
again. If something goes wrong during the restart (for example, if there’s an error in the code or a missing JAR), then
the JBoss AS instance starts with errors, which means that the application will not be available online. In such cases,
it’s very helpful to be able to look at the JBoss AS log for debugging purposes; otherwise, it’s very difficult to know
what’s happening.

You can monitor (in real-time) the server log by opening a Secure Shell (SSH) session to your application.

Note■ The easiest way to find the specific SSH command you need for connecting to your application is to access the

application page and copy from there (as shown in Figure 10-35 for the RafaEShopW application). More details about

remote access using SSH are available at www.openshift.com/developers/remote-access.

http://www.openshift.com/developers/remote-access
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

318

This can be done from the shell using the following ssh command, which is also shown in Figure 10-36:

ssh 514ffd57500446021e000087@RafaEShopW-hogm.rhcloud.com

Figure 10-35. Finding the specific SSH command for an application (RafaEShopW sample)

Figure 10-36. Executing the ssh command from the shell

This is for opening a Secure Shell session to the RafaEShopW application; it’s very intuitive to do the same thing for
the RafaEShopM application.

Next, type the tail_all command, as shown in Figure 10-37. Notice that this command will tail all available logs for
the current application. (The logs specific to JBoss AS are jbossas-7/logs/boot.log and jbossas-7/logs/server.log.)

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

319

Now you can monitor the logs in real-time. Don’t close the monitor during commits because this process is
“connected” to the logs files; just open another shell for other commands.

Note ■ Besides tail_all, the Secure Shell session allows you to execute other commands. To see the list of these

commands with a description, type the help command after the SSH session is established.

Commit Changes
Every change made in the local application folder should be committed on OpenShift (you have to synchronize
the content of this folder with the application on OpenShift). For this, you can use Git commands (open a shell for
monitoring server logs, if you haven’t already done so).

Open a new shell and navigate to the D:/JBossAS/war/RafaEShopW folder (this is also valid for the RafaEShopM
application). Type the command git add ., as shown in Figure 10-38, to prepare the content staged for the next
commit. Don’t worry about LF-CRLF warnings.

Figure 10-37. Tail JBoss AS logs

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

320

Good to know (details at www.kernel.org/pub/software/scm/git/docs/git-add.html):
git add -A Stages All
git add . Stages new and modified, without deleted
git add -u Stages modified and deleted, without new
Type the command git commit -m "first commit" (the text first commit can be any text, as long as it’s different

for every execution of this command). The changes are stored and listed, in this case, in the new JBoss AS module
files, as shown in Figure 10-39.

Figure 10-39. Executing the git commit -m “first commit” command

Figure 10-38. Executing the git add . command

Good to know (details at www.kernel.org/pub/software/scm/git/docs/git-commit.html):
If you make a commit and then find a mistake immediately afterwards, you can recover from it using the git

reset command.
Use the git push command to propagate changes to OpenShift (see Figure 10-40). During execution of this

command, which can take from a few seconds to several minutes, you can check the server log, which is updated
in real-time. Notice how the server is stopped and started during push. When no changes are detected, you’ll see a
message that informs you that everything is up to date.

http://www.kernel.org/pub/software/scm/git/docs/git-add.html
http://www.kernel.org/pub/software/scm/git/docs/git-commit.html
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

321

Good to know (details at www.kernel.org/pub/software/scm/git/docs/git-push.html):
git push --delete All listed changes are deleted from the remote repository.

Migrating the RafaEShop Application as a WAR
After all this hard work, it’s time to prepare the RafaEShop WAR for deployment under JBoss AS 7 in the cloud. First,
locate the WAR in your local project RafaEShop/dist folder or in the Apress repository in the RafaEShop/dist folder.
Copy this WAR to the D:/JBossAS/war/RafaEShopW/deployments folder. Finally, override the persistence.xml file in
the RafaEShop WAR archive (you can use any archive tool, like WinRAR).

Before committing the WAR in the cloud, there’s one more step to complete. You need to add to the /lib
folder two more JARs, named jackson-core-asl-1.9.12.jar
(http://mvnrepository.com/artifact/org.codehaus.jackson/jackson-core-asl) and jackson-mapper-
asl-1.9.12.jar (http://mvnrepository.com/artifact/org.codehaus.jackson/jackson-mapper-asl).

Finally, commit the changes, as shown in Figure 10-41.

Figure 10-41. Committing the RafaEShop WAR

Figure 10-40. Executing the git push command

http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://mvnrepository.com/artifact/org.codehaus.jackson/jackson-core-asl
http://mvnrepository.com/artifact/org.codehaus.jackson/jackson-mapper-asl
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

322

The application was successfully deployed and started. The JBoss server log should look like what’s shown
in Figure 10-42.

Figure 10-42. JBoss AS log

If you’re interested only in this application, you can jump to the “Test It!” section.

Migrating the RafaEShop Application as a Maven Project
Now I’ll focus on the RafaEShopM application. A quick look at the /mvn/RafaEShopM folder reveals a pom.xml file
and a /src folder with three subfolders: /main/java, /main/resources, and /main/webapp. This is actually the
default application created by OpenShift; it’s a simple demo that runs on JBoss AS 7 and serves as a starting point for
developers.

As you can see, this demo has a Maven project structure, which means that we should be able to replace it with
the RafaEShop application. To do this, we have to add the RafaEShop components in the right places and adjust the
pom.xml accordingly.

Following are the steps for deploying the RafaEShop application as a Maven project:
Step 1: Locate the RafaEShop NetBeans project. You can download the RafaEShop NetBeans project from the

Apress repository.
Step 2: Empty the contents of /webapp folder. Just delete the current contents of the

D:/JBossAS/mvn/RafaEShopM/src/main/webapp folder.
Step 3: Copy the RafaEShop sources. Copy the folder {RafaEShop_HOME}/src/java/eshop folder to the

D:/JBossAS/mvn/RafaEShopM/src/main/java folder, as shown in Figure 10-43.

Figure 10-43. Copying the /eshop folder from the RafaEShop application to the RafaEShopM application

Step 4: Copy the RafaEShop /web folder contents. Copy the contents of the {RafaEShop_HOME}/web folder to the
D:/JBossAS/mvn/RafaEShopM/src/main/webapp folder, as shown in Figure 10-44.

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

323

Step 5: Create the /META-INF folder. Create an empty folder named META-INF in
D:/JBossAS/mvn/RafaEShopM/src/main/resources (see Figure 10-45).

Figure 10-45. Creating the empty META-INF folder

Figure 10-46. Copying the persistence.xml file

Figure 10-44. Copying the /web folder contents from the RafaEShop application to the RafaEShopM application

Step 6: Copy persistence.xml. Earlier, in the section, “Migrating the RafaEShop Application to OpenShift
with JBoss AS 7,” you created a persistence.xml file for the RafaEShopM application. Now, copy it to the
D:/JBossAS/mvn/RafaEShopM/src/main/resources/META-INF folder (see Figure 10-46).

Step 7: Adjust pom.xml. Edit the default pom.xml file, as shown in Listing 10-3. You have to add the necessary
dependencies (Hibernate OGM, Hibernate Search, and PrimeFaces).

Listing 10-3. Editing the pom.xml File

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>RafaEShopM</groupId>
 <artifactId>RafaEShopM</artifactId>

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

324

 <packaging>war</packaging>
 <version>1.0</version>
 <name>RafaEShopM</name>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <maven.compiler.source>1.6</maven.compiler.source>
 <maven.compiler.target>1.6</maven.compiler.target>
 </properties>

 <repositories>
 <repository>
 <id>prime-repo</id>
 <name>PrimeFaces Maven Repository</name>
 <url>http://repository.primefaces.org</url>
 <layout>default</layout>
 </repository>
 <repository>
 <id>jboss-public-repository-group</id>
 <name>JBoss Public Maven Repository Group</name>
 <url>https://repository.jboss.org/nexus/content/groups/public-jboss/</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 </repository>
 </repositories>

 <!--
 <pluginRepositories>
 <pluginRepository>
 <id>jboss-public-repository-group</id>
 <name>JBoss Public Maven Repository Group</name>
 <url>https://repository.jboss.org/nexus/content/groups/public-jboss/</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
 -->

http://repository.primefaces.org</url
https://repository.jboss.org/nexus/content/groups/public-jboss/%3C/url
https://repository.jboss.org/nexus/content/groups/public-jboss/%3C/url
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

325

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.primefaces</groupId>
 <artifactId>primefaces</artifactId>
 <version>3.4.2</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search</artifactId>
 <version>4.2.0.Beta1</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-core</artifactId>
 <version>4.0.0.Beta2</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-mongodb</artifactId>
 <version>4.0.0.Beta1</version>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>org.primefaces</groupId>
 <artifactId>primefaces</artifactId>
 <version>3.4.2</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search</artifactId>
 <version>4.2.0.Beta1</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-core</artifactId>
 <version>4.0.0.Beta2</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-mongodb</artifactId>
 <version>4.0.0.Beta1</version>
 </dependency>
 <dependency>

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

326

 <groupId>org.jboss.spec</groupId>
 <artifactId>jboss-javaee-6.0</artifactId>
 <version>1.0.0.Final</version>
 <type>pom</type>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <profiles>
 <profile>
 <!-- When built in OpenShift the 'openshift' profile will be used when invoking mvn. -->
 <!-- Use this profile for any OpenShift specific customization your app will need. -->
 <!-- By default that is to put the resulting archive into the 'deployments' folder. -->
 <!-- http://maven.apache.org/guides/mini/guide-building-for-different-environments.html -->
 <id>openshift</id>
 <build>
 <finalName>RafaEShopM</finalName>
 <plugins>
 <plugin>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.1.1</version>
 <configuration>
 <outputDirectory>deployments</outputDirectory>
 <warName>RafaEShop</warName>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>
</project>

Finally, commit the changes, as shown in Figure 10-47.

Figure 10-47. Commit RafaEShop as an Apache Maven project

http://maven.apache.org/guides/mini/guide-building-for-different-environments.html
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

327

The application was successfully deployed and started. The JBoss server log should look like what’s shown in
Figure 10-48.

Figure 10-48. RafaEShop was successfully deployed

Figure 10-49. Do-It-Yourself cartridge

If you are interested only in this application, you can now jump to the “Test It!” section.

