
this print for content only—size & color not accurate 7.5 x 9.25 spine = x.xxx" xxx page count

Zehoo
for Oracle Database 11g

ODP .NET

The eXPeRT’s VOIce® In ORAcLe

Pro

ODP .NET for
Oracle Database 11g

 cYAn
 MAGenTA

 YeLLOW
 BLAcK
 PAnTOne 123 c

Edmund Zehoo

Companion
eBook Available

Everything you need to work with Oracle
Database from Microsoft .NET

BOOKs fOR PROfessIOnALs BY PROfessIOnALs®

Pro ODP .NET for Oracle Database 11g
Dear Reader,

Oracle Data Provider (ODP.NET) is a managed provider from Oracle enabling
.NET programmers to access the full feature set of the Oracle database with
speed and efficiency. Beginning with .NET 4.0, Microsoft’s own access provider
for Oracle is deprecated, making ODP.NET the clear choice for access to Oracle
from. Microsoft NET.

My goal in this book is to help you master ODP.NET by breaking the topic
into three easily digestible parts. First I explain how ODP.NET is different from
other providers and why you should use it. I walk you gently through the basics
of ODP.NET via digestible code snippets that you can quickly understand and test.

Next you’ll learn how you can tap powerful features of the Oracle database such
as Advanced Queuing, XML and UDT manipulation, globalization, distributed
transactions, and more. I show how to use these features, and how to use them
efficiently and securely. You will learn how to write lean, performance-optimized
code at every level of the data access stack.

Finally, I introduce the Oracle Developer Tools (ODT.NET) suite. ODT.NET inte-
grates seamlessly with Visual Studio to make writing and debugging easy. You’ll
even learn to generate ODP.NET applications on the fly.

I’ve had a lot of fun writing this book, and in the process I’ve re-explored and
renewed my love for a great product. If you are a .NET developer wanting to write
blazing-fast, Oracle Database applications, ODP.NET is a tool you must famil-
iarize yourself with. It is simply the fastest and most powerful way to access the
Oracle database from the .NET platform. My goal in this book is to have you wield
ODP.NET efficiently and confidently in your .NET projects. I wish you a great
journey and a fun read ahead.

Sincerely,
Edmund Zehoo

US $59.99

Shelve in:
Databases / Oracle

User level:
Intermediate–Advanced

Edmund Zehoo

THE APRESS ROADMAP

Applied Mathematics
For

Database Professionals

Pro ODP.NET for
Oracle Database 11g

Oracle
SQL Recipes

Troubleshooting
Oracle

Performance

Beginning
Oracle SQL

Beginning
Database Design

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2820-2

9 781430 228202

55999

Pro

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Pro ODP .NET for Oracle
Database 11g

Edmund Zehoo

www.allitebooks.com

http://www.allitebooks.org

Pro ODP .NET for Oracle Database 11g

Copyright © 2010 by Edmund Zehoo

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2820-2

ISBN-13 (electronic): 978-1-4302-2821-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of
a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewer: Stephanie Lim
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper,
Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom
Welsh

Coordinating Editor: Anita Castro
Copy Editor: Heather Lang
Compositor: Bytheway Publishing Services
Indexer: Toma Mulligan
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

www.allitebooks.com

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com
http://www.allitebooks.org

To my family,

for you are truly all I have.

 www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

Contents at a Glance

 Contents at a Glance.. iv

 Contents.. v

 About the Author... xvii

 About the Technical Reviewer ... xviii

 Acknowledgments ... xix

 Chapter 1: Introduction to Oracle .NET Connectivity ..1

 Chapter 2: ODP.NET: A Functional Overview...19

 Chapter 3: Connecting to Oracle with ODP.NET ..49

 Chapter 4: Retrieving and Manipulating Data with ODP.NET69

 Chapter 5: Using PL/SQL and .NET CLR Stored Procedures with ODP.NET..........117

 Chapter 6: ODP.NET Globalization...161

 Chapter 7: Transactions with ODP.NET ...187

 Chapter 8: Oracle Database Change Notifications with ODP.NET........................205

 Chapter 9: Using Oracle Database Streams Advanced Queuing with ODP.NET...223

 Chapter 10: Oracle XML Support...253

 Chapter 11: ODP.NET Security Features..287

 Chapter 12: ODP.NET Performance ...317

 Chapter 13: Design Patterns and Considerations in Using ODP.NET...................351

 Chapter 14: ODT.NET Tool Basics..373

 Chapter 15: Building Data-Driven Applications with ODT.NET............................401

 Index...429

iv

www.allitebooks.com

http://www.allitebooks.org

Contents

 Contents at a Glance .. iv

 Contents.. v

 About the Author... xvii

 About the Technical Reviewer ... xviii

 Acknowledgments ... xix

 Chapter 1: Introduction to Oracle .NET Connectivity ..1

Making the Transition from SQL Server to Oracle ...2
Introducing Oracle Connectivity...3

Accessing Oracle from Unmanaged Code..4
Using OLEDB in Unmanaged Code.. 5

Oracle Provider for OLEDB... 5
MS OLEDB Provider for Oracle... 6

Using ODBC in Unmanaged Code ... 6

Oracle ODBC Driver.. 6
Microsoft ODBC for Oracle... 7
Using OO4O in Unmanaged Code... 7

Accessing Oracle from Managed Code..8
Using OLEDB.NET in Managed Code... 8

Using ODBC.NET in Managed Code .. 9

Using the Microsoft .NET Managed Provider for Oracle ... 11

Introducing ODP.NET..11
Understanding the ODP.NET Architecture .. 12

v

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

Understanding the ODP.NET Classes.. 12

Accessing Data using ODP.NET .. 13

Using ODP.NET in ASP.NET Projects ... 13

Considering ODP.NET Performance .. 15

Introducing the Oracle Suite of Products...15
Summary ...17

 Chapter 2: ODP.NET: A Functional Overview...19

Exploring Oracle Features Accessible in ODP.NET Version 9...19
Manipulating XML... 20

Manipulating LOBs.. 20

Using PL/SQL Associative Array Binding .. 21

Supporting Active Data Objects (ADO.NET) 2.0... 22

Accessing Oracle Features from ODP.NET Version 10...22
Supporting Oracle Grids ... 23

Supporting Multiple Oracle Homes... 23

Using Floating Point Data Types... 24

Using Statement Caching ... 24

Supporting Command Cancellation and Timeout ... 25

Retrieving Parameters Programmatically... 26

Supporting .NET Stored Procedures ... 26

Using Client Identifiers ... 26

Using Database Change Notifications .. 27

Managing Connection Pools ... 28

Optimizing Connection Pools for RAC... 28

Using a REF Cursor as an IN/OUT Parameter.. 29

Using 64-bit ODP.NET... 29

Controlling the FetchSize Property ... 29

Configuring ODP.NET .. 30

vi

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

Accessing Oracle Features from ODP.NET Version 11...30
Enhancing Performance ... 31

Deploying ODP.NET Using xcopy .. 31

Supporting Oracle User Defined Types (UDTs) ... 31

Performing Bulk Copy Operations... 32

Using Windows Authenticated User Connections Pooling .. 32

Publishing Connection Pool Performance Counters ... 33

Supporting Self-Tuning for Applications... 34

Using Oracle Streaming AQ .. 34

Supporting Promotable Local Transactions.. 35

Using ODP.NET Security Enhancements... 37

Running Callbacks for HA Event Notifications .. 38

Starting Up and Shutting Down Databases .. 38

Getting Started...39
Installing Oracle Database 11g... 39

Installing ODAC.NET.. 43

Summary ...48

 Chapter 3: Connecting to Oracle with ODP.NET ..49

Connecting via TNS..49

Understanding the TNSNames.ora file...51
Connecting in Other Ways ...52

Connecting Without TNSNames.ora.. 52

Connecting via EZConnect .. 53

Learning the ODP.NET Connection Parameters ...54
Connecting with Connection Pooling Activated .. 54

Connecting via Integrated Windows Authentication... 57

Connecting with Special Privileges .. 58

Using Other Connection String Attributes... 59

vii

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

Checking Whether ODP.NET Is Installed ..60
Dynamically Building an ODP.NET Connection String..61

Using the OracleConnectionStringBuilder Class... 61

Retrieving Available Oracle Data Sources .. 62

Understanding Transparent Application Failover...62
Enabling TAF in Your Application.. 63

Using TAF Callbacks ... 65

Summary ...67

 Chapter 4: Retrieving and Manipulating Data with ODP.NET69

Understanding ODP.NET Data Types..69
Creating a Sample Table..73
Retrieving Multiple Rows of Data ..76

Retrieving a Single Value...78
Handling NULL Values in ODP.NET...79

Retrieving Data into a Dataset ...80
Using Parameterized Queries ..81
Updating Data ..83

Executing a Single INSERT, UPDATE, or DELETE Statement... 84

Committing Dataset Changes to the Database ... 85

Generating Command Objects .. 88

Handling Master-Detail Relationships ...90
Creating a Second Table... 90

Retrieving from Multiple Tables ... 91

Binding a .NET Form to Your Dataset ... 92

Committing Changes to Multiple Tables... 94

Defining Table Relationships and Constraints in a DataSet ... 95

Manipulating LOBs and BFILEs ..97

viii

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

Uploading BLOB Data.. 97

Retrieving BLOB Data ... 99

Inserting CLOB/NCLOB Data ... 100

Retrieving CLOB/NCLOB Data ... 101

Creating BFILE Directory Mappings .. 102

Inserting BFILE Data ... 103

Retrieving BFILE Data ... 104

Manipulating RAW Data Types...105

Creating Automatically Incrementing Columns ...108
Executing DDL from ODP.NET ..109

Discovering Schema in ODP.NET ...110
Handling ODP.NET Exceptions ...113

Summary ...115

 Chapter 5: Using PL/SQL and .NET CLR Stored Procedures with ODP.NET..........117

Understanding the Basics of PL/SQL ...117
Working with Anonymous PL/SQL Blocks..118

Executing an Anonymous PL/SQL Block... 118

Passing Data into an Anonymous Block ... 119

Returning Data from an Anonymous Block... 121

Working with PL/SQL Stored Procedures ..122
Executing a PL/SQL Stored Procedure.. 123

