
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author .. xvii

About the Technical Reviewer ... xix

Acknowledgments ... xxi

Introduction ... xxiii

Part 1: What is HTML5? ■ ...1

Chapter 1: Before You Begin ■ ..3

Part 2: Using the New HTML5 Features ■ ...17

Chapter 2: ASP.NET Web Forms ■ ...19

Chapter 3: MVC Web Applications ■ ...41

Chapter 4: Cascading Style Sheets ■ ..75

Chapter 5: Scripting Enhancements ■ ..107

Chapter 6: Mobile Web Applications ■ ..125

Part 3: Developing with HTML5 ■ ...145

Chapter 7: Supporting Older Browsers ■ ..147

Chapter 8: Audio and Video ■ ...169

Chapter 9: Scalable Vector Graphics ■ ...193

Chapter 10: Canvas ■ ...223

www.allitebooks.com

http://www.allitebooks.org

vi

■ Contents at a GlanCe

Part 4: Digging Deeper ■ ...253

Chapter 11: Indexed DB ■ ...255

Chapter 12: Geolocation and Mapping ■ ..281

Chapter 13: WebSockets ■ ..299

Chapter 14: Drag and Drop ■ ..343

Appendix A: Chapter 4 - Sample Content ...371

Appendix B: Chapter 4 – Completed Style ..377

Appendix C: Chapter 14 – Final Code ..383

Index ...391

www.allitebooks.com

http://www.allitebooks.org

xxiii

Introduction

HTML5 is such an exciting opportunity for software developers. For a long time, the web has been the favorite
platform for providing software applications to both external and internal users because of its reach and ease of
deployment and maintenance. The primary limitation has been the client-side support, which can severely limit
the user experience. With the lack of cross-browser standardization, using any of the advanced features often
meant broken pages on older browsers or difficult polyfills.

HTML5 is a game-changer. Not only does it bring browser vendors together with a common set of
specifications, but the features included in HTML5 enable web applications to provide a user experience that
rivals even client applications. With mobile devices rapidly jumping on the HTML5 bandwagon, the number of
HTML5 devices is expected to exceed 1 billion in the next year. I have seen the rise of many technologies and
standards that promised to change the future of software development, but the momentum and support for
HTML5 seems unprecedented.

Having said that, we are not quite there yet. Many of the specifications are still in draft and browsers, even
current releases of them, do not all support the features that have been agreed upon. However, there are already
enough features that are generally supported by browser vendors to make the switch to HTML5 very attractive.
And the future is even more promising.

Who This Book Is For
HTML5 consists of changes in the markup, CSS improvements, and JavaScript enhancements and can be used
with any implementation platform. However, this book presents these new features with the professional Visual
Studio developer in mind. My goal is to answer the question “What would most ASP.NET developers need to
know to incorporate the benefits of HTML5?” The sample applications are written using Visual Studio 2012 and
many of the examples are specific to the ASP.NET platform, including web forms and MVC 4.

How This Book Is Structured
I’ve split the book into four parts, each going a bit deeper into the more advanced features.

Part 1 provides a quick introduction into web application technologies. This explains the operating
environment that web developers find themselves in and where the HTML5 umbrella fits in.

Part 2 covers the basics of HTML5, including form development with both traditional web forms as well
as the MVC model. Chapter 4 provides a really good overview of CSS with a focus on the new features available
in CSS3. This part also demonstrates some of the scripting enhancements in Visual Studio 2012 and includes a
discussion of how to support mobile devices with HTML5.

Part 3 takes this further and demonstrates some of the really cool features, including the new audio and
video elements. I then demonstrate the graphics support available using both SVG and Canvas. This part also
includes a discussion of how to use polyfills to deal with older browsers.

Part 4 explains some of the more advanced features such as Indexed DB, which provides for a persistent,
client-side data store. This section includes a demonstration of geolocation and mapping using Bing Maps. It also
explains how web sockets and drag-and-drop can be used for advanced applications.

www.allitebooks.com

http://www.allitebooks.org

xxiv

■ IntroduCtIon

Downloading the code
The code for the examples shown in this book is available on the Apress web site, www.apress.com. A link can be
found on the book’s information page under the Source Code/Downloads tab. This tab is located underneath the
Related Titles section of the page.

Contacting the Author
Should you have any questions or comments—or even spot a mistake you think I should know about—you can
contact the author at markc@thecreativepeople.com.

www.allitebooks.com

http://www.apress.com
http://www.markc@thecreativepeople.com
http://www.allitebooks.org

Part 1

What is HTML5?

HTML5 promises to change the way web applications are developed by providing cross-browser
standardization. The term HTML5 has come to mean far more than just HTML, however. The HTML5
umbrella includes almost anything related to client-side functionality, including cascading style sheets
and a host of new browser-provided standard features.

Before I get into demonstrating all of this great capability, Chapter 1 will provide a quick overview
of the web environment. I’ll then show you how HTML5 fits in. I’ll give a high-level overview of the new
features included in the HTML5 umbrella and briefly describe the current browser support for HTML5.
This is rapidly changing but I’ll provide some tips to show you how to determine what features are
supported.

This book is intended primarily for the professional Visual Studio developer. However, in this
chapter I will demonstrate some free alternatives including Web Matrix and Visual Studio Express for
Web. These provide a great alternative, especially for those wanting to learn HTML5 who don’t have
access to Visual Studio.

www.allitebooks.com

http://www.allitebooks.org

3

Chapter 1

Before You Begin

Throughout this book I will be demonstrating how you can take advantage of the really cool new features known
as HTML5. It will be very hands-on with lots of code samples and working web pages. Before we get started
however, I wanted to set the stage and provide some context for where we will be going. What is generally referred
to as HTML5 includes many technologies and HTML is just the tip of the iceberg.

In this chapter I will briefly review the operating environments that host web sites, currently and historically.
I will also describe the development tools that are available. While this book is specifically focused on Visual
Studio 2012, there are some free alternatives that will enable you to work through most of these exercises. Finally,
I’ll take a quick inventory of the HTML5 support in current and future browsers.

Reviewing Web Environment
To better understand where HTML5 sits from the web developer’s view I will first review the web environment
that we find ourselves in. This will be a very basic overview and quite familiar to most readers. However, I often
find it useful to step back, once in a while, and get a better perspective.

The Basic HTTP Page
In the early days of the web, the model was quite simple. It included a web server that was responsible for serving
up web pages and a browser that would render them on the client. In the Microsoft stack, Internet Information
Services (IIS) provided the server component and Internet Explorer was the de facto browser. There were
other browsers, of course, such as Netscape. The browser would request a page from the web server by passing
the address (URL) in an HTTP GET request. The server would respond by providing an HTML document as
illustrated in Figure 1-1.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BEfoRE You BEgin

4

If the web page included a form with input fields, the browser would provide for this data to be entered.
When the page was submitted, this data was sent to the web server through an HTTP POST request. The web
application would do something with this data and then return an updated web page. The browser would then
render the entire page on the client.

There are two key aspects that I want to focus on here, that still have a significant influence even with today’s
web environment:

The model is very page-centric.•	

There are both server and client aspects to web development.•	

Page Centric Web
As I mentioned, web sites are predominantly focused on web pages. A page is requested, returned, and rendered.
Data on a page is posted to the server, processed, and an updated page is returned and rendered. Because the
web server is stateless, it has no knowledge of previous pages that were returned. This is why the entire page must
be submitted and returned. Current and future technology is helping to move away from this paradigm and I’ll
demonstrate many of these techniques throughout this book. However, page-centric designs are still prevalent
and will likely to continue to be so for some time.

HTTP Get
(URL)

HTML
Content
(Page)

HTML Post
(Post back)

Web Server
(IIS)

Browser
(Internet Explorer, etc.)

Figure 1-1. A simple page-centric web model

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BEfoRE You BEgin

5

Client/Server Model
There are both a server and client components to consider when building a web application. On the server, IIS
responds to the HTTP requests as I mentioned. For static content, the HTML files can be simply stored in a virtual
folder within IIS and no programming is required. For dynamic content, a web application is needed to generate
HTML. Enter ASP.NET.

ASP.NET allows you to write code to dynamically create HTML. For example, the page can query a database
and populate a grid using the data returned from the database. Likewise, the data presented in an HTTP Post
request can be written to a database. Also, while a web application is generally considered stateless, ASP.NET
provides several techniques for saving information between requests.

On the client side, the browser is responsible for rendering the content. This content is provided as HTML,
which is essentially text with embedded formatting tags. In addition, cascading style sheets (CSS) are provided
which instruct the browser how to format the content. The support for these HTML tags and CSS constructs will
vary, however, between the available browsers and herein lies some of the biggest challenges of web development.

Improving the Web Experience
The page-centric approach is a major obstacle in raising the bar of the overall user experience. Refreshing an
entire page is not very efficient. To address this issue, two key improvements were introduced:

Client-side scripting•	

AJAX•	

Using Client-side Scripting
All browsers now provide the ability to run client-side scripts, which are predominantly written in JavaScript,
although others such as VBScript are also possible in some browsers. The ability to run scripts in the browser is a
huge improvement. For example, a script can hide or show a section or modify the format of the content based on
the user input. Since this happens on the client, no round-trip to the server is necessary. This makes the web site
seem much more responsive.

Caution ■ JavaScript can be disabled on the client and you should consider, and test, how your page will function
with scripting disabled.

Using AJAX
AJAX is an acronym for asynchronous JavaScript and XML. While a bit of a misnomer since it doesn’t have to
be asynchronous, use JavaScript, or XML, the term refers to a collection of technologies that enable client-side
scripting to communicate with the web server outside of the typical page refresh scenario. In a nutshell, AJAX
uses JavaScript to request data from the web server. It then updates the page content using the Document Object
Model (DOM). This allows portions of the web page to be updated as needed without a complete refresh.

AJAX can also be used to call web services independently from the web server that is hosting the web page.
You can use this to access data provided by a third party such as stock quotes or currency conversion. You can
also call your own web services to perform real-time updates or load data based on user input. For example,
you can provide a product search feature and use AJAX to call a web service that returns the matching products.
Again, this is all independent of the standard page refresh paradigm.

Figure 1-2 illustrates the more robust model that most web sites use today.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BEfoRE You BEgin

6

With the inclusion of client-side scripting and AJAX requests we can now create much more interactive
and responsive web-based solutions. Of course, this requires more complex web applications and a broad set
of technologies to work with on both the server and the client.

Reviewing Web Technologies
Let’s quickly review the various technologies that you will likely need to use when building great-looking
interactive web applications.

HTML – HyperText Markup Language (HTML) is the primary means for delivering content •	
to the browser. In addition to the actual text that is displayed, HTML contains embedded tags
that control how the content is formatted. Tags are used to align the content in sections and
tables, modify text attributes, and include non-textual content including links and graphics.

CSS – Cascading Style Sheets (CSS) are used as a central place for controlling visual •	
aspects of the web pages such as fonts, colors, background images and margins. They are
called cascading because you normally define site-level styles in one style sheet and then
provide additional style sheets as necessary to either further define or override these for
specific pages, sections, or classes.

DOM – The HTML that is rendered by the browser is similar to an XML document and the •	
Document Object Model (DOM) defines the structure of this document. This is used for
programmatically accessing and modifying the document’s content.

HTTP Get
(URL)

HTML
Content
(Page)

HTML Post
(Post back)

Script

AJAX

Web Server
(IIS)

Browser
(Internet Explorer, etc.)

Web
Services

Figure 1-2. A more robust web environment

CHAPTER 1 ■ BEfoRE You BEgin

7

ECMAScript – Client-side scripts are interpreted and executed by the browser. To improve •	
cross-browser compatibility, the ECMAScript standard defines the syntax and features of
the scripting language. JavaScript is a dialect of the ECMAScript standard.

Note■ Historically, JavaScript and JScript were two implementations of the same scripting language. Microsoft
named their implementation JScript to avoid trademark issues with Sun but they are essentially the same and follow
the evolving ECMAScript standards. With iE 10, Microsoft is moving away from this distinction and referring to their
scripting language as JavaScript. And just to keep things interesting, Microsoft still provides a JScript language, which
provides access to .nET and is very different from JavaScript. i will refer to JavaScript throughout this book as the
standard ECMAScript compliant scripting language.

Exploring HTML5
So where does HTML5 fit in to this equation? Just about everywhere! What is generally classified as HTML5 is
actually a broad set of specifications related to web browser standardization, many of which having nothing to do
with HTML. I will briefly summarize these here and then demonstrate these features in detail throughout the rest
of this book. There are a few things that you should keep in mind:

Many of the specifications have not been finalized yet. Much of the core specifications are •	
completed but some of the advanced features are still subject to change.

Browser-support for these features will vary. Browser vendors are aggressively •	
incorporating new features in each subsequent release.

The specifications leave room for each browser vendor to decide how each feature is •	
implemented. For example, all compliant browsers will provide a date picker control for
entering dates, but each browser may implement this in a different way.

The general trend with HTML5 is to provide more native support in the browser. As you will see throughout
this book, browsers are providing an increasingly impressive set of features. This will enable you to build better
web applications with less work.

Reviewing Markup Changes
As you would expect, HTML5 includes some important improvements in the markup elements. There is a
sizeable list of new markup elements and I will demonstrate many of these in Chapters 2, 3, and 4.

The generic <div> element is still supported but new, more context-specific elements are also provided.
I will explain and demonstrate this in Chapter 4. The new content tags are:

•	 <article>

•	 <aside>

•	 <footer>

•	 <header>

•	 <hgroup>

•	 <nav>

•	 <section>

CHAPTER 1 ■ BEfoRE You BEgin

8

Several new input type elements are provided that allow native formatting and validation capabilities. These
will be explained in Chapters 2 and 3. The new types are:

•	 color

•	 datetime (as well as datetime-local, date, time, month, and week)

•	 email

•	 number

•	 range

•	 search

•	 tel

•	 url

There are also some new elements that enable you to use browser-implemented controls such as:

•	 <audio>

•	 <figcaption>

•	 <figure>

•	 <meter>

•	 <output>

•	 <progress>

•	 <video>

There are a few other elements introduced with HTML5 that I will describe in more detail later. I will
demonstrate the <audio> and <video> tags in Chapter 8. The new <canvas> element provides some significant
graphics capabilities and I will demonstrate this in Chapter 10.

Understanding Cascading Style Sheets
Like HTML, CSS capabilities are defined by an evolving set of specifications. The current published
recommendation is CSS 2.1 and the next version being drafted is referred to as CSS3. However, it has been broken
down into over 50 “modules” with a separate specification for each. As of this writing, only a few of these modules
have become official W3C Recommendations (REC) and several more are at W3C Candidate Recommendation
(CR) status.

At the time of this writing the W3C Recommendations are:

Color•	

Namespaces•	

Selectors Level 3•	

The candidate recommendations are:

Backgrounds and Borders•	

Marquee•	

Media Queries•	

CHAPTER 1 ■ BEfoRE You BEgin

9

Mobile Profile•	

Multi-column Layout•	

Paged Media•	

Ruby•	

Speech•	

Style Attribute Syntax•	

Tip ■ Since the status of each CSS module is ever changing, for complete information about the current status of
each, see the article at http://www.w3.org/Style/CSS/specs.

So the actual CSS3 “specification” is very much a moving target at the moment and browser support for
these specifications will also vary. For example, Microsoft lists the CSS features that they will support in IE 10 in
the article at http://msdn.microsoft.com/en-us/library/ie/hh673536(v=vs.85).aspx. However, there are
already a number of cool features that are generally available and I will demonstrate some of these in Chapter 4.

Reviewing Other HTML Functionality
The actual scripting syntax is defined by the ECMAScript specification as I mentioned earlier. The current
version, 5.1 was published in June, 2011. While not actually part of the HTML5 specifications, HTML5 compliant
browsers are expected to support the ECMAScript 5.1 standard. As I said, however, this specification describes
the language syntax and some built-in functions such as element selectors.

In addition to the language specification, there are quite a few other specifications that are loosely included
under the HTML5 umbrella that define specific client-side functionality. I will demonstrate many of these in
Chapter 5 and the rest will be covered in later chapters. The new functionality includes:

Offline Cache – you can specify the pages that are required for offline support, including •	
CSS and JavaScript files. The specification also includes an API and event handlers that
allow you to monitor and control the local cache.

Drag and Drop – provides the ability to select an item and drop it on another item on the •	
web page. This will be demonstrated in Chapter 14.

Web workers – allow you to execute a script on a separate thread. This includes •	
mechanisms to communicate with workers and the ability to share workers between
multiple web pages.

Web storage – includes both •	 sessionStorage for isolating session data between multiple
tabs connected to the same site as well as localStorage for storing data on the client. The
IndexedDB implementation will be covered in detail in Chapter 11.

Geolocation – This is not part of the official specifications but has been generally included •	
when discussing HTML5 features. Geolocation defines an API that can be called from
JavaScript to determine the current geographic location. How the browser implements
this is determined by the available hardware. On a GPS-enabled device it will use a GPS
satellite. If GPS support is not available, it will use Wi-Fi, if possible to determine the
location. Mobile devices can use cell tower triangulation. If all else fails, the IP address
can at least provide some estimate of location. Obviously, the accuracy will vary greatly
and the API handles this. I will demonstrate geolocation in Chapter 12.

http://www.w3.org/Style/CSS/specs
http://msdn.microsoft.com/en-us/library/ie/hh673536(v=vs.85).aspx

CHAPTER 1 ■ BEfoRE You BEgin

10

Web sockets – provides asynchronous communication between the web page (browser) •	
and the server. Once the connection is established, the server can send real-time updates
to the client. This will be demonstrated in Chapter 13.

Choosing a Development Tool
There are several development environments that you can use to create ASP.NET applications that take advantage
of the HTML5 features. I will present them here briefly and cover them in a little more detail in subsequent
chapters. The key thing to know is that there are some free alternatives to Visual Studio.

Using Visual Studio 2012
Visual Studio 2012 is the premier development environment for building ASP.NET applications. I won’t say much
about it here as I will be using it predominantly throughout this book to demonstrate HTML5 implementations.
However, if acquiring Visual Studio is cost prohibitive, there are some free alternatives that will still allow you to
work most of the exercises in this book.

Tip ■ You can also use Visual Studio 2010 for most of the exercises. Make sure you have installed Visual Studio SP1
and then install MVC 4, which is available as a separate, free download. There are improvements in Visual Studio 2012
that will be helpful, but you can still accomplish much of the work using a properly configured 2010 environment.

Using Microsoft’s Web Matrix
Microsoft’s Web Matrix is a lightweight IDE that is specifically targeted for building web sites. While not limited
to just ASP.NET pages you can build full-fledged ASP.NET applications. It includes SQL Server Compact, which is
a file-based version of SQL Server. It also uses IIS Express to host a local web site for debugging. This is the same
hosting environment provided in Visual Studio 2012, which replaces the ASP.NET Development Server used in
previous versions of Visual Studio.

The ASP pages are based on ASP.NET MVC version 3 and use the Razor view engine. Consequently the file
extensions are .cshtml (or .vbhtml if you’re using VB). The classic ASP model with an .aspx markup file and
separate .cs code-behind file is not supported, however. You can create .aspx files but adding a code behind file
is not a practical option. Also, as of this writing, it uses .NET version 4.0 and does not support version 4.5.

You can download and install Web Matrix, version 2 from this site:
http://www.microsoft.com/web/webmatrix/next.

Note ■ As of this writing Version 2 was still in Beta. for a description of the Version 2 features see the article at
http://www.microsoft.com/web/webmatrix/betafeatures.aspx.

http://www.microsoft.com/web/webmatrix/next
http://www.microsoft.com/web/webmatrix/betafeatures.aspx

CHAPTER 1 ■ BEfoRE You BEgin

11

When creating a new site, if you use the Starter template, it will create a familiar default ASP web application
shown in Figure 1-3.

Figure 1-3. The default ASP application

The IDE is shown in Figure 1-4. Notice the .cshtml extensions and the Razor syntax for the page
implementation.

CHAPTER 1 ■ BEfoRE You BEgin

12

The Web Matrix IDE includes the ability to manage SQL databases. You can create new databases or connect
to existing SQL Server database. You can create and alter tables and view and edit data. You can also run SQL
queries as shown in Figure 1-5.

Figure 1-4. The Web Matrix IDE

CHAPTER 1 ■ BEfoRE You BEgin

13

For more information on using Web Matrix, I suggest starting with the tutorial found at:
http://www.asp.net/web-pages/tutorials/basics/1-getting-started-with-webmatrix-and-asp-net-web-
pages.

Using Visual Studio Express for Web
Visual Studio Express for Web is essentially a free version of Visual Studio. It looks and functions just like the
full retail version of Visual Studio with the non-web features removed. It also has the Team Foundation Server
(TFS) integration removed. You can download Visual Studio Express for Web at
http://www.microsoft.com/visualstudio/11/en-us/downloads#express-web.

The IDE is identical to the retail version of Visual Studio and is shown in Figure 1-6.

Figure 1-5. Web Matrix Database IDE

http://www.asp.net/web-pages/tutorials/basics/1-getting-started-with-webmatrix-and-asp-net-web-pages
http://www.asp.net/web-pages/tutorials/basics/1-getting-started-with-webmatrix-and-asp-net-web-pages
http://www.microsoft.com/visualstudio/11/en-us/downloads#express-web

CHAPTER 1 ■ BEfoRE You BEgin

14

The standard ASP.NET web project will create a basic ASP application shown in Figure 1-7. As you can see,
one of the things that has changed with Visual Studio 2012 is the standard template generates a much more
visually appealing web site.

Figure 1-6. The Visual Web Developer IDE

CHAPTER 1 ■ BEfoRE You BEgin

15

Visual Studio Express has some improvements over the Web Matrix application:

If you’re used to working with Visual Studio, this will be very familiar.•	

Visual Studio Express includes all the debugging and IntelliSense capabilities of Visual •	
Studio.

You can build classic .•	 aspx pages with code-behind files.

There are more project templates available including web services, AJAX controls, and •	
MVC applications.

The solutions created with Visual Studio Express are compatible with Visual Studio.•	

Deciphering Browser Support for HTML5
All of the work to move applications to HTML5 is based on the assumption that the majority of browsers will be
HTML5 compatible. This requires that the browser vendors step up to the plate and provide HTML5 compatible
browsers and that the public at-large will adopt them. This also includes mobile devices, which are a key part of the
push for HTML5 compliance. The general consensus is that we are moving in that direction at a pretty good clip.

Figure 1-7. The standard ASP application

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BEfoRE You BEgin

16

As I mentioned earlier, the actual HTML5 specifications are still being defined. Initial estimates were as late
as 2022 before the final recommendation was complete, according to HTML5 editor, Ian Hickson. More recently,
dates as early as 2014 have been proposed. However, as parts of the specification are being finalized, vendors are
implementing them so much is already available in browsers that are currently in use. As web developers, we
should focus on the features that are generally available now or expect to be soon, and these are the features that
I will cover in this book.

There is a really good web site at http://html5test.com that provides a summary of the browsers that are
currently available and those that are still in development. Each browser is awarded points based on the HTML5
features that it supports. In addition to an overall score that allows you to compare browsers, the scores are also
broken down by functional area so you can see which areas have good support from most browsers.

Summary
HTML5 covers a broad set of technologies that include improvements to the HTML markup, cascading style
sheets, and client-side scripting. In addition, there are some significant enhancements to browsers that make it
easier to provide some great web applications. While the official specifications are still a work-in-progress and the
browser vendors are playing catch-up, there is quite a bit of functionality already available. Also, as you’ll see in the
next few chapters, Visual Studio and the ASP.NET platform has been expanded to leverage the HTML feature set.

http://html5test.com

Part 2

Using the New HTML5 Features

In this part you’ll start using HTML5 to build basic forms and web pages. This will explore the three
primary facets of the HTML5 specifications:

Markup•	

Cascading Style Sheets (CSS)•	

Scripting•	

In Chapters 2 and 3 you’ll use the new input elements to provide a better user experience with forms;
first with a traditional .aspx web form and then using MVC4. Each of these frameworks provide HTML5
support but the approaches are significantly different.

In Chapter 4, you’ll take a crash course on CSS, focusing primarily on the new features included
with CSS3. The sample web page that you’ll create will take advantage of the new structural elements
such as aside, nav, and footer. Chapter 5 then demonstrates some of the basic scripting enhancements
provided by HTML5 and Visual Studio. This includes using web workers to employ background threads
on the client. You’ll also try out the new JavaScript query selectors and demonstrate the bundling and
minification support in Visual Studio 2012.

Finally, Chapter 6 rounds out this section by explaining how you can build mobile-friendly web
applications. I will demonstrate many of the emulators that are available for testing your application on
a variety of HTML5 compatible devices. You’ll also use media queries to dynamically address different
screen resolutions.

19

Chapter 2

ASP.NET Web Forms

In this chapter I will demonstrate some of the new input types defined by HTML5 and show you how to use these
in an ASP.NET web form. Typically, the TextBox control is used when data needs to be entered on a form. Users
can enter all kinds of data in a TextBox including strings, numbers, dates, and so on. To ensure valid data, the
form would need to supply either server-side or client-side validation logic. The HTML5 specification provides
several new input types that can provide much of this for you.

The following input types are defined (however, not all browsers support all of them yet):

•	 select

•	 color

•	 datetime (including datetime-local, date, time, month, and week)

•	 email

•	 number

•	 range

•	 tel

•	 url

When you build a web form using ASP.NET, the actual HTML that is sent to the browser is generated by .NET.
I’ll show you the ASP.NET way of inserting the new input types. Also, using some of the new HTML elements
requires a little extra manipulation and I’ll demonstrate how to handle that as well.

Introducing the New Input Types
I’ll start out with a fairly simple example to demonstrate how to use the new email control combined with the
placeholder attribute to quickly provide client-side instructions and validation. You’ll start by creating a standard
ASP project using the Visual Studio template and then modify the registration page. Then I’ll introduce the new
Page Inspector and explain the database support in Visual Studio 2012.

Creating an ASP.NET Project
In this chapter you’ll create an ASP.NET project using the standard Web Forms template in Visual Studio 2012.
Start Visual Studio 2012 (or the free version, Visual Studio Express for Web). From the Start Page, click the
New Project link. In the New Project dialog box select the Web category and select the “ASP.NET Web Forms
Application” template, enter Chapter2 for the project name, and select an appropriate location as shown in
Figure 2-1.

CHAPTER 2 ■ ASP.NET WEb FoRmS

20

Using the Email Control
For the first exercise, you’ll modify the registration form to require a valid email address be used as the user
name. You’ll also use the placeholder attribute to let the users know that an email address is needed.

eXerCISe 2-1. MODIFYING the reGIStratION paGe

1. In the Chapter2 project, open the Register.aspx page, which you’ll find in the
Account folder.

2. There are several li elements in the fieldset node that define the input fields.
The first one is for the User Name. Change this as follows by entering the attributes
shown in bold:

<asp:Label runat="server" AssociatedControlID="UserName" > User name</asp:Label>
<asp:TextBox runat="server" ID="UserName"
 TextMode="Email" placeholder="use your email address" Width="200" />
<asp:RequiredFieldValidator runat="server" ControlToValidate="UserName"
 CssClass="field-validation-error"
 ErrorMessage="The user name field is required." />

3. Start the application by pressing F5. Using the Chrome browser, the Register page
will look like Figure 2-2. Notice the text in the User name field.

Figure 2-1. Create an ASP Web Forms project

CHAPTER 2 ■ ASP.NET WEb FoRmS

21

4. If you enter an invalid email address you should see the error message shown in
Figure 2-3 when the page is submitted.

Figure 2-2. The initial Register page

Figure 2-3. The invalid email error message

5. Close the browser and stop debugging.

6. Try viewing this page with several different browsers. Notice that the email
validation message looks different in each. In Firefox this will look like Figure 2-4
and in opera it looks like Figure 2-5.

CHAPTER 2 ■ ASP.NET WEb FoRmS

22

Using the Page Inspector
For this example, I used Google Chrome as my browser. If you want to use a different browser, you can select it
from the dropdown list in the menu as shown in Figure 2-6.

Figure 2-6. Selecting the browser to use for debugging

Figure 2-5. The invalid email message in Opera

Figure 2-4. The invalid email message in Firefox

Tip ■ This dropdown list automatically includes all of the browsers that are currently installed. You don’t have to
do anything to add them. If you install a new browser, you will need to restart Visual Studio before it will be included
in the list. If you use Internet Explorer the browser will be more integrated with the debugger. For example, when
you close the browser, Visual Studio will automatically stop debugging. However, when testing HTmL5 support you’ll
need to use other browsers in addition to IE.

CHAPTER 2 ■ ASP.NET WEb FoRmS

23

Notice that there is also an option for the Page Inspector. This is a new tool that is introduced with Visual
Studio 2012. Select this option and then press F5 to debug your application. The first time you use the Page
Inspector you’ll need to enable it in the web.config file. The dialog box shown in Figure 2-7 explains this. Just click
the Yes button to continue.

Figure 2-7. Enabling the Page Inspector

In addition to the browser window there are several other windows that provide useful information about
the current web page. At the bottom, the HTML tab shows the actual HTML that is generated by ASP.NET. Select
the User Name control in the page view and the relevant markup is highlighted as shown in Figure 2-8.

Figure 2-8. The HTML generated for the user name control

Except for the rather cryptic control name and id, this is standard HTML5 syntax. In particular, notice the
following attributes; the email type value and the placeholder attribute are new in HTML5:

type="email"
placeholder="use your email address"

The placeholder attribute that you entered in the .aspx page is not an ASP.NET attribute. It was not
processed by .NET but passed directly to the generated HTML.

Notice also the pane to the right that provides several tabs for viewing the CSS styles. I’ve selected the
Attributes tab, which shows the values for all of the element’s attributes. The other tabs show you the styles that
are applied. Stop the debugger to close the page inspector.

CHAPTER 2 ■ ASP.NET WEb FoRmS

24

Viewing the Default Database
When you create an ASP.NET project with Visual Studio 2012 (or Express for Web), it will use SQL Server 2012 for
the default database. You don’t need to install SQL Server; the necessary components are included with Visual
Studio. The database is actually created the first time it is needed so you’ll need to start the application and login or
register. If you have SQL Server installed, you can view and modify the data using SQL Server Management Studio.

Tip ■ You can download and install SQL Server 2012 Express from this site:
http://msdn.microsoft.com/en-us/evalcenter/hh230763.aspx.

When connecting to the database, select “(LocalDb)\v11.0” for the server name and use Windows
authentication as shown in Figure 2-9.

Figure 2-9. Connecting to the local DB

Once you have connected, select the appropriate database. Visual Studio creates a new database for each
project and the database name will be aspnet- < project name > - < date/time>. You can expand the database to
see the tables that are included, which will be the standard ASP membership tables, as shown in Figure 2-10.

http://msdn.microsoft.com/en-us/evalcenter/hh230763.aspx

CHAPTER 2 ■ ASP.NET WEb FoRmS

25

If you don’t have SQL Server Management Studio installed, you can also use Visual Studio to view the
database. From the menu select View Server Explorer. Expand the Data Connections node and then select
“DefaultConnection (Chapter 2”). You can expand the tables, as shown in Figure 2-11.

Figure 2-10. Listing the tables included in the default database

CHAPTER 2 ■ ASP.NET WEb FoRmS

26

To execute a query, right-click any of the database nodes and select the “New Query” link. Type in a standard
Transact-SQL command and click the Execute icon to run it. The query window will look similar to Figure 2-12.

Figure 2-11. Using the Server Explorer to view the database

Figure 2-12. The Query window

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ASP.NET WEb FoRmS

27

Exploring the Other Input Types
HTML5 introduces several other input types. To demonstrate them, you’ll add a feedback form with some rather
contrived questions. These will implement the other types that are available to you.

Tip ■ To get a detailed explanation of each of the input elements, check out the actual HTmL5 specification. This
address will take you to the section on input elements: http://www.whatwg.org/specs/web-apps/current-
work/multipage/the-input-element.html#the-input-element

Implementing a Feedback Form
In the next exercise, you’ll create a new form and add several input controls; one of each type. After you have
created the form I’ll discuss each of the controls.

eXerCISe 2-2. aDDING a FeeDBaCK FOrM

1. open the Chapter2 project in Visual Studio if not already open.

2. In the Solution Explorer, right-click the Chapter2 project and select the Add
Webform links. Enter Feedback when prompted for the form name.

3. This will create a new form with a single div as shown in Listing 2-1.

Listing 2-1. The blank form implementation

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Feedback.aspx.cs"

 Inherits="Chapter2.Feedback" %>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title > </title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 </div>
 </form>
</body>
</html>

4. Within the empty div, enter the code shown in Listing 2-2. This will add several
fields that each demonstrate one of the new input types.

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-input-element.html#the-input-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-input-element.html#the-input-element
http://www.w3.org/1999/xhtml

CHAPTER 2 ■ ASP.NET WEb FoRmS

28

Listing 2-2. Adding feedback fields

<fieldset>
 <legend>Feedback Form</legend>

 <asp:Label ID="lblURL" runat="server"
 AssociatedControlID="URL">Default home page</asp:Label>
 <asp:textbox runat="server" ID="URL" TextMode="Url"></asp:textbox>

 <asp:Label ID="lblOptions" runat="server"
 AssociatedControlID="Options">Default browser</asp:Label>
 <asp:DropDownList ID="Options" runat="server">
 <asp:ListItem Text="Internet Explorer" Value="1"></asp:ListItem>
 <asp:ListItem Text="Google Chrome" Value="2" Selected></asp:ListItem>
 <asp:ListItem Text="Firefox" Value="3"></asp:ListItem>
 <asp:ListItem Text="Opera" Value="4"></asp:ListItem>
 </asp:DropDownList>

 <asp:Label ID="lblBirthday" runat="server"
 AssociatedControlID="Birthday">Birthday</asp:Label>
 <asp:TextBox runat="server" ID="Birthday" TextMode="Date"></asp:TextBox>

 <asp:Label ID="lblMonth" runat="server"
 AssociatedControlID="Month">Favorite Month</asp:Label>
 <asp:TextBox runat="server" ID="Month" TextMode="Month"></asp:TextBox>

 <asp:Label ID="lblWeek" runat="server"
 AssociatedControlID="Week">Busiest Week</asp:Label>
 <asp:TextBox runat="server" ID="Week" TextMode="Week"></asp:TextBox>

 <asp:Label ID="lblStart" runat="server"
 AssociatedControlID="DateTime">Start Date/Time</asp:Label>
 <asp:TextBox runat="server" ID="DateTime"
 TextMode="DateTime"></asp:TextBox>

 <asp:Label ID="lblTime" runat="server"
 AssociatedControlID="Time">Current Time</asp:Label>
 <asp:TextBox runat="server" ID="Time" TextMode="Time" ></asp:TextBox>

 <asp:Label ID="lblPhone" runat="server"
 AssociatedControlID="Phone">Phone</asp:Label>
 <asp:TextBox runat="server" ID="Phone" TextMode="Phone"></asp:TextBox>

CHAPTER 2 ■ ASP.NET WEb FoRmS

29

 <asp:Label ID="lblRange" runat="server"
 AssociatedControlID="Range">Overall satisfaction</asp:Label>
 <asp:TextBox runat="server" ID="Range" TextMode="Range"
 Width="200" Height="30"></asp:TextBox>

 <asp:Label ID="lblColor" runat="server"
 AssociatedControlID="Color">Preferred color</asp:Label>
 <asp:TextBox runat="server" ID="Color" TextMode="Color"></asp:TextBox>

 <asp:Label ID="lblScore" runat="server"
 AssociatedControlID="Score">Overall Rating</asp:Label>
 <asp:TextBox ID="Score" runat="server" TextMode="Number"
 MaxLength="1"></asp:TextBox>

 <asp:Label ID="lblComments" runat="server"
 AssociatedControlID="Multi">Comments</asp:Label>
 <asp:TextBox runat="server" ID="Multi" TextMode="Multiline"
 Rows="5" Columns="30"></asp:TextBox>

 <asp:Button ID="Submit" runat="server" CommandName="Submit" Text="Submit" />
</fieldset>

5. Save the changes and press F5 to display the new page in the browser. The
feedback form as rendered by the opera browser is shown in Figure 2-13.

Figure 2-13. The initial feedback form

CHAPTER 2 ■ ASP.NET WEb FoRmS

30

Note ■ I’m using the opera browser to render the feedback form because it has the best support for the
new input types, as of this writing. I’ll explain that more, later in this chapter. You can download opera from
www.opera.com.

Reviewing the New Input Types
Now let’s look at each of the new input types and see how they have been implemented in Opera. Keep in mind
that different browsers may present the control differently.

URL
The first field uses the url input type, which expects a valid web address. If you enter an invalid address, when the
page is submitted you’ll see the validation error shown in Figure 2-14.

Figure 2-14. The URL field

Note ■ The opera implementation automatically adds the http:// prefix if the protocol is not included in the url. For
example, if you enter www.apress.com and tab off the field, the address is changed to http://www.apress.com.

Selection List
The next field provides a dropdown list of available browsers. In ASP.NET this is coded as a DropDownList that
contains a number of ListItem elements. The generated HTML uses a select element that contains option
elements like this:

<select name="Options" id="Options">
 <option value="1" > Internet Explorer</option>
 <option selected value="2" > Google Chrome</option>
 <option value="3" > Firefox</option>
 <option value="4" > Opera</option>
</select>

Notice that the selected item is indicated with the selected attribute. This is a boolean and doesn’t need
a value so simply adding the selected attribute with no value is sufficient, although Visual Studio will show a
warning.

http://www.opera.com
http://www.apress.com
http://www.apress.com

CHAPTER 2 ■ ASP.NET WEb FoRmS

31

Date/Time Fields
The feedback form contains the following date/time fields that demonstrate the browser-support for various
date-type fields:

Birthday – (Date) a single date (no time portion)•	

Favorite Month – (Month) an entire month•	

Busiest Week – (Week) an entire week•	

Start Date/Time – (DateTime) a single date including the time portion•	

Current Time – (Time) the time without any date•	

The date fields are text boxes where you can key the desired value. However, there is also an icon that
displays a date picker control. The different formats of this control (date, month, and week) are shown in
Figures 2-15, 2-16, and 2-17, respectively. These controls are essentially the same except that the month and week
versions will only allow you to select the entire month or week. Notice that the week format also displays the
week number (from 1 to 52).

Figure 2-15. The date picker control

Figure 2-16. The date picker selecting an entire month

CHAPTER 2 ■ ASP.NET WEb FoRmS

32

Both the Start Date/Time and Current Time fields include a time control that allows the hour and minute to
be entered separately. You can also use the up/down arrows to increment the hour or minute portion depending
on which is currently in focus.

Phone
The feedback form includes a Phone field that uses the new tel input type. At the time of this writing, none of the
desktop browsers support this type. I included it in the exercise with the hope that by the time you read this you’ll
have a browser that will support it. As with all non-supported types, the browser treats this as a standard textbox
control.

Range
The next control uses the new range input type. This allows you to slide the indicator across the extent of the
control, providing a relative value. This is similar to a fuel gauge in a car where the specific value is not as
important as the relative value such as ¾ full. I defined this with a width of 300 and height of 30 so the control was
generated to slide horizontally. If the height was greater than the width, the slider would move vertically, like a
thermometer.

There are some other attributes of the range control that you can manipulate in HTML that are not
supported in ASP.NET. You could still specify these in the .aspx page and they would be passed to the generated
HTML just like the placeholder attribute. However, I will show you another way to configure the range control
later in this chapter.

Color
The color control includes a small square that displays the selected color. If you click the dropdown icon, you can
select a color from the default pallet as shown in Figure 2-18.

Figure 2-17. The date picker selecting an entire week

CHAPTER 2 ■ ASP.NET WEb FoRmS

33

If you click the Other button, the full-featured color-picker shown in Figure 2-19 is displayed.

Figure 2-18. Selecting a color from the default pallet

Figure 2-19. The color-picker control

Number
The Overall Rating field uses the number input type. The Opera and Chrome implementation include up and down
arrows that allows you to increment and decrement the current value. Alpha and alpha-numeric values are ignored
(deleted). With Chrome, an invalid entry is cleared out as soon as you tab off the field. With Opera, this does not
happen until the form is submitted. In both cases, no error is displayed but the entire input is simply deleted.

Text Area
The last field uses the text area input type. I specified this to use 5 rows and 30 columns. This only affects how the
field is displayed on the page. The text is stored as a single string and carriage returns that are entered in the field
are stored as 
. The text will be wrapped to fit into the allotted size on the page but it can contain any
number of rows.

CHAPTER 2 ■ ASP.NET WEb FoRmS

34

Reviewing the Form
A completed form is shown in Figure 2-20.

Figure 2-20. The completed feedback form

After entering values for each of the fields, click the Submit button and then view the page’s source. Each
of the fields will now have a value attribute that contains the value that was included when the page was
submitted. This is what the server-side code would use to store and/or process the submitted data. I extracted
a portion of this, which is shown in Listing 2-3. I particularly want you to see how the various date/time field
values are formatted. Also notice that the color is stored as a hexadecimal representation of the selected RGB
values.

Listing 2-3. The source with submitted values

 <label for="Birthday" id="lblBirthday">Birthday</label>
 <input name="Birthday" type="date" value="2012-04-17" id="Birthday" />

 <label for="Month" id="lblMonth">Favorite Month</label>
 <input name="Month" type="month" value="2012-04" id="Month" />

CHAPTER 2 ■ ASP.NET WEb FoRmS

35

 <label for="Week" id="lblWeek">Busiest Week</label>
 <input name="Week" type="week" value="2012-W16" id="Week" />

 <label for="DateTime" id="lblStart">Start Date/Time</label>
 <input name="DateTime" type="datetime"
 value="2012-04-17T09:15Z" id="DateTime" />

 <label for="Time" id="lblTime">Current Time</label>
 <input name="Time" type="time" value="15:05:00" id="Time" />

 <label for="Phone" id="lblPhone">Phone</label>
 <input name="Phone" type="tel" value="8005551212" id="Phone" />

 <label for="Range" id="lblRange">Overall satisfaction</label>
 <input name="Range" type="range" value="79" id="Range"
 style="height:30px;width:200px;" />

 <label for="Color" id="lblColor">Preferred color</label>
 <input name="Color" type="color" value="#b4a8e8" id="Color" />

Using the HTML5Test Web Site
I mentioned that I am using Opera for this exercise. Each browser may implement a different subset of HTML5
features. The HTML5Test.com web site that I mentioned in the previous chapter is a really useful tool for figuring
out which browser works best for a specific set of features.

If you go to the Compare tab you can select up to three different browsers to see a side-by-side comparison
for each feature. For example, I selected Google Chrome 18, IE 10, and Opera 11.60 to see how they stack up
for the form features. The results are displayed in Figure 2-21. While Google Chrome has a higher overall score,
Opera is the clear winner when it comes to supporting forms.

CHAPTER 2 ■ ASP.NET WEb FoRmS

36

Another way to use this site is to see how all browsers support a specific feature. From the Features sub-tab
(in the Compare tab), you can select up to three specific features to see which browsers support it. I selected
three features related to the range input type and you can see from Figure 2-22 that Opera has the only current
desktop browser that supports these features.

Figure 2-21. A side-by-side comparison of Chrome, IE, and Opera

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ASP.NET WEb FoRmS

37

Caution ■ These comparisons and analysis are provided only for demonstration purposes. browser support is
changing at a pretty rapid pace and by the time you’re reading this you may have very different results. The method
for comparing browser support will still be valid however.

Figure 2-22. Viewing how all browsers support the range control

CHAPTER 2 ■ ASP.NET WEb FoRmS

38

Using the Range Control
The range control supports attributes that allow you to configure its behavior. For example, you can specify the
min and max attributes that define the value of the field when the slider is at each end of the control. You can also
indicate the step attribute that controls stops along the scale where the slider can stop at. For example if the min
is 0, the max is 100, and the step is 20, the control will only allow you to stop at increments of 20 (e.g. 0, 20, 40, 60,
80, and 100).

You would code this in HTML like this:

<!DOCTYPE html>

<input name="Range" type="range" id="Range"
 min="0" max="200" step="20"
 style="height:30px;width:200px;" />

Even though IntelliSense does not support these attributes, you could specify them and they would be
included in the final HTML. Another way to do this is to modify the control when the page is loaded using
JavaScript.

Modifying the Step Attribute
Now you’ll write a simple script to configure the range attributes.

eXerCISe 2-3. MODIFYING the raNGe CONtrOL

1. Load the Chapter2 project in Visual Studio and open the Feedback.aspx page.

2. Inside the head tag add the following code shown in bold:

<head runat="server">
 <title></title>

 <script type="text/javascript">
 function configureRange() {
 var range = document.getElementById("Range");
 range.min = 0;
 range.max = 200;
 range.step = 20;
 }
 </script>

</head>

3. This simple JavaScript function modifies the attributes of the range control. The
document property represents the HTmL document of the current page. The
getElementById() function is a selector that returns the specified element,
the range control in this case. (I will cover selectors in JavaScript in more detail in
Chapter 5.)

CHAPTER 2 ■ ASP.NET WEb FoRmS

39

4. Now that the function has been implemented, you need to tell the page to execute it.
To do that, add the following code in bold to the body tag:

<body onload="configureRange()">
 <form id="form1" runat="server">

5. This instructs the page to call the configureRange() function when the OnLoad
event occurs.

6. Save your changes and press F5 to load the page.

7. The range control will look just like it did before but when you move the slider it will
only stop where the tick marks are.

Tip ■ by default, tick marks are displayed at 10% increments along the range control. Since the total range is
200 and the step is 20, the steps are also at 10% increments so they coincide with the tick marks. Try changing the
step to 5 and you should also have three stops between each tick mark.

Displaying the Range Value
While you’re working on the range control I want to show you a simple trick to display its value. You’ll add a
TextBox control next to the range control and then use JavaScript to update its value when the range control is
modified.

eXerCISe 2-4. DISpLaYING the raNGe VaLUe

1. In the Feedback.aspx page, add the following code in bold to the range item:

 <asp:Label ID="lblRange" runat="server"
 AssociatedControlID="Range">Overall satisfaction</asp:Label>
 <asp:TextBox runat="server" ID="Range" TextMode="Range"
 Width="200" Height="30"></asp:TextBox>

 <asp:TextBox runat="server" ID="RangeValue" Width="50"></asp:TextBox>

2. Next, add the code in bold to the script section:

<script type="text/javascript">
 function configureRange() {
 var range = document.getElementById("Range");
 range.min = 0;
 range.max = 200;
 range.step = 20;

 updateRangeValue();
 }

CHAPTER 2 ■ ASP.NET WEb FoRmS

40

 function updateRangeValue() {
 document.getElementById("RangeValue").value
 = document.getElementById("Range").value;
 }
</script>

3. The updateRangeValue() function takes the current value of the range control
and stores it in the text box. Also, the configureRange() function that is called
when the page is loaded, calls updateRangeValue() to set its initial value.

4. Now you’ll need to call the updateRangeValue() function whenever the range
control is updated. To do that, add the code in bold to the Page_Load() event
handler in the Feedback.aspx.cs code-behind file:

public partial class Feedback : System.Web.UI.Page

{
 protected void Page_Load(object sender, EventArgs e)
 {

 Range.Attributes.Add("onChange", "updateRangeValue()");
 }
}

5. Save your changes and execute the page. As you move the slider, the selected value
is displayed as shown in Figure 2-23. Notice that it is updated in increments of 20
(if the step attribute is still set at 20).

Figure 2-23. Displaying the range value

Summary
In this chapter you created a basic ASP.NET web form application using the template provided by Visual Studio.
After briefly trying out the email control you then created a feedback page that demonstrated each of the other
input types. Using some simple JavaScript, you configured the range control and provided a real-time display of
its value.

Along the way I also provided some useful information regarding the development environment including:

Configuring browsers to test with•	

Using the Page Inspector•	

Accessing the default SQL Server database•	

Using the •	 HTML5Test.com web site to research browser support

41

Chapter 3

MVC Web Applications

In this chapter you will use ASP.NET MVC to create a feedback form that will demonstrate several of the new
input types. I will first provide a brief introduction of the Model-view-controller (MVC) framework included with
the .NET platform and then show you how to build an HTML5-based web page using MVC. The end result will be
something similar to what you did in Chapter 2 but the implementation will be quite different. As you will see, the
solution will rely heavily on the ability to extend the MVC framework to incorporate the new HTML5 features.

Model-view-controller (MVC) is an architectural pattern that has been around since as early as the late
1970s. The primary benefit of this pattern is the separation of concerns, allowing independent development,
testing, and maintenance of each. The model provides the data and business logic. If the application was
presenting a product catalog, for example, the model would provide the product details. If changes are made,
the model is responsible for persisting the data. The view provides the user experience; both formatting the
presentation of data as well as enabling user interaction with input controls, buttons, and links. The controller
handles the user requests, passing this to the model and invoking the appropriate view. This process is illustrated
in Figure 3-1.

Model

Controller View

HTTP request HTML document

Figure 3-1. The model-view-controller architectural pattern

CHAPTER 3 ■ MVC WEb APPliCATions

42

Introducing ASP.NET MVC4
ASP.NET MVC is a framework based on .NET that was first released in 2009 and implements the MVC pattern.
The initial release used the same .aspx web forms syntax that was used in the traditional ASP.NET framework. In
2010, a new view engine called Razor was released, which is a more natural, HTML-like syntax. Also, instead of a
code-behind file, the Razor engine allows the code to be included in the markup file. MVC version 4.0 is included
with the Visual Studio 2012 release.

Like the traditional ASP.NET web forms I discussed in the previous chapter, MVC4 does not support many of
the new HTML5 tags out-of-the-box. However, the MVC framework is much more extensible, making it relatively
easy to add HTML5 support. In this chapter I will explain different techniques for extending the MVC framework
to incorporate the new HTML5 features. There are also several open-source extensions that you can install and I
will briefly demonstrate one of these as well.

Creating an ASP MVC Project
In this chapter you’ll create an ASP.NET MVC project using the standard template in Visual Studio 2012. This
will create a web application that looks very similar to the one you created in Chapter 2. Start Visual Studio 2012
(or the free version Visual Studio Express for Web). From the Web category, select the ASP.NET MVC 4 Web
Application template, enter Chapter 3 for the project name, and select an appropriate location as shown in
Figure 3-2. Click the OK button to continue.

Figure 3-2. Selecting the MVC 4 project

You will be prompted to pick a template; select the Internet Application as shown in Figure 3-3. This will
create a membership-based internet application just like the project in Chapter 2. Make sure the Razor view
engine is selected.

CHAPTER 3 ■ MVC WEb APPliCATions

43

After the project has been created, you’ll see a number of folders in the Solution Explorer. Notice there are
separate folders for controllers, models, and views as shown in Figure 3-4. The sample project includes several
examples of each of these items.

Figure 3-3. Selecting the Internet Application template

CHAPTER 3 ■ MVC WEb APPliCATions

44

Figure 3-4. The initial Solution Explorer window

Exploring a Razor View
For a quick demonstration of the Razor view syntax you can look at the existing views provided by the project
template. Open the Register.cshtml file, which you’ll find in the Views\Account folder. This implements the
view for the registration page. The fieldset section of the page is shown in Listing 3-1.

Listing 3-1. The initial Register.cshtml implementation

<fieldset>
 <legend>Registration Form</legend>

CHAPTER 3 ■ MVC WEb APPliCATions

45

 @Html.LabelFor(m => m.UserName)
 @Html.TextBoxFor(m => m.UserName)

 @Html.LabelFor(m => m.Email)
 @Html.TextBoxFor(m => m.Email)

 @Html.LabelFor(m => m.Password)
 @Html.PasswordFor(m => m.Password)

 @Html.LabelFor(m => m.ConfirmPassword)
 @Html.PasswordFor(m => m.ConfirmPassword)
 @Html.ValidationMessageFor(m => m.ConfirmPassword)

 <input type="submit" value="Register" />
</fieldset>

In the Razor syntax an @ indicates the text that follows is code instead of literal markup. The code will
generate HTML content at run time. You’ll notice that much of the code uses the Html class. This is a helper class
with methods that generate HTML markup. The LabelFor() method, for example, generates markup to insert a
label control.

For each of the fields in the form, the code uses the LabelFor() and TextBoxFor() methods of the Html
helper class. (The password fields use the PasswordFor() method.) Each of these methods takes a lambda
expression, e.g. m = > m.UserName, that specifies a data element from the associated model. The model that is used
for the view is defined by the following instruction at the top of the file:

@model Chapter3.Models.RegisterModel

If you look at the AccountModels.cs file, you’ll find the definition of the RegisterModel class. This class has
four public properties:

•	 UserName

•	 Email

•	 Password

•	 ConfirmPassword

Each of these properties has some metadata attributes such as Required and DataType that are used to
generate the correct HTML. I will explain this further later in the chapter.

Using Editor Templates
The TextBoxFor() method will output a standard textbox control. To use the new HTML5 input types you’ll
need to modify this implementation. The MVC framework allows you to use the EditorFor() method instead
of TextBoxFor(). By itself that doesn’t change the markup that is generated since the default implementation of
EditorFor() will still use the type = "text" attribute. I’ll show you how to create an editor template to override
this default behavior.

CHAPTER 3 ■ MVC WEb APPliCATions

46

eXerCISe 3-1. aDDING aN eDItOr teMpLate

1. open the Register.cshtml file, which you’ll find in the Views\Account folder.

2. For the Email field, replace TextBoxFor with EditorFor. The code will look like this:

@Html.LabelFor(m = > m.Email)
@Html.EditorFor(m = > m.Email)

3. in the solution Explorer, right-click on the Views\shared folder and select the Add ➤
new Folder links. Enter EditorTemplates for the folder name.

 ■ Caution later in the chapter i will explain how the appropriate editor template is selected for each property.
Editor templates must be in the EditorTemplates folder for the MVC framework to be able to use them. because this
folder was added to the Views\shared folder, they are available to all views in your projects. You could create the
EditorTemplates folder in the Views\Account folder. This would make them available to all views in the Account folder
but not in other folders such as the Home folder. This also allows you to create a separate set of editor templates for
each folder if you want the Home template to be different from the Account templates.

4. Right-click the Views\shared\EditorTemplates folder and select the Add ➤ View links.

5. in the Add View dialog box, enter EmailAddress as the view name and make sure all
the check boxes are unselected as shown in Figure 3-5.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ MVC WEb APPliCATions

47

6. This will generate a view page named EmailAddress.cshtml. Delete the entire
content and replace it with the following code. This uses the Textbox() method but
specifies some additional attribute including type and placeholder.

@Html.TextBox("", null, new { @class = "text-box single-line", type = "email",
 placeholder = "Enter an e-mail address" })

7. save your changes and debug the application. Go to the Registration page and you
should see the placeholder text displayed in the empty Email address field as shown in
Figure 3-6.

Figure 3-5. Adding the EmailAddress template

CHAPTER 3 ■ MVC WEb APPliCATions

48

8. if you look at the page’s source or the Page inspector, the actual HTMl will be
similar to:

<input class="text-box single-line" data-val="true"
 data-val-required="The Email address field is required."
 id="Email" name="Email"
 placeholder="Enter an e-mail address" type="email" value=""/>

9. Close the browser and stop the debugger.

Tip■ As with the previous chapter, i will be using the opera browser for most of the exercises since it has the
best support for the new input types.

attrIBUte DrIVeN VaLIDatION

Data validation in AsP.nET MVC starts with the model. if you look at the AccountModel.cs file you’ll see
metadata attributes such as Required attached to each property. For example, the Username property looks
like this:

[Required]
[Display(Name = "User name")]
public string UserName { get; set; }

Figure 3-6. The blank Register form

CHAPTER 3 ■ MVC WEb APPliCATions

49

The TextBoxFor() helper function uses the metadata attributes to generate HTMl like this:

<input name = "UserName" id = "UserName" type = "text"
 data-val-required = "The User name field is required."
 data-val = "true" value = "" > </input>

specifically, the data-val and data-val-required HTMl attributes are generated. The view also includes
these jQuery libraries:

<script src = "~/Scripts/jquery.validate.min.js" > </script>
<script src = "~/Scripts/jquery.validate.unobtrusive.min.js" > </script>

These Javascript libraries use the HTMl attributes such as data-val to perform client-side validation. For
more information, see the article at: http://rachelappel.com/asp-net-mvc/how-data-annotations-for-asp-net-
mvc-validation-work.

Adding a Feedback Page
You will now create a feedback form and use this to demonstrate how to implement the new HTML5 capabilities.
You’ll start by creating a model and then implement a strongly-typed view based on this model. You’ll then add a
controller action as well as a link to the new page.

Tip ■ Adding a page to the web application usually involves adding a model, adding a view, and creating or
modifying a controller. The MVC pattern allows these to be developed separately and in a large project you will often
have different people responsible for the views and models. You may be able to use an existing model. However, in a
small project like this, where you are the sole developer, you will generally need to touch all three areas to add a page.

Creating the Feedback Model
A model defines the data elements that can be included on your page. By designing the model first, you can
simplify the view implementation.

In the Solution Explorer, right-click the Models folder and select the Add ➤ Class links and enter
FeedbackModel for the class name. Click the OK button to create the class. For the class implementation, enter
the code shown in Listing 3-2.

Note ■ The view files use the new Razor syntax and have the .cshtml (or .vbhtml) extension. However, the model
and controller files are standard C# (or Vb) classes.

Listing 3-2. The FeedbackModel class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.ComponentModel.DataAnnotations;

http://rachelappel.com/asp-net-mvc/how-data-annotations-for-asp-net-mvc-validation-work.
http://rachelappel.com/asp-net-mvc/how-data-annotations-for-asp-net-mvc-validation-work.

CHAPTER 3 ■ MVC WEb APPliCATions

50

namespace Chapter3.Models
{
 public class FeedbackModel
 {
 [Display(Name = "Name", Prompt = "Enter your full name"),
 Required]
 public string Name { get; set; }

 [Display(Name = "Average Score", Prompt = "Your average score"),
 Range(1.0, 100.0),
 Required]
 public decimal Score { get; set; }

 [Display(Name = "Birthday"),
 DataType(DataType.Date)]
 public DateTime? Birthday { get; set; }

 [Display(Name = "Home page", Prompt = "Personal home page"),
 DataType(DataType.Url),
 Required]
 public string Homepage { get; set; }

 [Display(Name = "Email", Prompt = "Preferred e-mail address"),
 DataType(DataType.EmailAddress),
 Required]
 public string Email { get; set; }

 [Display(Name = "Phone number", Prompt = "Contact phone number"),
 DataType(DataType.PhoneNumber),
 Required]
 public string Phone { get; set; }

 [Display(Name = "Overall Satisfaction")]
 public string Satisfaction { get; set; }
 }
}

Press F6 to build the application. This will make the model available when defining the view.

Defining the Feedback View
Now you’ll define a new view based on this model. Initially, this will be a simple form with a single field. Then you
will add a link on the home page and a controller action to handle this. Later in the chapter you’ll add more fields
to the form.

CHAPTER 3 ■ MVC WEb APPliCATions

51

eXerCISe 3-2. DeSIGNING the INItIaL FeeDBaCK FOrM

 1. in the solution Explorer, expand the Views folder. Right-click the Home folder
and select the Add ➤ View links. Enter the name Feedback, select the “Create
a strongly-typed view” check box, and select the FeedbackModel as shown in
Figure 3-7. Again, make sure the Razor view engine is selected.

Figure 3-7. Creating the Feedback view

 2. The new view is generated with a single empty div. Enter the code shown in bold
from listing 3-3. This code includes an input control for the Email property using the
EditorFor() method.

Listing 3-3. Defining the initial form

@model Chapter3.Models.FeedbackModel
@{
 Layout = null;
}

CHAPTER 3 ■ MVC WEb APPliCATions

52

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Feedback</title>
</head>
<body>
 <div>
 @using (Html.BeginForm((string)ViewBag.FormAction, "Home"))
 {
 <fieldset>
 <legend>Feedback Form</legend>
 <div>
 @Html.EditorFor(m => m.Email)
 </div>
 <p>
 <input type="submit" value="Submit" />
 </p>
 </fieldset>
 }
 </div>
</body>
</html>

 3. Views are invoked by a controller so you’ll need to add a controller action that
will load this page. open the HomeController.cs class, which you’ll find in the
Controllers folder.

 4. Add the following method:

public ActionResult Feedback()
{
 return View();
}

 5. Finally, you’ll need a link that triggers this controller action. open the _Layout.cshtml
in the View\shared folder.

 6. Add the line shown in bold:

<ul id="menu">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("About", "About", "Home")
 @Html.ActionLink("Contact", "Contact", "Home")
 @Html.ActionLink("Feedback", "Feedback", "Home")

 7. save your changes and press F5 to debug. You should now have a Feedback link on
the home page as shown in Figure 3-8.

CHAPTER 3 ■ MVC WEb APPliCATions

53

 8. Click this link to display the feedback form, which is shown in Figure 3-9.

Figure 3-10. The standard HTML5 validation error

Figure 3-9. The initial feedback form

Figure 3-8. The Feedback link on the home page

 9. Enter an invalid email address and click the submit button. You should see the
standard HTMl5 validation error as shown in Figure 3-10.

10. View the source of the feedback form, which should be similar to this:

<form action="/Home/Feedback" method="post">
 <fieldset>
 <legend>Feedback Form</legend>
 <div>
 <input class="text-box single-line" data-val="true"
 data-val-required="The Email field is required."
 id="Email" name="Email"
 placeholder="Enter an e-mail address"
 type="email" value="" />
 </div>
 <p>
 <input type="submit" value="Submit" />
 </p>
 </fieldset>
</form>

CHAPTER 3 ■ MVC WEb APPliCATions

54

Completing the Feedback Form
Now you’ll add the remaining fields to the feedback form. You’ll also need to provide editor templates for the
additional data types. I’ll also show you how the framework determines which template to use.

Adding the Other Fields
You’ll start by adding the other fields that are defined in the FeedbackModel.cs class. For each one you’ll include
a label and use the EditorFor() method to generate the input field.

eXerCISe 3-3. COMpLetING the FeeDBaCK FOrM

1. open the Feedback.cshtml file and add the code shown in bold in listing 3-4.

Listing 3-4. The Feedback view implementation

<div>
 @Html.EditorFor(m => m.Email)
</div>

<div class="editor-label">
 @Html.LabelFor(m => m.Name)
</div>
<div class="editor-field">
 @Html.EditorFor(m => m.Name)
</div>
<div class="editor-label">
 @Html.LabelFor(m => m.Birthday)
</div>
<div class="editor-field">
 @Html.EditorFor(m => m.Birthday)
</div>
<div class="editor-label">
 @Html.LabelFor(m => m.Homepage)
</div>
<div class="editor-field">
 @Html.EditorFor(m => m.Homepage)
</div>
<div class="editor-label">
 @Html.LabelFor(m => m.Phone)
</div>
<div class="editor-field">
 @Html.EditorFor(m => m.Phone)
</div>
<div class="editor-label">
 @Html.LabelFor(m => m.Score)
</div>
<div class="editor-field">
 @Html.EditorFor(m => m.Score)
</div>

CHAPTER 3 ■ MVC WEb APPliCATions

55

<div class="editor-label">
 @Html.LabelFor(m => m.Satisfaction)
</div>
<div class="editor-field">
 @Html.EditorFor(m => m.Satisfaction)
</div>

<p>
 <input type="submit" value="Submit" />
</p>

2. save your changes and press F5 to view the modified form. Click the Feedback link
to display the page, which will look similar to Figure 3-11.

Figure 3-11. The feedback form

3. notice that all the new fields use the standard Textbox control and do not include a
placeholder text. This is because there is no editor template defined for these data types.

Adding Editor Templates
You may have been asking yourself, how does the framework know which template to use? The framework tries to
use the correct template based on the data type of the property. This is not very reliable as e-mail, urls, and phone
numbers are all stored in a string variable. The preferred method is to define this using metadata.

If you include the System.ComponentModel.DataAnnotations namespace in your model class you can
include metadata in your model. There are two metadata attributes that are used to determine the appropriate
template:

•	 DataType

•	 UIHint

CHAPTER 3 ■ MVC WEb APPliCATions

56

The DataType attribute is specified using the DataType enum. This includes a fairly large but fixed set of
values, such as the contextual types EmailAddress, CreditCard, Currency, PostalCode, and Url. If you add a
DataType attribute, the editor template with the matching name is used. You included the DataType attributes
when you implemented the FeedbackModel.

The UIHint attribute is specified with a string and you can therefore use any value to want. If you want
a property displayed in green font, you can specify the UIHint("GreenFont") attribute in the model and
then provide a GreenFont.cshtml template. The UIHint takes precedence over the DataType attribute when
determining the appropriate template to use.

 ■ Tip My GreenFont example was used to illustrate how the UIHint attribute works. You should not use it for
setting style properties as this is the role of the style sheets. A more appropriate application of the UIHint attribute
will be demonstrated later in this chapter when you implement a range control.

4. Right-click the Views\shared\EditorTemplates folder and select the Add ➤ View
links. in the Add View dialog box, enter the name Date and unselect all of the check
boxes. Replace the view implementation with the following code:

@Html.TextBox("", null, new { @class = "text-box single-line",
type = "date" })

5. in the same way, add another editor template named Url and use the following
implementation:

@Html.TextBox("", null, new { @class = "text-box single-line", type =
"url", placeholder = "Enter a web address" })

6. Create a PhoneNumber template using the following code:

@Html.TextBox("", null, new { @class = "text-box single-line", type =
"tel", placeholder = "Enter a phone number" })

7. Create a Number template using the following code:

@Html.TextBox("", null, new { @class = "text-box single-line", type =
"number", placeholder = "Enter a number" })

Save your changes and press F5 to debug your application. The feedback form should now use the HTML5
controls as shown in Figure 3-12.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ MVC WEb APPliCATions

57

Generating Custom HTML
The editor templates that you have implemented are all based on the TextBox() method of the Html helper
class. The templates simply add some additional attributes such as type and placeholder. However, you can
implement templates that will output any HTML content you want. To demonstrate that, I’ll show you how
to build your own helper extension that generates the markup from scratch. You will use this to replace the
EmailAddress template.

Adding a Custom Helper Class
You can create your own helper class and add it as a property of the existing Html helper class. You can then
access your custom method as:

@Html. < CustomClass > . < CustomMethod > ()

eXerCISe 3-4. CreatING a heLper eXteNSION

1. in the solution Explorer, right-click the Chapter 3 project and select the Add ➤ Class
links. Enter the name Html5 when prompted for the class name.