Migrating the RafaEShop Application to OpenShift with
GlassFish 3 AS
In the first part of this chapter you saw that OpenShift offers excellent support for JBoss AS. In just a few minutes
you can obtain a default application running on JBoss AS, and with several clicks and commands you can build and
deploy your own applications as WARs or even as Apache Maven projects.

In the second part of this chapter, we’re going to see how to migrate the RafaEShop application from your
computer to the OpenShift cloud on GlassFish 3 AS. At the time of this writing, OpenShift does not provide a default
GlassFish cartridge, but it does allow you to extend OpenShift to support GlassFish (or other unsupported languages,
frameworks, and middleware) using the Do-It-Yourself application type, as shown in Figure 10-49.

Following are the steps for creating such applications:
Step 1: Prepare GlassFish AS for OpenShift. Before creating a DIY application, you need to prepare GlassFish

for working with OpenShift. There are several modifications that affect GlassFish domain configuration, so it’s not
recommended you perform these modifications on your local GlassFish distribution. It’s much better to download
a new GlassFish distribution from download.java.net/glassfish/3.1.2.2/release/glassfish-3.1.2.2.zip
(version 3.1.2.2 was used in this example) and extract the ZIP archive content in a convenient place on your computer.

Here are the modifications you’ll need to make:

Bind the HTTP listener to the application IP (represented by the environment variable •
$OPENSHIFT_INTERNAL_IP).

Disable the administrator console.•

Disable other listeners.•

Update some ports to permitted ones.•

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

328

These modifications will affect a single GlassFish file, {GlassFish_HOME}/glassfish/domains/domain1/config/
domain.xml. The modified version of this document will be shown completely after I present the list
of modifications. You’ll find more details about the contents and format of this file at
http://docs.oracle.com/cd/E19798-01/821-1753/abhar/index.html.

You should make the following modifications. These modifications are indicated by the OpenShift Blog at
https://www.openshift.com/blogs and are presented in order from the top of the document to the bottom:

Modification 1: Replace “localhost” with “OPENSHIFT_INTERNAL_IP,” as shown in Figure 10-50.

Figure 10-50. Modification 1

Modification 2: Replace “localhost” with “OPENSHIFT_INTERNAL_IP,” as shown in Figure 10-51.

Figure 10-51. Modification 2

Modification 3: Remove “http-listener-2,” as shown in Figure 10-52.

Figure 10-52. Modification 3

Modification 4: Comment the lines <iiop-service></iiop-service>, as shown in Figure 10-53.

http://docs.oracle.com/cd/E19798-01/821-1753/abhar/index.html
http://docs.oracle.com/cd/E19798-01/821-1753/abhar/index.html
https://www.openshift.com/blogs
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

329

Modification 5: Replace “0.0.0.0” with “OPENSHIFT_INTERNAL_IP” and “8686” with “7600,” as shown in
Figure 10-54.

Figure 10-54. Modification 5

Figure 10-55. Modification 6

Figure 10-56. Modification 7

Figure 10-53. Modification 4

Modification 6: Replace “localhost” with “OPENSHIFT_INTERNAL_IP” and “7676” with “5445,” as shown in
Figure 10-55.

Modification 7: Replace “127.0.0.1” with “OPENSHIFT_INTERNAL_IP,” as shown in Figure 10-56.

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

330

Modification 8: Comment the lines <protocol></protocol>, as shown in Figure 10-57.

Figure 10-58. Modification 9

Figure 10-59. Modification 10

Figure 10-60. Modification 11

Modification 9: Add address="OPENSHIFT_INTERNAL_IP," as shown in Figure 10-58.

Modification 10: Comment the lines <network-listener></network-listener>, as shown in Figure 10-59.

Modification 11: Delete http-listener-2, as shown in Figure 10-60.

Figure 10-57. Modification 8

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

331

Modification 13: Replace “127.0.0.1” with “OPENSHIFT_INTERNAL_IP,” as shown in Figure 10-62.

Figure 10-61. Modification 12

Modification 12: Comment the lines <iiop-service></iiop-service>, as shown in Figure 10-61.

Figure 10-62. Modification 13

Modification 14: Comment the lines <protocol></protocol>, as shown in Figure 10-63.

Figure 10-63. Modification 14

Modification 15: Replace “0.0.0.0” with “OPENSHIFT_INTERNAL_IP” and “${HTTP_LISTENER_PORT}” with
“9999,” as shown in Figure 10-64.

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

332

Modification 16: Comment the lines <network-listener></network-listener>, as shown in Figure 10-65.

Figure 10-64. Modification 15

Figure 10-65. Modification 16

Note ■ The real environment variable is $OPENSHIFT_INTERNAL_IP. The string OPENSHIFT_INTERNAL_IP is just a

placeholder, so you can use any other text.

After all the modifications are performed, the domain.xml becomes what you see in Listing 10-4.

Listing 10-4. Modified domain.xml File

<!--

 DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.

 Copyright (c) 2010-2012 Oracle and/or its affiliates. All rights reserved.

 The contents of this file are subject to the terms of either the GNU
 General Public License Version 2 only ("GPL") or the Common Development
 and Distribution License("CDDL") (collectively, the "License"). You
 may not use this file except in compliance with the License. You can
 obtain a copy of the License at
 https://glassfish.dev.java.net/public/CDDL+GPL_1_1.html
 or packager/legal/LICENSE.txt. See the License for the specific
 language governing permissions and limitations under the License.

 When distributing the software, include this License Header Notice in each
 file and include the License file at packager/legal/LICENSE.txt.

 GPL Classpath Exception:
 Oracle designates this particular file as subject to the "Classpath"
 exception as provided by Oracle in the GPL Version 2 section of the License
 file that accompanied this code.

 Modifications:
 If applicable, add the following below the License Header, with the fields
 enclosed by brackets [] replaced by your own identifying information:
 "Portions Copyright [year] [name of copyright owner]"

https://glassfish.dev.java.net/public/CDDL+GPL_1_1.html
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

333

 Contributor(s):
 If you wish your version of this file to be governed by only the CDDL or
 only the GPL Version 2, indicate your decision by adding "[Contributor]
 elects to include this software in this distribution under the [CDDL or GPL
 Version 2] license." If you don't indicate a single choice of license, a
 recipient has the option to distribute your version of this file under
 either the CDDL, the GPL Version 2 or to extend the choice of license to
 its licensees as provided above. However, if you add GPL Version 2 code
 and therefore, elected the GPL Version 2 license, then the option applies
 only if the new code is made subject to such option by the copyright
 holder.

-->

<?xml version="1.0" encoding="UTF-8"?>
<domain log-root="${com.sun.aas.instanceRoot}/logs" application-root="${com.sun.aas.instanceRoot}/
applications" version="10.0">
 <system-applications />
 <applications />
 <resources>
 <jdbc-resource pool-name="__TimerPool" jndi-name="jdbc/__TimerPool" object-type="system-admin" />
 <jdbc-resource pool-name="DerbyPool" jndi-name="jdbc/__default" />
 < jdbc-connection-pool name="__TimerPool" datasource-classname="org.apache.derby.jdbc.

EmbeddedXADataSource" res-type="javax.sql.XADataSource">
 <property value="${com.sun.aas.instanceRoot}/lib/databases/ejbtimer" name="databaseName" />
 <property value=";create=true" name="connectionAttributes" />
 </jdbc-connection-pool>
 < jdbc-connection-pool is-isolation-level-guaranteed="false" name="DerbyPool"

datasource-classname="org.apache.derby.jdbc.ClientDataSource" res-type="javax.sql.DataSource">
 <property value="1527" name="PortNumber" />
 <property value="APP" name="Password" />
 <property value="APP" name="User" />
 <property value="OPENSHIFT_INTERNAL_IP" name="serverName" />
 <property value="sun-appserv-samples" name="DatabaseName" />
 <property value=";create=true" name="connectionAttributes" />
 </jdbc-connection-pool>
 </resources>
 <servers>
 <server name="server" config-ref="server-config">
 <resource-ref ref="jdbc/__TimerPool" />
 <resource-ref ref="jdbc/__default" />
 </server>
 </servers>
 <nodes>
 < node name="localhost-domain1" type="CONFIG" node-host="OPENSHIFT_INTERNAL_IP"

install-dir="${com.sun.aas.productRoot}" />
 </nodes>
 <configs>
 <config name="server-config">
 <http-service>
 <access-log />

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

334

 <virtual-server id="server" network-listeners="http-listener-1" />
 <virtual-server id="__asadmin" network-listeners="admin-listener" />
 </http-service>
 < admin-service auth-realm-name="admin-realm" type="das-and-server"

system-jmx-connector-name="system">
 < jmx-connector auth-realm-name="admin-realm" security-enabled="false"

address="OPENSHIFT_INTERNAL_IP" port="7600" name="system" />
 <property value="/admin" name="adminConsoleContextRoot" />
 < property value="${com.sun.aas.installRoot}/lib/install/applications/admingui.war"

name="adminConsoleDownloadLocation" />
 <property value="${com.sun.aas.installRoot}/.." name="ipsRoot" />
 </admin-service>
 <connector-service shutdown-timeout-in-seconds="30" />
 <web-container>
 <session-config>
 <session-manager>
 <manager-properties />
 <store-properties />
 </session-manager>
 <session-properties />
 </session-config>
 </web-container>
 < ejb-container steady-pool-size="0" max-pool-size="32"

session-store="${com.sun.aas.instanceRoot}/session-store" pool-resize-quantity="8">
 <ejb-timer-service />
 </ejb-container>
 <mdb-container steady-pool-size="0" max-pool-size="32" pool-resize-quantity="8" />
 <jms-service type="EMBEDDED" default-jms-host="default_JMS_host">
 < jms-host name="default_JMS_host" host="OPENSHIFT_INTERNAL_IP"

port="5445" admin-user-name="admin" admin-password="admin" lazy-init="true" />
 </jms-service>
 <security-service>
 < auth-realm classname="com.sun.enterprise.security.auth.realm.file.FileRealm"

name="admin-realm">
 <property value="${com.sun.aas.instanceRoot}/config/admin-keyfile" name="file" />
 <property value="fileRealm" name="jaas-context" />
 </auth-realm>
 <auth-realm classname="com.sun.enterprise.security.auth.realm.file.FileRealm" name="file">
 <property value="${com.sun.aas.instanceRoot}/config/keyfile" name="file" />
 <property value="fileRealm" name="jaas-context" />
 </auth-realm>
 < auth-realm classname="com.sun.enterprise.security.auth.realm.certificate.CertificateRealm"

name="certificate" />
 <jacc-provider policy-configuration-factory-provider="com.sun.enterprise.security.provider.
PolicyConfigurationFactoryImpl" policy-provider="com.sun.enterprise.security.provider.PolicyWrapper"
name="default">
 <property value="${com.sun.aas.instanceRoot}/generated/policy" name="repository" />
 </jacc-provider>
 <jacc-provider policy-configuration-factory-provider="com.sun.enterprise.security.jacc.
provider.SimplePolicyConfigurationFactory" policy-provider="com.sun.enterprise.security.jacc.
provider.SimplePolicyProvider" name="simple" />