Passing Data into a PL/SQL Stored Procedure ... 124

Retrieving Data from a PL/SQL Stored Procedure .. 126

Executing a PL/SQL Function...127

Handling Special IN and OUT Data Types ..128
Using Associative Arrays .. 128

Passing Associative Arrays to PL/SQL Code .. 129
Retrieving Associative Arrays from PL/SQL Code.. 131

ix

 CONTENTS

Using VARRAYs ... 134

Using Nested Tables... 138

Using REF Cursors .. 140

Reading a Result Set from a REF Cursor Using the OracleDataReader ... 141
Reading a Result Set from a REF Cursor Using the OracleDataAdapter .. 142

Retrieving Multiple Active Result Sets.. 144

User Defined Types (UDT) / OBJECT Types... 146

Handling Custom-Defined PL/SQL Errors...151

Creating Your First .NET CLR Stored Procedure ..152
Deploying a .NET CLR Stored Procedure .. 154

Executing the .NET CLR Stored Procedure ... 157

Summary ...159

 Chapter 6: ODP.NET Globalization...161

Storing and Retrieving Double-Byte Data ..161
Using the OracleGlobalization class...165

Setting Attributes at the Client Level .. 165

Setting Attributes at the Session Level... 166

Setting Attributes at the Thread Level .. 167

Changing the Session Language ...167
Formatting Calendar Dates ..168

Displaying Various Date Formats and Languages .. 169

Designating Calendar Systems... 171

Representing Currencies ...172
Formatting Numbers..176

Dealing with Time Zones ...176
Sorting and Comparing Strings..178
Applying Country-Based Formatting..181

Safely Mapping to .NET Data Types...183

x

 CONTENTS

Summary ...185

 Chapter 7: Transactions with ODP.NET ...187

Understanding Transactions and the OracleTransaction Class187
Executing Your First Transaction.. 189

Executing Stored Procedures in a Transaction... 191

Performing Partial Rollbacks ...192
Working with Distributed Transactions..194

Creating a Second Database Instance.. 195

Executing Implicit Distributed Transactions ... 198

Executing Explicit Distributed Transactions ... 201

Executing Promotable Transactions ... 202

Summary ...203

 Chapter 8: Oracle Database Change Notifications with ODP.NET........................205

Understanding Database Change Notification ...205
Registering for Query-Based Change Notifications ...206

Registering for Object-Based Change Notifications ..211
Grouping Multiple Notification Requests ...212

Removing a Registration..213
Retrieving Change Notification Information...214
Choosing to Poll ...216

Considering Typical Usage Scenarios..217
Thinking About Performance ...221

Summary ...222

 Chapter 9: Using Oracle Database Streams Advanced Queuing with ODP.NET...223

Understanding the Basics of AQ ..224
Creating a Single-Consumer Queue...224

Setting Up a Single-Consumer Queue .. 224

xi

 CONTENTS

Enqueuing and Dequeuing a Single Message .. 226

Enqueuing and Dequeuing Multiple Messages... 230

Creating a Multiple-Consumer Queue..232
Defining Recipients at the Queue Level.. 233

Defining Recipients at the Message Level.. 237

Enqueuing and Dequeuing Various Data Types in AQ..238
Using UDT Data Types .. 238

Using XML Data Types.. 244

Waiting for Incoming Messages ..246
Dequeuing Messages Synchronously (Blocking).. 247

Dequeuing Messages Asynchronously (Nonblocking) .. 248

Understanding the Useful OracleAQMessage Properties...250

Summary ...251

 Chapter 10: Oracle XML Support...253

Accessing Native XML Data (XMLTYPE)...254
Creating an XMLTYPE Column .. 254

Receiving XMLTYPE Data with XMLReader .. 255

Receiving XMLTYPE Data with OracleXMLType.. 257

Receiving XMLTYPE Data as a String ... 259

Passing XML Data to and from PL/SQL Stored Procedures ...260

Validating Against XML Schema ..262
Using XSLT to Transform XML Data...266

Retrieving Relational Data as XML...269
Using the XMLCommandType property .. 269

Using the Dataset.GetXML Method ... 272

Using the DBMS_XMLGEN.GETXML Stored Procedure ... 273

Manipulating Relational Data as XML ..274
Inserting Relational Data Using XML .. 274

xii

 CONTENTS

Updating Relational Data Using XML .. 278

Deleting Relational Data Using XML ... 280

Using XQuery to Query Data...282
Summary ...284

 Chapter 11: ODP.NET Security Features..287

Securing Your .NET Applications ...287
Authenticating Data ...289

Implementing Username/Password Authentication ... 289

Implementing Proxy Authentication.. 289

Implementing ClientId-Based Username/Password Authentication ... 290

Implementing Windows Authentication.. 291

Understanding Code Access Security ..291
Using Code Groups ... 292

Using Permission Sets.. 293

Resolving Permissions in .NET ... 294

Seeing CAS in Action .. 295

Configuring CAS Policies ...297
Configuring CAS Policies via the GUI .. 297

Configuring CAS Policies Programmatically ... 301

Requesting Permissions ..301
Requesting Permissions Declaratively ... 301

Requesting Permissions Imperatively .. 304

Ensuring That an Assembly Can Never Access Oracle ..305
Refusing Permissions Declaratively at the Assembly Level ... 306

Denying Permissions Declaratively at the Method Level.. 307

Denying Permissions Imperatively at the Method Level... 308

Using CAS with ASP.NET Applications ...308
Implementing Best Practices...313

xiii

 CONTENTS

Preventing SQL Injection Attacks ... 313

Preventing Nonpersistent Cross-Site Scripting Attacks ... 314

Summary ...315

 Chapter 12: ODP.NET Performance ...317

Measuring Performance ..317
Enabling the Performance Counters... 318

Measuring Performance Programmatically .. 320

Speeding Up Connections with Connection Pooling ..321
Performing Faster Floating Point Arithmetic..323

Executing Statements Faster...325
Batching Your SQL Statements Together For Execution... 325

Using Statement Caching ... 328

REF Cursors and Multiple Active Resultsets (MARs) .. 331

Passing Parameters More Efficiently...331
Using Bind Arrays to Pass Parameters in Bulk ... 331

Using PL/SQL Associative Arrays.. 334

Managing LOBs More Efficiently..337
Enabling the LOB Cache ... 337

Setting the InitialLOBFetchSize Property.. 340

Retrieving Data More Efficiently ..341
Changing the FetchSize Property ... 341

Using the Client Result Cache .. 343

Importing Data More Efficiently ...346
Applying Optimization Best Practices..348

Using Stored Procedures Whenever Possible... 349

Using the Right Data Access Object ... 349

Summary ...349

xiv

 CONTENTS

 Chapter 13: Design Patterns and Considerations in Using ODP.NET...................351

Programming to an Interface Instead of an Implementation ...352
Using the Data Access Object..353

Using Microsoft’s Enterprise Library ...354
Creating Oracle.NET...355

Creating the ODP.NET DAO Class.. 355

Modifying the DBProviderMapping Class ... 361

Modifying the DatabaseConfigurationView Class ... 362

Compiling the New DAAB ... 364

Using the ODP.NET DAO...364
Editing the Application Configuration File .. 364

Accessing Data via the DAAB ... 366

Reading Multiple Rows into a Dataset... 366
Updating Multiple Rows from a Dataset .. 367
Reading Data Using a DataReader... 368

Considering Best Practices..369
Planning for Multiple Data Sources .. 369

Keeping Provider-Specific Code Within the Data Tier .. 369

Outputting Business Objects, Not Datasets .. 370

Deciding How to Map Data Source Structures to Business Objects... 370

Deciding How to Manage Data Source Settings... 370

Summary ...370

 Chapter 14: ODT.NET Tool Basics..373

Installing ODT.NET ...373
Managing the Database Schema...374

Managing Users, Roles, and Object Privileges ..377
Editing and Debugging PL/SQL Code ...380

Creating a PL/SQL Procedure ... 380

xv

 CONTENTS

xvi

Creating a PL/SQL Package .. 383

Debugging PL/SQL stored procedures.. 385

Managing Oracle SQL Scripts ..391
Managing Advanced Queues ...394

Importing Tables and Data from External Data Sources..396
Summary ...399

 Chapter 15: Building Data-Driven Applications with ODT.NET............................401

Designing Queries Visually ..401
Generating Strongly Typed DataSet Objects..404
Generating UDT Classes ..413

Designing a UDT Object Visually... 413

Creating the UDT Object Table Visually .. 414

Creating the OVERSEAS_JOBS Table.. 415

Generating the UDT Classes ... 417

Using the UDT in Your Project... 420

Generating ASP.NET Code ...423

Summary ...427

 Index...429

About the Author

 Edmund Tan Zehoo is the Chief Technical Officer of an e-forms and
workflows solution vendor based in Singapore. He took the role of lead
architect in the design of several workflow products, one of the most
popular being the Quickflows product. He has also spent the last eight
years building performance critical .NET e-forms and workflows solutions
hosted on top of Oracle databases for large companies and governmental
institutions in Singapore.

Edmund is a frequent speaker at various workflow conferences held in
Singapore and Malaysia, and continually preaches about the synergistic
power of using Oracle with the .NET framework. During his free time he
can often be found engaging in his favourite pastime exploring the
innerworkings of the brain and mind, with the ultimate goal of writing
intelligent software to emulate the behavior of the mind. He is also an avid
believer in the Technological Singularity.

xvii

About the Technical Reviewer

 Stephanie Lim is an accomplished .NET developer who has worked on major Oracle database projects
in Indonesia, Singapore and Malaysia. She is well versed with ODP.NET and can often be found
programming on her laptop in her free time. When not programming, she enjoys making handcrafts and
a good bed-time novel. She also somehow manages to find time for her Schnoodle “Sticky” after work.

xviii

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

This book is the result of the combined efforts of a team of wonderful people I’ve had the pleasure of
working with. I’ll start with a special word of thanks to my editor Jonathan Gennick - thanks for giving
this author halfway around the world a chance. Your encouraging remarks and insightful edits
constantly remind me that authoring a book can indeed be so much fun.

My heartfelt gratitude also goes out to Anita Castro for her timekeeping and the always cheerful e-mails,
Heather Lang for making me sound so much better in print, Dominic Shakeshaft and the Apress editorial
board for giving me a shot at this book, and all the other Apress team members who’ve contributed to
this book.