2. Enter the source shown in listing 3-5.

Listing 3-5. The initial HTML5 helper class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Globalization;

Figure 3-12. The form using HTML5 controls

CHAPTER 3 ■ MVC WEb APPliCATions

58

namespace System.Web.Mvc
{
 public class Html5Helper
 {
 private readonly HtmlHelper htmlHelper;

 public Html5Helper(HtmlHelper htmlHelper)
 {
 this.htmlHelper = htmlHelper;
 }
 private static CultureInfo Culture
 {
 get
 {
 return CultureInfo.CurrentCulture;
 }
 }

 // Add custom methods here…

 }

 public static class HtmlHelperExtension
 {
 public static Html5Helper Html5(this HtmlHelper instance)
 {
 return new Html5Helper(instance);
 }
 }
}

There are a couple of things to point out here. First, note that the namespace is set as System.Web.Mvc and
not your application’s namespace, Chapter3. Your custom helper class is named Html5Helper and its constructor
takes an HtmlHelper parameter. This is a reference to the standard helper class, which is stored as a private
class member. Your custom methods will need this to access data from the framework such a view and model
information. Finally, this code also declares a static HtmlHelperExtension class, which provides a static method
that returns your custom class. Notice that the method name is Html5, so you will access your custom class from
the view as:

@Html.Html5(). < CustomMethod > ()

The purpose of having your own custom helper class is to be able to implement custom helper methods.
So let’s add one now. The first method will generate an email input control. You will then use this in your
EmailAddress.cshtml template.

3. Add the code shown in listing 3-6 to your custom class where the // Add custom
methods here placeholder is.

Listing 3-6. The EmailControl implementation

public IHtmlString EmailControl()
{
 string id;
 string name;

CHAPTER 3 ■ MVC WEb APPliCATions

59

 string placeHolder;
 string value;
 string valueAttribute;
 ViewDataDictionary viewData = htmlHelper.ViewData;
 ModelMetadata metaData = viewData.ModelMetadata;

 // Build the HTML attributes
 id = viewData.TemplateInfo.GetFullHtmlFieldId(string.Empty);
 name = viewData.TemplateInfo.GetFullHtmlFieldName(string.Empty);

 if (string.IsNullOrWhiteSpace(metaData.Watermark))
 placeHolder = string.Empty;
 else
 placeHolder = "placeholder=\"" + metaData.Watermark + "\"";

 value = viewData.TemplateInfo.FormattedModelValue.ToString();
 if (string.IsNullOrWhiteSpace(value))
 valueAttribute = string.Empty;
 else
 valueAttribute = "value=\"" + value + "\"";

 // Determine the css class
 string css = "text-box single-line";

 ModelState state;
 if (viewData.ModelState.TryGetValue(name, out state)
 && (state.Errors.Count > 0))
 css += " " + HtmlHelper.ValidationInputCssClassName;

 // Format the final HTML
 string markup = string.Format(Culture,
 "<input type=\"email\" id=\"{0}\" name=\"{1}\" {2} {3} " +
 "class=\"{4}\"/>", id, name, placeHolder, valueAttribute, css);

 return MvcHtmlString.Create(markup);
}

This method gathers the various HTML attributes such as id, name, class, and placeholder. This
information is extracted from the model or the model metadata. At the end of this method, the markup string is
built using the standard string.Format() method, which assembles the various attributes. This is then passed to
the static MvcHtmlString.Create() method to provide this as the IHtmlString interface that the MVC framework
requires.

The primary difference in this implementation of the EmailAddress template is that the placeholder attribute
is set using the model metadata. The previous implementation used a hard-coded placeholder, “Enter an e-mail
address”. Unfortunately, the property names are completely inconsistent. In the model, this is specified using the
Prompt attribute (Prompt = "Preferred e-mail address"). In the ModelMetadata class, this value is provided as
the Watermark property. And, of course, this is included in the HTML document as a placeholder attribute.

Re-implementing the Custom Email Template
Now you’ll replace the EmailAddress template with a much simpler one that uses the new helper extension that
you’ve just implemented.

CHAPTER 3 ■ MVC WEb APPliCATions

60

eXerCISe 3-5. re-IMpLeMeNtING the eMaIL teMpLate

1. save the changes and open the EmailAddress.cshtml template.

2. Replace the entire implementation with the following:

@Html.Html5().EmailControl()

3. save the changes and press F5 to debug. The placeholder text should now reflect
the prompt specified in the model metadata as demonstrated in Figure 3-13.

Figure 3-13. The modified Email field

4. View the source of this page and the HTMl markup for the Email field should look like:

<input type="email" id="Email" name="Email" placeholder="Preferred e-mail address"
 class="text-box single-line"/>

Implementing a RangeControl
As you saw in the previous chapter, the range control supports some additional attributes that are not available
in the standard TextBoxFor (or even EditorFor) implementations. To implement this using the MVC framework,
you’ll implement a custom helper method. You’ll then provide an editor template that calls this custom method.
Finally, you’ll add a UIHint attribute in the model metadata that will tell the framework to use the new template.

Implementing a Custom Helper Method
The first step is to create a custom helper method that will generate the appropriate markup for a range control.
This will be similar to the EmailControl() method that you just implemented except that is doesn’t include the
placeholder attribute. Also, the min, max, and step attributes are passed in to the method.

Add the code in Listing 3-7 to the Html5.cs file (inside the Html5Helper class).

Listing 3-7. The RangeControl implementation

public IHtmlString RangeControl(int min, int max, int step)
{

 string id;
 string name;
 string value;
 string valueAttribute;

 ViewDataDictionary viewData = htmlHelper.ViewData;

 // Build the HTML attributes
 id = viewData.TemplateInfo.GetFullHtmlFieldId(string.Empty);
 name = viewData.TemplateInfo.GetFullHtmlFieldName(string.Empty);

CHAPTER 3 ■ MVC WEb APPliCATions

61

 value = viewData.TemplateInfo.FormattedModelValue.ToString();
 if (string.IsNullOrWhiteSpace(value))
 valueAttribute = string.Empty;
 else
 valueAttribute = "value=\"" + value + "\"";

 // Determine the css class
 string css = "range";

 ModelState state;
 if (viewData.ModelState.TryGetValue(name, out state)
 && (state.Errors.Count > 0))
 css += " " + HtmlHelper.ValidationInputCssClassName;

 // Format the final HTML
 string markup = string.Format(Culture,
 "<input type=\"range\" id=\"{0}\" name=\"{1}\" " +
 "min=\"{2}\" max=\"{3}\" step=\"{4}\" {5} class=\"{6}\"/>",
 id, name, min.ToString(), max.ToString(), step.ToString(),
 valueAttribute, css);

 return MvcHtmlString.Create(markup);
}

Adding the Range Template
Now you’ll need to create an editor template for the range control that will use this new custom method.

eXerCISe 3-6. aDDING a raNGe teMpLate

1. Right-click the Views\shared\EditorTemplates folder and select the Add ➤ View links.

2. in the Add View dialog box, enter the name Range and unselect all of the text boxes.

3. Replace the default implementation with the following:

@Html.Html5().RangeControl(0, 200, 20)

4. open the FeedbackModel.cs file and add the UIHint attribute to the Satisfaction
property like this:

[Display(Name = "Overall Satisfaction"), UIHint("Range")]
public string Satisfaction { get; set; }

5. While you have the FeedbackModel.cs file open, add a UIHint attribute for the
Score property as follows:

[Display(Name = "Average Score", Prompt = "Your average score"),
 Range(1.0, 100.0), UIHint("Number"),
 Required]
public decimal Score { get; set; }

CHAPTER 3 ■ MVC WEb APPliCATions

62

6. save your changes and press F5 to debug. Go to the Feedback page and the page
should look like Figure 3-14.

Figure 3-14. The updated raneg control

Using Open Source Extensions
So far you have created two editor templates that are based on custom helper methods and four simple templates
based on the TextBox() method. However, you will likely need quite a few other templates beside these. Before
you spend all that time implementing them you might be wondering if someone else has already done this for
you? Well, the answer is yes.

There are a lot of third-party libraries and tools that are available to you. Visual Studio provides a package
manager called NuGet that makes it easy to find, download, install, and manage these third-party packages. I’ll
show you how to use NuGet to install a package of editor templates so you don’t have to write them yourself. Of
course, now that you know how to write your own, feel free to do so if any of these don’t work quite like you want
them to.

eXerCISe 3-7. INStaLLING eDItOr teMpLateS

1. When the third-party package is installed, it will not overwrite any existing
templates. so before you begin, you’ll need to delete the existing editor templates.
Delete all of the files in the EditorTemplates folder except for Range.cshtml (the
third-party package does not include this template).

2. in Visual studio, with the Chapter 3 project still open, select these links from the
menu: Tools ➤ library Package Manager ➤ Manage nuGet Packages for solution.

CHAPTER 3 ■ MVC WEb APPliCATions

63

3. This will display the Manage nuGet Packages dialog box. if you select the installed
packages link it will list the packages currently installed. You might be surprised to
find that quite a few have already been installed by the project template.

4. select the online ➤ “nuGet official package source” links to view the packages that
are available. At the time of this writing there are over 200 pages of packages to
choose from so finding the right one might seem like a daunting task.

5. in the search field, enter html5, which should narrow the list down considerably (at
the time of this writing it was only six pages).

6. scroll down and select the package named “HTMl5 Editor Templates for MVC 3” as
shown in Figure 3-15. The right-hand pane displays details of this package including
author, description, and links for more information.

Figure 3-15. Selecting the HTML5 Editor Templates for MVC 3 package

7. Click the install button. You will see the select Projects dialog box shown in Figure 3-16.
if there are multiple projects in your solution, you can use this dialog box to select
which project(s) the package should be added to. Make sure the Chapter 3 project is
selected and click the oK button.

CHAPTER 3 ■ MVC WEb APPliCATions

64

8. once the install has completed, close the Manage nuGet Packages dialog box.

9. You should now see quite a few templates in the EditorTemplates folder. open the
EmailAddress.cshtml file. The third-party implementation for this template is shown
in listing 3-8. While this is implemented differently from yours, it accomplishes
basically the same thing, including getting the placeholder from the metadata.

Listing 3-8. The open source Email template

@{
 var attributes = new Dictionary<string, object>();

 attributes.Add("type", "email");

 attributes.Add("class", "text-box single-line");
 attributes.Add("placeholder", ViewData.ModelMetadata.Watermark);

 //since this is a constraint, IsRequired and other constraints
 //won't necessarily apply in the browser, but in case script
 //turns off readonly we want the constraints passed
 if (ViewData.ModelMetadata.IsReadOnly)

Figure 3-16. Selecting the project(s) to update

CHAPTER 3 ■ MVC WEb APPliCATions

65

 {
 attributes.Add("readonly", "readonly");
 }

 if (ViewData.ModelMetadata.IsRequired)
 {
 attributes.Add("required", "required");
 }
}
@Html.TextBox("", ViewData.TemplateInfo.FormattedModelValue, attributes)

10. Press F5 to debug the application and navigate to the Feedback page, which should
look like Figure 3-17.

Figure 3-17. The feedback page using third-party templates

Adding Literal HTML
Using the Html helper class, including the EditorFor() method is the recommended way to implement forms
with ASP.NET MVC. This provides tight integration with the model including the model metadata and the
separation of concerns (business rules and user experience). However, you can always embed the actual HTML
markup in your view. An appropriate use of this would be to include static content or a control that is not
connected to a model, such as a progress bar.

I’ll now demonstrate three examples of inserting one of the new HTML5 control into the feedback form
using direct HTML markup:

Range•	

Progress•	

Meter•	

CHAPTER 3 ■ MVC WEb APPliCATions

66

Adding a Range Control
You already included a range control using a custom editor template. Now you’ll insert another one by simply
adding the appropriate HTML markup. And just for fun, you’ll make this a vertical slider by adjusting the width
and height styles. To do this, add the code in bold from Listing 3-9 to the feedback form.

Listing 3-9. Adding a range control in HTML

<fieldset>
 . . .
 <div>
 @Html.LabelFor(m => m.Satisfaction)
 </div>
 <div>
 @Html.EditorFor(m => m.Satisfaction)
 </div>
 <div>
 Custom range
 <input type="range" id="CustomRange" name="CustomRange"
 class="range" style="width: 50px; height: 200px"
 min="0" max="200" step="20" />
 </div>
 <p>
 <input type="submit" value="Submit" />
 </p>
</fieldset>

Save your changes and press F5 to debug. The form should look like Figure 3-18.

Note ■ The value of this control is not part of the model and will not be saved with the form. This is appropriate if
the control is used solely to aid the user experience and does not need to be persisted. For example, it could control
the volume of a video or audio clip.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ MVC WEb APPliCATions

67

Adding a Progress Bar
Next, you’ll add a progress bar by inserting a progress tag in the form. Add the following code in bold after the
submit button:

 <p>
 <input type="submit" value="Submit" />
 </p>
 <div>
 <progress id="FormProgress" value="60" max="100">
 Progress: 60%
 </progress>
 </div>
</fieldset>

Figure 3-18. Adding an vertical range control

CHAPTER 3 ■ MVC WEb APPliCATions

68

The progress tag does not support a min attribute but only a max attribute. The minimum value is assumed to
be zero. The value attribute specifies the current progress. Press F5 to debug the application and navigate to the
feedback form. The progress should appear as shown in Figure 3-19.

Figure 3-19. The progress control in Opera

The code within the progress tag is used for browsers that do not support the progress tag. For example, in
IE9, the form would look like Figure 3-20.

Figure 3-20. The progress control in IE9

Updating the Progress Bar
However, a static progress bar is not very interesting; one might even find a progress bar that never changes to be very
frustrating. Now you’ll add some JavaScript code to update the progress bar as fields on the form have been entered.

First, you’ll create a function called calculateProgress() that iterates through all the input fields to see
which ones have a value. There are six fields so you’ll give each one a value of 17 (6 x 17 = 102). This code uses
the document.getElementsByClassName() selector that returns all elements with the specified class attribute.
In this case, you want elements with the “text = box single-line” class. The function then updates the value of the
progress bar using the computed value.

Then, you’ll need to call this function whenever an input field is changed. To do that, you’ll create a
function named bindEvents() and use the same getElementsByClassName() selector. This time, you’ll use the
addEventListener() function to bind the calculateProgress() function to the onChange event. Finally, you’ll
call bindEvents() function in the onLoad event handler.

Enter the code in bold from Listing 3-10 to your feedback form.

Listing 3-10. Adding JavaScript to update the progress bar

<head>
<meta name="viewport" content="width=device-width" />
<title>Feedback</title>

 <script type="text/JavaScript">
 function calculateProgress() {
 var value = 0;
 var fieldList = document.getElementsByClassName("text-box single-line");
 for (var i = 0; i < fieldList.length; i++) {
 if (fieldList[i].value > "")
 value += 17;

 }

CHAPTER 3 ■ MVC WEb APPliCATions

69

 if (value > 100)
 value = 100;
 var progress = document.getElementById("FormProgress");
 progress.value = value;
 };
 function bindEvents() {
 var fieldList = document.getElementsByClassName("text-box single-line");
 for (var i = 0; i < fieldList.length; i++) {
 fieldList[i].addEventListener("change", calculateProgress, false);
 }
 }
 </script>

</head>

<body onload="bindEvents();">

Note ■ in calculating the progress this code ignores the range control used for the Satisfaction field. This was
done because it always has a value and so you can’t tell when a value was “entered”.

Also, change the initial value property of the progress tag from 60 to 0 like this:

<progress id = "FormProgress" value = "0" max = "100">

Press F5 to debug the application. As you enter values in the input fields, notice that the progress bar is
automatically updated. To demonstrate how browser implementation varies, try this in Google Chrome. Notice
that the progress bar is animated with a lighter section moving horizontally through the part of the control that is
already filled in. Also, notice that it does not support vertical range controls as shown in Figure 3-21.

Figure 3-21. The progress and range controls in Chrome

CHAPTER 3 ■ MVC WEb APPliCATions

70

Using the Meter Control
For the last example, you’ll add a meter control, which is very similar to the progress bar. A meter allows you to
define intervals within the range that will enable the color-coding of the status indicator. For example, consider an
oil-pressure gauge on a car. A “normal” range is indicated on the gauge and low or high values are highlighted. I
don’t need to know what the oil-pressure is or even what it should be; I just want to know if it’s in the normal range.

Like the range control, the meter control supports the min and max attributes as well as the current value. It
also provides low, high, and optimum attributes that define the normal range. Enter the following code in bold:

 <div>
 <progress id=”FormProgress” value=”0” max=”100”>
 Progress: 60%
 </progress>
 </div>
 <div>
 <meter id=”Meter” value=”50” min=”20” max=”120”
 low=”50” high=”100” optimum=”75”>
 Meter:
 </meter>
 </div>

</fieldset>

To demonstrate how different values are displayed, you’ll add some JavaScript code to update the control
with a random value every second. To do that, add the following code in bold to the bindEvents() function:

function bindEvents() {
 var fieldList = document.getElementsByClassName(“text-box single-line”);
 for (var i = 0; i < fieldList.length; i++) {
 fieldList[i].addEventListener(“change”, calculateProgress, false);
 }

 setInterval(function () {
 var meter = document.getElementById(“Meter”);
 meter.value = meter.min + Math.random() * (meter.max - meter.min);
 }, 1000);
}

This code uses the setInterval() function so the anonymous function is called every 1000 milliseconds.
Press F5 to start the application. Depending on the value the color will change from green to yellow as shown in
Figure 3-22.

Figure 3-22. The meter control

CHAPTER 3 ■ MVC WEb APPliCATions

71

In case, you’ve gotten lost in all the various updates, the complete implementation of the Feedback.cshtml
view is shown in Listing 3-11.

Listing 3-11. The final Feedback.cshtml implementation

@model Chapter3.Models.FeedbackModel

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Feedback</title>
 <script type="text/JavaScript">
 function calculateProgress() {
 var value = 0;
 var fieldList = document.getElementsByClassName("text-box single-line");
 for (var i = 0; i < fieldList.length; i++) {
 if (fieldList[i].value > "")
 value += 17;
 }
 if (value > 100)
 value = 100;
 var progress = document.getElementById("FormProgress");
 progress.value = value;
 };
 function bindEvents() {
 var fieldList = document.getElementsByClassName("text-box single-line");
 for (var i = 0; i < fieldList.length; i++) {
 fieldList[i].addEventListener("change", calculateProgress, false);
 }
 setInterval(function () {
 var meter = document.getElementById("Meter");
 meter.value = meter.min + Math.random() * (meter.max - meter.min);
 }, 1000);
 }
 </script>
</head>
<body onload="bindEvents();">
 <div>
 @using (Html.BeginForm((string)ViewBag.FormAction, "Home"))
 {
 <fieldset>
 <legend>Feedback Form</legend>
 <div>
 @Html.EditorFor(m => m.Email)
 </div>
 <div class="editor-label">
 @Html.LabelFor(m => m.Name)
 </div>

CHAPTER 3 ■ MVC WEb APPliCATions

72

 <div class="editor-field">
 @Html.EditorFor(m => m.Name)
 </div>
 <div class="editor-label">
 @Html.LabelFor(m => m.Birthday)
 </div>
 <div class="editor-field">
 @Html.EditorFor(m => m.Birthday)
 </div>
 <div class="editor-label">
 @Html.LabelFor(m => m.Homepage)
 </div>
 <div class="editor-field">
 @Html.EditorFor(m => m.Homepage)
 </div>
 <div class="editor-label">
 @Html.LabelFor(m => m.Phone)
 </div>
 <div class="editor-field">
 @Html.EditorFor(m => m.Phone)
 </div>
 <div class="editor-label">
 @Html.LabelFor(m => m.Score)
 </div>
 <div class="editor-field">
 @Html.EditorFor(m => m.Score)
 </div>
 <div class="editor-label">
 @Html.LabelFor(m => m.Satisfaction)
 </div>
 <div class="editor-field">
 @Html.EditorFor(m => m.Satisfaction)
 </div>
 <div>
 Custom range
 <input type="range" id="CustomRange" name="CustomRange"
 class="range" style="width: 50px; height: 200px"
 min="0" max="200" step="20" />
 </div>
 <p>
 <input type="submit" value="Submit" />
 </p>
 <div>
 <progress id="FormProgress" value="0" max="100">
 Progress: 60%
 </progress>
 </div>

CHAPTER 3 ■ MVC WEb APPliCATions

73

 <div>
 <meter id="Meter" value="50" min="20" max="120"
 low="50" high="100" optimum="75">
 Meter:
 </meter>
 </div>
 </fieldset>
 }
 </div>
</body>
</html>

Summary
In this chapter you used some of the new HTML5 input types in an ASP.NET MVC project. As with the traditional
web forms project, you have to do a little extra work to use them but it’s fairly easy to incorporate the new HTML5
features. In particular, the MVC framework is designed to be extensible, which provides a clean platform for
building HTML5 applications.

The MVC pattern provides models that define the data elements used on the forms. By including some
metadata attributes in the model and then providing custom templates you can take advantage of the HTML5
semantic-specific controls. There are open-source extensions that you can download and install, making it easy
to build HTML5 compliant applications. However, in this chapter I showed you how to build your own custom
helper extension and build your own editor templates. If you find yourself in a unique situation where you need a
specific implementation, you can always build your own.

With the MVC Razor view engine you can also include literal HTML markup so you have ultimate control of
the user experience. I also introduced two new HTML controls, progress and meter and demonstrated how these
work with some simple JavaScript to manipulate them.

75

Chapter 4

Cascading Style Sheets

In Chapters 2 and 3, I showed you the some of the new HTML elements and how to use them in ASP.NET
applications. The second major area in the overall HTML5 umbrella includes the improvements in the style
sheets. As I explained in Chapter 1, the CSS3 recommendations are broken down into more than 50 modules,
most of which are still in draft (as of this writing). However, there is quite a bit of new functionality that is already
available in most browsers.

In this chapter I will demonstrate many of the more useful features. I will start by explaining the basics of
creating styles sheets. If you have some experience with CSS this may seem like review but some of this is new
with CSS3, especially the selectors, which have been significantly improved with CSS3. You’ll then create a
single web page using some of the new structural elements like nav, aside, and footer. With the page content
complete, I’ll then explain some of the fun things you can do with CSS.

Reviewing Style Syntax
A style sheet is comprised of a set of rules. Each rule consists of a selector that indicates what elements the rule
applies to and one or more declarations. Each declaration contains a property-value pair. A rule is specified with
the following syntax:

<selector > {<property:value>; <property:value>; . . . }

For example, if you wanted all of the paragraph tags to use a green 12px font, the rule would look like this:

p {color:green; font-size:12px;}

As with HTML, white space is ignored in a style sheet so this rule could also be written as:

p
{
 color:green;
 font-size:12px;
}

I will use this format throughout the rest of this chapter as I think it’s a little easier to read.

Using Selectors
There were a lot of different ways to select elements from the document and the CSS3 specifications nearly
double this list. I’ll provide an overview of the selectors that are available. Many of these will be demonstrated
later in the chapter.

CHAPTER 4 ■ CAsCAding sTylE sHEETs

76

Element Selectors
The first one that I just showed you is an element selector. To use this, simply specify the element type such as
p, h1, input, ol, div, and so on. HTML5 introduces a large number of new tags that were added primarily with
CSS in mind. These context-specific elements like article, footer, and nav, communicate their purpose more
clearly, and therefore make it more likely that consistent formatting will be applied to all pages. These new
element types are:

•	 article – a stand-alone portion of content such blog entry.

•	 aside – content usually put to one side of the page; typically used for navigation or related
information.

•	 details – used for expandable content that can be hidden or displayed based on user input.

•	 figcaption – used with figure to associate a caption with an image

•	 figure – used to wrap embedded content such as an image or graphic

•	 footer – the page or section footer

•	 header – the page or section header

•	 hgroup – used to group header elements like h1, h2, etc.

•	 nav – used to contain a group of links

•	 output – contains output such as the result of a user action

•	 section – used to organize content in to logical sections

•	 summary – usually used in conjunction with one or more details elements

Using Combinators
If you want to apply the same declarations to more than one element type, you can group them like this:

p, h1, h2
{
 color:green;
 font-size:12px;
}

The comma (“, ”) character serves as a logical OR operation. For example, all elements of type p OR h1 OR
h2. This is just a special case of a selector combinator. You can also combine selectors to specify certain element
hierarchies. By combining elements with one of the following operators you can create a more complex selector:

•	 , - (e.g. p, h1) Selects all p elements as well as all h1 elements.

space – (e.g. •	 header p) Selects the second element when it is inside the first element.
For example, if you want all p elements that are inside a header element, use header p.
The header element does not have to be the immediate parent, just somewhere in node’s
parentage.

•	 * - (e.g. header*p) selects the second element when it is a grandchild or later descendant
of the first element.

•	 > - (e.g. header > p) Selects the second element when the first element is the immediate parent.
The header > p selector returns all p elements whose parent (immediate) is a header element.

CHAPTER 4 ■ CAsCAding sTylE sHEETs

77

•	 + - (e.g. header + p) Selects the second element when the first element is the preceding
sibling.

•	 ~ - (e.g. p ~ header) Selects the second element when it follows the first element (not
necessarily immediately).

To illustrate the last two, if your document looks like this:

<h1 > Some header</h1>
<h2 > Some sub-header</h2>
<p > Some text</p>

The h1 + p selector will not return any element but both h2 + p and h1 ~ p will both return the p element.

Class and ID Selectors
The class selector allows you to select elements with a specific class attribute. For this reason, the class attribute
is often referred to as the css class. A class selector is created by prefixing the class name with “. ” like this:

.featured
{
 background-color:yellow;
}

This will apply the background color for all elements that have class = "featured" attribute. The class
selector looks for whole words that match the selector value. An element can have multiple words in the class
attribute like class = "the featured article" and the .featured selector will return it.

Caution ■ in the HTMl document, the class attribute is a string that can have any value you want to give it.
However, to be able to use it in a class selector it must not have any white space or other characters that are not
compatible with the Css syntax. For example, you cannot select class = "featured content" in a class selector.
instead you’ll need to use an attribute selector, which i will demonstrate later.

An ID selector works just like a class selector except that it uses the id attribute instead of class and you
prefix it with a hash symbol (“#”) like this:

#Submit
{
 color:blue;
}

An ID selector specifies a single element based on its unique id so, by definition, the style will not be reused.
It is better to define styles based on elements or classes so similar elements can be styled the same way. ID
selectors should be used sparingly and only for unique situations where the style does not need to be reused.

Using Attribute Selectors
Attribute selectors give you a great deal of flexibility, allowing you to select elements based on any of the
element’s attributes. These are specified as [attribute = value] like this:

CHAPTER 4 ■ CAsCAding sTylE sHEETs

78

[class = "book"]
{
 background-color:yellow;
}

This is functionally equivalent to using the .book class selector; however, the attribute selector allows you to
select using only portions of the attributes value. To do that, prefix the equal sign (“=”) with one of the following:

•	 ~ - (e.g. [class ~ ="book"]) The attribute value must include the word indicated by the
selector value (e.g. class = "some book titles"). This is exactly how the class selector
works.

| - (e.g. •	 [class| = "book"]) The attribute value must begin with a word that matches the
selector value (e.g. class = "book titles")

•	 ^ = (e.g. [class^="book"]) The attribute value must begin with the selector value
(e.g. class="books")

•	 $ - (e.g. [class$="book"]) The attribute value must end with the selector value
(e.g. class="checkbook")

•	 * - (e.g. [class*="book"]) The attribute value must contain the selector value
(e.g. class="overbooked")

You can specify the attribute without a value, which will return all elements that have the attribute. A good
example of this is the [href] selector, which will select all elements that have the href attribute, regardless of
its value. You can also include an element selector before an attribute selector to further restrict the selected
elements. For example, img[src^="https"] will return all img elements whose src attribute begins with https.

Pseudo-Class Selectors
There are quite a few selectors that are based on dynamic properties of an element. Consider a hyperlink, for
example. If the page referenced by the link has been displayed, the link is usually displayed with a different color.
This is achieved using a CSS rule that uses the visited property like this:

a:visited
{
 color: purple;
}

This will change the color of all a elements that have the visited flag set. Several of these selectors have
been available for some time but CSS3 defines a fairly large set of new ones. Here is the complete list:

•	 :active – selects the active link

•	 :checked – selects elements that are checked (applies to check boxes)

•	 :disabled – selects elements that are currently disabled (typically used for input elements)

•	 :empty – selects elements that have no children (elements that include text are not selected)

•	 :enabled – selects elements that are enabled (typically used for input elements)

•	 :first-child – selects the elements that are the first child of its immediate parent

•	 <tag>:first-of-type – select the elements that is the first of the specified type within its parent

•	 :focus – select the element that currently has the focus

•	 :hover – select the element that the mouse is currently hovering over

CHAPTER 4 ■ CAsCAding sTylE sHEETs

79

•	 :lang(value) – selects the elements that have a lang attribute that start with the
specified value

•	 :last-child – selects the elements that are the last child within its parent

•	 :link – selects all unvisited links

•	 <tag>:last-of-type – select the elements that are the last of the specified type within its parent

•	 :nth-child(n) – selects the elements that are the nth child within its parent

•	 :nth-last-child(n) – selects the elements that are the nth child within its parent,
counting in reverse

•	 <tag>:nth-last-of-type(n) – selects the nth child of the specified type within its parent,
counting in reverse

•	 <tag>:nth-of-type(n) – selects the nth child of the specified type within its parent

•	 :only-child – selects the elements that are the only child element of its parent

•	 <tag>:only-of-type – selects the elements that are the only sibling of the specified type
within its parent

•	 :root – selects the root element of the document

•	 :target – selects the elements with a target attribute where the target is the active element

•	 :visited – select all visited links

The nth-child(n) selector counts all child elements of the parent, while the nth-of-type(n) only counts
child elements of the specified type. The distinction here is subtle but important. The same is true with the
only-child and only-of-type selectors.

Caution■ There are four pseudo classes that can be used with an anchor (<a>) element (:link, :visited,
:hover, and :active). if you use more than one, they should appear in this order in the style rules. For example,
:hover must come after :link and :visited if they are used. likewise, :active must come after :hover.

These pseudo-elements can be used to return a portion of the selected elements:

•	 :first-letter – selects the first character of every selected element

•	 :first-line – select the first line of every selected element

•	 :selection – returns the portion of an element that is selected by the user

You can add the :before or :after qualifiers to a selector to insert content in the document before or
after the selected elements. Use the content: keyword to specify the content and include any desired style
commands (the style only applies to the inserted content). For example, to add “Important!” before each p tag
that immediately follows a header tag, use the following rule:

header+p:before
{
 content:"Important! ";
 font-weight:bold;
 color:red;
}

CHAPTER 4 ■ CAsCAding sTylE sHEETs

80

You can also prefix a selector with :not to return all the elements not selected. For example, :not(header+p)
selects all elements except p tags that immediately follow a header tag.

Understanding Unions
You can also combine complex selectors in a logical OR relationship by separating them with commas. For
example, the p, h1, h2 selector I showed earlier in this chapter is an example of a union. It will return all
elements that satisfy any of the included selectors. Each selector can be any of the more complex types. This is
also a valid selector:

header+p, .book, a:visited

It will return all elements that are either a p element that immediately follows a header element, an element
with the book class, or a visited a element.

Tip ■ For a definitive list of available selectors see the article at
http://www.w3schools.com/cssref/css_selectors.asp.

Using CSS Properties
All of these selectors are provided so you can specify the appropriate elements that you want to apply the desired
style properties to. This is the real meat of CSS. There are literally hundreds of CSS properties available and I can’t
describe them all here. I will demonstrate many of the newer, more useful features in the rest of this chapter.
A really good reference of all CSS properties can be found at http://www.w3schools.com/cssref/default.asp.

Using Vendor Prefixes
Oh the joys of living on the edge! As with other areas of HTML5, browser vendors will have varying support for the
CSS specifications. In many cases, however, these vendors implement new properties before they become part of
the official recommendation. In fact, much of what is being included in the CSS3 specification has already been
available from one or more browsers.

When a browser vendor adds a new feature that is not part of the CSS3 recommendation, the property
is given a vendor-specific prefix to indicate this is a non-standard feature. If this becomes part of the
recommendation, the prefix is eventually dropped. To take advantage of some of the newer properties you may
need to use the vendor-specific properties, and since you want your page to work on all vendors, you’ll need to
add all of them. For example, to specify the border-radius, in addition to the standard border-radius property,
you may need to setall of the vendor-specific properties as well like this:

header
{
 -moz-border-radius: 25px;
 -webkit-border-radius: 25px;
 -o-border-radius: 25px;
 -ms-border-radius: 25px;
 border-radius: 25px;
}

The most common prefixes are listed in Table 4-1. There are others but this list will cover that vast majority of
browsers.

http://www.w3schools.com/cssref/css_selectors.asp
http://www.w3schools.com/cssref/default.asp

CHAPTER 4 ■ CAsCAding sTylE sHEETs

81

Content

Padding

Margin

Border

Figure 4-1. The box model

You can’t blindly assume that all vendor-prefixed properties have the same name as the standard property,
with the prefix added, although that is true most of the time. Here is a good article that lists many of the vendor-
specific properties: http://peter.sh/experiments/vendor-prefixed-css-property-overview

Caution ■ you should always list the standard property last so it will override the vendor-specific version. some
browsers will support both and, while most of the time the implementation is identical, sometimes the vendor-specific
version behaves differently.

Understanding the Box Model
Each element in the document takes up a certain amount of space, which depends on the content of that
element. In addition, factors such as padding and margin affect this as well. Padding is the space between the
content and the element’s border. The margin is the space between the border and adjacent elements. This is
illustrated in Figure 4-1.

Table 4-1. Vendor prefixes

Prefix Browser vendor
-moz- Firefox

-webkit- Chrome, Safari

-o- Opera

-ms- Internet Explorer

You can specify the margin with the margin declaration and specify the values either in pixels or as a % of
the page size. You can specify the top, right, bottom, and left margin individually using the margin-top, margin-
right, margin-bottom, and margin-left declarations or with the margin declaration specifying all four values (in
that order – top, right, bottom, and left). You can also use the margin declaration with a single value, which will
setall four margins to this value. You set the padding property the same way using the padding declaration.

When determining the space used, remember to include the border width as well. For example, if the
padding is set to 10px, the margin set to 5px and the border-width set to 3px, the space used (in addition to the
actual element content) will be (2 * 10) + (2 * 5) + (2 * 3) = 36px.

http://peter.sh/experiments/vendor-prefixed-css-property-overview

CHAPTER 4 ■ CAsCAding sTylE sHEETs

82

Applying Style Rules
Styles are specified from various sources and in several different ways and as the name suggests, they are
cascaded, or inherited. It’s important to understand how this works, especially when there are conflicting
declarations.

Including Style Specifications
There are three sources of style sheets:

Author – these are the style sheets created by the web developer and what we normally •	
think of when referring to a style sheet.

User – a user can also create a style to control how web pages are displayed for them •	
specifically.

User Agent – a user agent (web browser) will have a default style sheet. For example, if you •	
create a document with no style rules, the browser will display the content using a default
font family and size. These are actually defined in a style sheet that is specific to the browser.

For author styles, which are the only source you can control, there are three ways to include style rules in an
HTML document:

Inline – the style is set directly in the element using the •	 style attribute like this <p
style="color:red">This is red text</p>. Of course, with this method you don’t use a
selector since the style only applies to the current element (as well as all child elements).

Internal – style rules can be included in the actual HTML document using the •	 style
element. This is normally placed in the head tag and applies to the entire document.
Styles defined this way will require a selector to indicate on which element(s) the style
should be used. This approach is sometimes referred to as embedded styles.

External – the most common way to apply styles is to place all of the style rules in a separate •	
file with a .css extension. The style rules are formatted just like the internal styles. The
obvious benefit of using an external style sheet is that the same set of rules can be applied to
multiple pages. Each page references this style sheet with a link element like this:

<link rel="stylesheet" type="text/css" href="MyStyleSheet.css" />

Cascading Rules
When rendering a page, the browser has to process styles from all of these sources to determine the appropriate
style for each element. When there are conflicting rules, the author style sheet takes precedence over the user
style sheet, which takes precedence over the user agent styles (browser defaults). The author styles can be
specified using the three methods I explained earlier (inline, internal, and external). Within the author styles,
inline declarations take precedence over internal declarations and external styles sheet are considered last. So
if a page uses an internal style element and also uses the link element to include an external style sheet, the
internal declarations will override conflicting rules in the external style sheet.

Caution ■ if an external style sheet is referenced after the style tag, it will take precedence over the internal
styles. if you have both external style sheets and an internal style element, you should reference the external sheet
first so the precedence rules work as expected.

CHAPTER 4 ■ CAsCAding sTylE sHEETs

83

In addition, consider that even within a single style sheet there may be conflicting declaration. For example,
a style sheet may include the following:

p
{
 color: black;
}

header p
{
 color: red;
}

A p element within a header element is selected by both rules so which one is used. In this case the
specificity rule applies which states that the more specific selector is used, which is the header p selector. With
all the selectors that are available, determining which one is more specific is not as straightforward as you might
think. ID selectors are considered more specific than class or attribute selectors, which are more specific than
element selectors. If there are only element selectors, the rule with the most elements takes precedence so
header p, which contains two elements, is more specific than just p.

Finally, what if the same exact selector is used twice in the same style sheet with different declarations? For
example, if p { color:black; } appears in the style sheet and later p { color:green } appears. In this case,
the rule that appears last takes precedence, so you’ll have green text.

Using the Important Keyword
The one sort of “ace-in-the-hole” is the important keyword. If this is used in a style rule, this trumps all other
rules. You can add the important keyword like this:

p
{
 color: red;
 !important;
}

If two conflicting rules both have the important keyword then the precedence is determined based on the
rules I already mentioned. There is one significant difference, however. Normally rules in the author style sheet
override rules in the user style sheet. If they have the important keyword this is reversed, the user style sheet
will override the author rules. That may seem odd at first but this has a very important application. This allows
the user to override the author styles for certain properties. For example, someone who is visually impaired may
need to increase the font size. The important tag will ensure that this style does not get overridden.

Caution ■ you might be tempted to use the important keyword to make a quick fix and override a cascaded style
rule. With all the precedence rules that i just described, you shouldn’t need to do this. i recommend using this as a
last resort. Overuse of the important keyword can make your style sheets difficult to maintain.

Creating a Web Page
For the rest of this chapter I will show you how to build a single web page that will demonstrate many of the new
CSS features. To keep the project simple, I will be using the Web Matrix application instead of Visual Studio to
create a single web page. The style rules will use the internal style element so everything can be placed in a
single file. The small amount of JavaScript will also be included in the single file.

CHAPTER 4 ■ CAsCAding sTylE sHEETs

84

I will be using the Chrome browser for this project as it supports all of the CSS features that I will be
demonstrating. At the time of this writing the other browsers do not support one or more of these features. By the
time you read this other browsers may support these also.

Note ■ i explained how to install the Web Matrix application in Chapter 1. This is a free download provided by
Microsoft. if you prefer, you can also implement the web site using Visual studio with the MVC4 project template.
After creating the project using the Basic template, add a Home folder under the View folder and create a view named
Index. you’ll also need to create a controller named HomeController using the Empty MVC controller template.
Follow the instructions in the rest of this chapter using the Index.cshtml file (instead of Default.cshtml). you can
also download the completed Visual studio project that is included in the source code from www.apress.com.

Planning the Page Layout
Before creating a new web page, it’s a good idea to sketch out the basic page structure. This will help you visualize
the overall layout and see how the elements are nested together.

The page that you will develop in this chapter will use a header and nav element at the top and a footer
element at the bottom. The main area in the middle will use a div element and have two side-by-side areas, each
with a series of article tags. The larger area will be enclosed with another div element and provide the primary
content, which is organized into articles. The smaller area, on the right, will use an aside element and will
contain a section element. This will contain a series of article elements that will present related information.
This is illustrated in Figure 4-2.

header

nav

footer

article

article

article

article

article

article

div aside
div

section

section

section

Figure 4-2. Planning the page layout

http://www.apress.com

CHAPTER 4 ■ CAsCAding sTylE sHEETs

85

Note ■ This diagram shows spaces between each of the elements to make it easier to understand. in the actual
web page, in most cases this space is removed by setting the margin attribute to 0.

Creating the Web Project
With the content planned out you’re ready to begin building the web page. You’ll start by creating a project using
WebMatrix and enter the basic page structure. Then you’ll add content to each element. Later, I’ll show how to
implement the style rules.

Start the WebMatrix application and click the Templates button as shown in Figure 4-3.

Figure 4-3. Launching the WebMatrix application

Tip ■ For future reference, the App gallery button will display a fairly large list of pre-built web applications that
you can download and use to build your web project. This includes packages like WordPress, Joomla, and drupal.

CHAPTER 4 ■ CAsCAding sTylE sHEETs

86

There are several templates to choose from. The Starter Site, for example, will create an ASP.NET MVC
project. For this chapter you’ll use Empty Site template. Select this and enter Chapter4 for the site name as
shown in Figure 4-4. Click the OK button to create the project.

When the project has been created, click the Files button in the navigation pane. The files and folders that
were created for you should look like Figure 4-5.

Figure 4-4. Selecting the Empty Project template

CHAPTER 4 ■ CAsCAding sTylE sHEETs

87

There should be a single web page named Default.cshtml. Double-click the file name in the navigation
page to open it. The initial contents will look like this:

@{

}
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title></title>
 </head>
 <body>

 </body>
</html>

Defining the Page Structure
I find it helpful to start by entering the structural elements first before adding the contents. This will give you an
opportunity to see the structure clearly, uncluttered by the actual content. Open the Default.cshtml file and
enter the elements shown in Listing 4-1.

Figure 4-5. The initial files and folders

CHAPTER 4 ■ CAsCAding sTylE sHEETs

88

Listing 4-1. Entering the page structure

<!DOCTYPE html>

<html lang="en">
 <head>

 <meta charset="utf-8" />
 <title>Chapter 4 - CSS Demo</title>

 </head>
 <body>

 <header class="intro">
 </header>

 <nav>
 </nav>

 <div id="contentArea">

 <div id="mainContent">
 <section class="rounded">

 <header>
 </header>

 </section>

 <section>
 <article class="featuredContent">

 <header>
 </header>

 <div>
 </div>

 </article>

 <article class="otherContent">

 <header>
 </header>

 <div>
 </div>

 </article>

 <article class="otherContent">

 <header>
 </header>

 <div>
 </div>

 </article>
 </section>

 </div>

CHAPTER 4 ■ CAsCAding sTylE sHEETs

89

 <aside id="sidebar">
 <section id="titles">

 <article class="book">
 <header>
 </header>

 </article>

 <article class="book">
 <header>
 </header>

 </article>

 <article class="book">
 <header>
 </header>

 </article>

 <article class="book">
 <header>
 </header>

 </article>

 <article class="book">
 <header>
 </header>

 </article>
 </section>

 </aside>
 </div>

 <footer>
 </footer>

 </body>
</html>

This is just basic HTML structure that you could have inferred from the diagram shown in Figure 4-2. The
article elements have the class attribute assigned as you will use this for styling purposes. I assigned the id
attribute to a few of the top-level elements. I also added an anchor element () to each of
the main content articles. You will setup navigation links to these in the nav element.

Adding the Content
There’s nothing particularly special about the content. It’s a lot of text (mostly Lorem ipsum), a few images, and
some links.

In the Navigation pane, right-click the Chapter4 project and select the New Folder link. Enter Images for the
folder name. An Images.zip file is included with the downloadable source code. Copy the images from this file to
the new Images folder in your project.

I recommend downloading the content rather than entering it manually. There is a Default_content.cshtml
file available in the source code. Replace your current implementation of this with the code in this file. It contains
only the content of this page without any styles defined. If you want to enter the content manually, it is shown in
Appendix A.

CHAPTER 4 ■ CAsCAding sTylE sHEETs

90

Note ■ i wanted to point out one minor detail in the content. The footer element uses the new time element that
was added with HTMl5. As of this writing only the Opera browser supports it. The text between the begin and end
tags (May 12th 2012) is displayed but the datetime attribute contains a machine-readable format that can be used
by the browser, search engines, or Javascript. Check out this article for more details:
http://www.webmonkey.com/2012/02/the-html5-time-element-is-back-and-better-than-ever.

After the content has been added, click the Run button in the ribbon to see what the page looks like so far. It
should be similar to Figure 4-6.

Figure 4-6. The initial page with only default styles

http://www.webmonkey.com/2012/02/the-html5-time-element-is-back-and-better-than-ever

CHAPTER 4 ■ CAsCAding sTylE sHEETs

91

Implementing the Style Rules
Now we get to the fun part, adding style. There is a huge number of style attributes that are available to you and
I will demonstrate some of the more useful techniques that are new to CSS3. Many of these styles have been
used for a while but prior to CSS3, their implementation was more complicated, often requiring JavaScript. After
assigning some basic style rules I’ll show you how to use more advance features including:

Rounded corners•	

Gradient backgrounds•	

Tables•	

Multiple columns•	

Box shadows•	

Zebra striping•	

3D transforms•	

CSS Animation•	

Adding Basic Styles
Before you start adding the new styling features, you’ll need to define the basic style formats. Add a style element
inside the head element at the top of the Default.cshtml file. Then add the rules shown in Listing 4-2. Again, if
you prefer, you can download the Default_styled.cshtml file and copy the code from there.

Listing 4-2. Adding the basic styles

<style>
 /* Basic tag settings */
 body
 {
 margin: 0 auto;
 width: 940px;
 font: 13px/22px Helvetica, Arial, sans-serif;
 background: #f0f0f0;
 }

 h2
 {
 font-size: 18px;
 line-height: 5px;
 padding: 2px 0;
 }

 h3
 {
 font-size: 12px;
 line-height: 5px;
 padding: 2px 0;
 }

CHAPTER 4 ■ CAsCAding sTylE sHEETs

92

 h1, h2, h3
 {
 text-align: left;
 }

 p
 {
 padding-bottom: 2px;
 }

 .book
 {
 padding: 5px;
 }

 /* Content sections */
 .featuredContent
 {
 background-color: #ffffff;
 border: 2px solid #6699cc;
 padding: 15px 15px 15px 15px;
 }

 .otherContent
 {
 background-color: #c0c0c0;
 border: 1px solid #999999;
 padding: 15px 15px 15px 15px;
 }

 aside
 {
 background-color: #6699cc;
 padding: 5px 5px 5px 5px;
 }

 footer
 {
 margin-top: 12px;
 text-align:center;
 background-color: #ddd;
 }

 footer p
 {
 padding-top: 10px;
 }

 /* Navigation Section */

CHAPTER 4 ■ CAsCAding sTylE sHEETs

93

 nav
 {
 left: 0;
 background-color: #003366;
 }

 nav ul
 {
 margin: 0;
 list-style: none;
 }

 nav ul li
 {
 float: left;
 }

 nav ul li a
 {
 display: block;
 margin-right: 20px;
 width: 140px;
 font-size: 14px;
 line-height: 28px;
 text-align: center;
 padding-bottom: 2px;
 text-decoration: none;
 color: #cccccc;
 }

 nav ul li a:hover
 {
 color: #fff;
 }
</style>

CHAPTER 4 ■ CAsCAding sTylE sHEETs

94

I won’t say much about this because it’s all pretty standard CSS stuff. It uses mostly element selectors with an
occasional class selector. If you preview your webpage now it should look like Figure 4-7.

Note ■ To simplify the sample code, i will only use the Chrome vendor prefix, -webkit-, and only when the
current version (19) doesn’t support the standard attribute. i can get away with this because i am only expecting the
page to work in the Chrome browser. normally, you cannot make this assumption and will need to include all of the
vendor prefixes.

Using Rounded Corners
Adding rounded corners is very easy to do with CSS3; just define the border-radius attribute. Your web page will
use rounded corners for the aside, nav, and footer elements as well as elements with the rounded class.

Figure 4-7. The webpage with only basic styling

CHAPTER 4 ■ CAsCAding sTylE sHEETs

95

Note ■ in Chapter 7, i will show you how to implement rounded corners in older-browsers that do not support
this feature. After reading that chapter you’ll likely have a better appreciation for having features like this supported
natively in the browser.

Add the rules shown in Listing 4-3 to the end of the style element.

Listing 4-3. Using rounded borders

/* Rounded borders */
.rounded
{
 border: 1px solid;
 border-color:#999999;
 border-radius:25px;
 padding: 24px;
}

aside
{
 border: 1px solid #999999;
 border-radius:12px;
}

/* Make the radius half of the height */
nav
{
 height: 30px;
 border-radius:15px;
}

footer
{
 height: 50px;
 border-radius:25px;
}

For the nav and footer elements, since they are fairly short sections, you’ll set the radius to be half of the
height. This will form a semi-circle on both ends. The top navigation section should look like Figure 4-8.

Figure 4-8. Using rounded borders

CHAPTER 4 ■ CAsCAding sTylE sHEETs

96

Working with Gradients
With CSS3 you can easily create a gradient by setting the background-image attribute using the linear-gradient
function. With this function you can specify the beginning and ending color as well as the angle that the gradient
should be applied. You’ll use a gradient in the main heading, which has the intro class.

Add the following rule at the end of the style element:

/* Gradients */
.intro
{
 border: 1px solid #999999;
 text-align: left;
 padding-left: 15px;
 margin-top: 6px;
 border-radius: 25px;
 background-image: -webkit-linear-gradient(45deg, #ffffff, #6699cc);
 background-image: linear-gradient(45deg, #ffffff, #6699cc);
}

Note ■ The intellisense in WebMatrix doesn’t recognize the linear-gradient attribute and will show this as a
Css validation error. you can ignore this.

This will apply the gradient as a 45° angle. This also creates a rounded border. The page should now look like
Figure 4-9.

Figure 4-9. Using a gradient background

Creating Tables
It is generally considered bad practice to use tables in your markup for formatting purposes. This type of
formatting is better done in the style sheet. You can then update the style if a different format is needed. You
might have noticed that the current web page has the aside element following the main content instead of the
two aligned side-by-side. You’ll setup a table now using CSS to correct that.

Add the rules shown in Listing 4-4 at the end of the style element:

CHAPTER 4 ■ CAsCAding sTylE sHEETs

97

Listing 4-4. Creating a table

/* Setup a table for the content and sidebar */
#contentArea
{
 display: table;
}

#mainContent
{
 display: table-cell;
 padding-right: 2px;
}

aside
{
 display: table-cell;
 width: 280px;
}

These rules set the display attribute on the top-level elements. The contentArea element is set to table and the
mainContent and aside elements are set to table-cell. These elements are then rendered as cells within the overall
content element. To complete the alignment, the padding on the mainContent is set to 2px and the width of the aside
element is set to 280px. The width of the mainContent is calculated automatically using the remaining space.

The page layout should now look like Figure 4-10.

Figure 4-10. The page layout with the sidebar on the right

CHAPTER 4 ■ CAsCAding sTylE sHEETs

98

Adding Column Layout
Another neat feature that is new with CSS3 is the ability to format the content into columns like you would see in
a newspaper or magazine. This is done using the column-count attribute. You should also specify the column-gap
attribute that defines the vertical space between the columns. As of this writing these attributes were only available
using the vendor-prefixed attributes.

Add the following rules at the end of the style element:

/* Setup multiple columns for the articles */
article div
{
 text-align:justify;
 padding:6px;

 -webkit-column-count: 2;
 column-count: 2;

 -webkit-column-gap: 20px;
 column-gap: 20px;
}

The articles should now be formatted with two columns as demonstrated in Figure 4-11.

Figure 4-11. Using two columns

CHAPTER 4 ■ CAsCAding sTylE sHEETs

99

Adding Box Shadows
Images can look a bit harsh and adding a shadow can soften the look and make the page more visually appealing.
A shadow is easily added using the box-shadow attribute, which takes the following values:

Horizontal position – the position of the horizontal shadow. If negative, the shadow is on •	
the left side.

Vertical position – the position of the vertical shadow. If negative, the shadow is at the top.•	

Blur – the size of the blurred area just after the shadow.•	

Spread – the width of the shadow.•	

Color – the color of the shadow.•	

Inset – makes the image appear lower than the surrounding area causing the shadow be •	
on the image rather that outside the image.

The values are specified in a comma-separated list. It expects from two to four position/size values, an
optional color property and the optional inset keyword. Only, the first two are required, which are the horizontal
and vertical position. The blur and spread values will default to zero if not specified. Add the following rules to
the end of the style element:

/* Add the box shadow */
article img
{
 margin: 10px 0;
 box-shadow: 3px 3px 12px #222;
}

.book img
{
 margin: 10px 0;
 display: block;
 box-shadow: 2px 2px 5px #444;
 margin-left: auto;
 margin-right: auto;
}

aside
{
 box-shadow: 3px 3px 3px #aaaaaa;
}

The .book img rule also includes both the margin-left and margin-right attributes, which are both set to
auto. This causes the images to be centered horizontally. Figures 4-12 and 4-13 show a close-up of the images in
the featured content and the side bar items. Notice the first image has a larger blur area than the sidebar images.

Figure 4-12. The shadow of the phone booth image in the featured content section

CHAPTER 4 ■ CAsCAding sTylE sHEETs

100

Using Zebra Striping
One styling approach that has been used for a long time is to alternate the background when there is a list of
items, which is sometimes referred to as zebra-striping. This goes back to the old blue-bar paper used to enter
accounting journals. The alternating backgrounds make it easier to distinguish between each item. Prior to CSS3
this was accomplished with JavaScript that would programmatically change the background on every other
element.

CSS3 introduces the nth-child selector which is perfect for this application because it returns every nth
element. Using this with n set to 2 will return every other element. Add the following code to the end of the style
element:

/* Stripe the title list */
#titles article:nth-child(2n+1)
{
 background: #c0c0c0;
 border: 1px solid #6699cc;
 border-radius: 10px;
}

#titles article:nth-child(2n+0)
{
 background: #6699cc;
 border: 1px solid #c0c0c0;
 border-radius: 10px;
}

This rule uses a complex selector, #titles article:nth-child(2n+1), that first selects the #titles
element. This is a section element that contains the book titles. Each book title is in a separate article element.
The article:nth-child selector then return every nth article element inside the #titles element. The 2n+1
parameter may seem a bit odd, however. To get every other element, you specify 2n as the parameter, which
would return the odd items (first, third, fifth, and so on). By using 2n+1, the list is offset by 1 so you will get the
even items (second, fourth, sixth and so on). So the first rule formats the even items and the second rule, which
uses 2n+0, will format the odd items. You could simply use 2n instead of 2n+0 as these are equivalent but I like
using 2n+0 for consistency. The only difference between these two style rules is the background and border
colors. The effect is shown in Figure 4-14.

Figure 4-13. The shadow on the sidebar images

CHAPTER 4 ■ CAsCAding sTylE sHEETs

101

Using 3D Transforms
Adding a 3D transform can add some pizzazz to your web page. There’s a lot that you can do with transforms
but as the current support is rather limited, I won’t spend too much time on it. I’ll demonstrate a fairly simple
application where you can flip the phone booth image in 3D.

Figure 4-14. Apply the zebra striping to the sidebar

CHAPTER 4 ■ CAsCAding sTylE sHEETs

102

Note ■ As of this writing only Chrome and safari support this feature.

You’ll add a range control that you can use to change the rotation of the image. Insert the code shown in
bold from Listing 4-5.

Listing 4-5. Adding a range control

<section>
 <article class="featuredContent">

 <header>
 <h3>Featured Article</h3>
 </header>

 <div class="rotateContainer">
 <p>This is really cool. . .</p>
 <img class="rotate" id="phone"
 src="images/phonebooth.jpg"
 alt="phonebooth" />

 <input type="range" min="-180" max="180" step="18"
 value="0" onchange="rotateImage(this.value)" />

 <p>
 Lorem ipsum dolor sit amet, consectetur adipisicing
 elit, sed do eiusmod tempor incididunt ut labore et
 dolore magna aliqua. Ut enim ad minim veniam, quis
 nostrud exercitation ullamco laboris nisi ut.
 </p>

To format the 3D transformation, you’ll specify a couple of attributes. First, you’ll set the perspective
property on the div that contains the image. This establishes the vanishing point that is used to determine how
the 3D effect is rendered. Then, you’ll set the preserve-3d attribute, which tells the browser to maintain the 3D
perspective when rotating the image. To do this, add the following to the end of the style section:

.rotateContainer
{
 -webkit-perspective: 600px;
}

.rotate
{
 -webkit-transform-style: preserve-3d;
}

Now you’ll add a JavaScript function that will change the rotation of the image as the range control is
adjusted. Enter the code in bold in the head element:

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 4 - CSS Demo</title>

CHAPTER 4 ■ CAsCAding sTylE sHEETs

103

 <script type="text/javascript">
 function rotateImage(value){
 document.getElementById("phone").style.webkitTransform
 ="rotateY(" + value + "deg)";
 }
 </script>

 </head>

The range control was created with a minimum value of −180 and a maximum of 180. The rotateImage()
function is called whenever this value changes and simply calls the rotateY() function passing in the selected
value. As you slide the range control you should see the image rotate as demonstrated in Figure 4-15.

Figure 4-15. The rotated phonebooth – in 3D!

Adding Animation
For the last effect, I’ll show you how to create an animation effect without using any JavaScript. You can’t modify
the image with CSS because that is considered content, not format. However, you can change the background
image and you’ll take advantage of that to achieve the animation effect.

The aside element has a div defined as:

<div id="moon"></div>

Because there is no content or size defined, it has no effect on the page layout, currently. Now you’ll use the
animation feature in CSS3 to iterate through various images that illustrate the phases of the moon.

CHAPTER 4 ■ CAsCAding sTylE sHEETs

104

In CSS, animation is achieved by defining a set of keyframes. Each frame defines one or more CSS attributes.
In this application you’ll specify the appropriate background image but you could just as easily change the color
or size or any other CSS attribute. For each frame you also specify the % of the animation duration when this
frame should appear. You should always have a 0% and 100% frame, which specify the beginning and ending
properties. You can include any number of steps in between. In this example, there are eight images so the frames
will transition at 0%, 12%, 25%, 37%, 50%, 62%, 75%, 87%, and 100%.

Once you have defined the keyframes, you then then set the animation attributes on the element that you
want to animate. You’ll specify the name of the keyframes by setting the animation-name attribute. You can also
set the duration (in seconds) that the animation will take using the animation-duration attribute. Add the code
shown in Listing 4-6 to the end of the style section.

Listing 4-6. Defining the animation effect

/* Animate the moon phases */
@@-webkit-keyframes moonPhases
{
0% {background-image:url("images/moon1.png");}
12% {background-image:url("images/moon2.png");}
25% {background-image:url("images/moon3.png");}
37% {background-image:url("images/moon4.png");}
50% {background-image:url("images/moon5.png");}
62% {background-image:url("images/moon6.png");}
75% {background-image:url("images/moon7.png");}
87% {background-image:url("images/moon8.png");}
100% {background-image:url("images/moon1.png");}
}

@@keyframes moonPhases
{
0% {background-image:url("images/moon1.png");}
12% {background-image:url("images/moon2.png");}
25% {background-image:url("images/moon3.png");}
37% {background-image:url("images/moon4.png");}
50% {background-image:url("images/moon5.png");}
62% {background-image:url("images/moon6.png");}
75% {background-image:url("images/moon7.png");}
87% {background-image:url("images/moon8.png");}
100% {background-image:url("images/moon1.png");}
}

#moon
{
 width:115px;
 height:115px;
 background-image: url("images/moon1.png");
 background-repeat: no-repeat;
 -webkit-animation-name:moonPhases;
 -webkit-animation-duration:4s;
 -webkit-animation-delay:3s;
 -webkit-animation-iteration-count:10;

CHAPTER 4 ■ CAsCAding sTylE sHEETs

105

 animation-name:moonPhases;
 animation-duration:4s;
 animation-delay:3s;
 animation-iteration-count:10;
}

This code sets the total duration at 4 seconds so the image should transition every ½ second. It also specifies
to wait 3 seconds before starting and to repeat the animation 10 times. When you refresh the web page, after
about 3 seconds it should cycle through the phases of the moon as shown in Figure 4-16.

There are two other animation properties that were not applicable here, timing-function and direction.
If you’re using a simple animation and only define the begin and end values, the timing-function defines the
speed of the transition. For example, if you’re moving an element to a different position, setting this to linear will
move the object at a constant rate. However, using the default value, ease, the transition will start out slow and
then speed up and then slow down near the end. There are other options, like ease-in which will start out slow
and then speed up for the remainder of the transition. The direction property, if set to alternate, will reverse the
transition on alternating iterations. The default value, normal, will replay the exact same transition each time.

The complete style element is shown in Appendix B.

Summary
In this chapter I covered a lot of information about CSS, especially the new features in CSS3. The selectors are
quite powerful giving a great deal of flexibility in applying styles. Prior to CSS3 much of this had to be done with a
lot of JavaScript functions. I also showed you how to plan and structure a sample web page using a lot of the new
structural HTML5 elements.

Using the WebMatrix application you created a simple web page, defined the basic structure and then
populated the content. Using some if the new CSS3 features you then added some significant style features
including:

Rounded borders•	

Gradients•	

Tables•	

Multiple columns•	

Figure 4-16. Animating the moon’s phases

CHAPTER 4 ■ CAsCAding sTylE sHEETs

106

Shadows•	

Zebra striping•	

3D transforms•	

Animation•	

In the next chapter I’ll introduce some of the new features of HTML5 related to scripting.

107

Chapter 5

Scripting Enhancements

In this chapter I will demonstrate a few miscellaneous improvements that affect the scripting aspect of web
development. So far, I have introduced the markup changes and the CSS enhancements. Scripting is the third
leg of the overall HTML5 umbrella and a significant amount of attention was given to this area. This chapter will
explain some improvements that have broad application, specifically:

Query selectors•	

Web workers•	

Bundling and minification•	

Bundling and minification is not actually part of HTML5 but is a new feature of Visual Studio 2012. It is really
easy to use and can make your page load much faster.

Using Query Selectors
In Chapter 4, I explained the CSS selectors that you can use to create powerful style rules. CSS3 introduced a
significant improvement in this area. With the robust attribute selectors and quite a few new pseudo-classes such
as nth-child that you used in Chapter 4, there is considerable functionality for selecting DOM elements. But it
gets even better; all of this ability is available from JavaScript as well.

The HTML5 specification includes two new functions, querySelector() and querySelectorAll(). The
querySelector() function returns a single element; the first one that matches the specified selector. The
querySelectorAll() function returns an array of matching elements. For both functions you pass in the CSS
selector, formatted just like you would in a style sheet. So once you’ve learned how to use CSS selectors, you can
apply that same experience to JavaScript.

To try out these functions, you will use the same web page that you created in Chapter 4. The final version of
the Chapter 4 project is available in the source code download if you want to use that.

Using querySelector
The querySelector() function can be used to replace the getElementByID() function. Of course it is much more
useful than that, because you can pass in any type of CSS selector.

Open the Default.cshtml file and modify the rotateImage() function, replacing the getElementByID()
function like this:

function rotateImage(value){
 document.querySelector("#phone").style.webkitTransform
 ="rotateY(" + value + "deg)";
}

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

108

Caution ■ Don’t forget to prefix the iD with “#”. Because the querySelector() function can be used with any
type of selector, you’ll need the hash symbol to indicate this is an iD selector.

Run the web page using Chrome (or Safari) and verify the range control still works.

Using querySelectorAll
That was a fairly trivial example so now I’ll demonstrate a more complex selector. You’ll add a JavaScript function
that will change the color on all of the internal links in the nav element. Arguably you could just do this in the
style sheet but there are times when you need to do it in code as well. For example, you might need to change the
style programmatically based on user input.

Add the following function to the script element in the Default.cshtml page:

function adjustInternalLinks(){
 var links = document.querySelectorAll("nav ul li a[href ^='#']");
 for (var i=0; i < links.length; i++){
 links[i].style.color = "green";
 }
}

The CSS selector is nav ul li a[href ^='#'], which returns all a elements with an href attribute that
begins with the # character. This is further filtered to only elements that have the nav, ul, and li parentage. This
will exclude links that may appear in other sections.

The querySelectorAll() function returns an array so this code iterates through the array making each
element green. Now you’ll need to call this function. Add the code shown in bold to the body element:

 <body onload = "adjustInternalLinks()">

This will call the function when the page is loaded but you could just as easily call this based on some
appropriate user input to make the style dynamic. Save the changes and reload the page. You should now have
green links. Note that the link to www.apress.com is not green because it is an external link and doesn’t start
with “#”.

Creating the Visual Studio Project
For the rest of the exercises in this chapter you’ll use a Visual Studio project. You’ll create an empty web site now
and then add features to it later. Start Visual Studio 2012 and select the New Project link. Select the MVC4 project
template and enter Chapter5 for the name as shown in Figure 5-1.

http://www.apress.com

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

109

Figure 5-1. Creating the Chapter5 project

Web page
(UI thread)

Worker
(separate thread)

onconnect

onmessage

postMessage()

worker.postMessage()

onmessage

var worker = new Worker()

worker.terminate()

Figure 5-2. Communicating with a dedicated web worker

In the second dialog select the Basic Project template and make sure the Razor view engine is selected.

Employing Web Workers
With more and more work being done on the client, making the client application multi-threaded becomes more
important. Fortunately, the use of web workers is a convenient way to accomplish that. Functions that are CPU
intensive or may take some time to complete can be executed on a background thread leaving the main UI thread
available to respond to user actions.

Web workers use a fairly simple concept. You create a worker and pass it a JavaScript file that defines its
execution. The web page can then communicate with the worker through messages. The worker implements the
onmessage event handler to respond to an incoming message from the page and uses the postMessage() function
to send data back to the caller. The caller must also handle the onmessage event to receive the messages from the
worker. This is illustrated in Figure 5-2.

http://dx.doi.org/10.1007/978-1-4302-4638-1_5

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

110

Tip ■ For the demo application that you’ll create in this chapter, the messages between the caller and the worker
will be simple text messages. However they can be any format you want, including JSOn encoded data.

One of the most significant limitations of web workers is that they cannot access the DOM, so you can’t use
them to update the page content or style. Also, they cannot access the window object, which means, among other
things, that you can’t use timers. With these limitations in mind you might be wondering when you would use a
web worker.

Web workers are great for performing tasks such as retrieving data. For example, if you need to lookup
information from an external source (such as a database, local file system, or web) you can pass the lookup
parameters to the worker and when the lookup finishes the data can be passed back as a JSON message. This
allows the web page to respond to user actions while the data is being retrieved.

Web workers come in two varieties: dedicated and shared. A single shared worker can be used by multiple
web pages. Both dedicated and shared workers function the same basic way but the communication is a little
different. You’ll start by implementing a dedicated web worker.

Using a Dedicated Worker
A dedicated web worker, as its name implies, is dedicated to the web page that created it. The web page creates it,
uses it as needed and closes it when it no longer needs it. A web page can create as many workers as it needs.

To demonstrate a dedicated web worker, you’ll build a simple web page that will allow you to create a worker
and send messages to it. It will also display the response so you can see the two-way communication. The worker
implementation is trivial; simply echoing back the message that was sent to it.

eXerCISe 5-1. USING a DeDICateD WeB WOrKer

in the Chapter1. 5 project that you created earlier, right-click the Controller folder
in the Solution Explorer and select the Add ➤ Controller links. Enter the name
HomeController and select the Empty mVC controller template. Click the Add button
to create the controller.

Right-click the View folder and select the Add 2. ➤ new Folder links. Enter the name
Home.

Right-click the new Home folder and select the Add 3. ➤ View links. in the Add View
dialog box, enter the name Index, make sure the Razor view engine is selected, and
unselect all the check boxes as shown in Figure 5-3.

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

111

Figure 5-3. Adding the Index view

Replace the default implementation of the 4. Index.cshtml view using the code
shown in Listing 5-1. This will create a simple form with a text area for displaying
messages and three buttons for communicating with the worker.