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

335

 <audit-module classname="com.sun.enterprise.security.Audit" name="default">
 <property value="false" name="auditOn" />
 </audit-module>
 <message-security-config auth-layer="SOAP">
 < provider-config provider-id="XWS_ClientProvider"

class-name="com.sun.xml.wss.provider.ClientSecurityAuthModule" provider-type="client">
 <request-policy auth-source="content" />
 <response-policy auth-source="content" />
 <property value="s1as" name="encryption.key.alias" />
 <property value="s1as" name="signature.key.alias" />
 <property value="false" name="dynamic.username.password" />
 <property value="false" name="debug" />
 </provider-config>
 < provider-config provider-id="ClientProvider"

class-name="com.sun.xml.wss.provider.ClientSecurityAuthModule" provider-type="client">
 <request-policy auth-source="content" />
 <response-policy auth-source="content" />
 <property value="s1as" name="encryption.key.alias" />
 <property value="s1as" name="signature.key.alias" />
 <property value="false" name="dynamic.username.password" />
 <property value="false" name="debug" />
 < property value="${com.sun.aas.instanceRoot}/config/wss-server-config-1.0.xml"

name="security.config" />
 </provider-config>
 < provider-config provider-id="XWS_ServerProvider"

class-name="com.sun.xml.wss.provider.ServerSecurityAuthModule" provider-type="server">
 <request-policy auth-source="content" />
 <response-policy auth-source="content" />
 <property value="s1as" name="encryption.key.alias" />
 <property value="s1as" name="signature.key.alias" />
 <property value="false" name="debug" />
 </provider-config>
 < provider-config provider-id="ServerProvider"

class-name="com.sun.xml.wss.provider.ServerSecurityAuthModule" provider-type="server">
 <request-policy auth-source="content" />
 <response-policy auth-source="content" />
 <property value="s1as" name="encryption.key.alias" />
 <property value="s1as" name="signature.key.alias" />
 <property value="false" name="debug" />
 < property value="${com.sun.aas.instanceRoot}/config/wss-server-config-1.0.xml"

name="security.config" />
 </provider-config>
 </message-security-config>
 <message-security-config auth-layer="HttpServlet">
 < provider-config provider-type="server" provider-id="GFConsoleAuthModule"

class-name="org.glassfish.admingui.common.security.AdminConsoleAuthModule">
 <request-policy auth-source="sender" />
 <response-policy />
 <property name="restAuthURL"

value="http://localhost:${ADMIN_LISTENER_PORT}/management/sessions" />
 <property name="loginPage" value="/login.jsf" />

http://localhost:${ADMIN_LISTENER_PORT}/management/sessions
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

336

 <property name="loginErrorPage" value="/loginError.jsf" />
 </provider-config>
 </message-security-config>
 <property value="SHA-256" name="default-digest-algorithm" />
 </security-service>
 <transaction-service tx-log-dir="${com.sun.aas.instanceRoot}/logs" />
 < java-config classpath-suffix="" system-classpath="" debug-options="-Xdebug

-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=9009">
 <jvm-options>-XX:MaxPermSize=192m</jvm-options>
 <jvm-options>-XX:PermSize=64m</jvm-options>
 <jvm-options>-client</jvm-options>
 <jvm-options>-Djava.awt.headless=true</jvm-options>
 < jvm-options>-Djavax.management.builder.initial=com.sun.enterprise.v3.admin.

AppServerMBeanServerBuilder</jvm-options>
 <jvm-options>-XX:+UnlockDiagnosticVMOptions</jvm-options>
 < jvm-options>-Djava.endorsed.dirs=${com.sun.aas.installRoot}/modules/endorsed${path.

separator}${com.sun.aas.installRoot}/lib/endorsed</jvm-options>
 <jvm-options>-Djava.security.policy=${com.sun.aas.instanceRoot}/config/server.policy</jvm-options>
 < jvm-options>-Djava.security.auth.login.config=${com.sun.aas.instanceRoot}/config/login.

conf</jvm-options>
 <jvm-options>-Dcom.sun.enterprise.security.httpsOutboundKeyAlias=s1as</jvm-options>
 <jvm-options>-Xmx512m</jvm-options>
 < jvm-options>-Djavax.net.ssl.keyStore=${com.sun.aas.instanceRoot}/config/

keystore.jks</jvm-options>
 < jvm-options>-Djavax.net.ssl.trustStore=${com.sun.aas.instanceRoot}/config/

cacerts.jks</jvm-options>
 < jvm-options>-Djava.ext.dirs=${com.sun.aas.javaRoot}/lib/ext${path.separator}${com.sun.aas.

javaRoot}/jre/lib/ext${path.separator}${com.sun.aas.instanceRoot}/lib/ext</jvm-options>
 <jvm-options>-Djdbc.drivers=org.apache.derby.jdbc.ClientDriver</jvm-options>
 <jvm-options>-DANTLR_USE_DIRECT_CLASS_LOADING=true</jvm-options>
 < jvm-options>-Dcom.sun.enterprise.config.config_environment_factory_class=com.sun.

enterprise.config.serverbeans.AppserverConfigEnvironmentFactory</jvm-options>
 <!-- Configuration of various third-party OSGi bundles like
 Felix Remote Shell, FileInstall, etc. -->
 <!-- Port on which remote shell listens for connections.-->
 <jvm-options>-Dosgi.shell.telnet.port=6666</jvm-options>
 <!-- How many concurrent users can connect to this remote shell -->
 <jvm-options>-Dosgi.shell.telnet.maxconn=1</jvm-options>
 <!-- From which hosts users can connect -->
 <jvm-options>-Dosgi.shell.telnet.ip=OPENSHIFT_INTERNAL_IP</jvm-options>
 <!-- Gogo shell configuration -->
 <jvm-options>-Dgosh.args=--nointeractive</jvm-options>
 <!-- Directory being watched by fileinstall. -->
 <jvm-options>-Dfelix.fileinstall.dir=${com.sun.aas.installRoot}/modules/autostart/</jvm-options>
 <!-- Time period fileinstaller thread in ms. -->
 <jvm-options>-Dfelix.fileinstall.poll=5000</jvm-options>
 <!-- log level: 1 for error, 2 for warning, 3 for info and 4 for debug. -->
 <jvm-options>-Dfelix.fileinstall.log.level=2</jvm-options>
 <!-- should new bundles be started or installed only?
 true => start, false => only install
 -->
 <jvm-options>-Dfelix.fileinstall.bundles.new.start=true</jvm-options>

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

337

 <!-- should watched bundles be started transiently or persistently -->
 <jvm-options>-Dfelix.fileinstall.bundles.startTransient=true</jvm-options>
 < !-- Should changes to configuration be saved in corresponding cfg file? false: no, true: yes
 If we don't set false, everytime server starts from clean osgi cache, the file gets rewritten.
 -->
 <jvm-options>-Dfelix.fileinstall.disableConfigSave=false</jvm-options>
 <!-- End of OSGi bundle configurations -->
 <jvm-options>-XX:NewRatio=2</jvm-options>
 </java-config>
 <network-config>
 <protocols>
 <protocol name="http-listener-1">
 <http default-virtual-server="server" max-connections="250">
 <file-cache enabled="false" />
 </http>
 </protocol>
 <protocol name="admin-listener">
 < http default-virtual-server="__asadmin" max-connections="250"

encoded-slash-enabled="true">
 <file-cache enabled="false" />
 </http>
 </protocol>
 </protocols>
 <network-listeners>
 < network-listener address="OPENSHIFT_INTERNAL_IP" port="8080" protocol="http-listener-1"

transport="tcp" name="http-listener-1" thread-pool="http-thread-pool" />
 </network-listeners>
 <transports>
 <transport name="tcp" />
 </transports>
 </network-config>
 <thread-pools>
 <thread-pool name="admin-thread-pool" max-thread-pool-size="50" max-queue-size="256" />
 <thread-pool name="http-thread-pool" max-queue-size="4096" />
 <thread-pool name="thread-pool-1" max-thread-pool-size="200" />
 </thread-pools>
 </config>
 <config name="default-config" dynamic-reconfiguration-enabled="true">
 <http-service>
 <access-log />
 <virtual-server id="server" network-listeners="http-listener-1">
 < property name="default-web-xml" value="${com.sun.aas.instanceRoot}/config/default-web.xml" />
 </virtual-server>
 <virtual-server id="__asadmin" network-listeners="admin-listener" />
 </http-service>
 <admin-service system-jmx-connector-name="system" type="server">
 <!-- JSR 160 "system-jmx-connector" -->
 < jmx-connector address="0.0.0.0" auth-realm-name="admin-realm" name="system"

port="${JMX_SYSTEM_CONNECTOR_PORT}" protocol="rmi_jrmp" security-enabled="false" />

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

338

 <!-- JSR 160 "system-jmx-connector" -->
 <property value="${com.sun.aas.installRoot}/lib/install/applications/admingui.war"
 name="adminConsoleDownloadLocation" />