I also thank my good friend Greg Yap for his code contributions and his scrutinizing eye on my every
sentence in the book, and also Hui Shen for her great (and sometimes tough) reviews.

Last and definitely not least, I have a small but fiercely-loving family that I would like to individually
thank - my mom and late dad for being the greatest parents one could ever hope for, my late godmother
for instilling the bookworm in me, my brother and sister for their silly jokes and the two persons who’ve
suffered most during this project – my wife and daughter who’ve had to put up without a husband and
father for 8 months – thank you for being the understanding family I knew you’d be.

xix

C H A P T E R 1

Introduction to Oracle
.NET Connectivity

The release of Oracle Database 11g, and more recently, revision R2 offers up a trove of advanced Oracle
database functionality ranging from features like database change notifications to performance boosts
like query result caching. As new features are added, the functionality you could achieve with the
database increased manifold, but what you, as a .NET developer, could do using Microsoft’s ADO.NET
and OLEDB.NET technologies were still quite limited. Without native access to the database, NET
developers could not tap onto many of these Oracle-specific features that would otherwise allow them to
fine-tune data access performance. To many, it was like being in a racecar stuck in first gear.

Fortunately, both Microsoft and Oracle have released providers that enable .NET developers to write
applications that are more tightly integrated with the Oracle database. Microsoft released the .NET
Managed Provider for Oracle, and Oracle released the Oracle Data Provider for .NET (ODP.NET). These
data providers were different from the rest in that they communicated directly with the native Oracle
Call Interface (OCI) application programmer interface (API) and exposed a larger set of the native
functionality in Oracle.

 Note: The OCI is Oracle’s native interface—the most direct method to talk to an Oracle database. Calls made
via other interfaces such as JDBC, ADO.NET, and even ODP.NET all translate into OCI calls. Even Oracle’s own
management tools ultimately depend on the OCI. Thus, the OCI can be relied on to expose all possible functionality
in Oracle.

With Microsoft’s .NET Managed Provider for Oracle recently deprecated, .NET developers are now
turning to ODP.NET, the managed provider from Oracle that offers exceptional performance and yet
exposes all the advanced Oracle functionality you need to create compelling applications.

This first chapter aims to introduce to you the ODP.NET library. It also takes a look at Oracle
connectivity in general (from managed and unmanaged code) using the other data access methods
available and provides an overview of how they measure up to each other in terms of performance. You
will learn the following:

• A breakdown of the Oracle suite of products

• The main differences between Oracle 11g and SQL Server 2008

1

CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

• The various managed and unmanaged providers used to connect to an Oracle database and how

they differ architecturally and in terms of performance

Making the Transition from SQL Server to Oracle
If you’re one of those moving from Microsoft SQL Server to Oracle, you’re probably curious about what
their differences are and what those would mean to you as a .NET developer. Although there are still
some major feature differences between the latest versions of these two databases, the recently released
Microsoft SQL Server 2008 has been a large step toward achieving the range of functionality available in
Oracle 11g. For instance, Microsoft has introduced Transparent Data Encryption (a technology that
encrypts the database without requiring any additional code to be written) with SQL Server 2008, a
feature that also exists in Oracle 11g.

The biggest change in moving to Oracle would be the SQL dialect that is used to query the database.
Oracle uses its own dialect called PL/SQL, and at times, that can be drastically different from T-SQL in
SQL Server. Even in its simplest form, there are still many tiny SQL differences to watch out for when
writing SQL statements and stored procedures on Oracle. For instance, Oracle uses the double quotation
mark to handle whitespace in table column names while SQL Server uses the square brackets. Listing 1-1
shows the difference. The PL/SQL language itself would fill up an entire book on its own and will not be
covered in this book. To maximize your usage of ODP.NET, it is recommended to at least familiarize
yourself with the basics of PL/SQL.

Listing 1-1. SQL Syntax Difference Between SQL Server and Oracle

SQL SERVER
SELECT [Full Price] FROM [Global Products]

ORACLE
SELECT "Full Price" FROM "Global Products"

Another difference to note is that Oracle provides numerous advanced data types and cursors that

can boost query performances if used correctly. For instance, Oracle provides the LOB data types that
perform faster than the standard LONG data types used for storing large objects. We will cover more
ground on accessing these data types via ODP.NET in the later chapters of this book.

There are, of course, many other differences between these two databases from a database
administrator’s point of view, but we will only account for the major differences that affect .NET
development. This list is briefly summarized in Table 1-1.

Table 1-1. Major Differences Between Oracle and SQL Server

Oracle Microsoft SQL Server

Supports most known platforms including
Windows-based platforms and AIX-based and
HP-UX–based systems

Supports only Windows-based platforms

Provides the PL/SQL language, which is more
powerful than T-SQL. For example, PL/SQL

Provides the T-SQL language

2

 CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

supports the usage of arrays (called associative
arrays), nested tables as well as Java methods
in its declaration

Enables the developer to control the client
result cache (an area of client-side memory
allocated to cache query results to fine-tune
performance

No equivalent functionality available

Provides push database change notifications
that can raise events directly in .NET code

No equivalent functionality available

Supports the use of REF cursors that allow the
developer to reference a result set directly in
memory, thereby optimizing data retrieval

No equivalent functionality available

Supports collection data types such as VARRAY
tables and nested data tables as column data
types

No equivalent functionality available

Message queuing is achieved at the database
level through Oracle Advanced Queuing

The closest equivalent is Microsoft
Messaging Queue Server (MSMQ), which
is an entirely different product and not
implemented at the database level.

Introducing Oracle Connectivity
The Oracle database has seen many revisions since its inception and has grown into a fairly complicated
(but powerful) database product. There are at least five different ways to access the database from
unmanaged code and another six ways to access it from managed code!

In my conversations with developers starting out in Oracle development, the most frequent
question I hear is, “Which data access provider yields the best performance?” My take on this question
has always been that you should look not just at performance alone but also the accessible feature set of
the database. You also need to consider how generic your data tier code needs to be in your application,
because some providers, like the Oracle Objects for OLE (OO4O) provider, do not use ADO/ADO.NET
but instead use a proprietary set of classes to access the database. In short, it all depends on what you
need for your project.

As an example, if you needed to receive Oracle database change notifications in your project, you
would be better off using ODP.NET instead of OLEDB.NET. And if your legacy Visual Basic 6 (VB6)
project only ever needed to use Oracle but had to run at the fastest speed possible, OO4O would be a
good choice.

With all the different terminology and providers from both Microsoft and Oracle, it’s easy to confuse
the various providers available, or worse, choose the wrong one in your project only to realize its
limitations midway during development.

The following sections list all the data providers (managed and unmanaged) available to you and
explain their performance and feature set differences. They also explain how these data providers are
architecturally arranged in the data access stack.

3

CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

 Note There are also popular third-party data providers offered by other companies such as dotConnect for
Oracle; we will not focus on these third party providers in this book.

Accessing Oracle from Unmanaged Code
Before the advent of the .NET platform, programmers would use the Microsoft Active Data Objects
(ADO) libraries to connect to the database. Microsoft ADO is part of the Microsoft Data Access
Components (MDAC) package and allows developers to connect to Oracle databases through either
Object Linking and Embedding, Database (OLEDB) or Open Database Connectivity (ODBC).

OLEDB is faster than ODBC because there are fewer layers in between the OLEDB provider and the
native Oracle Call Interface (OCI) API. To use ODBC, the ADO application would have to use an OLEDB-
to-ODBC bridge to translate OLEDB requests into ODBC requests. This contributes to a performance
detriment when using ODBC with ADO. In fact, using OLEDB for data access yields a more stable
environment compared to ODBC for the same reason.

There is also a third option that produces the fastest performance for data access—the Oracle
Objects for OLE (OO4O) library, which is a suite of Component Object Model (COM) components that
allows native access to an Oracle database without the use of ADO. The three data access methods can
be visually summarized as shown in Figure 1-1.

Figure 1-1. Architectural overview of the various providers available to unmanaged code

4

 CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

Using OLEDB in Unmanaged Code
OLEDB is an open standard developed by Microsoft that is basically a generic set of COM interfaces that
define data access to a variety of data sources. The concept of OLEDB is straightforward: the provider
implements these COM interfaces and provides, for example, the functionality of retrieving data into a
table, which is then returned to the consumer.

There are numerous OLEDB providers out there; typically, most databases would have an OLEDB
driver written specifically for it so that developers can gain access to them. For instance, Oracle provides
the Oracle provider for OLEDB driver to access Oracle databases, and Microsoft provides the Microsoft
SQL Server provider to access Microsoft SQL Server databases.

OLEDB technology is versatile enough in that it is able to retrieve data from even nondatabase data
sources as long as an OLEDB provider is written for it. An example of this is the Microsoft Jet OLEDB
provider, which is able to retrieve and store data from a Microsoft Excel file using OLEDB.

Oracle Provider for OLEDB
The Oracle Provider for OLEDB (OraOLEDB) is Oracle’s de facto standard OLEDB provider for the Oracle
database. Compared to the Microsoft OLEDB provider for Oracle (at the same level), it provides
reasonably higher performance because certain features of the OraOLEDB provider are exposed to the
developer. For instance, OraOLEDB supports returning more than one rowset from a stored procedure.
When used correctly, this feature can significantly reduce the number of data fetches required and lead
to better performance.

OraOLEDB also supports some Oracle-specific features, such as those in Oracle’s grid feature set. It
also supports Oracle-specific data types such as the LOB data types, binding NCHAR parameters with SQL
statements, and enhanced failover capability.

A connection to an Oracle database can be easily established with OraOLEDB using a connection
string that looks something like that in Listing 1-2.

Listing 1-2. Data Retrieval Code Sample in Visual Basic using OraOLEDB and ADO

strConn = “Provider=OraOLEDB.Oracle;Data Source=TEST;User Id=edzehoo;Password=admin123;”
Set OraConnection = CreateObject("ADODB.Connection")
OraConnection.Open(strConn)
Set OraResultset = Server.CreateObject("ADODB.Recordset")
OraResultset.Open "SELECT Price FROM Products", OraConnection

Do While(OraResultset.EOF = false)
 Msgbox OraResultset.Fields("Price")
 OraResultset.MoveNext
Loop
OraResultset.Close()
OraConnection.Close()

The OraOLEDB provider continues to receive sustained support from Oracle and has gone through
many releases. At the time of this writing, the latest version of OraOLEDB released is version 11.1.0.6.20.