Listing 5-1. The Index view implementation

<!DOCTYPE html>

<html lang = "en">
 <head>
 <meta charset = "utf-8" />
 <title > Chapter 5 - Web Workers</title>
 <link rel = "stylesheet" type = "text/css" href = "Content/Sample.css" />
 <script src = "Scripts/controlWorker.js" > </script>

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

112

 </head>
 <body>
 <header>

 <h1 > Web Workers Demo</h1>
 </header>

 <div>

 <textarea id = "output" > </textarea>
 </div>

 <form id = "control" method = "post" action = "">
 <input id = "create" type = "button" class = "button" value = "Create Worker"
 onclick = "createWorker()" >

 <input id = "send" type = "button" class = "button" value = "Send Message"
 onclick = "sendWorkerMessage()">
 <input id = "message" type = "text" class = "text" value = "Hello, World!" >

 <input id = "kill" type = "button" class = "button" value = "Close Worker"
 onclick = "closeWorker()">

 </form>

 </body>
</html>

From the Solution Explorer, right-click the Content folder and select the 5.
Add ➤ new item links. Select the Web category and then select the Style Sheet item
and enter Sample.css for the file name as shown in Figure 5-4. Click the Add button
to create the file.

Figure 5-4. Adding the Sample.css style sheet

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

113

Replace the default implementation with the code shown in Listing 5-2.6.

Listing 5-2. The Sample.css style sheet

h1
{
 font-size:22px;
 color:purple;
}

#output
{
 width: 500px;
 height: 250px;
 background-color:#dfcaca;
}

.button
{
 width:125px;
 height:25px;
 color:green;
}

.text
{
 width:260px;
}

Press F5 to debug the application and the form should look similar to Figure 7. 5-5.

Figure 5-5. The initial form design

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

114

Close the browser and stop the debugger.8.

in the Solution Explorer, right-click the Scripts folder and select the Add 9. ➤ new item
links. in the Add new item dialog box, select the Web category and then select the
JavaScript File item. Enter worker.js for the filename as shown in Figure 5-6.

Figure 5-6. Adding the worker.js file

 ■ Tip You can also right-click the Scripts folder and select the Add ➤ JavaScript File links, which will skip the Add
new item dialog box. When prompted for the file name, leave the .js extension off, however.

For the contents of this file, enter the following code. This is the implementation 10.
of the worker. it handles both the onconnect event (when the worker is first
created) and the onmessage event (when a message is sent to the worker). The
implementation simply echoes the message back to the caller.

/* This file implements the web worker */
onconnect = sendResponse("The worker has started");

onmessage = function (event) {
 sendResponse("Msg received: " + event.data);
}

function sendResponse(message) {
 postMessage(message);
}

Using the same instructions, add a 11. controlWorker.js file in the Scripts folder.

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

115

Enter the code shown in Listing 5-3 for its implementation. i will explain this in more 12.
detail later in the chapter.

Listing 5-3. The controlWorker.js implementation

/* This file contains functions used to
 communicate with the web worker */

var myWorker;

function createWorker() {
 if (typeof(Worker) !== "undefined") {
 var log = document.querySelector("#output");
 log.value + = "Starting worker process... ";

 myWorker = new Worker("Scripts/worker.js");

 log.value + = "Adding listener... ";
 myWorker.onmessage = function(event){
 log.value + = event.data + "\n";
 }

 log.value + = "Done!\n";
 }
 else {
 alert("Your browser does not support web workers");
 }
}

function sendWorkerMessage(){
 if (myWorker !== null) {
 var log = document.querySelector("#output");
 log.value + = "Sending message... ";

 var message = document.querySelector("#message");
 myWorker.postMessage(message.value);

 log.value + = "Done!\n";
 }
}

function closeWorker(){
 if (myWorker !== null) {
 var log = document.querySelector("#output");
 log.value + = "Closing worker... ";

 myWorker.terminate;
 myWorker = null;

 log.value + = "Done!\n";
 }
}

Press F5 to debug the application. Click the Create Worker button and then click the 13.
Send button. modify the message and try clicking the Send message button again.
Finally, click the Close Worker button. The text area should look like Figure 5-7.

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

116

The controlWorker.js file contains three functions that provide the implementation for the three buttons
on the form. It first declares a myWorker variable, which holds a reference to the dedicated web worker.

•	 createWorker() – This function first checks to see if the browser supports web workers by
seeing if the Worker class is defined. If not, an alert is raised. It then creates an instance of
the Worker class saving its reference in the myWorker variable. The worker implementation
is passed to its constructor by referencing the worker.js script file. It then creates the
onmessage event handler that adds the incoming message to the output field.

•	 sendWorkerMessage() – This simply calls the worker’s postMessage() method passing in
the text specified in the message field. Notice it is using the querySelector() method that
I explained earlier in this chapter.

•	 closeWorker() – This calls the worker’s terminate() method and sets the myWorker
variable to null. The worker is closed immediately without any ability to perform any
clean-up operations.

 ■ Tip in the same way that you added an onmessage event handler you can also create an onerror event
handler to respond to errors from the worker.

With this simple implementation you can see how easy it is to create a worker and use messages to
communicate with it.

Creating a Shared Worker
A shared web worker allows you to create a worker and then reuse it from other pages. There are a couple of
advantages to using shared workers. The most obvious one is that multiple pages can share the same thread
instead of having to create a new worker thread for every page. The other, which I’ll explain later, is to share state
information across pages.

Now you’ll create a shared worker, which is implemented in a JavaScript file. The concept is essentially
the same but the communication is done a little differently. You’ll add a few more buttons to the web page and
implement a new set of JavaScript functions to communicate with the shared worker.

Figure 5-7. The message log

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

117

eXerCISe 5-2. CreatING a ShareD WOrKer

1. Open the Index.cshtml file and add the following script reference in the head
element after the previous reference:

<script src = "Scripts/controlSharedWorker.js" > </script>

2. Add the code shown in bold in Listing 5-4 to the form element. This will add another
set of buttons to control the shared worker.

Listing 5-4. The additional buttons in Index.cshtml

<form id = "control" method = "post" action = "">
 <input id = "create" type = "button" class = "button" value = "Create Worker"
 onclick = "createWorker()" >

 <input id = "send" type = "button" class = "button" value = "Send Message"
 onclick = "sendWorkerMessage()">
 <input id = "message" type = "text" class = "text" value = "Hello, World!" >

 <input id = "kill" type = "button" class = "button" value = "Close Worker"
 onclick = "closeWorker()">

 <input id = "createS" type = "button" class = "button" value = "Create Shared"
 onclick = "createSharedWorker()" >

 <input id = "sendS" type = "button" class = "button" value = "Send Shared Msg"
 onclick = "sendSharedWorkerMessage()">
 <input id = "messageS" type = "text" class = "text" value = "Hello, World!" >

 <input id = "killS" type = "button" class = "button" value = "Close Shared"
 onclick = "closeSharedWorker()">

</form>

3. From the Solution Explorer, add another file to the Scripts folder named
sharedWorker.js and enter the code shown in Listing 5-5. This is the
implementation of the shared worker.

Listing 5-5. The sharedWorker.js implementation

/* This file implements the shared web worker */
var clients = 0;

onconnect = function(event) {
 var port = event.ports[0];
 clients++;

 /* Attach the event listener */
 port.addEventListener("message", function(event){
 sendResponse(event.target, "Msg received: " + event.data);
 }, false);

 port.start();

 sendResponse(port, "You are client # " + clients + "\n");
}

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

118

function sendResponse(senderPort, message) {
 senderPort.postMessage(message);
}

4. Add another file in the Scripts folder named controlSharedWorker.js and enter the
implementation shown in Listing 5-6. i will explain this code later.

Listing 5-6. The controlSharedWorker.js implementation

/* This file contains functions used to
 communicate with the web worker */

var mySharedWorker;

function createSharedWorker() {
 if (typeof(Worker) !== "undefined") {
 var log = document.querySelector("#output");
 log.value + = "Starting shared worker process... ";

 mySharedWorker = new SharedWorker("Scripts/sharedWorker.js");

 log.value + = "Adding listener... ";
 mySharedWorker.port.addEventListener("message", function(event){
 log.value + = event.data + "\n";
 }, false);

 mySharedWorker.port.start();

 log.value + = "Done!\n";
 }
 else {
 alert("Your browser does not support web workers");
 }
}

function sendSharedWorkerMessage(){
 if (mySharedWorker !== null) {
 var log = document.querySelector("#output");
 log.value + = "Sending message... ";

 var message = document.querySelector("#messageS");
 mySharedWorker.port.postMessage(message.value);

 log.value + = "Done!\n";
 }
}

function closeSharedWorker(){
 if (mySharedWorker !== null) {
 var log = document.querySelector("#output");
 log.value + = "Closing worker... ";

 mySharedWorker.port.terminate;
 mySharedWorker = null;

 log.value + = "Done!\n";
 }
}

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

119

5. Press F5 to debug the application. Create a shared worker and send a message to it.
it should work just like the previous exercise.

6. Leaving the browser tab running, create a new tab and enter the same URL as the
first tab. This will open the same site in a second tab. Create a shared worker from
the second tab. Then click the Send Shared message button to test the connection.
notice the message says that you are the second client as demonstrated in
Figure 5-8.

Figure 5-8. Opening a second copy of the page

7. The Chrome browser has a small wrench icon at the top-right corner. Click this and
then select the Tools ➤ Task manager links to open the task manager, which should
look similar to Figure 5-9. notice that there are two copies of your page but only one
copy of the web worker.

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

120

Now let’s look at how the shared worker was implemented. Just like the dedicated worker, it must handle the
onconnect and onmessage events. However you can’t attach the ommessage handler directly to the worker; instead
you must access a port and attach to that. The onconnect event receives an event parameter and you access
the port by event.ports[0]. Once you have the port you can attach the event handler to it. You use the port’s
addEventHandler() method. This takes two parameters. The first is the name of the event, message in this case.
The second parameter is the function that will be called when the event is raised.

When sending a message back you must also use the port object. This port object is provided in the event.
target property of the incoming message. Both this event handler and the onconnect event handler use the
sendResponse() function passing in the port object.

The functions in the controlSharedWorker.js file are almost identical to their dedicated counterparts.
However, they must also use the port object.

Notice in the sharedWorker.js file that the clients variable is declared and then incremented in the
onconnect event handler. This is used to keep track of how many clients have connected to the shared worker.
I added this just to demonstrate how this variable is global to all the clients attached to the worker. In fact, there is
no per-port instance data; all data is global.

Also, when a message comes in, the event parameter includes the port that the response should be sent
to. The worker doesn’t “remember” the port for each client. It just does what it’s instructed to do and returns a
response on the specified port.

Using Visual Studio Bundling and Minification
When a browser loads a page, all of the referenced files such as style sheets and JavaScripts must be loaded as
well. Each file is retrieved from the server with an HTTP request, so a separate round-trip is required for each file.
Also, while we like white space and comments to make our code more manageable, this is extra data that must
be downloaded but ignored by the browser. If you’re concerned about your page loading faster, there are two
techniques that can make a big difference.

Bundling – •	 Bundling is the process of taking all the individual files and concatenating
them into a single file. This will reduce the amount of server round-trips it will take to
load your page.

Figure 5-9. Displaying the Task Manager

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

121

Figure 5-10. Viewing the network traffic

Minification – The •	 minification process trips out all white space and comments making
the referenced files as small as possible.

Prior to Visual Studio 2012, both of these were a manual process that you would need to do with each build.
Now, as I will show you, much of this work is done for you. First, let’s see how the current page works without
bundling.

Run your application. You can verify the files that were downloaded by using the Developer Tools in the
Chrome browser. Click the wrench icon at the top of the browser window and select the Tools ➤ Developer tools
links to display the tools pane. You could also use the Ctrl + Shift + I shortcut. Select the Network link to see the
server requests. Refresh the page to see the network traffic, which should look like Figure 5-10.

This graph lists the files that are downloaded from the web server. As you can see, it’s a pretty long list.
The first file listed is the html document. The rest are JavaScript or CSS files referenced by your page (or the
master layout page). Your three files, Sample.css, controlWorker.js, and controlSharedWorker.js are shown
near the end of the list.

To simplify this demonstration, edit the _Layout.cshtml view to remove the standard references. You don’t
need them for this application. Comment out the referenced files by adding the code shown in bold:

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

122

<!DOCTYPE html>
<html>
<head>
 <meta charset = "utf-8" />
 <meta name = "viewport" content = "width = device-width" />
 <title > @ViewBag.Title</title>
 <!-- @Styles.Render("~/Content/themes/base/css", "~/Content/css")
 @Scripts.Render("~/bundles/modernizr") -->
</head>
<body>
 @RenderBody()

 <!-- @Scripts.Render("~/bundles/jquery") -->
 @RenderSection("scripts", required: false)
</body>
</html>

Now run the application and the network traffic should look like Figure 5-11.

Figure 5-11. Network traffic with the standard files removed

A bundle is a set of files that the server concatenates for you. You reference the bundle name in your web
page, and all the individual files are returned in one HTTP request. Visual Studio builds default bundles for you
for all the standard files. However, you might want to create your own custom bundles. You can build a custom
bundle to include just the files you need.

eXerCISe 5-3. CreatING a CUStOM BUNDLe

1. Visual Studio will only generate bundles when not in Debug mode. This is controlled
by the compilation setting in the web.config file. To enable bundling you’ll need
to set this flag manually. Open the web.config file in the root folder and edit the
code shown in bold:

<system.web>
 <compilation debug = "false" targetFramework = "4.5" />
 <authentication mode = "Forms">

2. Open the Global.asax.cs file and change the code to comment out the
RegisterBundles() method line like this:

//BundleConfig.RegisterBundles(BundleTable.Bundles);

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

123

3. Add the following code to the Application_Start() method to create two custom
bundles:

BundleTable.Bundles.Add(new ScriptBundle("~/Scripts/myJs").Include(
 "~/Scripts/controlWorker.js",
 "~/Scripts/controlSharedWorker.js"));

BundleTable.Bundles.Add(new StyleBundle("~/Content/myCss").Include(
 "~/Content/Sample.css"));

This code first creates a Bundle object, specifying the logical name that it will be referenced by. It then uses
the Include() method to list the appropriate files that should be included in the bundle. Finally, the new bundle
is added to the BundleTable object so it will be available to the web page.

4. Change the script reference in the Index.cshtml file to use the myJs and myCss
bundles using the Scripts.Render() and Styles.Render() helper functions. Also,
comment out the existing script and css references. Your file references should look
like this:

<head>
 <meta charset = "utf-8" />
 <title > Chapter 5 - Web Workers</title>

 @Scripts.Render("~/Scripts/myJs")
 @Styles.Render("~/Content/myCss")

 <!-- < link rel = "stylesheet" type = "text/css" href = "Content/Sample.css" />
 <script src = "Scripts/controlWorker.js" > </script>
 <script src = "Scripts/controlSharedWorker.js" > </script > -->
</head>

 ■ Note The Scripts.Render() and Styles.Render() helper functions will generate the appropriate referenc-
es to access the specified bundles. However, in debug mode when bundles are disabled, it will generate references
to the individual files.

5. Because you changed the debug setting to false, you won’t be able to debug the
application. instead, Press Ctrl-F5 to run the application. Check the network traffic,
which should look like Figure 5-12.

Figure 5-12. The final network activity

CHAPTER 5 ■ SCRiPTing EnHAnCEmEnTS

124

The minification process strips out white space and comments making the file more compact and
therefore faster to download. The bundling process automatically minifies the bundle. It uses a different
minification function for .css and .js files. The appropriate one is used by specifying either the StyleBundle or
ScriptBundle class. You can create your own minification function as well.

Summary
In this chapter you tried out a few very useful techniques that you may likely use in many of your web projects.
The features you used are:

Query selectors – take advantage of the same powerful CSS selectors in your JavaScript •	
code.

Web workers – execute CPU intensive or slow operations on a separate thread to improve •	
overall responsiveness.

Bundling – create custom bundles to download just the files you need in a single server •	
round-trip.

Minification – compress the referenced files for faster download.•	

In Chapter 6, I’ll show you how the HTML5 improvements can be used in create mobile-friendly web
applications.

4

125

Chapter 6

Mobile Web Applications

So far, we have only looked at desktop browsers, however, one of the really great aspects of HTML5 is how
well it is supported on a wide variety of devices including mobile phone, tablets, and TVs. In fact, the
number of HTML5 devices is expected to exceed 1 Billion by 2013 (see the article at
http://www.strategyanalytics.com/default.aspx?mod=pressreleaseviewer&a0=5145). As of this writing,
the Opera Mobile and Firefox Mobile platforms lead the pack with 369 and 325 points, respectively, as reported
by Html5Test.com. When Blackberry 10 releases, it is expected to receive a whopping 447 points out of a possible
500.

On a mobile device you will use native applications as well as web applications. Native apps are developed
for a specific mobile platform and installed on the device, or downloaded through the phone service. Native
apps can often provide the best user experience because they can make maximum use of the device’s specific
hardware and OS features. However, Web apps, due in part to the popularity of HTML5, are increasingly in
demand as well. And they can be developed almost as easily as those used by desktop browsers.

In this chapter I will introduce some of the emulators that are available to help you test your site on various
mobile devices. The biggest challenge that you’ll face is supporting a variety of form factors. I will show you some
techniques that will allow your web page to dynamically adjust to different screen resolutions. This will enable
you to take advantage of a larger screen when it’s available and still support even very small devices from the
same code.

Using Emulators
To see how your web site works on a mobile device you can use a number of phone emulator applications. While
these may not function exactly as the actual hardware they provide a reasonable approximation. I’ll show you
how to install and use several of the more common utilities.

Installing the Windows Phone Developer Tools
I’ll start with the Windows Phone Emulator, which is part of the Windows Phone SDK 7.1. You can download and
install the SDK from this site: http://www.microsoft.com/en-us/download/details.aspx?id=27570. The SDK
is only supported on Visual Studio 2010 and includes VS 2010 Express for Windows Phone. However, you will
only be using the emulator application which is not specific to any version of Visual Studio.

After installing this, start the emulator, which you’ll find in the Windows Phone SDK 7.1 start menu. After
the application has loaded, click the Internet Explorer application and then enter the URL of your web site from
Chapter 4. Make sure to include the http:// prefix in front of localhost. You’ll need to click the keyboard buttons
on the phone emulator to enter the address. The site will look like Figure 6-1.

http://www.strategyanalytics.com/default.aspx?mod=pressreleaseviewer&a0=5145
http://www.microsoft.com/en-us/download/details.aspx?id=27570

CHAPTER 6 ■ MobilE WEb APPliCATions

126

The browser on the Windows Phone 7.1 is essentially IE9 so it doesn’t support much of the HTML5 features.
In the next chapter I will show you how to use polyfills to retrofit some of the new features in older browsers. For
now however, you will use other phone emulators as they provide better HTML5 support.

Figure 6-1. The Windows Phone emulator

CHAPTER 6 ■ MobilE WEb APPliCATions

127

When you select a device, the window displays the hardware details such as screen resolution. Select the LG
Optimus One device and click the Launch button. With this emulator you can either use the device keypad or
your desktop keyboard. Enter the URL of your site from Chapter 4, which should look like Figure 6-3.

Figure 6-2. The Opera Emulator launch window

Using the Opera Mobile Emulator
Opera provides a free mobile emulator application, which you can download from this site:
http://www.opera.com/developer/tools/mobile. One thing that is particularly nice about this utility is
that you can choose, from a pretty long list, which device you want to emulate. After you have installed this
application, start it and you should see the Launch window shown in Figure 6-2.

http://www.opera.com/developer/tools/mobile

CHAPTER 6 ■ MobilE WEb APPliCATions

128

Notice that page is scaled to fit in the screen, which makes it mostly unreadable. You will deal with that later
in the chapter. You can try some other devices such as the Nokia N800, which is shown in Figure 6-4. As you
might expect, the larger form factors handle the page better.

Figure 6-3. Emulating the LG Optimus One device

CHAPTER 6 ■ MobilE WEb APPliCATions

129

Installing Chrome Ripple
Emulating a mobile device on Chrome and Firefox requires a different approach by using add-ons to the desktop
browser. When using the emulators you are essentially using the desktop browser with some add-on functionality
to simulate the device’s form factor.

Start the Chrome desktop browser and go to this site: http://ripple.tinyhippos.com/download. This will
display the Ripple page. Click the “Add to Chrome” button and follow the instructions to install this.

Figure 6-4. Emulating the Nokia N800

Figure 6-5. The Ripple emulator download page

http://ripple.tinyhippos.com/download

CHAPTER 6 ■ MobilE WEb APPliCATions

130

This will display the current page using the emulator mode. The first time you start Ripple for a specific URL,
you’ll see the prompt shown in Figure 6-7. Click the “BlackBerry 10 WebWorks” button to choose this platform to
emulate.

Figure 6-7. Selecting the desired platform

Figure 6-6. Enabling the Ripple emulator

Your web page on the BlackBerry 10 device should look like Figure 6-8.

Once you have installed the add-on, use the Chrome browser and enter the URL of the Chapter4 web site.
On the right-hand corner, there is a button that is used to start the emulator. Click this button and then click the
Enable button as shown in Figure 6-6.

http://dx.doi.org/10.1007/978-1-4302-4638-1_4

CHAPTER 6 ■ MobilE WEb APPliCATions

131

There are two small buttons at the top-left and top-right corners of the browser window with arrows on
them. Use these to show/hide the option windows. For example, the one on the left, shown in Figure 6-9, allows
you to change the device orientation or to choose a different platform to emulate. It also provides some technical
details of the current device such as the screen resolution. The button on the right includes the Settings tab where
you can switch between dark and light themes.

Figure 6-8. The web page on the BlackBerry 10 device

CHAPTER 6 ■ MobilE WEb APPliCATions

132

Emulating the Other Devices
To simulate your web site on an iPhone, using Chrome, go to this site: http://iphone-emulator.org. When the
emulator is displayed, enter the URL of the Chapter4 site into the search box on the device. The site will look like
Figure 6-10.

Figure 6-9. Displaying the emulator options

http://iphone-emulator.org

CHAPTER 6 ■ MobilE WEb APPliCATions

133

Notice the buttons at the top of the page that enable you to also emulate other devices such as the iPad and
Android.

Handling Form Factors
The biggest challenge when creating web applications that work well on mobile devices is handling the various
form factors. On the larger devices you’ll want to take advantage of the extra space while still making a reasonable
appearance on the smaller ones. In the samples that I’ve shown you so far, the device either scaled the page to fit
or cropped it. Neither approach is optimal.

There are three techniques that will help you improve how your site looks across all form factors:

Media queries – This allows you to apply different styles based on attributes of the •	
existing viewport. I will spend most the rest of this chapter demonstrating this.

Flexible images and videos – This simply instructs the browser to stretch or shrink the •	
image to fit the available space.

Figure 6-10. Emulating the web page on an iPhone

CHAPTER 6 ■ MobilE WEb APPliCATions

134

Use a CSS grid template layout – This is similar to designing forms with Windows •	
Presentation Foundation (WPF) that allows the browser to resize or move elements
dynamically based on the window size. Unfortunately, this is not something that is
currently available and the specification is still in draft, but watch for this in future
browser updates.

Tip ■ one of the things that the various emulators do is limit the window size based on the device characteristics.
You can accomplish the same thing by simply resizing your browser window. For your initial testing you can shrink
the window and see how the layout responds. Then use the emulators for the final testing.

Understanding Media Queries
CSS 2.1 introduced the media keyword, allowing you to define a printer-friendly style sheet. For example you can
use something like this:

<link rel = "stylesheet" type = "text/css" href = "screen.css" media = "screen" />
<link rel = "stylesheet" type = "text/css" href = "print.css" media = "print" />

You can then define a different style sheet for the print version of your webpage. Alternatively, you could
embed media-specific style rules within a single style sheet. For example this will change the font size when
printed:

@media print
{
 h1, h2, h3
 {
 font-size: 14px;
 }
}

Tip ■ There are other media types that are supported including aural, braille, handheld, projection, tty, and
tv. As you can see, the media type was initially used to represent the type of device that is rendering the page. Also,
the all type is supported but is also implied if no media type is specified. styles with the all type are applied for
every device.

With CSS3, this has been enhanced significantly to allow you to query various attributes to determine the
appropriate styles. For example, you can apply a style when the width of the windows is 600px or smaller like this:

@media (max-width:600px)
{
 h1
 {
 font-size: 12px;
 }
}

CHAPTER 6 ■ MobilE WEb APPliCATions

135

The features that can be selected in a media query are:

•	 width

•	 height

•	 device-width

•	 device-height

•	 orientation

•	 aspect-ratio

•	 device-aspect-ratio

•	 color

•	 color-index

•	 monochrome

•	 resolution

•	 scan

•	 grid

Most of these support a min- and max- prefix, which avoids having to use a greater than or lesser than
operator. For example, if you wanted a style for windows between 500px and 700px, inclusive, you would specify
this as

@media screen and (min-width: 500px) and (max-width: 700px)

Notice in this example I also included the screen media type. In this case, this style is ignored for all other
types such as print.

Tip ■ For a complete definition on each of these features, see the W3 specification at
http://www.w3.org/TR/css3-mediaqueries/#media1.

Using Media Queries
There is a lot that you can do with media queries to dynamically style your web page. For example, you could use
the color and monochrome features to apply more appropriate styles when displayed on a monochrome device.
The color feature returns the number of colors supported so (min-color: 2) will select all color devices. You
can also use (orientation: portrait) and (orientation: landscape) to arrange the elements based on the
devices orientation.

For this demonstration you will focus on the width of the window but the same basic concept applies to the
other features as well. As the width of the window shrinks, the styles will gradually adjust to accommodate the
size while retaining as much of the original layout as possible.

A typical approach is to plan for three different styles: large, medium, and small. The large style is probably
how the site is initially designed, as is the case with your Chapter4 site. There are side bars and multiple columns
of content. The medium style will keep the same basic layout but start to shrink areas as needed. A useful
technique is to use relative sizing so as the window shrinks, each element gradually shrinks as well. The small
style will be used for handheld devices and you’ll generally keep the layout to a single column. Since the page will
tend to be longer now, links to bookmarks on the page become more important.

http://www.w3.org/TR/css3-mediaqueries/#media1

CHAPTER 6 ■ MobilE WEb APPliCATions

136

Modifying the Chapter4 Site
To demonstrate these techniques, you’ll add some additional style rules to the site that you built in Chapter 4.
You’ll use media queries to selectively apply these styles based on the width of the window.

Tip ■ The Chapter4 site was created using the Web Matrix application. However, the source code download pro-
vides this as both a Web Matrix project as well as a Visual studio project. You’ll find these in the Chapter4 folder. You
can use whichever you prefer. The instructions will tell you how to modify the Default.cshtml file. if you’re using
Visual studio this will be the Index.cshtml file, the changes are identical in both files.

Open the Chapter4 project and run the application. Use the Chrome browser as it supports all of the styling
features that were demonstrated in Chapter 4. Try shrinking the width of the browser window. Notice that the
page does not scale at all; the browser simply clips whatever does not fit in the window. That’s your first clue that
you have some work to do. Web pages should be fluid and adjust to the window size.

Configuring the Medium Layout
The current layout of your web page is based on a relatively large window such as a desktop browser. When
designing a web page, you should also consider the appropriate layout for smaller devices. I suggest creating
a separate design for very small resolution devices such as a typical mobile device. In this chapter you’ll use
media queries to implement small, medium, and large configurations. However, the medium layout is often a
compromise between small and large. Starting with a large layout and then designing the small layout usually
works best.

Scrolling horizontally is not intuitive and should be avoided if at all possible. So if you have a narrow
resolution you should stack elements vertically. The aside element, for example, will need to go to the bottom of
the page. You might consider eliminating the images or changing the font sizes.

Once you have a small layout in mind, you can gradually introduce these changes as the width shrinks. The
approach I like to take is to gradually start shrinking the width of the browser window and see what breaks. Then
make the corrections to deal with that and try shrinking it some more. With the small layout already designed,
you’ll know where you’re going as you make adjustments in this iterative process.

Now you’ll define the style for the medium and small layouts, starting with medium. On medium-sized
devices, you’ll use the same basic layout but just shrink some of the elements. For this site, medium will be
defined as widths between 600px and 940px. The size of the web page is 940px so if the window is wider than
that, no adjustment is necessary. The 600px minimum size is somewhat arbitrary. I’ll explain how I arrived at that
figure later.

The medium layout needs little adjustment. You’ll use a simple trick of defining the elements with relative
sizes. This allows them to automatically shrink or stretch as the window is resized. Open the Default.cshtml file
and add the rules shown in Listing 6-1 to the existing style element. Add this after all the existing rules.

Listing 6-1. Defining the medium layout

@@media screen and (max-width: 940px)
{
 body
 {
 width: 100%;
 }

CHAPTER 6 ■ MobilE WEb APPliCATions

137

 aside
 {
 width: 30%;
 }
 nav ul li a
 {
 width: 100px;
 }
}

Note ■ in the Razor syntax, an ampersand (@) is used to indicate that what follows it is code; not content. To
include an ampersand in the context such as a media query, you’ll need to use a double ampersand.

By setting the body width to 100% it will automatically shrink to fit the window. It won’t stretch past 940px,
however, because this style is only applied when the width is smaller than that. The aside element is set to 30%.
The current ratio (280px/940px) is approximately 30%. As you continue shrinking the window, the links in the nav
element will eventually be clipped, so this style also reduces their width, moving them closer together.

Run the application and try shrinking the window. You should notice a nice fluid layout that adjusts to the
window size as shown in Figure 6-11.

Figure 6-11. Displaying the medium layout

CHAPTER 6 ■ MobilE WEb APPliCATions

138

Configuring the Small Layout
Eventually, however, the layout doesn’t work very well, as illustrated in Figure 6-12.

Figure 6-12. The medium layout when shrunk too much

There are several issues here that you’ll address:

The header text is wrapping to another line and overlapping.•	

The navigation links are wrapping to the next line (and now outside the •	 nav element).

The picture overlaps the adjacent text.•	

The text columns are too narrow; this size cannot adequately support three content •	
columns.

CHAPTER 6 ■ MobilE WEb APPliCATions

139

The primary change that you’ll make that will adjust the layout, is to move the aside element to the bottom
of the page rather than alongside the other content. As you resize the window, the other changes were gradual
but this change will cause a jump. The main content will go from 70% of the window size to 100%. You’ll need
to determine the appropriate width that should trigger the change. I choose 600px but you can experiment with
other values and see how the page works.

Enter the code in Listing 6-2 to the end of the existing style element.

Listing 6-2. Defining the small layout

@@media screen and (max-width: 600px)
{
 /* Move the aside to the bottom of the page */
 #contentArea, #MainContent, aside
 {
 display: block;
 }

 aside
 {
 width: 98%;
 }

 /* Use a single column for the article content */
 article div
 {
 -webkit-column-count: 1;
 column-count: 1;
 }

 /* Move the links closer together */
 nav ul li a
 {
 margin-right: 15px;
 width: auto;
 }

 /* Fix the line spacing of the header */
 h2, h3
 {
 line-height:normal;
 }

 /* Force the intro element to stretch to fit the content */
 .intro
 {
 height: min-content;
 }

 /* Move the book images to the left */
 .book img
 {
 float: left;

CHAPTER 6 ■ MobilE WEb APPliCATions

140

 margin-right: 10px;
 margin-bottom: 5px;
 }

 /* Make the book elements tall enough to fit the image */
 .book
 {
 min-height: 120px;
 }
}

Note ■ The previous style that you added for the medium size also applies to the small style since both apply to
widths less than 940px. The small style will define additional rules but keep in mind the previous styles apply as
well.

The small layout rules make the following adjustments:

The •	 aside element is moved to the bottom. This is done by undoing the table and
cell attributes that you entered in Chapter 4 and then changing the width to be 98%.
Previously, the #contentArea element had the display attribute set to table and the
#mainContent and aside elements were set to table-cell. By setting all three of these to
block, the virtual table is removed.

The content is displayed in two columns and this will be reduced to a single column.•	

To keep the links from wrapping, a 15px margin is defined and then the width is sized •	
automatically based on the content. This will remove most of the blank space between
them.

Since the header text can now use more than one line, change the line height so the lines •	
do not overlap.

Force the •	 intro section to stretch vertically to ensure all the content fits.

Move the book images to the left and the corresponding text to the right.•	

Ensure the book elements are large enough to fit the image.•	

Display the web page with these changes and resize the window. With even very narrow pages, the site still
looks good, as shown in Figure 6-13.

CHAPTER 6 ■ MobilE WEb APPliCATions

141

Figure 6-13. The web page with a very narrow window

CHAPTER 6 ■ MobilE WEb APPliCATions

142

Scroll down and see how the aside section is formatted, which should look like Figure 6-14.

Using Flexible Images
If you continue to shrink the web page, the phone booth window will eventually be clipped. To prevent that, set
the max-width property to 100%. This will cause the images to be re-sized to fit the width of the container. This is
not done inside a media query and this format will be applied at all resolutions. Enter the following code to the
end of the style element:

#phone
{
 max-width: 100%;
 height: auto;
}

Setting the height to auto will change the height to maintain the existing aspect ratio. Refresh the web page
and continue shrinking the window. Notice that the image will start shrinking as well. You can still rotate it as
shown in Figure 6-15.

Figure 6-14. The layout of the aside section

CHAPTER 6 ■ MobilE WEb APPliCATions

143

You can do the same thing with video elements using the following style rule:

.video embed, .video object, .video iframe
{
 width: 100%;
 height: auto;
}

Viewing the Page on a Mobile Device
For a final test, display the site using Chrome and enable the Ripple emulator as I showed you earlier. Select the
PhoneGap platform. Your page should look like Figure 6-16.

Figure 6-15. The shrinking window

CHAPTER 6 ■ MobilE WEb APPliCATions

144

Summary
In this chapter I showed you how to install and use several mobile device emulators including:

Windows Phone Emulator•	

Opera Mobile Emulator•	

Chrome Ripple add-on•	

iPhone emulator•	

To handle the various form factors, media queries were used to selectively apply styles based on the window
width. We implemented large, medium, and small layouts that scale cleanly as the window is resized. Also, by
setting the width to 100% we can auto-size images and video.

Figure 6-16. The web page as seen on the Ripple emulator

PArt 3

Developing with HTML5

While browser support for HTML5 is rapidly growing, you will likely need to deal with older browsers that
do not support most of the HTML5 features. In Chapter 7 I will show you how to use several open-source
solutions for polyfilling the new features on an older browsers. You really shouldn’t need to spend too
much time with this. These techniques will come close to the native browser support with little work on
your part.

Having explored the basic HTML5 features, it’s time to try out some of the really cool new features.
Chapter 8 demonstrates the new audio and video elements that enable you to easily embed this into
your application. I’ll explain the codecs supported by each browser and how to make your site support
multiple browsers. You will also build your own controls to manipulate the audio and video files.

Chapters 9 and 10 demonstrate both graphic platforms, Scalable Vector Graphics (SVG) and Canvas,
respectively. These tools use very different approaches but both provide some impressive capabilities for
creating graphical applications.

147

Chapter 7

Supporting Older Browsers

So now you’ve got this great looking, HTML5 compliant web page that you created in Chapter 4. You want
to show it off so you send a link to a colleague who just happens to still use IE 8 and they see something like
Figure 7-1.

Figure 7-1. The CSS Demo as seen in IE 8

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

148

Figure 7-2. The CSS Demo as seen in IE 7

The page looks awful and nothing like what you were expecting. You’re certainly not going to win any prizes
for it. Not to be deterred you send the link to your boss and things get worse. They are using IE 7 and they see
something like Figure 7-2.

Now the sidebar is no longer on the side but tacked on at the bottom of the page. Your boss begins
wondering what you’ve been doing in all your spare time. You’ve just learned two important lessons – the
hard way:

1. Always control your demo environment; in this case, let them see the page on your
browser.

2. More importantly, test your web site on several different browsers.

In this chapter, I will show you some fairly simple techniques to get your page looking its best even with older
browsers. You don’t have to write much code because there is a lot of open source code that you can easily add
to your site.

Creating the Demo Application
To work the exercises in this chapter, you’ll use the same web page that you developed in Chapter 4. In this case,
however, you’ll implement it using Visual Studio. I’ll first show you how to create the project and copy the web
page from the previous WebMatrix project. In the rest of the chapter, I’ll demonstrate the techniques you’ll use to
make this page look great, even in IE 7.

Tip ■ The source code download that is available at www.apress.com contains the initial Visual Studio project for
this chapter. if you want to skip exercise 7-1, you can use the project from the Chapter07\initial folder instead.

http://www.apress.com

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

149

eXerCISe 7-1. CreatING the DeMO SIte

1. Start Visual Studio 2012 and from the Start Page click the new Project link.

2. Select the “ASP.nET MVC 4 web Application” template and enter Chapter7 for the
project name as shown in Figure 7-3. Click oK to continue.

Figure 7-3. Creating a new MVC4 project

3. in the next dialog box select the Basic template and make sure the Razor view
engine is selected. Click oK to create the project.

4. when the project has been created, from the Solution Explorer, right-click the Views
folder and select the Add ➤ new Folder links. Enter the name Home.

5. Right-click the Views\Home folder and select the Add ➤ View links.

6. in the Add View dialog box, enter the name Index and unselect all of the check
boxes as shown in Figure 7-4. Click the Add button to create the view.

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

150

7. open your webMatrix project from Chapter 4, copy the entire contents of
Default.cshtml, and paste it into the new Index.cshtml file, replacing the default
implementation.

8. From the Solution Explorer, right-click the Controllers folder and select the
Add ➤ Controller link.

9. in the Add Controller dialog box, enter the name HomeController and make sure the
“Empty MVC controller” template is selected as shown in Figure 7-5.

Figure 7-4. Adding the Index view

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

151

10. From the Solution Explorer, right-click the Chapter7 project and select the
Add ➤ new Folder links. Enter the name Images.

11. using windows Explorer, copy the images from the Chapter4 project to the
Chapter7\images folder. (There should be 14 images in this folder.)

12. From the Solution Explorer, right-click the images folder and select the
Add ➤ Existing item links. in the Add Existing item dialog box, navigate to the
Chapter7\images folder, select all the images, and click the Add button.

13. open the Global.asax.cs file and find the Application_Start() method.
Remove the following line from this method. This will prevent the MVC framework
from including the default script and content files.

BundleConfig.RegisterBundles(BundleTable.Bundles);

14. Save your changes and select internet Explorer as the default browser. Press F5 to
debug the application. depending on what version of internet Explorer you will have
varying results.

Caution ■ i’m using iE 9; if you have a different version you might need to adjust some of the following instructions.

15. in internet Explorer, from the tools menu, select the developer Tools link. This
provides several features for analyzing the current web page.

Figure 7-4. Adding the Index view

Figure 7-5. Adding the Home controller

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

152

16. At the top of the tools pane, you can select the browser mode as shown in
Figure 7-6.

Figure 7-6. Selecting the browser mode

17. Select internet Explorer 7 for the browser mode and the page should look like
Figure 7-2. You can use the browser mode to see how your page will look in some of
the older versions of internet Explorer.

Making Some Simple Changes
There are a couple of really easy changes that will make the web page look much better. You’ll start with those
and then later I’ll show you some of the more involved solutions.

Using Modernizr
When supporting older browsers, the first thing you should do is employ the Modernizr open source JavaScript
library. This library performs two essential functions:

Detect the current browser’s available features and provide this information as queryable •	
properties. For example, in your JavaScript, you can place conditional logic like this:

if (!Modernizr.cssanimations) {
 alert("Your browser does not support CSS animation");
}

Provide shims to implement missing functionality. This includes the html5shim library •	
that allows you to style your content using the new elements such as header, footer, nav,
and aside.

Tip ■ For more information, check out the Modernizr web site at http://modernizr.com.

So let’s add the Modernizr library to your page and see what happens! The version of Modernizr that is
added to your MVC4 project is modernizr-2.0.6-devlopment-only.js. There are newer versions available from
the modernizr site but this will do fine for this exercise.

At the top of your Index.cshtml file, just after the DOCTYPE tag, add the following code:

<script src = "~/Scripts/modernizr-2.0.6-development-only.js" > </script>

http://modernizr.com

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

153

Press F5 to debug the application. In Internet Explorer, go to the developer’s tools and change the browser
mode to IE7 as I explained earlier. Your page should look like Figure 7-7.

Figure 7-7. The demo page with modernizr as viewed in IE 7

Resetting the Styles
Wow! You thought Modernizr was supposed to make the page look better, right. Well, it’s really not that bad; a
simple change will straighten things up.

It is generally a good idea to explicitly define default styles for basic things like margin, padding, and font
size rather than rely on the browser’s defaults. Remember from Chapter 4, any style attribute not explicitly
defined in your style sheet will revert to the browsers native style sheet. Since you can’t control the browser’s
default styles, it’s best to set these yourself. Typically these basic rules are placed in a separate style sheet that is
often referred to as a reset style sheet.

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

154

Tip ■ Here’s a good article on reset style sheets, with some links to publicly available styles
http://sixrevisions.com/css/css-tips/css-tip-1-resetting-your-styles-with-css-reset.

This is particularly important with HTML5 since it introduced a set of new elements types like nav and
aside. Older browsers do not know what these elements are and do not have any reasonable default styles for
them. The biggest problem is that the display attribute defaults to inline (placed side-by side) but the style
should be blocked (stacked vertically).

Add the following rule to the top of your style element:

/* Reset */
article, aside, footer, header, nav, section
{
 display:block;
}

Now press F5 to debug your application and switch to IE7 mode. Your page should now look like Figure 7-8.

Figure 7-8. The Demo page after resetting the styles

http://sixrevisions.com/css/css-tips/css-tip-1-resetting-your-styles-with-css-reset

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

155

Note ■ A shim is a thin object, often made of wood that is used to fill a gap between two objects. in this context the
term refers to a relatively small piece of code that fills in the gap between a browser’s current functionality and the full
HTMl5 specification. The term “shim” has been used in software development circles for a long time. The term polyfill
was introduced for referring to a browser-related shim. So, in this context, the two terms are synonymous.

Adding More Polyfills
Now you’re probably starting to feel a little better. With just two pretty easy changes (adding Modernizr and
resetting the styles), the page looks decent. However, upon closer inspection, there is a fairly long list of features
that are not working, including

Tables•	

Rounded corners•	

Gradient background fills•	

Striped articles•	

Animation•	

3D Transforms•	

Multiple-columns•	

Given a sufficient amount of patience and persistence (and of course time) you could probably implement
all of these features so that your page looks the same in both IE 7 and the latest version of Chrome. However, I
don’t recommend that you do that. Essentially, you should make sure your page works great on the latest HTML5
compliant browsers and works acceptably on older browsers. It doesn’t have to work great on every browser.
Consider the following:

Most users are not going to compare your site on a host of browsers and compare the •	
experience of each. Your page does not need to look identical in every browser.

If someone is using IE6, they are used to bad looking web sites. Implementing just a few •	
of these polyfills will probably make your page stand out as one of the better sites they’ve
visited.

HTML5 is supposed to make your job as web developer easier. However, if you try to •	
make every page work like native HTML5 on older browsers, you’ll be spending far more
time, not less.

For each feature that your page uses that is not natively supported by commonly used browsers, you have
the following options:

Fail – Simply display an error stating this browser does not support the necessary features •	
and offer some suggested browsers to use. For example, the primary purpose of the
sample site you created in Chapter 5 was to demonstrate how web workers are used. If the
page is viewed by a browser that doesn’t support web workers, there’s no point trying to
make the page work. Just fail!

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

156

Polyfill – Implement an alternate solution to provide the needed feature. This can •	
range from very simple solutions to rather complex. For example, if a gradient fill is not
supported you could just use a solid color fill, or you could provide a shim and implement
a gradient using JavaScript.

Ignore – Just leave the feature unimplemented. For example, you could ignore rounded •	
corners; in older browsers they’ll be square corners.

There are no hard and fast rules here; you’ll need to decide on a case-by-case basis which features are
important to you and how much time you’re willing to spend making them work on older browsers. In the rest
of this chapter I will demonstrate some techniques to backfill some of these features using mostly-open source
shims that are publicly available. I don’t want to leave you with the impression, however, that you have to backfill
every feature. In fact, several of these features for this demo, including multi-column support, 3D transforms, and
animation will be ignored as they are just not that important.

Tip ■ There are a plethora of shims and polyfills available. This article provides a good reference if you’re looking
for something specific: https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills.
Keep in mind that these may not always work properly so test them and keep what works. Also, combining various
shims can create some interesting results, as the side effects from one can break another one.

Displaying Tables
As you test your page in several browsers, note the features that are not working correctly and then prioritize
them. In this case, the aside element should be alongside the main content, not at the end of the page. In my
opinion, this is the most critical issue and should therefore be addressed first.

Tip ■ Tables were first supported in iE8. if you change the browser mode to iE8, you’ll see the sidebar is alongside
the main content. So table support is only an issue for iE7 and older. You might consider simply ignoring the issue
and explain that your site works best with iE8 and newer. To see how many users that would affect, check out the
latest browsers’ stats at http://www.w3schools.com/browsers/browsers_stats.asp. According to these
statistics, that’s only about 2% of the total number of browsers in use. These statistics represent an overall usage;
you may have a specific target audience that can have different characteristics.

To support tables in IE6 and IE7, you’ll use a behavioral CSS extension, which allows you to embed a
JavaScript in a style sheet. An extension is invoked by adding a rule like this:

header
{
 behavior: url(customBehavior.htc);
}

The implementation is provided in an HTML component (HTC) file with the .htc extension. There are a few
things about using .htc files that you should be aware of.

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills
http://www.w3schools.com/browsers/browsers_stats.asp

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

157

In general, you can open an html file in a browser without using IIS. For example, you •	
could rename the Index.cshtml file in your Visual Studio project to Index.html and
simply open the file with Internet Explorer (or any browser) and the page would work
fine. However, .htc files are ignored if the page is not actually served up by a web server
such as IIS or Apache.

You may need to define the HTC content type on your web server. IIS and IIS Express both •	
support this by default but you may need to add this with Apache or other web servers.

Even though the •	 .htc file is typically referenced in a CSS file, the URL specified in the
behavior attribute must be relative to the location of the html document that invoked the
style sheet. If you put the .htc file in the Content folder (with all the other style sheets),
you’ll need to reference it with a relative path ~/Content/customBehavior.htc.

To display tables you will use an open-source HTC that can be downloaded from this site:
http://tanalin.com/en/projects/display-table-htc.

eXerCISe 7-2. SUppOrtING taBLeS

1. download the latest .zip file from this site: http://tanalin.com/en/projects/
display-table-htc. (The latest file as of this writing is display-table.htc_2011-
11-25.zip.) This file contains an uncompressed and a minimized version. Copy the
display-table.htc to the Content folder.

2. Right-click the Content folder and select the Add ➤ Existing item links. Browse to
the Content folder and select the display-table.htc file. Click the Add button to
load the file.

3. open the Index.cshtml and find the portion where the table is defined. Add
the code shown in bold from listing 7-1 to the existing style rules. This specifies
a vendor-prefixed version of the display attribute and invokes the
display-table.htc component.

Listing 7-1. Defining a new table

/* Setup a table for the content and sidebar */
#contentArea
{
 display: table;

 -dt-display: table;
 behavior: url(Content/display-table.htc);
}

#mainContent
{
 display: table-cell;

 -dt-display: table-cell;

 padding-right: 2px;

 behavior: url(Content/display-table.htc);
}

http://tanalin.com/en/projects/display-table-htc
http://tanalin.com/en/projects/display-table-htc
http://tanalin.com/en/projects/display-table-htc

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

158

aside
{
 display: table-cell;

 -dt-display: table-cell;

 width: 280px;

 behavior: url(Content/display-table.htc);

}

4. Save your changes and press F5 to debug the application. Change the browser
mode to iE7 and you should now see a table setup as shown in Figure 7-9.

Figure 7-9. The table support added in IE7

Note ■ The display-table.htc file uses its own vendor-specific prefix. So you needed to add the –dt-display
attribute.

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

159

5. now there’s one more thing that needs to be fixed. You’ll notice that the aside
element is missing some styles such as background-color and padding. This is a
side-effect of the CSS extension. To create the table in your page, this code created
real table elements for you such as < tr > and < td>. So once the JavaScript runs, the
aside element is removed and replaced with rows and cells. Since there is no aside
element anymore you can’t use an element selector to style it. However, there is only
one aside element in your source document and it has the sidebar id attribute.

6. Close the browser, which will stop the debugger.

7. Replace all aside selectors with #sidebar., including the one you just added. There
are several places in the Index.cshtml file that you’ll need to change.

8. Press F5 to run the application and change the browser mode to iE7. The sidebar
should now have a background color and there is also padding around the text.

Adding Rounded Corners
If the browser does not support rounded corners, you can easily add them thanks to a nifty jQuery plug-in written
by Dave Methvin. In addition to rounded corners, this plugin can also create a number of other patterns, which
are displayed on their web site (http://jquery.malsup.com/corner). This is provided through an open-source
license so you can freely download and use it in your application.

You’ll use this plugin to implement rounded corners for the nav and footer elements. However, this
should only be done if rounded corners are not supported natively. So the first question is how do you know
if the browser supports rounded corners? The answer again is: Modernizer. Adding a statement like this will
conditionally call the custom method:

if (!Modernizr.borderradius)

Tip ■ i will show you another technique for rounding corners later in this chapter.

eXerCISe 7-3. aDDING rOUNDeD COrNerS

1. go to the web site referenced above (http://jquery.malsup.com/corner). Click
the jquery.corner.js link near the top of the page. This will download the latest
version. Save the file in your Scripts folder.

2. From the Solution Explorer, right-click the Scripts folder and select the Add ➤ Existing
item links. navigate to the Chapter7\Scripts folder and select the jquery.corner.js file.

3. This function is based on jQuery so you’ll also need to reference that in your page.
The jQuery script is already included in the Script folder.

4. open the Index.cshtml file and add these references near the top of the page, just
after the modernizr script:

<script src = "~/Scripts/jquery-1.6.2.js" > </script>
<script src = "~/Scripts/jquery.corner.js" > </script>

http://jquery.malsup.com/corner
http://jquery.malsup.com/corner

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

160

5. now invoke this by adding this script element at the end of the Index.cshtml file,
after the footer element and just before the body closing tag.

<script>
if (!Modernizr.borderradius) {
$("nav").corner("15px");
$("footer").corner("25px");
}
</script>

6. This code uses the jQuery selector to find the nav and footer elements and calls
the corner() method specifying the radius.

7. Save your changes and press F5 to debug your application. Switch the browser
mode to iE7 and your page should look like Figure 7-10.

Figure 7-10. The Demo page with rounded corners

Adding Gradients
Next, you’ll add a gradient background to the intro section using another open source solution from PIE
(progressive internet explorer). This is implemented as an HTC file just like the table support that you added
earlier. Once you have downloaded the component, you simply invoke it using the behavior property of your style
sheet rule.

eXerCISe 7-4. aDDING BaCKGrOUND GraDIeNtS

1. go to the http://css3pie.com site and click the download button. This will
download a PIE-1.0.0.zip file (you may see a different version number; just
download the latest version).

2. There are several files inside this .zip file. Copy the PIE.htc file to your Chapter7\
Content folder.

http://css3pie.com

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

161

3. From the Solution Explorer, right-click the Content folder and select the
Add ➤ Existing item links. navigate to the Content folder and select the PIE.htc file.

4. open the Index.cshtml file and find where the rules for the .intro class are
defined. Add the following lines shown in bold. This code will add another vendor-
prefixed attribute (-pie-) and then invoke the PiE component using the behavior
property.

/* Gradients */
.intro
{
 border: 1px solid #999999;
 text-align:left;
 margin-top: 6px;
 padding-left: 15px;
 border-radius:25px;
 background-image: -o-linear-gradient(45deg, #ffffff, #6699cc);
 background-image: -webkit-linear-gradient(45deg, #ffffff, #6699cc);
 background-image: linear-gradient(45deg, #ffffff, #6699cc);

 -pie-background: linear-gradient(45deg, #ffffff, #6699cc);
 behavior: url(Content/PIE.htc);
}

5. Save your changes, press F5 to debug the application, and switch the browser
mode to iE7. You should now have a linear gradient that looks just like the native
gradient. You might have also noticed that the corners are rounded as well. The PIE.
htc shim also supports rounded corners and took care of that for you. However, you
probably noticed that the padding on top of the h1 text is missing. The height was
not calculated correctly. That’s an easy thing to fix.

Note ■ PiE is designed to backfill several CSS3 features, which are listed in this article:
http://css3pie.com/documentation/supported-css3-features. it will attempt to address any of these features
that are included in the element that references the PIE.htc shim. However, it does not do anything with features
that are supported natively.

6. Close the browser, which will stop the debugger.

7. open the Index.cshtml file and add the following rule to the style element:

 h1
 {
 padding: 20px 0;
 }

8. Save your changes, press F5, and then select the iE7 browser mode. The page
should now look like Figure 7-11.

http://css3pie.com/documentation/supported-css3-features

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

162

Striping the Book List
Recall from Chapter 4 that the list of books was styled using an :nth-child selector so alternating elements
would have a different background. In older browsers that do not support this, you can accomplish this the
old-fashioned way, by iterating the list in JavaScript and changing the style on alternating elements.

The trick, however, is determining if the :nth-child selector, is available as Modernizr does not provide this.

Note ■ The solution provided here is based on a post by lea Verou. i had to adjust this to work with iE, however.
For more details, check out the article at
http://lea.verou.me/2011/07/detecting-css-selectors-support-my-jsconf-eu-talk/.

eXerCISe 7-5. StrIpING the BOOK LISt

1. open the Index.cshtml file and add the following code to the script element at
the bottom of the file after the existing function:

function supportsSelector(selector) {
 var el = document.createElement('div');
 el.innerHTML = ['­', ' < style > ', selector, '{}', '</style > '].join('');
 try
 {
 el = document.body.appendChild(el);
 var style = el.getElementsByTagName('style')[0],
 ret = !!(style.sheet.rules || style.sheet.cssRules)[0];
 }

Figure 7-11. The Demo page with a gradient background

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

163

 catch(e){
 ret = false;
 }
 document.body.removeChild(el);
 return ret;
}

2. This code creates a new style element and adds the selector in question. it then
checks to see if it is actually there. if not, the selector is not supported. This is done
in a try/catch block in case older browsers do not support either the style.
sheet.rules or style.sheet.cssRules properties.

3. now with our handy supportsSelector() function, you can implement the manual
striping technique. Add the following code to the same script element:

if (!supportsSelector(":nth-child(2n + 0)")) {
 var titles = document.getElementById("titles");
 var articles = titles.getElementsByTagName("article");
 for (var i = 0; i < articles.length; i++) {
 var title = articles[i];
 if (i % 2) {
 title.style.background = "#6699cc";
 title.style.border = "1px solid #c0c0c0";
 }
 else {
 title.style.background = "#c0c0c0";
 title.style.border = "1px solid #6699cc";
 }
 }
}

4. if the :nth-child selector is not supported, this code gets the #titles element
using the getElementById() function. This is the section element that contains
a series of article elements; one for each book. it then gets an array of child
article elements using the getElementsByTagName() function. note that this
method is invoked on the titles object and not the document object. once it has
the array of elements, the code simply iterates the array, modifying the background
and border properties.

5. Save your changes and press F5 to debug the application. Change the browser
mode to iE7 and the page should look like Figure 7-12.

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

164

Figure 7-12. The aside element with manual striping

Hiding Unsupported Elements
As stated earlier in the chapter, for each nonsupported feature you need to decide if this is a deal-breaker and the
page just needs to fail, if you want to polyfill that feature, or simply ignore it on older browsers. From the initial
list of unsupported changes, there are three left that you have not implemented yet:

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

165

CSS Animation•	

3D Transforms•	

Multiple columns•	

You can fairly easily implement animation by using JavaScript to change the background image as a timer
expires. That’s the way it was normally done before we had CSS animation. Implementing a 3D transform in an
older browser, however, just isn’t going to work. I would categorize both of these as nice to have but not really
worth the trouble so we’ll leave these features out if the browser doesn’t support them.

The one feature that would be nice to emulate is the multiple column support. There are shims available
for this such as the one described in this article: http://www.csscripting.com/css-multi-column. And I guess
they must work in some simple scenarios but they failed miserably with this page. Perhaps with enough time
and patience I could get something to work but this is one of those hard decisions. Is it worth the effort? In some
unique circumstances it might be but, in general, you probably shouldn’t spend 80% of your time on a nice-to-
have feature that will only affect a few percent of the expected audience.

One thing you should consider, though, is hiding elements that aren’t functional. The range control, for
instance, doesn’t do anything and it’s not even supported so it just looks like a textbox. You should hide that.
Also, the now static picture of the moon isn’t very interesting either. So you’ll hide these elements. The range
control is hidden by setting its visibility attribute to hidden. The div that contains the moon image needs to be
shrunk down to 0px so it doesn’t take up space. (You could also set the display property to None – either method
accomplishes the same thing.)

eXerCISe 7-6. hIDING eLeMeNtS

1. First, you’ll need to assign an id attribute to the range control so it can be more
easily selected in JavaScript. Add the code shown in bold to the input element:

<div class="rotateContainer">
 <p > This is really cool...</p>
 <img class="rotate" id = "phone"
 src="images/phonebooth.jpg"
 alt="phonebooth" />
 <input type="range" min="-180" max="180" step="18"
 value="0" onchange="rotateImage(this.value)"
 id = "rotateDegrees" />

2. Then add the following code to the script element at the bottom of the Index.
cshtml file:

if (!Modernizr.csstransforms3d) {
 document.getElementById("rotateDegrees").style.visibility = "hidden";
}

if (!Modernizr.cssanimations) {
 document.getElementById("moon").style.width = "0px";
 document.getElementById("moon").style.height = "0px";
}

http://www.csscripting.com/css-multi-column

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

166

4. Finally, after all this work, you should try the page in a browser that supports all
these features to make sure it still looks great there. The final version in Chrome
should look like Figure 7-14.

Figure 7-13. The final Demo page as seen in IE7

3. This code simply hides the range control if 3d transforms are not supported and
shrinks the moon div if CSS animations are not supported. Press F5 to debug the
application and switch the browser mode to iE7. The final web page should look like
Figure 7-13.

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

167

Tip ■ The source code download contains the complete Index.cshtml file. Refer to this if there are any questions
about exactly how or where a change should be made.

Summary
In this chapter, I showed you some techniques for making your web page look great even with older browsers that
do not support the new HTML5 features. These techniques include:

Using Modernizr for feature detection and basic element support•	

Resetting the styles for elements not supported by the browser•	

Figure 7-14. The final Demo page as seen in Chrome

CHAPTER 7 ■ SuPPoRTing oldER BRowSERS

168

Displaying tables•	

Adding rounded corners•	

Supporting gradient background images•	

Manually striping a list•	

Hiding unsupported elements•	

For every unsupported feature you’ll need to decide if:

The feature is critical to the page (and if so the page should fail)•	

The feature can be easily polyfilled•	

The feature can be ignored•	

This is a bit of a balancing act because you want the page to look good in all browsers but you don’t want to
spend an excessive amount of time supporting every possible browser.

The final implementation of the demo page struck a good compromise. The site looks great and functions
properly. While a few of the new HTML5 features are omitted, overall it’s still a great site considering the browser
support and the additional work was minimal.

In the next chapter, I’ll show you how to use the new Audio and Video elements that were introduced
in HTML5.

169

Chapter 8

Audio and Video

In this chapter, I will demonstrate the new audio and video elements introduced with HTML5. The two elements
are identical in terms of their attributes and the methods and events that they support. I will spend most of
the chapter discussing and demonstrating the audio element but just keep this in the back of your mind that
everything I’m showing you applies to video as well. There are some exercises at the end of the chapter that will
apply these same techniques to the video element so you can see this for yourself.

I will demonstrate how to add audio and video elements using the native controls provided by the browser.
This approach makes embedding audio and video in your web site a trivial matter of adding some simple
markup. If you want to write your own controls, however, this chapter will also demonstrate how to do that and to
wire up all the events with JavaScript.

Because each browser supports different media formats, to make your site cross-browser compatible,
you’ll need to encode multiple versions of your media files. The audio and video elements can support multiple
sources so each browser can chose the appropriate version to use. I’ll also show you how you can use a couple of
free utilities that will convert your audio and video files to the necessary formats.

Note ■ The video element supports three additional attributes (width, height, and poster) that the audio
element doesn’t. I will explain these later in the chapter.

Using the Audio Element
I’ll start with a pretty simple exercise of adding an audio element to a web page. Then you’ll support multiple
formats and try your site on various bowsers.

Creating the Sample Project
In this chapter, you’ll create a web site project that you’ll use to try out the audio and video HTML5 elements.
You’ll create an empty web site now, and then progressively add features to it throughout the chapter.

eXerCISe 8-1. CreatING aN eMptY prOJeCt

Start Visual Studio 2012 and select the New Project link. Select the MVC4 project 1.
template and enter Chapter8 for the name, as shown in Figure 8-1.

CHAPTER 8 ■ AudIo ANd VIdEo

170

Figure 8-1. Creating the Chapter8 project

In the second dialog select the Basic project template and make sure the Razor view 2.
engine is selected.

Right-click the Controller folder in the Solution Explorer and select the 3.
Add ➤ Controller links. Enter the name HomeController and select the Empty MVC
Controller template. Click the Add button to create the controller.

Right-click the Views folder and select the Add 4. ➤ New Folder links. Enter the name
Home.

Right-click the new Home folder and select the Add 5. ➤ View links. In the Add View
dialog box, enter the name Index, make sure the Razor view engine is selected, and
unselect all the check boxes as shown in Figure 8-2.

http://dx.doi.org/10.1007/978-1-4302-4638-1_8

CHAPTER 8 ■ AudIo ANd VIdEo

171

Figure 8-2. Adding the Index view

In the Solution Explorer, right-click the Chapter6. 8 project, and select the Add ➤ New
Folder links. Enter the name Media.

You’ll need an MP3 file to use as a sample audio clip. The file I’m using is 7.
copyrighted so I can’t include it with the source code. You should be able to find one
on your computer or download one off the internet. You can also rip a Cd through
Windows Media Player and select MP3 as the format.

drag the MP3 file from Windows Explorer to the Chapter8. 8\Media folder in Visual
Studio. Make sure you drop it onto the Solution Explorer in Visual Studio so it will
also be added to the project.

open the 9. Index.cshtml file. In the empty div that was created by the project
template, enter < audio src = and you should see a link that you can use to select
the source from a file in your project, as shown in Figure 8-3.

CHAPTER 8 ■ AudIo ANd VIdEo

172

double-click the Pick uRL link. In the Select Project Item dialog box, browse to the 10.
Media folder and select the audio clip as shown in Figure 8-4. Click oK to continue.

Figure 8-3. Using a the link to select the source

Figure 8-4. Selecting the audio clip

Enter the 11. autoplay attribute and close the audio element. Add text inside the audio
element like this:

<body>
 <div>
 <audio src = "~/Media/Linus and Lucy.mp3" autoplay>
 <p > HTML5 audio is not supported on your browser</p>
 </audio>
 </div>
</body>

Save your changes and make sure Internet Explorer is chosen as your default 12.
browser for debugging. Press F5 to debug your application.

CHAPTER 8 ■ AudIo ANd VIdEo

173

once the page has loaded, your audio clip should start playing. The page, however, 13.
will be blank.

Press F12 to open the developer tools pane, if not already opened. Change the 14.
browser mode to IE8. The music will stop and you’ll see the “HTML5 audio is not
supported on your browser” text displayed.

This first exercise demonstrated the basic use of the audio element. You simply enter the src attribute,
which specifies the URL of the audio file. The content inside the audio element is used when the browser does
not support the audio element. Since IE8 does not support the audio element, the text included in the p tag is
displayed instead. You can take advantage of this to simply display a message as you did here. However, you
could use this to provide a link to download the file or use a plugin to implement a fallback solution.

Using the Native Controls
In terms of the UI, there are basically three options:

No controls – the audio plays but there are no controls available to the user. The clip can •	
be started automatically when the page is loaded using the autoplay attribute. You can
also start, pause, and stop the audio clip using JavaScript.

Native controls – the browser provides controls for the user to play, pause, and stop the •	
audio clip and control the volume.

Custom controls – The page provides custom controls that interact with the •	 audio
element through JavaScript.

To enable the native control simply add the controls attribute like this:

<audio src = "~/Media/Linus and Lucy.mp3" autoplay controls>

Press F5 to debug the application and the native controls should appear similar to Figure 8-5.

Figure 8-5. Displaying the native audio controls in Internet Explorer

In Opera, the controls look like Figure 8-6.

Figure 8-6. The audio controls in Opera

In Chrome the controls look like Figure 8-7.

Figure 8-7. The audio controls in Chrome

CHAPTER 8 ■ AudIo ANd VIdEo

174

In Firefox, the controls look like Figure 8-8.

Figure 8-9. The audio control in Safari

Figure 8-8. The audio controls in Firefox

In Safari, the audio controls look like Figure 8-9.

As you can see, the controls are styled very differently in each browser. With native controls you have very
little control over how the audio controls are displayed. You can change the width by setting the style attribute,
which will stretch the progress bar. Changing the height will only add white space on top of the control as shown
in Figure 8-10.

Figure 8-10. Extending the size of the native controls

Caution ■ In IE9, if you set the height attribute less than 45px, the entire control will be hidden.

Reviewing Browser Support
If you tried to open your web page in one of the other browsers, you probably found that they didn’t work. While
all major browsers support the audio element, they don’t all support the same audio formats. Fortunately all
major vendors support one of two audio codecs, MP3 or Vorbis. Table 8-1 indicates the codecs that are supported
by each browser.

CHAPTER 8 ■ AudIo ANd VIdEo

175

Table 8-1. Audio codec support

Browser MP3 Vorbis

IE 9 Yes No

Firefox 4 No Yes

Chrome 6 Yes Yes

Safari 5 Yes No

Opera 10.6 No Yes

As you can see from this table, no single format is supported by all browsers. However, if you support both
MP3 and Vorbis, your page will work in almost all browsers (IE8 and below do not support the audio element). To
do this you’ll need to first encode your audio clip in both formats. Fortunately, there are several free utilities that
you can use to convert from one format to another.

The audio element allows you to specify multiple sources and the browser will iterate through the sources
until it finds one that it supports. Instead of using a src attribute, you’ll provide one or more source elements
within the audio element, like this:

<audio autoplay controls>
 <source src = "~/Media/Linus and Lucy.ogg" />
 <source src = "~/Media/Linus and Lucy.mp3" />
 <p > HTML5 audio is not supported on your browser</p>
</audio>

The browser will use the first source that is supports so if it matters to you, the preferred file should be listed
first. For example, Chrome supports both formats. If you prefer that the MP3 file be used, you should list it before
the .ogg file.