 </admin-service>
 <web-container>
 <session-config>
 <session-manager>
 <manager-properties />
 <store-properties />
 </session-manager>
 <session-properties />
 </session-config>
 </web-container>
 <ejb-container session-store="${com.sun.aas.instanceRoot}/session-store">
 <ejb-timer-service />
 </ejb-container>
 <mdb-container />
 <jms-service type="EMBEDDED" default-jms-host="default_JMS_host"

 addresslist-behavior="priority">
 <jms-host name="default_JMS_host" host="localhost" port="${JMS_PROVIDER_PORT}"

 admin-user-name="admin" admin-password="admin" lazy-init="true" />
 </jms-service>
 <log-service log-rotation-limit-in-bytes="2000000"

 file="${com.sun.aas.instanceRoot}/logs/server.log">
 <module-log-levels />
 </log-service>
 <security-service>
 < auth-realm classname="com.sun.enterprise.security.auth.realm.file.FileRealm"

name="admin-realm">
 <property name="file" value="${com.sun.aas.instanceRoot}/config/admin-keyfile" />
 <property name="jaas-context" value="fileRealm" />
 </auth-realm>
 <auth-realm classname="com.sun.enterprise.security.auth.realm.file.FileRealm" name="file">
 <property name="file" value="${com.sun.aas.instanceRoot}/config/keyfile" />
 <property name="jaas-context" value="fileRealm" />
 </auth-realm>
 < auth-realm classname="com.sun.enterprise.security.auth.realm.certificate.CertificateRealm"

name="cetificate" />
 <jacc-provider policy-provider="com.sun.enterprise.security.provider.PolicyWrapper"
name="default" policy-configuration-factory-provider="com.sun.enterprise.security.provider.
PolicyConfigurationFactoryImpl">
 <property name="repository" value="${com.sun.aas.instanceRoot}/generated/policy" />
 </jacc-provider>
 <jacc-provider policy-provider="com.sun.enterprise.security.jacc.provider.SimplePolicyProvider"
name="simple" policy-configuration-factory-provider="com.sun.enterprise.security.jacc.provider.
SimplePolicyConfigurationFactory" />
 <audit-module classname="com.sun.enterprise.security.Audit" name="default">
 <property name="auditOn" value="false" />
 </audit-module>

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

339

 <message-security-config auth-layer="SOAP">
 <provider-config provider-type="client" provider-id="XWS_ClientProvider"

 class-name="com.sun.xml.wss.provider.ClientSecurityAuthModule">
 <request-policy auth-source="content" />
 <response-policy auth-source="content" />
 <property name="encryption.key.alias" value="s1as" />
 <property name="signature.key.alias" value="s1as" />
 <property name="dynamic.username.password" value="false" />
 <property name="debug" value="false" />
 </provider-config>
 <provider-config provider-type="client" provider-id="ClientProvider"

 class-name="com.sun.xml.wss.provider.ClientSecurityAuthModule">
 <request-policy auth-source="content" />
 <response-policy auth-source="content" />
 <property name="encryption.key.alias" value="s1as" />
 <property name="signature.key.alias" value="s1as" />
 <property name="dynamic.username.password" value="false" />
 <property name="debug" value="false" />
 <property name="security.config"

 value="${com.sun.aas.instanceRoot}/config/wss-server-config-1.0.xml" />
 </provider-config>
 <provider-config provider-type="server" provider-id="XWS_ServerProvider"

 class-name="com.sun.xml.wss.provider.ServerSecurityAuthModule">
 <request-policy auth-source="content" />
 <response-policy auth-source="content" />
 <property name="encryption.key.alias" value="s1as" />
 <property name="signature.key.alias" value="s1as" />
 <property name="debug" value="false" />
 </provider-config>
 <provider-config provider-type="server" provider-id="ServerProvider"

 class-name="com.sun.xml.wss.provider.ServerSecurityAuthModule">
 <request-policy auth-source="content" />
 <response-policy auth-source="content" />
 <property name="encryption.key.alias" value="s1as" />
 <property name="signature.key.alias" value="s1as" />
 <property name="debug" value="false" />
 <property name="security.config"

 value="${com.sun.aas.instanceRoot}/config/wss-server-config-1.0.xml" />
 </provider-config>
 </message-security-config>
 </security-service>
 <transaction-service tx-log-dir="${com.sun.aas.instanceRoot}/logs" automatic-recovery="true" />
 <diagnostic-service />
 <java-config debug-options="-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,

 address=${JAVA_DEBUGGER_PORT}" system-classpath="" classpath-suffix="">
 <jvm-options>-XX:MaxPermSize=192m</jvm-options>
 <jvm-options>-XX:PermSize=64m</jvm-options>
 <jvm-options>-server</jvm-options>
 <jvm-options>-Djava.awt.headless=true</jvm-options>
 <jvm-options>-XX:+UnlockDiagnosticVMOptions</jvm-options>
 <jvm-options>-Djava.endorsed.dirs=${com.sun.aas.installRoot}/modules/endorsed${path.separator}

${com.sun.aas.installRoot}/lib/endorsed</jvm-options>

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

340

 <jvm-options>-
 Djava.security.policy=${com.sun.aas.instanceRoot}/config/server.policy</jvm-options>

 <jvm-options>-Djava.security.auth.login.config=${com.sun.aas.instanceRoot}/config/
 login.conf</jvm-options>

 <jvm-options>-Dcom.sun.enterprise.security.httpsOutboundKeyAlias=s1as</jvm-options>
 <jvm-options>-

 Djavax.net.ssl.keyStore=${com.sun.aas.instanceRoot}/config/keystore.jks</jvm-options>
 <jvm-options>-
 Djavax.net.ssl.trustStore=${com.sun.aas.instanceRoot}/config/cacerts.jks</jvm-options>
 <jvm-options>-Djava.ext.dirs=${com.sun.aas.javaRoot}/lib/ext${path.separator}${com.sun.aas.

javaRoot}/jre/lib/ext${path.separator}${com.sun.aas.instanceRoot}/lib/ext</jvm-options>
 <jvm-options>-Djdbc.drivers=org.apache.derby.jdbc.ClientDriver</jvm-options>
 <jvm-options>-DANTLR_USE_DIRECT_CLASS_LOADING=true</jvm-options>
 <jvm-options>- Dcom.sun.enterprise.config.config_environment_factory_class=com.sun.

enterprise.config.serverbeans.AppserverConfigEnvironmentFactory</jvm-options>
 <jvm-options>-XX:NewRatio=2</jvm-options>
 <jvm-options>-Xmx512m</jvm-options>
 <!-- Port on which remote shell listens for connections.-->
 <jvm-options>-Dosgi.shell.telnet.port=${OSGI_SHELL_TELNET_PORT}</jvm-options>
 <!-- How many concurrent users can connect to this remote shell -->
 <jvm-options>-Dosgi.shell.telnet.maxconn=1</jvm-options>
 <!-- From which hosts users can connect -->
 <jvm-options>-Dosgi.shell.telnet.ip=OPENSHIFT_INTERNAL_IP</jvm-options>
 <!-- Gogo shell configuration -->
 <jvm-options>-Dgosh.args=--noshutdown -c noop=true</jvm-options>
 <!-- Directory being watched by fileinstall. -->
 <jvm-options>-Dfelix.fileinstall.dir=${com.sun.aas.installRoot}/modules/autostart/</jvm-options>
 <!-- Time period fileinstaller thread in ms. -->
 <jvm-options>-Dfelix.fileinstall.poll=5000</jvm-options>
 <!-- log level: 1 for error, 2 for warning, 3 for info and 4 for debug. -->
 <jvm-options>-Dfelix.fileinstall.log.level=3</jvm-options>
 <!-- should new bundles be started or installed only?
 true => start, false => only install
 -->
 <jvm-options>-Dfelix.fileinstall.bundles.new.start=true</jvm-options>
 <!-- should watched bundles be started transiently or persistently -->
 <jvm-options>-Dfelix.fileinstall.bundles.startTransient=true</jvm-options>
 <!-- Should changes to configuration be saved in corresponding cfg file? false: no, true: yes
 If we don't set false, everytime server starts from clean osgi cache, the file

gets rewritten.
 -->
 <jvm-options>-Dfelix.fileinstall.disableConfigSave=false</jvm-options>
 <!-- End of OSGi bundle configurations -->
 </java-config>
 <availability-service>
 <web-container-availability />
 <ejb-container-availability sfsb-store-pool-name="jdbc/hastore" />
 <jms-availability />
 </availability-service>
 <network-config>
 <protocols>

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

341

 <protocol name="http-listener-1">
 <http default-virtual-server="server">
 <file-cache />
 </http>
 </protocol>
 <protocol name="admin-listener">
 <http default-virtual-server="__asadmin" max-connections="250">
 <file-cache enabled="false" />
 </http>
 </protocol>
 <protocol security-enabled="true" name="sec-admin-listener">
 <http default-virtual-server="__asadmin" encoded-slash-enabled="true">
 <file-cache />
 </http>
 <ssl client-auth="want" classname="com.sun.enterprise.security.ssl.GlassfishSSLImpl"
 cert-nickname="glassfish-instance" />

 </protocol>
 <protocol name="admin-http-redirect">
 <http-redirect secure="true" />
 </protocol>
 <protocol name="pu-protocol">
 <port-unification>
 <protocol-finder protocol="sec-admin-listener" name="http-finder"
 classname="com.sun.grizzly.config.HttpProtocolFinder" />

 <protocol-finder protocol="admin-http-redirect" name="admin-http-redirect"
 classname="com.sun.grizzly.config.HttpProtocolFinder" />

 </port-unification>
 </protocol>
 </protocols>
 <network-listeners>
 <network-listener address="OPENSHIFT_INTERNAL_IP" port="9999" protocol="http-listener-1"
 transport="tcp" name="http-listener-1" thread-pool="http-thread-pool" />

 </network-listeners>
 <transports>
 <transport name="tcp" />
 </transports>
 </network-config>
 <thread-pools>
 <thread-pool name="http-thread-pool" />
 <thread-pool max-thread-pool-size="200" idle-thread-timeout-in-seconds="120"
 name="thread-pool-1" />

 </thread-pools>
 <group-management-service />
 <management-rules />
 <system-property name="ASADMIN_LISTENER_PORT" value="24848" />
 <system-property name="HTTP_LISTENER_PORT" value="28080" />
 <system-property name="HTTP_SSL_LISTENER_PORT" value="28181" />
 <system-property name="JMS_PROVIDER_PORT" value="27676" />
 <system-property name="IIOP_LISTENER_PORT" value="23700" />
 <system-property name="IIOP_SSL_LISTENER_PORT" value="23820" />
 <system-property name="IIOP_SSL_MUTUALAUTH_PORT" value="23920" />
 <system-property name="JMX_SYSTEM_CONNECTOR_PORT" value="28686" />

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

342

 <system-property name="OSGI_SHELL_TELNET_PORT" value="26666" />
 <system-property name="JAVA_DEBUGGER_PORT" value="29009" />
 </config>
 </configs>
 <property name="administrative.domain.name" value="domain1" />
 <secure-admin special-admin-indicator="3047aff3-3214-4ac9-aa5e-a5dad78b2eea">
 <secure-admin-principal dn="CN=localhost,OU=GlassFish,O=Oracle Corporation,
L=Santa Clara,ST=California,C=US" />
 <secure-admin-principal dn="CN=localhost-instance,OU=GlassFish,O=Oracle Corporation,
L=Santa Clara,ST=California,C=US" />
 </secure-admin>
</domain>

Done! GlassFish is prepared and you can go on to the next step.
Step 2: Create the DIY application stub. It’s time to create the OpenShift default DIY application:

Create an empty folder on local disk • D: and name it GlassFishAS.