5

CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

 Note There is also a 64-bit version of the Oracle Provider for OLEDB (OraOLEDB), which natively supports 64-bit
Windows (x64 and Itanium) available to OLEDB developers.

MS OLEDB Provider for Oracle
The Microsoft OLEDB Provider for Oracle (MSDAORA) is Microsoft’s architectural equivalent of the
OraOLEDB provider. It only supports Oracle database versions up to 7i, with limited support for ver-
sion 8i.

 Note MSDAORA has been deprecated because it uses OCI version 7.0, which is no longer supported by Oracle.

Using ODBC in Unmanaged Code
ODBC is a standard data access protocol created by Microsoft that allows users to connect to various
relational or nonrelational data sources in heterogeneous systems. ODBC consists of two components:
the ODBC client (which is any application that uses ODBC to access a data source) and the ODBC driver
(similar to the concept of an OLEDB provider, the ODBC driver is an ODBC implementation of a specific
data source).

The ODBC client sends commands (based on the ODBC protocol) to the desired ODBC driver,
which then translates these commands into underlying calls that the database can understand. This
translation is done by the ODBC driver on the client side before the command is sent to the database
server.

Oracle ODBC Driver
The Oracle ODBC driver underperforms the Oracle provider for OLEDB. As explained earlier, the ODBC
driver has to additionally translate requests to the native query language of the database. This
translation incurs a performance overhead on all ODBC requests, leading to reduced overall
performance compared to OLEDB.

You can utilize an ODBC driver by defining it in the connection string and letting ADO do the rest.
The code in Listing 1-3 demonstrates how this can be done.

Listing 1-3. Data Retrieval Code Sample in Visual Basic Using the Oracle ODBC Driver and ADO

strConn = “Driver={Oracle in OraHome92};Dbq=TEST_TNS;Uid=edzehoo;Pwd=admin123;”
Set OraConnection = CreateObject("ADODB.Connection")
OraConnection.Open(strConn)
Set OraResultset = Server.CreateObject("ADODB.Recordset")
OraResultset.Open "SELECT Price FROM Products", OraConnection

6

 CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

Do While(OraResultset.EOF = false)
 Msgbox OraResultset.Fields("Price")
 OraResultset.MoveNext
Loop
OraResultset.Close()
OraConnection.Close()

Microsoft ODBC for Oracle
Microsoft ODBC for Oracle is an ODBC implementation for access to Oracle databases. Like the
Microsoft OLE DB provider for Oracle, it only supports Oracle database versions up to 7x, with limited
support for Oracle 8x. It uses a connection string that looks like the following sample:

Driver={Microsoft ODBC for Oracle};Server=TEST;Uid=edzehoo;Pwd=admin123;

 Note Microsoft ODBC for Oracle has also been deprecated due to its dependency on the OCI version 7.0.

Using OO4O in Unmanaged Code
OO4O is a library of COM components that provide data access to Oracle databases. It is a native driver
that entirely bypasses the ADO, OLEDB, and ODBC stack. Because of this, OO4O has its own set of
proprietary methods to access the database. Consider the sample code in Listing 1-4 that connects to an
Oracle database using OO4O.

Listing 1-4. Data Retrieval Code Sample in Visual Basic Using OO4O

Set OraSession = CreateObject("OracleInProcServer.XOraSession")
Set OraDatabase = OraSession.DbOpenDatabase("TEST", "edzehoo/admin123", 0&)
Set OraDynaset = OraDatabase.DbCreateDynaset("SELECT Price FROM Products", 0&)

Do While(OraDynaset.EOF = false)
 Msgbox OraDynaset.Fields("Price")
 OraDynaset.MoveNext
Loop
OraDynaset.Close()
OraSession.Close()

OO4O also provides the fastest performance of all the methods used to access the database from
unmanaged code. This is due to OO4O being a purely native driver. OO4O also supports a large range of
Oracle-specific functionality, of which the major ones follow:

• Transparent Oracle grid support

• Support for advanced Oracle data types such as REF cursors, LOBs, and nested tables

• Support for Advanced Queuing (AQ) feature (Oracle’s message queuing facility)

7

CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

• Support for database events (for example, receiving notifications when someone inserts a record

in a table)

• XML support

OO4O has also seen new releases for each major Oracle database version and continues to be a part
of the Oracle Data Access Components (ODAC) product family. It currently stands at version 11.1.0.6.20
as of the time of writing.

Accessing Oracle from Managed Code
There are a number of ways for managed .NET code to connect to Oracle. In managed code, users can
still connect to the database using the unmanaged OLEDB or ODBC providers. This interoperability is
achieved through the OLEDB.NET and ODBC.NET data access bridges provided by Microsoft. Microsoft
provides the ADO.NET libraries, which provide a programming interface for developers to access
OLEDB.NET and ODBC.NET data sources.

The ODP.NET provider from Oracle, which is the focus of this book, offers yet another way for
managed code to connect to Oracle. In the following sections, we take a look at how these various
providers work.

Using OLEDB.NET in Managed Code
OLEDB.NET is simply a data access bridge to OLEDB. It provides interoperability between the managed
.NET layer and the unmanaged COM OLEDB providers. The underlying providers used are same as the
ones used by unmanaged code (OraOLEDB.Oracle and MSDAORA). Figure 1-2 illustrates the
architecture.

8

www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

Figure 1-2. Architectural overview of the OLEDB.NET provider

The snippet of code in Listing 1-5 connects to an Oracle database via OLEDB.NET and retrieves some
data. It gives a good example of how to use OLEDB.NET.

Listing 1-5. Data Retrieval Code Sample in VB.NET Using OLEDB.NET

strConn = “Provider=OraOLEDB.Oracle;Data Source=TEST;User Id=edzehoo;Password=admin123;”
OraConnection = New OleDb.OleDbConnection(strConn)
OraConnection.Open()
OraCommand = New OleDb.OleDbCommand("SELECT Price FROM Products", OraConnection)
OraReader = OraCommand.ExecuteReader()
Do While OraReader.Read

MsgBox(OraReader.GetInt32(OraReader.GetOrdinal("Price")))
Loop
OraReader.Close()
OraConnection.Close()

Using ODBC.NET in Managed Code
Like OLEDB.NET, ODBC.NET is also a data access bridge to its unmanaged COM equivalent (that is,
ODBC). Figure 1-3 shows the architecture.

9

CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

In managed code, .NET provides the System.Data.Odbc namespace that allows you to connect to an
ODBC driver directly without going through OLEDB. However, ODBC.NET still runs slower compared to
OLEDB.NET for the same reason; it needs to translate requests to the underlying native database query
language.

Figure 1-3. Architectural overview of the ODBC.NET provider

The snippet of code in Listing 1-6 gives an example of using ODBC.NET. The code connects to an ODBC
data source and retrieves some data from the Oracle database.

Listing 1-6. Data Retrieval Code Sample in VB.NET Using ODBC.NET

strConn = "Driver={Oracle in OraHome92};Dbq=TEST_TNS;Uid=edzehoo;Pwd=admin123;"
OraConnection = New Odbc.OdbcConnection(strConn)
OraConnection.Open()
OraCommand = New Odbc.OdbcCommand("SELECT Price FROM Products", OraConnection)
OraReader = OraCommand.ExecuteReader()
Do While OraReader.Read

MsgBox(OraReader.GetInt32(OraReader.GetOrdinal("Price")))
Loop
OraReader.Close()
OraConnection.Close()

10

 CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

Using the Microsoft .NET Managed Provider for Oracle
The Microsoft.NET Managed Provider for Oracle is a provider built by Microsoft on top of the OCI API. It
sits in the call stack as shown in Figure 1-4. It is the closest equivalent to Oracle’s ODP.NET provider.

Figure 1-4. Architectural overview of the Microsoft .NET Managed Provider for Oracle

 Note The Microsoft ADO.NET team has deprecated the Microsoft .NET Managed Provider for Oracle as of June
2009. The provider will still be available in .NET Framework 4 to support backward compatibility but will be labeled
as deprecated.

Introducing ODP.NET
The Oracle Data Provider for .NET (ODP.NET) developed by Oracle is the preferred way to connect to an
Oracle database from managed code. It works with ADO.NET to provide fast and efficient access to the
database. Among all the other managed providers, it is also one of the most powerful in terms of
performance and Oracle feature set accessibility.

Unlike ODBC.NET and OLEDB.NET, ODP.NET does not depend on any data access bridge. It
bypasses the OLEDB and ODBC layers entirely and, in doing so, is not limited by the generic interfaces
required of ODBC or OLEDB-compliant providers. ODP.NET therefore has the advantage (over the other
providers) of being able to natively access advanced Oracle database functionality such as XML
databases, REF cursors and Real Application Clusters (running a single database across a cluster of
servers).

11

CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

Understanding the ODP.NET Architecture
ODP.NET calls the OCI directly. As mentioned earlier, the OCI is a low-level API that allows the provider
to access native Oracle functionality. It also provides a set of methods to control the execution of SQL
statements in the Oracle database engine.

The fact that ODP.NET accesses the OCI layer directly without going through OLEDB or ODBC gives
it a performance edge over the other providers. Figure 1-5 shows how ODP.NET is laid out in the data
access stack.

Figure 1-5. Architectural overview of the ODP.NET provider

Understanding the ODP.NET Classes
ODP.NET uses the namespace Oracle.Data.Client. It inherits from the ADO.NET base classes and
therefore provides a set of data access classes, methods, and properties familiar to the .NET/SQL Server
developer. There is very little difference between code used to access Oracle via ODP.NET and code used
to access Microsoft SQL Server via the .NET Framework Data Provider for SQL Server. For instance,
consider the comparison of classes between these two providers as shown in Table 1-2.