While just listing the sources like this will work, the browser must download the file and open it to see if it is
able to play it. That’s not very efficient to download a fairly large file only to find out it can’t be used. You should
also include the type attribute, which specifies the type of resource this is. The browser can then determine if the
file is supported by looking at the markup. The type attribute specifies the MIME format like this:

<source src = "~/Media/Linus and Lucy.ogg" type = "audio/ogg" />
<source src = "~/Media/Linus and Lucy.mp3" type = "audio/mp3" />

You can also specify the codec in the type attribute like this:

<source src = "~/Media/Linus and Lucy.ogg" type = 'audio/ogg; codecs = "vorbis"' />

Notice that the codecs value(s) are included within double-quotes so you’ll need to use single-quotes
around the type attribute value. Now you’ll modify your web page so it will work on other browsers as well.

Caution ■ In Safari, the audio and video support is implemented by the QuickTime plugin. If you don’t have this
installed, you’ll see the “HTML5 audio is not supported on your browser” text displayed. You can install QuickTime
from this site: http://www.apple.com/quicktime. The instructions did not say so, but I’ve found that I needed
to reboot my machine before this worked properly. I also found a few quirks when testing on Safari.

http://www.apple.com/quicktime

CHAPTER 8 ■ AudIo ANd VIdEo

176

eXerCISe 8-2. aDDING MULtIpLe SOUrCeS

1. Create a vorbis encoded audio file of your sample audio clip that has the .ogg
extension and copy this to the Chapter8\Media folder.

Tip ■ I used a utility called XMedia Recode that you can download at
http://www.xmedia-recode.de/download.html. You can use this utility to format both audio and video files.
After you have installed this application, run it, click the open File button in the ribbon, and select the mp3 file. In
the Format tab, select the oGG format. Notice the File Extension is automatically set to .ogg and the Codec is set to
Vorbis. Click the Add Job button in the ribbon. Select the Jobs tab to see the job that has been defined to convert this
file. At the bottom of the window you can specify the location that the new file should be saved in. Click the Browse
button and navigate to the Chapter8\Media folder. Finally, click the Encode button to start the job. A dialog will be
displayed to show the progress of the job.

2. In the Solution Explorer, right-click the Media folder and select the Add ➤ Existing
Item links. Navigate to the Chapter8\Media folder and select the .ogg file that you
just encoded.

3. IIS Express already recognizes the .mp3 extension but you’ll need to add the
.ogg extension to the web.config file. open the web.config file in the root folder
(not the one in the Views sub-folder). Add the staticContent section to the
system.webServer section as shown below. This will enable the .ogg files as well
as the video formats that you will be using later in the chapter.

<system.webServer>
. . .

 <staticContent>
 <mimeMap fileExtension = ".ogv" mimeType = "video/ogg" />
 <mimeMap fileExtension = ".ogg" mimeType = "audio/ogg" />
 <mimeMap fileExtension = ".mp4" mimeType = "video/mp4" />
 <mimeMap fileExtension = ".webm" mimeType = "video/webm" />
 </staticContent>

</system.webServer>

4. In the Index.cshtml file, replace the audio element with the following code:

<audio autoplay controls >
 <source src = "~/Media/Linus and Lucy.ogg" type = "audio/ogg" />
 <source src = "~/Media/Linus and Lucy.mp3" type = "audio/mp3" />
 <p > HTML5 audio is not supported on your browser</p>
</audio>

5. Save your changes and press F5 to debug the application. open up the page using
several browsers and verify that the controls are displayed and the audio starts
playing when the page is loaded.

http://www.xmedia-recode.de/download.html

CHAPTER 8 ■ AudIo ANd VIdEo

177

Building Your Own Controls
All of the DOM elements and events are available in JavaScript so it’s a fairly straightforward process to create
your own controls to work with the audio element. However, there are several facets that you’ll need to control so
it’s not a trivial exercise. There are three areas that you’ll need to address:

Play/Pause•	

Displaying progress and fast-forwarding/rewinding•	

Adjust volume/mute•	

You will need to respond to events from both the custom controls as well as the audio element. In this
exercise, you’ll start by adding all the necessary controls to the page. Then I’ll show you how to implement the
event handlers that are needed for each area. The input elements that you’ll use to control the audio element are:

Play/Pause button – the label will toggle between “Play” and “Pause” depending on the •	
state of the audio elements.

Seek – this is a •	 range control (introduced in Chapters 2 and 3) that will serve both to show
the progress and allow the user to seek a specific location.

Duration – this is a •	 span element that displays both the current location and the total
duration of the audio file.

Mute button – the label will toggle between “Mute” and “Unmute”.•	

Volume – this is another •	 range control that is used to specify the volume level.

The audio events that you’ll provide handlers for include:

•	 onplay – raised when the audio is started

•	 onpause – raised when the audio is paused

•	 onended – raised when the audio has completed

•	 ontimeupdate – raised periodically as the audio clip is played

•	 ondurationchanged – raised when the duration changes, which occurs when the file is
loaded

•	 onvolumnechanged – raised when the volume level changes or the mute property has
changed

Adding the Custom Controls
You’ll start by adding the custom controls and defining the event handlers that you’ll need. Then I’ll explain the
JavaScript that you’ll use to implement them.

eXerCISe 8-3. aDDING CUStOM CONtrOLS

1. open the Index.cshtml file and remove the controls attribute. This will cause the
audio element to be hidden.

2. Add the following div after the audio element. This will include all the input
elements that you’ll need to control the audio.

CHAPTER 8 ■ AudIo ANd VIdEo

178

<div id = "audioControls">
 <input type = "button" value = "Play" id = "play" onclick = "togglePlay()" />
 <input type = "range" id = "audioSeek" onchange = "seekAudio()" />

 <input type = "button" id = "mute" value = "Mute" onclick = "toggleMute()" />
 <input type = "range" id = "volume" min = "0" max = "1" step = "any"
 onchange = "setVolume()" />
</div>

3. Modify the audio element to add the necessary event handlers by adding the code
shown in bold. This also defines the id attributes that you’ll use to access the audio
and source elements.

<audio id = "audio" autoplay
 onplay = "updatePlayPause()"
 onpause = "updatePlayPause()"
 onended = "endAudio()"
 ontimeupdate = "updateSeek()"
 ondurationchange = "setupSeek()"
 onvolumechange = "updateMute()" >

 <source src = "~/Media/Linus and Lucy.ogg" type = "audio/ogg" id = "oggSource" />
 <source src = "~/Media/Linus and Lucy.mp3" type = "audio/mp3" id = "mp3Source" />
 <p > HTML5 audio is not supported on your browser</p>
</audio>

4. In Visual Studio, change the debug browser to use opera, as this supports the
range controls that you are using. (You could also use Chrome if you prefer.) Save
your changes and press F5 to debug the application. The page should look like
Figure 8-11.

Figure 8-11. The custom audio controls

5. Close the browser and stop the debugger.

Implementing the Event Handlers
Now you’re ready to implement the event handlers. I’ll group these around the three main areas (play, seek, and
volume) and explain one section at a time.

Supporting Play and Pause
Add the code shown in Listing 8-1 after the outer div, just before the end of the body element.

CHAPTER 8 ■ AudIo ANd VIdEo

179

Listing 8-1. The initial script element

<script type = "text/javascript">

var audio = document.getElementById("audio");

function setupSeek() {
 var seek = document.getElementById("audioSeek");
 seek.min = 0;
 seek.max = audio.duration;
 seek.value = 0;
 var duration = document.getElementById("duration");
 duration.innerHTML = "0/" + Math.round(audio.duration);
}

function togglePlay() {
 if (audio.paused || audio.ended) {
 audio.play();
 }
 else {
 audio.pause();
 }
}

function updatePlayPause() {
 var play = document.getElementById("play");
 if (audio.paused || audio.ended) {
 play.value = "Play";
 }
 else {
 play.value = "Pause";
 }
}

function endAudio() {
 document.getElementById("play").value = "Play";
 document.getElementById("audioSeek").value = 0;
 document.getElementById("duration").innerHTML = "0/" + Math.round(audio.duration);
}

</script>

This code first declares the audio variable that references the audio element. Since this is used by most of
the functions, it’s more efficient to get it once and store it in a variable that all functions can access.

The first method, setupSeek() is called in response to the ondurationchange event. When the page is first
loaded, it doesn’t know how long the audio clip is until the file is opened and the metadata is loaded. As soon
as the metadata has been loaded, the duration can be determined and the event is raised. The setupSeek()
function uses the duration property to set the max attribute of the audioSeek range control. It is also used to
set the initial value of the span element. The duration property is expressed in seconds. Notice that the
Math.round() function is called to round this value to the nearest integer.

The togglePlay() method is called when the user clicks on the Play button. If the current state of the
audio element is paused or ended, it calls the play() function. Otherwise it calls the pause() method. The
updatePlayPause() method sets the label of the play button. If the audio is currently playing, the text is changed
to “Pause” since that will be the result if the button is clicked. Otherwise, the text is set to “Play”.

CHAPTER 8 ■ AudIo ANd VIdEo

180

Tip■ The togglePlay() function responds to the play button being clicked and the updatePlayPause() function
responds to the audio element being started or paused. When the button is clicked, the togglePlay() method will
change the state of the audio element. This state change will raise either an onplay or onpause event, which are
both handled by the updatePlayPause() function. This is done this way because it is possible that the audio can be
played or paused through means other than clicking the play button. For example, if you left the controls attribute,
you would have both the native controls as well as the custom controls. Responding to the onplay and onpause
events ensure the button label is always correct regardless of how the audio element is manipulated.

Finally, the endAudio() function is called when the audio has finished playing. This performs some
synchronization including setting the button label, and initializing the range and span controls.

Supporting Progress and Seek
Next, add the functions shown in Listing 8-2 to the same script element.

Listing 8-2. Functions to support the range control

function seekAudio() {
 var seek = document.getElementById("audioSeek");
 audio.currentTime = seek.value;
}

function updateSeek() {
 var seek = document.getElementById("audioSeek");
 seek.value = audio.currentTime;
 var duration = document.getElementById("duration");
 duration.innerHTML = Math.round(audio.currentTime) + "/" + Math.round(audio.duration);
}

Just like with the play button, there is one event handler, seekAudio(), that responds to the input element
and a separate event handler, updateSeek(), that responds to the audio element. The seekAudio() function is
called when the user moves the slider on the range control. It simply sets the currentTime property using the
value selected by the range control.

The updateSeek() function is called when the ontimeupdate event is raised by the audio element. This
updates the range control to reflect the current position within the file. It also updates the span control to show
the actual position (in seconds). Again, the currentTime property is rounded to the nearest integer.

Controlling the Volume
The last set of functions is used to support both the volume control and the mute button. Add the code shown in
Listing 8-3 to the same script element that you have been using.

Listing 8-3. Controlling the volume

function toggleMute() {
 audio.muted = !audio.muted;
}

CHAPTER 8 ■ AudIo ANd VIdEo

181

function updateMute() {
 var mute = document.getElementById("mute");
 if (audio.muted) {
 mute.value = "Unmute";
 }
 else {
 mute.value = "Mute";
 }
}

function setVolume() {
 var volume = document.getElementById("volume");
 audio.volume = volume.value;
}

As its name suggests, the toggleMute() function toggles the muted property of the audio element. When this
is changed, the onvolumechange event is raised by the audio element. The updateMute() function responds to
that event and sets the button label according to the current value of the muted property. Again, doing it this way
ensures the button label is correct.

Finally, the setVolume() function is called when the user moves the slider on the second range control. It
sets the volume property of the audio element to whatever was selected on the range control.

Note ■ The volume property has a value between 0 and 1. You could think of this as 0% and 100%. When you
defined the range control, the min attribute was set to 0 and max was set to 1, so the scale is correct. You can simply
set the volume property using the range value. If you wanted to display the actual value of the volume property, just
convert it to a percentage.

Now you’re ready to try out your custom controls. Save your changes and press F5 to debug the application.
The page should look similar to Figure 8-12.

Figure 8-12. The completed custom controls

You did not provide any style rules so the controls are displayed using default styles. But now you have
access to the individual controls so you can arrange and style them anyway you want (refer to Chapter 4 for using
CSS styles).

Changing the Audio Source
In this example, the audio source was defined in the markup. However, you can easily control this using
JavaScript. If you’re using a single src attribute as you did initially, you just need to change this attribute to
reference a different file. However, if you’re using multiple source elements you’ll need to update all of these and
then call the load() method.

To demonstrate this, when the clip has finished you’ll change the source to a second audio clip and play that
one as well.

CHAPTER 8 ■ AudIo ANd VIdEo

182

eXerCISe 8-4. ChaNGING the aUDIO SOUrCe

1. Close the browser and stop the debugger.

2. Create another audio file in both .mp3 and .ogg formats and copy these to the
Chapter8\Media folder.

3. In the Solution Explorer, right-click the Media folder and select the Add ➤ Existing
Item links. Navigate to the Chapter8\Media folder and select both the .mp3 and .ogg
files that you just encoded.

4. open the Index.cshtml file. At the top of the existing script element, declare the
following variable. This will be used to keep track of how many songs were played.

var songCount = 0;

5. Add the following code shown in bold to the endAudio() function. If the audio clip
that just finished is the first one, the code will change the src attribute to reference
the second file. The file is then loaded and played. (Note, you’ll need to change these
filenames to use the actual files that you included in your project.)

function endAudio() {
 document.getElementById("play").value = "Play";
 document.getElementById("audioSeek").value = 0;
 document.getElementById("duration").innerHTML = "0/" + Math.
 round(audio.duration);

 if (++songCount < 2) {
 document.getElementById("oggSource").src = "/Media/Sample.ogg";
 document.getElementById("mp3Source").src = "/Media/Sample.mp3";
 audio.load();
 audio.play();
 }
}

6. Save your changes and press F5 to debug the application. The initial song should
start playing.

7. To save some time, fast-forward the clip to almost the end of the file and then wait
for it to finish. The second file should automatically start playing. You should notice
the span control was updated to show the duration of the second file.

Detecting Audio Support
You can programmatically determine if a source is supported by the browser by calling the canPlayType()
method on the audio element, passing in the type attribute. To demonstrate this, add the following code to the
beginning of the script block, after the audio variable declaration:

var sources = audio.getElementsByTagName("source");
for (var i = 0; i < sources.length; i++) {
 alert("[" + sources[i].type + "] - " + audio.canPlayType(sources[i].type));
}

CHAPTER 8 ■ AudIo ANd VIdEo

183

This code iterates through all of the source elements and displays a pop-up indicating if the type is
supported. Save your changes and try running this in Opera. You should see the results shown in Figures 8-13
and 8-14.

Figure 8-13. The canPlayType() results for audio/ogg

How do you like that? You ask a yes or no question and get back a “maybe” and no response. Well, as it turns
out, the canPlayType() function does not return either “no” or “yes”. Instead it returns either “maybe”, “probably”,
or a blank string. The blank string can be interpreted as a “no”. Let’s talk about “maybe” and “probably”.

The source file is a container that provides metadata about the media in addition to the actual data.
Specifying a Mime type like audio/ogg merely indicates the type of container but doesn’t explicitly state how
the data is encoded (what codec is used). If the browser supports that container type, canPlayType() returns
“maybe”. There’s no evidence to indicate it is not supported but can’t tell for certain that it is. If the container type
is not supported, like audio/mp3, a blank string is returned (meaning it is not supported).

Note ■ A blank string is used to indicate not supported because in JavaScript, a blank string is a falsy value
whereas “no” is a truthy value. So you can code if (canPlayType(type)) and only “maybe” and “probably” results
will be selected.

If you also specify the codec value and the codec is supported then you’ll get a "probably" returned. Change
the type attribute on the first source element to this. (Again, watch the single- and double-quotes as you did
earlier.)

type = 'audio/ogg; codecs = "vorbis"'

Figure 8-14. The canPlayType() results for audio/mp3

CHAPTER 8 ■ AudIo ANd VIdEo

184

“Probably” is as good as you’ll get, with the canPlayType() method anyway; you don’t ever get a “yes”. The
possible responses are illustrated in Table 8-2.

Figure 8-15. The canPlayType() results for audio/ogg; codecs’ ”vorbis”

Table 8-2. canPlayType() method responses

Codec Container Supported Container Not Supported

Undefined “maybe” Blank

Supported “probably” Blank

Not Supported Blank Blank

Understanding Video Formats
As I said at the beginning of the chapter, the video element works just like the audio element so everything you
have learned so far also applies to video.

Reviewing Browser Support
A video file usually contains both audio and video so all of the audio types and codecs that I covered earlier
still apply. In addition, the video portion can be encoded in various ways. Fortunately, the industry seems to be
narrowing down to three primary formats:

MP4 – (*.mp4) using H.264 video encoding and MP3 audio encoding•	

WebM – (*.webm) using VP8 video encoding and Vorbis audio encoding•	

Ogg – (*.ogv) using Theora video encoding and Vorbis audio encoding•	

Table 8-3 lists the formats that are supported by the major browsers

Table 8-3. Video/Audio codec support

Browser MP4 WebM Ogg

IE 9 Yes No No

Firefox 4 No Yes Yes

Chrome 6 Yes Yes Yes

Safari 5 Yes No No

Opera 10.6 No Yes Yes

Try running the application using Opera and the alert should look like Figure 8-15.

CHAPTER 8 ■ AudIo ANd VIdEo

185

As with audio, you can encode a video file in multiple formats and provide several sources so the browser
can select one that it supports. You can see from Table 8-2 that if you support MP4 plus either Ogg or WebM your
page will be compatible with most browsers.

Converting Video Formats
The first thing you’ll need is a sample video that is encoded in multiple formats. Windows provides a sample video
clip named Wildlife.wmv that I’ll use for the initial demo. To create an Ogg or WebM file, I recommend using the
Firefogg plugin for Firefox. It’s easy to install and use and I’ve found it to work well. If you prefer, there are other
utilities that will convert to these formats including the XMedia Recode application that I mentioned earlier.

Using Firefogg
To install Firefogg, start Firefox and then navigate to the Firefogg site (http://firefogg.org). If the plugin is not
installed the page provides a link to install it for you. Once this is installed, the Firefogg page should indicate that
as shown in Figure 8-16.

Figure 8-16. The main Firefogg page

Click the “Make web video” link. In the next page, click the Select File button and then select the
Wildlife.wmv file as the input source. The page will load the file and display the details. In the format dropdown
you can choose either the WebM or Ogg format. Select the WebM format. In the Preset dropdown you can choose
the size of the video. The original file is 1280 x 720 and you can use that or choose a smaller size.

Click the Encode button and then browse to the Chapter8\Media folder. Click the Save button to create the
new file.

Creating an MP4 File
Firefogg will not create an MP4 file, which makes sense because Firefox doesn’t support that format. The XMedia
Recode utility is a nice utility that supports lots of formats including MP4. However, I’ve found that these files

http://firefogg.org

CHAPTER 8 ■ AudIo ANd VIdEo

186

cannot be played by IE9. This is probably an IE bug because they work fine in Media Player and display properly
using the Safari browser.

The only utility I have found that works with IE9 is the Any Video Converter application. You can download
a free version at: http://www.any-video-converter.com/products/for_video_free. After you have installed it,
start the application and click the Add Video Files button and then browse to the Wildlife.wmv file. In the Output
profile dropdown, select the HTML5 Embed Video. Then select the HTML5 MP4 Movie option. The main window
should look like Figure 8-17.

Figure 8-17. The Any Video Converter application

Now here’s the critical part… click the Options button at the bottom-left corner. In the Options dialog box,
select the Video tab and then select the “Flatten and add faststart to mp4 files” check box as shown in Figure 8-18.
This is the option that will make the output file compatible with IE9. Click the OK button to save the options.

http://www.any-video-converter.com/products/for_video_free

CHAPTER 8 ■ AudIo ANd VIdEo

187

Figure 8-18. Selecting the faststart option

Finally, click the Encode Now button. This will create an HTML5 subfolder and create a file named
Wildlife_x264.mp4. Rename this to Wildlife.mp4 and move the file to the Chapter8\Media folder.

Downloading Sample Videos
If you don’t want to convert your own video files, you can download the Big Buck Bunny trailer from Microsoft
using this site: http://ie.microsoft.com/testdrive/graphics/videoformatsupport/default.html. This site
provides several versions of this video clip so you can see how various browsers display them.

Open this site using Internet Explorer. Right-click the H.264 baseline profile video and select the Save Video
As link. Browse to the Chapter8\Media folder and save the file as BigBuckBunny.mp4. Open the same site using
Chrome or Opera and right-click the WebM version. Select the Save Video As link and browse to the
Chapter8\Media folder. Save this as BigBuckBunny.webm.

Using the Video Element
Now that you have some video files to work with, you’ll add a video element to your application. You’ll add both
sources to support all the major browsers. In the first exercise, you’ll use the native controls and test it in several
browsers. Then, you’ll add custom controls that are implemented just like the audio controls.

Adding Video to the Demo Page
Adding video is a simple matter of adding the media files to your project and then adding some simple markup to
the page to play it.

j

http://ie.microsoft.com/testdrive/graphics/videoformatsupport/default.html

CHAPTER 8 ■ AudIo ANd VIdEo

188

eXerCISe 8-5. aDDING a VIDeO eLeMeNt

1. In the Solution Explorer, right-click the Media folder and select the Add ➤ Existing
Item links. Select both versions of either the Wildlife or BigBuckBunny video files.
I will be using the Wildlife files for this demo.

2. In the Index.cshtml file, remove the autoplay attribute from the audio element.
You will autoplay the video and removing this will keep them from both playing at
the same time.

3. Add the following markup, just after the div that contains the audio controls:

<video id = "video" autoplay controls loop>
 <source src = "~/Media/Wildlife.webm" type = "video/webm" />
 <source src = "~/Media/Wildlife.mp4" type = "video/mp4" />
 <p > HTML5 video is not supported on your browser</p>
</video>

 ■ Note You already added the Mime types for webm, mp4, and ogg to the web.config file earlier in this chapter.

4. Save your changes and press F5 to debug the application.

5. Try it out in several browsers to make sure the video can be played in each.

For the video element you included the autoplay, controls, and loop attributes. You already used the
autoplay and controls attributes when working with the audio element. The loop attribute will cause the video
to start over at the beginning when it finishes. This is also supported by the audio element.

Tip ■ The canPlayType() method that you used earlier on audio sources can also be used on video files. It works
the same way, either returning a blank string indicating the file is not supported, or a “maybe” or “probably” result.

Adding Custom Video Controls
Now you’ll add custom controls for the video element just like you did for the audio element. For this exercise I
will be using the Big Buck Bunny video files.

eXerCISe 8-6. aDDING CUStOM VIDeO CONtrOLS

1. Modify the markup in the Index.cshtml file by replacing the video element with
this:

<video id = "video"
 onplay = "updatePlayPauseVideo()"
 onpause = "updatePlayPauseVideo()"
 onended = "endVideo()"
 ontimeupdate = "updateSeekVideo()"

CHAPTER 8 ■ AudIo ANd VIdEo

189

 ondurationchange = "setupSeekVideo()"
 onvolumechange = "updateMuteVideo()">
 <source src = "~/Media/BigBuckBunny.webm" type = "video/webm" />
 <source src = "~/Media/BigBuckBunny.mp4" type = "video/mp4" />
 <p > HTML5 video is not supported on your browser</p>
</video>

2. Add a new div after the video element and enter the following markup for it:

<div id = "videoControls">
 <input type = "button" value = "Play" id = "playVideo" onclick = "togglePlayVideo()" />
 <input type = "range" id = "videoSeek" onchange = "seekVideo()" />

 <input type = "button" id = "muteVideo" value = "Mute" onclick = "toggleMuteVideo()" />
 <input type = "range" id = "volumeVideo" min = "0" max = "1" step = "any"
 onchange = "setVolumeVideo()" />
</div>

3. Add a new script element using the code shown in Listing 8-4. This code is
identical to the script used for the audio element except it uses the video element
and the video controls.

Listing 8-4. The JavaScript functions for the video controls

<script type = "text/javascript">
var video = document.getElementById("video");

function setupSeekVideo() {
 var seek = document.getElementById("videoSeek");
 seek.min = 0;
 seek.max = video.duration;
 seek.value = 0;
 var duration = document.getElementById("durationVideo");
 duration.innerHTML = "0/" + Math.round(video.duration);
}

function togglePlayVideo() {
 if (video.paused || video.ended) {
 video.play();
 }
 else {
 video.pause();
 }
}

function updatePlayPauseVideo() {
 var play = document.getElementById("playVideo");
 if (video.paused || video.ended) {
 play.value = "Play";
 }
 else {
 play.value = "Pause";
 }
}
function endVideo() {

CHAPTER 8 ■ AudIo ANd VIdEo

190

 document.getElementById("playVideo").value = "Play";
 document.getElementById("videoSeek").value = 0;
 document.getElementById("durationVideo").innerHTML = "0/"
 + Math.round(video.duration);
}

function seekVideo() {
 var seek = document.getElementById("videoSeek");
 video.currentTime = seek.value;
}

function updateSeekVideo() {
 var seek = document.getElementById("videoSeek");
 seek.value = video.currentTime;
 var duration = document.getElementById("durationVideo");
 duration.innerHTML = Math.round(video.currentTime) + "/"
 + Math.round(video.duration);
}

function toggleMuteVideo() {
 video.muted = !video.muted;
}

function updateMuteVideo() {
 var mute = document.getElementById("muteVideo");
 if (video.muted) {
 mute.value = "Unmute";
 }
 else {
 mute.value = "Mute";
 }
}

function setVolumeVideo() {
 var volume = document.getElementById("volumeVideo");
 video.volume = volume.value;
}

</script>

4. Save your changes and select opera as the debug browser. Press F5 to debug the
application. Try out the video controls which should look like Figure 8-19.

CHAPTER 8 ■ AudIo ANd VIdEo

191

Figure 8-19. The video element and controls

Adding a Poster
The poster attribute is supported by the video element (but not the audio element). Before the video is started
you can use the poster attribute to specify the image that is displayed. If this is not specified, the browser will
usually open the video and display the first frame. To add a poster, just include the image in your project and
reference it in the poster attribute.

There’s one thing to be careful about however. If you define a poster, the initial size of the video element
will be the size of the poster image. If this is not the same as the video, the size will change when the video starts
playing. You should either ensure the image is the same size or explicitly size the video element, which will
stretch (or shrink) the poster image to fit.

eXerCISe 8-7. aDDING a pOSter IMaGe

1. download an image file to use as the poster image. You can find images from this
site: http://wiki.creativecommons.org/Case_Studies/
Blender_Foundation. Save the picture in the Chapter8\Media folder and name it
BBB_Poster.png.

2. In the Solution Explorer, right-click the Media folder and select the Add ➤ Existing
Item link. Browse to the Chapter8\Media folder and select the BBB_Poster.png
image.

3. Modify the markup of the video element by adding the poster, width, and height
attributes shown in bold:

http://wiki.creativecommons.org/Case_Studies/Blender_Foundation
http://wiki.creativecommons.org/Case_Studies/Blender_Foundation

CHAPTER 8 ■ AudIo ANd VIdEo

192

<video id = "video" poster = "~/Media/BBB_Poster.png" width = "852" height = "480"

4. Save your changes and press F5 to start the application. You should now see the
poster image until the video is started as shown in Figure 8-20.

Figure 8-20. The video element showing the poster image

Summary
In this chapter you created a simple web page that demonstrates the features of the audio and video elements.
Cross-browser support is achieved by supplying the media files in multiple formats so each browser can use the
one that it supports. This is pretty easy to do and fairly efficient since the browser can usually determine from the
markup which file to download.

I showed you how to create your own controls for playing, pausing, and seeking within your audio and
video files. By wiring up some simple JavaScript event handlers, making a custom media player becomes a
straightforward exercise.

In the next chapter I’ll demonstrate how to take advantage of scalable vector graphics (SVG) in HTML5.

193

Chapter 9

Scalable Vector Graphics

In this chapter I’ll show you how to use scalable vector graphics (SVG) in an HTML5 web application using Visual
Studio, ASP.NET MVC, and SQL Server. There are a lot of really cool things that you can do with SVG. I’ve picked
out a fun demonstration that can be easily applied to many business applications. But first, let me give you an
introduction to what SVG is.

Most people think of a graphic element as some form of bitmap; an array of rows and columns of pixels, and
each pixel is assigned a specific color. In contrast, however, vector graphics express an image as a collection of
formulas. For example, draw a circle with a center at point x,y and a radius r. More complex images are defined
as a collection of graphic elements including circles, lines, and paths. While the rendering engine will ultimately
determine the specific pixels that need to be set, the image definition is based on a formula. This fundamental
difference provides two significant advantages to using vector graphics.

First, as its name suggests, vector graphics are scalable. If you want to expand the size of the image, the
rendering engine simply recalculates the formula based on the new size and there is no loss of clarity. If you
zoom in on a bitmap image you’ll quickly start to see graininess and the image becomes blurry.

Secondly, each element in the image can be manipulated independently. If there are several circles in the
image, for example, you can highlight one by simply changing the color of that image. Since vector graphics are
formula based, you can easily adjust the formula to modify the image. What makes this particularly useful is
that these elements can be styled using CSS, employing the powerful selectors and formatting capabilities that I
showed you in Chapter 4.

Introducing SVG
You’ll begin by creating a page that uses simple geometric shapes to draw a picture. Then you’ll apply styles to
these shapes using CSS. I’ll show you how to save these markup elements in an .svg image file. This image file
can be used just like other image files such as .jpg or .png files.

Creating the Sample Project
You’ll first need to create a Visual Studio project that is similar to ones you created previously. This will use the
Basic MVC4 project template.

eXerCISe 9-1. CreatING the VISUaL StUDIO prOJeCt

1. Start Visual Studio 2012. In the Start Page, click the New Project link.

2. In the New project dialog box, select the “ASP.NET MVC4 Web Application” template.
Enter the project name Chapter9 and select a location for this project as shown in
Figure 9-1.

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

194

3. In the next dialog box, select the basic template and make sure the Razor view
engine is selected. Click the oK button and the project will be created (this may take
a few seconds).

4. Right-click the Controller folder in the Solution Explorer and select the
Add ➤ Controller links. Enter the name HomeController and select the Empty
MVC Controller template. Click the Add button to create the controller.

5. Right-click the View folder and select the Add ➤ New Folder links. Enter the name
Home.

6. Right-click the new Home folder and select the Add ➤ View links. In the Add View
dialog box, enter the name Index, make sure the Razor view engine is selected,
unselect all the check boxes, and click the Add button.

Adding Some Simple Shapes
To demonstrate how an svg element works you’ll add some simple shapes like circles, rectangles, and lines. Most
images can be expressed as a collection of geometrical shapes as I will demonstrate here.

The default implementation of the Index.cshtml file contains an empty div in the body. Change this to
an svg element. Notice that as you change the opening tag, the ending tag is automatically changed. Add the
attributes shown in bold to the svg element:

<svg xmlns:svg = "http://www.w3.org/2000/svg" version = "1.2"
 width = "100px" height = "230px">
</svg>

Figure 9-1. Creating the Chapter9 project

http://www.w3.org/2000/svg

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

195

Note ■ The width and height attributes define the element’s intrinsic dimensions. In IE9, you can omit these and
the page will render correctly based on the actual space used. With other browsers, if the width and height are not
specified the image will be clipped to some default size.

Inside the svg element add the following elements. These are just simple shapes; mostly circle elements
with a rectangle (rect), line, and polygon.

<circle class="body" cx = "50" cy = "171" r = "40" />
<circle class="body" cx = "50" cy = "103" r = "30" />
<circle class="body" cx = "50" cy = "50" r = "25" />
<line class = "hat" x1 = "30" y1 = "25" x2 = "70" y2 = "25" />
<rect class = "hat" x = "40" y = "10" width = "20" height = "15" />
<circle class = "button" cx = "50" cy = "82" r = "4" />
<circle class = "button" cx = "50" cy = "100" r = "4" />
<circle class = "button" cx = "50" cy = "118" r = "4" />
<circle class = "eye" cx = "42" cy = "42" r = "4" />
<circle class = "eye" cx = "58" cy = "42" r = "4" />
<polygon class = "nose" points = "45,60 45,50 60,55" />

A circle is expressed as a center point, cx and cy, and a radius, r. A line is specified as a beginning point,
x1 and y1, and an endpoint, x2 and y2. A rectangle (rect) element is described by the top-left corner location,
x and y, a width, and a height. A polygon is defined by a set of points in the form of x1,y1 x2,y2 x3,y3. You
can specify any number of points. It is rendered by drawing a line segment between each of these points and a
line segment from the last point, back to the first point.

Save your changes and press F5 to view the web page, which should look like Figure 9-2.

Figure 9-2. The initial SVG image without styling

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

196

Adding Styles
The default style for these elements is a solid black fill and because some of these shapes are on top of each other,
several are not currently visible. Notice that you assigned a class attribute to each element. Now you’ll apply
styles for these elements using the class attribute. Add the code shown in Listing 9-1 inside the svg element, just
before the elements you added earlier.

Listing 9-1. Adding SVG styles

<style type="text/css" >
 <![CDATA[
 .body
 {
 fill: white;
 stroke: gray;
 stroke-width: 1px;
 }

 .hat
 {
 fill: black;
 stroke: black;
 stroke-width: 3px;
 }

 .button
 {
 fill: black;
 }

 .eye
 {
 fill: black;
 }

 .nose
 {
 fill: orange;
 }

]]>
</style>

Note ■ The style element needs to be inside the svg element and you can’t use an external style sheet. Notice
the [CDATA[tag around the style rules. This is necessary to prevent the XMl parser from treating this as part of the
HTMl document.

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

197

Save these changes and press F5 to view the web page, which should look like Figure 9-3.

Figure 9-3. The SVG images with styling applied

Using SVG Image Files
In addition to embedding an svg element, you can also save this as a standalone image file with an .svg
extension. This file can then be used just like other graphic images. I’ll show you how to create a standalone SVG
image and then use it on a page.

Creating an SVG Image
I’ll first show you how to create a standalone .svg file and then use as a background image. This will also
demonstrate the scalability of SVG images.

eXerCISe 9-2. CreatING aN SVG IMaGe

1. In the Solution Explorer, right-click the Chapter9 project and click the Add ➤ New
Folder links. Enter Images for the folder name.

2. From the File menu, select the New ➤ File links. In the New File dialog box, select
Text File from the General category, and click the open button.

3. Enter the following markup instructions:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.2//EN"
"http://www.w3.org/Graphics/SVG/1.2/DTD/svg12.dtd">

4. Copy and paste the entire svg element from the Index.cshtml file, including the
style element to the new text file.

5. Click the Save button. In the “Save File As” dialog box, navigate to the
Chapter9\Images folder and enter snowman.svg for the filename.

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

198

6. To test your image, using Windows Explorer, browse to this file and open it. This
should launch a browser and display the snowman image.

7. In the Solution Explorer, right-click the Images folder and select the Add ➤ Existing
Item links. Select the snowman.svg file and click the Add button.

Using an SVG Background
Now you have an image file that you can use just like other images. To demonstrate this, you’ll add a div element
to your page and use the snowman.svg as the background image. You’ll also adjust the div size so you can see how
the image looks when resized.

eXerCISe 9-3. aDDING a BaCKGrOUND IMaGe

1. In the Index.cshtml file, add the following code in the body element, after the svg
element:

<div id="container" ></div>

2. This simply defines a div element. Now you’ll use CSS to configure it. Add the
following style element inside the head element:

<style type="text/css">
 #container {
 height: 1000px;
 width: 450px;
 background-image: url("Images/snowman.svg");
 background-size: contain;
 }
</style>

3. In order for IIS to recognize the .svg file, you’ll need to define the mime map. open
the web.config file in the root folder (not the one in the Views folder). Add the
following entry shown in bold inside the system.webServer node:

<system.webServer>
 <validation validateIntegratedModeConfiguration="false" />

 <staticContent>
 <mimeMap fileExtension = ".svg" mimeType = "image/svg + xml"/>
 </staticContent>

</system.webServer>

4. Press F5 to debug your application. In addition to the small image, you should also
see a larger version of your image as shown in Figure 9-4. Notice that there is no
loss of image quality when expanding the size of the image.

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

199

Reviewing SVG Support
As of this writing there were a few limitations in the current browsers. Only IE 9 and up and Chrome support the
features demonstrated in this chapter:

Opera – SVG support in Opera is limited. Embedding SVG elements in the HTML •	
document does not work well. It will display the shapes but does not apply the styles
correctly. It does display SVG image files, however.

Firefox, Opera, and Safari – These browsers support SVG elements as well as the SVG •	
images. However, the image is converted to a bitmap and then scaled as needed so you’ll
see a fuzzy image.

Internet Explorer and Chrome – IE (9 and up) and Chrome supports SVG elements and •	
SVG images and scales images correctly with no loss of quality.

IE8 and below – IE, prior to version 9, does not support SVG.•	

Creating an Interactive Map
Drawing pictures of snowman may be fun but let’s move on to some more practical uses of SVG. You will create
a map of the United States with each state represented by a separate SVG path element, which I’ll explain later.

Figure 9-4. The page with the snowman background

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

200

You’ll store the path definitions in an SQL Server database. I’ll show you how to access the database using a
model class and then display it using a view definition. Once you have the map displayed, I’ll show you some CSS
tricks to style the map using both static and dynamic styles. Finally, you’ll add some animation to add a little flair
to your web page.

Using Path Elements
The path element is the most versatile of all SVG elements. It is a collection of MoveTo, LineTo, and various
CurveTo commands. The shape is drawn by following the path commands. Each command starts from the
current position and either moves to a new position or draws a line to the next position. For example:

Move to 25, 50•	

Draw a line to 50, 50•	

Draw a line to 50, 25•	

Draw an arc to 25, 50•	

This is expressed as:

<path d="M25,50 L50,50 L50,25 A25,25 0 0,0 25,50 z" />

The “move to” and “line to” commands are pretty straightforward. The “arc to” command, as well as all the
other curve commands, is more complicated because you need to provide additional control points that describe
how the curve should be drawn. Each command uses a single letter as shown in Table 9-1.

Table 9-1. The available path commands

Command Abbr. Description

Move to M Move to the specified position

Line to L Draw a line to the specified position

Horizontal line to H Draw a horizontal line to the specified x coordinate

Vertical line to V Draws a vertical line to the specified y coordinate

Arc to A Draws an arc to the specified position

Curve to C Draws a cubic Bezier curve

Shorthand curve to S Draws a simplified cubic Bezier curve

Quadratic curve to Q Draws a quadratic Bezier curve

Shorthand quadratic curve to T Draws a simplified quadratic Bezier curve

Close path Z Close the figure by drawing a line to the starting position

For each of these commands, an uppercase letter is used when absolute coordinates are used.
You can also specify relative coordinates and use a lowercase letter to indicate the values are relative to
the current position. For more information about constructing a path element, see the article at
http://www.w3.org/TR/SVG/paths.html#PathData.

http://www.w3.org/TR/SVG/paths.html#PathData

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

201

As you can probably envision, drawing a complex shape like the state of Alaska will take a lot of commands.
You won’t want to edit this by hand. Fortunately, there are tools available to help build a path definition. For
example, a free web-based tool is available at http://code.google.com/p/svg-edit. Just for grins, the path
element for Alaska is shown in Listing 9-2.

Listing 9-2. The path element definition for Alaska

<path d="M 158.07671,453.67502 L 157.75339,539.03215 L 159.36999,540.00211 L
162.44156,540.16377 L 163.8965,539.03215 L 166.48308,539.03215 L 166.64475,541.94205 L
173.59618,548.73182 L 174.08117,551.3184 L 177.47605,549.37846 L 178.1227,549.2168 L
178.44602,546.14524 L 179.90096,544.52863 L 181.0326,544.36697 L 182.97253,542.91201 L
186.04409,545.01361 L 186.69074,547.92352 L 188.63067,549.05514 L 189.7623,551.48006 L
193.64218,553.25833 L 197.03706,559.2398 L 199.78529,563.11966 L 202.04855,565.86791 L
203.50351,569.58611 L 208.515,571.36439 L 213.68817,573.46598 L 214.65813,577.83084 L
215.14311,580.9024 L 214.17315,584.29729 L 212.39487,586.56054 L 210.77826,585.75224 L
209.32331,582.68067 L 206.57507,581.22573 L 204.7968,580.09409 L 203.98849,580.9024 L
205.44344,583.65065 L 205.6051,587.36885 L 204.47347,587.85383 L 202.53354,585.9139 L
200.43195,584.62061 L 200.91693,586.23722 L 202.21021,588.0155 L 201.40191,588.8238 C
201.40191,588.8238 200.59361,588.50048 200.10863,587.85383 C 199.62363,587.20719
198.00703,584.45895 198.00703,584.45895 L 197.03706,582.19569 C 197.03706,582.19569
196.71374,583.48898 196.06709,583.16565 C 195.42044,582.84233 194.7738,581.71071
194.7738,581.71071 L 196.55207,579.77077 L 195.09712,578.31582 L 195.09712,573.30432 L
194.28882,573.30432 L 193.48052,576.6992 L 192.34888,577.1842 L 191.37892,573.46598 L
190.73227,569.74777 L 189.92396,569.26279 L 190.24729,574.92094 L 190.24729,576.05256 L
188.79233,574.75928 L 185.23579,568.77781 L 183.13419,568.29283 L 182.48755,564.57462 L
180.87094,561.66472 L 179.25432,560.53308 L 179.25432,558.26983 L 181.35592,556.97654 L
180.87094,556.65322 L 178.28436,557.29986 L 174.88947,554.87495 L 172.30289,551.96504 L
167.45306,549.37846 L 163.41152,546.79188 L 164.70482,543.55866 L 164.70482,541.94205 L
162.92654,543.55866 L 160.01664,544.69029 L 156.29843,543.55866 L 150.64028,541.13375 L
145.14381,541.13375 L 144.49717,541.61873 L 138.03072,537.73885 L 135.92912,537.41553 L
133.18088,531.59573 L 129.62433,531.91905 L 126.06778,533.374 L 126.55277,537.90052 L
127.68439,534.99062 L 128.65437,535.31394 L 127.19941,539.67879 L 130.43263,536.93055 L
131.07928,538.54716 L 127.19941,542.91201 L 125.90612,542.58869 L 125.42114,540.64875 L
124.12785,539.84045 L 122.83456,540.97208 L 120.08632,539.19381 L 117.01475,541.29541 L
115.23649,543.397 L 111.8416,545.4986 L 107.15342,545.33693 L 106.66844,543.23534 L
110.38664,542.58869 L 110.38664,541.29541 L 108.12338,540.64875 L 109.09336,538.22384 L
111.35661,534.34397 L 111.35661,532.5657 L 111.51827,531.75739 L 115.88313,529.49413 L
116.85309,530.78742 L 119.60134,530.78742 L 118.30805,528.20085 L 114.58983,527.87752 L
109.57834,530.62576 L 107.15342,534.02064 L 105.37515,536.60723 L 104.24352,538.87049 L
100.04033,540.32543 L 96.96876,542.91201 L 96.645439,544.52863 L 98.908696,545.4986 L
99.717009,547.60018 L 96.96876,550.83341 L 90.502321,555.03661 L 82.742574,559.2398 L
80.640977,560.37142 L 75.306159,561.50306 L 69.971333,563.76631 L 71.749608,565.0596 L
70.294654,566.51455 L 69.809672,567.64618 L 67.061434,566.67621 L 63.828214,566.83787 L
63.019902,569.10113 L 62.049939,569.10113 L 62.37326,566.67621 L 58.816709,567.96951 L
55.90681,568.93947 L 52.511924,567.64618 L 49.602023,569.58611 L 46.368799,569.58611 L
44.267202,570.87941 L 42.65059,571.68771 L 40.548995,571.36439 L 37.962415,570.23276 L
35.699158,570.87941 L 34.729191,571.84937 L 33.112578,570.71775 L 33.112578,568.77781 L
36.184142,567.48452 L 42.488929,568.13117 L 46.853782,566.51455 L 48.955378,564.41296 L
51.86528,563.76631 L 53.643553,562.958 L 56.391794,563.11966 L 58.008406,564.41296 L
58.978369,564.08964 L 61.241626,561.3414 L 64.313196,560.37142 L 67.708076,559.72478 L
69.00137,559.40146 L 69.648012,559.88644 L 70.456324,559.88644 L 71.749608,556.16823 L

http://code.google.com/p/svg-edit

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

202

75.791141,554.71329 L 77.731077,550.99508 L 79.994336,546.46856 L 81.610951,545.01361 L
81.934272,542.42703 L 80.317657,543.72032 L 76.922764,544.36697 L 76.276122,541.94205 L
74.982838,541.61873 L 74.012865,542.58869 L 73.851205,545.4986 L 72.39625,545.33693 L
70.941306,539.51713 L 69.648012,540.81041 L 68.516388,540.32543 L 68.193068,538.3855 L
64.151535,538.54716 L 62.049939,539.67879 L 59.463361,539.35547 L 60.918305,537.90052 L
61.403286,535.31394 L 60.756645,533.374 L 62.211599,532.40404 L 63.504883,532.24238 L
62.858241,530.4641 L 62.858241,526.09925 L 61.888278,525.12928 L 61.079966,526.58423 L
54.936843,526.58423 L 53.481892,525.29094 L 52.835247,521.41108 L 50.733651,517.85452 L
50.733651,516.88456 L 52.835247,516.07625 L 52.996908,513.97465 L 54.128536,512.84303 L
53.320231,512.35805 L 52.026941,512.84303 L 50.895313,510.09479 L 51.86528,505.08328 L
56.391794,501.85007 L 58.978369,500.23345 L 60.918305,496.51525 L 63.666554,495.22195 L
66.253132,496.35359 L 66.576453,498.77851 L 69.00137,498.45517 L 72.23459,496.03026 L
73.851205,496.67691 L 74.821167,497.32355 L 76.437782,497.32355 L 78.701041,496.03026 L
79.509354,491.6654 C 79.509354,491.6654 79.832675,488.75551 80.479317,488.27052 C
81.125959,487.78554 81.44928,487.30056 81.44928,487.30056 L 80.317657,485.36062 L
77.731077,486.16893 L 74.497847,486.97723 L 72.557911,486.49225 L 69.00137,484.71397 L
63.989875,484.55231 L 60.433324,480.83411 L 60.918305,476.95424 L 61.564957,474.52932 L
59.463361,472.75105 L 57.523423,469.03283 L 58.008406,468.22453 L 64.798177,467.73955 L
66.899773,467.73955 L 67.869736,468.70951 L 68.516388,468.70951 L 68.354728,467.0929 L
72.23459,466.44626 L 74.821167,466.76958 L 76.276122,467.90121 L 74.821167,470.00281 L
74.336186,471.45775 L 77.084435,473.07437 L 82.095932,474.85264 L 83.874208,473.88268 L
81.610951,469.51783 L 80.640977,466.2846 L 81.610951,465.47629 L 78.21606,463.53636 L
77.731077,462.40472 L 78.21606,460.78812 L 77.407756,456.90825 L 74.497847,452.22007 L
72.072929,448.01688 L 74.982838,446.07694 L 78.21606,446.07694 L 79.994336,446.72359 L
84.197528,446.56193 L 87.915733,443.00539 L 89.047366,439.93382 L 92.765578,437.5089 L
94.382182,438.47887 L 97.130421,437.83222 L 100.84863,435.73062 L 101.98027,435.56896 L
102.95023,436.37728 L 107.47674,436.21561 L 110.22498,433.14405 L 111.35661,433.14405 L
114.91316,435.56896 L 116.85309,437.67056 L 116.36811,438.80219 L 117.01475,439.93382 L
118.63137,438.31721 L 122.51124,438.64053 L 122.83456,442.35873 L 124.7745,443.81369 L
131.88759,444.46033 L 138.19238,448.66352 L 139.64732,447.69356 L 144.82049,450.28014 L
146.92208,449.6335 L 148.86202,448.82518 L 153.71185,450.76512 L 158.07671,453.67502 z M
42.973913,482.61238 L 45.075509,487.9472 L 44.913847,488.91717 L 42.003945,488.59384 L
40.225672,484.55231 L 38.447399,483.09737 L 36.02248,483.09737 L 35.86082,480.51078 L
37.639093,478.08586 L 38.770722,480.51078 L 40.225672,481.96573 L 42.973913,482.61238 z M
40.387333,516.07625 L 44.105542,516.88456 L 47.823749,517.85452 L 48.632056,518.8245 L
47.015444,522.5427 L 43.94388,522.38104 L 40.548995,518.8245 L 40.387333,516.07625 z M
19.694697,502.01173 L 20.826327,504.5983 L 21.957955,506.21492 L 20.826327,507.02322 L
18.72473,503.95166 L 18.72473,502.01173 L 19.694697,502.01173 z M 5.9534943,575.0826 L
9.3483796,572.81934 L 12.743265,571.84937 L 15.329845,572.17269 L 15.814828,573.7893 L
17.754763,574.27429 L 19.694697,572.33436 L 19.371375,570.71775 L 22.119616,570.0711 L
25.029518,572.65768 L 23.897889,574.43595 L 19.533037,575.56758 L 16.784795,575.0826 L
13.066588,573.95097 L 8.7017347,575.40592 L 7.0851227,575.72924 L 5.9534943,575.0826 z M
54.936843,570.55609 L 56.553455,572.49602 L 58.655048,570.87941 L 57.2001,569.58611 L
54.936843,570.55609 z M 57.846745,573.62764 L 58.978369,571.36439 L 61.079966,571.68771 L

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

203

60.271663,573.62764 L 57.846745,573.62764 z M 81.44928,571.68771 L 82.904234,573.46598 L
83.874208,572.33436 L 83.065895,570.39442 L 81.44928,571.68771 z M 90.17899,559.2398 L
91.310623,565.0596 L 94.220522,565.86791 L 99.232017,562.958 L 103.59687,560.37142 L
101.98027,557.94651 L 102.46525,555.52159 L 100.36365,556.81488 L 97.453752,556.00657 L
99.070357,554.87495 L 101.01029,555.68325 L 104.89016,553.90497 L 105.37515,552.45003 L
102.95023,551.64172 L 103.75853,549.70178 L 101.01029,551.64172 L 96.322118,555.19827 L
91.472284,558.10817 L 90.17899,559.2398 z M 132.53423,539.35547 L 134.95915,537.90052 L
133.98918,536.12224 L 132.21091,537.09221 L 132.53423,539.35547 z" />

Tip ■ This data, as well as the data for all the other states, was downloaded from
http://en.wikipedia.org/wiki/File:Blank_US_Map.svg. You can find a lot of similar material by going to
http://commons.wikimedia.org and entering svg map in the search criteria.

Implementing the Initial Map
You’ll start by creating the initial map without any styles applied. The actual path elements will be stored in an
SQL database. You will create the database, add a State table, and store the path definitions. You’ll then create a
model using LINQ to SQL to provide the state data. Finally, you’ll create a new view that will display the map and
then provide a link on the Index page to access it.

Creating the Database
The path elements can be quite long and are static (the shape of Alaska is not likely to change any time soon),
so they can be stored in a database and retrieved by .NET when needed to render the page. The MVC project
template that you used is already configured for a database connection. You’ll need to create the State table and
populate it with the appropriate path definitions.

eXerCISe 9-4. CreatING the State taBLe

1. The database used by .NET is not actually created until the first time is it accessed.
To manually create the database, In Visual Studio, select the Server Explorer
from the View menu. In the Data Connections node you should see one called
“DefaultConnection (Chapter9)”. Right-click this item and select the Modify
Connection link. This will display the Modify Connection dialog box shown in
Figure 9-5.

http://en.wikipedia.org/wiki/File:Blank_US_Map.svg
http://commons.wikimedia.org

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

204

2. The default values should all be correct; just click the oK button. Since the database
has not been created yet, you’ll see the dialog box shown in Figure 9-6. Click the Yes
button to create the database.

Figure 9-5. The Modify Connection dialog box

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

205

3. This will create a blank database with the name like aspnet-Chapter9- < datetime>.
Now you’ll add the State table and populate it. From the SQl menu, select the
Transact-SQl Editor ➤ New Query links.

4. The “Connect to Server” dialog box shown in Figure 9-7 will be displayed. Click the
Connect button to login to the database server.

Figure 9-6. Creating the SQL database

Figure 9-7. Authenticating with SQL Server

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

206

5. In the query window, select the Chapter9 database from the dropdown list at the top
of the form as shown in Figure 9-8. (Your database name will be different from mine.)

Figure 9-8. Selecting the Chapter9 database

Tip ■ You also could right-click the connection in the Server Explorer and select the New Query link. This will con-
nect to the database and default to the current database.

6. In the download that is available at www.apress.com, you’ll find a States.sql file in
the Chapter9 folder. Copy and paste the contents of this file into the query window
and then execute the query by clicking the Execute icon or entering the Ctrl-Shift-E
command. This will create the State table using the following script and then
populate it with a record for each state.

CREATE TABLE State(
 StateCode nchar(10) NOT NULL,
 StateName nvarchar(50) NOT NULL,
 Path ntext NULL,
 CONSTRAINT PK_State PRIMARY KEY CLUSTERED
(
 StateCode ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
 ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

http://www.apress.com

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

207

7. To verify the data was loaded correctly, open another query window using the
Transact-SQl Editor ➤ New Query links from the SQl menu. After connecting, select
the Chapter9 database and execute this query:

select * from State

8. You should see results similar to Figure 9-9.

Figure 9-9. The contents of the State table

Creating the Model
Creating a model that uses an SQL table is a pretty simple task. You’ll use LINQ to SQL to create a model class
that provides data from the specified table.

eXerCISe 9-5. CreatING a LINQ tO SQL MODeL

1. From the Solution Explorer, right-click the Models folder and select the Add ➤ New
Item links. In the “Add New Item” dialog box, select the Data category and then
select the “lINQ to SQl Classes” item and enter State.dbml name as shown in
Figure 9-10.

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

208

2. This will display the object Relational Designer. From the Server Explorer, expand the
Tables node to show the State table as shown in Figure 9-11.

Figure 9-10. Creatinge a new LINQ-to-SQL model class

Figure 9-11. The Object Relational design surface

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

209

Tip ■ If the State table is not shown, right-click the Tables node and select the Refresh link.

3. Drag the State table from the Server Explorer onto the object Relational Designer
pane. This will define the State.dbml class as shown in Figure 9-12.

Figure 9-12. The State.dbml design

4. You now have a model that you can use to provide the state details for the map.
Press F6 to rebuild the project. This will make the model available for linking to
a view.

Creating the Map View
With a model already defined, you’ll now create the view that will display the model elements.

eXerCISe 9-6 CreatING the Map VIeW

1. Right-click the Views\Home folder and select the Add ➤ View links.

2. In the Add View dialog box, enter the name Map. Select the “Create a strongly-
typed view” checkbox and select the State class in the Model class dropdown
list. Unselect the other check boxes and select the list template as shown in
Figure 9-13.

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

210

3. Notice in the Map.cshtml file that the referenced model is specified like this since
it is expecting to receive a collection of State classes. This happened because you
choose the list template when creating the view.

@model IEnumerable < Chapter9.Models.State>

4. Add this using statement just after the model reference. This will enable you to
access the State properties through IntelliSense.

@using Chapter9.Models

5. Replace the default contents of the body element with the following code. This
defines an svg element just like you did earlier. It then uses a foreach loop to
create a path element for each State defined in the model. Notice that it is storing
the StateCode column in the id attribute and the StateName column in the class
attribute.

Figure 9-13. Creating the Map view

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

211

<svg xmlns:svg = "http://www.w3.org/2000/svg" version = "1.2"
 width = "959" height = "593" id = "map">

 @foreach (State s in Model)
 {
 <path id = "@s.StateCode.Trim()" class="@s.StateName.Trim()" d="@s.Path" />
 }
</svg>

6. Now you’ll need to implement a controller action that will display the map view.
open the HomeController.cs class and add the following namespace.

using Chapter9.Models;

7. Then add the following method to the HomeController class. This executes a lINQ
query to extract all the records from the State table and provide it to the view.

public ActionResult Map()
{
 StateDataContext DC = new StateDataContext();
 var states = from s in DC.States select s;

 return View(states);
}

8. Now you’ll add a link on the Index.cshtml page that will display the map page.
Go to the Index.cshtml file and add the following line at the beginning of the body
element (just before the svg element):

@Html.ActionLink("Go to map", "Map", "Home")

9. Press F5 to build and run the application. The index page will be displayed. Click the
“Go to map” link. You should see a map of the United States and all of the states are
filled with the default color (black).

Styling the State Elements
Now that all the mechanical work is done you can have some fun styling the path elements. As I demonstrated
earlier with the snowman image, each element can be styled using a special style sheet. You can also style them
dynamically using JavaScript. I will show you how to use solid-color fills, gradients, and background images to
format each element.

Using Basic Fill Colors
You’ll start by adding some simple fill rules. Using a simple element selector you’ll set the stroke color to black
and khaki for the fill color. Then, to add some variety and to demonstrate using attribute selectors, you’ll
change the fill color based on the state code. The id attribute contains the two-letter state code and the class
attribute contains the state name. Using the first letter of the id attribute you’ll set the fill color as follows:

http://www.w3.org/2000/svg

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

212

A – red•	

N – yellow•	

M – green•	

C – blue•	

O – purple•	

I – orange•	

Enter the style element shown in Listing 9-3 inside the svg element before the foreach loop.

Listing 9-3. Adding basic fill definitions

<style type="text/css" >
 <![CDATA[
 path
 {
 stroke: black;
 fill: khaki;
 }

 path[id^="A"]
 {
 fill: red;
 }
 path[id^="N"]
 {
 fill: yellow;
 }
 path[id^="M"]
 {
 fill: green;
 }
 path[id^="C"]
 {
 fill: blue;
 }
 path[id^="O"]
 {
 fill: purple;
 }
 path[id^="I"]
 {
 fill: orange;
 }

]]>
</style>

Press F5 to start the application and then click the “Go to map” link. The map should now look like
Figure 9-14.

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

213

As you’re moving the mouse around the map it would be nice to highlight the state that the mouse is
currently pointing to. Add the following rule to the style element after the existing rules.

path:hover
{
 opacity: .5;
}

Using Gradient Fills
You can use gradient fills with SVG elements but they are implemented differently than typical HTML elements.
You first have to define the gradient and then reference using a url.

Add the following defs element inside the svg element but before the style element:

<defs>
 <linearGradient id = "blueGradient"
 x1 = "0%" y1 = "0%"
 x2 = "100%" y2 = "100%"
 spreadMethod = "pad">
 <stop offset = "0%" stop-color = "#ffffff" stop-opacity = "1"/>
 <stop offset = "50%" stop-color = "#6699cc" stop-opacity = "1"/>
 <stop offset = "100%" stop-color = "#4466aa" stop-opacity = "1"/>
 </linearGradient>
</defs>

The defs element is used to define something that can be referred to later in the document. It doesn’t do
anything until it is actually referenced. Here you are defining a linearGradient element and giving it the id
blueGradient. You will reference it using the id attribute.

Figure 9-14. The map with some basic styling

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

214

The attributes are different from the gradients you used in Chapter 4 but accomplish basically the same
thing. The x1, y1, x2, and y2 attributes define a vector that specifies the direction of the gradient. In this case, it
will start from the top-left corner and go to the bottom-right corner. This specifies three color values that define
the gradient color at the beginning, end, and midpoint.

Now add the following path rule at the end of the style element. This will use the new gradient for the state of
Wyoming.

path[id = "WY"]
{
 fill: url(#blueGradient);
}

Press F5 to start the application and then go to the map page. You should see a gradient fill for Wyoming as
shown in Figure 9-15.

Figure 9-15. Using a gradient fill

Using a Background Image
You can also use an image file for the shape background. You will need to first define this as a pattern in the defs
element and then reference it just like you did with the gradient. For this exercise you’ll use an image of the state
flag of Texas and make this the background for that state.

eXerCISe 9-7. USING a BaCKGrOUND IMaGe

1. In the source code download for Chapter 9 there is a TX_Flag.jpg file; copy this to
the Chapter9\Images folder.

2. In the Solution Explorer, right-click the Images folder and select the Add ➤ Existing
Item links. Select the TX_Flag.jpg file from the Images folder and click the Add
button.

3. Add the following code to the defs element to define the background image. This
specifies that the pattern should use the TX_Flag.jpg image file and stretch it to
377 x 226 pixels. This will make it large enough to cover the path element without
needing to repeat.

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

215

<pattern id="TXflag" patternUnits="objectBoundingBox" width="1" height="1">
 <image xlink:href="~/Images/TX_Flag.jpg" x="0" y="0"
 width="377" height="226" />
</pattern>

4. Add the following path rule, which will use the new pattern for the state of Texas.

path[id="TX"]
{
 fill: url(#TXflag);
}

5. Press F5 to start the application and go to the map page. You should see the
background image as shown in Figure 9-16.

Figure 9-16. Using a background image

Since this is a chapter on SVG I felt a little funny about using a bitmap image. You can see the degraded
image quality when the image is stretched. The state flag of Texas is one of the easiest to draw with SVG but I
wanted to demonstrate that bitmapped images can be used within an SVG definition. But just for the record, here
is the flag expressed in SVG (this was downloaded from the same Wikimedia Commons site I mentioned earlier
and reformatted slightly).

Listing 9-4. The Texas state flag in SVG

<rect width="1080" height="720" fill="#fff"/>
<rect y="360" width="1080" height="360" fill="#bf0a30"/>
<rect width="360" height="720" fill="#002868"/>
<g transform="translate(180,360)" fill="#fff">

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

216

 <g id="c">
 <path id="t" d="M 0,-135 v 135 h 67.5"
 transform="rotate(18 0,-135)"/>
 <use xlink:href="#t" transform="scale(−1,1)"/>
 </g>
 <use xlink:href="#c" transform="rotate(72)"/>
 <use xlink:href="#c" transform="rotate(144)"/>
 <use xlink:href="#c" transform="rotate(216)"/>
 <use xlink:href="#c" transform="rotate(288)"/>
</g>

Notice that the group element, g, is used to define a single path. This is rotated with five different angles to
create a five-pointed star.

Altering Styles with JavaScript
One of the primary uses of this kind of application is to dynamically style each element based on some external
data. For example you might want to highlight states where you have sales locations. Or perhaps you want to set
the colors based on some type of demographics such as population. So far you have used only static styles but
you can just as easily set the styles using JavaScript.

In this example, you will first set the fill attribute on all path elements to khaki using JavaScript. This will
replace the CSS property that sets the default color. This code will then set the fill color of the path element for
Virginia. In a real application you would normally define the style based on external data.

This exercise will also show you how to use JavaScript to respond to the onmouseover and onmouseout events.
You will replace the path:hover rule and accomplish this using these event handlers.

eXerCISe 9-8. aDJUStING StYLeS USING JaVaSCrIpt

1. Add the following script element in the head element of the map.cshtml file.

<script type = "text/javascript">
 function adjustStates() {
 var paths = document.getElementsByTagName("path");
 for (var i = 0; i < paths.length; i++) {
 paths[i].setAttributeNS(null, "fill", "khaki");
 }

 var path = document.getElementById("VA");
 path.setAttributeNS(null, "fill", "teal");
 }
</script>

2. In the body element add the onload attribute using the code shown in bold:

<body onload = "adjustStates()">

3. In the style element, remove the default khaki fill like this:

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

217

path
{
stroke: black;
/*fill: khaki; */
}

4. Press F5 to start the application and go to the map page. Virginia should no longer
use the default color as shown in Figure 9-17.

Figure 9-17. Virginia styled with JavaScript

5. Now you’ll also use JavaScript to implement the hover style. You can use the
event.target property to get the path element that triggered the event. You can then
determine the state code by accessing its id attribute. Add the following methods to
the existing script element.

function hoverState(e) {
 var event = e || window.event;
 var state = event.target.getAttributeNS(null, "id");
 var path = document.getElementById(state);
 path.setAttributeNS(null, "fill-opacity", "0.5");
}

function unhoverState(e) {
 var event = e || window.event;
 var state = event.target.getAttributeNS(null, "id");
 var path = document.getElementById(state);
 path.setAttributeNS(null, "fill-opacity", "1.0");
}

6. Then bind the mouseover and mouseout event handlers by adding the code shown
in bold to the adjustStates() function. This uses the addEventListener() method
to bind hoverState() and unhoverState() event handlers to each path element.

function adjustStates() {
 var paths = document.getElementsByTagName("path");
 for (var i = 0; i < paths.length; i++) {
 paths[i].setAttributeNS(null, "fill", "khaki");

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

218

 paths[i].addEventListener("mouseover", hoverState, true);
 paths[i].addEventListener("mouseout", unhoverState, true);
 }

 var path = document.getElementById("VA");
 path.setAttributeNS(null, "fill", "teal");
}

Caution ■ In Internet Explorer, the event object is not passed to the event handler. Instead, it is made available
through the global window.event property. The event handlers can be coded to work with either model by setting
the event variable like this: var event = e || window.event so it will use the object passed in, if available, and if
not, it will use the global window.event object. For this to work, however, you must register the event handlers by
using the addEventListener() method. You cannot simply set the onmouseover attribute.

7. Remove the path:hover style rule like this:

/*path:hover
{
 opacity: .5;
}*/

8. Press F5 to start the application and go to the map page. As you move the mouse
around, the states should highlight just like they did with the path:hover style.

Adding Animation
A typical application of a map like this will allow the user to select a region and then something will happen
as a result of that selection. The page would display some information based on the item that was selected. To
demonstrate that, you’ll add some animation when the user clicks a state. This will be using 3D transforms that
are not supported by IE9 so I’ll be using Chrome for this demonstration.

The CSS animation that I showed you in Chapter 4 does not work on SVG elements. Instead you’ll implement the
animation using JavaScript. When a state is selected, you’ll first make a copy of the selected element. Then you’ll
use a timer to gradually change its rotation angle. You need to make a copy so that as the image rotates around it
doesn’t leave a hole in the map. Also, the new element will be on top of all the others so you don’t have to worry
about it being hidden by the other elements.

Once the copy of the element has completed its animation, you’ll remove it from the document. Then you’ll
display an alert showing the state code and state name of the path that was selected.

eXerCISe 9-9. aDDING aNIMatION

1. because this uses a 3D transform, you’ll need to set some of the transform
properties on the path elements. Add the following rule to the style element:

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

219

path
{
 -webkit-perspective: 200px;
 -webkit-transform-style: preserve-3d;
}

2. Then add the code shown in listing 9-5 to the script element.

Listing 9-5. Adding function to support animation

// Setup some global variables
var timer;
var stateCode;
var stateName;
var animate;
var angle;

function selectState(e) {
 var event = e || window.event;

 // Get the state code and state name
 stateCode = event.target.getAttributeNS(null, "id");
 stateName = event.target.getAttributeNS(null, "class");

 // Get the selected path element and then make a copy of it
 var path = document.getElementById(stateCode);
 animate = path.cloneNode(false);

 // Set some display properties and add the copy to the document
 animate.setAttributeNS(null, "fill-opacity", "1.0");
 animate.setAttributeNS(null, "stroke-width", "3");
 document.getElementById("map").appendChild(animate);

 angle = 0;

 // Setup a timer to run every 10 msec
 timer = setInterval(function () { animateState(); }, 10);
}

function animateState() {
 angle + = 1;

 // If we've rotated 360 degress, stop the timer, destroy the copy
 // of the element, and show an alert
 if (angle > 360) {
 clearInterval(timer);
 animate.setAttributeNS(null, "visibility", "hidden");
 var old = document.getElementById("map").removeChild(animate);

 alert(stateCode + " - " + stateName);

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

220

 return;
 }

 // Change the image rotation
 animate.style.webkitTransform = "rotateY(" + Math.round(angle) + "deg)";
}

The selectState() function gets the state code and state name from the selected path element. It then gets
the path element and uses its cloneNode() method to make a copy of it. Because the mouse is currently over
the selected path, it will have the opacity set to 50%. So this code changes the opacity of the copy to 100%. It also
sets the stroke width to give this element a wider border. The copy is then added to the document and a timer is
started to cause the animation.