Open a shell and navigate to the • GlassFishAS folder.

Type the command • rhc app create -a RafaEShop -t diy-0.1, as shown in Figure 10-66.

Figure 10-66. Creating the default DIY application

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

343

Just for a quick check, sign in to the OpenShift web site and locate the application link in your management
console (Figure 10-67).

Figure 10-67. Application links listed in the management console

Note ■ Before going further, take your time and read the D:/GlassFishAS/RafaEShop/README.txt file. This file

describes the application folders and some environment variables.

Step 3: Copy the GlassFish files. Now copy the GlassFish files into the D:/GlassFishAS/RafaEShop/diy folder,
as shown in Figure 10-68.

Figure 10-68. Copying GlassFish files

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

344

Step 5: Add the MongoDB NoSQL Database 2.2 cartridge, as you saw earlier in Figure 10-27. In the first part of
this chapter, you saw how to add the MongoDB cartridge. The process is exactly the same, so type the command
rhc cartridge add -a RafaEShop -c mongodb-2.2 in the shell, as shown in Figure 10-71.

Figure 10-69. Modifying the start file

GlassFish is stopped according to the D:/GlassFishAS/RafaEShop/.openshift/action_hooks/stop file.
The default contents of this file should be replaced with the following lines. These modifications are indicated by the
OpenShift Blog at https://www.openshift.com/blogs:

#!/bin/bash
The logic to stop your application should be put in this script.
kill `ps -ef | grep glassfish3 | grep -v grep | awk '{ print $2 }'` > /dev/null 2>&1
exit 0

Now it should look like what you see in Figure 10-70.

Figure 10-70. Modifying the stop file

Step 4: Modify the start and stop action hooks (you should be familiar with these files from the README.txt file).
You need to adjust the start file before starting the GlassFish server. Locate the file D:/GlassFishAS/RafaEShop/.

openshift/action_hooks/start and append to its code the following lines. These modifications are indicated by the
OpenShift Blog at https://www.openshift.com/blogs:

cd $OPENSHIFT_REPO_DIR/diy/glassfish3/glassfish/domains/domain1/config/
mv domain.xml domain.xml_2
sed 's/'$(grep serverName domain.xml_2 | cut -d\" -f 2)'/'$OPENSHIFT_INTERNAL_IP'/g'
domain.xml_2 > domain.xml
../../../bin/asadmin start-domain &> $OPENSHIFT_DIY_LOG_DIR/server.log

The start file should look like what you see in Figure 10-69.

https://www.openshift.com/blogs
https://www.openshift.com/blogs
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

345

Figure 10-71. Adding the MongoDB cartridge

Step 6: Add the RockMongo 1.1 cartridge, as you saw earlier in Figure 10-30.
It can be useful to add the RockMongo administration tool for managing MongoDB databases using a visual

approach. Use the following command to add RockMongo, as shown in Figure 10-72:

rhc cartridge add -a RafaEShop -c rockmongo-1.1

Figure 10-72. Adding the RockMongo cartridge

Step 7: Adjust the persistence.xml settings. Locate the persistence.xml file in the RafaEShop application.
You need to modify these file settings to work with the new MongoDB database; I recommend you make a copy of
it before modifying it. At this point, the persistence.xml file should have the contents shown in Listing 10-5.

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

346

Listing 10-5. Modified persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="HOGM_eSHOP-ejbPU" transaction-type="JTA">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <class>eshop.entities.Categories</class>
 <class>eshop.entities.Customers</class>
 <class>eshop.entities.Inventory</class>
 <class>eshop.entities.Orders</class>
 <class>eshop.entities.Products</class>
 <properties>
 <property name="hibernate.search.default.directory_provider"
 value="filesystem"/>
 <property name="hibernate.search.default.indexBase" value="D:/eshop"/>
 <property name="hibernate.search.default.locking_strategy"
 value="single"/>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.
 internal.SunOneJtaPlatform"/>
 <property name="hibernate.ogm.datastore.provider" value="mongodb"/>
 <property name="hibernate.ogm.datastore.grid_dialect"
 value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
 <property name="hibernate.ogm.mongodb.database" value="eshop_db"/>
 <property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
 <property name="hibernate.ogm.mongodb.port" value="27017"/>
 </properties>
</persistence-unit>
</persistence>

You have to adjust several settings, as shown in the following set of instructions.
Apache Lucene indexes are stored in the file system (in the D:/eshop folder). You need to modify this folder path

(base folder) with a valid cloud folder path. As a simpler option, you can use a memory-based directory by replacing
the following code:

<property name="hibernate.search.default.directory_provider"
 value="filesystem"/>
<property name="hibernate.search.default.indexBase" value="D:/eshop"/>
<property name="hibernate.search.default.locking_strategy"
 value="single"/>

with this code:

<property name="hibernate.search.default.directory_provider"
 value="ram"/>
<property name="hibernate.search.default.locking_strategy"
 value="single"/>

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

347

Set the MongoDB database name, host, port, user, and password. To do so, replace the following snippet of code:

<property name="hibernate.ogm.mongodb.database" value="eshop_db"/>
<property name="hibernate.ogm.mongodb.host" value="127.0.0.1"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>

with this code:

<property name="hibernate.ogm.mongodb.database" value="RafaEShop"/>
<property name="hibernate.ogm.mongodb.host" value="127.9.57.129"/>
<property name="hibernate.ogm.mongodb.port" value="27017"/>
<property name="hibernate.ogm.mongodb.username" value="admin"/>
<property name="hibernate.ogm.mongodb.password" value="YhH7s7eLYrR4"/>

The “new” persistence.xml should be the following:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
"http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="HOGM_eSHOP-ejbPU" transaction-type="JTA">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <class>eshop.entities.Categories</class>
 <class>eshop.entities.Customers</class>
 <class>eshop.entities.Inventory</class>
 <class>eshop.entities.Orders</class>
 <class>eshop.entities.Products</class>
 <properties>
 <property name="hibernate.search.default.directory_provider"
 value="ram"/>
 <property name="hibernate.search.default.locking_strategy"
 value="single"/>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.
 internal.SunOneJtaPlatform"/>
 <property name="hibernate.ogm.datastore.provider" value="mongodb"/>
 <property name="hibernate.ogm.datastore.grid_dialect"
 value="org.hibernate.ogm.dialect.mongodb.MongoDBDialect"/>
 <property name="hibernate.ogm.mongodb.database" value="RafaEShop"/>
 <property name="hibernate.ogm.mongodb.host" value="127.9.57.129"/>
 <property name="hibernate.ogm.mongodb.port" value="27017"/>
 <property name="hibernate.ogm.mongodb.username" value="admin"/>
 <property name="hibernate.ogm.mongodb.password" value="YhH7s7eLYrR4"/>
 </properties>
</persistence-unit>
</persistence>

Step 8: Add the RafaEShop WAR in GlassFish. Locate the RafaEShop application WAR in your local project
RafaEShop/dist folder or in the Apress repository in the RafaEShop/dist folder.

Copy this WAR to the D:/GlassFishAS/RafaEShop/diy/glassfish3/glassfish/domains/domain1/autodeploy
folder (see Figure 10-73). Finally, override the persistence.xml file in the RafaEShop WAR archive. You can use any
archive tool, such as WinRAR.

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

348

Figure 10-73. Copying the RafaEShop WAR

Figure 10-74. Monitoring the GlassFish start/stop status

Notice that in this folder, besides your WAR, there’s another WAR named openshift. This is the default
application generated by OpenShift when you used the DIY cartridge.

You have completed the final step. You can now upload the application to the OpenShift platform. However,
before committing the changes it’s a good idea to open a separate process for monitoring the GlassFish AS
start/stop status.

Monitoring GlassFish Start/Stop
If you read the first part of this chapter, you are already familiar with connections made using a secure shell session
and how to open such a connection from your computer. You can now open an SSH session to monitor the GlassFish
AS start/stop status in real-time using the following command, as shown in Figure 10-74:

ssh 515466444382ece1bb0001c2@RafaEShop-hogm.rhcloud.com.

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

349

Next, type the tail_all command. This command will tail all available logs for the current application, including
the server start/stop status. Most probably, at this point you’ll see some errors or notices from the RockoMongo log.
Ignore them for now and leave this process open.

Commit Changes
Each time you commit changes to your application, OpenShift will automatically stop GlassFish AS, commit the
changes, and start GlassFish AS again. Open a new shell, navigate to the D:/GlassFishAS/RafaEShop folder, and type
the following three commands:

git add .
git commit -m "first commit"
git push

Because this is the first commit, it will take some time until everything is pushed to the application.
At the end of the commit, GlassFish is started and, in the shell that’s monitoring this action, you should see

something like what’s shown in Figure 10-75.

Figure 10-75. GlassFish domain was successfully started

Obviously, this is exactly the message we expected. If you see this message, jump directly to the section
“Monitoring the GlassFish Log.” If not, you have a problem, perhaps the one described next.

Fixing Known Issues
Sometimes, instead of success you’ll get a message stating “Permission denied!” (see Figure 10-76).