Table 1-2. A Comparison of Classes in Oracle.DataAccess.Client and System.Data.SqlClient

Oracle.DataAccess.Client System.Data.SqlClient

OracleConnection SqlConnection

OracleCommand SqlCommand

OracleCommandBuilder SqlCommandBuilder

OracleParameter SqlParameter

12

 CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

OracleDataAdapter SqlDataAdapter

OracleDataReader SqlDataReader

OracleDependency SqlDependency

OracleError SqlError

OracleException SqlException

OracleTransaction SqlTransaction

The OracleConnection class, for example, provides the developer a set of methods to connect to the

Oracle database. The OracleCommand class allows the developer to set up an SQL statement or stored
procedure to execute. Finally, the OracleDataAdapter class allows ODP.NET to fill an ADO.NET dataset
object with data.

Accessing Data using ODP.NET
Accessing data in ODP.NET is straightforward process. The code snippet in Listing 1-7 shows how this
can be done.

Listing 1-7. Data Retrieval Code Sample in VB.NET Using ODP.NET

strConn = “Data Source=TEST;User Id=edzehoo;Password=admin123;”
OraConnection = New OracleConnection(strConn)
OraConnection.Open()
OraCommand = New OracleCommand("SELECT Price FROM Products", OraConnection)
OraReader = OraCommand.ExecuteReader()
Do While OraReader.Read

MsgBox(OraReader.GetInt32(OraReader.GetOrdinal("Price")))
Loop
OraReader.Close()
OraConnection.Close()

Using ODP.NET in ASP.NET Projects
The ASP.NET language supports the use of various providers (not to be confused with database
providers) to supply common web application functionality. For example, ASP.NET ships with a default
membership provider, which uses an SQL Server-based database to globally store and register web
application users. Another example is the default session state provider, which uses a SQL Server–based
database to store session state data.

Fortunately for us, the ASP.NET language also supports the use of custom providers, which allow
developers to create their own custom ASP.NET providers to store and handle web data. Through
custom providers, developers can, for instance, create a custom session state provider that stores and

13

CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

retrieves session state data to and from an entirely different data source such as MySQL or even a flat
file.

The latest release of ODP.NET features a suite of ASP.NET providers specifically created for the
Oracle database, collectively referred to as the Oracle Providers for ASP.NET. Table 1-3 lists the various
ASP.NET providers and describes what they do.

Table 1-3. The Oracle Providers for ASP.NET

Provider Name Description

Oracle Membership This membership provider provides
functionality to manage (create, edit, and
delete) users, retrieve users, verify login
credentials, reset passwords, and handle
other user-management–related tasks.

Oracle Role This role provider implements the
functionality of managing (creating,
editing, and deleting) roles, retrieving
roles, checking the list of users in a role,
and handling other role-management–
related tasks.

Oracle Profile This provider enables the ASP.NET
application to store and retrieve individual
user profile information to and from an
Oracle database.

Oracle Site Map This provider retrieves site map
information from an Oracle database and
builds a tree of SiteMapNode objects. It
also implements the functions that allow
the ASP.NET application to find and
retrieve nodes from this tree.

Oracle Session State This provider allows the ASP.NET
application to store and retrieve session
state to and from an Oracle database.

Oracle Web Event This provider processes ASP.NET health
events and stores them in the Oracle
database.

Oracle Web Parts Personalization Web Parts is a Microsoft technology that
enables the end user to modify the content
and layout of web pages directly in the
browser. This sort of personalization data
is usually stored in a database. The Oracle
Web Parts Personalization provider allows

14

 CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

the ASP.NET application to store and
retrieve personalization data to and from
the Oracle database.

Oracle Cache Dependency This provider automatically invalidates
cache data created by the ASP.NET
application when there are changes in the
underlying Oracle database. This provider
helps improve ASP.NET application
performance by keeping database data in
the cache as long as possible and
performing a fetch only when the data has
been invalidated.

Considering ODP.NET Performance
ODP.NET provides superior performance over the other providers, because it is native to the .NET
Framework and data does not have to travel through additional layers between the application and the
Oracle database. In ODBC.NET, for example, performance costs are incurred when ODBC data types
have to be mapped to Oracle data types and vice versa. We talked about this performance advantage
earlier.

ODP.NET also supports a myriad of features that can be used to tune performance, such as
connection pooling, the ability to control the fetch size, statement caching (with bind variables),
associative arrays, parameter array binding, and so on, most of which are not accessible through
OLEDB.NET and ODBC.NET.

ODP.NET also supports manipulation of native Oracle data types such as LOBs and REF cursors, both
of which can lead to better performance.

You will explore all of these performance optimization techniques in detail in Chapter 12.

 Note Beginning version 10.2.0.3, ODP.NET provides support for 64-bit .NET applications on both the Windows
x64 and Windows Itanium operating systems. ODP.NET also provides native 64-bit versions of the data access
drivers on both platforms.

Introducing the Oracle Suite of Products
Throughout this book, you will be using these three product suites from Oracle:

• Oracle Database 11g Release 2 (R2)

• Oracle Data Access Components (ODAC) 11g

• Oracle Developer Tools (ODT.NET) for Visual Studio

It’s a good idea to know what you’re installing in your machine, so let’s take a brief look, in Table 1-4, at
the various components in Oracle’s product portfolio that are relevant to this book.

15

CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

Table 1-4. A Breakdown of the Oracle Suite of Products

Product Name Description

Oracle Database 11g R2 This is the main Oracle 11g Database
Management System (DBMS). It
contains the Oracle database engine and
a set of administrative tools.

Oracle Data Access Components (ODAC) 11g The ODAC suite contains all the Oracle
data access providers, including
ODP.NET.

Oracle Providers for ASP.NET The Oracle providers for ASP.NET
include the eight ASP.NET providers in
Listing 1-2.

Oracle Data Provider for .NET 2.0 This is the ODP.NET provider for the
.NET 2.0 framework.

Oracle Data Provider for .NET 1.x This is the ODP.NET provider for the
.NET 1.x framework.

Oracle Database Extensions for .NET 2.0 Oracle Database Extensions allow
developers to create, run, and deploy
stored procedures written in the .NET 2.x
framework.

Oracle Database Extensions for .NET 1.x This performs the same functionality as
the preceding product, but for the .NET
1.x framework.

Oracle Provider for OLEDB This is the OraOLEDB.Oracle provider
for Oracle 11g.

Oracle Objects for OLE This is the OO4O provider for Oracle 11g.

Oracle ODBC Driver This is the OraHome 92 driver for Oracle
11g.

Oracle Services for Microsoft Transaction
Server

This component provides strong
integration between the Oracle database
and Microsoft Transaction Server to
provide distributed transaction support

Oracle SQL*Plus Oracle SQL*Plus is a command-line
PL/SQL tool that allows you to run SQL
queries against the Oracle database.

16

 CHAPTER 1 INTRODUCTION TO ORACLE .NET CONNECTIVITY

17

Oracle Instant Client The Oracle Instant Client is a
redistributable package that contains the
minimal set of files required to run your
applications without having to install the
full Oracle client.

Oracle Developer Tools (ODT.NET) for Visual
Studio

The ODT.NET for Visual Studio is a
Microsoft Visual Studio 2003/2005/2008
add-in that provides a set of powerful
tools to the .NET developer, such as an
integrated PL/SQL debugger and an AQ
designer. ODT.NET will be covered in
further detail in Chapters 14 and 15 of
this book.

Summary
In this chapter, we’ve taken a look at the various technologies available that allow you to access data in
Oracle 11g. The following are the Object Linking and Embedding, Database (OLEDB) and Open
Database Connectivity (ODBC) providers accessible to both managed and unmanaged applications:

• Oracle Provider for OLEDB (OraOLEDB.Oracle)

• MS OLEDB Provider for Oracle (MSDAORA)

• MS ODBC For Oracle

• Oracle ODBC Driver

Unmanaged applications can utilize ADO to access these providers, while managed applications
can utilize ADO.NET.

Unmanaged applications can optionally use Oracle Objects for OLE (OO4O), the best-performing
unmanaged provider for data access. The equivalent for managed applications is the Oracle Data
Provider (ODP.NET).

In the next chapter, we will take an in-depth look at the features provided in each major release of
ODP.NET. I will also walk you through the installation of the core Oracle components necessary for you
to get started on writing your first ODP.NET application!

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 2

ODP.NET: A Functional Overview

You can almost always tell the maturity of a product by looking at the number of iterations it has
undergone. A serious product offering usually receives consistent product updates and enhancements
throughout its lifespan. ODP.NET is one such product, having had a steady number of releases (roughly
ten iterations) since its inception. This chapter aims to provide you an overview of the new features in
each of the three major versions of ODP.NET (versions 9, 10, and 11) and how they can help you write
.NET applications that work better with the Oracle database. At the end of this chapter, I will also walk
you through the process of installing the Oracle database server as well as the other components
required for you to start writing ODP.NET applications.

If you’re reading this book, chances are you’re either a seasoned Oracle developer moving to the
.NET platform or a .NET programmer phasing from Microsoft SQL Server to the Oracle world. Regardless
of which camp you fall into, this chapter will give you an in-depth view of some of the underlying
concepts in the Oracle database. In this chapter, you will learn about the following:

• The new features and enhancements in each major release of ODP.NET

• How these features and enhancements can be applied to real world scenarios

• How to install Oracle Database 11g, ODAC.NET, ODT.NET, and Oracle providers for ASP.NET

Exploring Oracle Features Accessible in ODP.NET Version 9
The first major release for ODP.NET was version 9. It was developed to work specifically with the Oracle
9i client.

 Note The ODP.NET version you should use depends on the version of the Oracle client, not the version of the
Oracle database server. For example, you should use ODP.NET version 10 with the Oracle 10i Client and ODP.NET
version 11 with the Oracle 11g client. Additionally, since you can connect the Oracle 9i Client to an 8i database
server, you can also technically use ODP.NET version 9 on an 8i database server.

The introduction of ODP.NET gave .NET developers the ability to communicate with Oracle directly
through the OCI, a native C API for the Oracle database. The following sections describe key features
supported by this version of ODP.NET.

19

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Manipulating XML
As data become increasingly complex and semistructured, there is a growing requirement among a wide
range of industries to store and access it natively in a semistructured format.

 Note Semistructured data is a type of structured data that does not conform to the relational (tuple and column)
structure of a database but uses tags or markers to semantically organize information. HTML is an example of
semistructured data. HTML tags impart organization to the data; they describe links, images, tables, subtables,
and so on.