Every 10 milliseconds, the animateState() function is called, which increments the angle and redraws the
image. If the rotation has reached 360 degrees, this method cancels the timer and removes the copy of the path
element. It also raises an alert to display the state code and state name.

3. Add another event handler by adding the code shown in bold to the adjustStates()
function. This will call the selectState() method when the user clicks a path
element.

function adjustStates() {
 var paths = document.getElementsByTagName("path");
 for (var i = 0; i < paths.length; i++) {
 paths[i].setAttributeNS(null, "fill", "khaki");

 paths[i].addEventListener("mouseover", hoverState, true);
 paths[i].addEventListener("mouseout", unhoverState, true);

 paths[i].addEventListener("click", selectState, true);
 }

 var path = document.getElementById("VA");
 path.setAttributeNS(null, "fill", "teal");
}

4. Change the debug browser to Chrome. Press F5 to start the application and go to
the map page. Click on a state and you should see it fly off the page as shown in
Figure 9-18.

CHAPTER 9 ■ SCAlAblE VECToR GRAPHICS

221

5. The image will then fly back into place and an alert will appear as shown in
Figure 9-19.

Figure 9-18. Animating the selected state

Figure 9-19. The alert showing the name of the selected state

Summary
In this chapter I introduced SVG with a couple of fairly simple applications. An SVG image is made up of multiple
elements, which can be simple elements such as lines, circles, and rectangles or more complex options like
polygons and paths. The key feature of SVG is that each individual element can be styled independently both
statically and dynamically. This enables much greater control and interaction. Also, because the image is based
on an expression, the images can be scaled without affecting the image quality.

In the exercises in this chapter you:

Designed an image using simple geometric shapes•	

Created a standalone •	 .svg image file

Displayed a map as a collection of •	 path elements

Implemented animation on an SVG element•	

You also used LINQ to SQL to implement a model class that accesses a SQL Server database and then
designed a view that creates an SVG image using the model elements.

In the next chapter I’ll show you how to use the canvas element to construct graphical elements in HTML5.

223

Chapter 10

Canvas

In this chapter I’ll show how to use the canvas element in HTML5 to create some fun graphics. As you’ll see, it is
very different from SVG, which you explored in the previous chapter. I will discuss the differences in more detail
later but the main thing you’ll notice is that canvas is completely implemented in JavaScript. The only part that is
in the markup is a simple element definition like this:

<canvas id="myCanvas" width="400" height="400">
 Canvas is not supported on this browser
</canvas>

Instead, you’ll define the content by calling the various drawing methods using JavaScript. Just like with the
audio and video elements, the markup within the canvas element is used when the browser does not support
canvas. You can use this to provide the appropriate fallback content.

Through the exercises in the chapter, you will create three different canvas implementations that,
collectively, will demonstrate the capability of canvas. You will create:

A chess board with moving chess pieces•	

A simple model of our solar system•	

A page that demonstrates the various ways shapes can be composited.•	

Of course, you can use your imagination to apply these principles in any number of fun and compelling
graphical applications.

Creating a Chess Board
In the first application you’ll draw a chess board, which is just a series of squares with alternating colors. I’ll
show you how to use a gradient to make the board a little more interesting. You’ll use image files to draw the
chess pieces in the appropriate squares. Finally you’ll apply a little bit of animation to move the pieces around
the board. This will give you a good sense of how basic drawing techniques are used before getting into more
advanced topics.

Creating the Visual Studio Project
You’ll start by creating a Visual Studio project using the same Basic MVC template that you have used in previous
chapters.

CHAPTER 10 ■ CAnvAs

224

Figure 10-1. Creating the Chapter9 project

eXerCISe 10-1. CreatING the VISUaL StUDIO prOJeCt

1. start visual studio 2012. In the start Page, click the new Project link.

2. In the new project dialog box, select the “AsP.nET MvC4 Web Application” template.
Enter the project name Chapter10 and select a location for this project as shown in
Figure 10-1.

3. In the next dialog box, select the Basic template and make sure the Razor view
engine is selected. Click the OK button and the project will be created.

4. Right-click the Controller folder in the solution Explorer and select the
Add ➤ Controller links. Enter the name HomeController and select the Empty MvC
Controller template. Click the Add button to create the controller.

5. Right-click the view folder and select the Add ➤ new Folder links. Enter the name
Home.

6. Right-click the new Home folder and select the Add ➤ view links. In the Add view
dialog box, enter the name Index, make sure the Razor view engine is selected,
unselect all the check boxes, and click the Add button.

The canvas element is appropriately named as it provides an area that you can use to draw on. When you
create a canvas element you define its size using the height and width attribute. You can specify other attributes
through markup or CSS to specify the margin, padding, and border. These attributes affect where the element
is positioned within the page. However you cannot modify any of the content within the element. The canvas
element itself simply defines a blank area on which you can create your masterpiece.

CHAPTER 10 ■ CAnvAs

225

When you create a canvas element in HTML you will generally assign an id attribute so you can
access in JavaScript using the getElementById() method. You don’t have to; you can access it using the
getElementsByTagName() method or use the new query selectors that I described in Chapter 5.

Once you have the canvas element, you’ll then get its drawing context by calling getContext(). You must
specify which context to use. The context specifies a set of API functions and drawing capabilities. The only one
that is generally available is “2d” and we will be using that exclusively in this chapter. There is work being done to
define a “3d” context.

Drawing Rectangles
Unlike SVG, the only shape that you can draw directly is a rectangle. You can draw more complex shapes using
paths, which I’ll explain later. There are three methods that you can use to draw rectangles:

•	 clearRect() – clears the specified rectangle

•	 strokeRect() – draws a border around the specified rectangle with no fill

•	 fillRect() – draws a filled-in rectangle

Each of these methods takes four parameters. The first two define the x and y coordinates of the top-left corner
of the rectangle. The last two parameters specify the width and height, respectively. The drawing context has the
strokeStyle and fillStyle properties that control how the border or fill will be drawn. You set these before drawing
the rectangle. Once set, all subsequent shapes are drawn with these properties until you change the properties.

Tip ■ Just like svG, in canvas, the top-left corner of the canvas element has the x and y coordinates of 0, 0.

To demonstrate drawing rectangles, you’ll start by drawing the chess board, which contains eight rows of
eight squares each.

eXerCISe 10-2. DraWING a SIMpLe CheSS BOarD

1. Add a canvas to the index.cshtml page by inserting the following markup in the
blank div that was created by the project template:

<canvas id="board" width="600" height="600">
 Not supported
</canvas>

2. Then add a script element after the div but still inside the body element using the
code shown in Listing 10-1.

Listing 10-1. Drawing a simple chess board

<script id="chess board" type="text/javascript">
 // Get the canvas context
 var chessCanvas = document.getElementById("board");
 var chessContext = chessCanvas.getContext("2d");

 drawBoard();

 // Draw the chess board
 function drawBoard() {

CHAPTER 10 ■ CAnvAs

226

 chessContext.clearRect(0, 0, 600, 600);

 chessContext.fillStyle = "red";
 chessContext.strokeStyle = "red";

 // Draw the alternating squares
 for (var x = 0; x < 8; x++) {
 for (var y = 0; y < 8; y++) {
 if ((x + y) % 2) {
 chessContext.fillRect(75 * x, 75 * y, 75, 75);
 }
 }
 }

 // Add a border around the entire board
 chessContext.strokeRect(0, 0, 600, 600);
 }
</script>

3. save your changes and press F5 to start the application. The page should look like
Figure 10-2.

Figure 10-2. The initial chess board

The drawBoard() function first clears the area on which it will be drawing. It then uses nested for loops to
draw the squares. Notice that it only draws the red squares. Since the entire area was cleared first, any area not
drawn on will be white. This code uses nested for loops to iterate through the eight rows and eight columns. The
red squares are the ones where the sum of row and column is odd. For even numbered rows (0, 2, 4, and 6) the
odd columns (1, 3, 5, and 7) will be red. For odd-numbered rows, the even-numbered columns will be red.
To clean-up the edge squares, a red border is drawn around the entire board.

CHAPTER 10 ■ CAnvAs

227

Using Gradients
You can also use a gradient to fill a shape instead of a solid color. To do that you must first create a gradient object
using the drawing context’s createLinearGradient() method. This method takes four parameters, which are the
x and y coordinates of the beginning and ending points of the gradient. This allows you to specify if the gradient
should go from top-to-bottom, left-to-right, or corner-to-corner. The gradient is computed across the entire
canvas. You cannot define gradients for individual elements.

You must then define the color stops. Each color stop defines a position along the gradient and a color. At a
minimum, you’ll need a color stop at 0 and 1, which define the beginning and ending colors. You can also add
color stops in between these if you want to control the transition. For example, if you want to define the color at
the halfway point, use 0.5.

Finally, you’ll use this gradient to specify the fillStyle property. To try it out, add the following code shown
in bold:

function drawBoard() {

 chessContext.clearRect(0, 0, 600, 600);

 var gradient = chessContext.createLinearGradient(0, 600, 600, 0);
 gradient.addColorStop(0.0, "#D50005");
 gradient.addColorStop(0.5, "#E27883");
 gradient.addColorStop(1.0, "#FFDDDD");

 chessContext.fillStyle = gradient;
 chessContext.strokeStyle = "red";

Save your changes and press F5 to start the application. The page should now look like Figure 10-3. Notice
that the color transitions across the canvas, not across each square.

Figure 10-3. The board using a gradient fill

Using Images
Now you’re ready to add the chess pieces, which will be drawn using image files. It is really easy to add an image
to a canvas. You create an Image object, set its src property, and then call the drawing context’s drawImage()
method like this:

CHAPTER 10 ■ CAnvAs

228

var myImage = new Image();
myImage.src = "Images/sample.jpg";
context.drawImage(myImage, 0,0, 50, 100);

The first parameter of the drawImage() method specifies the image that will be drawn. This can be an Image
object, as I’ve shown here. Alternatively, you can also specify an img, video, or canvas element that is already on
the page. The next two parameters specify the x and y location of the top-left corner of the image. The fourth and
fifth parameters are optional and specify the width and height, respectively, that the image will be scaled to fit
into. If you don’t specify these parameters the image will be drawn using its intrinsic size.

The drawImage() method also allows you to supply four additional parameters. These are used to specify
only the portion of the image that should be displayed on the canvas. These additional parameters include an x
and y coordinate and a width and height to define the specified portion. Use the last four parameters if you only
want a portion of the image to be drawn. If these are omitted, the entire image will be included.

In this application you will be drawing 32 pieces using 12 different images. Also, later in this chapter you will
be adding code to move the pieces around. To facilitate this, you’ll add some structure to your application. You
will define a class that will store attributes about a chess piece such as the image to use and its location on the
board. Then you’ll implement a generic drawing function that uses the details from these attributes.

eXerCISe 10-3. DraWING CheSS pIeCeS

1. In the solution Explorer, right-click the Chapter10 project and select the Add ➤ new
Folder links. Enter Images for the folder name.

2. The images for the chess pieces are included in the source code download file. You’ll
find these in the Chapter10\Images folder. Drag all 12 files to the Images folder in
the solution Explorer.

3. Add the variable declarations shown in bold in Listing 10-2 to your script element.
This will define a variable to reference an Image object for each of the twelve image
files. It will also define an array that you will be using to store the chess pieces.

Listing 10-2. Defining the image variables

<script type="text/javascript">
 // Get the canvas context
 var chessCanvas = document.getElementById("board");
 var chessContext = chessCanvas.getContext("2d");

 // Define the chess piece images
 var imgPawn = new Image();
 var imgRook = new Image();
 var imgKnight = new Image();
 var imgBishop = new Image();
 var imgQueen = new Image();
 var imgKing = new Image();
 var imgPawnW = new Image();
 var imgRookW = new Image();
 var imgKnightW = new Image();
 var imgBishopW = new Image();
 var imgQueenW = new Image();
 var imgKingW = new Image();

CHAPTER 10 ■ CAnvAs

229

 // Define an array to store 32 pieces
 var pieces = new Array(32);

 drawBoard();

4. Add the loadImages() function, shown in Listing 10-3, to your script element after
the existing drawBoard() function.

Listing 10-3. Loading the image files

function loadImages() {
 imgPawn.src = "Images/pawn.png";
 imgRook.src = "Images/rook.png";
 imgKnight.src = "Images/knight.png";
 imgBishop.src = "Images/bishop.png";
 imgQueen.src = "Images/queen.png";
 imgKing.src = "Images/king.png";
 imgPawnW.src = "Images/wpawn.png";
 imgRookW.src = "Images/wrook.png";
 imgKnightW.src = "Images/wknight.png";
 imgBishopW.src = "Images/wbishop.png";
 imgQueenW.src = "Images/wqueen.png";
 imgKingW.src = "Images/wking.png";
}

5. now you’re ready to define the chess pieces. You’ll use a class definition that will
store the attributes needed to draw the chess piece. The image property contains
a reference to the appropriate Image object. The x and y properties specify the
square that the piece is in, from 0 to 7, left-to-right and top-to-bottom. The height
and width properties indicate the size of the image, which will vary depending on
the type of piece. The killed property is used to indicate if the piece has been
captured. Captured images are not displayed. Add the following code to the end of
the script element.

// Define a class to store the piece properties
function ChessPiece() {
 this.image = null;
 this.x = 0;
 this.y = 0;
 this.height = 0;
 this.width = 0;
 this.killed = false;
}

6. Add the code shown in Listing 10-4 to the end of your script element. This
implements the drawPiece() function that draws a single chess piece based on the
class properties. Finally, it provides a drawAllPieces() function that will draw each
of the pieces defined in the array.

CHAPTER 10 ■ CAnvAs

230

Listing 10-4. Drawing the chess pieces

// Draw a chess piece
function drawPiece(p) {
 if (!p.killed)
 chessContext.drawImage(p.image,
 (75 - p.width) / 2 + (75 * p.x),
 73 - p.height + (75 * p.y),
 p.width,
 p.height);
}

// Draw all of the chess pieces
function drawAllPieces() {
 for (var i = 0; i < 32; i++) {
 if (pieces[i] != null) {
 drawPiece(pieces[i]);
 }
 }
}

7. now you need to create 32 instances of the ChessPiece class and specify all of the
appropriate properties. Add the createPieces() function shown in Listing 10-5.
This function creates the instances of the ChessPiece class storing them in the
pieces array and sets the properties of each one.

Tip ■ since this is rather long and tedious, I made this function available in the source code download as a
separate file. If you prefer, instead of typing the function from Listing 10-5, you can find the createPieces.js file
in the Chapter10 folder and drag this to the scripts folder in the solution Explorer. Then add this reference in the
head section:

<script src = "~/Scripts/createPieces.js" > </script>

Listing 10-5. Implementing the createPieces() function

function createPieces() {
 var piece;

 // Black pawns
 for (var i = 0; i < 8; i++) {
 piece = new ChessPiece();
 piece.image = imgPawn,
 piece.x = i;
 piece.y = 1;
 piece.height = 50;
 piece.width = 28;

 pieces[i] = piece;
 }

CHAPTER 10 ■ CAnvAs

231

 // Black rooks
 piece = new ChessPiece();
 piece.image = imgRook;
 piece.x = 0;
 piece.y = 0;
 piece.height = 60;
 piece.width = 36;
 pieces[8] = piece;

 piece = new ChessPiece();
 piece.image = imgRook;
 piece.x = 7;
 piece.y = 0;
 piece.height = 60;
 piece.width = 36;
 pieces[9] = piece;

 // Black knights
 piece = new ChessPiece();
 piece.image = imgKnight;
 piece.x = 1;
 piece.y = 0;
 piece.height = 60;
 piece.width = 36;
 pieces[10] = piece;

 piece = new ChessPiece();
 piece.image = imgKnight;
 piece.x = 6;
 piece.y = 0;
 piece.height = 60;
 piece.width = 36;
 pieces[11] = piece;

 // Black bishops
 piece = new ChessPiece();
 piece.image = imgBishop;
 piece.x = 2;
 piece.y = 0;
 piece.height = 65;
 piece.width = 30;
 pieces[12] = piece;

 piece = new ChessPiece();
 piece.image = imgBishop;
 piece.x = 5;
 piece.y = 0;
 piece.height = 65;
 piece.width = 30;
 pieces[13] = piece;

CHAPTER 10 ■ CAnvAs

232

 // Black queen
 piece = new ChessPiece();
 piece.image = imgQueen;
 piece.x = 3;
 piece.y = 0;
 piece.height = 70;
 piece.width = 32;
 pieces[14] = piece;

 // Black king
 piece = new ChessPiece();
 piece.image = imgKing;
 piece.x = 4;
 piece.y = 0;
 piece.height = 70;
 piece.width = 28;
 pieces[15] = piece;

 // White pawns
 for (var i = 0; i < 8; i++) {
 piece = new ChessPiece();
 piece.image = imgPawnW,
 piece.x = i;
 piece.y = 6;
 piece.height = 50;
 piece.width = 28;

 pieces[16 + i] = piece;
 }

 // White rooks
 piece = new ChessPiece();
 piece.image = imgRookW;
 piece.x = 0;
 piece.y = 7;
 piece.height = 60;
 piece.width = 36;
 pieces[24] = piece;

 piece = new ChessPiece();
 piece.image = imgRookW;
 piece.x = 7;
 piece.y = 7;
 piece.height = 60;
 piece.width = 36;
 pieces[25] = piece;

 // White knights
 piece = new ChessPiece();
 piece.image = imgKnightW;
 piece.x = 1;
 piece.y = 7;

CHAPTER 10 ■ CAnvAs

233

 piece.height = 60;
 piece.width = 36;
 pieces[26] = piece;

 piece = new ChessPiece();
 piece.image = imgKnightW;
 piece.x = 6;
 piece.y = 7;
 piece.height = 60;
 piece.width = 36;
 pieces[27] = piece;

 // White bishops
 piece = new ChessPiece();
 piece.image = imgBishopW;
 piece.x = 2;
 piece.y = 7;
 piece.height = 65;
 piece.width = 30;
 pieces[28] = piece;

 piece = new ChessPiece();
 piece.image = imgBishopW;
 piece.x = 5;
 piece.y = 7;
 piece.height = 65;
 piece.width = 30;
 pieces[29] = piece;

 // White queen
 piece = new ChessPiece();
 piece.image = imgQueenW;
 piece.x = 3;
 piece.y = 7;
 piece.height = 70;
 piece.width = 32;
 pieces[30] = piece;

 // White king
 piece = new ChessPiece();
 piece.image = imgKingW;
 piece.x = 4;
 piece.y = 7;
 piece.height = 70;
 piece.width = 28;
 pieces[31] = piece;
}

8. Finally, add calls to the loadImages(), createPieces(), and drawAllPieces()
functions by adding the following code shown in bold at the beginning of the script
element.

CHAPTER 10 ■ CAnvAs

234

// Define an array to store 32 pieces
var pieces = new Array(32);

loadImages();

drawBoard();

createPieces()
drawAllPieces();

// Draw the chess board
function drawBoard() {

9. save your changes and press F5 to start the application. You should now see the
chess pieces as shown in Figure 10-4.

Figure 10-4. The chess board with the pieces displayed

Note ■ When you create an Image object and set its src property, the specified image file is downloaded asyn-
chronously. It’s possible that the file has not been loaded before the drawImage() function is called. If this happens,
the image is not displayed. If one or more chess pieces is not displayed, try refreshing the page, which should take
care of this. You can implement the onload event handler for each Image object, which is called when the image has
been loaded. This is a bit complicated since you’ll need to wait for all 12 images to be loaded. However, in the next
section you’ll just add a pause before drawing the images, which should resolve this.

Adding Simple Animation
To demonstrate simple animation using canvas, you’ll move the pieces around. The function that draws each
piece, computes the location based on the square that the piece is in. To move a piece, you just need to update
the x and/or y property and then redraw it.

CHAPTER 10 ■ CAnvAs

235

When you redraw a piece in its new location, it is still visible in the old location as well. Also, if you were to
capture a piece by moving a piece in the same square as another, you would end up with two pieces in the same
square. You could implement some complex logic to clear the square and redraw a red or white square before
moving the piece. However, for this demonstration you will simply clear the entire canvas and redraw the board
and all of the pieces.

To implement the automation, you’ll create a makeNextMove() function. This will adjust the x and y positions
of a chess piece and then redraw the board and all of the pieces. You’ll use the setInterval() function to call this
repeatedly so the pieces will move in succession.

eXerCISe 10-4. aNIMatING the CheSS pIeCeS

1. Add the following variables shown in bold near the beginning of the script element:

// Define an array to store 32 pieces
var pieces = new Array(32);

var moveNumber = −1;
var timer;

loadImages();

2. Implement the makeNextMove() function shown in Listing 10-6. This code “moves”
a piece by adjusting its x and y properties. It keeps track of the move number and
uses this to adjust the appropriate piece. The 7th move captures a piece and sets
its killed property. since this ends the animation, the 7th move also uses the
clearTimer() function so no more timer events will occur. After each move, the
board and all the pieces are re-drawn. After the 7th move, this function also uses the
fillText() method, which is used to write text to the canvas.

Listing 10-6. The makeNextMove implementation

function makeNextMove() {
 function inner() {
 if (moveNumber === 1) {
 pieces[20].y--;
 }
 if (moveNumber === 2) {
 pieces[4].y += 2;
 }
 if (moveNumber === 3) {
 pieces[29].y = 4;
 pieces[29].x = 2;
 }
 if (moveNumber === 4) {
 pieces[6].y++;
 }
 if (moveNumber === 5) {
 pieces[30].x = 5;
 pieces[30].y = 5;
 }

CHAPTER 10 ■ CAnvAs

236

 if (moveNumber === 6) {
 pieces[7].y++;
 }
 if (moveNumber === 7) {
 pieces[30].x = 5;
 pieces[30].y = 1;
 pieces[5].killed = true;
 clearInterval(timer);
 }

 moveNumber++;

 drawBoard();
 drawAllPieces();

 if (moveNumber > 7) {
 chessContext.font = "30 pt Arial";
 chessContext.fillStyle = "black";
 chessContext.fillText("Checkmate!", 200, 220);
 }
 }

 return inner;
}

3. Go to the beginning of the script element and replace the call to drawAllPieces()
with this:

timer = setInterval(makeNextMove(), 2000);

4. save your changes and press F5 to start the application. After a series of moves the
page should look like Figure 10-5.

Figure 10-5. The completed chess board

CHAPTER 10 ■ CAnvAs

237

Caution ■ The makeNextMove() function uses an often misunderstood feature of Javascript called closure.
This function defines another function called inner(), which does the actual work. The inner() function is then
returned. The makeNextMove() function will be called by the window object when the timer expires. However, all of
the variables that it uses, such as the array of chess pieces, will be out of scope. The inner() function will be able
to access these variables so this works around the scope issue. For more information about closures, see this article:
http://stackoverflow.com/questions/111102/how-do-javascript-closures-work.

Modeling the Solar System
For the next canvas you’ll draw a moving model of our solar system. For the sake of time, you’ll show only the
earth, sun, and moon. This implementation will take advantage of two important features of canvas:

Paths•	

Transformations•	

Using Paths
As I mentioned earlier, the only simple shape that canvas supports is the rectangle, which you used in the
previous example. For all other shapes you must define a path. The basic approach to defining paths in canvas is
very similar to SVG. You use a move to command to set the starting point and then some combination of line and
curve commands to draw a shape.

In canvas, you always start with a beginPath() command. After calling the desired drawing commands, the
path is completed by either calling stroke() to draw an outline of the shape or fill() to fill in the shape. The
shape is not actually drawn to the canvas until either stroke() or fill() is called. If you call beginPath() again,
before completing the current shape (with a call to stroke() or fill()), the canvas will ignore the previous
uncompleted commands. The same strokeStyle and fillStyle properties that you used with rectangles also
define the color of the path.

The actual drawing commands are:

•	 moveTo()

•	 lineTo()

•	 arcTo()

•	 bezierCurveTo()

•	 quadraticCurveTo()

In addition, these functions can be used for drawing:

•	 closePath() – this performs a lineTo() command from the current position to the
starting position to close in the shape. If you use the fill() command, the closePath()
function is automatically called if you’re not currently at the starting position.

•	 arc() – This draws an arc at the specified location; you don’t have to move there first.
However, this is still treated as a path; you need to first call beginPath() and the arc is not
actually drawn until you call either stroke() or fill().

http://stackoverflow.com/questions/111102/how-do-javascript-closures-work

CHAPTER 10 ■ CAnvAs

238

Drawing Arcs
The arc() command is one that you’ll likely use a lot and will be important in this example. The arc() command
takes the following parameters:

arc(x, y, radius, start, end, counterclockwise)

The first two parameters specify the x and y coordinates of the center point. The third parameter specifies
the radius. The fourth and fifth parameters determine the starting and ending point of the arc. These are
specified as an angle from the x axis. The 0° angle is the right-hand side of the circle; a 90° angle would be the
bottom edge of the circle. The angles are specified in radians, however, not degrees.

Unless you’re drawing a full circle, the direction of the arc is important. For example if you drew an arc from
0° to 90°, the arc would be ¼ of a circle, from the right-hand side to the bottom. However, using the same end
points but drawing in a counter-clockwise direction, that arc would be ¾ of the circle. The final parameter, if true,
indicates that the arc should be draw in a counter-clock-wise direction. This parameter is optional. If you don’t
specify, it will draw the arc in a clockwise direction.

Using Transformations
At first, transformations in canvas may seem a bit confusing but they can be quite helpful once you understand
how they work. First, transformations have no effect on what has already been drawn on the canvas. Instead,
transformations modify the grid system that will be used to draw subsequent shapes. I will demonstrate three
types of transformations in this chapter:

Translating•	

Rotating•	

Scaling•	

As I mentioned earlier, a canvas element uses a grid system where the origin is at the top-left corner of the
canvas. So a point at 10, 20 will be 10 pixels to the right and 20 pixels down from that corner. Transformations
simply adjust the grid system. For example, the following command will shift the origin 100 pixels to the right
and 50 pixels down:

context.translate (100, 50);

This is illustrated in Figure 10-6.

0, 0

0, 0

Translate y = 50

Translate
x = 100

Figure 10-6. Translating the context origin

CHAPTER 10 ■ CAnvAs

239

So now when you move to 10, 20, since this is relative to the new origin, the actual position (relative to the
canvas), will be 110, 70. You might be wondering why you would want to do this. Well, suppose you were drawing
a picture of the United States flag, which has 50 stars on it. A five-pointed star is a fairly complex shape to draw,
which will require a number of drawing commands. Once you have drawn the first star, you’ll need to repeat the
process 49 more times, with each time using different values.

By simply translating the context to the right a little, you can repeat the exact same commands using the
same values. But now the star will be in a different location. Granted, you could accomplish the same thing by
creating a drawStar() function that accepted x, y parameters. Then call this 50 times passing in different values.
However, once you get used to using transformation you will find this easier, especially with the other types such
as rotation.

The rotate transformation doesn’t move the origin; instead it rotates the x and y axis by the specified
amount. A positive amount is used for a clockwise rotation and a negative value is used to rotate counter-
clockwise. Figure 10-7 demonstrates how a rotate transformation works.

0, 0

Rotate -30°

60, 40

Figure 10-7. Rotating the drawing context’s grid

Note ■ I indicated the rotation angle as 30° since that is what most people are familiar with. However, the
rotate() command expects the value in radians. If your geometry is a little rusty, a full circle is 360° or 2p radians.
In Javascript you can use the Math.PI property to get the value of p (Pi). For example, 30° is 1/12 of a full circle so
you can write this as (Math.PI*2/12).

You can use multiple transformations. For example, you can translate the origin and then rotate the x/y axis.
You can also rotate the grid some more and translate again. Each transformation is always relative to the current
position and orientation.

CHAPTER 10 ■ CAnvAs

240

Saving the Context State
The state of a drawing context includes the various properties such as fillStyle and strokeStyle that you have
already used. It also includes the accumulation of all transformations that have been applied. If you start using
multiple transformations, getting back to the original state may be difficult. Fortunately, the drawing context
provides the ability to save and then restore the state of the context.

The current state is saved by calling the save() function. Saving the state pushes the current state onto
a stack. Calling the restore() function pops the most recently saved state off of the stack and makes that the
current state. This is illustrated in Figure 10-8.

context.save(); // saves State A
. . .
context.save(); // saves State B
. . .
context.save(); // saves State C

State A

State B

State A

State D

State C . . .
context.restore(); // gets State C
. . .
context.restore(); // gets State B

context.save(); // saves State D
. . .

Figure 10-8. Saving and restoring the drawing context state

You should generally save the state before doing any transformations, especially complex ones. When you
have finished drawing whatever elements needed the transformation, you can restore the state back to the way it
was. Remember, changing the state by setting the fillStyle or performing a transformation does not affect what
has already been drawn.

Drawing the Solar System
With these features at your disposal, let’s draw a simple model of the solar system.

eXerCISe 10-5. MODeLING the SOLar SYSteM

1. Open the index.cshtml file and add the canvas element shown in bold just after
the existing canvas element:

<div>
 <canvas id = "board" width = "600" height = "600">
 Not supported
 </canvas>

 <canvas id = "solarSystem" width = "450" height = "400">
 Not supported
 </canvas>

</div>

CHAPTER 10 ■ CAnvAs

241

2. Add a new script element in the body element just after the existing script
element using the code shown in Listing 10-7.

Listing 10-7. Initial solar system implementation

<script id = "solar system" type = "text/javascript">

 var ss = document.getElementById('solarSystem')
 var ssContext = ss.getContext('2d');

 setInterval(animateSS, 100);

 function animateSS() {
 var ss = document.getElementById('solarSystem')
 var ssContext = ss.getContext('2d');

 // Clear the canvas and draw the background
 ssContext.clearRect(0, 0, 450, 400);
 ssContext.fillStyle = "#2F1D92";
 ssContext.fillRect(0, 0, 450, 400);

 ssContext.save();

 // Draw the sun
 ssContext.translate(220, 200);
 ssContext.fillStyle = "yellow";
 ssContext.beginPath();
 ssContext.arc(0, 0, 15, 0, Math.PI * 2, true);
 ssContext.fill();

 // Draw the earth orbit
 ssContext.strokeStyle = "black";
 ssContext.beginPath();
 ssContext.arc(0, 0, 150, 0, Math.PI * 2);
 ssContext.stroke();

 ssContext.restore()
 }
</script>

Tip■ In visual studio, you can collapse an HTML element in the editor. since you’re done with the previous script
element you can collapse it, which will make it easier to see the new element that you’ll be working on. While you
don’t need to set the id attribute of a script element, if you do, it will be displayed when the element is collapsed as
demonstrated in Figure 10-9. This will make it easier to view pages with multiple script elements.

CHAPTER 10 ■ CAnvAs

242

Figure 10-9. Collapsing the script element

3. This code gets the canvas element and then obtains the 2d drawing context, just
like the previous example. It then uses the setInterval() function to call the
animateSS() function every 100 milliseconds. The animateSS() function is what
does the real work. It clears the entire area and then fills it with dark blue color. The
rest of the code relies on transformations so it first saves the drawing context and
then restores it when finished.

4. This animateSS() function uses the translate() function to move the origin to the
approximate midpoint of the canvas. The sun and the earth orbit are drawn using the
arc() function. notice the center point for both is 0, 0 since the context’s origin is
now in the middle of the canvas. Also notice the start angle is 0 and the end angle is
specified as Math.PI * 2. In radians, this is a full circle or 360°. The arc for the sun
is filled in and the orbit is not.

5. Press F5 to start the application. so far, the drawing is not very interesting; a sun
with an orbit drawn around it as shown in Figure 10-10.

CHAPTER 10 ■ CAnvAs

243

6. now you’ll draw the earth and animate it around the orbit. normally the earth will
revolve around the sun once every 365.24 days but we’ll speed this up a bit and
complete the trip in 60 seconds. To determine where to put the earth each time
the canvas is redrawn, you must calculate the number of seconds. The amount of
rotation per second is calculated as Math.PI *2 / 60. Multiply this value by the
number of seconds to determine the angle where the earth should be.

7. Add the code from Listing 10-8 that is shown in bold. This code uses the rotate()
function to rotate the drawing context the appropriate angle. since the arc for the earth orbit
is 150 px, this code then uses the translate() function to move the context 150 pixels
to the right so the earth can be drawn at the adjusted 0,0 coordinate. The earth is then
drawn using a filled arc with a center point of 0,0, the new origin of the context.

Listing 10-8. Drawing the earth

// Draw the earth orbit
ssContext.scale(1.1, 1);
ssContext.strokeStyle = "black";
ssContext.beginPath();
ssContext.arc(0, 0, 150, 0, Math.PI * 2);
ssContext.stroke();

// Compute the current time in seconds (use the milliseconds
// to allow for fractional parts).
var now = new Date();
var seconds = ((now.getSeconds() * 1000) + now.getMilliseconds()) / 1000;

//---
// Earth
//---
// Rotate the context once every 60 seconds
var anglePerSecond = ((Math.PI * 2) / 60);
ssContext.rotate(anglePerSecond * seconds);
ssContext.translate(150, 0);

Figure 10-10. The initial solar system drawing

CHAPTER 10 ■ CAnvAs

244

// Draw the earth
ssContext.fillStyle = "green";
ssContext.beginPath();
ssContext.arc(0, 0, 10, 0, Math.PI * 2, true);
ssContext.fill();

ssContext.restore()

8. save your changes and press F5 to start the application. now you should see the
earth make its way around the sun as shown in Figure 10-11.

Figure 10-11. Adding the earth to the drawing

9. now you’ll show the moon revolving around the earth, which will demonstrate
the real power of using transformations. The specific position of the moon is
based on two moving objects. While it’s certainly possible to compute this using
some complex formulas (scientists have been doing this for centuries) with
transformations, you don’t have to. The drawing context was rotated the appropriate
angle based on current time (number of seconds). It was then translated by the
radius of the orbit so the earth is now at the origin of the context. It doesn’t really
matter where the earth is, we can simply draw the moon relative to the current
origin.

10. You will now draw the moon just like you drew the earth. Instead of the origin
being at the sun and rotating the earth around the sun, the origin is on the earth
and you’ll rotate the moon around the earth. The moon will rotate around the
sun approximately once each month, or in other words, it will complete about
12 revolutions for each earth orbit. so you’ll need to rotate 12 times faster. The
anglePerSecond is now computed as 12 * ((Math.PI * 2) / 60). Add the
code shown in bold in Listing 10-9.

CHAPTER 10 ■ CAnvAs

245

Listing 10-9. Drawing the moon

// Draw the earth
ssContext.fillStyle = "green";
ssContext.beginPath();
ssContext.arc(0, -0, 10, 0, Math.PI * 2, true);
ssContext.fill();

//---
// Moon
//---
// Rotate the context 12 times for every earth revolution
anglePerSecond = 12 * ((Math.PI * 2) / 60);
ssContext.rotate(anglePerSecond * seconds);
ssContext.translate(0, 35);

// draw the moon
ssContext.fillStyle = "white";
ssContext.beginPath();
ssContext.arc(0, 0, 5, 0, Math.PI * 2, true);
ssContext.fill();

ssContext.restore()

Note ■ There are actually about 12.368 lunar months per solar year. You can make your model more accurate by
using this figure instead of 12 in the preceding code.

11. save your changes and press F5 to start the application. You should now see the
moon rotating around the earth as shown in Figure 10-12.

Figure 10-12. Including the moon

CHAPTER 10 ■ CAnvAs

246

Applying Scaling
Before you finish up this model, there’s one minor correction that you’ll make. The earth’s orbit is not actually a
perfect circle. This attribute is known as eccentricity. (If you’re curious about orbital eccentricity, check out the
article at http://en.wikipedia.org/wiki/Orbital_eccentricity.) To model this in your drawing you’ll stretch
the orbit, making it a little bit wider than it is tall. To do this you’ll use scaling.

The scale() function performs the third type of transformation. This function takes two parameters
that specify the scaling along the x and y axis. A scale factor of 1 is the normal scale. A factor less than one will
compress the drawing and a factor greater than 1 will stretch it. While the imperfection in the earth’s orbit is
extremely slight, you’ll exaggerate it here and use a scale factor of 1.1 for the x axis.

Add the following code shown in bold just before the earth orbit is drawn:

// Draw the earth orbit

ssContext.scale(1.1, 1);

ssContext.strokeStyle = "black";

Press F5 to start the application, which should look like Figure 10-13.

Figure 10-13. Adding scaling

You now have a slightly out-of-shape orbit. By simply changing the scale factor all the various drawing
elements were adjusted proportionally. Also, after restoring the context, the scaling is restored to normal so
subsequent elements are drawn correctly.

Clipping a Canvas
I want to cover one more feature related to paths. Earlier I said that after you call beginPath() and then the
desired drawing functions, you can either call stroke() or fill(). There is one more function you can call as
well: clip(). The clip() function will use the path that you just defined and will not allow anything to be drawn
outside of that path. This doesn’t affect what has already been drawn but any future shapes will be restricted to
the clipping area defined by this path.

To demonstrate this, you’ll go back to the chess board example and define a clipping path using an arc.
Go to the board script element and add the code shown in bold to the drawBoard() function:

http://en.wikipedia.org/wiki/Orbital_eccentricity

CHAPTER 10 ■ CAnvAs

247

var gradient = chessContext.createLinearGradient(0, 600, 600, 0);
gradient.addColorStop(0, "#D50005");
gradient.addColorStop(0.5, "#E27883");
gradient.addColorStop(1, "#FFDDDD");

// Clip the path
chessContext.beginPath();
chessContext.arc(300, 300, 300, 0, (Math.PI * 2), true);
chessContext.clip();

chessContext.fillStyle = gradient;
chessContext.strokeStyle = "red";

// Draw the alternating squares

This defines a circle on the board and anything outside of that circle will not be visible. Press F5 to start the
application, which should look like Figure 10-14.

Figure 10-14. The chess board with a clipping path

Note ■ If you define the clipping path after the board is drawn, the entire board will be drawn but the pieces will
be cropped so any part that is outside the clipping area will be hidden.

Understanding Compositing
With all the shapes you have drawn so far, the one drawn last overlaid, or hid, whatever preceded it. This behavior
is referred to as compositing. The default behavior, called source-over, is as we’ve seen, to draw the current shape
on top of whatever may already be on the canvas. However, there are 11 other behaviors that you can configure
using the globalCompositeOperation property. These are best explained by seeing a sample of each.

In this exercise you will overlap a red square with a blue circle. You will do this 12 times, each time using a
different value for the globalCompositeOperation property. To make this work correctly, you’ll create 12 canvas
elements, drawing the same elements on each.

CHAPTER 10 ■ CAnvAs

248

eXerCISe 10-6. eXpLOrING COMpOSItING

1. In the main div element, comment out the board and solarsystem canvas elements
and create twelve new canvas elements using the code shown in Listing 10-10.

Listing 10-10. Creating twelve canvas elements

<div>
 <div>
 <canvas id = "composting1" width = "120" height = "120" > </canvas>

source-over
 </div>
 <div>
 <canvas id = "composting2" width = "120" height = "120" > </canvas>

destination-over
 </div>
 <div>
 <canvas id = "composting3" width = "120" height = "120" > </canvas>

source-in
 </div>
 <div>
 <canvas id = "composting4" width = "120" height = "120" > </canvas>

destination-in
 </div>
 <div>
 <canvas id = "composting5" width = "120" height = "120" > </canvas>

source-out
 </div>
 <div>
 <canvas id = "composting6" width = "120" height = "120" > </canvas>

destination-out
 </div>
 <div>
 <canvas id = "composting7" width = "120" height = "120" > </canvas>

source-atop
 </div>
 <div>
 <canvas id = "composting8" width = "120" height = "120" > </canvas>

destination-atop
 </div>
 <div>
 <canvas id = "composting9" width = "120" height = "120" > </canvas>

xor
 </div>
 <div>
 <canvas id = "composting10" width = "120" height = "120" > </canvas>

copy
 </div>
 <div>
 <canvas id = "composting11" width = "120" height = "120" > </canvas>

lighter
 </div>

CHAPTER 10 ■ CAnvAs

249

 <div>
 <canvas id = "composting12" width = "120" height = "120" > </canvas>

darker
 </div>

 <!-- < canvas id = "board" width = "600" height = "600">
 Not supported
 </canvas>
 <canvas id = "solarSystem" width = "450" height = "400">
 Not supported
 </canvas > −->
</div>

2. Add the following style element in the head section. This will format the canvas
elements into three columns so you can see all 12 examples on one screen.

<style>
 body div
 {
 -webkit-column-count: 3;
 column-count: 3;
 }
</style>

3. Collapse the solar system script element.

4. Add the script element shown in Listing 10-11 to the body element, just after the
existing script elements.

Listing 10-11. Drawing the compositing canvases

<script id = "compositing" type = "text/javascript">
 for (var i = 1; i < = 12; i++) {
 var c = document.getElementById("composting" + i);
 var cContext = c.getContext("2d");

 cContext.fillStyle = "red";
 cContext.fillRect(10, 20, 80, 80);

 switch (i) {
 case 1: cContext.globalCompositeOperation = "source-over"; break;
 case 2: cContext.globalCompositeOperation = "destination-over"; break;
 case 3: cContext.globalCompositeOperation = "source-in"; break;
 case 4: cContext.globalCompositeOperation = "destination-in"; break;
 case 5: cContext.globalCompositeOperation = "source-out"; break;
 case 6: cContext.globalCompositeOperation = "destination-out"; break;
 case 7: cContext.globalCompositeOperation = "source-atop"; break;
 case 8: cContext.globalCompositeOperation = "destination-atop"; break;
 case 9: cContext.globalCompositeOperation = "xor"; break;
 case 10: cContext.globalCompositeOperation = "copy"; break;
 case 11: cContext.globalCompositeOperation = "lighter"; break;
 case 12: cContext.globalCompositeOperation = "darker"; break;
 }

CHAPTER 10 ■ CAnvAs

250

 cContext.fillStyle = "blue";
 cContext.beginPath();
 cContext.arc(65, 75, 40, 0, (Math.PI * 2), true);
 cContext.fill();
 }
</script>

5. This code uses a for loop to process all 12 canvas elements. It gets the
corresponding element and then obtains its drawing context. It adds a red square
and then sets the globalCompositeOperation property. Finally, it adds a blue circle.

6. Change the debugging browser to use Chrome as this supports all of the
compositing options (as well as the multi-column support).

7. save your changes and press F5 to start the application. The web page should look
like Figure 10-15.

Figure 10-15. Demonstrating the compositing options

The compositing options are:

•	 source-over – This is the default operation. The source element (the element being
added) is drawn on top of the destination (whatever is already in this location).

•	 destination-over – This is the opposite of source-over, where the source element is
added underneath the existing elements.

•	 source-in – Only the portion of the source object that is also in a destination element is
displayed. Note that none of the destination element is displayed; it is being used like a
clipping shape.

CHAPTER 10 ■ CAnvAs

251

•	 destination-in – Only the portion of the destination object that is also in the source
element is displayed.

•	 source-out – Only the portion of the source element that does not overlap the
destination element is displayed.

•	 destination-out – Only the portion of the destination element that does not overlap the
source element is displayed.

•	 source-atop – The source is displayed on top of the destination element but the entire
shape is clipped by the destination element.

•	 destination-atop – The source is displayed beneath the destination element but the
entire shape is clipped by the source element.

•	 xor – Only the portions of the source and destination elements that do not overlap
are displayed.

•	 copy – The name is misleading. This draws the source elements and clears everything else.

•	 lighter – This draws both the source and destination elements and the overlapping area
is displayed in a lighter color. The actual color is determined by adding the color values of
the source and destination elements.

•	 darker – draws both the source and destination elements and the overlapping area is
displayed in a darker color. The actual color is determined by subtracting the color values
of the source and destination elements.

Tip■ some of the names of these compositing options may not be very intuitive. I suggest that you keep this
figure handy to refer to later in case you don’t remember what copy does, for example.

Summary
In this chapter, you used the canvas element to create some graphical web pages. You used rectangles and paths
to draw shapes on the canvas. You also included images on your the canvas. One of the really powerful features
of canvas is the ability to apply transformations. The appropriate use of transformations can really simplify some
complex drawing applications.

Canvas is fundamentally very different from SVG. In SVG, each shape is a separate DOM node. This provides
two important features that you cannot do with canvas:

1. Attach event handlers to individual shapes

2. Individual shapes can be manipulated. A good example of this is defining the :hover
pseudo rule, which allows the shape’s attributes to be changed when the mouse is
hovered over it.

In contrast to SVG, canvas is pixel based, which means it is resolution dependent. Notice that all of the drawing
commands used pixel locations or sizes. When you draw a shape on a canvas element, the pixels of that canvas
are adjusted as appropriate and all that is remembered in the resulting pixel content.

Canvas will tend to be more efficient because of its raw pixel manipulation. SVG on the other hand must
perform a lot of rendering (and re-rendering). However, larger images with less dense content, such as maps,
will generally perform better in SVG.

Part 4

Digging Deeper

In this part, I will explain several miscellaneous features that enable some advanced capabilities using
JavaScript. Chapter 11 demonstrates how to use Indexed DB to create and access client-side persistent
databases. In Chapter 12, you’ll use the geolocation support in HTML5 to determine the user’s current
position. You then use Bing Maps to display this location along with a number of points of interest.

In Chapter 13, you’ll use websockets to implement a multi-client chat solution. This includes
creating the socket server using Visual Studio 2012. Finally in Chapter 14 I’ll show you how to use the
drag-and-drop feature to create user experiences that rival desktop solutions.

255

Chapter 11

Indexed DB

As browser technology has evolved, providing more and more functionality on the client device, the need to
store and manipulate data locally has increased as well. To address this need, two competing technologies have
emerged:

Web SQL – An SQL engine hosted within the browser.•	

Indexed DB – An API for storing and retrieving objects using keys and indices.•	

Note ■ In November 2010, the W3C Working Group decided to stop work on Web SQL and it is no longer part of
the HTML5 specifications. Several browsers still support it however, but its adoption as a cross-platform standard is
unlikely.

This chapter will demonstrate how to use Indexed DB to store and use data on the client. If you are used to
working with SQL databases, I will warn you, this is not an SQL database. It is quite powerful and useful once
you get the hang of it but you’ll need to adjust your perspective and set aside your SQL experience as you work
through this chapter.

To explore the capabilities of Indexed DB you will re-write the chess board application that you created using
canvas in Chapter 10. As I explain each of the exercises I will not go into much detail about canvas; however, refer
to Chapter 10 if you need more information. Your new version of the application will create object stores to define
the positions of each piece and then manipulate this data as the pieces are moved.

Introducing Indexed DB
Before I get started with the detailed demonstration, there are a few key points that I think will help you better
understand how Indexed DB works. Like other databases, the data is placed in a persistent data store. In this case
on the local hard drive. The data is permanent.

Using Object Stores
The primary storage unit is called an object store. This is aptly named as they are simply a collection of objects
that are referenced by a key. You can think of this as a set of name-value pairs, the value being an object with a set
of properties. You can use an in-line key, where one of the object properties serves as the key. For example, if the
object has an id property with unique values, you can use that as the in-line key. If you use out-of-line keys, then

CHAPTER 11 ■ INdExEd dB

256

you will specify a key when adding an object to the store. Alternatively, you can use a key generator, where the
object store will assign incremental key values for you. The following code demonstrates these alternatives:

// Using an inline key
var typeStore = db.createObjectStore("pieceType", { keyPath: "id" });
typeStore.add(pieceType);

// Using an out-of-line key
var sampleStore = db.createObjectStore("sample", { });
sampleStore.add(sample, 5);

// Using a key generator
var pieceStore = db.createObjectStore("piece", { autoIncrement: true });
pieceStore.add(piece);

As its name implies, you can also create an index on an object store; in fact you can create as many indices as
you want. An index enables you to find a specific object or collection of objects quickly. An index is a collection of
name-value pairs, where the value is a key into the object store. For example, if you have a customer object store
and wanted to search by last name you can create an index on the lastName property of the object. The database
will automatically create an entry in the index for each object in the store. This entry will contain the last name
and the corresponding key to that object. The following code demonstrates how to use an index:

// Create an index on the lastName property
customerStore.createIndex("lastName", "pos", { unique: true });

// Get the index
var index = custStore.index("lastName");
index.get(lastName).onsuccess = function(); // get the object
index.getKey(lastName).onsuccess = function(); // get the key

Indexed DB does not support relationships between object stores. You can’t enforce a foreign key
relationship for example. You can certainly use foreign keys, where a property in one object store is a key into
another, as I will demonstrate later. However, the database does not enforce this constraint. Also, you can’t
perform joins between objects stores.

Processing Asynchronously
A key aspect of Indexed DB that may take some getting used to is its asynchronous processing; almost all
database operations are done asynchronously. The general pattern is to call a method to perform a database
operation such as opening a database or retrieving a set of records (objects). This will return a request object.
You must then implement the onsuccess and onerror event handlers for that request object. If the request was
successful, the onsuccess handler is called and the result of the method call is passed through the event object.

Tip ■ The onerror event is bubbled up the hierarchy. For example, an error that occurs on the request object, if
not handled will be raised on the transaction object. If not handled there it will be raised on the database object. In
many cases, you can just use a single event handler at the database level and handle all the errors there.

CHAPTER 11 ■ INdExEd dB

257

For complex processing that requires several database calls, you’ll need to be careful to nest the event
handlers and consider when they are executed. For example, if you needed to make three database requests, your
code might look like this:

var request = dbCall1()
request.onsuccess = function (e1) {
 f1(e1.target.result);

 dbCall2().onsuccess = function (e2) {
 f3(e2.target.result, e1.target.result);

 dbCall3().onsuccess = function (e3) {
 f5(e3.target.result, e2.target.result, e1.target.result);
 }

 f4(e2.target.result);
 }

 f2(e1.target.result);
}
request.onerror = function(e) {
 alert("The call failed")
}

This code calls dbCall1(), dbCall2(), and dbCall3(), in that order and they will be processed sequentially.
In other words, dbCall2() will not start until dbCall1() has completed, and only if it was successful. Each call
provides an onsuccess event handler, which makes the next call. If the first call fails, an alert is raised. What may
be unexpected is the order that the non-database calls are executed. The database calls return immediately and
the event handler is called later, when the operation has completed. As soon as the call to dbCall2() is made, the
function returns and f2() will be executed. Then later, the dbCall2() completes, its event handler is called and
f3() is executed.

Because of the nesting approach, the event handler has access to the event object from previous calls. For
this reason, you should use unique names for the event parameter. This will avoid ambiguity. Also, notice the
use of closure to access these event objects. As I mentioned, f2() is called before f3() so the event handler
for dbCall1() which defines the e1 parameter, has completed and is no longer in scope by the time the event
handler for dbCall2() is executed. The closure feature of JavaScript allows the subsequent event handlers
to access this object. This is important because if you need to access all three object stores to complete an
operation, you will need to wait until all three have completed and then access all three results.

Tip ■ To avoid closure, you could extract the properties that you need from the first two database calls and store
them in local variables (declared prior to the dbCall1() call. Then in the f5() call you can use these variables
instead of the e1 and e2 event objects. This is just a matter of preference, as either approach will work fine.

Using Transactions
All data access, both reading and writing, is done within a transaction, so you must first create a transaction
object. When the transaction is created you specify its scope, which is defined by the object stores it will access.

CHAPTER 11 ■ INdExEd dB

258

You also specify the mode (read-only or read/write). You can then obtain an object store from the transaction
and get or put data from/into the store like this:

var xact = db.transaction(["piece", "pieceType"], "readwrite");
var pieceStore = xact.objectStore("piece");

For read/write transactions, the data changes are not committed until the transaction completes. The
interesting question to ask is “when does a transaction complete?” A transaction is complete when there are
no more outstanding requests for it. Remember, everything is request-based. You make a request and then
implement an event handler to do something when it finishes. If that event handler issues another request on
that transaction then the transaction stays alive. This is another important reason for nesting the event handlers.
If you end an event handler without issuing another request, the transaction will complete and all changes are
committed. If you try to use the transaction after that, you will get a TRANSACTION_INACTIVE_ERR error.

Another thing to remember is that read/write transactions cannot have overlapping scopes. If you create a
read/write transaction, you can create a second one as long as they don’t both include some of the same object
stores. If they have overlapping scopes, you must wait for the first transaction to complete before creating the
second one. Read-only transactions, however, can have overlapping scopes.

Defining the Database
When you open a database you need to implement three event handlers:

•	 onsuccess – the database is opened, do something with it

•	 onerror – an error occurred, likely an access issue

•	 onupgradeneeded – the database needs to be created or upgraded

When opening a database, if it doesn’t exist, it will be created automatically, however the onupgradeneeded
event will be raised. You must implement an event handler for this event, which will create object stores and
populate them with any default data. This is the only place where you are allowed to alter the database structure.
The important thing to remember is that the onupgradeneeded event is fired before the onsuccess event.

The open() call also specifies a version number. If this is not the current version, the onupgradeneeded
event is raises in this scenario also. Your event handler needs to handle both creating a database from scratch
because none exists as well as altering the structure. You can query the database’s current version to perform the
necessary steps like this:

var request = dbEng.open("Sample", 2); // get version 2

request.onupgradeneeded = function (event) {
 alert("Configuring database - current version is " + e.oldVersion +
 ", requested version is " + e.newVersion);
}

Creating the Application
For this application I will be using the Firefox browser since it fully supports the current draft of the Indexed DB
specification. The only browsers that support Indexed DB are Chrome and Firefox, although IE10 is expected to
support it. The current version of Chrome does not implement the onupgradeneeded event however.

CHAPTER 11 ■ INdExEd dB

259

Creating the Visual Studio Project
You’ll start by creating a Visual Studio project using the same Basic MVC template that you have used in previous
chapters.

eXerCISe 11-1. CreatING the VISUaL StUDIO prOJeCt

1. Start Visual Studio 2012. In the Start Page, click the New Project link.

2. In the New project dialog box, select the “ASP.NET MVC4 Web Application” template.
Enter the project name Chapter11 and select a location for this project as shown in
Figure 11-1.

Figure 11-1. Creating the Chapter11 project

3. In the next dialog box, select the Basic template and make sure the Razor view
engine is selected. Click the OK button and the project will be created.

4. Right-click the Controller folder in the Solution Explorer and select the
Add ➤ Controller links. Enter the name HomeController and select the Empty MVC
Controller template. Click the Add button to create the controller.

5. Right-click the View folder and select the Add ➤ New Folder links. Enter the name
Home.

6. Right-click the new Home folder and select the Add ➤ View links. In the Add View
dialog box, enter the name Index, make sure the Razor view engine is selected,
unselect all the check boxes, and click the Add button.

7. In the Index.cshtml file, in the empty div that was created, add the following markup:

CHAPTER 11 ■ INdExEd dB

260

<canvas id = "board" width = "600" height = "600">
 Not supported
</canvas>

8. In the Solution Explorer, right-click the Chapter11 project and select the
Add ➤ New Folder links. Enter Images for the folder name.

9. The images for the chess pieces are included in the source code download file.
These are the same images used in Chapter 10. You’ll find these in the Chapter10\
Images folder. drag all 12 files to the Images folder in the Solution Explorer.

Creating the Canvas
Now you’ll design the canvas element using JavaScript. The initial design will just draw an empty board and you’ll
add the chess pieces later. Refer back to Chapter 10 for more explanation about working with a canvas element.
Add a script element after the div element but inside the body element using the code from Listing 11-1.

Listing 11-1. Designing the initial canvas

<script>
 // Get the canvas context
 var chessCanvas = document.getElementById("board");
 var chessContext = chessCanvas.getContext("2d");

 drawBoard();

 function drawBoard() {
 chessContext.clearRect(0, 0, 600, 600);

 var gradient = chessContext.createLinearGradient(0, 600, 600, 0);
 gradient.addColorStop(0, "#D50005");
 gradient.addColorStop(0.5, "#E27883");
 gradient.addColorStop(1, "#FFDDDD");

 chessContext.fillStyle = gradient;
 chessContext.strokeStyle = "red";

 // Draw the alternating squares
 for (var x = 0; x < 8; x++) {
 for (var y = 0; y < 8; y++) {
 if ((x + y) % 2) {
 chessContext.fillRect(75 * x, 75 * y, 75, 75);
 }
 }
 }
 // Add a border around the entire board
 chessContext.strokeRect(0, 0, 600, 600);
 }
</script>

Select Firefox for the debug browser. Press F5 to start the application, which should look like Figure 11-2.

CHAPTER 11 ■ INdExEd dB

261

Configuring the Images
You will be using image files to represent the chess pieces. Before adding them to the canvas you’ll need to create
an Image object for each one and specify its src attribute. You’ll also put these into an array to make it easier to
programmatically select the desired image. Add the code shown in Listing 11-2 to the beginning of the script
element that you just created, before the existing code.

Listing 11-2. Adding the image objects

// Define the chess piece images
var imgPawn = new Image();
var imgRook = new Image();
var imgKnight = new Image();
var imgBishop = new Image();
var imgQueen = new Image();
var imgKing = new Image();
var imgPawnW = new Image();
var imgRookW = new Image();
var imgKnightW = new Image();
var imgBishopW = new Image();
var imgQueenW = new Image();
var imgKingW = new Image();

// Specify the source for each image
imgPawn.src = "Images/pawn.png";
imgRook.src = "Images/rook.png";
imgKnight.src = "Images/knight.png";
imgBishop.src = "Images/bishop.png";
imgQueen.src = "Images/queen.png";
imgKing.src = "Images/king.png";
imgPawnW.src = "Images/wpawn.png";
imgRookW.src = "Images/wrook.png";

Figure 11-2. The initial (blank) chess board

CHAPTER 11 ■ INdExEd dB

262

imgKnightW.src = "Images/wknight.png";
imgBishopW.src = "Images/wbishop.png";
imgQueenW.src = "Images/wqueen.png";
imgKingW.src = "Images/wking.png";

// Define an array of Image objects
var images = [
 imgPawn ,
 imgRook ,
 imgKnight ,
 imgBishop ,
 imgQueen ,
 imgKing ,
 imgPawnW ,
 imgRookW ,
 imgKnightW ,
 imgBishopW ,
 imgQueenW ,
 imgKingW
];

Creating the Database
Now you’re ready to create and use a local Indexed DB database to configure and display the chess pieces.
Initially, the data will be loaded from static data and you will simply display the starting position. Later you will
animate the pieces by updating their location in object store.

Declaring the Static Data
You will need to populate the database with some data. For this application you will just declare the data as a
static array and copy it to the object store. For other applications this could be downloaded from a server or
entered from user input. Add the following declarations shown in Listing 11-3 to the script element, just after
the image variables.

Listing 11-3. Declaring the static data

var pieceTypes = [
 { name: "pawn", height: "50", width: "28", blackImage: 0, whiteImage: 6 },
 { name: "rook", height: "60", width: "36", blackImage: 1, whiteImage: 7 },
 { name: "knight", height: "60", width: "36", blackImage: 2, whiteImage: 8 },
 { name: "bishop", height: "65", width: "30", blackImage: 3, whiteImage: 9 },
 { name: "queen", height: "70", width: "32", blackImage: 4, whiteImage: 10 },
 { name: "king", height: "70", width: "28", blackImage: 5, whiteImage: 11 }
];

var pieces = [
 { type: "pawn", color: "white", row: 6, column: 0, pos: "a2", killed: false },
 { type: "pawn", color: "white", row: 6, column: 1, pos: "b2", killed: false },
 { type: "pawn", color: "white", row: 6, column: 2, pos: "c2", killed: false },
 { type: "pawn", color: "white", row: 6, column: 3, pos: "d2", killed: false },

CHAPTER 11 ■ INdExEd dB

263

 { type: "pawn", color: "white", row: 6, column: 4, pos: "e2", killed: false },
 { type: "pawn", color: "white", row: 6, column: 5, pos: "f2", killed: false },
 { type: "pawn", color: "white", row: 6, column: 6, pos: "g2", killed: false },
 { type: "pawn", color: "white", row: 6, column: 7, pos: "h2", killed: false },
 { type: "rook", color: "white", row: 7, column: 0, pos: "a1", killed: false },
 { type: "rook", color: "white", row: 7, column: 7, pos: "h1", killed: false },
 { type: "knight", color: "white", row: 7, column: 1, pos: "b12", killed: false },
 { type: "knight", color: "white", row: 7, column: 6, pos: "g1", killed: false },
 { type: "bishop", color: "white", row: 7, column: 2, pos: "c1", killed: false },
 { type: "bishop", color: "white", row: 7, column: 5, pos: "f1", killed: false },
 { type: "queen", color: "white", row: 7, column: 3, pos: "d1", killed: false },
 { type: "king", color: "white", row: 7, column: 4, pos: "e1", killed: false },
 { type: "pawn", color: "black", row: 1, column: 0, pos: "a7", killed: false },
 { type: "pawn", color: "black", row: 1, column: 1, pos: "b7", killed: false },
 { type: "pawn", color: "black", row: 1, column: 2, pos: "c7", killed: false },
 { type: "pawn", color: "black", row: 1, column: 3, pos: "d7", killed: false },
 { type: "pawn", color: "black", row: 1, column: 4, pos: "e7", killed: false },
 { type: "pawn", color: "black", row: 1, column: 5, pos: "f7", killed: false },
 { type: "pawn", color: "black", row: 1, column: 6, pos: "g7", killed: false },
 { type: "pawn", color: "black", row: 1, column: 7, pos: "h7", killed: false },
 { type: "rook", color: "black", row: 0, column: 0, pos: "a8", killed: false },
 { type: "rook", color: "black", row: 0, column: 7, pos: "h8", killed: false },
 { type: "knight", color: "black", row: 0, column: 1, pos: "b8", killed: false },
 { type: "knight", color: "black", row: 0, column: 6, pos: "g8", killed: false },
 { type: "bishop", color: "black", row: 0, column: 2, pos: "c8", killed: false },
 { type: "bishop", color: "black", row: 0, column: 5, pos: "f8", killed: false },
 { type: "queen", color: "black", row: 0, column: 3, pos: "d8", killed: false },
 { type: "king", color: "black", row: 0, column: 4, pos: "e8", killed: false }
];

The pieceTypes[] array defines the properties needed to display each piece such as height and width. It also
specifies the corresponding index in the images[] array for both the black and white images. The pieces[] array
contains the same details used in the previous chapter such as row and column, and defines the starting position
for each of the 32 pieces.

Opening the Database
Add the code shown in Listing 11-4 to the script object, just after the call to drawBoard() (and before the
implementation of the drawBoard()function).

Listing 11-4. Opening the database

var dbEng = window.indexedDB ||
 window.webkitIndexedDB || // Chrome
 window.mozIndexedDB || // Firefox
 window.msIndexedDB; // IE

var db; // This is a handle to the database

CHAPTER 11 ■ INdExEd dB

264

if (!dbEng)
 alert("IndexedDB is not supported on this browser");
else {
 var request = dbEng.open("Chess", 1);

 request.onsuccess = function (event) {
 db = event.target.result;
 }

 request.onerror = function (event) {
 alert("Please allow the browser to open the database");
 }

 request.onupgradeneeded = function (event) {
 configureDatabase(event);
 }
}

Because the specification has not been finalized, the browsers will be using the vendor prefix. If you can’t
access the indexedDB object then the browser does not support it. For this demo you can simply use alert() to
notify the user and stop further processing.

This code then uses the indexedDB object to open the Chess database, specifying that version 1 should be
used. The open() method returns a DBRequest object, as I describer earlier. You will attach three event handlers
for this request:

•	 onsuccess - This event handler simply saves the reference to the database. You will add
more logic here later. Notice that the database is obtained from the event.target.result
property, which is how all results are returned.

•	 onerror – The primary reason that the browser fails to open a database is that the browser
has the IndexedDB feature blocked. This can be disabled for security reasons. In this case,
the user is prompted to allow access.

•	 onupgradeneeded – This is raised if the database does not exist or if the specified version
is not the current version. This calls the configureDatabase() function, which you’ll
implement now.

Defining the Database Structure
Add the code shown in Listing 11-5 to implement the configureDatabase() function.

Listing 11-5. Defining the database structure

function configureDatabase(e) {
 alert("Configuring database - current version is " + e.oldVersion +
 ", requested version is " + e.newVersion); db = e.currentTarget.result;

 // Remove all existing data stores
 var storeList = db.objectStoreNames;
 for (var i = 0; i < storeList.length; i++) {
 db.deleteObjectStore(storeList[i]);
 }

CHAPTER 11 ■ INdExEd dB

265

 // Store the piece types
 var typeStore = db.createObjectStore
 ("pieceType", { keyPath: "name" });

 for (var i in pieceTypes){
 typeStore.add(pieceTypes[i]);
 }

 // Create the piece data store (you'll add
 // the data later)
 var pieceStore = db.createObjectStore
 ("piece", { autoIncrement: true });

 pieceStore.createIndex
 ("piecePosition", "pos", { unique: true });
}

Caution ■ The configureDatabase() function will be called if the database does not exists or if it is not the
current version. For version changes, you can get the current version by using the db.version property and then
make the necessary adjustments. Also, the event object passed to the onupgradeneeded event handler will have
the e.oldVersion and e.newVersion properties. To simplify things in this project, you’ll simply remove all object
stores and rebuild the database from scratch. This will wipeout all existing data. That is fine for this example but in
most cases you’ll need to preserve the data where possible.

The objectStoreNames property of the database object contains a list of the names of all the object stores
that have been created. To remove all of the existing object stores, each of the names in this list is passed to the
deleteObjectStore() method.

Initially, you’ll create two data stores using the createObjectStore() method:

•	 pieceType – contains an object for each type of piece such as pawn, rook, or king.

•	 piece – contains an object for each piece, 16 black and 16 white.

Specifying the Object Key
When creating an object store, you must specify a name for the store when calling the createObjectStore()
method. You can also specify one or more optional parameters. Only two are supported:

•	 keypath – this is specified as a collection of property names. If you’re using a single
property, you can specify this as a string rather than a collection of strings. This defines
the object property(ies) that will be used as the key. If no keypath is specified, the key
must be defined out-of-line using a key generator or providing the key as explained
below.

•	 autoIncrement – If true, this indicates that the keys are sequentially assigned by the
object store.

CHAPTER 11 ■ INdExEd dB

266

Every object in a store must have a unique key. There are three ways to specify the key:

Use the •	 keypath parameter to specify one or more properties that define a unique key. As
objects are added, the keypath is used to generate a key based on the object’s properties.

Use a key generator. If •	 autoIncrement is specified, the object store will assign a key based
on an internal counter.

Provide the key value when adding the object. If you don’t specify a key path or use a key •	
generator, you must supply a key when adding an object to a store.