Figure 10-76. Permission denied

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

350

To fix this problem, you need to grant yourself certain permissions to application files and directories. Open
a new SSH session (don’t close the one monitoring the GlassFish start/stop status) and type the following chmod
commands (also shown in Figure 10-77).

chmod +x app-root/runtime/repo/diy/glassfish3/bin/*
chmod +x diy-0.1/repo/diy/glassfish3/glassfish/bin/*
chmod +x diy-0.1/runtime/repo/.openshift/action_hooks/*

Figure 10-78. Starting the application from the shell

Start the application again by typing the command ctl_app start (see Figure 10-78).

Figure 10-77. Grant permission to application files

Figure 10-79. Locating the GlassFish AS log file

Note ■ To stop the application, type ctl_app stop. To restart the application, type ctl_app restart. More details

about these commands (and others) can be obtained by typing the help command.

This time, in the shell that monitors the GlassFish domain start/stop status, you should see a success message
like the one in Figure 10-75.

Monitoring the GlassFish Log
When the GlassFish domain successfully starts, you can see the location and name of the GlassFish log file,
as in Figure 10-79 (this was extracted from Figure 10-75).

The contents of server.log can be listed in a shell (you need to be patient until the application is deployed).
Open a new SSH session and type the following command, which is also shown in Figure 10-80:

tail app-root/rutime/repo/diy/glassfish3/glassfish/domains/domain1/logs/server.log

-

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

351

Figure 10-80. Listing the contents of the GlassFish AS log file

Based on this log content, you can easily debug your application.
In Figure 10-80, the log message indicates that the application RafaEShop was successfully deployed. Now you

can close all the shells and enjoy the application.

Test It!
Since you’ve gotten this far, you’ve probably successfully deployed the application in at least one of the three
presented approaches. No matter which approach you selected, the test can be performed is the same manner. If you
tried all three approaches, your OpenShift management console should look like the one in Figure 10-81.

Figure 10-81. All the application links listed in the management console

Note ■ I’m going to present the steps for testing the RafaEShopW application deployed as a WAR on GlassFish AS 3. You

can easily adapt these steps for the other two approaches.

Because this is the first time you’re running the application, you need to populate the MongoDB
e-commerce database. As you know, this can be done from the db.xhml administration page. The link to this is
http://rafaeshopw-hogm.rhcloud.com/RafaEShop/faces/db.xhtml.

http://rafaeshopw-hogm.rhcloud.com/RafaEShop/faces/db.xhtml
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

352

Cautions
In case you need to repopulate the MongoDB database (from the db.xhtml administration page), DO NOT FORGET
to drop the existing collections. You can do this easily from the RockMongo interface by pressing the Drop All button,
as shown in Figure 10-83.

Figure 10-82. Running the RafaEShopW application

After populating the database, you can access the e-shop at
http://rafaeshopw-hogm.rhcloud.com/RafaEShop/faces/index.xhtml (see Figure 10-82).

http://rafaeshopw-hogm.rhcloud.com/RafaEShop/faces/index.xhtml
http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

353

Figure 10-84. Restarting the application

Figure 10-83. Dropping database collections from the RockMongo interface

Then restart the server. You can use either the ctl_app restart command or the management console,
as shown in Figure 10-84.

Restarting the server will reset the Lucene indexes (since they are stored in RAM), which means that you also
need to drop the database collections and repopulate the database from the db.xhml administration page.

Trying to populate the MongoDB database without using the db.xhtml administration page will cause errors.
Because the application isn’t capable of indexing an existing database, the Lucene indexes will not be updated.

Don’t worry that initially the orders_c collection is missing. This will be created when the first purchase
order is submitted.

http:///

CHAPTER 10 ■ MIGRATING RAFAESHOP APPLICATION ON OPENSHIFT

354

Good To Know
OpenShift allows you to remotely connect to available services using port forwarding (generally speaking, this
technique lets you connect remote computers to services within a private local area network). This can be done using
the rhc command rhc port-forward -a RafaEShopW, as shown in Figure 10-85.

Figure 10-85. Port forwarding

In Figure 10-85, you can see the available ports for the RafaEShopW application. Notice that the mongod server
is also listed.

Disclaimer
When this book was written, the applications I discussed were available online. I can’t guarantee that when you read
this book, OpenShift will make these applications available (if the applications don’t have much traffic, OpenShift
might shut down the servers).

Summary
In this final chapter, you saw how to migrate the RafaEShop application to the OpenShift PaaS. The chapter began
with several introductory tasks, such as creating an account on OpenShift, activating and signing into this account,
and becoming familiar with OpenShift web interface. Further, you saw how to deploy RafaEShop as a WAR and as
an Apache Maven project on JBoss AS 7 running in the cloud. In the second part of this chapter, you configured a
GlassFish AS 3 domain for running in OpenShift, and you deployed the RafaEShop application on this domain.

http:///

A���������
@Access annotation, 176
Apache Maven command line

mvn command execution, 13–14
pom.xml ile, 13
settings.xml document, 11–13

Apache Maven projects, 52

B���������
Bean managed transactions (BMT), 39
Bidirectional association, 179
Bootstrap

Hibernate Native APIs, 40–41
architecture, 49
coniguration property, 45
hibernate.cfg.xml ile, 48–49
hibernate.transaction.jta.platform, 45
HibernateUtil class, 47
non-programmatically settings, 46
NoSQL data store, 46
SessionFactory, 44
steps—loading properties, 44

JPA (see Java Persistence API (JPA))
JTA (see Java Transaction API (JTA))
MongoDB, 40
OGM obsolete coniguration, 50

Built-in JTA Environment
EJB 3/BMT, GlassFish AS 3

bmt collection content, 80
develop application, 77
HOGMviaHNAPI_JTA_EJB_BMT_GlassFish3

application, 79
Lucky Number- the BMT Approach, 78–79
prerequisites, 76
UserTransaction, 78

EJB 3/CMT, GlassFish AS 3
cmt collection content, 83
develop application, 80

HOGMviaHNAPI_JTA_EJB_CMT_GlassFish3
application, 82

Lucky Number—the CMT Approach, 81–82
prerequisites, 80

no EJB, GlassFish AS 3
collection content, 76
develop application, 71
getCurrentSession approach, 73
HibernateUtil Class, 72–73
HOGMviaHNAPI_JTA_GlassFish3

application, 76
openSession approach, 74
prerequisites, 71
TestManagedBean Class, 75

C���������
@Cacheable annotation

irst-level cache, 148
JARs, 150
javax.persistence.cache.retrieveMode controls, 155
javax.persistence.cache.storeMode controls, 155
JUnit test, 152
persistence.xml, 150
Players entities, 152
second-level cache, 149
supported values, 150
testing, 155
Tournaments entites, 152

Callback methods, 163
@Column annotation, 138
Composite key class, 266–267
Container Managed Transactions (CMT), 39

D���������
Data persistence

data grid, 6–7
data storage, 4
entity instance, 5

Index

355

http:///

entity serialization, 7
MongoDB, 7
primary and foreign key, 4
relational database model, 6
tuple, 4

Data query
CRUD operations, 8
JBoss Teiid data virtualization system, 8
JP-QL query, 8
Lucene indexes, 9

Data storage
BSON object, 26
collection, 33
GLOBAL_COLLECTION strategy, 32
IN_ENTITY strategy, 30
Java entity, 26
JPA term, 30
junction table, 29
many-to-many association, 29
POJO class, 26–27
primary key, 28
relational data model, 25

Default callback methods, 164
Denormalization, 2

E, F���������
Eager loading, 122
Eclipse IDE

JUNO, 19
Marketplace, 19
MongoDB library, 21
pom.xml, 20

E-commerce database model
architecture, 242
categories_c, 243
customers collection

@AttributeOverride annotation, 254
document, 250
embeddable class, 254, 256
JPA entity, 251–254

inventory collection
composite key class, 266
JPA entity, 263–265
optimistic locking, 263
pessimistic locking, 263

NoSQL store, 241
orders collection

element-collection, 261
embeddable class, 261
JPA entity, 257–260
overselling, 256
shipping address, 256
shopping cart, 256

products_c, 245
SQL schema, 241

E-commerce database query
admin GUI, 281
Babolat AeroPro Drive GT Racquet, 276
checking inventory, 279
customer entity, 277
E-Shop GUI, 271
JPA style, 269
JSP and servlets, 269
localhost testing, 270
product category

EshopBean.java, 271–272
extraction, 274–275
Lucene, 275
names and ids, 272–273
pagination, 276

promotional products, 273
RafaEShop application, 270
restore database, 271
restoring inventory , 280
user interface, 270
web site, 269

@ElementCollection annotation
deining two collections, 159
feature of, 158
testing, 160
testing LAZY loading for, 160

@Embeddable annotation, 143
@Embedded annotation, 143
@EmbeddedId annotation, 133
@Entity annotation, 123
@EntityListeners annotation, 163
@Enumerated annotation, 146
@ExcludeDefaultListeners annotation, 163
@ExcludeSuperclassListeners annotation, 163
External callback methods, 163

G���������
@GeneratedValue annotation, 125

H���������
Hibernate OGM

architecture
data persistence (see Data persistence)
data query (see Data query)
datastore provider and dialect, 3
GridDialect, 4
JDBC layer, 2–3

bootstrapping (see Bootstrap)
CRUD operations, 205

Players entity, 211
via Hibernate Native API, 212
via the Java Persistence API, 213

■INDEX

356

Data persistence (cont.)

http:///

distribution
4.0.0.Beta2, 10
Apache Maven command line

(see Apache Maven command line)
change log, 10
Eclipse IDE (see Eclipse IDE)
JARs, 9
Maven Central Repository, 10–11
MongoDB artifacts, 14–15
NetBeans IDE (see NetBeans IDE)

EJB 3, GlassFish AS 3
CMTBean Class, 87
dependencies node, 84
HOGMviaJPA_EE_GlassFish application, 88
jpa collection content, 88
LuckyNumberEntity Class, 84–85
persistence.xml, 86

EJB 3, JBoss AS 7
HOGMviaJPA_EE_JBossAS Application, 93
jpa collection content, 94
JPA facet, 90
JPA implementation, 91–92
module.xml, 89–90
persistence.xml, 92–93
prerequisites, 89

features and expectations, 2
GlassFish 3 and Spring 3 application

dispatcher-servlet.xml, 111
Entity Class, 107, 109
HOGMviaJPA_SPRING3 application, 113
LuckyNumberDAO Bean, 110–111
persistence.xml, 109–110
prerequisites, 107
spring collection content, 113
web.xml, 112