Developers have always tried to represent hierarchically structured data in relational databases by
defining relationships among master and child tables, but such relationships become impractical when
data relationships reach a certain complexity.

Take a car manufacturer for example. Any particular unit of car manufactured will consist of an
engine, which may be composed of multiple engine cylinders, and each cylinder, in turn, may be
composed of pistons, spark plugs, valves, crankshafts, and so on. Trying to represent these relationships
in a relational database can be messy and imposes on the developer extra effort to maintain these
relationships in the database and its code. There is thus a need to represent this data in a better way.

XML fits this requirement perfectly—it is able to provide a model to define content and metadata of
any complexity. Under the stewardship of the W3C, XML, a vendor-neutral format has also since
become the de facto standard for information interchange among businesses. As a result, developers are
always on the lookout for ways to reduce their development cycles by manipulating and storing XML
data directly in the database.

Oracle has provided XML support for years, since the release of Oracle 9i. It provides high-
performance native XML storage and retrieval capability in the database and supports XML standards
like XQuery, XSLT, and so on. ODP.NET exposes all this functionality to the .NET developer through a set
of XML-specific classes.

Manipulating LOBs
As you probably know, the Oracle database supports structured data (relational data that can be
structurally stored in rows in a table). You’ve then read that Oracle can also provide support for
semistructured data through Oracle’s native XML data types. We now come to the last type of data that
can be stored in the Oracle database—unstructured data.

Unstructured data is simply data with no specific structure. Binary files, images, and so on are good
examples of unstructured data, or flat binary data.

The Large Object (LOB) data type in Oracle allows you to store unstructured data up to 4GB in size in
each LOB field. The LOB data types in Oracle are analogous to the BINARY and TEXT data types in Microsoft
SQL Server. There are a few different types of LOBs to handle the different types of unstructured data:

• BLOB: Stores binary data

• CLOB: Stores character data

• NCLOB: Stores multibyte character data

• BFILE: Stores binary data in an external file

20

 CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

ODP.NET provides a special set of classes for you to manipulate LOB objects in the Oracle database.
The OracleBLOB class, for example, contains methods that allow you to read, write, and erase data from a
BLOB object. Through this same class, you can also fine-tune the performance of read and write
operations by manipulating the size of the internal data buffer used.

 Note The LONG data type has traditionally been used to store large objects but has been deprecated since
release 10g. Its replacement is the LOB data types listed previously.

LOBs are commonly used in applications to store file attachments. For example, the oncology
department in a hospital might store large resolution x-ray image scans of their patients using BLOB fields
in the database.

Using PL/SQL Associative Array Binding
A PL/SQL associative array, known as index-by tables in earlier Oracle releases, allows you to define an
array object in PL/SQL (the dialect of SQL used in Oracle) that is indexable using string values. It can be
roughly thought of as similar to a VB.NET collection object or a hash table object. Consider the
associative array sample (written in PL/SQL) in Listing 2-1.

Listing 2-1. Associative Array Example in PL/SQL

DECLARE
 TYPE state_type IS TABLE OF VARCHAR2(50)
 INDEX BY VARCHAR2(5);
 state_type state;
BEGIN
 state('NY') := 'New York';
 state('PA') := 'Pennsylvania';
 state('FL') := 'Florida';
 state('AK') := 'Alaska';

 --Here we can reference an associative array item via its index string
 DBMS_OUTPUT.PUT_LINE('The full name of the state of NY is:' || state('NY'));
END;

ODP.NET allows you to bind an associative array to the OracleParameter class. This lets you create
an array of integers in your .NET code, for example, and pass it to a PL/SQL stored procedure as an
associative array input parameter (via the OracleParameter class). You can also do the same thing with
an array of dates, characters, or other data types.

PL/SQL associative array binding can be particularly useful: you can pass large arrays of indexable
objects directly into a PL/SQL function without the need to marshal or serialize the data! For instance,
an organization might have a PL/SQL function that needs to look up currency conversion rates by
country codes. You could easily write a routine to retrieve the latest exchange rates from the Internet,
save them into an array, and pass this entire array into the PL/SQL function as an associative array. The

21

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

PL/SQL function will then be able to directly reference the currency conversion rate using the
associative array as a lookup list.

Supporting Active Data Objects (ADO.NET) 2.0
ODP.NET has embraced the ADO.NET specification from Microsoft, providing an extensive set of classes
that are familiar to the .NET developer. Let’s take a look at some of the basic ADO.NET features
supported by ODP.NET in the table in Table 2-1.

Table 2-1. ADO.NET Features Supported by ODP.NET

ADO.NET Feature Description

Base classes ODP.NET supports all the basic ADO.NET
classes such as the DataAdapter,
DataReader, Connection, Command, and
Parameter classes. The ODP.NET classes
are correspondingly named
OracleDataAdapter, OracleDataReader,
OracleConnection, OracleCommand, and
OracleParameter.

Transactions ODP.NET supports both local and
distributed transactions. It can also
additionally support promotable
transactions (covered in the later parts of
this chapter).

Schema discovery ODP.NET supports the GetSchema method
and is able to retrieve an extensive set of
database metadata.

Connection string building ODP.NET provides the
OracleConnectionStringBuilder class to
assist you in constructing connection
strings.

Accessing Oracle Features from ODP.NET Version 10
The next few releases of ODP.NET under version 10 provided support for important technologies such as
Oracle’s Real Application Clusters (RAC) framework. The version 10 releases also provided numerous
performance improvements such as statement caching and connection pooling optimizations for RAC.
The following sections highlight some of these improvements.

22

 CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Supporting Oracle Grids
What is grid computing? Simply put, grid computing uses the combined processing power of multiple
computer resources to process a particular task. In similar vein, an Oracle grid is simply a database that
runs on top of two or more servers. Grid functionality is implemented in Oracle via RAC. Figure 2-1
shows how RAC looks architecturally.

Figure 2-1. Architecture of an Oracle grid

In RAC, the Oracle instance (the memory structures and services that allow access to the data) is
decoupled from the physical database itself. Each instance runs in a separate server, and data access
load is balanced across the servers in a cluster.

Grid computing can benefit you in a few ways. First, it can provide high availability (HA)
capabilities; if one server in the grid fails, another takes over instantly. A second advantage is increased
overall performance. The Oracle grid is also easily scalable. Increasing processing power and database
performance is a matter of adding more machines to the grid.

ODP.NET takes advantage of grid support transparently; it does not require you to write any special
code in your application to take advantage of its benefits.

Supporting Multiple Oracle Homes
“Oracle home” refers to the environment that hosts the Oracle software. The term may be used to refer
to the path where the Oracle database is installed, registry entries, program groups associated with the
path, and other services that might be running from this home.

Oracle supports multiple Oracle homes, which means that you can run different versions of the
same product concurrently. For example, you can install Oracle Database 9i and Oracle Database 10g in
different homes on the same computer. The benefit of being able to do this is that you could test your
applications for compatibility against new releases of Oracle products on the same machine.

Through the Home Selector installed together with the database, you can also change the primary
Oracle home, and correspondingly, the Oracle client version that your applications use.

ODP.NET supports the use of multiple product homes; it can be installed in multiple Oracle homes.
The only requirement is that the ODP.NET version must match the Oracle database version it is
intended for.

23

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Using Floating Point Data Types
Developers traditionally used the NUMBER (or DECIMAL) data types to store floating point numbers. The
release of Oracle Database 10g introduced two new floating point data types:

• BINARY_FLOAT

• BINARY_DOUBLE

The BINARY_FLOAT and BINARY_DOUBLE data types are different in that they use machine arithmetic;
the computation work is passed directly to the operating system. These two data types are thus
extremely efficient for heavy computation involving floating point numbers and use less storage space
compared to the conventional NUMBER data type.

 Tip The performance for BINARY_FLOAT and BINARY_DOUBLE is higher than that of the conventional NUMBER
data type. In a test script running one million iterations of an add operation between two BINARY_FLOAT values
against the same operation for NUMBER values, I found that addition between BINARY_FLOAT variables was twice as
fast as the ones between NUMBER variables.

Using Statement Caching
Statement caching is another Oracle Database 10g feature; with it, you can cache repeatedly used SQL
statements. When you use statement caching, Oracle does not have to reparse your SQL statements,
which means it can save time by not having to re-create the server objects every time it runs the same
SQL.

You can control statement caching behavior by changing the statement cache size via ODP.NET. For
instance, specifying a statement cache size of 10 means that Oracle will attempt to cache ten SQL
statements.

How statement caching works under the hood

Before you try to understand how statement caching works, it might be a good idea to first understand the
memory structures used by Oracle. Oracle uses a memory structure called the System Global Area (SGA),
sometimes alternatively referred to as the Shared Global Area. The SGA is a shared memory area that
holds data and control information used by a single database instance. All users connected to the same
database instance share the same data held in the SGA.

The most important structure in the SGA is the shared pool, a memory area composed mostly of caches.
One such type of cache is the shared SQL area (which holds the reusable execution plans for each SQL
statement). Each time the Oracle server encounters a new SQL statement, it sets up a new shared SQL
area (allocated from the shared pool). When you pass the same SQL statement to the server a second time,
the server parses it, and then checks if the execution plan already existed in the cache. If it does, the plan
is reused, thus reducing the overhead of having to recreate the execution plan.

24

 CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Keep in mind that the server still needs to parse every SQL statement that it receives, even if two are
exactly the same. Statement caching aims to further remove this workload from the server by caching the
SQL statements at the client side. When your code passes the same SQL statement to ODP.NET a second
time, what is sent to the server is not the full SQL, but rather a hash value. This hash value represents a
direct index to the cache entry stored at the server-side shared pool.

This essentially reduces network traffic (from not having to send the same SQL statements across the
network repeatedly) and shifts the workload of SQL statement parsing from the database server to the
client.

It is, of course, not a good idea to cache every single SQL statement that you execute. The best
performance gains come from caching statements that you know are going to be executed repeatedly.
To get a feel of the performance benefits of statement caching, let’s consider the following SQL
statement:

SELECT empID FROM Employees WHERE Status=:1

If we run 1,000 iterations of the preceding SQL code with statement caching turned on and another
time with statement caching turned off, we get these performance statistics:

Without Statement Caching : 0.7314417 total seconds

With Statement Caching : 0.4133213 total seconds

As you can see, using statement caching on highly repetitive code can lead to significant
performance boosts and should be considered whenever possible.