For the pieceType store you’ll use a keypath. The name property will specify the type such as “pawn” or
“knight”. This will be a unique value for each object. This is also the value that will be used to retrieve an object so
this is a perfect candidate for a key path. After creating the object store the data from the pieceTypes[] array is
then copied to the pieceType store.

Note ■ While in the onupgradeneeded event handler, data can be added to an object store without explicitly
creating a transaction. There is an implicit transaction created in response to the onupgradeneeded event.

Creating an Index
For the piece store there is no natural key available in the pieces data so you’ll use a key generator. It will
generate unique keys but the keys will have no real meaning; they’re just a surrogate key used to satisfy the
unique constraint. Initially when you’re drawing the board you’ll retrieve all of the objects so you don’t need to
know what the key is.

Later you’ll need to retrieve a piece so you can move it. You will find the desired piece based on its position
on the board. To facilitate that you’ll add an index to the store based on the pos property. Since no two pieces can
occupy the same space, the pos property can be used as a unique index. By specifying this as a unique index, you
will get an error if you try to insert an object with the same position as an existing object.

Caution ■ Since the pos property is unique, you might be tempted to use it as the key. However, since you will be
moving pieces, their position will change and it’s considered a poor design pattern to use a key that changes
often. For Indexed dB, this is especially problematic since you can’t actually change a key; you must delete the
current object and then add it with the new key.

When creating an index you must specify a keypath like this:

 pieceStore.createIndex
 ("piecePosition", "pos", { unique: true });

In this case, the pos property is the keypath for this index. The keypath may include more than one property;
in which case the index will be based on the combination of the selected properties. When an object store has an
index, the index is automatically populated when an object is added to the store.

CHAPTER 11 ■ INdExEd dB

267

Resetting the Board
You created the piece object store but have not populated it yet. You’ll do that in a separate function. To
understand why, let me explain the database life cycle. The first time the web page is displayed, the database is
opened, and since it doesn’t exist, a new database will be created. This happens because the onupgradeneeded
event is raised and you implemented this event handler to create the object stores. When the page is displayed
again (or simply refreshed), this step will be skipped since the database already exists.

Later, when you start moving the pieces around as well as deleting them, you’ll want to move them
back to their initial position when the page is reloaded. You can use this method to do that. You’ll now add a
resetBoard() function to the script using the following code. This will be called, not when the database is
created, but when the page is loaded.

function resetBoard() {

 var xact = db.transaction(["piece"], "readwrite");
 var pieceStore = xact.objectStore("piece");
 var request = pieceStore.clear();
 request.onsuccess = function(event) {
 for (var i in pieces) {
 pieceStore.put(pieces[i]);
 }
 }}

This code creates a transaction using the read/write mode and specifies only the piece object store, since
that is the only one you’ll need to access. Then the piece store is obtained from the transaction. The clear()
method is used to delete all of the objects from the store. Finally, all of the objects in the pieces[] array are
copied to the object store.

Now add the following code shown in bold to the onsuccess event handler. This will call the resetBoard()
function after the database has been opened.

Note ■ The onupgradeneeded event is raised and its event handler must complete before the onsuccess event
is raised. This ensures that the database has been properly configured before it is used.

var request = dbEng.open("Chess", 1);

request.onsuccess = function (event) {
 db = event.target.result;

 // Add the pieces to the board
 resetBoard();
}

CHAPTER 11 ■ INdExEd dB

268

Tip ■ In the resetBoard() function, you called the put() method (repeatedly – 32 times). However, you did not
get any response objects nor implement any event handlers. This code appears to be working synchronously.
Actually, these calls are processed asynchronously and a response object is returned in both cases but the return
value was ignored. You could implement both onsuccess and onerror event handlers for these requests. In this
case, you cheated a little. Since you don’t need the result value like you would when retrieving data, you don’t have
to handle the onsuccess event. Because these calls are within a transaction, subsequent use of the store will be
blocked until the updates are complete.

Drawing the Pieces
So far you have opened the database, configuring the object stores, if necessary. You have also populated
the piece store with the initial positions. Now you’re ready to draw the pieces. To do that you’ll implement a
drawAllPieces() function to iterate through all of the pieces and a drawPiece() function to display a single
image. These functions will be similar to the functions you created in Chapter 10 with the same names. However,
the data for these functions will be retrieved from the new database.

The drawAllPieces() function will use a cursor to process all of the objects in the piece object store.
For each piece, this will extract the necessary properties and pass them to the drawPiece() function. The
drawPiece() function must then access the pieceType store to obtain the type properties such as height and
width and then display the image in the appropriate location.

Using a Cursor
When retrieving data from an object store, if you want to retrieve a single record using its key, use the get()
method, which I will describe next. You can also select one of more objects using an index and I will explain
that later in this chapter. To get all the pieces you’ll need to access the entire object store, which you’ll do using a
cursor.

After creating the transaction and obtaining the object store, you’ll call its openCursor() method. This
returns a DBResult object and you’ll need to provide an onsuccess event handler for it. When the event fires, it
provides the first object only. You can obtain the next object by calling the continue() method. To demonstrate
this, add the function shown in Listing 11-6 to the script element.

Listing 11-6. Drawing the pieces

function drawAllPieces() {

 var xact = db.transaction(["piece", "pieceType"]);

 var pieceStore = xact.objectStore("piece");
 var cursor = pieceStore.openCursor();
 cursor.onsuccess = function (event) {
 var item = event.target.result;
 if (item) {
 if (!item.value.killed) {
 drawPiece(item.value.type,
 item.value.color,

CHAPTER 11 ■ INdExEd dB

269

 item.value.row,
 item.value.column,
 xact);
 }
 item.continue();
 }
 }
}

This code creates a transaction that will use both the piece and pieceType object stores. The mode is
not specified and the default value is “readonly”. It then gets the piece object store and calls its openCursor()
method. The onsuccess event handler gets the first object from the event object (using event.target.result).
If the piece has not been captured, the drawPiece() function is called to display it, which you’ll implement next.
You pass in all the properties that it will need such as type, color, row, and column. You’ll also pass in the
transaction object so the drawPiece() function can use the same transaction to access the pieceType store.

Calling the continue() method will cause the same event to be raised again, this time supplying the next
object in the event.target.result property. If there are no more objects, the result property will be null. This is
how you’ll know all the objects have been processed.

The openCursor() method provides some very basic capabilities to filter the objects that are returned. If
no parameters are supplied it will return all the objects in the store. You can specify a key range using one of the
following:

•	 IDBKeyRange.only() – specifies a single value and only records that match are returned.

IDBKeyRange.lowerBound()•	 – returns only key values greater than the value specified. By
default this is inclusive so it will also return objects with keys that have an exact match as
well but you can change this to only return values that are greater.

•	 IDBKeyRange.upperBound() – works just like lowerBound() except it returns values less
than or equal to the value specified. I will demonstrate this later in the chapter.

IDBKeyRange.bound()•	 – allows you to specify both a lower and upper bound. You can
also indicate if either of these values is inclusive.

The following example will return objects where the key is >3 and < = 7 and return them in descending order:

var keyRange = IDBKeyRange.bound(3, 7, false, true);
store.openCursor(keyRange, IDBCursor.PREV);

Retrieving a Single Object
Now you’ll implement the drawPiece() function that will draw a single piece on the board. It must first access the
pieceType object store to get the image details. In this case, you’ll retrieve a single object using its key. The key to
the pieceType object store is the type property. Add the function shown in Listing 11-7 to the script element.

Listing 11-7. Drawing a single piece

function drawPiece(type, color, row, column, xact) {

 var typeStore = xact.objectStore("pieceType");
 var request = typeStore.get(type);
 request.onsuccess = function (event) {
 var img;

CHAPTER 11 ■ INdExEd dB

270

 if (color === "black") {
 img = images[event.target.result.blackImage];
 }
 else {
 img = images[event.target.result.whiteImage];
 }

 chessContext.drawImage(img,
 (75 - event.target.result.width) / 2 + (75 * column),
 73 - event.target.result.height + (75 * row),
 event.target.result.width,
 event.target.result.height);
 }
}

This code uses the same transaction object, which is passed in. It obtains the pieceType object store and
then calls its get() method. The onsuccess event handler gets the necessary properties and calls the canvas
drawImage() method. Refer to Chapter 10 for more information about drawing images on a canvas.

Now add the call to drawAllPieces() in the onsuccess event handler for the open() call by adding the code
shown in bold:

request.onsuccess = function (event) {
 db = event.target.result;

 // Add the pieces to the board
 resetBoard();

 // Draw the pieces in their initial positions
 drawAllPieces();
}

Testing the Application
Now you’re ready to test the application, which will display the initial starting positions. Make sure that the debug
browser is set as Firefox and press F5 to start the application. You should see an alert letting you know that the
database is being configured as shown in Figure 11-3.

Figure 11-3. The alert showing the database is being configured

m

CHAPTER 11 ■ INdExEd dB

271

When you run this application again, this configuration will not be necessary. The chess board should look
like Figure 11-4.

Figure 11-4. The completed check board with static positions

Tip ■ If you want to remove the database from your machine, you can find the folder where they are stored and
delete the corresponding subfolder. On my machine, the path is: C:\Users\Mark.INTERNAL\AppData\
Roaming\Mozilla\Firefox\Profiles\jch09kcf.default\indexedDB. In this folder there is a subfolder for
each database. The subfolder name includes the protocol (http), domain name, and port, if applicable. For my appli-
cation this is http+++localhost + 17018. delete this folder and restart the browser. The page should reconfigure
the database since it must create a new one.

Moving the Pieces
Now you’re ready to animate the board by moving the pieces around. You’ll use the same canned moves that
were used in Chapter 10. A piece can be moved by simply updating its position and then redrawing the board.
There is one complication; however, if a move captures a piece, you need to remove it from the board. For now,
you’ll simply delete the object from the store but I’ll show you a better way at the end of the chapter.

Defining the Moves
Since you’re so database savvy now, you’ll store the moves in the database as well. A move is defined by the
starting and ending positions. For example, “move the piece at e2 to e3”. You’ll number these moves from 1
to 7 so they will be applied in the correct order. You’ll need a new object store to hold the move details. To do
that you’ll need to specify a new version, which will raise the onupgradeneeded event. Then you’ll add logic the
configureDatabase() function to create the new store.

CHAPTER 11 ■ INdExEd dB

272

eXerCISe 11-2. aDDING the MOVeS StOre

1. Add the following code to the script element just after the existing static data
definitions for the pieceTypes and pieces arrays:

var moves = [
 { id: 1, start: "e2", end: "e3" },
 { id: 2, start: "e7", end: "e5" },
 { id: 3, start: "f1", end: "c4" },
 { id: 4, start: "h7", end: "h6" },
 { id: 5, start: "d1", end: "f3" },
 { id: 6, start: "g7", end: "g6" },
 { id: 7, start: "f3", end: "f7" }
];

2. Add the following code shown in bold to the end of the configureDatabase()
function. This will create and populate the move store when the database is
configured.

 pieceStore.createIndex
 ("piecePosition", "pos", { unique: true });

 // Store the moves
 var moveStore = db.createObjectStore
 (“move”, { keyPath: “id” });

 for (var i in moves) {
 moveStore.add(moves[i]);
 }
}

3. On the open() call, change the version to 2 as shown in bold. This will cause the
onupgradeneeded event to be raised the next time the page is loaded.

if (!dbEng)
 alert("IndexedDB is not supported on this browser");
else {
 var request = dbEng.open("Chess", 2);

Converting the Position
The objects in the piece store have the row, column, and pos properties. The row and column properties follow
the same convention that was used in Chapter 10, where the top-left square is at 0,0. That is consistent with how
canvas works and simplifies the drawPiece() implementation. In contrast, the pos property uses the notation
widely used in Chess where the columns (files) go from “a” to “h” as you move left to right. The rows (ranks) go
from “1” to “8” as you move from the bottom of the board to the top. Thus “a1” is the bottom-left square.

Before you get into the heavy work of moving the pieces you’ll create a function that will convert the pos
property into row and column properties. When a piece is moved to e3 for example, you’ll need to convert “e3”
into the corresponding row and column coordinates, which would be 5 (row) and 4 (column). Add the function
shown in Listing 11-8 to the end of the existing script element.

CHAPTER 11 ■ INdExEd dB

273

Listing 11-8. Implementing the computeRowColumn() function

function computeRowColumn(oStart, end) {
 oStart.pos = end;
 switch (end.substring(0, 1)) {
 case "a": oStart.column = 0; break;
 case "b": oStart.column = 1; break;
 case "c": oStart.column = 2; break;
 case "d": oStart.column = 3; break;
 case "e": oStart.column = 4; break;
 case "f": oStart.column = 5; break;
 case "g": oStart.column = 6; break;
 case "h": oStart.column = 7; break;
 }

 oStart.row = 8 - parseInt(end.substr(1, 1));
}

The oStart parameter is the object from the piece store that was found at the starting position (“e2” in our
example). The end parameter is the ending position, “e3”, which is copied to the pos property since this will be the
piece’s new position.

This code then uses a switch statement to convert the “a” – “h” file notation into a “0” – “7” coordinate. This
is then stored in the column property. The row property is computed by taking the last digit from the position and
subtracting it from 8.

Making a Move
Just like you did in Chapter 10, you’ll use a timer to make the next move every 2 seconds. You’ll need a timer
variable so you can clear the timer when the animation is done. You’ll also need to keep track of the current
move. Add the two variables shown in bold to the script element just before the drawBoard() method is called.

// Get the canvas context
var chessCanvas = document.getElementById("board");
var chessContext = chessCanvas.getContext("2d");

var moveNumber = 1;
var timer;

drawBoard();

Moving a piece will require making up to five database calls:

1. Get the next object from the move store (this defines the start and end positions).

2. Get the object at the start position.

3. Get the object at the end position (there will only be one if the move is capturing
a piece).

4. Remove the object at the end position (this step will only be needed on some moves).

5. Update the object at the start position (to move it to the end position).

CHAPTER 11 ■ INdExEd dB

274

These calls will all be made using the same transaction. As I demonstrated at the beginning of the chapter,
you’ll need to nest the onsuccess event handlers for each of these calls. Add the makeNextMove() function shown
in Listing 11-9 to the end of the script element.

Listing 11-9. Implementing the makeNextMove() function

function makeNextMove() {

 var xact = db.transaction(["move", "piece"], "readwrite");
 var moveStore = xact.objectStore("move");

 moveStore.get(moveNumber).onsuccess = function (e1) {
 var startPos = e1.target.result.start;
 var endPos = e1.target.result.end;
 var startKey = null;
 var oStart = null;

 var pieceStore = xact.objectStore("piece");
 var index = pieceStore.index("piecePosition");

 index.getKey(startPos).onsuccess = function (e2) {
 startKey = e2.target.result;

 index.get(startPos).onsuccess = function (e3) {
 oStart = e3.target.result;

 // If there is a piece at the ending location, we'll
 // need to update it to prevent a duplicate pos index
 removePiece(endPos, oStart, startKey, pieceStore);
 }
 }
 }
}

This function creates a transaction that will access both the move and piece store. The mode is set to
“readwrite” because the objects in the piece store will be modified. It then gets the move store and calls its get()
method specifying the current move, which is the key to the table. This will return a single object and the start
and end positions are extracted from the result in the onsuccess event handler.

Tip ■ Notice that this code doesn’t explicitly define a request variable. Instead the onsuccess event handler is
attached directly to the database call. In the previous examples I declared a request variable and then attached the
event handler to it to help you see what was happening. However, attaching the event handler directly to the method
accomplishes the same thing but simplifies the code a little.

CHAPTER 11 ■ INdExEd dB

275

Obtaining the Object Key
For the piece store, you used a key generator so the key is not part of the object. The code in the makeNextMove()
function will use the index based on the pos property to retrieve the object at the start position (and also at the
end position if there is a piece there). However, in order to update or delete an object you will need its key.

When retrieving the piece object at the start position, this code first gets the piece store from the transaction.
It then gets the piecePosition index from the store. To get the key value, you’ll need to call index.getkey()
method which returns the key for the requested start position. This is stored in the startKey variable.

To get the desired object you’ll call the index.get() method passing in the position to search for. This
returns the object at the requested start position and stores it in the oStart variable.

In both cases, the data is returned in the result property. Again, the event handlers that process the results
are nested.

With the necessary data obtained, the removePiece() method is called passing in the following parameters:

•	 end – the ending position of the piece being moved

•	 oStart – an object representing the piece being moved

•	 startID – the key to the oStart object

•	 pieceStore - the piece store that will be used to perform the update

Performing the Update
Now you’ll implement the removePiece() function. This is perhaps misnamed since it will only remove a piece
when necessary. Add the following code to the end of the script element to implement the removePiece()
function.

function removePiece(endPos, oStart, startKey, pieceStore) {
 var index = pieceStore.index("piecePosition");
 index.getKey(endPos).onsuccess = function (e4) {
 var endKey = e4.target.result;
 if (endKey) {
 pieceStore.delete(endKey).onsuccess = function (e5) {
 movePiece(oStart, startKey, endPos, pieceStore)
 }
 }
 else
 movePiece(oStart, startKey, endPos, pieceStore);
 }
}

This code gets the key at the ending position. If there is a piece there, it calls the delete() method to
remove it and then calls the movePiece() function in the onsuccess handler for the delete() method. Notice
that it does not retrieve the object; only the key is needed to perform the delete. If there is no piece there, it
just calls the movePiece() function. When calling the movePiece() function, all the data it needs is passed to it
including the object, its key, the end position, and the object store that it will use.

Now you’ll implement the movePiece() function that will finally perform the actual update. To update an
object you call the put() method. Unlike the add() method that you used earlier to add the pieces, the put()
method requires both the object and the key. If there is no object with the specified key, the object will be added.
Add the movePiece() method shown in Listing 11-10 to the end of the script element.

CHAPTER 11 ■ INdExEd dB

276

Listing 11-10. Implementing the movePiece() function

function movePiece(oStart, startID, end, pieceStore) {

 computeRowColumn(oStart, end);

 var startUpdateReq = pieceStore.put(oStart, startID);
 startUpdateReq.onsuccess = function (event) {

 moveNumber++;
 drawBoard();
 drawAllPieces();

 if (moveNumber > 7) {
 clearInterval(timer);
 chessContext.font = "30pt Arial";
 chessContext.fillStyle = "black";
 chessContext.fillText("Checkmate!", 200, 220);
 }
 }
}

This code first computes the row and column properties using the computeRowColumn() function that you
created earlier. It then updates the object. In the onsuccess event handler it increments the moveNumber variable
and draws the board and all of the pieces using the existing functions. Finally, if this is the last move, the timer is
cleared and the “Checkmate!” text is drawn on the canvas.

Starting the Animation
The last step is to start the timer that will cause the makeNextMove() function to be called. You’ll do this in the
onsuccess event handler for the open() call. Add the code shown in bold:

var request = dbEng.open("Chess", 2);

request.onsuccess = function (event) {
 db = event.target.result;

 // Add the pieces to the board
 resetBoard();

 // Draw the pieces in their initial positions
 drawAllPieces();

 // Start the animation
 timer = setInterval(makeNextMove, 2000);
}

Save your changes and press F5 to start the application. You should see the alert letting you know that the
database is being configured since you changed the database version. After a series of moves you should see the
completed board shown in Figure 11-5.

CHAPTER 11 ■ INdExEd dB

277

Tracking the Captured Pieces
When capturing a piece you simply deleted the object and that works since the piece doesn’t need to be
displayed. However, if your application wants to keep track of the pieces that were captured you might want to
keep the object in the store. Now I’ll show you how to change this to update the object instead of deleting it. I’ll also
show you how to query this store to list the pieces that have been captured.

The first step is to change the removePiece() function. Instead of deleting the object at the end position,
you’ll update it and set the killed property. You’ll also need to change the pos property since there is a unique
index on this. Since the piece is not displayed, the position can be anything. To ensure it is unique, you’ll prefix its
unique id with an “x”. Also, by prefixing these with an “x”, you’ll be able to query for them, as I’ll explain later.

Comment out the delete() call and add the code shown in bold:

function removePiece(end, oStart, startID, pieceStore) {
 var index = pieceStore.index("piecePosition");
 index.getKey(end).onsuccess = function (e4) {
 var endID = e4.target.result;
 if (endID) {
 //pieceStore.delete (endID).onsuccess = function (e5) {
 // movePiece(oStart, startID, pieceStore)
 //}

 index.get(end).onsuccess = function (e5) {
 oEnd = e5.target.result;
 oEnd.pos = ‘x’ + endID;
 oEnd.killed = true;
 pieceStore.put(oEnd, endID).onsuccess = function(e6){
 movePiece(oStart, startID, end, pieceStore)
 }
 }
 }

Figure 11-5. The completed chess board

CHAPTER 11 ■ INdExEd dB

278

 else
 movePiece(oStart, startID, end, pieceStore);
 }
}

Now add the following code to the end of the script element to implement the displayCapturedPieces()
function:

function displayCapturedPieces() {
 var xact = db.transaction(["piece"]);
 var textOut = "";

 var pieceStore = xact.objectStore("piece");
 var index = pieceStore.index("piecePosition");

 var keyRange = IDBKeyRange.lowerBound("x");
 var cursor = index.openCursor(keyRange);

 cursor.onsuccess = function (event) {
 var item = event.target.result;
 if (item) {
 textOut + = " - " + item.value.color + " " +
 item.value.type + "\r\n";
 item.continue();
 }
 else if (textOut.length > 0)
 alert("The following pieces were captured:\r\n" + textOut);
 }
}

This code creates a read-only transaction using only the piece store. It then gets the store and its
piecePosition index. It defines a key range using a lower bound of “x”. This will only return objects that begin
with “x” or greater. Since the pieces on the board will have a position that starts with “a” through “h” these will
be excluded. The code then iterates through the cursor and concatenates the piece details into a text string. The
result is displayed using an alert() function.

Caution ■ Be aware that the string comparisons in the key range are case sensitive. If you had used an upper-
case “x”, this would not have worked since a lowercase “a” comes after an uppercase “x”. The W3C specification
provides some details on how comparisons are supposed to work. For details, see the article at:
http://www.w3.org/TR/IndexedDB/#key-construct.

Now you’ll need to call this function after the animation is completed. Add the following line of code to the
makeNextMove() function after the “Checkmate!” text is displayed:

displayCapturedPieces();

Save your changes and press F5 to start the application. After the animation has finished you should see the
alert shown in Figure 11-6.

CHAPTER 11 ■ INdExEd dB

279

Summary
In this chapter you took a crash course in Indexed DB. Through a fairly simple application, you utilized most
of the capabilities of this new technology. Probably the biggest challenge is to get used to the asynchronous
processing. The sample application provides lots of examples of nesting successive calls through the onsuccess
event handler. Some of the key concepts to remember include:

Create the database and create its structure by responding to the •	 onupgradeneeded event
handler when the database is opened. Use the version to force an upgrade, if necessary.

Objects in a store must have a unique key, which can either be defined by a key path for •	
in-line keys, or a key generator for out-of-line keys. You can also supply the key manually
when the object is added but that’s not generally a practical solution.

All data access (read and write) must be done through a transaction object. When •	
creating the transaction you must specify the scope, which is the list of object stores that it
will use as well as the type of access that is required.

You can add one or more indices to an object store. Each index maps a key path in the •	
object to the object’s key.

Use a cursor to process multiple objects in an object store. The objects that are selected •	
can be filtered by specifying a key range.

Add an object to the object store and update it later.•	

Retrieve an object from an object store.•	

Delete an object from an object store by specifying the object’s key.•	

Obtain the key for an object by using the •	 getKey() method of the index.

Use the •	 put() method of an object store to add or update an object. The put() method
requires both the objects and the key. This will add the object if the specified key is not
found.

There is a lot that you can do with a local database like Indexed DB. Because the data is on the client, you
avoid roundtrips to the server.

Figure 11-6. Listing the captured pieces

281

Chapter 12

Geolocation and Mapping

This chapter will demonstrate two technologies that provide powerful features that enable you to easily create
some very useful web sites. Geolocation provides a standardized API that is used to determine the client’s
location. Mapping technology adds the ability to display this location on a map along with other points of
interest. Together, these form a platform that has many useful applications.

In this chapter you’ll use the geolocation API to find your current position. The accuracy of that position will
vary greatly depending on available hardware and the environment. However, HTML5 defines a standard API
that is used on all devices so you can provide device-independent solutions.

Just knowing your location in terms of latitude and longitude is not very helpful. To put this data to use,
you’ll use the Bing Maps API to display that location on a map. Then you can map additional points of interest
and see them in relation to your current location.

Understanding Geolocation
While not technically part of the HTML5 specification, the WC3 has defined a standard API for accessing
geolocation information, which is supported by all major current browser versions. The technology that
determines the location, however, varies greatly depending on the device capabilities and the client’s
environment.

Surveying Geolocation Technologies
There are several technologies that can be used to determine the current location, including:

Global Positioning Satellites (GPS) – GPS communicates with satellites to determine the •	
current location with extremely high accuracy, particularly in rural areas. Tall buildings in
an urban area can affect the accuracy but in most cases GPS provides very good results.
The biggest limitation is that this doesn’t work indoors very well. To use GPS, the device
must have specific GPS hardware, but this is becoming increasingly common on mobile
devices.

Wi-Fi Positioning – Wi-Fi networks have a relatively short range and systems such as •	
Skyhook Wireless maintain a large database of Wi-Fi networks and their locations.
Simply being connected to a Wi-Fi network will give a pretty good idea of where you
are. Often, however, you may be within range of multiple networks and the system can
use triangulation to determine the location with even greater accuracy. Of course, this
requires that you have a Wi-Fi enabled device and doesn’t work in rural areas where there
are no Wi-Fi networks.

CHAPTER 12 ■ GEoloCATion And MAPPinG

282

Cell Tower Triangulation – This uses the same principle as Wi-Fi positioning except it •	
uses cellular telephone towers. It is not as accurate, however, because a cell tower has a
much larger range. Since all cell phones will have the ability to communicate with cell
towers, this technology has a broad application.

IP Block – Every device that connects to the internet will have an IP address, which is •	
usually provided by the ISP. Each ISP will have a block of IP addresses that it can use,
which are typically assigned by geographical location. So the IP address with which you
connect to the internet can provide a general location, usually a metropolitan area. There
are several factors, however, that can yield incorrect results, such as NATted addresses.

Each of these technologies has different hardware requirements and provide varying levels of accuracy.
With the Geolocation specification, you can easily request the current location from the browser and let it
determine the best way to supply that based on the current hardware and access to external sources including
satellites, cell towers, and W-Fi networks.

Using Geolocation Data
Most people think of geolocation as a device that provides turn-by-turn directions but that is only one application
of this technology. Of course this requires very precise location that can only be obtained through GPS. However,
even when the current location is far less accurate, your web site can still make valuable use of this information.
Even if the location is determined only by the IP address, this will usually be sufficient to set the default language,
for example. You may need to allow the end user to override this but most of your audience will see the initial
page in their native language.

When retrieving the current location, the geolocation service also returns the estimated accuracy. Your
application should use this to determine the features that will be provided. Suppose, for example, that you’re
creating a web page for the U.S. Postal Service that shows where the nearest post offices are. If the current
location is known with very high accuracy, the web page can show a map and indicate the current location as
well as the nearby post offices. In addition, it could provide the estimated driving time to each.

However, if the location is known with lesser accuracy, the page could display a map that shows where the
post offices are in that general area. Presumably, the user will know where they are and can use this information
to determine the best location to use. However, if the accuracy is very poor, the page should prompt for a zip code
and then display the nearest post offices based on the user input. So, depending on the accuracy, the application
can gracefully degrade the functionality.

Using the Geolocation API
To demonstrate how to use the Geolocation API, you’ll create a simple web page that calls the API to determine
your current location. Initially, this data will be displayed on the web page as text. Later you’ll display this
location on a map.

Creating the Visual Studio Project
You’ll start by creating a Visual Studio project using the same Basic MVC template that you have used
in previous chapters.

CHAPTER 12 ■ GEoloCATion And MAPPinG

283

eXerCISe 12-1. CreatING the VISUaL StUDIO prOJeCt

1. Start Visual Studio 2012 and click the new Project link from the Start page.

2. in the new project dialog box, select the “ASP.nET MVC4 Web Application” template.
Select a location for this project and enter the project name Chapter12 as shown in
Figure 12-1.

Figure 12-1. Creating the Geolocation project

3. in the next dialog box, select the Basic template and make sure the Razor view
engine is selected. Click the oK button and the project will be created.

4. Right-click the Controller folder in the Solution Explorer and select the
Add ➤ Controller links. Enter HomeController for the controller name and select
the Empty MVC Controller template. Click the Add button to create the controller.

5. Right-click the View folder and select the Add ➤ new Folder links. Enter the folder
name as Home.

6. Right-click the new Home folder and select the Add ➤ View links. in the Add View
dialog box, enter the name Index, make sure the Razor view engine is selected,
unselect all the check boxes, and click the Add button.

7. in the Index.cshtml file, replace the empty div that was created, with the
following markup:

<div style = "width:800px; height:50px;">

</div>

CHAPTER 12 ■ GEoloCATion And MAPPinG

284

Using the Geolocation Object
The geolocation API is provided by the geolocation object, which you can access through the navigator
object like this:

navigator.geolocation

If a falsy value is returned such as null or undefined, then geolocation is not supported on the current
browser. You can check for support using code like this:

if (!navigator.geolocation) {
 alert("Geolocation is not supported");
}
else
 // do something with geolocation

To get the current location, use the getCurrentLocation() function, which takes three parameters:

1. A callback function that is executed when the call is successful.

2. An error callback function that is called when an error occurs.

3. A PositionOptions collection that contains zero or more options.

The last two parameters can be omitted. The following options are supported:

•	 maximumAge – the browser can cache previous positions and return this without actually
trying to determine the location. However, the maximumAge attribute specifies how long
(in milliseconds) a previous position can be reused without re-querying the current
location.

•	 timeout – the timeout attribute specifies how long the browser should wait for a response
from the geolocation object. This is also expressed in milliseconds.

•	 enableHighAccuracy – this is just a hint to the browser. If you don’t need greater accuracy
for a particular purpose, setting this to false may yield a faster response or use less power,
which is a consideration for mobile devices.

If the call was successful, the position is passed to the callback function that was specified. The Position
object includes a coords object that contains the following required properties:

latitude•	 (specified in degrees)

longitude•	 (specified in degrees)

accuracy•	 (specified in meters)

In addition, the following optional properties may be provided depending on the environment and the
available hardware. If these are not supported they will be set to null. (The optional properties are typically
available only when GPS is used.)

altitude•	 (specified in meters)

altitudeAccuracy•	 (specified in meters)

CHAPTER 12 ■ GEoloCATion And MAPPinG

285

•	 heading (specified in degrees; north = 0, west = 90, etc.)

•	 speed (specified in meters/second, NaN if stationary)

These properties can be obtained by the callback function like this:

function successCallback(pos) {
 var lat = pos.coords.latitude;
 var long = pos.coords.longitude;
 var accuracy = pos.coords.accuracy + " meters";
}

If the call was not successful, the PositionError object is passed to the error callback function. This object
includes a code and a message property. The error code will have one of three possible values:

1 – •	 PERMISSION_DENIED

2 – •	 POSITION_UNAVAILABLE

3 - •	 TIMEOUT

Caution ■ Your application will get the location and simply display it (and later map it). However, your script
could easily pass this information back to the server, which is a potential privacy issue. Since the browser cannot
control what the client does with this information, for privacy reasons the browser may block the access to the
geolocation object. in this case the PERMISSION_DENIED error code is returned. i will demonstrate this later.

If the client is moving and you want to continuously monitor the current location, you could call the
getCurrentLocation() function repeatedly using a setInterval() function. To simplify this, the geolocation
object includes a watchPosition() function. This takes the same three parameters as the getCurrentLocation()
function (success callback, error callback, and options). The callback function is then invoked whenever the
position changes. The watchPosition() function returns a timer handle. You can pass this handle to the
clearWatch() function when you want to stop monitoring the position like this:

var handle = geolocation.watchPosition(callback);
...
geolocation.clearWatch(handle);

Displaying the Location
Now you’ll add code to your application to get the current location and display it. The web page has a span
element with an id of “lbl”. You’ll get the geolocation object and call its getCurrentLocation() function. Both
the success and error callback functions will display the appropriate results in the span element.

CHAPTER 12 ■ GEoloCATion And MAPPinG

286

eXerCISe 12-2. DISpLaYING the LOCatION

1. Add the script element shown in listing 12-1 to the end of the body element.

Listing 12-1. Displaying the location

<script type = "text/javascript">

 var lbl = document.getElementById("lbl");

 if (navigator.geolocation) {
 navigator.geolocation
 .getCurrentPosition(showLocation,
 errorHandler,
 {
 maximumAge: 100,
 timeout: 6000,
 enableHighAccuracy: true
 });
 }
 else {
 alert("Geolocation not suported");
 }

 function showLocation(pos) {
 lbl.innerHTML =
 "Your latitude: " + pos.coords.latitude +
 " and longitude: " + pos.coords.longitude +
 " (Accuracy of: " + pos.coords.accuracy + " meters)";

 }

 function errorHandler(e) {
 if (e.code === 1) { // PERMISSION_DENIED
 lbl.innerHTML = "Permission denied. - " + e.message;
 } else if (e.code === 2) { //POSITION_UNAVAILABLE
 lbl.innerHTML = "Make sure your network connection is active and " +
 "try this again. - " + e.message;
 } else if (e.code === 3) { //TIMEOUT
 lbl.innerHTML = "A timeout ocurred; try again. - " + e.message;
 }
 }

</script>

CHAPTER 12 ■ GEoloCATion And MAPPinG

287

Note ■ i’m using iE 9 for this demonstration. if you’re using a different browser this prompt may work a little
differently.

3. To test the error handler, expand the “options for this site” drop down and select the
“Always deny and don’t tell me” option. The page should display an error message
like the one shown in Figure 12-3.

Figure 12-2. Prompting for geolocation access

Figure 12-3. Displaying the access denied error

4. once you have set this option, iE will no longer prompt you anymore but will
always deny the access. To clear this, select the Tools menu and then select
internet options. in the middle of the Privacy tab there are options to control the
geolocation access. Click the Clear Sites button shown in Figure 12-4.

2. Press F5 to start the application. The first time a site tries to access the
geolocation object you will get a prompt like the one shown in Figure 12-2.

CHAPTER 12 ■ GEoloCATion And MAPPinG

288

5. Click the oK button to close this dialog box. Refresh the web page. it should now
prompt you again. This time select the “Always allow” option. Your current location
should be displayed as shown in Figure 12-5.

Figure 12-4. Clearing the site access choices

Figure 12-5. Displaying the current location

CHAPTER 12 ■ GEoloCATion And MAPPinG

289

I’m using a normal LAN-connected machine without cell or GPS support so it is using the IP to determine
the location. Consequently, the accuracy estimate is 80 km (about 50 miles).

Note ■ Geolocation works on all current browsers. However, if you try this application on an older browser such
as iE8, you’ll see the alert that geolocation is not supported.

Using Mapping Platforms
Simply displaying the latitude and longitude is not very interesting (or helpful). However, showing your location
relative to other points of interest is much more useful. And displaying them on a map with roads and other
reference points can really put this information to work. Fortunately, mapping technology has become so
sophisticated and accessible that this is really easy to do.

Note ■ For the demonstration in this chapter i will be using Bing Maps. There are other mapping platforms available. if
you’re interested, check out the article at http://en.wikipedia.org/wiki/Comparison_of_web_map_services
for an overview of the different mapping services.

Creating a Bing Maps Account
To use Bing Maps you’ll need to first set up an account, which is free for developers. Once your account is created
you’ll receive a key that you’ll need to include when accessing the mapping API. I will take you through the
process of setting up an account.

eXerCISe 12-3. CreatING a BING MapS aCCOUNt

1. Go to the Bing Maps site at this address:
https://www.microsoft.com/maps/developers/web.aspx. Click the
“Get an account” link.

2. in the next page, you’ll need to log in with a Windows live id. if you don’t have one,
click the Create button to create an account.

3. once you have signed in you should see the “Create an account” page shown in
Figure 12-6.

Figure 12-4. Clearing the site access choices

Figure 12-5. Displaying the current location

http://en.wikipedia.org/wiki/Comparison_of_web_map_services
https://www.microsoft.com/maps/developers/web.aspx

CHAPTER 12 ■ GEoloCATion And MAPPinG

290

4. Enter an account name. This is just for you to identify it if you have multiple
accounts; Testing is fine. The e-mail address should default in from your Windows
live account. Make sure you select the check box agreeing to the terms of use. Click
the Save button to create the account.

5. The “Maps Account Center” page, shown in Figure 12-7, should then be displayed
showing your account details. Click the “Create or view keys” link on the left side of
the page.

Figure 12-6. The Create an account page

CHAPTER 12 ■ GEoloCATion And MAPPinG

291

6. in the Create key page, enter an application name such as HTML5 Test. For the URl
enter http://localhost and select developer for the Application type as shown in
Figure 12-8. Enter the characters that are displayed at the bottom of the form and
click the Submit button.

Figure 12-6. The Create an account page

Figure 12-7. The Maps Account Center page

http://localhost

CHAPTER 12 ■ GEoloCATion And MAPPinG

292

Note ■ Bing Maps monitors the use of your key. However, since you’re not actually deploying this to a
public-facing web site, this is not really applicable. if you are developing a commercial application, you can use a
free key for development purposes but you will need to purchase a key for the live web site.

7. After the key has been generated you should see it displayed on the page. Save this
as you will need it later.

Adding a Map
Now you’ll add a map to your web page. You’ll first add a div to the page that will contain the map. You’ll also
need to add a reference to the Ajax script that is used to manipulate the map. Then you’ll display the map,
centering it on your current location.

Figure 12-8. Creating a key

CHAPTER 12 ■ GEoloCATion And MAPPinG

293

eXerCISe 12-4. aDDING a Map

1. Add the code shown in bold to the body element, which will add the div that the
map will be displayed in:

<body>
 <div style = "width:800px; height:50px;">

 </div>

 <div id = “map” style = “width:800px; height:600px;”>

 </div>

2. Add the following reference inside the head element. This will enable your page to
call the map APi:

<script
 type = "text/javascript"
 src = "http://ecn.dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=7.0">
</script>

3. Add the following declaration at the top of the existing script element. This will
store a reference to the map object.

var map = null;

4. Modify the showLocation() function, adding the code shown in bold in listing 12-2.
Enter your Bing Maps key where is says <use your key here>. The key should be
enclosed in double quotes.

Listing 12-2. The modified showLocation() function

function showLocation(pos) {
 lbl.innerHTML =
 "Your latitude: " + pos.coords.latitude +
 " and longitude: " + pos.coords.longitude +
 " (Accuracy of: " + pos.coords.accuracy + " meters)";

 // Save the current location
 var lat = pos.coords.latitude;
 var long = pos.coords.longitude;

 // Create the map
 map = new Microsoft.Maps.Map(document.getElementById("map"),
 { credentials:
 " < use your key here > " });

 // Center it on the current location
 map.setView({ zoom: 18, center: new Microsoft.Maps.Location(lat, long) });
}

Figure 12-8. Creating a key

http://ecn.dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=7.0

CHAPTER 12 ■ GEoloCATion And MAPPinG

294

5. Press F5 to start the application. depending on your location, your page should look
like Figure 12-9. notice the controls at the top-left corner of the page. You can use
this to zoom in or out and pan in any direction. The Automatic mode will switch to
the satellite view if the map is zoomed in sufficiently.

Figure 12-9. Displaying the initial map

When calling the setView() function to specify the center location, this code also set the zoom to 18.
Depending on your application you may not want to zoom in that far, initially. Try this code using 15 or 16 to see
how that looks. Of course the user can also adjust the zoom once the map is displayed.

Adding Pushpins
Now you’ll display some pushpins on the map. To add a pushpin, you first create a Pushpin object, specifying its
location. Then add it to the map’s entities collection. First, you will add a default pushpin at the current location.
Later, you’ll add custom pushpins to indicate points of interest.

Add the code shown in bold to the end of the showLocation() function:

// Center it on the current location
map.setView({ zoom: 18, center: new Microsoft.Maps.Location(lat, long) });

// Mark the current location
var pushpin = new Microsoft.Maps.Pushpin
 (new Microsoft.Maps.Location(lat, long), null);
map.entities.push(pushpin);

The lat and long variables contain the same values used to center the map. Press F5 to start the application.
You should see a pushpin indicating the current location as shown in Figure 12-10.

CHAPTER 12 ■ GEoloCATion And MAPPinG

295

One of the most common uses of maps in a web page is to show where there are nearby locations. For
example, you might have multiple store locations and you’ll want to show where each one is. Or perhaps you are
in a police department and want to map out where certain crimes have been committed. You could have a public
transit system and want to show where all the bus or train stops are.

Each of these scenarios is basically the same; you have a collection of locations that you want to show on a
map. You can add as many locations as you want. For each, just create a Pushpin object and add it to the entities
collection. If you have more than one location you should make the pushpins look different so the user can easily
distinguish between them.

For this demonstration, you will indicate where there are nearby restrooms. Instead of a standard pushpin
you will use an image with a familiar restroom icon. Normally you would query the server to get a list of locations
based on the where the client is. However, to simplify this exercise these will be hardcoded.

Caution ■ i am hardcoding the location of the restrooms, which are probably nowhere near where your current
location is. You can either provide different restroom locations that are near you or simply override your current loca-
tion to match mine. This will be consistent with the restroom locations.

eXerCISe 12-4. aDDING CUStOM pUShpINS

1. in the Solution Explorer, right-click the Chapter12 project and select the Add ➤ new
Folder links. Enter the name Images.

2. The source code download contains a restroom.gif image file. drag this onto the
images folder in the Solution Explorer.

3. Add the following declaration at the top of the existing script element. This defines
the locations of the restrooms.

Figure 12-10. Adding a pushpin in the current location

CHAPTER 12 ■ GEoloCATion And MAPPinG

296

var restrooms = [
 { lat: 37.810079, long: -122.410806 },
 { lat: 37.809079, long: -122.410206 },
 { lat: 37.811279, long: -122.410446 }
];

4. Add the following code to the showLocation() function just before creating the map
object. This will override your current location to be near where the restrooms are.

// Override these for testing purposes
lat = 37.811079;
long = −122.410546;

5. Add the following functions to the end of the script element. The
markRestrooms() function iterates through this array, calling the
markRestroom() function for each. The markRestroom() function adds a single
pushpin. This first creates an options collection that defines the image file to use as
well as the size of the image. This is passed in when creating the Pushpin object.

function markRestrooms() {
 for (var i in restrooms) {
 markRestroom(restrooms[i].lat, restrooms[i].long);
 }
}

function markRestroom(lat, long) {
 var pushpinOptions = {icon: ‘/Images/restroom.gif’, width: 35, height: 35 };
 var pushpin = new Microsoft.Maps.Pushpin
 (new Microsoft.Maps.Location(lat, long), pushpinOptions);
 map.entities.push(pushpin);
}

6. Add this function call at the end of the showlocation() function to display the
additional pushpins.

// Display the restroom locations
markRestrooms();

7. Press F5 to debug the application. You should now see pushpins where the
restrooms are located as shown in Figure 12-11.

CHAPTER 12 ■ GEoloCATion And MAPPinG

297

Caution ■ This is purely fictional data. if you happen to be at San Francisco’s Pier 39 while reading this book,
don’t use this map to try to find a restroom.

There is a lot more that you can do with the mapping API. For example, you can display directions for getting
to a selected point of interest. You can even display where the traffic is currently heavy. Check out the interactive
SDK at http://www.bingmapsportal.com/isdk/ajaxv7. You can try out each feature and the corresponding
JavaScript code is displayed underneath the map.

Summary
In this chapter you combined the features of geolocation with Bing Maps to create a really useful web site.
Geolocation requests are processed asynchronously. After getting the geolocation object, you call its
getCurrentLocation() function and specify the success and error callback functions. The Position object is
passed to the callback function when the location has been retrieved. It contains the latitude, longitude, and
estimated accuracy. If the client has GPS capability, the Position object will also include the altitude, speed, and
direction.

Mapping platforms such as Bing Maps are really easy to use and integrate into your web page. In this
application you displayed the map and centered in on the current location. You also added pushpins to show
where the nearby restrooms are.

Figure 12-11. Adding the restroom pushpins

http://www.bingmapsportal.com/isdk/ajaxv7

299

Chapter 13

WebSockets

As I explained back in Chapter 1, the web application pulls data from a web server. The client initiates the transfer
by sending a request to the server. The response is then rendered in the browser. All web application design
is based on this request/response paradigm. However, WebSocket technology opens up a whole new world,
allowing server-initiated communication with client applications.

Socket technology is not new. Sockets have been used for decades as an effective protocol for point-to-point
communication between applications. The exciting news, however, is that the W3C has included a WebSocket
API specification as part of the HTML5 umbrella. With a standard protocol defined, and compatible browsers
becoming available, you can expect to see more and more web applications taking advantage of this technology.

In this chapter you will build a solution that uses websockets to implement a multi-session chat application
that enables an agent to chat with several customers at the same time. This solution will include a websocket
server hosted in a console app that you will create using C# .NET. To do this you’ll need to understand the
websocket protocols so I will first explain this technology and then show you how to create your own custom
server. You will then implement both the agent and customer client applications utilizing the native websocket
support in HTML5.

Caution ■ As of this writing, the W3C specification was still in draft and changes are likely. It is perhaps a bit
premature to jump into this wholeheartedly. However, since this is such a promising part of the HTML5 specification
I wanted to introduce you to websockets. Just be aware that things can change. You can check out the current status
of the W3C specification here: http://dev.w3.org/html5/websockets. All major current browsers support
websockets except IE9, however, they don’t all support the same protocol versions, which I’ll address later.

Understanding WebSockets
Sockets provide a mechanism for two-way transmissions between applications, including peer-to-peer
communication. WebSockets, as I will explain in this chapter, are a specific implementation of sockets, that
enable a web application to communicate with a web server. The messages passed between the browser and
server are illustrated in Figure 13-1. After a series of handshaking messages that establish the connection, both
sides can send messages to each other.

http://dev.w3.org/html5/websockets

CHApTEr 13 ■ WEbSoCkETS

300

Tip ■ While websockets do not provide peer-to-peer communication, as you’ll see later in this chapter, the server
can be implemented to route messages from one client to another. Client A can send a message to the server, which
is simply forwarded to Client b. This emulates peer-to-peer messaging while providing control of the routing.

Completing a Handshake
There is a fair amount of handshaking and protocol manipulation that is required to make WebSockets work.
Fortunately, the browser implements the client side protocol for you, making it really easy to write applications
that use WebSockets. The handshaking messages use the HTTP protocol. Once the connection has been
established, the subsequent messages are sent using the websocket protocol.

Note ■ Several protocol versions have been proposed and implemented by various browsers. The current version
(as of this writing) is version 13, which both Chrome and Firefox support. You can review the specification of the
Version 13 protocol at http://tools.ietf.org/id/draft-ietf-hybi-thewebsocketprotocol-13.txt.

The process starts when the browser sends a handshake request to the server. The handshake request will
consist of multiple lines of text that will be similar to this:

GET /chat HTTP/1.1
Upgrade: websocket
Connection: Upgrade
Host: localhost:8100

Handshake Request

Handshake Response ht
tp

:
w

s: Se
rv

er

Br
ow

se
r

Close connection

One-way
messages

Figure 13-1. The websockets messages

http://tools.ietf.org/id/draft-ietf-hybi-thewebsocketprotocol-13.txt

CHApTEr 13 ■ WEbSoCkETS

301

Origin: http://localhost:29781
Sec-WebSocket-Key: <request key>
Sec-WebSocket-Version: 13

The request includes information about the address of the client and the protocol that it supports. You can
see in this example that 13 is specified for Sec-WebSocket-Version. A request key is generated by the browser and
will be different each time a connection request is made.

In return, the server will send back a response like this:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: <response key>

The response key is generated by the server and is based on the request key that was specified. I will explain
the algorithm for this later in the chapter.

Building WebSocket Frames
Once the handshaking is complete and the protocols have been negotiated, messages can be exchanged between
the client and server. These messages are sent using the websocket protocol. Messages are always one-way; no
response is required. Of course, you can send a response but that is just another one-way message in the opposite
direction. Both endpoints are always listening for messages.

A message is sent as a frame. The frame consists of a series of bytes that indicate how the message should
be processed. The remainder of the message contains the actual data being sent, which is often referred to as the
payload. The layout of the frame is shown in Figure 13-2.

OpCode/
Length

Length

0

0 4 7 0 4 7

2 4 6 8 10 12 14

Reserved Payload lengthOp Code

Fi
na

l?

M
as

ke
d?

Extended Length Mask Payload

Figure 13-2. The websocket frame

The initial portion of the frame consists of up to 14 bytes. The first two bytes will be used on all frames. The
first bit indicates if this is the final frame. A message can be transmitted in multiple frames and this bit should be
set on the last frame to signal the message is complete. The next three bits are reserved for future use. The last
half of the first byte contains an opcode that specifies what type of message this is. The values 0x3 – 0x7 and
0xB - 0xF are reserved for future control frames but the following values are currently defined:

0x0 indicates this is a continuation frame•	

0x1 specifies the payload contains text•	

http://localhost:29781

CHApTEr 13 ■ WEbSoCkETS

302

0x2 indicates a binary payload•	

0x8 indicates the connection is being closed•	

0x9 specifies the message is a ping•	

0xA specifies the message is a pong•	

The first bit of the second byte indicates that masking is used. I will describe masking later. The remainder of
the byte specifies the payload length. For payloads less than 126 bytes, the length is specified here. However, if the
length is between 126 and 32,183 the length is set to 126 and the actual length is provided in the next two bytes.
For messages longer than that, the length is set to 127 and the actual length is specified in the next eight bytes. So,
depending on how long the message is, the frame will contain between 0 and 8 extra bytes.

The next four bytes contain the masking key. This is omitted if masking is not used. After that comes the
actual payload.

For a simple, unmasked message containing the text “Hello”, the frame would contain the following bytes:

0x81, 0x05, 0x48, 0x65, 0x6c, 0x6c, 0x6f

The first byte, 0x81, in binary is 10000001. The first bit is set indicating this is the final frame and the last bit is
set to indicate the payload contains text. The next byte specifies a payload length of five characters, which follow
immediately. The remaining five bytes contain the “H”, “e”, “l”, “l”, and “o” characters.

Unmasking a Frame
For security reasons, all frames from the client should be masked. Masking is a simple encoding scheme that uses
a masking key that is different with each frame. The browser will take care of this for you; however, the server will
need to unmask the data. Frames sent to the client should not be masked.

The masking key is provided in the four bytes directly following the length. The masking key is randomly
generated by the client. To unmask the data, for each byte in the payload, the XOR operator is applied to the byte
and the corresponding byte in the masking key. The first payload byte is XOR’ed with the first byte of the masking
key, the second byte is XOR’ed with the second byte of the mask, an so on. The fifth byte is the XOR’ed with the
first byte of the mask.

This can be done with the following C# expression. This assumes that payload[] contains an array of
masked data and mask[] contains the 4-byte masking key.

for (int i = 0; i < length; i++)
{
 payload[i] = (byte)(payload[i] ^ masks[i % 4]);
}

The i % 4 expression gets the appropriate masking byte and the ^ operator performs the XOR operation.
After processing all of the bytes, the payload[] array will contain the unmasked data.

WebSocket Servers
To use websockets you will need to provide an application that will implement the server-side protocol. I will
show you how to build your own using .NET and hosted in a console application. As you are probably expecting,
there is a bit of bit and byte manipulation necessary (no pun intended).

CHApTEr 13 ■ WEbSoCkETS

303

Note ■ There are a number of open-source websocket server implementations. This article provides
links to several of these that you might want to consider for future reference:
http://stackoverflow.com/questions/1530023/do-i-need-a-server-to-use-html5s-websockets.
These are implemented on various platforms including JavaScript and pHp. Many of them support multiple protocols.

To create a websocket server you will first implement the following capabilities:

Connection handshaking•	

Listening for messages•	

Decoding websocket frames•	

Building and sending a message frame•	

Once the basic infrastructure is complete, you’ll then provide the custom server features needed for your
application. After all, the whole point of websockets is to allow the server to communicate with the client.

Designing the Agent Chat Application
In this chapter you’ll build a server and two client applications that will allow agents to chat with multiple clients
simultaneously. An agent will log in and connect to the server using the agent web application, letting the server
know that the agent is ready to accept chat sessions. The agent application will be designed to handle up to
four simultaneous chat sessions. Clients can then use the client web application to connect to the server. Each
client is routed to an available agent and the chat session is started. From this point, the server is just forwarding
messages between the client and the agent. This communication is described in Figure 13-3.

Handshaking
Handshaking

Request agent

Chat messages

Disconnect
Client

Agent

Se
rv

er

“Log in”

Chat messages

Free agent session

Figure 13-3. The websocket communication

http://stackoverflow.com/questions/1530023/do-i-need-a-server-to-use-html5s-websockets

CHApTEr 13 ■ WEbSoCkETS

304

To connect as an agent, the system will want to provide some authentication to ensure only authorized
users can respond to clients. To simulate that, the agent application will use the standard ASP.NET web form
that provides a login capability. You’ll then add a custom Chat page that will allow the agent to response to four
simultaneous chat sessions. However, anyone should be able to connect as a client so you’ll use the Basic MVC
template that you’ve used in previous chapters.

Both applications will connect to the websocket server using the normal handshaking protocol. Once
connected, the Agent will send a message to the server that includes their name. This will signal the server that a
new agent has come online. The agent’s connection will be saved in a collection for future use.

The client application will also send a message to the server after the connection has been established,
specifying the name of the client. The server will then find the first available agent that has an open chat session
and send a message to that agent, providing the client’s name. The agent page will then save the client’s name on
the page. At the same time, the server will send a message to the client, letting them know that an agent has been
assigned to them.

At this point both the client and agent can send a message to the server, which is forwarded to the other
application. Since the agent application can have four active sessions, the server will prefix the message with the
client number so the agent application will know which session to update.

If the client disconnects, the server will send a message to the agent letting them know that. The agent
application will then clear the corresponding chat session. If the agent disconnects, all the clients with active
sessions with that agent are also notified and instructed to attempt a re-connect.

Creating a Simple Application
In this section you’ll build a websocket server that handles the basic message protocols and test it using a simple
web client. Initially, the server will just echo the message back to the client. You’ll later add the functionality
needed by the chat application. For this exercise, the server will be hosted in a console application.

Creating a WebSocket Server
To implement the websocket server you will create a WsServer class. This class creates a socket that it uses to
listen for new connections. When a connection is received, it creates another socket for that connection and
performs the handshaking that I described earlier. If the handshaking is successful it creates an instance of a
WsConnection class that will manage the client connection.

The WsConnection class uses the new socket to listen for incoming messages on that connection. This class
invokes the ReadMessage() method to process an incoming message. This handles all of the frame decoding and
unmasking that may be required. The WsConnection class also provides a SendMessage() method that will send a
message to the client at the other end of the connection.

The WsConnection class provides two events that are raised if handlers are provided. The first event is raised
when an incoming message has been received. The second event is raised when the connection has been closed.
The WsServer class will provide the event handlers for these events.

eXerCISe 13-1. CreatING a SIMpLe WeBSOCKet SerVer

1. Start Visual Studio 2012 and create a new project named WsServer. Select the
Console Application template from the Windows category. Change the solution name
to Chapter13 as shown in Figure 13-4.

CHApTEr 13 ■ WEbSoCkETS

305

2. In the Solution Explorer, right-click the WsServer project and select the Add ➤ Class
links. Enter WsServer.cs for the class name.

3. Enter the code shown in Listing 13-1 for the initial implementation of this class.

Listing 13-1. Implementing the WsServer class

using System;
using System.Collections.Generic;
using System.Text;

using System.Net;
using System.Net.Sockets;
using System.IO;
using System.Security.Cryptography;

namespace WsServer
{
 public class WsServer
 {
 #region Members

 // This socket listens for new connections
 Socket _listener;

 // Configurable port # that is passed in the constructor
 int _port;

Figure 13-4. Creating a console application project

CHApTEr 13 ■ WEbSoCkETS

306

 // List of connections
 List < WsConnection > _unknown;

 #endregion Members

 public WsServer(int port)
 {
 _port = port;

 // This is a list of active connections
 _unknown = new List < WsConnection > ();
 }

 public void StartSocketServer()
 {
 // Create a socket that will listen for messages
 _listener = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.IP);

 // Create and bind the endpoint
 IPEndPoint ip = new IPEndPoint(IPAddress.Loopback, _port);
 _listener.Bind(ip);

 // Listen for new connections - the OnConnect() method
 // will be invoked to handle them
 _listener.Listen(100);
 _listener.BeginAccept(new AsyncCallback(OnConnect), null);
 }

 void MessageReceived(WsConnection sender, MessageReceivedEventArgs e)
 {
 string msg = e.Message;
 Console.WriteLine(msg);
 sender.SendMessage("echo: " + msg);
 }

 void Disconnected(WsConnection sender, EventArgs e)
 {
 _unknown.Remove(sender);
 Console.WriteLine("Client has disconnected");
 }
 }
}

The StartSocketServer() method is called to put the server to work. It creates a Socket object and
configures it using the specified port. This method is hard-coded to use the localhost address. Once the end
point is configured, the Socket object’s BeginAccept() method is called. This will invoke the specified callback
method (OnConnect) when a new connection is received. The MessageReceived() event handler simply writes
the input message to the console and echoes the message back to the client. The WsConnection object that

CHApTEr 13 ■ WEbSoCkETS

307

manages this connection is passed to the event handler. This code uses its SendMessage() method to send
an echo back. The Disconnected() event handler, removes this connection from its active list and displays a
message to the console window.

4. Add the PerformHandshake() method using the code shown in Listing 13-2.

Listing 13-2. Implementing the handshaking protocol

private void PerformHandshake(Socket s)
{
 using (NetworkStream stream = new NetworkStream(s))
 using (StreamReader reader = new StreamReader(stream))
 using (StreamWriter writer = new StreamWriter(stream))
 {
 string key = "";

 // Read the input data using the stream reader, one line
 // at a time until all lines have been processed. The only
 // item that we need to get is the request key.
 string input = "Empty";
 while (!string.IsNullOrWhiteSpace(input))
 {
 input = reader.ReadLine();

 if (input ! = null &&
 input.Length > 18 &&
 input.Substring(0, 18) == "Sec-WebSocket-Key:")
 // Save the request key
 key = input.Substring(19);
 }
 // This guid is used to generate the response key
 const String keyGuid = "258EAFA5-E914-47DA-95CA-C5AB0DC85B11";
 string webSocketAccept;

 // The response key in generated by concatenating the request
 // key and the special guid. The result is then encrypted.
 string ret = key + keyGuid;
 SHA1 sha = new SHA1CryptoServiceProvider();
 byte[] sha1Hash = sha.ComputeHash(Encoding.UTF8.GetBytes(ret));
 webSocketAccept = Convert.ToBase64String(sha1Hash);

 // Send handshake response to the client using the
 // stream writer
 writer.WriteLine("HTTP/1.1 101 Switching Protocols");
 writer.WriteLine("Upgrade: websocket");
 writer.WriteLine("Connection: Upgrade");
 writer.WriteLine("Sec-WebSocket-Accept: " + webSocketAccept);
 writer.WriteLine("");
 }
}

CHApTEr 13 ■ WEbSoCkETS

308

The PerformHandshake() method creates a NetworkStream object passing in the Socket object to its
constructor. This is the new socket that was created for this connection. It uses a StreamReader object to read the
incoming data and later uses a StreamWriter to send data back. By creating these inside nested using statements
you won’t have to worry about disposing them. Keep in mind that the handshaking is done using http protocol so
the reading and sending of data does not use the WebSocket frames.

The StreamReader object is used to read the input, one line at a time. You don’t need any of this data
because, for this exercise, we’re assuming the correct protocol is being requested. In a more general case,
however, you may need to support multiple protocols so you will need to read and interpret what is being sent in.
You will need the request key, however, so this is extracted from the appropriate input line.

The response key is then concatenated with a special guid value. This is documented in the Version 13
specification (http://tools.ietf.org/id/draft-ietf-hybi-thewebsocketprotocol-13.txt). The resulting
string is then encrypted using the SHA1 algorithm. Finally, the StreamWriter object is used to
send back the response including the generated key.

5. Add the onConnect() event handler using the code in Listing 13-3.

Listing 13-3. Implementing the OnConnect() event handler

private void OnConnect(IAsyncResult asyn)
{
 // create a new socket for the connection
 Socket socket = _listener.EndAccept(asyn);

 // Perform the necessary handshaking
 PerformHandshake(socket);

 // Create a WsConnection object for this connection
 WsConnection client = new WsConnection(socket);
 _unknown.Add(client);

 // Wire-up the event handlers
 client.MessageReceived += new MessageReceivedEventHandler(MessageReceived);
 client.Disconnected += new WsDisconnectedEventHandler(Disconnected);

 // Listen for more connections
 _listener.BeginAccept(new AsyncCallback(OnConnect), null);
}

The OnConnect() method gets a new Socket for this connection by calling the EndAccept() method. It
calls the PerformHandshake() method and creates a WsConnection class, which you will implement next. It then
connects the event handlers so the WsServer object will be notified when a message is received or the connection
is closed. Finally, BeginAccept() is called again to listen for more connections.

6. In the Solution Explorer, right-click the WsServer project and select the Add ➤ Class
links. Enter WsConnection.cs for the class name.

7. Enter the code shown in Listing 13-4 as the initial implementation for this class.

Listing 13-4. Implementing the WsConnection class

using System;
using System.Collections.Generic;
using System.Text;

http://tools.ietf.org/id/draft-ietf-hybi-thewebsocketprotocol-13.txt

CHApTEr 13 ■ WEbSoCkETS

309

using System.Net.Sockets;

namespace WsServer
{
 // This class defines the data that is passed to the MessageReceived
 // event handler
 public class MessageReceivedEventArgs
 {
 public string Message { get; private set; }
 public int DataLength { get; private set; }
 public MessageReceivedEventArgs(string msg, int len)
 {
 DataLength = len;
 Message = msg;
 }
 }

 // Define the event handler delegates
 public delegate void MessageReceivedEventHandler
 (WsConnection sender, MessageReceivedEventArgs e);

 public delegate void WsDisconnectedEventHandler
 (WsConnection sender, EventArgs e);

 public class WsConnection : IDisposable
 {
 #region Members

 public Socket _mySocket;
 protected byte[] _inputBuffer;
 protected StringBuilder _inputString;

 // Define the events that are available
 public event MessageReceivedEventHandler MessageReceived;
 public event WsDisconnectedEventHandler Disconnected;

 #endregion Members

 public WsConnection(Socket s)
 {
 _mySocket = s;
 _inputBuffer = new byte[255];
 _inputString = new StringBuilder();

 // Begin listening - the ReadMessage() method will be
 // invoked when a message is received.
 _mySocket.BeginReceive(_inputBuffer,
 0,
 _inputBuffer.Length,
 0,

CHApTEr 13 ■ WEbSoCkETS

310

 ReadMessage,
 null);
 }

 protected void OnMessageReceived(string msg)
 {
 // When a message is received, call the event handler if
 // one has been specified
 if (MessageReceived != null)
 MessageReceived(this, new MessageReceivedEventArgs(msg, msg.
Length));
 }

 public void Dispose()
 {
 _mySocket.Close();
 }
 }
}

The WsConnection class has three class members:

•	 _mySocket – The Socket object created for this connection. This is instantiated by the
WsServer class and passed into the constructor.

•	 _inputBuffer – This is a byte array that holds the raw frame data. This is populated by the
Socket object.

•	 _inputString – This is a StringBuilder object that contains the incoming message after
it has been processed.

The WsConnection class supports two events to notify when data has been received and when the
connection with the client has been closed. The MessageReceived event uses a MessageReceivedEventArgs
class to provide the received message to the event handler. The WsConnection class implements the Dispose()
method, which simply closes the Socket associated with this connection.

The WsConnection class has two primary methods, which you’ll implement now. These methods implement
the WebSocket frame protocol.

•	 ReadMessage()

•	 SendMessage()

8. Add the ReadMessage() method using the code shown in Listing 13-5

Listing 13-5. Implementing the ReadMessage() method.

protected void ReadMessage(IAsyncResult msg)
{
 int sizeOfReceivedData = _mySocket.EndReceive(msg);
 if (sizeOfReceivedData > 0)
 {
 // Get the data provided in the first 2 bytes
 bool final = (_inputBuffer[0] & 0x80) > 0 ? true : false;
 bool masked = (_inputBuffer[1] & 0x80) > 0 ? true : false;

CHApTEr 13 ■ WEbSoCkETS

311

 int dataLength = _inputBuffer[1] & 0x7F;

 int actualLength;
 int dataIndex = 0;
 byte[] length = new byte[8];
 byte[] masks = new byte[4];

 // Depending on the initial data length, get the actual length
 // and the maskingkey from the appropriate bytes.
 if (dataLength == 126)
 {
 dataIndex = 4;
 Array.Copy(_inputBuffer, 2, length, 0, 2);
 actualLength = BitConverter.ToInt16(length, 0);

 if (masked)
 Array.Copy(_inputBuffer, 4, masks, 0, 4);
 }
 else if (dataLength == 127)
 {
 dataIndex = 10;
 Array.Copy(_inputBuffer, 2, length, 0, 8);
 actualLength = (int)BitConverter.ToInt64(length, 0);
 if (masked)
 Array.Copy(_inputBuffer, 10, masks, 0, 4);
 }
 else
 {
 dataIndex = 2;
 actualLength = dataLength;
 if (masked)
 Array.Copy(_inputBuffer, 2, masks, 0, 4);
 }

 // If a mask is supplied, skip another 4 bytes
 if (masked)
 dataIndex += 4;

 // Get the actual data in the payload array
 byte[] payload = new byte[actualLength];
 Array.Copy(_inputBuffer, dataIndex, payload, 0, dataLength);

 // Unmask the data, if necessary
 if (masked)
 {
 for (int i = 0; i < actualLength; i++)
 {
 payload[i] = (byte)(payload[i] ^ masks[i % 4]);
 }
 }

CHApTEr 13 ■ WEbSoCkETS

312

 // Copy the data into the input string and empty the buffer
 _inputString.Append(Encoding.UTF8
 .GetString(payload, 0, (int)actualLength));
 Array.Clear(_inputBuffer, 0, _inputBuffer.Length);

 // If this is the final frame, raise an event and clear the input
 if (final)
 {
 // Do something with the data
 OnMessageReceived(_inputString.ToString());

 // Clear the input string
 _inputString.Clear();
 }

 // Listening for more messages
 _mySocket.BeginReceive(_inputBuffer,
 0,
 _inputBuffer.Length,
 0,
 ReadMessage,
 null);
 }
 // If we were not able to read the message, assume that
 // the socket is closed
 else
 {
 if (Disconnected != null)
 Disconnected(this, EventArgs.Empty);
 }
}

ReadMessage() processes a single incoming frame. It looks at the first two bytes to determine where the
length is specified and if masking is used. It then gets the actual length and extracts the mask. Finally the data
is unmasked. The raw data for the frame is placed in the _inputBuffer byte array by the Socket object. The
processed data is stored in the _inputString member. Both of these are class members. The processed data from
each frame is appended to the _inputString member. When the final frame has been processed, the entire string
is passed to the OnMessageReceived() method. This allows for a single message to be transmitted in multiple
frames. The OnMessageReceived() method simply invokes the event handler, if defined.