Java SE and MongoDB applications
Dependencies node, 53
“helloworld” collection content, 55
Libraries node, 53
prerequisites, 52

JBoss AS 7 and Seam 3 application
Complete EJB Code, 105–106
features, 100
forge console, 102
HOGMviaJPA_SEAM3 application, 106
install forge tools, 101
JBoss Tools, 101
persistence.xml, 103
prerequisites, 100
seam collection content, 106

JPA 2.0 annotations
@Access annotation, 176
@Cacheable annotation, 148
cascadable operations considerations, 122
@Column annotation, 138
eager and lazy loading considerations, 122

@ElementCollection annotation, 158
@Embedded and @Embeddable annotations, 143
@EmbeddedId annotation, 133
@Entity annotation, 123
@EntityListeners annonations, 163
@Enumerated annotation, 146
@ExcludeDefaultListeners annonations, 163
@ExcludeSuperclassListeners annotations, 163
@Id annotation, 124
@IdClass annotation, 135
Java supported types, 121
@ManyToMany annotation, 197
@ManyToOne annotation, 188
@MappedSuperclass annotation, 155
@OneToMany annotation, 188
@OneToOne annotation, 179
@Table annotation, 137
@Temporal annotation, 140
@Transient annotation, 142
unsupported annotations, 202
@Version annotation, 171

MongoDB distribution, 21–22
Non-JTA Environment

Basic HibernateUtil Class, 57
build.xml, 117–118
DAO Class, 60–61
Hibernate Coniguration File, 59
HibernateUtil Class, 58–59
HOGMviaHNAPI_JDBC_Tomcat7 application, 63
HOGMviaJPA_RESOURCELOCAL_Tomcat7

application, 116
“jdbc” collection content, 63
jpa_rl collection content, 116–117
LuckyNumberDAO Class, 115–116
LuckyNumberPojo Class, 56
LuckyNumberPojo.hbm.xml, 59–60
Lucky Number Servlet, 62
persistence.xml, 114
prerequisites, 113

Persistence API (JPA 2.0) (see Persistence API (JPA 2.0))
standalone JTA environment

collection content, 71
dependencies node, 64
develop application, 94
HibernateUtil Class, 66, 68
HOGMviaHNAPI_JTA_Tomcat7 application, 70
HOGMviaJPAJTA_Tomcat7 application, 99
JBoss TS documentation, 95
jpa collection content, 99
LuckyNumberDAO Class, 68–69, 97–98
LuckyNumberEntity Class, 64–66
LuckyNumberServlet, 70
MongoDB connection, 96
Persistence.xml, 96–97
prerequisites, 63, 94

synthesis, 118–119

■INDEX

357

http:///

Hibernate OGM and MongoDB
data storage

BSON object, 26
collection, 33
GLOBAL_COLLECTION strategy, 32
IN_ENTITY strategy, 30
Java entity, 26
JPA term, 30
junction table, 29
many-to-many association, 29
POJO class, 26–27
primary key, 28
relational data model, 25

properties
authentication, 24
host and port, 24
IP address, 24
MongoDB server, 25
NoSQL store, 23
time-consuming operations, 25
WriteConcern.NORMAL, 24

query, 35
transaction management, 35

Hibernate OGM JP-QL parser, 205, 239
Hibernate Search and Apache Lucene query, 205

@DateBridge annotation, 218
directory provider, 221
@Field annotation, 217
Hibernate Search vs. Apache Lucene, 214
@Id annotation, 218
@Indexed annotation, 217
JARs, 217
@NumericField annotation, 218
Players Class, 214
Players Class with annotations, 218
Players entity, 216
Players entity with annotations, 219
via JPA

annotated Players entity, 237
annotated Tournaments entity, 238
HOGM_MONGODB_JPA_HS application, 237
select25To28AgeAction Method, 236
selectAllAction Method, 232
selectByYearAction Method, 233
selectJAction Method, 235
selectRafaelNadalAction Method, 234
step-by-step approach, 231

via Native API
annonated Players Class, 228
annonated Tournaments Class, 228
HOGM_MONGODB_HNAPI_HS application, 227
select25To28AgeAction Method, 226
selectAllAction Method, 223
selectByYearAction Method, 224
selectJAction Method, 225

selectRafaelNadalAction Method, 225
step-by-step approach, 222

I���������
@Id annotation

and AUTO strategy, 125
and Custom Generator, 131
and GenericGenerator, 130
and IDENTITY strategy, 126
OGM support, 124
overview, 124
and SEQUENCE strategy, 127
simple @Id, 124
and TABLE strategy, 129

@IdClass annotation, 135
Internal callback method, 163–164

J, K���������
Java Persistence API (JPA)

annotations, 37
Caucho Resin, 43
entity class, 38
entity manager, 38
generic persistence.xml ile, 44
main components, 38
object related mapping, 37
persistence metadata, 37
persistence provider, 41
persistence unit, 38
persistence.xml ile, 41–43

Java Transaction API (JTA)
ACID properties, 39
high-level API, 40
transaction management, 39
types, 40

JPA listeners
BaseballPlayers entity, 169
Callback methods, 163
delete listener, 166
onPrePersist and onPostPersist method, 165
orm.xml, 164
Players mapped superclass, 166
TennisPlayers entity, 168
testing, 170–171
update listener, 165

L���������
Lazy loading, 122

M���������
@ManyToMany annotation

bidirectional, 200

■INDEX

358

http:///

COLLECTION strategy, 202
GLOBAL_COLLECTION strategy , 201
IN_ENTITY strategy, 199
overview, 197
Players entity, 198
Tournaments entity, 198
unidirectional, 199

@ManyToOne annotation
COLLECTION strategy, 191
GLOBAL_COLLECTION strategy, 190
IN_ENTITY strategy, 195
overview, 188
Photos entity, 194
Players entity, 194
unidirectional, 189

@MappedSuperclass annotation, 155
MongoDB database migration

MongoHQ cloud
account creation, 284
connection test, 294
eshop_db database, 288–289
home page, 283
logging in, 285
MongoDB URI, 286
mongodump/mongorestore, 287
name creation, 286
Sandbox database type, 285
TestCloudAuth application, 296
user creation, 286–287
user document, 287

MongoLab cloud
account creation, 290
connection test, 294
database creation, 291
eshop_db database, 292–293
home page, 289
log in, 290
mongostore command, 292
TestCloudAuth application, 296

MongoDB native query, 205
ind method

age, 207
data and time class, 208
irst document , 207
$in operator, 209
$ne (not equal) operator, 210

MongoDB driver, 206
players collection, 206
remove method, 210
save method, 210

N���������
NetBeans IDE

POM project creation, 16
project name and location, 17

settings.xml ile, 17
user library, 18

O���������
Object-relational mapping, 37
@OneToMany annotation

atp_players and players_photos collections, 195
bidirectional, 189
COLLECTION strategy, 191
GLOBAL_COLLECTION strategy, 190
IN_ENTITY strategy, 193
overview, 188
Photos entity, 192
Players entity, 193
testing, 196
unidirectional, 188

@OneToOne annotation
bidirectional, 180
COLLECTION strategy, 182
embeddable class, 185
GLOBAL_COLLECTION strategy, 181
IN_ENTITY strategy, 183
mappedBy element, 184
overview, 179
Players entity, 183
testing, 187
unidirectional, 180

Optimistic locking, 171, 263

P���������
Pessimistic locking, 263
Prerequisites, 83
Primary table, 137

Q���������
Querying technique

Hibernate OGM and CRUD operations, 205, 211
Hibernate OGM JP-QL Parser, 239
Hibernate Search and Apache Lucene (see Hibernate

Search and Apache Lucene query)
MongoDB native query (see MongoDB native query)

R���������
RafaEShop application

ctl_app restart command, 353
disclaimer, 354
Dropping database, 352
e-shop access, 352
GlassFish 3 AS

application link, 343
chmod commands, 350
commit changes, 349

■INDEX

359

http:///

ctl_app start command, 350
Do-It-Yourself cartridge, 327
domain.xml File, 332–342
ile copying, 343
log ile, 350
memory-based directory, 346
modiications, 327–332
MongoDB cartridge, 344
MongoDB database, 347
Permission denied, 349
persistence.xml, 346–347
preparation, 342
RockMongo cartridge, 345
server.log content, 350–351
start and stop action, 344
start/stop status, 348–349
WAR, 348

issue ixing, 308
JBoss AS 7

application links, 310
cartridge management, 308, 310
commit change, 319–321
default application, 308–309
default project, 308
folder creation, 308
Hibernate OGM-speciic module, 314
Maven project, 322–323, 325–326
MongoDB NoSQL Database 2.2 cartridge, 311
persistence.xml, 314, 316
RafaEShopM, 309
RafaEShopW, 309, 314
RockMongo 1.1 cartridge, 312–313
RockMongo interface, 313
scenario folders, 308
server log monitoring, 317
SSH command, 317–318
tail_all command, 318–319
WAR, 321
Web Archive, 308

management console, 351
OpenShift account

communication, 301
Create Application wizard, 300
email, activation, 298

legal terms, 299
My Account wizard, 300
namespace creation, 301
signing in, 299
SignUP link, 298
User management console tabs, 299

Port forwarding, 354
RHC client tools installation

batch ile, 304
Git, 302–304
OpenShift gem, 305–307
Ruby, 301–304
SET PATH section, 305
Windows 7 Control Panel, 305

S���������
Secure Shell (SSH) section, 318
Secure Shell (SSH) session, 317
seqhilo, 127

T���������
@Table annotation, 137
@Temporal annotation, 140
TestMongoHQAuth, 296
@Transient annotation, 142

U���������
Unidirectional association, 179
UUID, 130
UUID2, 130

V, W, X, Y, Z���������
@Version annotation

deine @Version ield, 172
monitor version ield incrementation, 173
OptimisticLockException

LockModeType.OPTIMISTIC, 175
LockModeType.

OPTIMISTIC_FORCE_INCREMENT, 175
overview, 171
testing, 173

■INDEX

360

RafaEShop application (cont.)

http:///

Pro Hibernate and

MongoDB

Anghel Leonard

http:///

Pro Hibernate and MongoDB

Copyright © 2013 by Anghel Leonard

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5794-3

ISBN-13 (electronic): 978-1-4302-5795-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Technical Reviewer: Manuel Jordan
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Kevin Shea
Copy Editor: Sharon Terdeman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http:///

his book is dedicated to Rafael Nadal.
Of course, it is also dedicated to my parents and my wife.