Supporting Command Cancellation and Timeout
ODP.NET supports command cancellation and timeout features. These allow you to cancel an executing
command on a running connection and to set a timeout period for an executing command to
automatically terminate respectively.

The command automatic timeout feature could be used to limit the resource consumption of
specific SQL queries. For example, if your application allowed end users to build and run their own
queries, you could use this feature to prevent users from (accidentally or intentionally) executing long-
running queries that hog database resources in a shared environment.

The command cancellation feature could find its use in gracefully terminating running queries.
Consider, for instance, a scenario where the administrator has to shut down the database service for
maintenance. In some cases stopping the web server may not immediately stop all running queries at
the database, and stopping the database service directly would raise ugly exceptions to the end user.
Instead, the application could be made to iterate through a collection of command objects and to run
the cancel command on each object to effectively halt all running queries.

25

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Retrieving Parameters Programmatically
The DeriveParameters method in the OracleCommandBuilder class is a useful ODP.NET function that lets
you programmatically retrieve the set of parameters for a given stored procedure or function at run time.
It populates the Parameter collection of an OracleCommand object representing the stored procedure or
function.

This method can be put to good use, however, in applications where you need to dynamically call
stored procedures or functions that are not known during design time.

Supporting .NET Stored Procedures
Microsoft SQL Server’s tight integration with the .NET Common Language Runtime (CLR) allowed .NET
developers to write stored procedures in a managed language of their choice such as VB.NET or C#.
These stored procedures (called .NET stored procedures) are .NET classes that can be written in Visual
Studio, compiled into an assembly, and registered and loaded into Microsoft SQL Server. An application
could then invoke these stored procedures as if they were any other stored procedure.

Oracle Database Extensions for .NET, a new feature in Oracle Database 10g allows this same
functionality to be used with an Oracle database. In other words, you could write a .NET stored
procedure in a managed language of your choice and load it into the Oracle database for use.

This feature is especially useful for Oracle newcomers who wish to use stored procedures without
getting into the large learning curve required to learn PL/SQL. They would be able to create stored
procedures from the comfort zone of their favorite .NET language.

 Note It must be noted, however, that there are certain feature limitations in using Oracle with .NET stored
procedures. For instance, .NET stored procedures do not support the use of local nor distributed transactions. If
you need to utilize transactions in your stored procedure, you would have to create one using PL/SQL.

Using Client Identifiers
Web applications would typically use a single database account to service all the users of the application.
For instance, a web application would use the same connection string for all users:

Data Source=ORCL;User Id=webUser;Password=admin123;

In a setup like this, there is usually no way to distinguish between each user at the database level.

There is little accountability; all database actions are performed under the same user account. Any audit
trail facility would have to be implemented at the application level in your code. Furthermore, there is
little separation of data between different users at the database level.

Oracle allows you to preserve user identity in database sessions by letting you specify a client
identifier each time you open a database connection. The OracleConnection class in ODP.NET provides
a ClientID property that allows you to use any string that you wish (it can be an employee ID, Social
Security number, IP address, or username) to distinguish between different users in the same database
session. Let’s consider a scenario illustrating how this property can be used.

Edmund is a user in a web sales force application. He does not have a corresponding account in the
database however. When Edmund logs on to this sales force application, it uses a general database

26

 CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

account to transact with the Oracle database. The sales force application sets the ClientID property of all
OracleConnection objects used to 'EDMUND'. When another user, Greg logs in to the application, it does
the same thing; it sets the ClientID property of all OracleConnection objects used to 'GREG'. If we’ve
enabled auditing on the tables in this database, Oracle will automatically tag all generated audit trail
records with this ClientID value. We could then retrieve the audit trail records for EDMUND (or GREG) using
the SQL SELECT in Listing 2-2.

Listing 2-2. Retrieving Audit Trails Using the Client Identifier

SELECT * FROM dba_audit_object
WHERE username = 'webUser'
AND client_id = 'EDMUND'
AND OBJ_NAME = 'SalesData'

Using Database Change Notifications
Database change notification is an interesting feature released with Oracle Database 10g Release 2. The
basic concept is that a .NET application can keep watch over a database object (for instance, a table) and
be automatically notified whenever any change occurs on that table.

You might wonder how change notifications compare to database triggers. They are different in that
database triggers usually run within the confines of the database. Change notifications bubble events all
the way up to your .NET code, allowing you to do much more when something happens in the database.

Database change notifications can also be regarded as push (as opposed to pull) technology; your
application does not have to continually poll the database for changes. ODP.NET alerts your code
instantly the moment they occur.

There are many uses of such a feature. Think of a jobs tray in the BugBusters pest control company
for example. A call center operator receives a house call to rid an area of rats and will create a new job via
the pest control support system, which ends up creating a job record in the database. Using change
notifications, all technicians can be instantly alerted the moment a new job is created instead of having
to continually poll the database every minute for the latest list of jobs.

Another example of how database notifications could be used to refresh the display of a flight
information display terminal follows in Figure 2-2. The master flight database could be configured in
such a way that it would broadcast notifications to all flight information display terminals the moment
any database change was detected. This way, the display terminals need only refresh its display when it
receives this notification, instead of repeatedly polling the database for the latest changes. There are
tremendous performance cost savings in such deployments too—imagine 100 flight information display
terminals (a fairly reasonable number for any airport) all polling the same database for changes every 5
seconds. This would put an unnecessarily large processing load on the database. Database notifications
solve problems like these elegantly by employing a push rather than pull approach to data access.

27

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Figure 2-2. Flight Information Display Application Example

There are many other interesting ways to utilize change notifications. You could use them to create
audit logs when data is changed or to send out e-mail alerts when specific changes are detected.
ODP.NET allows you to tap on the power of this functionality from .NET code.

Managing Connection Pools
Connection pooling allows Oracle connections to be retrieved from a cached pool of connections and to
be returned to this pool after use. Connection pooling leads to a reduced overhead when opening
connections.

When your application opens a connection to Oracle for the first time, it is a relatively costly
operation in terms of performance. In web applications, for instance, where each page request opens a
new connection, this could lead to a significant impact on performance. Connection pooling addresses
this cost by keeping these connections cached in the pool and reusing them the next time your
application attempts to open a new connection with the same settings.

Connection pool behavior can be modified by specifying certain settings (such as the minimum and
maximum size of the pool or whether pooling is disabled or enabled) in the connection string used to
connect to the database. ODP.NET takes this a step further by allowing you to explicitly clear the
connection pool of connections using these two functions:

• ClearPool: Clears all connections from a connection pool

• ClearAllPools: Clears all connections from all connection pools in an application domain

There are times when a connection pool can become corrupt due to, for instance, the database
service restarting from a power outage or from other reasons. Your application would receive an
exception when it attempts to connect to the database. These two functions come in handy during such
scenarios, allowing you to clear the connection pool and reconnect again.

Optimizing Connection Pools for RAC
As mentioned earlier, Oracle RAC technology allows a single Oracle database to be distributed across a
cluster of servers. This increases the scalability and performance of the database as a whole, allowing the
administrator to simply add more servers when needed to boost the performance of the database.

28

www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

The behavior of ODP.NET’s connection pooling features is tightly coupled with RAC technology as
well. ODP.NET is able to optimize connection pooling in a RAC environment by balancing connection
requests across multiple Oracle RAC instances (that is, connection load balancing). When an RAC
instance fails, the connection objects on that RAC instance are also automatically removed from the
connection pool, freeing up resources that are no longer used. These features can be enabled or disabled
by the developer through connection string parameters.

Using a REF Cursor as an IN/OUT Parameter
A REF cursor is a type of cursor in Oracle that allows you to directly reference any result set kept in
memory. A REF cursor is extremely fast, as it is really a pointer to a direct location in random access
memory (RAM). When you retrieve data using a REF cursor, you are directly retrieving that data from
memory. Because it is a pointer, it is also efficient to pass REF cursors around. When you pass a REF
cursor between functions, you are simply passing a reference, not the entire result set.

REF cursors can be used as an input or output parameter in an Oracle stored procedure. For
instance, ODP.NET allows you to retrieve a REF cursor output from a PL/SQL stored procedure into an
OracleParameter object. You can then pass this same REF cursor as an input parameter into another
PL/SQL stored procedure.

Using 64-bit ODP.NET
With this release, a 64-bit version of ODP.NET that supports Windows x64 (AMD64/Intel EM64T) and
64-bit Windows for Intel Itanium was made available as well. It natively supports the 64-bit version of
the .NET Framework. The 64-bit version of ODP.NET naturally provides better performance and
scalability over its 32-bit counterpart.

Controlling the FetchSize Property
The OracleDataReader class in ODP.NET has a property called FetchSize, which is the amount of
memory (in bytes) that can be used by the OracleDataReader object to fetch data from the database.
Setting the FetchSize value determines the number of rows that are returned from the query with each
roundtrip to the database.

You can improve the performance of your application by increasing the FetchSize property to
ensure that more data is returned with each round-trip to the server. This is especially useful when
dealing with large amounts of data. The default FetchSize in ODP.NET is 64KB. Using another property,
the RowSize property (which holds the size of each row returned, in bytes), you can easily determine the
FetchSize value for a specific number of rows:

FetchSize = (NumberOfRows) * RowSize

A larger FetchSize value means that a larger memory buffer is used to store the retrieved data, so it
is usually advisable to find a reasonable balance between the desired number of round-trips to the
server and the size of the data retrieved in each round-trip.

29

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Configuring ODP.NET
In previous versions, ODP.NET supports the configuration of its settings via either the connection string
or through the ODP.NET classes. With version 10 of ODP.NET, developers can additionally configure
ODP.NET settings via .NET configuration files such as the web.config and machine.config files. With so
many different ways to configure ODP.NET settings, Figure 2-3 shows how this affects settings
precedence.

Figure 2-3. ODP.NET configuration settings precedence

As you can see from Figure 2-3, you can configure ODP.NET at four different levels, and the
precedence is such that settings configured at the connection level overrides settings configured at the
web.config level, and so on. Some of the settings that can be configured include the FetchSize (covered
earlier), maximum statement cache size, thread pool maximum size, and so on. The next chapter will
cover more of these settings in detail.