9. Add the SendMessage() method using the code in Listing 13-6.

Listing 13-6. Implementing the SendMessage() method

public void SendMessage(string msg)
{
 if (_mySocket.Connected)
 {
 // Create the output buffer
 Int64 dataLength = msg.Length;
 int dataStart = 0;
 byte[] dataOut = new byte[dataLength + 10];

CHApTEr 13 ■ WEbSoCkETS

313

 // Build the frame data - depending on the length, it can
 // be passed one of three ways
 dataOut[0] = 0x81;

 // Store the length in the 2nd byte
 if (dataLength < 256)
 {
 dataOut[1] = (byte)dataLength;
 dataStart = 2;
 }
 // Store the length in the 3rd and 4th bytes
 else if (dataLength < UInt16.MaxValue)
 {
 dataOut[1] = 0xFE;
 dataOut[2] = (byte)(dataLength & 0x00FF);
 dataOut[3] = (byte)(dataLength & 0xFF00);
 dataStart = 4;
 }
 // Store the length in bytes 3 - 9
 else
 {
 dataOut[1] = 0xFF;
 for (int i = 0; i < 8; i++)
 dataOut[i + 2] = (byte)((dataLength > > (i * 8)) & 0x000000FF);
 dataStart = 10;
 }

 // Encode the data and store it in the output buffer
 byte[] data = Encoding.UTF8.GetBytes(msg);
 Array.Copy(data, 0, dataOut, dataStart, dataLength);

 // Send the message
 try
 {
 _mySocket.Send(dataOut,
 (int)(dataLength + dataStart),
 SocketFlags.None);
 }
 catch
 {
 // If we get an error, assume the socket has been disconnected
 if (Disconnected ! = null)
 Disconnected(this, EventArgs.Empty);
 }
 }
}

The SendMessage() method constructs the frame header and then appends the actual text being sent. It then
uses the Send() method of the Socket object to send this frame to the client.

CHApTEr 13 ■ WEbSoCkETS

314

10. With these classes implemented you can now implement the main Program class.
Add the following code to the Main() method:

// Create the WsServer, specifying the server's address
WsServer server = new WsServer(8300);

// Start the server
server.StartSocketServer();

// Keep running until the Enter key is pressed
string input = Console.ReadLine();

This code creates the WsServer class and calls the StartSocketServer() method. It calls the
Console.ReadLine() method, which will wait until the Enter key is pressed.

Creating a Web Application
With a basic server implementation you’re now ready to create a web application that will use it. You will create a
project using the Basic MVC4 template that you used in previous chapters. You will later modify this application
to use it as the client web page.

eXerCISe 13-2. CreatING a SIMpLe CLIeNt

1. In the Solution Explorer, right-click the Chapter13 solution and then select the
Add ➤ New project links.

2. In the Add New project dialog box, select the “ASp.NET MVC4 Web Application”
template. Enter the project name Client as shown in Figure 13-5.

Figure 13-5. Creating the Client project

CHApTEr 13 ■ WEbSoCkETS

315

3. In the next dialog box, select the basic template and make sure the razor view
engine is selected. Click the ok button and the project will be created.

4. right-click the Controller folder in the Solution Explorer and select the
Add ➤ Controller link. Enter the name HomeController and select the Empty MVC
Controller template. Click the Add button to create the controller.

5. right-click the View folder and select the Add ➤ New Folder links. Enter the name
Home.

6. right-click the new Home folder and select the Add ➤ View links. In the Add View
dialog box, enter the name Index, make sure the razor view engine is selected,
unselect all the check boxes, and click the Add button.

7. In the Index.cshtml file, modify the body element by adding the following markup
shown in bold:

<body onload = "connect();">
 <div>

 <pre id = "output" > </pre>
 <input type = "text" id = "input" value = "" />
 <input type = "submit" id = "sendMsg" value = "Send Message"
 onclick = "send();" />

 </div>
</body>

8. This creates a pre element that will be used to display messages that are received
as well as other debugging messages. This also defines a text box for entering the
message text and a button to send it. The onload event will call the connect()
function that you will implement next.

9. Now you’re ready to implement the JavaScript that will communicate with your
websocket server. The browser takes care of the protocol and frame manipulation so
the client side is pretty easy. Add the script element shown in Listing 13-7 to the
head element:

Listing 13-7. The client side JavaScript

<script type = "text/javascript">
 var ws; // This is our socket

 function connect() {

 output("Connecting to host...");
 try {
 ws = new WebSocket("ws://localhost:8300/chat");
 } catch (e) {
 output(e);
 }

CHApTEr 13 ■ WEbSoCkETS

316

 ws.onopen = function () {
 output("connected... ");
 };

 ws.onmessage = function (e) {
 output(e.data);
 };

 ws.onclose = function () {
 output("Connection closed");
 };
 };

 function send() {
 var input = document.getElementById("input");

 try {
 ws.send(input.value);
 } catch (e) {
 output(e);
 }
 }

 function output(msg) {
 var o = document.getElementById("output");
 o.innerHTML = o.innerHTML + " < p > " + msg + "</p > ";
 };

</script>

The onload event in the body element calls the connect() function. The connect() function creates
a WebSocket object and wires up the onOpen, onMessage, and onClose() event handlers. When the Send
Message button is clicked, the send() function is invoked. This gets the message from the text box and calls the
websocket’s send() function. The output() function simply add the specified text to the pre element.

Testing the Initial Project
You now have a basic server application and a simple client. You’ll test this now to make sure websocket is
working properly before adding the custom features.

eXerCISe 13-3. teStING the INItIaL appLICatION

1. In the Solution Explorer, right-click the Chapter13 solution and select the “Set
StartUp projects” link.

2. In the dialog box, select the “Multiple startup projects” radio button. For both the
WsServer and Client projects, change the Action to “Start”. Also, use the arrows
to the right of the project list so the WsServer project is started first, as shown in
Figure 13-6. Click the ok button to save these options.

CHApTEr 13 ■ WEbSoCkETS

317

3. In the toolbar, click the dropdown control next to the Start button and select the
browse With link. In the browse With dialog box, select Google Chrome and then
click the “Set as Default” button to make this the default browser to debug with as
shown in Figure 13-7. We don’t want to start browsing yet; just configure the default
browser, so click the Cancel button to close the dialog box.

Figure 13-6. Setting the startup projects

CHApTEr 13 ■ WEbSoCkETS

318

4. press F5 to start both the console application that hosts the websocket server and
the client web page. The web page will show the “Connecting to host . . . ” text and
then “connected . . . ”.

5. Enter some text in the input box and click the Send Message button. You should see
this text display in the console window and it will also be echoed on the client page
as shown in Figure 13-8.

Figure 13-7. Selecting the default browser

Figure 13-8. The initial client webpage

CHApTEr 13 ■ WEbSoCkETS

319

Enhancing the WebSocket Server
The solution you have developed so far implements the websocket protocol and demonstrates how data is
passed between the server and client. However, using a websocket server that merely echoes the message back is
not very useful. This server must manage the communication with both clients and agents. When a client sends a
message to the server it will be forwarded to the appropriate agent. When the agent sends a response (back to the
server) the server must route that back to the corresponding client.

To do this you will implement two more classes in the WsServer project:

•	 WsAgentConnection – manages the communication with an agent application

•	 WsClientConnection – manages the communication with a client application

Both of these classes will use an instance of the WsConnection class to send and receive messages. The
WsAgentConnection class will reference up to four instances of the WsClientConnection class that represent
the four clients the agent is currently chatting with. The WsClientConnection must also have a reference to the
WsAgentConnection object that represents the agent supporting this client. This is described in Figure 13-9.

WsConnection

WsConnection

WsConnection

WsConnection

WsConnection

Agent

Client

Client

Client

Client

WsAgentConnection

WsClientConnection

WsClientConnection

WsClientConnection

WsClientConnection

Figure 13-9. The internal server classes

When the server first receives a connection, it doesn’t yet know if it is a client or an agent. It will create a
WsConnection object that will listen for messages. Both applications will be coded to immediately send a message
to the server identifying both the type of application (client or agent) and also the agent’s or client’s name. When
this message is received, the server will then create either a WsAgentConnection object or a WsClientConnection
object and add this to either the agent or client list.

If this is a client, the server will find an available agent and perform the necessary linkages between the
WsAgentConnection and WsClientConnection objects. The server will also send a response to the client letting
them know the name of the agent that they will be working with. If this is an agent, a WsAgentConnection is
created and added to the agent list so it is available to respond to new clients.

When the WsConnection object is first created, it’s MessageReceived and Disconnected events are handled
by the WsServer object. The server will need to process the incoming message that identifies the client or agent.

CHApTEr 13 ■ WEbSoCkETS

320

However, once the specialized class is created (WsAgentConnection or WsClientConnection), this class will need
to handle these events. To do this, the WsServer object must remove the event handlers, and then associate the
event handlers from the new class. The specialized classes will both re-raise the Disconnected event which the
WsServer object will handle.

eXerCISe 13-4. eNhaNCING the WeBSOCKet SerVer

1. In the Solution Explorer, right-click the WsServer project and select the Add ➤ Class
links. Enter WsAgentConnection.cs for the class name.

2. Enter the code shown in Listing 13-8 as the implementation for this class.

Listing 13-8. Implementing the WsAgentConnection class

using System;
using System.Collections.Generic;
using System.Text;

using System.Net.Sockets;

namespace WsServer
{
 public delegate void WsDisconnectedAgentEventHandler
 (WsAgentConnection sender, EventArgs e);

 public class WsAgentConnection : IDisposable
 {
 private WsConnection _connection;
 public string _name;
 public Dictionary < int, WsClientConnection > _clients;

 public event WsDisconnectedAgentEventHandler AgentDisconnected;

 public WsAgentConnection(WsConnection conn, string name)
 {
 _connection = conn;
 _name = name;

 // Initialize our client list
 _clients = new Dictionary < int, WsClientConnection > ();
 for (int i = 1; i <= 4; i++)
 {
 _clients.Add(i, null);
 }
 }

 public void MessageReceived(WsConnection sender,
 MessageReceivedEventArgs e)

CHApTEr 13 ■ WEbSoCkETS

321

 {
 string s = e.Message.Substring(0, 1);
 int i = 0;
 if (int.TryParse(s, out i))
 {
 WsClientConnection client = _clients[i];
 if (client ! = null)
 {
 client.SendMessage(e.Message.Substring(2));
 }
 }
 }

 public void SendMessage(string msg)
 {
 if (_connection ! = null)
 _connection.SendMessage(msg);
 }

 public void Disconnected(WsConnection sender, EventArgs e)
 {
 if (AgentDisconnected != null)
 AgentDisconnected(this, EventArgs.Empty);
 }

 public void Dispose()
 {
 if (_connection != null)
 _connection.Dispose();
 }
 }
}

The WsAgentConnection class uses a Dictionary to store the client connections. The key will be an integer
(1–4) which will be important to the agent application so it knows which chat window to update. The constructor
creates all four entries, setting the WsConnection reference to null. A null reference indicates that there is no client
actively communicating in this window. The constructor also receives the associated WsConnection object. This
is saved in the _connection member and is used to send a message to the agent application.

When an agent sends a message to the server it is prefixed with a number (1–4) indicating which client this
should be forwarded to. The MessageReceived() event handler strips this off and then finds the corresponding
WsClientConnection object in the Dictionary. The remainder of the message is then forwarded to the client
using the WsClientConnection object’s SendMessage() method.

The SendMessage() method simply calls the SendMessage() of the WsConnection object associated with this
agent. The Disconnected() event handler raises the AgentDisconnected event, which will be handled by the
WsServer class.

3. In the Solution Explorer, right-click the WsServer project and select the Add ➤ Class
links. Enter WsClientConnection.cs for the class name.

4. Enter the code shown in Listing 13-9 as the implementation for this class.

CHApTEr 13 ■ WEbSoCkETS

322

Listing 13-9. Implementing the WsClientConnection class

using System;
using System.Collections.Generic;
using System.Text;

using System.Net.Sockets;

namespace WsServer
{
 public delegate void WsDisconnectedClientEventHandler
 (WsClientConnection sender, EventArgs e);

 public class WsClientConnection : IDisposable
 {
 private WsConnection _connection;
 public string _name;
 public WsAgentConnection _agent;
 public int _clientID;

 public event WsDisconnectedClientEventHandler ClientDisconnected;

 public WsClientConnection(WsConnection conn,
 WsAgentConnection agent,
 int id,
 string name)
 {
 _connection = conn;
 _agent = agent;
 _clientID = id;
 _name = name;
 }

 public void MessageReceived(WsConnection sender,
 MessageReceivedEventArgs e)
 {
 if (_agent != null)
 {
 _agent.SendMessage(_clientID.ToString() + ": " + e.Message);
 }
 }

 public void SendMessage(string msg)
 {
 if (_connection != null)
 _connection.SendMessage(msg);
 }

 public void Disconnected(WsConnection sender, EventArgs e)
 {
 if (ClientDisconnected != null)
 ClientDisconnected(this, EventArgs.Empty);
 }

CHApTEr 13 ■ WEbSoCkETS

323

 public void Dispose()
 {
 if (_connection != null)
 _connection.Dispose();
 }
 }
}

The WsClientConnection class is very similar to the WsAgentConnection class. Instead of a Dictionary
of associated clients, it has a single reference to the WsAgentConnection object. This represents the agent
that the client is chatting with. The constructor supplies the underlying WsConnection object, the associated
WsAgentConection object, and the ID by which this client is known. This is used to prefix the message that is
forwarded to the agent.

5. open the WsServer.cs file and add the code shown in bold. This creates the
collections that will store the agent and client objects.

#region Members

// This socket listens for new connections
Socket _listener;

// Configurable port # that is passed in the constructor
int _port;

// List of connections
List < WsConnection > _unknown;

List < WsAgentConnection > _agents;
List < WsClientConnection > _clients;

#endregion Members

public WsServer(int port)
{
 _port = port;

 // This is a list of active connections
 _unknown = new List < WsConnection > ();

 _agents = new List < WsAgentConnection > ();
 _clients = new List < WsClientConnection > ();

}

6. In the WsServer class, replace the MessageReceived() event handler with the code
shown in Listing 13-10.

CHApTEr 13 ■ WEbSoCkETS

324

Listing 13-10. The revised MessageReceived() event handler

void MessageReceived(WsConnection sender, MessageReceivedEventArgs e)
{
 string msg = e.Message;
 if (e.DataLength > 14 && (msg.Substring(0, 14) == "[Agent SignOn:"))
 {
 // This is an agent signing on
 string name = msg.Substring(14, e.DataLength - 15);
 WsAgentConnection agent = new WsAgentConnection(sender, name);

 // Re-wire the event handlers
 sender.Disconnected -= Disconnected;
 sender.MessageReceived -= MessageReceived;
 sender.Disconnected += agent.Disconnected;
 sender.MessageReceived += agent.MessageReceived;

 agent.AgentDisconnected +=
 new WsDisconnectedAgentEventHandler(AgentDisconnected);

 // Move this socket to the agent list
 _unknown.Remove(sender);
 _agents.Add(agent);

 // Send a response
 agent.SendMessage("Welcome, " + name);
 }
 else if (e.DataLength > 15 &&
 (msg.Substring(0, 15) == "[Client SignOn:"))
 {
 // This is a client requesting assistance
 string name = msg.Substring(15, e.DataLength - 16);

 // Find an agent
 WsAgentConnection agent = null;
 int clientID = 0;
 foreach (WsAgentConnection a in _agents)
 {
 foreach (KeyValuePair < int, WsClientConnection > d in a._clients)
 {
 if (d.Value == null)
 {
 agent = a;
 clientID = d.Key;
 break;
 }
 }
 if (agent != null)
 break;
 }

CHApTEr 13 ■ WEbSoCkETS

325

 if (agent != null)
 {
 WsClientConnection client =
 new WsClientConnection(sender, agent, clientID, name);

 // Re-wire the event handlers
 sender.Disconnected -= Disconnected;
 sender.MessageReceived -= MessageReceived;
 sender.Disconnected += client.Disconnected;
 sender.MessageReceived += client.MessageReceived;

 client.ClientDisconnected + =
 new WsDisconnectedClientEventHandler(ClientDisconnected);

 // Add this to the agent list
 _unknown.Remove(sender);
 _clients.Add(client);

 agent._clients[clientID] = client;

 // Send a message to the agent
 agent.SendMessage("[ClientName:" + clientID.ToString() +
 name + "]");

 // Send a response
 client.SendMessage("Hello! My name is " + agent._name +
 ". How may I help you?");
 }
 else
 {
 // There are no agents available
 sender.SendMessage("There are no agents currently available;" +
 "please try again later");
 }
 }
}

As I explained earlier, the first message that is sent by both the client and agent applications is a sign-on
message that includes their name. This will be formatted like one of these. Any other message will be ignored.

Agent = “[Agent SignOn:<agent name>]”•	

Client = “[Client SignOn:<client name>]”•	

The MessageReceived() event handler checks to see if the incoming message is one of these. For an
agent sign-on, the name is extracted from the message. It then creates a WsAgentConnection class and sets its
_name property. The MessageReceived and Disconnected events from the WsConnection object are currently
mapped to the WsServer event handler. This mapping is removed and instead, these events are mapped to the
WsAgentConnection object’s event handers. Also, the WsAgentConnection class defines an AgentDisconnected
event, which is mapped to a new event handler that you will implement later. The WsConnection object is
removed from the _unknown list and the WsAgentConnection object is added to the _agents list. Finally, a
welcome message is sent to the agent application.

CHApTEr 13 ■ WEbSoCkETS

326

When a client sign-on is received, very similar processing is done to create the WsClientConnection object
and re-wire the event handlers. In addition, the code looks for an available agent. This iterates through the
_agents list and for each agent, looks for a Dictionary entry with a null WsClientConnection reference. The
search stops when the first null entry is found.

Tip ■ You might want to improve this search to load balance between available agents. As this is currently
implemented, the first agent will handle the first four clients while the other agents are idle. The search could iterate
through the agents looking for the one with the fewest active clients and send the new client to them.

If an available agent was found, the WsAgentConnection object and the Dictionary key are passed to
the WsClientConnection object constructor. Also, the WsClientConnection object is stored in the available
Dictionary entry. A message is sent to agent application letting them know that a new client has been assigned
to them. Finally, a message is sent to the client application letting the client know which agent will be assisting
them. If there are no available agents, a message indicating that is sent to the client application.

7. Add the event handlers shown in Listing 13-11 to the WsServer class.

Listing 13-11. Adding the additional event handlers

void ClientDisconnected(WsClientConnection sender, EventArgs e)
{
 if (sender._agent != null)
 {
 sender._agent._clients[sender._clientID] = null;
 sender._agent.SendMessage("[ClientClose:" +
 sender._clientID.ToString() + "]");
 }
 _clients.Remove(sender);
 sender.Dispose();
}

void AgentDisconnected(WsAgentConnection sender, EventArgs e)
{
 foreach (KeyValuePair < int, WsClientConnection > d in sender._clients)
 {
 if (d.Value != null)
 {
 _clients.Remove(d.Value);
 d.Value.SendMessage
 ("The agent has been disconnected; please reconnect");
 }
 }
 _agents.Remove(sender);
 sender.Dispose();
}

CHApTEr 13 ■ WEbSoCkETS

327

These event handlers are invoked when the client or agent application is closed or otherwise disconnected.
In addition to removing the connection from the appropriate list, a message is sent to the other end of the
conversation so proper clean-up can be performed. If an agent is disconnected, all of the clients that were
connected to it need to be notified.

Creating the Agent Application
Now you’ll create the agent application that will be used by the agents responding to client requests. This will
support up to four simultaneous chat sessions.

Creating the Agent Project
The Agent application will start with the standard ASP.NET web site template. This provides the ability to register
and login to the site, simulating the authentication that an agent would normally use.

eXerCISe 13-5. CreatING the aGeNt prOJeCt

1. From the Solution Explorer, right-click the Chapter13 solution and select the
Add ➤ New project links.

2. In the “Add New project” dialog box, select the “ASp.NET MVC 4 Web Application”
template and enter the name Agent as shown in Figure 13-10. Click the ok button
to continue.

Figure 13-10. Creating the Agent application

3. In the next dialog box, select the Internet Application template and make sure the
razor engine is selected as shown in Figure 13-11. This template provides a login
form that the agents will use to authenticate.

CHApTEr 13 ■ WEbSoCkETS

328

4. You will create a separate web page that supports the chat sessions. In the Solution
Explorer, right-click the Views\Home folder and select the Add ➤ View links.

5. In the Add View dialog box, enter the name Chat, make sure the razor view engine
is selected, and all check boxes are unselected. Click the Add button to add the view.

6. In the Controllers folder, open the HomeController.cs file. Add the following method
to the HomeController class:

public ActionResult Chat()
{
 ViewBag.Message = "Respond to chat";

 return View();
}

Figure 13-11. Selecting the Internet template

CHApTEr 13 ■ WEbSoCkETS

329

7. In the Views\Shared folder, open the _Layout.cshtml file. Inside the nav element you’ll
see three @Html.ActionLink() methods that setup the navigation options on the home
page. Add the following line to this section to add a navigation link to the new chat page:

 @Html.ActionLink("Begin Chat", "Chat", "Home")

Implementing the Chat Web Page
Now you’ll implement the chat page. This will support four separate chat sessions. You’ll first add the markup
for the elements that you’ll need and then apply a style element to make the page look better. Then you’ll add
JavaScript to access the websocket and communicate with the websocket server that you created.

eXerCISe 13-6. IMpLeMeNtING the Chat paGe

1. open the chat.cshtml file and replace the body element with the markup shown in
Listing 13-12.

Listing 13-12. Adding the page markup

<body onload = "connect();">
 <div>
 <div>
 <p id = "agentName" > @User.Identity.Name</p>
 <pre id = "output" > </pre>
 </div>
 <div id = "div1" class = "client">
 <p id = "client1" class = "clientName" > unassigned</p>
 <div id = "chat1" class = "chat">

 </div>
 <input type = "text" id = "input1" class = "input" value = "" />
 <input type = "submit" value = "Send" onclick = "send('1');" />
 </div>
 <div id = "div2" class = "client">
 <p id = "client2" class = "clientName" > unassigned</p>
 <div id = "chat2" class = "chat">

 </div>
 <input type = "text" id = "input2" class = "input" value = "" />
 <input type = "submit" value = "Send" onclick = "send('2');" />
 </div>
 <div id = "div3" class = "client">
 <p id = "client3" class = "clientName" > unassigned</p>
 <div id = "chat3" class = "chat">

 </div>
 <input type = "text" id = "input3" class = "input" value = "" />
 <input type = "submit" value = "Send" onclick = "send('3');" />

CHApTEr 13 ■ WEbSoCkETS

330

 </div>
 <div id = "div4" class = "client">
 <p id = "client4" class = "clientName" > unassigned</p>
 <div id = "chat4" class = "chat">

 </div>
 <input type = "text" id = "input4" class = "input" value = "" />
 <input type = "submit" value = "Send" onclick = "send('4');" />
 </div>
 </div>
</body>

At the top of the body element, there is a p element with the value of @User.Indentity.Name. This is Razor
syntax that will display the agent’s name here. Since the agent will be logged in, the web page already knows
their name.

This page will use a div element for each of the chat windows. Inside this there is an empty div element that
will contain the messages that are sent back and forth. Inside the outer div there is p element that will hold the
client’s name, which is currently set to “unassigned”. There is also a textbox that is used to enter the message and
a button to send it.

2. To improve the layout of the form, add the style element shown in Listing 13-13
inside the head element.

Listing 13-13. Adding the style element

<style>
 body
 {
 background: #f0f0f0;
 width: 900px;
 }
 .client
 {
 display: block;
 float: left;
 width: 400px;
 height: 385px;
 border: 2px solid #6699cc;
 border-radius: 5px;
 background-color: white;
 }
 .chat
 {
 height: 300px;
 font-size: smaller;
 line-height: 12px;
 overflow-y: scroll;
 }
 .input
 {
 width:330px;
 }

CHApTEr 13 ■ WEbSoCkETS

331

 .clientName
 {
 height: 20px;
 width: 380px;
 text-align: center;
 font-size: 15px;
 font-weight: bold;
 }
</style>

3. Now you’ll add the JavaScript code that will make all of this work. Add the script
element shown in Listing 13-14 to the head element.

Listing 13-14. The JavaScript implementation

<script type = "text/javascript">

 var ws; // This is our socket

 function connect() {

 output("Connecting to host...");
 try {
 ws = new WebSocket("ws://localhost:8300/chat");
 } catch (e) {
 output(e);
 }
 ws.onopen = function () {
 output("connected... ");

 // Send the Agent sign-on message
 var p = document.getElementById("agentName");
 ws.send("[Agent SignOn:" + p.innerHTML + "]");
 };

 ws.onmessage = function (e) {
 displayMsg(e.data);
 };

 ws.onclose = function () {
 output("Connection closed");
 };
 };

 // Send the input text to the server
 function send(i) {
 var input = document.getElementById("input" + i);

CHApTEr 13 ■ WEbSoCkETS

332

 try {
 ws.send(i + ":" + input.value);
 var o = document.getElementById("chat" + i);
 o.innerHTML = o.innerHTML + " < p > Me: " + input.value + "</p > ";
 input.value = "";
 } catch (e) {
 output(e);
 }
 }

 // Add text to the debug area
 function output(msg) {
 var o = document.getElementById("output");
 o.innerHTML = o.innerHTML + " < p > " + msg + "</p > ";
 };

 // Handle a received message
 function displayMsg(msg) {
 var i = msg.substring(0, 1);
 var cmd = msg.substring(0, 12);

 // For the initial message from the server, save the client's name
 if (cmd === "[ClientName:") {
 displayClientName(msg.substring(12));
 }

 // If the client has disconnected, clear the chat window
 else if (cmd === "[ClientClose") {
 resetClient(msg.substring(13,14));
 }

 // Display the message in the debug area is not formatted properly
 else if (i ! = "1" && i ! = "2" && i ! = "3" && i ! = "4") {
 output(msg)
 }

 // Display the message in the chat window
 else {
 var o = document.getElementById("chat" + i);
 o.innerHTML = o.innerHTML + " < p > Client: " +
 msg.substring(3, msg.length) + "</p > ";
 }
 };

 // Display the client's name in the chat window
 function displayClientName(msg) {
 var i = msg.substring(0, 1);
 var o = document.getElementById("client" + i);
 o.innerHTML = msg.substring(1, msg.length - 1);
 }

CHApTEr 13 ■ WEbSoCkETS

333

 // Clear the chat window so it can be reused for another client
 function resetClient(i) {
 // Clear the client's name
 var o = document.getElementById("client" + i);
 o.innerHTML = "unassigned";

 // Remove the chat messages
 var o2 = document.getElementById("chat" + i);
 while (o2.hasChildNodes()) {
 o2.removeChild(o2.firstChild);
 }
 }
</script>

Just like the earlier web page that you implemented, the onload event calls the connect() function,
which wires up the onopen, onmessage, and onclose event handlers. In this case, the onopen event handler
sends the agent sign-on message to the server. The onmessage event handler calls the displayMsg() function.
This has special logic to interpret the message. The server will send the client’s name when the client is
assigned and will send a message when the client has disconnected. These special cases are processed by the
displayClientName() and resetClient() functions, respectively. For all other messages, the first character is
expected to be 1–4, indicating which window this is for. Using this, the appropriate div element is obtained and
the message is added to it. The message is prefixed with the “Client:” text.

The send() function that is called when the Send button is clicked takes a parameter that indicates which
window is sending the message. It uses this to get the appropriate input element and also to prefix the message
so the server will know which client this is for. It also displays the text in the div element after prefixing it with the
“Me:” text. This is done so the chat window contains both incoming and outgoing messages.

The resetClient() function changes the client name back to “unassigned”. It also iterates through the div,
removing all of the p tags that were added.

Testing the Agent Application
Before you complete the development, let’s test the form to make sure it looks OK. In the Solution Explorer,
right-click the Agent project and select the Debug ➤ “Start new instance” links. This should launch the Chrome
browser and display the home page. Click the Register link at the top of the page and enter your name, e-mail
address, and a password as shown in Figure 13-12.

CHApTEr 13 ■ WEbSoCkETS

334

Now your name is displayed on the form as shown in Figure 13-13.

Figure 13-12. Registering the user

Figure 13-13. The navigation links

Tip ■ The next time you open this site, you’ll use the Log In link instead of the register link. When you log in, if
you select the remember Me check box, it will automatically log you in when the application is started.

Notice also the Begin Chat link that you added. Click this link to open the chat page, which should look like
Figure 13-14.

CHApTEr 13 ■ WEbSoCkETS

335

Because the server is not running, the connection could not be established and the “Connection closed”
message is displayed. Close the window and stop the debugger.

Implementing the Client Application
You created the Client project earlier in the chapter to test the initial server implementation. Now you’ll modify
the Index.cshtml file to function as the client side of the chat solution.

eXerCISe 13-7. CreatING the CLIeNt appLICatION

1. open the Index.cshtml file in the Client project.

2. replace the body element with the following markup. This adds a div element that
contains a textbox for the client’s name and a submit button. A second div implements
the actual chat window. It includes a div that will display the chat messages, a text
box for entering a new message and a submit button that will send it.

Figure 13-14. The new chat page

CHApTEr 13 ■ WEbSoCkETS

336

<body>
 <div>
 <p> Enter your name to begin chat</p>
 <input type = "text" id = "name" class = "input" value = "" />
 <input type = "submit" id = "connect"
 value = "Chat now..." onclick = "connect();" />
 <pre id = "output" > </pre>
 </div>
 <div id = "div1" class = "client">
 <p id = "client1" class = "clientName" > </p>
 <div id = "chat1" class = "chat">

 </div>
 <input type = "text" id = "input" class = "input" value = "" />
 <input type = "submit" value = "Send" class = "send" onclick = "send();" />
 </div>
</body>

3. Add the style element shown in Listing 13-15 to the head element:

Listing 13-15. Defining the CSS styles

<style>
 body
 {
 background: #f0f0f0;
 width: 450px;
 }
 .client
 {
 display: block;
 float: left;
 width: 400px;
 height: 345px;
 border: 2px solid #6699cc;
 border-radius: 5px;
 background-color: white;
 }
 .chat
 {
 height: 300px;
 font-size: smaller;
 line-height: 12px;
 overflow-y: scroll;
 }
 .input
 {
 width:330px;
 }
</style>

CHApTEr 13 ■ WEbSoCkETS

337

4. replace the existing script element with the code shown in Listing 13-16.

Listing 13-16. Adding the JavaScript

<script type = "text/javascript">

 var ws; // This is our socket

 function connect() {

 output("Connecting to host...");
 try {
 ws = new WebSocket("ws://localhost:8300/chat");
 } catch (e) {
 output(e);
 }
 ws.onopen = function () {
 output("connected... ");
 var p = document.getElementById("name");
 ws.send("[Client SignOn:" + p.value + "]");
 };

 ws.onmessage = function (e) {
 displayMsg(e.data);
 };

 ws.onclose = function () {
 output("Connection closed");
 };
 };

 function send() {
 var input = document.getElementById("input");

 try {
 ws.send(input.value);
 var o = document.getElementById("chat1");
 o.innerHTML = o.innerHTML + " < p > Me: " + input.value + "</p > ";
 input.value = "";
 } catch (e) {
 output(e);
 }
 }

 function output(msg) {
 var o = document.getElementById("output");
 o.innerHTML = o.innerHTML + " < p > " + msg + "</p > ";
 };

CHApTEr 13 ■ WEbSoCkETS

338

 function displayMsg(msg) {
 var o = document.getElementById("chat1");
 o.innerHTML = o.innerHTML + " < p > Agent: " + msg + "</p> ";
 };

</script>

This code is similar to the JavaScript on the Agent application. The connect() function gets a WebSocket
and sends the initial sign-on message and then wires-up the onmessage and onclose event handlers. The send()
function sends the text that was entered to the server and echoes it on the page. The displayMsg() function is the
event handler for the processing incoming messages from the server, which are displayed on the page.

Testing the Solution
Earlier in the chapter, you setup the WsServer and the Client projects to both start when debugging. Now you’ll
need to add the Agent application as well. Then you will debug all three applications at the same time.

eXerCISe 13-8. teStING the SOLUtION

1. right-click the Chapter13 solution and select the “Set StartUp projects” link. In the
dialog box, change the action for the Agent application to Start. Also move this down
to be the second project loaded.

2. press F5 to debug the applications. You should see the console app as well as two
browser windows. Go to the Agent page. If not already logged in, log in now. You
should only have to register once. After that you just log in.

3. Click the begin Chat link, which should display the new chat page, and show that
you are connected to the server.

4. Go to the Client page, enter a name, and click the Chat now button. You should get a
response in the chat windows as illustrated in Figure 13-15.

CHApTEr 13 ■ WEbSoCkETS

339

5. Enter a message and send it. From the Agent page enter a response and send it. You
should see all of the messages displayed in the client’s chat window as shown in
Figure 13-16.

Figure 13-15. The client web application

CHApTEr 13 ■ WEbSoCkETS

340

6. Create another copy of the client page and enter a different name. Enter some
messages back and forth.

7. Go to the Agent window and you should see messages in two windows as shown in
Figure 13-17.

Figure 13-16. Updating the client window with an outgoing message

CHApTEr 13 ■ WEbSoCkETS

341

Summary
In this relatively brief introduction to WebSockets you created a simple chat system that allows an agent to chat
with multiple clients simultaneously. While the server implementation was pretty involved, the client side was
fairly simple. After creating the WebSocket object, specifying the location of the WebSocket server, you just wire
up event handlers to be notified when the connection is established, when a message is received, and when the
connection has been closed.

In this demo, you created a standalone application, but in many cases you’ll simply add the chat capability
to your existing web application. For example, you might ask the user if they want assistance with the page they
are viewing and if they do, this simple code will allow them to chat right from that page.

The server side requires a bit of protocol handling. First, the server receives handshaking messages using
http. The request key is obtained and used to generate the response key. The entire response is then sent back to
the client. The actual messages are sent using the ws protocol, which includes a frame header. Messages from the
client are masked, which require logic in the server to unmask it. Messages from the server are not masked.

The demo application provides a chat capability. This is only one possible use of WebSockets. They can also
be used any time the server needs to initiate communication with the client. Keep in mind, however, that the
client must initiate the connection with the server.

Figure 13-17. The Agent page with multiple sessions

343

Chapter 14

Drag and Drop

The ability to select an element and drag it to another location is an excellent example of a natural user
experience. I can still remember the early Apple computers where you could delete a file by dragging it onto a
trash can icon. This action, and hundreds more like it, are a key component of user experiences found on desktop
applications. Web applications, however, have lagged far behind in this arena. With the drag and drop (DnD) API
in HTML5, you’ll find web applications rapidly catching up.

In this chapter you’ll build a web application that implements a Checkers game, using the DnD API to move
the pieces around the board. I will first explain the concepts and how a DnD application is structured. Then
we’ll dive into the code, demonstrating the various aspects. I’ll finish up with some advanced features including
dragging between browser windows.

Understanding Drag and Drop
Before I get into building an application I want to explain the basic concepts of the DnD API. This will help
you put this in context as you start to write code. I will first explain the events that are raised; it is important to
know when each is raised and on which object. Then we’ll look at the dataTransfer object, which you’ll use to
pass information from the object being dragged to each of the events and eventually to the drop action. You can
also use this to configure various aspects of the dragging operation. Finally, I’ll show you how to make objects
draggable.

Handling Events
As with its desktop counterpart, DnD is an event-based API. As the user selects an item, moves it and drops it,
events are raised, allowing the application to control and respond to these actions. To effectively use this API,
you’ll need to know when these events are raised and on which element they are raised. At first, this may seem
confusing but it’s pretty straightforward once you see this in perspective.

In a DnD operation, there are two elements involved:

The element that is being dragged, sometimes referred to as the source•	

The element being dropped on, usually called the target•	

You can think of this as the source being an arrow that is being dropped onto a target, as illustrated in
Figure 14-1.

CHAPTER 14 ■ DRAg AnD DRoP

344

During a DnD operation, events are fired on both elements and I’ve indicated which events are raised
on each. On the source element, the dragstart, drag, and dragend events are comparable to the mousedown,
mousemove and mouseup events in a windows application. When you click on an element and start to move the
mouse, the dragstart event is raised. This is immediately followed by the drag event and the drag event is also
repeatedly raised with each move of the mouse. Finally, the dragend event is raised when the mouse button
is released.

The events on the target element are a little more interesting. As the mouse is moved around the page,
when it enters the area defined by an element, the dragenter event is raised on that element. As the mouse
continues to move, the dragover event is raised on the target element. If the mouse moves outside of that
element, the dragleave event is fired on the target element. Presumably, the mouse is now on a different element
and a dragenter event is raised on that element. However, if the mouse button is released while over the target
element, instead of a dragleave event, the drop event will be raised.

Now let’s walk through a typical scenario and see the order of these events. This is illustrated in Table 14-1.

Figure 14-1. The source and target elements

Table 14-1. Sequence of events

Element Event Notes

Source dragstart Raised when the mouse is clicked and starts to move

Source drag Raised with each mouse move

Target dragenter Raised when the mouse enters the target element’s space

Target dragover Raised with each mouse move when the pointer is over the target

Source drag This event continues to be raised as the mouse moves

Target dragleave Raised when the mouse is moved past the current target

Target dragenter Raised when mouse moves to a new target element

Target drop Raised when the mouse button is released

Source dragend Ends the drag and drop operation

CHAPTER 14 ■ DRAg AnD DRoP

345

Now that you understand the events that are used, you can implement a DnD operation by providing
appropriate handlers for each of these events.

Using the Data Transfer Object
There is one more DnD concept that you should understand as well. Simply dragging an element around a page
is not all that useful; what we’re really after is the data associated with the element. In the example I gave earlier
with dragging a file to the trash can, seeing the icon swallowed up by the trash may be fun to watch, but the
ultimate goal is to delete the file. In this case, you’re passing a file specification to the recycle bin so it can perform
the requested action in the file system.

Storing Data
In the DnD API, the dataTransfer object is used to store the data associated with the operation. The
dataTransfer object is usually initialized in the dragstart event handler. Recall that this event is raised on the
source element. The event handler can access the data from the source element and store it in the dataTransfer
object. This is then provided to all of the other event handlers so they can use it in their specific processing.
Ultimately, this is used by the drop event handler to take the appropriate action on this data.

The dataTransfer object is provided as a property of the event object that is passed to each of the event
handlers. You use the setData() method to store data in the dataTransfer object. To indicate the type of data, an
appropriate MIME type needs to be supplied as well. For example to add some simple text, call the method like this:

e.dataTransfer.setData("text/plain", "Hello, World!");

To access this data in a subsequent event, such as the drop event, use the getData() method like this:

var msg = e.dataTransfer.getData("text/plain");

You’ll need to use the same MIME type when retrieving the data as was used when the data was stored.

Using Drop Effects
Another purpose for the dataTransfer object is to provide feedback to the user as to the action that will occur
when the item is dropped. This is called the drop effect and there are four possible values:

copy – the selected element will be copied in the target location•	

move – the selected element will be moved to the target location•	

link – a link to the selected item will be created in the target location•	

none – the drop operation is not allowed•	

When you start dragging an item, the cursor will change to indicate the drop effect that will occur when the
item is dropped on the target. This is standard Windows UI and you can try this out on most applications. For
example, using the text editor in Visual Studio, select some text and then start dragging it. You should see the
cursor change to either a move cursor or a “not allowed” cursor depending on where you trying to move it to. If
you hold down the Ctrl key before moving it, you should see the copy cursor instead of the move cursor.

CHAPTER 14 ■ DRAg AnD DRoP

346

In the dragstart event handler you can specify the drop effects that are allowed based on the source
element that is selected. You can specify more than one allowed effect by simply concatenating them (for
example “copyMove”) or specify all effects like this:

e.dataTransfer.effectAllowed = "all"; // "copy", "link", "move", "copyLink", "linkMove",
"copyMove"

Then, in the dragover event, you’ll specify the drop effect that will occur if the source element is dropped
there. If that drop effect is one of the allowed effects, the cursor will change to indicate that drop effect. If that
effect is not allowed, however, the cursor will use the “not allowed” icon. If this is not a valid location to accept
the drop, set the drop effect to “none” like this:

if (validLocation) {
 e.dataTransfer.dropEffect = "move";
}
else {
 e.dataTransfer.dropEffect = "none";
}

Enabling Draggable Elements
So now you know you can disable the drop event on an element by setting the drop effect to “none” in the
dragover event. But how do you control which elements can be dragged to start with? The answer is simple: just
set the draggable attribute in the markup for the element. For example, to create a div that can be dragged, enter
the markup like this:

<div id = "myDiv" draggable = "true">
 <p > This div is draggable</p>
</div>

By default, images and links are draggable. Go to the google.com and try dragging the Google logo. You
should see a somewhat muted copy of this image being dragged as you move the cursor.

If you drag this image onto a Firefox browser window, Firefox will navigate to this image. You’ve just
seen drag and drop in action. Because using drag and drop is such a natural way of working, browsers try to
accommodate this out-of-the-box as best they can. For example, if you drag some text from a text editor that
appears to be a URL onto a browser, it will try to navigate to that address. If you drag an image file onto a browser
it will either navigate to it or download it.

Sometimes the default action can cause issues with your custom code. I will show you later in the chapter
how to disable this.

Note■ For more information on the DnD API, check out the W3C specification at
http://dev.w3.org/html5/spec/single-page.html#dnd.

Creating the Checkers Application
To demonstrate the DnD API, you’ll create a web application that displays a typical checkers board of alternating
red and white squares. You’ll use image files to represent the checkers and display them in their initial starting
position. Then you’ll create event handlers that will allow you to move a piece to a different square. Finally, you’ll
add logic to disable illegal moves.

http://dev.w3.org/html5/spec/single-page.html#dnd

CHAPTER 14 ■ DRAg AnD DRoP

347

Tip ■ Throughout this chapter you will be adding and modifying code in this project as you add features to the
application. If there is any question about where each change should be made, the final code is listed in Appendix C
and it is also available with the source download.

Creating the Project
You’ll first need to create a Visual Studio project that is similar to ones you created previously. This will use the
Basic MVC4 project template.

eXerCISe 14-1. CreatING the VISUaL StUDIO prOJeCt

1. Start Visual Studio 2012. In the Start Page, click the new Project link.

2. In the new project dialog box, select the “ASP.nET MVC4 Web Application” template.
Enter the project name Chapter14 and select a location for this project as shown in
Figure 14-2.

Figure 14-2. Creating the Chapter14 project

3. In the next dialog box, select the Basic template and make sure the Razor view
engine is selected. Click the oK button and the project will be created (this may take
a few seconds).

4. Right-click the Controller folder in the Solution Explorer and select the
Add ➤ Controller links. Enter the name HomeController and select the Empty
MVC Controller template. Click the Add button to create the controller.

5. Right-click the View folder and select the Add ➤ new Folder links. Enter the
name Home.

CHAPTER 14 ■ DRAg AnD DRoP

348

6. Right-click the new Home folder and select the Add ➤ View links. In the Add View
dialog box, enter the name Index, make sure the Razor view engine is selected,
unselect all the check boxes, and click the Add button.

7. Right-click the Chapter14 solution and select the Add ➤ new Folder links. Enter the
name Images.

8. The source code download for this chapter includes an Images folder with five
images. Copy all five images to the Images folder in the Solution Explorer.

Drawing the Checkers Board
To draw the board you’ll use a separate div element for each square. You’ll need eight rows with eight div
elements each. Fortunately, this is pretty easy to do using a couple of nested for loops and the Razor syntax.

Note ■ In Chapter 10 you drew a chess board using a canvas element. However, that won’t work for this
application because you need separate DoM elements for each square. You might be tempted to use SVg to
create the board since each rect element is a separate DoM element, however, the SVg elements do not support
the DnD API.

eXerCISe 14-2. DraWING the BOarD

1. In the empty div created by the project template, set the class attribute to “board”
like this:

<div class = "board">

2. Add the code shown in Listing 14-1 inside this div.

Listing 14-1. Creating the squares on the board

@for (int y = 0; y < 8; y++)
{
 for (int x = 0; x < 8; x++)
 {
 string id = x.ToString() + y.ToString();
 string css;
 if ((x + y) % 2 == 0)
 {
 css = "bwhite";
 }
 else
 {
 css = "bblack";
 }
 <text>

CHAPTER 14 ■ DRAg AnD DRoP

349

 <div id = "@id" class = "@css" draggable = "false">

 </div>
 </text>
 }
}

3. This code uses two nested for loops to create the div elements. Inside the second
for loop, the id variable is computed by concatenating the x and y variables. The css
variable alternates between bwhite and bblack. For even-numbered rows, the even
columns are black and the odd columns are white. This reverses for odd-numbered
rows. The draggable attribute is set to false because we don’t want squares being
dragged; only pieces.

4. now you’ll need to add some style rules to set the size and color of each square. Add
the style element shown in Listing 14-2 inside the head element.

Listing 14-2. Adding the CSS styles

<style type = "text/css" >
 .board
 {
 width: 400px;
 height: 400px;
 }
 .bblack
 {
 background-color: #b93030;
 border-color: #b93030;
 border-width: 1px;
 border-style: solid;
 width: 48px;
 height: 48px;
 float: left;
 margin: 0px;
 padding: 0px;
 }
 .bwhite
 {
 background-color: #f7f7f7;
 border-color: #b93030;
 border-width: 1px;
 border-style: solid;
 width: 48px;
 height: 48px;
 float: left;
 margin: 0px;
 padding: 0px;
 }
</style>

CHAPTER 14 ■ DRAg AnD DRoP

350

5. Press F5 to preview this page, which should look like Figure 14-3.

Figure 14-3. The initial board

6. now you’ll add the checkers by including an img element inside the appropriate div
elements. Add the code shown in bold in Listing 14-3.

Listing 14-3. Adding the images

<text>
<div id = "@id" class = "@css" draggable = "false">

 @if ((x + y) % 2 != 0 && y != 3 && y != 4)
 {
 string imgSrc;
 string pid;
 if (y < 3)
 {
 imgSrc = "Images/WhitePiece.png";
 pid = "w" + id;
 }
 else
 {
 imgSrc = "Images/BlackPiece.png";
 pid = "b" + id;
 }
 <text>

 </text>
 }

</div>
</text>

CHAPTER 14 ■ DRAg AnD DRoP

351

7. To determine the appropriate squares, the first rule is that checkers are only on the
black (or red in this case) squares. So the code uses the same (x + y) % 2 != 0
logic that was used to compute the css variable. Then, checkers are only placed on
the top 3 and bottom 3 rows, so the code excludes rows 3 and 4. If the row is less
than 3, this will add a white checker and use a black checker for the other rows. The
code computes the id for the img element by prefixing the id of the square with
either “w” or “b”. notice that the draggable attribute is set to true.

8. The class attribute for the img elements was set to piece. now add the following
rule to the existing style element, which will add padding so the checker will be
centered in the square.

.piece
{
 margin-left: 4px;
 margin-top: 4px;
}

9. Press F5 to start the application and you should now see the checkers as
demonstrated in Figure 14-4.

Figure 14-4. The initial checker board with checkers

Adding Drag and Drop Support
The img elements were added with the draggable attribute so you should be able to select one and drag it.
However, you’ll notice that none of the squares will accept the drop and the cursor shows the “not allowed” icon.
If you want to try some default browser functionality, try dragging an image to address bar; the browser will
navigate to the image’s URL. You will now add code that will enable a drop so you can start moving the pieces.
Then you’ll refine this code to ensure that only legal moves are allowed.

CHAPTER 14 ■ DRAg AnD DRoP

352

Note ■ For the rest of this chapter I will be using Firefox to test the application. Chrome also supports DnD
but has a bug that won’t allow you to access the dataTransfer object except in the drag event (see this article for
details - https://bugs.webkit.org/show_bug.cgi?id=23695). opera will also work fine but IE9 doesn’t support
DnD at all.

Allowing a Drop
You have draggable elements and all you need to complete a drag and drop operation is an element that will
accept a drop. To do that you’ll need an event handler for the dragover event that sets the drop effect. By default
the effectAllowed property is set to all so setting the drop effect to move, copy, or link will all be valid settings. To
try this out, add a script element at the end of the body element and add the code shown in Listing 14-4.

Listing 14-4. The initial event implementation

<script type = "text/javascript">
 // Get all the black squares
 var squares = document.querySelectorAll('.bblack');
 var i = 0;
 while (i < squares.length) {
 var s = squares[i++];
 // Add the event listeners
 s.addEventListener('dragover', dragOver, false);
 }

 // Handle the dragover event
 function dragOver(e) {
 if (e.preventDefault) {
 e.preventDefault();
 }

 e.dataTransfer.dropEffect = "move";
 }
</script>

This code uses the querySelectorAll() function that I described in Chapter 5 to get all of the black squares.
It then iterates through the collection that is returned and adds an event handler for the dragover event. The
dragover() function calls the preventDefault() function to cancel the browser’s default action. It then gets the
dataTransfer object and sets the dropEffect property to “move”.

Press F5 to run the application and try dragging a checker. You should now get a move cursor on all the black
squares but a not allowed cursor on the white squares. Try dropping the checker on an empty black square. Since
you have not yet implemented a drop event handler the browser will execute its default drop action. Since the
item being dragged is an image, the default action is to navigate to the image file.

Performing the Custom Drop Action
The default action is not what we’re looking for here so we’ll need to implement the drop event hander and
provide our own logic. The drop event handler is where all the real work happens. This is where the file is deleted
if it’s a trash can. For this application, the drop action will create a new img element at the target location and
remove the previous image.

https://bugs.webkit.org/show_bug.cgi?id=23695

CHAPTER 14 ■ DRAg AnD DRoP

353

To implement the drop, you’ll also need to provide the dragstart event handler. In the dragstart event
handler, you will store the id of the img element that is being dragged in the dataTransfer object. This will be
used by the drop event handler so it will know which element to remove.

eXerCISe 14-3. IMpLeMeNtING the DrOp

1. Add the following function to the existing script element, which will be used as the
dragstart event handler. This code gets the id of the source element (remember
the dragstart event is raised on the source element) which is the selected checker
image. This id is stored in the dataTransfer object. This function also specifies that
the allowed effects should be “move” since we’ll be moving this image.

function dragStart(e) {
 e.dataTransfer.effectAllowed = "move";
 e.dataTransfer.setData("text/plain", e.target.id);
}

2. To provide the drop event handler add the code shown in Listing 14-5.

Listing 14-5. Implementing the drop event handler

function drop(e) {
 // Prevent the event from being raised on the parent element
 if (e.stopPropagation) {
 e.stopPropagation();
 }

 // Stop the browsers default action
 if (e.preventDefault) {
 e.preventDefault();
 }

 // Get the img element that is being dragged
 var droppedID = e.dataTransfer.getData("text/plain");
 var droppedPiece = document.getElementById(droppedID);

 // Create a new img on the target location
 var newPiece = document.createElement("img");
 newPiece.src = droppedPiece.src;
 newPiece.id = droppedPiece.id.substr(0, 1) + e.target.id;
 newPiece.draggable = true;
 newPiece.classList.add("piece");
 newPiece.addEventListener("dragstart", dragStart, false);
 e.target.appendChild(newPiece);

 // Remove the previous image
 droppedPiece.parentNode.removeChild(droppedPiece);
}

CHAPTER 14 ■ DRAg AnD DRoP

354

3. This code first calls the stopPropagation() function to keep this event from
bubbling up to the parent element. It also calls preventDefault() to cancel the
browser’s default action, which as we found out, is to navigate to the image file.
It then gets the id from the dataTransfer object and uses this to access the img
element. This function then creates a new img element and sets all the necessary
properties and adds the necessary event handlers. As I explained before, the drop
event is raised on the target element; the elements being dropped on. The id for
the new img element is computed using the id of the new location, which is obtained
from the target property of the event object. The id prefix (“b” or “w”) is copied
from the existing img element. Finally, this code removes the existing img element.

4. now you’ll need to wire-up the event handlers. To do that, add the following code
shown in bold:

var squares = document.querySelectorAll('.bblack');
var i = 0;
while (i < squares.length) {
 var s = squares[i++];
 s.addEventListener('dragover', dragOver, false);

 s.addEventListener('drop', drop, false);

}

i = 0;
var pieces = document.querySelectorAll('img');
while (i < pieces.length) {
 var p = pieces[i++];
 p.addEventListener('dragstart', dragStart, false);
}

5. The dragstart event must be added to the img elements. This code gets all of the
img elements using the querySelectorAll() function.

6. now press F5 to start the application. You should be able to drag a checker to any
red square.

Providing Visual Feedback
When dragging an element it’s a good idea to provide some visual feedback indicating the object that was
selected. By setting the dropEffect property in the dragover event handler the cursor indicates if a drop is
allowed or not. However, you should do more than that. Both the source and target elements should stand
out visually so the user can easily see that if they release the mouse button, the piece will be moved from here
to there.

To do this, you’ll dynamically add a class attribute to the source and target elements. Then you can style
them with normal CSS style rules. For the source element you’ll use the dragstart and dragend events to add
and then remove the class attribute. Likewise for target element you’ll use the dragenter and dragleave events.

CHAPTER 14 ■ DRAg AnD DRoP

355

eXerCISe 14-4. aDDING VISUaL FeeDBaCK

1. You already have a dragstart event handler; add the following code in bold to the
dragStart() function. This will add the “selected” class to the element.

function dragStart(e) {
 e.dataTransfer.effectAllowed = "all";
 e.dataTransfer.setData("text/plain", e.target.id);

 e.target.classList.add("selected");

}

2. Add the dragEnd() function using the following code that will simply remove the
selected class when the drag operation has completed.

function dragEnd(e) {
 e.target.classList.remove("selected");
}

3. Add the dragEnter() and dragLeave() function using the following code. This adds
the “drop” class to the element and then removes it.

function dragEnter(e) {
 e.target.classList.add('drop');
}

function dragLeave(e) {
 e.target.classList.remove("drop");
}

4. Since you’ve added three new event handlers, you’ll need to add code to add the
event listeners. Add the code shown in bold to the existing script element.

var squares = document.querySelectorAll('.bblack');
var i = 0;
while (i < squares.length){
 var s = squares[i++];
 s.addEventListener('dragover', dragOver, false);
 s.addEventListener('drop', drop, false);

 s.addEventListener('dragenter', dragEnter, false);
 s.addEventListener('dragleave', dragLeave, false);

}

CHAPTER 14 ■ DRAg AnD DRoP

356

i = 0;
var pieces = document.querySelectorAll('img');
while (i < pieces.length){
 var p = pieces[i++];
 p.addEventListener('dragstart', dragStart, false);

 p.addEventListener('dragend', dragEnd, false);

}

5. now you’ll need to make a couple of changes to the drop event handler. You add
the “drop” class to the target element in the dragenter event and then remove it in
the dragleave event. However, if they drop the image, the dragleave event is not
raised. You’ll also need to remove the “drop” class in the drop event as well. Also,
when creating a new img element you’ll need to wire up the dragend event handler.

6. Add the code shown in bold.

// Create a new img on the target location
var newPiece = document.createElement("img");
newPiece.src = droppedPiece.src;
newPiece.id = droppedPiece.id.substr(0, 1) + e.target.id;
newPiece.draggable = true;
newPiece.classList.add("piece");
newPiece.addEventListener("dragstart", dragStart, false);

newPiece.addEventListener("dragend", dragEnd, false);

e.target.appendChild(newPiece);

// Remove the previous image
droppedPiece.parentNode.removeChild(droppedPiece);

// Remove the drop effect from the target element
e.target.classList.remove('drop');

7. Finally, you’ll need to define the CSS rules for the “drop” and “selected” values. I’ve
chosen to set the opacity attribute but you could just as easily add a border, change
the background color, or any number of effects to achieve the desired purpose.

8. Add the following rules to the existing style element.

.bblack.drop
{
 opacity: 0.5;
}
.piece.selected
{
 opacity: 0.5;
}

CHAPTER 14 ■ DRAg AnD DRoP

357

9. Press F5 to start the application. Try dragging an image to a red square and you
should see the expected visual feedback as shown in Figure 14-5.

Enforcing the Game Rules
You’ve probably noticed that you can move a piece to any red square. The current implementation doesn’t
enforce any rules to ensure a legal move is being made. You’ll now add that logic. This will be needed by the
following events:

•	 dragover – to set the dropEffect to “none” for illegal moves

•	 dragenter – to change the style only for valid drop locations

•	 drop – to only perform the move if it’s a legal move

You’ll implement an isValidMove() function that will evaluate the attempted move and return false if this is
an illegal move. Then you’ll call this function in each of the three events listed above.

Verifying a Move
Fortunately, the rules in Checkers are fairly simple. Because the dragover event handler is not added to the white
squares, dropping a piece there is already disabled, which further simplifies the work needed. The rules that
you’ll enforce are:

1. You cannot move to a square already occupied.

2. Pieces can only more forward.

3. Pieces can only move one space diagonally, or two spaces (diagonally) if jumping
an occupied square.

4. You can only jump a piece of a different color.

5. A jumped piece must be removed from the board.

Figure 14-5. Displaying the drag and drop visual feedback

CHAPTER 14 ■ DRAg AnD DRoP

358

Note ■ You’ll later add logic to handle promoting a piece to a king.

eXerCISe 14-5. eNFOrCING the rULeS

1. Implement the isValidMove() function by adding the code shown in Listing 14-6 to
the existing script element.

Listing 14-6. Implementing the isValidMove() function

function isValidMove(source, target, drop) {
 // Get the piece prefix and location
 var startPos = source.id.substr(1, 2);
 var prefix = source.id.substr(0, 1);

 // Get the drop location
 var endPos = target.id;

 // You can't drop on the existing location
 if (startPos === endPos) {
 return false;
 }

 // You can't drop on occupied square
 if (target.childElementCount != 0) {
 return false;
 }

 // Compute the x and y coordinates
 var xStart = parseInt(startPos.substr(0, 1));
 var yStart = parseInt(startPos.substr(1, 1));
 var xEnd = parseInt(endPos.substr(0, 1));
 var yEnd = parseInt(endPos.substr(1, 1));

 switch (prefix) {
 // For white pieces...
 case "w":
 if (yEnd <= yStart)
 return false; // Can't move backwards
 break;

 // For black pieces...
 case "b":
 if (yEnd >= yStart)
 return false; // Can't move backwards
 break;
 }

CHAPTER 14 ■ DRAg AnD DRoP

359

 // These rule apply to all pieces
 if (yStart === yEnd || xStart === xEnd)
 return false; // Move must be diagonal

 if (Math.abs(yEnd - yStart) > 2 || Math.abs(xEnd - xStart) > 2)
 return false; // Can't move more than two spaces

 // If moving two spaces, find the square that is jumped
 if (Math.abs(xEnd - xStart) === 2) {
 var pos = ((xStart + xEnd) / 2).toString() +
 ((yStart + yEnd) / 2).toString();
 var div = document.getElementById(pos);
 if (div.childElementCount === 0)
 return false; // Can't jump an empty square
 var img = div.children[0];
 if (img.id.substr(0, 1).toLowerCase() === prefix.toLowerCase())
 return false; // Can't jump a piece of the same color

 // If this function is called from the drop event
 // Remove the jumped piece
 if (drop) {
 div.removeChild(img);
 }
 }

 return true;
}

2. The parameters to the isValidMove() function include the source and target
elements. Remember the source is an img element and its id attribute is a
combination of the color (“w” or “b”) and the x and y coordinates. The target is a
div element and its id attribute is just the x and y coordinates. I’ve added lots of
comments to this code so it should be fairly self-explanatory but I will point out a
couple of the more interesting points.

To determine if a square is occupied, you can simply check the •	
childElementCount property. This will be 0 for empty squares.

For white pieces, moving forward means the y coordinate is increasing but for •	
black pieces the opposite is true. To handle this, the function uses a switch
statement to apply a different rule for each.

If the piece is moving two spaces then the function needs to check the square •	
that is being jumped. Its location is determined by averaging the starting and
ending positions.

If the square is occupied then the code checks to see if the piece is the same •	
color. The code first gets the child element, which will be the img on that
square. The color is determined by the prefix of the id attribute. The code
converts the prefix to lowercase before comparing. I’ll explain that later.

CHAPTER 14 ■ DRAg AnD DRoP

360

If a piece of a different color is being jumped, then we’ll remove it since the •	
code already has the img element. However, we only want to do this if this
method is called from the drop event, which is specified by the third parameter
to this function. The other two events (dragOver and dragEnter) use this
method to validate the move but don’t actually make the move and they will
pass false for the third parameter.

3. now you’ll need to change dragover event to validate the move before setting the
dropEffect. Replace the existing implementation of the dragOver() function with
the following code. The new code gets the id of the img that is being dragged from
the dataTransfer object and then uses the id to get the element. This is passed
in to the isValidMove() function along with the target element, which is obtained
from the event object (e.target). The dropEffect is set to “move” only if this is a
valid move.

function dragOver(e) {
 if (e.preventDefault) {
 e.preventDefault();
 }

 // Get the img element that is being dragged
 var dragID = e.dataTransfer.getData("text/plain");
 var dragPiece = document.getElementById(dragID);

 if (dragPiece &&
 e.target.tagName === "DIV" &&
 isValidMove(dragPiece, e.target, false)) {
 e.dataTransfer.dropEffect = "move";
 }
 else {
 e.dataTransfer.dropEffect = "none";
 }
}

4. Replace the implementation of the dragEnter() function with the following code.
This code is essentially the same as the dragOver() function, except it adds the
“drop” class to the element instead of setting the dropEffect.

function dragEnter(e) {
 // Get the img element that is being dragged
 var dragID = e.dataTransfer.getData("text/plain");
 var dragPiece = document.getElementById(dragID);

CHAPTER 14 ■ DRAg AnD DRoP

361

 if (dragPiece &&
 e.target.tagName === "DIV" &&
 isValidMove(dragPiece, e.target, false)) {
 e.target.classList.add('drop');
 }
}

5. For the drop() function, wrap the code that performs the drop inside an if
statement that validates the move by adding the code shown in bold. This time, the
code is passing true for the third parameter to the isValidMove() function.

if (droppedPiece &&
 e.target.tagName === "DIV" &&
 isValidMove(droppedPiece, e.target, true)) {

 // Create a new img on the target location
 var newPiece = document.createElement("img");
 newPiece.src = droppedPiece.src;
 newPiece.id = droppedPiece.id.substr(0, 1) + e.target.id;
 newPiece.draggable = true;
 newPiece.classList.add("piece");
 newPiece.addEventListener("dragstart", dragStart, false);
 newPiece.addEventListener("dragend", dragEnd, false);
 e.target.appendChild(newPiece);

 // Remove the previous image
 droppedPiece.parentNode.removeChild(droppedPiece);

 // Remove the drop effect from the target element
 e.target.classList.remove('drop');
}

6. With these changes now in place, try running the application. You should only be
allowed to make legal moves. If you jump a checker it should be removed from the
board.

Promoting to King
In Checkers, when a piece moves all the way to the last row, it is promoted to a king. A king works just like a
regular piece except that it can move backwards. You’ll now add code to check if a piece needs to be promoted.
To promote a piece you’ll change the image that is displayed to indicate it is a king. You’ll also change the prefix,
making it a capital “B” or “W”. Then you can allow different rules for kings.

You’ll put all this logic in a single function called kingMe() and you’ll call this every time a drop occurs. If the
piece is already a king or if it’s not on the last row, the function just returns. Otherwise it performs the promotion.

CHAPTER 14 ■ DRAg AnD DRoP

362

1. Add the kingMe() function shown in Listing 14-7 to the existing script element.

Listing 14-7. Implementing the kingMe() function

function kingMe(piece) {

 // If we're already a king, just return
 if (piece.id.substr(0, 1) === "W" || piece.id.substr(0, 1) === "B")
 return;

 var newPiece;

 // If this is a white piece on the 7th row
 if (piece.id.substr(0, 1) === "w" && piece.id.substr(2, 1) === "7") {
 newPiece = document.createElement("img");
 newPiece.src = "Images/WhiteKing.png";
 newPiece.id = "W" + piece.id.substr(1, 2);
 }

 // If this is a black piece on the 0th row
 if (piece.id.substr(0, 1) === "b" && piece.id.substr(2, 1) === "0") {
 var newPiece = document.createElement("img");
 newPiece.src = "Images/BlackKing.png";
 newPiece.id = "B" + piece.id.substr(1, 2);
 }

 // If a new piece was created, set its properties and events
 if (newPiece) {
 newPiece.draggable = true;
 newPiece.classList.add("piece");

 newPiece.addEventListener('dragstart', dragStart, false);
 newPiece.addEventListener('dragend', dragEnd, false);

 var parent = piece.parentNode;
 parent.removeChild(piece);
 parent.appendChild(newPiece);
 }
}

2. The kingMe() function simply returns if the id prefix is ether “B” or “W”, which
indicates this is already a king. It then checks to see if this is a white piece on row 7
or a black piece on row 0. If so, a new img element is created with the appropriate
src and id properties. If a new img was created the function then sets all of the
properties and events, removes the existing img element from the div element and
adds the new one.

3. Modify the drop() function to call the kingMe() function after a drop has been
performed by adding the line shown in bold.

eXerCISe 14-6. aDDING prOMOtION

CHAPTER 14 ■ DRAg AnD DRoP

363

// Remove the previous image
droppedPiece.parentNode.removeChild(droppedPiece);

// Remove the drop effect from the target element
e.target.classList.remove('drop');

// See if the piece needs to be promoted
kingMe(newPiece);

Tip ■ When you implemented the isValidMove() function the rule that prevents the piece from moving back-
wards only applies to “b” and “w” prefixes. Since a king has a capital “B” or “W” this rule doesn’t apply so the king
can move backwards. Also, when jumping a piece, the comparison was done after first converting to lowercase. This
will allow a white piece to jump either a black piece or a black king.

4. Try moving the pieces around until you move one to the last row. You should see the
image change to indicate this is now a king as shown in Figure 14-6.

Figure 14-6. The check board with a king

5. once you have a king, try moving it backwards and also try jumping pieces with it.

Moving in Turn
You’ve probably noticed that the application does not enforce each player alternating turns. You’ll implement
this logic now. After each move is made (drop event processed), you’ll set the draggable attribute to false for all
the pieces of the color that just moved. That will keep you from moving a piece of the same color. However there
is one exception to this rule that will require a little extra work. If you jump a piece, then that same piece can
make another move as long as it is another jump.