Love you all, each and every one.

—Anghel Leonard

http:///

vii

Contents

About the Author ...xiii

About the Technical Reviewer .. xv

Acknowledgments .. xvii

Introduction ... xix

Chapter 1: Getting Started with Hibernate OGM ■ ..1

Features and Expectations ..2

Hibernate OGM Architecture ..2

Persisting Data .. 4

Querying Data .. 8

Get the Hibernate OGM Distribution ..9

Getting Hibernate OGM from the Maven Central Repository ... 10

Getting Hibernate OGM from the Maven Command Line ... 11

Adding MongoDB Artifacts ... 14

Getting a Hibernate OGM Distribution Using the NetBeans IDE ... 16

Getting the Hibernate OGM Distribution Using the Eclipse IDE .. 19

Obtain the MongoDB Distribution ..21

Summary ...22

Chapter 2: Hibernate OGM and MongoDB ■ ..23

Configuring MongoDB-Hibernate OGM Properties ..23

Data Storing Representation ...25

Storing Entities .. 26

Storing Primary Keys ... 28

Storing Associations .. 29

http:///

■ CONTENTS

viii

Managing Transactions ...35

Managing Queries ...35

Summary ...35

Chapter 3: Bootstrapping Hibernate OGM ■ ..37

Brief Overview of JPA ..37

Brief Overview of JTA ..39

MongoDB and Transactions ...40

Brief Overview of Hibernate Native API ...40

Bootstrapping Hibernate OGM Using JPA ..41

Bootstrap Hibernate OGM Using Hibernate Native API ..44

Hibernate OGM Obsolete Configuration Options ..50

Summary ...50

Chapter 4: Hibernate OGM at Work ■ ..51

General Prerequisites ..51

Java SE and MongoDB—the Hello World Example ...52

Prerequisites.. 52

Developing ... 53

Testing ... 55

Hibernate OGM via Hibernate Native API ...55

Hibernate OGM in a Non-JTA Environment (JDBC Transactions, Apache Tomcat 7) .. 55

Hibernate OGM in a Standalone JTA Environment (JBoss JTA, Apache Tomcat 7) .. 63

Hibernate OGM in a Built-in JTA Environment (no EJB, GlassFish AS 3) .. 71

Hibernate OGM in a Built-in JTA Environment (EJB 3/BMT, GlassFish AS 3).. 76

Hibernate OGM in a Built-in JTA Environment (EJB 3/CMT, GlassFish AS 3) .. 80

Hibernate OGM via the Java Persistence API (JPA 2.0) ...83

Hibernate OGM in a Built-in JTA Environment (EJB 3, GlassFish AS 3).. 83

Hibernate OGM in a Built-in JTA Environment (EJB 3, JBoss AS 7) ... 88

Hibernate OGM in a Standalone JTA environment (Apache Tomcat 7) .. 94

http:///

■ CONTENTS

ix

Hibernate OGM in a Built-in JTA Environment (JBoss AS 7 and Seam 3 Application) ... 99

Hibernate OGM in a Built-in JTA Environment (GlassFish 3 and Spring 3 Application) 107

Hibernate OGM in a non-JTA Environment (RESOURCE_LOCAL, Apache Tomcat 7) .. 113

Synthesis ...118

Hibernate OGM via JPA in an EE Container .. 118

Hibernate OGM via Hibernate Native API in an EE Container ... 118

Hibernate OGM via JPA in Standalone JTA .. 119

Hibernate OGM via Hibernate Native API in Standalone JTA.. 119

Hibernate OGM via JPA in Non-JTA ... 119

Hibernate OGM via Hibernate Native API in Non-JTA ... 119

Summary ...120

Chapter 5: Hibernate OGM and JPA 2.0 Annotations ■ ...121

Java Supported Types ...121

Eager and Lazy Loading Considerations ...122

Cascadable Operations Considerations ...122

Entity Mapping ..123

@Entity Annotation .. 123

@Id Annotation .. 124

@EmbeddedId Annotation ... 133

@IdClass Annotation .. 135

@Table Annotation ... 137

@Column Annotation ... 138

@Temporal Annotation .. 140

@Transient Annotation... 142

@Embedded and @Embeddable Annotations ... 143

@Enumerated Annotation .. 146

@Cacheable Annotation... 148

@MappedSuperclass Annotation ... 155

@ElementCollection Annotation .. 158

JPA Lifecycle Events @EntityListeners, @ExcludeDefaultListeners,

@ExcludeSuperclassListeners Annotations ... 163

http:///

■ CONTENTS

x

@Version Annotation ... 171

@Access Annotation .. 176

Associations .. 179

Direction in Entity Associations ... 179

Unsupported JPA 2.0 Annotations ...202

Summary ...203

Chapter 6: Hibernate OGM Querying MongoDB ■ ..205

MongoDB Native Query ...206

Hibernate OGM and CRUD Operations ...211

Hibernate Search and Apache Lucene ..214

Common Steps .. 217

Hibernate Search/Apache Lucene Querying—OGM via Native API ... 222

Hibernate Search/Apache Lucene Querying—OGM via JPA .. 231

Hibernate OGM JP-QL Parser ..239

Summary ...240

Chapter 7: MongoDB e-Commerce Database Model ■ ..241

MongoDB E-commerce Database Architecture ...242

Model the Categories Collection (categories_c) ..243

Model The Products Collection (products_c) ...245

Model the Customers Collection (customers_c) ..250

Model The Orders Collection (orders_c) ..256

Model The Inventory Collection (inventory_c) ...263

Summary ...267

Chapter 8: MongoDB e-Commerce Database Querying ■ ...269

Display the Categories of Products ...271

Display the Promotional Products ...273

Display the Products From a Category ..274

Search for a Product by Name ..276

http:///

■ CONTENTS

xi

Find a Customer By E-mail And Password ..277

Place an Order ...278

Check the Inventory ..279

Restore the Inventory ..280

Considerations for Developing the Admin GUI ...281

Summary ...282

Chapter 9: Migrate MongoDB Database to Cloud ■ ..283

Migrating the MongoDB Database to the MongoHQ Cloud ..283

Migrating the MongoDB Database to the MongoLab Cloud ...289

Connecting to the MongoHQ or MongoLab Cloud Database ..294

Summary ...296

Chapter 10: Migrating RafaEShop Application on OpenShift ■ ...297

Creating a Free Account on OpenShift ..297

Installing the OpenShift RHC Client Tools on Windows ..301

Installing Ruby ... 301

Installing Git ... 302

Testing Ruby and Git from the Shell .. 303

Installing the OpenShift Gem ... 305

Fixing a Known Issue ..308

Migrating the RafaEShop Application to OpenShift with JBoss AS 7 ..308

Monitoring the JBoss AS 7 Log .. 317

Commit Changes ... 319

Migrating the RafaEShop Application as a WAR .. 321

Migrating the RafaEShop Application as a Maven Project ... 322

Migrating the RafaEShop Application to OpenShift with GlassFish 3 AS327

Monitoring GlassFish Start/Stop .. 348

Commit Changes ... 349

Fixing Known Issues .. 349

Monitoring the GlassFish Log .. 350

http:///

■ CONTENTS

xii

Test It!..351

Cautions ... 352

Good To Know ..354

Disclaimer ...354

Summary ...354

Index ...355

http:///

xiii

About the Author

Anghel Leonard is a senior Java developer with more than 12 years of experience
in Java SE, Java EE, and related frameworks. He has written and published more
than 50 articles about Java technologies and more than 500 tips and tricks for
JavaBoutique, O’Reilly, DevX, Developer and InformIT. In addition, he wrote two
books about XML and Java (one for beginners and one for advanced developers)
for Albastra, a Romanian publisher; three books for Packt: JBoss Tools 3 Developer
Guide, JSF 2.0 Cookbook, and JSF 2.0 Cookbook LITE; and two books for Apress:
Pro Java 7 NIO 2, and Pro Hibernate and MongoDB. Currently, he’s developing web
applications using the latest Java technologies (EJB 3.0, CDI, Spring, JSF, Struts,
Hibernate, and so on). For the past two years, he has focused on developing rich
Internet applications for geographic information systems.

http:///

xv

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic developer and researcher who enjoys learning new technologies for his own
experiments and for creating new integrations.

Manuel won the 2010 Springy Award—Community Champion. In his little free time, he reads the Bible and
composes music on his guitar. Manuel is a senior member, known as dr_pompeii, of the Spring Community Forums.

Manuel has served as a technical reviewer for the following books (all published by Apress):

•	 Pro	SpringSource	dm	Server	(2009)

•	 Spring	Enterprise	Recipes	(2009)

•	 Spring	Recipes	(Second	Edition)	(2010)

•	 Pro	Spring	Integration	(2011)

•	 Pro	Spring	Batch	(2011)

•	 Pro	Spring	3	(2012)

•	 Pro	Spring	MVC:	With	Web	Flow	(2012)

•	 Pro	Spring	Security	(2013)

You can read his blog and contact him at http://manueljordan.wordpress.com/. You can also follow his
Twitter account, @dr_pompeii.

http://manueljordan.wordpress.com/
http://@dr_pompeii
http:///

xvii

Acknowledgments

hank you, God, because without you nothing is possible. hank you to the Apress team for trusting in me to write
this book and for the hard work you put into this project. Special thanks to Steve Anglin, Manuel Jordan, Kevin Shea,
Sharon Terdeman, and Tom Welsh.

—Anghel Leonard

http:///

	Pro Hibernate and MongoDB
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with Hibernate OGM
	Chapter 2: Hibernate OGM and MongoDB
	Chapter 3: Bootstrapping Hibernate OGM
	Chapter 4: Hibernate OGM at Work
	Chapter 5: Hibernate OGM and JPA 2.0 Annotations
	Chapter 6: Hibernate OGM Querying MongoDB
	Chapter 7: MongoDB e-Commerce Database Model
	Chapter 8: MongoDB e-Commerce Database Querying
	Chapter 9: Migrate MongoDB Database to Cloud
	Chapter 10: Migrating RafaEShop Application on OpenShift
	Index