CHAPTER 14 ■ DRAg AnD DRoP

364

You’ll start by implementing the general rule first. This will be performed by creating a new function called
enableNextPlayer(). This function will use the querySelectorAll() function to get all of the img elements.
The draggable attribute will be set to either true or false depending on the id prefix. Then you’ll later add special
logic that will handle the jump condition.

eXerCISe 14-7. taKING tUrNS

1. Add the enableNextPlayer() function to the existing script element using the
code shown in Listing 14-8.

Listing 14-8. Implementing the enableNextPlayer() function

function enableNextPlayer(piece) {

 // Get all of the pieces
 var pieces = document.querySelectorAll('img');

 i = 0;
 while (i < pieces.length) {
 var p = pieces[i++];

 // If this is the same color that just moved, disable dragging
 if (p.id.substr(0, 1).toUpperCase() ===
 piece.id.substr(0, 1).toUpperCase()) {
 p.draggable = false;
 }
 // Otherwise, enable dragging
 else {
 p.draggable = true;
 }
 }
}

2. At the end of the isValidMove() function add the code shown in bold. This will call
the enableNextPlay() function when a drop is being performed.

 // Set the draggable attribute so the next player can take a turn
 if (drop) {
 enableNextPlayer(source);
 }

 return true;
}

Note ■ normally it might make more sense to put this call in the drop() function. However, only the
isValidMove() function knows that a jump occurred and we’ll need to add the override logic here, and that needs
to be after the general rule has been applied.

CHAPTER 14 ■ DRAg AnD DRoP

365

3. The drop() function creates a new img element and currently sets the draggable
attribute to true. now you’ll need to make this conditional based on the draggable
attribute of the existing piece. Add the code shown in bold to the drop() function.

// Create a new img on the target location
var newPiece = document.createElement("img");
newPiece.src = droppedPiece.src;
newPiece.id = droppedPiece.id.substr(0, 1) + e.target.id;

if (droppedPiece.draggable){

 newPiece.draggable = true;

}

newPiece.classList.add("piece");
newPiece.addEventListener("dragstart", dragStart, false);
newPiece.addEventListener("dragend", dragEnd, false);
e.target.appendChild(newPiece);

4. now you'll need change the dragStart event handler to ignore this event if the
element is not draggable. Add the code shown in bold to the dragStart() function.

function dragStart(e) {

 if (e.target.draggable) {

 e.dataTransfer.effectAllowed = "move";
 e.dataTransfer.setData("text/plain", e.target.id);

 e.target.classList.add("selected");

 }

}

5. now you'll implement the special jump logic. If the piece just made a jump, you'll
set the draggable attribute back to true so it will be allowed to make another move.
However, you'll also add "jumponly" to the classList so you can enforce that the
only move that it is allowed to make is another jump.

6. Add the code shown in bold to the isValidMove() function. This will look for
"jumponly" in the classList and set the jumpOnly flag accordingly.

var jumpOnly = false;
if (source.classList.contains("jumpOnly")) {
 jumpOnly = true;
}

// Compute the x and y coordinates
var xStart = parseInt(startPos.substr(0, 1));
var yStart = parseInt(startPos.substr(1, 1));

CHAPTER 14 ■ DRAg AnD DRoP

366

7. now add the code shown in bold to the isValidMove() function. The first part adds
the rule to make sure a jump is being made if jumpOnly is true. The second part sets
the jumped flag to indicate that this move is making a jump.

// These rule apply to all pieces
if (yStart === yEnd || xStart === xEnd)
 return false; // Move must be diagonal

if (Math.abs(yEnd - yStart) > 2 || Math.abs(xEnd - xStart) > 2)
 return false; // Can't move more than two spaces

if (Math.abs(xEnd - xStart) === 1 && jumpOnly)
 return false; // Only jumps are allowed

var jumped = false;

// If moving two spaces, find the square that is jumped
if (Math.abs(xEnd - xStart) === 2) {
 var pos = ((xStart + xEnd) / 2).toString() +
 ((yStart + yEnd) / 2).toString();
 var div = document.getElementById(pos);
 if (div.childElementCount === 0)
 return false; // Can't jump an empty square
 var img = div.children[0];
 if (img.id.substr(0, 1).toLowerCase() === prefix.toLowerCase())
 return false; // Can't jump a piece of the same color

 // If this function is called from the drop event
 // Remove the jumped piece
 if (drop) {
 div.removeChild(img);

 jumped = true;

 }
}

8. At the end of the isValidMove() function add the code shown in bold. This will
override the draggable attribute if a jump was made and add "jumponly" to the
classList.

if (drop) {
 enableNextPlayer(source);

 // If we jumped a piece, we're allowed to go again
 if (jumped) {
 source.draggable = true;
 source.classList.add("jumpOnly"); // But only for another jump
 }

}

CHAPTER 14 ■ DRAg AnD DRoP

367

9. Modify the drop() function to also add "jumponly" to the classList when creating
the new img element by adding the code shown in bold.

// Create a new img on the target location
var newPiece = document.createElement("img");
newPiece.src = droppedPiece.src;
newPiece.id = droppedPiece.id.substr(0, 1) + e.target.id;
if (droppedPiece.draggable){
 newPiece.draggable = true;

 newPiece.classList.add("jumpOnly");

}
newPiece.classList.add("piece");

10. now you'll need to clear the "jumponly" text from the classList when the next
move is completed. You'll do that in the enableNextPlayer() function by adding the
code shown in bold.

function enableNextPlayer(piece) {

 // Get all of the pieces
 var pieces = document.querySelectorAll('img');

 i = 0;
 while (i < pieces.length) {
 var p = pieces[i++];

 // If this is the same color that just moved, disable dragging
 if (p.id.substr(0, 1).toUpperCase() ===
 piece.id.substr(0, 1).toUpperCase()) {
 p.draggable = false;
 }
 // Otherwise, enable dragging
 else {
 p.draggable = true;
 }

 p.classList.remove("jumpOnly");

 }
}

11. now test the application and make sure that each player must alternate turns. Also,
verify that you can make successive jumps.

CHAPTER 14 ■ DRAg AnD DRoP

368

Note ■ The draggable attribute is set to true, initially, for both the white and black pieces so either color can
make the first move. If you wanted to specify which color went first, you would change the Razor syntax that creates
the initial img elements to set the draggable attribute to false for one color. I did some research to see what color
was supposed to go first but found mixed results. Some places indicated black goes first and others said that the
white goes first. Some, however, said it’s just a game, what difference does it make? I decided to implement this
logic, so either can go first.

Using Advanced Features
Before I finish this chapter, there are a couple of things that I want to discuss briefly. First, I’ll show you how to use
a custom drag image. Then I’ll demonstrate dragging elements across browser windows.

Changing the Drag Image
When you drag an element, a copy of the element follows the cursor as you move it around the page. This is
referred to as the drag image. However, you can specify a different image to be used. This is done with the
setDragImage() function of the dataTransfer object.

There is a smiley face image in the Images folder. Add the code shown in bold to the dragStart() function to
use this as the drag image.

function dragStart(e) {
 if (e.target.draggable) {
 e.dataTransfer.effectAllowed = "move";
 e.dataTransfer.setData("text/plain", e.target.id);

 e.target.classList.add("selected");

 var dragIcon = document.createElement("img");
 dragIcon.src = "Images/smiley.jpg";
 e.dataTransfer.setDragImage(dragIcon, 0, 0);

 }
}

Try out the application and as you move pieces you should see the smiley face as shown in Figure 14-7.

CHAPTER 14 ■ DRAg AnD DRoP

369

Dragging Between Windows
As I mentioned at the beginning of the chapter, there are separate events raised on the source element and
on the target element. It is possible that these elements can be in different browser windows or even different
applications. The process, however, works the same way.

To demonstrate this, open up a second instance of the Firefox browser and navigate to the Checkers
application. You should see two browser windows each showing the checker board. Select a checker on one
window and drag it to a square in the second window. You’ll notice that you can only drop it on squares relative
to its original location in the first window. When you drop it, the piece is moved to the drop location but is
removed from the second window, not the image you initially selected.

The key to cross-window dragging is the dataTransfer object. This is provided in the dragenter, dragover,
and dragleave events on the target object. It doesn’t really matter where the drag initiated, this information
is placed in the dataTransfer object and provided to any window that supports these events. When the drop
event received this information, it removed the img element at the location specified in the dataTransfer object.
Because the drop event was processed on the second window, the img element was removed from the second
window.

The drag and dragend events are raised on the source element. Whatever logic was written on these event
handlers is executed in the first window. Notice that the selected img element was muted during the drag but
went back to normal when the drop was executed. This is because the dragend event fired on the source element
clears the selected attribute.

When you control both sides of the operation as you do here, you can decide what data needs to be
transferred and implement both sets of event handlers. In many cases, you can control only one side of the
process. For example, a user could drag a file from Windows Explorer onto your web page. The dragstart,
drag, and dragend events (or their equivalents) are raised in the Windows Explorer application, which you
can’t control. However, the dragenter, dragover, dragleave, and drop events are all fired on your web page.
You can decide if you will accept the drop based on the element it is being dropped on and the contents of the
dataTransfer object. You also control the process that occurs when the drop is completed.

Figure 14-7. Changing the drag image

CHAPTER 14 ■ DRAg AnD DRoP

370

Summary
In this chapter I explained all of the events that are raised as part of the DnD API and which elements they are
raised on. The source element receives the following events:

•	 dragstart – when the element is selected and the mouse is moved

•	 drag – called continuously while the mouse is moved

•	 dragend – when the mouse button is released

The following events are raised on the target element:

•	 dragenter – when the mouse first enters the target’s space

•	 dragover – continuously while the mouse is moved and over the target

•	 dragleave – when the mouse leaves the target’s space

•	 drop – when the mouse button is released

The dataTransfer object is used to pass information about the source element. This is provided in all of
the event handlers. It is used especially by the drop event handler to perform the necessary processing. This also
enables dragging across applications.

The dragover event handler sets the dropEffect, which controls the cursor that is used. Setting this to
“None” will cause the “not allowed” cursor to be used, signaling that the source cannot be dropped there.

To provide some visual feedback, the dragstart and dragend event handlers should modify the source
element to indicate that it is selected and being dragged. Likewise, the dragenter and dragleave event handers
should highlight the target element. This will provide an easy way for the user to see where the selected element
will be dropped.

The sample application that you created implemented some complex rules for determining which elements
could be dragged and where they could be dropped.

371

APPENDIX A

Chapter 4 – Sample Content

Listing A-1 specifies the initial HTML content used for the exercises in Chapter 4. This is available from the
downloaded source in the Default_content.cshtml file. I’m including it here in case you want to see it without
downloading the code.

Listing A-1. Chapter 4 Sample Content

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Chapter 4 - CSS Demo</title>
 </head>
 <body>
 <header class="intro">
 <h1>CSS Demo</h1>
 <h2>Introducing the new HTML5 features</h2>
 <h3>
 Use the new CSS3 features to build some of the most visually
 appealing web sites.
 </h3>
 </header>

 <nav>

 Feature
 Article
 Archives
 Apress

 </nav>

 <div id="contentArea">

 <div id="mainContent">
 <section class="rounded">
 <header>
 <h2>Main content area</h2>
 </header>

APPENDIX A ■ ChAPtEr 4 – SAmPlE CoNtENt

372

 <p>
 Lorem ipsum dolor sit amet, consectetur adipisicing elit,
 sed do eiusmod tempor incididunt ut labore et dolore magna
 aliqua. Ut enim ad minim veniam, quis nostrud exercitation
 ullamco laboris nisi ut.
 </p>
 </section>

 <section>
 <article class="featuredContent">

 <header>
 <h3>Featured Article</h3>
 </header>

 <div class="rotateContainer" >
 <p>This is really cool. . .</p>
 <img class="rotate" id="phone"
 src="images/phonebooth.jpg"
 alt="phonebooth" />
 <p>
 Lorem ipsum dolor sit amet, consectetur adipisicing
 elit, sed do eiusmod tempor incididunt ut labore et
 dolore magna aliqua. Ut enim ad minim veniam, quis
 nostrud exercitation ullamco laboris nisi ut.
 </p>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipisicing
 elit, sed do eiusmod tempor incididunt ut labore et
 dolore magna aliqua. Ut enim ad minim veniam, quis
 nostrud exercitation ullamco laboris nisi ut.
 </p>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipisicing
 elit, sed do eiusmod tempor incididunt ut labore et
 dolore magna aliqua. Ut enim ad minim veniam, quis
 nostrud exercitation ullamco laboris nisi ut.
 </p>
 </div>
 </article>

 <article class="otherContent">

 <header>
 <h3>Rounded Borders</h3>
 </header>

 <div>
 <p>Details about rounded corners</p>
 <p>
 One of the most common features that you'll hear
 about is the use of rounded corners and we'll cover

8

APPENDIX A ■ ChAPtEr 4 – SAmPlE CoNtENt

373

 that here. Also, by configuring the div size and
 radius properly you can also make circular divs
 </p>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipisicing
 elit, sed do eiusmod tempor incididunt ut labore et
 dolore magna aliqua. Ut enim ad minim veniam, quis
 nostrud exercitation ullamco laboris nisi ut.
 </p>
 </div>
 </article>

 <article class="otherContent">

 <header>
 <h3>Another Interesting Article</h3>
 </header>

 <div>
 <p>More things to say. . .</p>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Proin luctus tincidunt justo nec tempor.
 Aliquam erat volutpat. Fusce facilisis ullamcorper
 consequat. Vestibulum non sapien lectus. Nam mi
 augue, posuere at tempus vel, dignissim vitae nulla.
 Nullam at quam eu sapien mattis ultrices. Quisque
 quis leo mi, at lobortis dolor. Nullam scelerisque
 facilisis placerat. Fusce a augue erat, malesuada
 euismod dui. Duis iaculis risus id felis volutpat
 elementum. Fusce blandit iaculis quam a cursus.
 Cras varius tincidunt cursus. Morbi justo eros,
 adipiscing ac placerat sed, posuere et mi.
 Suspendisse vulputate viverra aliquet. Duis non
 enim a nibh consequat mollis ac tempor lorem.
 Phasellus elit leo, semper eu luctus et, suscipit
 at lacus. In hac habitasse platea dictumst. Duis
 dignissim justo sit amet nulla pulvinar sodales.
 </p>
 </div>
 </article>
 </section>
 </div>

 <aside id="sidebar">
 <h3>Other Titles</h3>
 <div id="moon"></div>
 <p>
 Check out some of the other titles available from Apress.
 </p>
 <section id="titles">
 <article class="book">

APPENDIX A ■ ChAPtEr 4 – SAmPlE CoNtENt

374

 <header>
 <a href="http://www.apress.com/9781430240747"
 target="_blank">
 <img src="images\office365.png"
 alt="Pro Office 365"/>

 </header>
 <p>
 Pro Office 365 Development is a practical, hands-on
 guide to building cloud-based solutions using the
 Office 365 platform.
 </p>
 </article>

 <article class="book">
 <header>
 <a href="http://www.apress.com/9781430235781"
 target="_blank">
 <img src="images\access2010.png"
 alt="Pro Access 2010"/>

 </header>
 <p>
 Pro Access 2010 Development is a fundamental resource
 for developing business applications that take
 advantage of the features of Access 2010. You'll learn
 how to build database applications, create Web-based
 databases, develop macros and VBA tools for Access
 applications, integrate Access with SharePoint, and
 much more.
 </p>
 </article>

 <article class="book">
 <header>
 <a href="http://www.apress.com/9781430228295"
 target="_blank">
 <img src="images\sharepoint_pm.png"
 alt="Pro Project Management w/SharePoint 2010"/>

 </header>
 <p>
 The intention of this book is to provide a working
 case study that you can follow to create a complete
 PMIS (project management information system) with
 SharePoint Server's out-of-the-box functionality.
 </p>
 </article>

 <article class="book">
 <header>
 <a href="http://www.apress.com/9781430229049"
 target="_blank">

APPENDIX A ■ ChAPtEr 4 – SAmPlE CoNtENt

375

 <img src="images\office_workflow.png"
 alt="Office 2010 Workflow"/>

 </header>
 <p>
 Workflow is the glue that binds information worker
 processes, users, and artifacts—without it,
 information workers are just islands of data and
 potential. Office 2010 Workflow walks you through
 implementing workflow solutions.
 </p>
 </article>

 <article class="book">
 <header>
 <a href="http://www.apress.com/9781430224853"
 target="_blank">
 <img src="images\beginning_wf.png"
 alt="Beginning WF"/>

 </header>
 <p>
 Indexed by feature so you can find answers easily
 and written in an accessible style, Beginning WF
 shows how Microsoft's Workflow Foundation (WF)
 technology can be used in a wide variety of
 applications.
 </p>
 </article>
 </section>
 </aside>
 </div>

 <footer>
 <p>
 Last updated <time datetime="2012-05-12T20:32:22+05:00">
 May 12th 2012</time>
 by <a href="http://www.thecreativepeople.com"
 target="_blank">Mark J. Collins
 </p>
 </footer>

 </body>
</html>

377

APPENDIX B

Chapter 4 – Completed Style

Listing B-1 shows the completed style element from the Chapter 4 project. I’ve explained this in pieces but am
including it here if you want to see it all together.

Listing B-1. Chapter 4 completed style element

<style>
 /* Basic tag settings */
 body
 {
 margin: 0 auto;
 width: 940px;
 font: 13px/22px Helvetica, Arial, sans-serif;
 background: #f0f0f0;
 }

 h2
 {
 font-size: 18px;
 line-height: 5px;
 padding: 2px 0;
 }

 h3
 {
 font-size: 12px;
 line-height: 5px;
 padding: 2px 0;
 }

 h1, h2, h3
 {
 text-align: left;
 }

 p
 {
 padding-bottom: 2px;
 }

-

appendix b ■ Chapter 4 – Completed Style

378

 .book
 {
 padding: 5px;
 }

 /* Content sections */
 .featuredContent
 {
 background-color: #ffffff;
 border: 2px solid #6699cc;
 padding: 15px 15px 15px 15px;
 }

 .otherContent
 {
 background-color: #c0c0c0;
 border: 1px solid #999999;
 padding: 15px 15px 15px 15px;
 }

 aside
 {
 background-color: #6699cc;
 padding: 5px 5px 5px 5px;
 }

 footer
 {
 margin-top: 12px;
 text-align:center;
 background-color: #ddd;
 }

 footer p
 {
 padding-top: 10px;
 }

 /* Navigation Section */
 nav
 {
 left: 0;
 background-color: #003366;
 }

 nav ul
 {
 margin: 0;
 list-style: none;
 }

appendix b ■ Chapter 4 – Completed Style

379

 nav ul li
 {
 float: left;
 }

 nav ul li a
 {
 display: block;
 margin-right: 20px;
 width: 140px;
 font-size: 14px;
 line-height: 28px;
 text-align: center;
 padding-bottom: 2px;
 text-decoration: none;
 color: #cccccc;
 }

 nav ul li a:hover
 {
 color: #fff;
 }

 /* Rounded borders */
 .rounded
 {
 border: 1px solid;
 border-color:#999999;
 border-radius:25px;
 padding: 24px;
 }

 aside
 {
 border: 1px solid #999999;
 border-radius:12px;
 }

 /* Make the radius half of the height */
 nav
 {
 height: 30px;
 border-radius:15px;
 }

 footer
 {
 height: 50px;
 border-radius:25px;
 }

appendix b ■ Chapter 4 – Completed Style

380

 /* Gradients */
 .intro
 {
 border: 1px solid #999999;
 text-align:left;
 margin-top: 6px;
 padding-left: 15px;
 border-radius:25px;
 background-image: -webkit-linear-gradient(45deg, #ffffff, #6699cc);
 background-image: linear-gradient(45deg, #ffffff, #6699cc);
 }

 /* Setup a table for the content and sidebar */
 #contentArea
 {
 display: table;
 }

 #mainContent
 {
 display: table-cell;
 padding-right: 2px;
 }

 aside
 {
 display: table-cell;
 width: 280px;
 }

 /* Setup multiple columns for the articles */
 article div
 {
 text-align:justify;
 padding:6px;

 -webkit-column-count: 2;
 column-count: 2;

 -webkit-column-gap: 20px;
 column-gap: 20px;
 }

 /* Add the box shadow */
 article img
 {
 margin: 10px 0;
 box-shadow: 3px 3px 12px #222;
 }

appendix b ■ Chapter 4 – Completed Style

381

 .book img
 {
 margin: 10px 0;
 display: block;
 box-shadow: 2px 2px 5px #444;
 margin-left: auto;
 margin-right: auto;
 }

 aside
 {
 box-shadow: 3px 3px 3px #aaaaaa;
 }

 /* Stripe the title list */
 #titles article:nth-child(2n+1)
 {
 background: #c0c0c0;
 border: 1px solid #6699cc;
 border-radius: 10px;
 }

 #titles article:nth-child(2n+0)
 {
 background: #6699cc;
 border: 1px solid #c0c0c0;
 border-radius: 10px;
 }

 /* Transforms - not supported yet */
 .rotateContainer
 {
 -webkit-perspective: 600px;
 }

 .rotate
 {

 -webkit-transform-style: preserve-3d;
 }

 /* Animate the moon phases */
 @@-webkit-keyframes moonPhases
 {
 0% {background-image:url("images/moon1.png");}
 12% {background-image:url("images/moon2.png");}
 25% {background-image:url("images/moon3.png");}
 37% {background-image:url("images/moon4.png");}
 50% {background-image:url("images/moon5.png");}
 62% {background-image:url("images/moon6.png");}
 75% {background-image:url("images/moon7.png");}

appendix b ■ Chapter 4 – Completed Style

382

 87% {background-image:url("images/moon8.png");}
 100% {background-image:url("images/moon1.png");}
 }

 @@keyframes moonPhases
 {
 0% {background-image:url("images/moon1.png");}
 12% {background-image:url("images/moon2.png");}
 25% {background-image:url("images/moon3.png");}
 37% {background-image:url("images/moon4.png");}
 50% {background-image:url("images/moon5.png");}
 62% {background-image:url("images/moon6.png");}
 75% {background-image:url("images/moon7.png");}
 87% {background-image:url("images/moon8.png");}
 100% {background-image:url("images/moon1.png");}
 }

 #moon
 {
 width:115px;
 height:115px;
 background-image: url("images/moon1.png");
 background-repeat: no-repeat;
 -webkit-animation-name:moonPhases;
 -webkit-animation-duration:4s;
 -webkit-animation-delay:3s;
 -webkit-animation-iteration-count:10;
 animation-name:moonPhases;
 animation-duration:4s;
 animation-delay:3s;
 animation-iteration-count:10;
 }

</style>

383

APPENDIX C

Chapter 14 – Final Code

Listing C-1 specifies the final code for the project in Chapter 14. This is available from the downloaded source in
the Index.cshtml file. I’m including it here in case you want to see it without downloading the code.

Listing C-1. Chapter 14 Final Code

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name = "viewport" content = "width = device-width" />
 <title > Chapter 14 - Checkers</title>
 <style type = "text/css" >
 .board
 {
 width: 400px;
 height: 400px;
 }
 .bblack
 {
 background-color: #b93030;
 border-color: #b93030;
 border-width: 1px;
 border-style: solid;
 width: 48px;
 height: 48px;
 float: left;
 margin: 0px;
 padding: 0px;
 }
 .bwhite
 {
 background-color: #f7f7f7;
 border-color: #b93030;
 border-width: 1px;
 border-style: solid;

APPENDIX C ■ ChAPtEr 14 – FINAl CoDE

384

 width: 48px;
 height: 48px;
 float: left;
 margin: 0px;
 padding: 0px;
 }
 .piece
 {
 margin-left: 4px;
 margin-top: 4px;
 }
 .bblack.drop
 {
 opacity: 0.5;
 }
 .piece.selected
 {
 opacity: 0.5;
 }
 </style>
</head>
<body>
 <div class = "board">
@for (int y = 0; y < 8; y++)
{
 for (int x = 0; x < 8; x++)
 {
 string id = x.ToString() + y.ToString();
 string css;
 if ((x + y) % 2 == 0)
 {
 css = "bwhite";
 }
 else
 {
 css = "bblack";
 }
 <text>
 <div id = "@id" class = "@css" draggable = "false">
 @if ((x + y) % 2 != 0 && y != 3 && y != 4)
 {
 string imgSrc;
 string pid;
 if (y < 3)
 {
 imgSrc = "Images/WhitePiece.png";
 pid = "w" + id;
 }

APPENDIX C ■ ChAPtEr 14 – FINAl CoDE

385

 else
 {
 imgSrc = "Images/BlackPiece.png";
 pid = "b" + id;
 }
 <text>

 </text>
 }
 </div>
 </text>
 }
}
 </div>
 <script type = "text/javascript">
 // Get all the black squares
 var squares = document.querySelectorAll('.bblack');
 var i = 0;
 while (i < squares.length) {
 var s = squares[i++];
 // Add the event listeners
 s.addEventListener('dragover', dragOver, false);
 s.addEventListener('drop', drop, false);
 s.addEventListener('dragenter', dragEnter, false);
 s.addEventListener('dragleave', dragLeave, false);
 }

 i = 0;
 var pieces = document.querySelectorAll('img');
 while (i < pieces.length) {
 var p = pieces[i++];
 // Add the event listeners
 p.addEventListener('dragstart', dragStart, false);
 p.addEventListener('dragend', dragEnd, false);
 }

 // Handle the dragover event
 function dragOver(e) {
 if (e.preventDefault) {
 e.preventDefault();
 }

 // Get the img element that is being dragged
 var dragID = e.dataTransfer.getData("text/plain");
 var dragPiece = document.getElementById(dragID);

 if (dragPiece &&
 e.target.tagName === "DIV" &&
 isValidMove(dragPiece, e.target, false)) {
 e.dataTransfer.dropEffect = "move";
 }

APPENDIX C ■ ChAPtEr 14 – FINAl CoDE

386

 else {
 e.dataTransfer.dropEffect = "none";
 }
 }

 function dragStart(e) {
 if (e.target.draggable) {
 e.dataTransfer.effectAllowed = "move";
 e.dataTransfer.setData("text/plain", e.target.id);

 e.target.classList.add("selected");

 var dragIcon = document.createElement("img");
 dragIcon.src = "Images/smiley.jpg";
 e.dataTransfer.setDragImage(dragIcon, 0, 0);
 }
 }

 function drop(e) {
 // Prevent the event from being raised on the parent element
 if (e.stopPropagation) {
 e.stopPropagation();
 }

 // Stop the browsers default action
 if (e.preventDefault) {
 e.preventDefault();
 }

 // Get the img element that is being dragged
 var droppedID = e.dataTransfer.getData("text/plain");
 var droppedPiece = document.getElementById(droppedID);

 if (droppedPiece &&
 e.target.tagName === "DIV" &&
 isValidMove(droppedPiece, e.target, true)) {

 // Create a new img on the target location
 var newPiece = document.createElement("img");
 newPiece.src = droppedPiece.src;
 newPiece.id = droppedPiece.id.substr(0, 1) + e.target.id;
 if (droppedPiece.draggable){
 newPiece.draggable = true;
 newPiece.classList.add("jumpOnly");
 }
 newPiece.classList.add("piece");
 newPiece.addEventListener("dragstart", dragStart, false);
 newPiece.addEventListener("dragend", dragEnd, false);
 e.target.appendChild(newPiece);

 // Remove the previous image
 droppedPiece.parentNode.removeChild(droppedPiece);

APPENDIX C ■ ChAPtEr 14 – FINAl CoDE

387

 // Remove the drop effect from the target element
 e.target.classList.remove('drop');

 // See if the piece needs to be promoted
 kingMe(newPiece);
 }
 }

 function dragEnd(e) {
 e.target.classList.remove("selected");
 }

 function dragEnter(e) {
 // Get the img element that is being dragged
 var dragID = e.dataTransfer.getData("text/plain");
 var dragPiece = document.getElementById(dragID);

 if (dragPiece &&
 e.target.tagName === "DIV" &&
 isValidMove(dragPiece, e.target, false)) {
 e.target.classList.add('drop');
 }
 }

 function dragLeave(e) {
 e.target.classList.remove("drop");
 }

 function isValidMove(source, target, drop) {
 // Get the piece prefix and location
 var startPos = source.id.substr(1, 2);
 var prefix = source.id.substr(0, 1);

 // Get the drop location
 var endPos = target.id;

 // You can't drop on the existing location
 if (startPos === endPos) {
 return false;
 }

 // You can't drop on occupied square
 if (target.childElementCount != 0) {
 return false;
 }

 var jumpOnly = false;
 if (source.classList.contains("jumpOnly")) {
 jumpOnly = true;
 }

APPENDIX C ■ ChAPtEr 14 – FINAl CoDE

388

 // Compute the x and y coordinates
 var xStart = parseInt(startPos.substr(0, 1));
 var yStart = parseInt(startPos.substr(1, 1));
 var xEnd = parseInt(endPos.substr(0, 1));
 var yEnd = parseInt(endPos.substr(1, 1));

 switch (prefix) {
 // For white pieces...
 case "w":
 if (yEnd < = yStart)
 return false; // Can't move backwards
 break;

 // For black pieces...
 case "b":
 if (yEnd > = yStart)
 return false; // Can't move backwards
 break;
 }

 // These rule apply to all pieces
 if (yStart === yEnd || xStart === xEnd)
 return false; // Move must be diagonal
 if (Math.abs(yEnd - yStart) > 2 || Math.abs(xEnd - xStart) > 2)
 return false; // Can't move more than two spaces
 if (Math.abs(xEnd - xStart) === 1 && jumpOnly)
 return false; // Only jumps are allowed

 var jumped = false;
 // If moving two spaces, find the square that is jumped
 if (Math.abs(xEnd - xStart) === 2) {
 var pos = ((xStart + xEnd) / 2).toString() +
 ((yStart + yEnd) / 2).toString();
 var div = document.getElementById(pos);
 if (div.childElementCount === 0)
 return false; // Can't jump an empty square
 var img = div.children[0];
 if (img.id.substr(0, 1).toLowerCase() === prefix.toLowerCase())
 return false; // Can't jump a piece of the same color

 // If this function is called from the drop event
 // Remove the jumped piece
 if (drop) {
 div.removeChild(img);
 jumped = true;
 }
 }

 // Set the draggable attributes so the next player can take a turn.
 if (drop) {
 enableNextPlayer(source);

APPENDIX C ■ ChAPtEr 14 – FINAl CoDE

389

 // If we jumped a piece, we're allowed to go again
 if (jumped) {
 source.draggable = true;
 source.classList.add("jumpOnly");
 }
 }

 return true;
 }

 function kingMe(piece) {

 // If we're already a king, just return
 if (piece.id.substr(0, 1) === "W" || piece.id.substr(0, 1) === "B")
 return;

 var newPiece;

 // If this is a white piece on the 7th row
 if (piece.id.substr(0, 1) === "w" && piece.id.substr(2, 1) === "7") {
 newPiece = document.createElement("img");
 newPiece.src = "Images/WhiteKing.png";
 newPiece.id = "W" + piece.id.substr(1, 2);
 }

 // If this is a black piece on the 0th row
 if (piece.id.substr(0, 1) === "b" && piece.id.substr(2, 1) === "0") {
 var newPiece = document.createElement("img");
 newPiece.src = "Images/BlackKing.png";
 newPiece.id = "B" + piece.id.substr(1, 2);
 }

 // If a new piece was created, set its properties and events
 if (newPiece) {
 newPiece.draggable = true;
 newPiece.classList.add("piece");

 newPiece.addEventListener('dragstart', dragStart, false);
 newPiece.addEventListener('dragend', dragEnd, false);

 var parent = piece.parentNode;
 parent.removeChild(piece);
 parent.appendChild(newPiece);
 }
 }

 function enableNextPlayer(piece) {

 // Get all of the pieces
 var pieces = document.querySelectorAll('img');

APPENDIX C ■ ChAPtEr 14 – FINAl CoDE

390

 i = 0;
 while (i < pieces.length) {
 var p = pieces[i++];

 // If this is the same color that just moved, disable dragging
 if (p.id.substr(0, 1).toUpperCase() ===
 piece.id.substr(0, 1).toUpperCase()) {
 p.draggable = false;
 }
 // Otherwise, enable dragging
 else {
 p.draggable = true;
 }

 p.classList.remove("jumpOnly");
 }
 }

 </script>
</body>
</html>

391

n A
Agent application

chat web page
body element, 329–330
JavaScript implementation, 331–333
style element, 330–331

creation, 327
HomeController class, 328
@Html.ActionLink() methods, 329
internet template, 327–328
testing

chat page, 334–335
navigation links, 334
register, 333–334

Animation
adjustStates() function, 220
CSS, 218
map page, 220–221
path and style element, 218–219
script element, 219–220
selection state, 221
selectState() function, 220

Application programming interface (API), geolocation
location

access denied error, 287
current browsers, 288–289
internet options, 287–288
script element, 286–287

objects
callback function, 285
getCurrentLocation() function, 284, 285
navigator object, 284
parameters, 284
properties, 284

Visual Studio project, 282–283

ASP.NET web forms, 19
HTML5Test.com web site, 35–37
input types

ASP.NET project, 19
color, 32–33
database view, 24–26
date/time fields, 31–32
debugging, 22
definition, 19
email control, 20–22
error message, 21
feedback form, 27–30
Firefox, 22
form review, 34–35
number, 33
Opera, 22
page inspector, 22–23
phone, 32
query window, 26
range, 32
Register.aspx page, 20–22
register page, 20–21
selection list, 30
text area, 33
url, 30

range control
attributes, 38–39
HTML, 38
values, 39–40

Attribute selectors, 77–78
Audio, 169

browser support
codecs, 174
Index.cshtml file, 176
MIME format, 175
.mp3 extension, 176

Index

■ Index

392

.ogg extension, 176
src attribute, 175
XMedia Recode, 176

canPlayType() method, 182–184
controls

events, 177
input elements, 177
types, 177

custom controls
div, 177–178
event handlers, 178
range controls, 178

elements
clip selection, 172
index view, 170–171
MVC4 project template, 169–170
source file, 172

event handlers
endAudio() function, 180
Play and Pause, 178–180
progress and seek, 180
seekAudio() function, 180
setupSeek() function, 179
setVolume() function, 181
togglePlay() method, 179
updateSeek() function, 180
volume control, 180–181

media formats, 169
native controls

controls attribute, 173
progress bar, 174
UI, 173

source, 181–182

n B
Box model, CSS3, 81
Browsers, 147

CSS demo
IE 7, 148
IE 8, 147

demo application
Application_Start() method, 151
home controller, 151
index view, 149–150
mode selection, 152
MVC4 project, 149
web page, 148

hiding unsupported elements
demo page, 166–167
features, 164–165
Index.cshtml file, 165
input element, 165
types, 164–165

modernizr, 152–153

polyfills
book list striping, 162–164
features, 155
gradients, 160–162
options, 155–156
rounded corners, 159–160
tables, 156

style sheets, 153–155

n C
Canvas, 223

chess board
animation, 234–237
draw rectangles, 225–226
gradients, 227
images, 227–234
Visual Studio project, 223–225

composite
demonstration, 250
elements creation, 247–249
head section, 249
options, 250–251
script elements, 249–250
source-over, 247

definition, 223
features, 251
solar system

adding button, 244
anglePerSecond, 244–245
animateSS() function, 242
arc() command, 238
canvas element, 240
clipping path, 246–247
context state, 240
drawBoard() function, 246–247
drawing commands, 237
features, 237
initial drawing, 242–234
moon, 245
paths, 237
rotate() function, 243–244
scale() function, 246
script element, 241–242
setInterval() function, 242
transformations, 238–239

types, 223
Cascading style sheets (CSS3), 75

box model, 81
HTML content, 371–375
properties, 80
rules, 75
selectors

attribute, 77–78
class, 77

Audio (cont.)

■ Index

393

combinators, 76–77
element selector, 76
ID, 77
pseudo-class, 78–80
unions, 80

style element, 377–382
style rules

animation, 103–105
author styles, 82
basic style, 91–94
box-shadow attribute, 99–100
cascading rules, 82–83
column layout, 98
3D transforms, 101–103
gradients, 96
keyword, 83
rotateImage() function, 103
rounded corners, 94–95
source specifications, 82
tables, 96–97
zebra striping, 100–101

syntax, 75
vendor prefixes, 80–81
web page

content, 89–90
features, 83–84
layout plan, 84–85
project, 85–87
structural elements, 87–89

Checkers application
draw the board

CSS style, 349
demonstration, 351
div, 348–349
image element, 350
initial board, 350

Visual Studio project, 346–348
Chess board

animation
drawAllPieces(), 236
fillText() method, 235–236
makeNextMove() function, 235
results, 236–237
variables, 235

draw rectangles
body element, 225–226
drawBoard() function, 226
initial board, 226
project template, 225
types, 225

gradients, 227
images, 234

createPieces() function, 230–233
drawAllPieces() function, 229–230
drawImage() method, 228

height and width properties, 229
loadImages(), createPieces() and

drawAllPieces() functions, 233–234
loadImages() function, 229
pieces displays, 234
variables, 228

Visual Studio project, 223–225
Chrome Ripple. See Ripple emulators
Class selector, 77
Combinator selectors, 76–77
Custom controls

audio
div, 177–178
event handlers, 178
range controls, 178

video
div, 188–189
element and controls, 190–191
Index.cshtml file, 188–189
script element, 189

n D
Drag and drop (DnD), 343

checkers application
draw the board, 348–349
Visual Studio project, 346–348

custom drop action
event handler, 353
implementation, 353
querySelectorAll() function, 354
script element, 353
stopPropagation() function, 354
wire-up, handlers, 354

data transfer object
draggable attribute, 346
drop effects, 345–346
storing data, 345

dragStart() function, 368–369
effectAllowed property, drop, 352
final code, 383–390
game rules

events, 357
move verification, 357
points, 359
promotion, 361–363
turns, 363–367
ValidMove() function, 357

handling events
DnD operation, 343–344
events, 344
source and target elements, 343–344

image dragging, 368–369
img elements, 351
kingMe(), 361–363

■ Index

394

move verification
dragEnter() function, 360–361
dragOver() function, 360
drop() function, 361
points, 359–360
rules, 358
ValidMove() function, 358–359

setDragImage() function, 368–369
source element, 370
target element, 370
turns

classList, 366
dragStart() function, 365
drop() function, 365
enableNextPlayer() function, 364, 367
isValidMove() function, 365
jumpOnly, 366
querySelectorAll() function, 364
ValidMove() function, 364

visual feedback
add dragend and dragleave, 356
dragEnd() function, 355
dragEnter() and dragLeave() function, 355
dragStart() function, 355
image display, 357
script element, 355–356
style element, 356

windows, 369

n E
Element selectors, 76
Emulators

Chrome Ripple
BlackBerry, 131
download page, 129
Enable button, 130
options, 131–132
platform, 130

iPhone devices, 132–133
Opera mobile provides, 127

lanuch window, 127
LG Optimus, 128
Nokia N800, 128–129

Windows phone developer tools, 125–126
Event handlers

endAudio() function, 180
Play and Pause, 178–180
progress and seek, 180
seekAudio() function, 180
setupSeek() function, 179
setVolume() function, 181
togglePlay() method, 179
updateSeek() function, 180
volume control, 180–181

n F
Firefogg, 185

n G
Geolocation

API
location and display, 285–289
object, 284–285
Visual Studio project, 282–283

cellular telephone towers, 282
data, 282
IP Block, 282
technologies, 281–282

getElementByID() function, 107
Global Positioning Satellites (GPS), 281

n H
HTML, content, 371–375

n I
ID selector, 77
Indexed DB

application creation
canvas, 260–261
image configuration, 261–262
Visual Studio project, 259–260

asynchronous processing, 256–257
competing technologies, 255
database

configureDatabase() function, 264–265
createObjectStore() method, 265
drawBoard() function, 263–264
event handlers, 264
index creation, 266
objectStoreNames property, 265
pieceTypes[] array, 263
put() method, 268
resetBoard() function, 267
static data, 262–263
unique key, 266

dbCall1(), 257
key concepts, 279
object stores, 255–256
onerror event, 256
pieces

animation, 276–277
application testing, 270–271
configureDatabase() function, 271–272
continue() method, 268
cursor, 268–269
database, 273
delete() method, 275

Drag and drop (DnD) (cont.)

■ Index

395

displayCapturedPieces() function, 277–279
drawBoard() method, 273
drawPiece() function, 268
makeNextMove() function, 274, 278
moves, 271
object key, 275
openCursor() method, 268
position convertion, 272–273
removePiece() function, 275–276
single object, 269–270
update, 275–276

transactions, 257–258

n J, K, L
JavaScript, 216–218

n M, N
Mapping platforms

bing maps account
account page, 289–290
center page, 290–291
key creation, 291–292

body element, 293
initial map, 294
pushpins

current location, 294–295
markRestroom() function, 296
restrooms, 296–297
scenarios, 295
script element, 295–296
showLocation() function, 294

setView() function, 294
showLocation() function, 293

Media queries
CSS3 code, 134
style sheet, 134
use of, 135

Mobile web applications, 125
emulators

Chrome Ripple, 129–132
iPhone devices, 132–133
Opera mobile provides, 127
windows phone developer tools, 125–126

flexible images, 142–143
handling form factors

media queries, 134–135
techniques, 133–134

medium layout, 136–137
Ripple emulator device, 143–144
small layout

aside section, 142
issues, 138
medium, 138
narrow pages, 140–141

rules, 140
style element, 139–140

web Matrix application, 136
Model-view-controller (MVC)

architecture, 41
ASP.NET

data validation, 48–49
editor templates, 46–48
initial solution, 44
internet application, 42–43
MVC4 project, 42
Razor view syntax, 44–45

EditorFor() method, 45
feedback form

complete form, 53–54
design, 50–53
editor templates, 55–57
HTML5 controls, 57
models, 49–50
page creation, 49
view, 50

framework, 41
HTML

create() method, 59
custom method, 57
email template, 59–60
helper extension, 57–59

literal HTML
EditorFor() method, 65
meter control, 70–73
progress bar, 67–68
range control, 66–67
static progress bar, 68–69

range control
custom helper method, 60–61
template, 61–62

source extensions, 62–64
TextBoxFor() method, 45

Modernizr, 152–153

n O
Opera mobile emulators

lanuch window, 127
LG Optimus, 128
Nokia N800, 128–129

n P
Polyfills

book list striping
function, 162–163
getElementById() function, 163
manual striping, 163–164
nth-child selector, 162
supportsSelector() function, 163

■ Index

396

features, 155
gradients

demo page, 162
Index.cshtml file, 161
progressive internet explorer, 160
style element, 161

options, 155–156
rounded corners, 159–160
tables

add, IE7, 158
tr and td, 159
definition, 157–158
HTML component (HTC) file, 156–157
IE 6 and IE 7, 156

Poster images, 191–192
postMessage() function, 109–110
Progressive internet explorer (PIE), 160
Pseudo-class selectors, 78–80

n Q
querySelectorAll(), 108
querySelector() function, 107–108

n R
Ripple emulators

BlackBerry, 131
download page, 129
enable button, 130
options, 131–132
platform, 130

rotateImage() function, 107

n S, T
Scalable vector graphics (SVG), 193

advantages, 193
animation

adjustStates() function, 220
CSS, 218
map page, 220–221
path and style element, 218–219
script element, 219–220
selection state, 221
selectState() function, 220

database creation, 203–207
image files

background, 198–199
creation, 197–198
features, 199
shapes, 194–195
styles, 196–197
Visual Studio project, 193–194

interactive map
initial map, 203–211
path element, 200

.jpg/.png files, 193
map view

attributes, 210–211
creation, 209–210
elements, 209–211
HomeController class, 211
namespace, 211
State properties, 210

model creation, 207–209
SQL model

class, 208
design surface, 208
State.dbml design, 209

state elements
background image, 214–216
gradient fills, 213–214
JavaScript, 216–218

state table
code editor, 206
dialog box connection, 204
results, 207
selection, 206
server, 205
SQL database, 204–205

Scripting enhancements, 107
broad application, 107
features, 124
query selectors

functions, 107
querySelector(), 107–108
querySelectorAll(), 108

Visual Studio
bundling and minification, 120–121
project, 108–109

web workers
communication, 109–110
dedicated worker, 110–116
postMessage() function, 109–110
retrieving data, 110
shared worker, 116–120

Selectors
attribute, 77–78
class, 77
combinators, 76–77
element selector, 76
ID, 77
nth-child(n), 79
pseudo-class, 78–80
unions, 80

Socket technology. See WebSockets technology
Solar system

adding button, 244

Polyfills (cont.)

■ Index

397

anglePerSecond, 244–245
animateSS() function, 242
arc() command, 238
canvas element, 240
clipping path, 246–247
context state, 240
drawBoard() function, 246–247
drawing commands, 237
features, 237
initial drawing, 242–234
moon, 245
paths, 237
rotate() function, 243–244
scale() function, 246
script element, 241–242
setInterval() function, 242
transformations, 238–239

StartSocketServer() method, 306–307
Style rules implementation

animation, 103–105
basic style, 91–94
box-shadow attribute, 99–100
column layout, 98
3D transforms, 101–103
features, 91
gradients, 96
rotateImage() function, 103
rounded corners, 94–95
tables, 96–97
zebra striping, 100–101

n U
Union selector, 80

n V
Video, 169

browser support
codec, 184
formats, 184

download, 187
elements

demo page, 187–188
Index.cshtml file, 188–189
poster image, 191–192

Firefogg, 185
media formats, 169
MP4 files

converter application, 186
faststart option, 186–187

Visual Studio
bundling and minification

activities, 123
code editor, 121–122

network traffic, 121
RegisterBundles() method, 122
Scripts.Render() and Styles.Render(), 122
standard files, 122
techniques, 120–121

project, 108–109

n W, X, Y, Z
Web page creation, CSS3

content, 89–90
features, 83–84
initial files and folders, 87
layout plan, 84–85
project, 85–87
structural elements, 87–89
WebMatrix application, 85

WebSockets technology, 299
agent application

chat web page, 329–330
creation, 327
HomeController class, 328
@Html.ActionLink() methods, 329
internet template, 327–328
testing, 333–335

agent chat application, 303–304
bulding frame, 301–302
client application creation

connect() function, 338
div implements, 335–336
script element, 337–338
style element, 336

communication, 303
enhance

agent and client objects, 323
internal server classes, 319
MessageReceived(), 323–325, 326
sign-on message, 325–326
WsAgentConnection class, 320–321
WsClientConnection class, 321–323
WsServer class, 326–327
WsServer project, 319

handshaking and protocol manipulation, 300–301
initial projects

browser selection, 317–318
startup projects, 316–317
webpage, 318

masking and unmasking frames, 302
messages, 299–300
peer-to-peer communication, 300
servers, 302–303

class members, 310
console application project, 305
initial implementation, 305–306
Main() method, 314

■ Index

398

OnConnect() event handler, 308
PerformHandshake() method, 308
primary methods, 310
ReadMessage() method, 304, 310
SendMessage() method, 312–313
WsConnection class, 304, 308–310

solution testing
agent page, multiple sessions, 340–341
client web application, 338–339
outgoing message, 339–340

web application
client web page, 314
connect() function, 315
head element, 315–316
Index.cshtml file, 315
output() function, 316

Web workers
dedicated worker

closeWorker(), 116
code editor, 111–112
createWorker(), 116

form design, 113
implementation, 114–115
index view, 110–111
message log, 115–116
reference, 116
sendWorkerMessage(), 116
steps, 110–111
style sheet, 112–113
wep page creation, 110
worker.js file, 113–114

shared worker
addEventHandler() method, 120
advantages, 116
controlSharedWorker.js, 118
message page, 119
script reference, 117
sendResponse() function, 120
sharedWorker.js, 117–118
task manager, 119–120

Wi-Fi networks, 281
Windows phone emulator, 125–126
Windows Presentation Foundation (WPF), 134

WebSockets technology (cont.)

Pro HTML5 with
Visual Studio 2012

Mark J Collins

Pro HTML5 with Visual Studio 2012

Copyright © 2012 by Mark J Collins

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in
any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in
connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on
a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted
only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4638-1

ISBN-13 (electronic): 978-1-4302-4639-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of
a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not
to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors
nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher
makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Jonathan Hassell
Development Editor: Douglas Pundick
Technical Reviewer: Damien Foggon
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Anamika Panchoo
Copy Editor: Lori Cavanaugh
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/source-code.

http://www.orders-ny@springer-sbm.com
http://www.springeronline.com
http://www.rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code

To my precious wife, Donna—Every day with you just keeps getting better!

vii

Contents

About the Author .. xvii

About the Technical Reviewer ... xix

Acknowledgments ... xxi

Introduction ... xxiii

Part 1: What is HTML5? ■ ...1

Chapter 1: Before You Begin ■ ..3

Reviewing Web Environment .. 3

The Basic HTTP Page ... 3

Improving the Web Experience .. 5

Reviewing Web Technologies... 6

Exploring HTML5 .. 7

Reviewing Markup Changes .. 7

Understanding Cascading Style Sheets ... 8

Reviewing Other HTML Functionality ... 9

Choosing a Development Tool .. 10

Using Visual Studio 2012 ... 10

Using Microsoft’s Web Matrix .. 10

Using Visual Studio Express for Web ... 13

Deciphering Browser Support for HTML5 ... 15

Summary .. 16

■ Contents

viii

Part 2: Using the New HTML5 Features ■ ...17

Chapter 2: ASP.NET Web Forms ■ ...19

Introducing the New Input Types .. 19

Creating an ASP.NET Project .. 19

Using the Email Control ... 20

Using the Page Inspector ... 22

Viewing the Default Database ... 24

Exploring the Other Input Types ... 27

Implementing a Feedback Form .. 27

Reviewing the New Input Types ... 30

Reviewing the Form ... 34

Using the HTML5Test Web Site ... 35

Using the Range Control ... 38

Modifying the Step Attribute .. 38

Displaying the Range Value ... 39

Summary .. 40

Chapter 3: MVC Web Applications ■ ...41

Introducing ASP.NET MVC4 ... 42

Creating an ASP MVC Project ... 42

Exploring a Razor View .. 44

Using Editor Templates .. 45

Adding a Feedback Page .. 49

Creating the Feedback Model .. 49

Defining the Feedback View .. 50

Completing the Feedback Form ... 54

Adding the Other Fields ... 54

Adding Editor Templates .. 55

Generating Custom HTML ... 57

Adding a Custom Helper Class .. 57

Re-implementing the Custom Email Template .. 59

■ Contents

ix

Implementing a RangeControl .. 60

Implementing a Custom Helper Method .. 60

Adding the Range Template ... 61

Using Open Source Extensions ... 62

Adding Literal HTML ... 65

Adding a Range Control ... 66

Adding a Progress Bar ... 67

Updating the Progress Bar ... 68

Using the Meter Control ... 70

Summary .. 73

Chapter 4: Cascading Style Sheets ■ ..75

Reviewing Style Syntax .. 75

Using Selectors .. 75

Using CSS Properties ... 80

Using Vendor Prefixes .. 80

Understanding the Box Model ... 81

Applying Style Rules .. 82

Creating a Web Page .. 83

Planning the Page Layout .. 84

Creating the Web Project ... 85

Defining the Page Structure .. 87

Adding the Content .. 89

Implementing the Style Rules .. 91

Adding Basic Styles ... 91

Using Rounded Corners ... 94

Working with Gradients ... 96

Creating Tables .. 96

Adding Column Layout ... 98

Adding Box Shadows ... 99

■ Contents

x

Using Zebra Striping .. 100

Using 3D Transforms.. 101

Adding Animation .. 103

Summary .. 105

Chapter 5: Scripting Enhancements ■ ..107

Using Query Selectors .. 107

Using querySelector .. 107

Using querySelectorAll .. 108

Creating the Visual Studio Project .. 108

Employing Web Workers ... 109

Using a Dedicated Worker ... 110

Creating a Shared Worker .. 116

Using Visual Studio Bundling and Minification ... 120

Summary .. 124

Chapter 6: Mobile Web Applications ■ ..125

Using Emulators ... 125

Installing the Windows Phone Developer Tools ... 125

Using the Opera Mobile Emulator .. 127

Installing Chrome Ripple.. 129

Emulating the Other Devices ... 132

Handling Form Factors ... 133

Understanding Media Queries ... 134

Using Media Queries .. 135

Modifying the Chapter4 Site ... 136

Configuring the Medium Layout .. 136

Configuring the Small Layout .. 138

Using Flexible Images .. 142

Viewing the Page on a Mobile Device .. 143

Summary .. 144

■ Contents

xi

Part 3: Developing with HTML5 ■ ...145

Chapter 7: Supporting Older Browsers ■ ..147

Creating the Demo Application ... 148

Making Some Simple Changes .. 152

Using Modernizr .. 152

Resetting the Styles ... 153

Adding More Polyfills .. 155

Displaying Tables ... 156

Adding Rounded Corners ... 159

Adding Gradients ... 160

Striping the Book List .. 162

Hiding Unsupported Elements .. 164

Summary .. 167

Chapter 8: Audio and Video ■ ...169

Using the Audio Element .. 169

Creating the Sample Project .. 169

Using the Native Controls .. 173

Reviewing Browser Support .. 174

Building Your Own Controls .. 177

Adding the Custom Controls .. 177

Implementing the Event Handlers ... 178

Changing the Audio Source ... 181

Detecting Audio Support... 182

Understanding Video Formats .. 184

Reviewing Browser Support .. 184

Converting Video Formats.. 185

Using the Video Element... 187

Adding Video to the Demo Page .. 187

■ Contents

xii

Adding Custom Video Controls .. 188

Adding a Poster ... 191

Summary .. 192

■Chapter 9: Scalable Vector Graphics . ..193 Introducing SVG .

... 193

Creating the Sample Project .. 193

Adding Some Simple Shapes .. 194

Adding Styles ... 196

Using SVG Image Files. .. 197

Creating an SVG Image .. 197

Using an SVG Background ... 198

Reviewing SVG Support ... 199

Creating an Interactive Map 199

Using Path Elements .. 200

Implementing the Initial Map ... 203

Styling the State Elements 211

Using Basic Fill Colors ... 211

Using Gradient Fills .. 213

Using a Background Image .. 214

Altering Styles with JavaScript .. 216

Adding Animation ... 218

Summary .. 221

■Chapter 10: Canvas223 Creating a Chess Board .

... 223

Creating the Visual Studio Project ... 223

Drawing Rectangles .. 225

Using Gradients ... 227

Using Images ... 227

Adding Simple Animation .. 234

■ Contents

xiii

Modeling the Solar System .. 237

Using Paths .. 237

Drawing Arcs ... 238

Using Transformations ... 238

Saving the Context State ... 240

Drawing the Solar System ... 240

Applying Scaling .. 246

Clipping a Canvas .. 246

Understanding Compositing ... 247

Summary .. 251

Part 4: Digging Deeper ■ ...253

Chapter 11: Indexed DB ■ ...255

Introducing Indexed DB .. 255

Using Object Stores ... 255

Processing Asynchronously ... 256

Using Transactions ... 257

Defining the Database ... 258

Creating the Application ... 258

Creating the Visual Studio Project ... 259

Creating the Canvas... 260

Configuring the Images ... 261

Creating the Database .. 262

Declaring the Static Data ... 262

Opening the Database ... 263

Defining the Database Structure ... 264

Drawing the Pieces .. 268

Using a Cursor ... 268

Retrieving a Single Object ... 269

Testing the Application .. 270

■ Contents

xiv

Moving the Pieces .. 271

Defining the Moves .. 271

Converting the Position.. 272

Making a Move .. 273

Obtaining the Object Key ... 275

Performing the Update .. 275

Starting the Animation ... 276

Tracking the Captured Pieces ... 277

Summary .. 279

Chapter 12: Geolocation and Mapping ■ ..281

Understanding Geolocation .. 281

Surveying Geolocation Technologies ... 281

Using Geolocation Data.. 282

Using the Geolocation API .. 282

Creating the Visual Studio Project ... 282

Using the Geolocation Object ... 284

Displaying the Location ... 285

Using Mapping Platforms ... 289

Creating a Bing Maps Account... 289

Adding a Map ... 292

Adding Pushpins .. 294

Summary .. 297

Chapter 13: WebSockets ■ ..299

Understanding WebSockets ..299

Completing a Handshake ..300

Building WebSocket Frames ...301

Unmasking a Frame ..302

WebSocket Servers ..302

Designing the Agent Chat Application...303

Creating a Simple Application ...304

■ Contents

xv

Creating a WebSocket Server ...304

Creating a Web Application ...314

Testing the Initial Project ..316

Enhancing the WebSocket Server ...319

Creating the Agent Application ..327

Creating the Agent Project ..327

Implementing the Chat Web Page ..329

Testing the Agent Application ...333

Implementing the Client Application ...335

Testing the Solution ...338

Summary ...341

Chapter 14: Drag and Drop ■ ..343

Understanding Drag and Drop ...343

Handling Events ..343

Using the Data Transfer Object ...345

Enabling Draggable Elements ...346

Creating the Checkers Application ..346

Creating the Project ..347

Drawing the Checkers Board ..348

Adding Drag and Drop Support..351

Allowing a Drop ..352

Performing the Custom Drop Action ...352

Providing Visual Feedback ..354

Enforcing the Game Rules ...357

Verifying a Move ...357

Promoting to King ...361

Moving in Turn ..363

Using Advanced Features ..368

Changing the Drag Image ...368

Dragging Between Windows ...369

Summary ...370

■ Contents

xvi

Appendix A: Chapter 4 – Sample Content ...371

Appendix B: Chapter 4 – Completed Style ..377

Appendix C: Chapter 14 – Final Code ..383

Index ...391

xvii

About the Author

Mark Collins has been developing software solutions for over 30 years. Some
of the key technology areas of his career include COM, .NET, SQL Server, and
SharePoint. He currently supports a large non-profit organization, serving as
data architect and back office automation and integration specialist. You can
see more info on his web site, www.TheCreativePeople.com. For questions and
comments, contact Mark at markc@thecreativepeople.com.

http://www.TheCreativePeople.com
http://www.markc@thecreativepeople.com

xix

About the Technical Reviewer

Damien Foggon is a developer, writer, and technical reviewer in cutting-edge technologies and has contributed
to more than 50 books on .NET, C#, Visual Basic, and ASP.NET. He is the co-founder of the Newcastle based user-
group NEBytes (online at http://www.nebytes.net), is a multiple MCPD in .NET 2.0 and .NET 3.5 and can be
found online at http://blog.fasm.co.uk.

http://www.nebytes.net
http://www.blog.fasm.co.uk

xxi

Acknowledgments

First and foremost, I acknowledge my Lord and Savior, Jesus Christ. The divine and eternal perspective on life,
which can only be found in You, is an anchor, steadfast and sure. I humbly conclude that Your hand has guided
me, often carrying me, through every endeavor, great and small. I submit that nothing of any value or significance
is possible without You.

I want to say a very big thank you to my beautiful wife, Donna. I can honestly say that I would not be who I
am if it were not for what you have sown into my life. I am truly blessed to be able to share my life with you. Thank
you for your loving support and for making life fun!

Also, I want to thank Kevin Belknap for your help on this project. You have a keen eye and a seemingly innate
ability to design great user experiences. I appreciate your friendship and willingness to jump in and help.

Next, I’d like to thank all the people at Apress who made this book possible and for all their hard work
that turned it into the finished product you see now; this is truly a team effort. Jonathan, thank you for another
opportunity; Ana, thanks for being a cheerleader, helper, and taskmaster all at the same time; Damien, thank you
for your input and critique, helping to improve the quality and accuracy of this book; Douglass, Lori, and all the
other contributors at Apress, thanks for overseeing the details. Everyone at Apress has made writing this book
a pleasure.

	Pro HTML5 with Visual Studio 2012
	Contents at a Glance
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Downloading the code
	Contacting the Author

	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Part 1: What is HTML5?
	Chapter 1: Before You Begin
	Reviewing Web Environment
	The Basic HTTP Page
	Page Centric Web
	Client/Server Model

	Improving the Web Experience
	Using Client-side Scripting
	Using AJAX

	Reviewing Web Technologies

	Exploring HTML5
	Reviewing Markup Changes
	Understanding Cascading Style Sheets
	Reviewing Other HTML Functionality

	Choosing a Development Tool
	Using Visual Studio 2012
	Using Microsoft’s Web Matrix
	Using Visual Studio Express for Web

	Deciphering Browser Support for HTML5
	Summary

	Part 2: Using the New HTML5 Features
	Chapter 2: ASP.NET Web Forms
	Introducing the New Input Types
	Creating an ASP.NET Project
	Using the Email Control
	Using the Page Inspector
	Viewing the Default Database

	Exploring the Other Input Types
	Implementing a Feedback Form
	Reviewing the New Input Types
	URL
	Selection List
	Date/Time Fields
	Phone
	Range
	Color
	Number
	Text Area

	Reviewing the Form

	Using the HTML5Test Web Site
	Using the Range Control
	Modifying the Step Attribute
	Displaying the Range Value

	Summary

	Chapter 3: MVC Web Applications
	Introducing ASP.NET MVC4
	Creating an ASP MVC Project
	Exploring a Razor View
	Using Editor Templates

	Adding a Feedback Page
	Creating the Feedback Model
	Defining the Feedback View

	Completing the Feedback Form
	Adding the Other Fields
	Adding Editor Templates

	Generating Custom HTML
	Adding a Custom Helper Class
	Re-implementing the Custom Email Template

	Implementing a RangeControl
	Implementing a Custom Helper Method
	Adding the Range Template

	Using Open Source Extensions
	Adding Literal HTML
	Adding a Range Control
	Adding a Progress Bar
	Updating the Progress Bar
	Using the Meter Control

	Summary

	Chapter 4: Cascading Style Sheets
	Reviewing Style Syntax
	Using Selectors
	Element Selectors
	Using Combinators
	Class and ID Selectors
	Using Attribute Selectors
	Pseudo-Class Selectors
	Understanding Unions

	Using CSS Properties
	Using Vendor Prefixes
	Understanding the Box Model
	Applying Style Rules
	Including Style Specifications
	Cascading Rules
	Using the Important Keyword

	Creating a Web Page
	Planning the Page Layout
	Creating the Web Project
	Defining the Page Structure
	Adding the Content

	Implementing the Style Rules
	Adding Basic Styles
	Using Rounded Corners
	Working with Gradients
	Creating Tables
	Adding Column Layout
	Adding Box Shadows
	Using Zebra Striping
	Using 3D Transforms
	Adding Animation

	Summary

	Chapter 5: Scripting Enhancements
	Using Query Selectors
	Using querySelector
	Using querySelectorAll

	Creating the Visual Studio Project
	Employing Web Workers
	Using a Dedicated Worker
	Creating a Shared Worker

	Using Visual Studio Bundling and Minification
	Summary

	Chapter 6: Mobile Web Applications
	Using Emulators
	Installing the Windows Phone Developer Tools
	Using the Opera Mobile Emulator
	Installing Chrome Ripple
	Emulating the Other Devices

	Handling Form Factors
	Understanding Media Queries
	Using Media Queries

	Modifying the Chapter4 Site
	Configuring the Medium Layout
	Configuring the Small Layout
	Using Flexible Images
	Viewing the Page on a Mobile Device

	Summary

	Part 3 : Developing with HTML5
	Chapter 7: Supporting Older Browsers
	Creating the Demo Application
	Making Some Simple Changes
	Using Modernizr
	Resetting the Styles

	Adding More Polyfills
	Displaying Tables
	Adding Rounded Corners
	Adding Gradients
	Striping the Book List

	Hiding Unsupported Elements
	Summary

	Chapter 8: Audio and Video
	Using the Audio Element
	Creating the Sample Project
	Using the Native Controls
	Reviewing Browser Support

	Building Your Own Controls
	Adding the Custom Controls
	Implementing the Event Handlers
	Supporting Play and Pause
	Supporting Progress and Seek
	Controlling the Volume

	Changing the Audio Source

	Detecting Audio Support
	Understanding Video Formats
	Reviewing Browser Support
	Converting Video Formats
	Using Firefogg
	Creating an MP4 File
	Downloading Sample Videos

	Using the Video Element
	Adding Video to the Demo Page
	Adding Custom Video Controls
	Adding a Poster

	Summary

	Chapter 9: Scalable Vector Graphics
	Introducing SVG
	Creating the Sample Project
	Adding Some Simple Shapes
	Adding Styles

	Using SVG Image Files
	Creating an SVG Image
	Using an SVG Background
	Reviewing SVG Support

	Creating an Interactive Map
	Using Path Elements
	Implementing the Initial Map
	Creating the Database
	Creating the Model
	Creating the Map View

	Styling the State Elements
	Using Basic Fill Colors
	Using Gradient Fills
	Using a Background Image
	Altering Styles with JavaScript

	Adding Animation
	Summary

	Chapter 10: Canvas
	Creating a Chess Board
	Creating the Visual Studio Project
	Drawing Rectangles
	Using Gradients
	Using Images
	Adding Simple Animation

	Modeling the Solar System
	Using Paths
	Drawing Arcs
	Using Transformations
	Saving the Context State
	Drawing the Solar System
	Applying Scaling
	Clipping a Canvas

	Understanding Compositing
	Summary

	Part 4: Digging Deeper
	Chapter 11: Indexed DB
	Introducing Indexed DB
	Using Object Stores
	Processing Asynchronously
	Using Transactions
	Defining the Database

	Creating the Application
	Creating the Visual Studio Project
	Creating the Canvas
	Configuring the Images

	Creating the Database
	Declaring the Static Data
	Opening the Database
	Defining the Database Structure
	Specifying the Object Key
	Creating an Index
	Resetting the Board

	Drawing the Pieces
	Using a Cursor
	Retrieving a Single Object
	Testing the Application

	Moving the Pieces
	Defining the Moves
	Converting the Position
	Making a Move
	Obtaining the Object Key
	Performing the Update
	Starting the Animation

	Tracking the Captured Pieces
	Summary

	Chapter 12: Geolocation and Mapping
	Understanding Geolocation
	Surveying Geolocation Technologies
	Using Geolocation Data

	Using the Geolocation API
	Creating the Visual Studio Project
	Using the Geolocation Object
	Displaying the Location

	Using Mapping Platforms
	Creating a Bing Maps Account
	Adding a Map
	Adding Pushpins

	Summary

	Chapter 13: WebSockets
	Understanding WebSockets
	Completing a Handshake
	Building WebSocket Frames
	Unmasking a Frame
	WebSocket Servers
	Designing the Agent Chat Application

	Creating a Simple Application
	Creating a WebSocket Server
	Creating a Web Application
	Testing the Initial Project

	Enhancing the WebSocket Server
	Creating the Agent Application
	Creating the Agent Project
	Implementing the Chat Web Page
	Testing the Agent Application

	Implementing the Client Application
	Testing the Solution
	Summary

	Chapter 14: Drag and Drop
	Understanding Drag and Drop
	Handling Events
	Using the Data Transfer Object
	Storing Data
	Using Drop Effects

	Enabling Draggable Elements

	Creating the Checkers Application
	Creating the Project
	Drawing the Checkers Board

	Adding Drag and Drop Support
	Allowing a Drop
	Performing the Custom Drop Action
	Providing Visual Feedback

	Enforcing the Game Rules
	Verifying a Move
	Promoting to King
	Moving in Turn

	Using Advanced Features
	Changing the Drag Image
	Dragging Between Windows

	Summary

	APPENDIX A
	Chapter 4 – Sample Content

	APPENDIX B
	Chapter 4 – Completed Style

	APPENDIX C
	Chapter 14 – Final Code

	Index