The ability to configure settings at many levels allows an application to fall back to a set of default
settings when none are specified. For instance, a server in an organization might need to satisfy an
organization’s internal quality of service benchmark by having its maximum statement cache size set to
a value of 100 at the machine level. If you forget to explicitly set this maximum statement cache size in
the connection string, the statement cache size used will still fall back to the machine-level setting of
100.

Accessing Oracle Features from ODP.NET Version 11
The next few releases under ODP.NET major version 11 open up a host of Oracle database 10g and 11g
functionality to the .NET developer. It provides support for features like Advanced Queuing (AQ)– a
messaging framework based on the Oracle database, high availability (HA) event notifications,

30

 CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

promotable transactions, and other enhancements. The following section describes these features in
detail.

Enhancing Performance
The release of ODP.NET version 11 provided two additional performance enhancements that were
transparent to the developer (requiring no code change):

• Improved parameter context caching

• Efficient retrieval of small-sized LOB files

Parameter context caching improved performance for applications that executed the same SQL
statement repeatedly. Retrieval of small-sized LOB files also performed better due to fewer round-trips
required to the server with this release.

Deploying ODP.NET Using xcopy
The xcopy command is a handy command line tool that ships with Microsoft Windows. It allows users to
copy entire folders and subfolders (recursively) from one location to another. ODP.NET supports using
this tool to deploy ODP.NET to a large number of computers during production.

 Note The ODP.NET package that is tailored for xcopy has a smaller footprint than the one installed through the
Oracle Universal Installer, because xcopy does not install ODP.NET documentation and code samples.

It is not difficult to see how this feature can benefit large deployments. In a deployment consisting
of 50 servers, for example, the systems administrator does not have to run the Oracle Universal Installer
(and the wizard after that) 50 times to install the ODP.NET client on each machine. The installation
could be done centrally from a single server by copying the files required directly into the target
machines over the network using xcopy.

Supporting Oracle User Defined Types (UDTs)
Oracle supports UDTs, allowing users to create their own custom data types for use in PL/SQL. Listing 2-
3 shows a sample UDT consisting of multiple columns.

Listing 2-3. A Sample UDT

CREATE OR REPLACE TYPE ADDRESSTYPE AS OBJECT (
STREET VARCHAR2 (50),
CITY VARCHAR2 (50),
STATE VARCHAR2 (2),
ZIPCODE VARCHAR2(9));

31

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Through a set of special classes, ODP.NET provides the ability to represent Oracle UDTs as custom
data types in .NET applications. There are generally two types of UDTs:

• Object types (Oracle objects)

• Collection types (VARRAYs or nested tables)

Both types are supported by ODP.NET. Oracle objects map into .NET classes and collection types
map to .NET arrays.

Performing Bulk Copy Operations
Let’s say your boss drops 2TB of raw data on your lap one morning and tells you to process and get all of
that data loaded into Oracle. What’s the fastest way to do it? Oracle provides a command line tool called
Oracle SQL*Loader that is able to load large amounts of data from a variety of formats (such as CSV,
multiple-line records, and even images) into the database in bulk. In ODP.NET, the OracleBulkCopy class
allows you to achieve something similar programmatically.

The Oracle SQL* Loader tool and ODP.NET’s OracleBulkCopy class can load data into Oracle at very
high speeds, because they are essentially direct path loaders (as opposed to conventional path loaders).
A conventional path loader loads data into the database using SQL INSERT statements, whereas a direct
path loader does not use SQL but loads data directly into the Oracle data files. A direct path loader
achieves better performance, because it bypasses the logic and processing required for SQL. A bulk copy
does not have to compete with other users and processes for database resources as well, so it can usually
load data into the database at near disk-write speeds.

There are, of course, some limitations with bulk copy that would favor the use of a conventional
path loader instead in certain cases. For instance, bulk copy does not support the use of UDT columns.
In most cases, however, bulk copy can be exceptionally useful during data migration and business
scenarios where you have a large feed of data that you need to load frequently into the database. It is not
hard to imagine a scenario that might depend heavily on this feature.

Take the telecommunications industry for example. Major telecommunication service providers
usually have large subscriber bases numbering in the millions. When a subscriber makes a phone call,
powerful telecommunication servers generate a corresponding call detail record. These records are
usually spat out in raw binary format. With millions of phone calls everyday, it is not surprising to find
100-GB files containing millions of call detail records generated on a daily basis.

These organizations use call accounting software to import the data into a database so that they can
be used to generate meaningful reports such as weekly call volume, average call duration, and so on. In
such a scenario, ODP.NET bulk copy’s exceptional performance would ensure that newly generated call
detail records are pushed into the database in the shortest time possible.

Using Windows Authenticated User Connections Pooling
The Oracle database supports using Windows login credentials for database authentication. This is a
form of integrated windows authentication that does not require your code to explicitly pass in any user
ID or password to the database. Connection pooling is also enabled for windows authenticated
connections.

32

 CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Publishing Connection Pool Performance Counters
The Oracle database can publish a set of performance counters for the connection pool to the Windows
Performance Monitoring (Perfmon) tool. ODP.NET allows you to enable or disable individual
performance counters. Table 2-2 shows some of the various performance counters available.

Table 2-2. Performance Counters in Oracle

Performance Counter Description

HardConnectsPerSecond Total number of new database sessions
established each second

HardDisconnectsPerSecond Total number of database sessions closed
each second

SoftConnectsPerSecond Total number of cached connections
retrieved from the connection pool

SoftDisconnectsPerSecond Total number of cached connections
released into the connection pool

NumberOfActiveConnectionPools Total number of active connection pools

NumberOfInactiveConnectionPools Total number of inactive connection pools

NumberOfActiveConnections Total number of connections in use

NumberOfFreeConnections Total number of connections available
across all connection pools

NumberOfPooledConnections Total number of pooled active (open)
connections

NumberOfNonPooledConnections Total number of nonpooled active (open)
connections

NumberOfReclaimedConnections Total number of connections internally
disposed of by the garbage collector

NumberOfStasisConnections Total number of connections that have
been closed by the user but are in stasis
(that is, awaiting release back into the
connection pool)

The screenshot in Figure 2-4 shows how you can add the ODP.NET performance counters for

display in Microsoft Window’s Perfmon utility.

33

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Figure 2-4. Adding ODP.NET performance counters to Perfmon

Supporting Self-Tuning for Applications
ODP.NET has the capability of dynamically adjusting the statement cache size on its own to improve
application performance. It dynamically monitors queries and collects statistics based on run time
sampling and uses this information to determine an optimal value for the statement cache size. When
self-tuning is enabled, this automatically determined statement cache size overwrites any other
statement cache size setting.

Using Oracle Streaming AQ
AQ is a powerful message queuing mechanism implemented on top of the database, as illustrated in
Figure 2-5. At the mention of message queuing, the Microsoft Messaging Queue Server (MSMQ) might
have instantly popped into your mind. MSMQ is different from AQ in that it is a separate service on its
own that stores messages as files. The AQ service on the other hand is powered on top of a database.

AQ uses the Oracle database to represent message queues. An application can place or remove a
message to and from a queue (called enqueue and dequeue respectively). Messages are stored in a
queue on the database and can be received by other applications that subscribe to the queue. Through
this method, data messages can be passed from one application to another using the database as an
intermediary form of storage.

34

 CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Figure 2-5. Communicating between two applications using AQ

Queues allow communication between applications sitting on different machines to take place.
ODP.NET allows your code to take advantage of this message queuing facility to communicate with
remote applications.

Needless to say, there are numerous ways this technology can be used. To give you an idea of the
benefits of using AQ in your applications, consider the following scenarios:

• Communication between heterogeneous applications: How does a background
service communicate with an ASP.NET application, for example? Previously, you
had to resort to pipes or Windows sockets to pass data between processes that
execute in different application pools or even different machines. AQ provides an
easy and reliable solution to bridge this gap.

• Guarantee of message receipt even if applications are offline: When an application
sends a message to a queue, and the receiving application is offline, the message
will be kept in the queue until the next time the receiving application logs on.

• Near real-time communication between different applications: You could
technically build an instant chat program that works on top of AQ. The chat client
could send a message to a queue whenever you type in a friendly message to your
friend. The receiving chat client subscribes to this queue so that when a message
arrives, the chat client code is immediately alerted via a callback function. The
friendly message can then be retrieved and displayed.

• Improving user interface responsiveness: Messaging applications are usually
asynchronous (nonblocking). For instance, an ASP.NET application can submit a
job order to a queue for processing; it does not have to wait for the order to be
processed before allowing the user to proceed.

Supporting Promotable Local Transactions
A transaction is a series of SQL statements that must be executed as a batch. If either one of these
statements fail, a rollback is usually performed. A transaction follows the all-or-nothing rule. Consider
the SQL statements in Listing 2-4 for instance. These three statements execute as a batch. If any of them
fails, none of these records are committed to the database.

35

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Listing 2-4. A Sample Local Transaction

INSERT INTO Customer(CustID,Name) VALUES('IHC01','IHEARTCLIPPIES INC');
INSERT INTO Addresses(CustID, Address) VALUES('IHC01', '3 Fifth Ave, 10020, NY');
INSERT INTO Contacts(CustID, ContactPerson) VALUES ('IHC01','Stephanie L. HS');
COMMIT;

There are two types of transactions—local and distributed. Local transactions, like the example in
Listing 2-4, all run within the same database. Distributed transactions, however, can run across multiple
databases distributed across multiple machines. Consider the distributed transaction shown in Listing
2-5.

Listing 2-5. A Sample Distributed Transaction

INSERT INTO Jobs@hq.com(JobID,JobName) VALUES('J01','New Hair clips series');
INSERT INTO Announcements@abc.com(Description) VALUES('New hair clips arriving Dec 09');
INSERT INTO Products@acme.com(ProdID,Price) VALUES ('HClips01', '3.40');
COMMIT;

The three tables exist in three different databases set up in the configuration shown in Figure 2-6.

Figure 2-6. Example of a distributed transaction

During development, it is sometimes difficult to know whether a transaction will be local or
distributed as this depends on the way the databases are deployed in production. Developers would try

36

mailto:Jobs@hq.com
mailto:Announcements@abc.com
mailto:Products@acme.com

 CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

to remain prudent by assuming that all the transactions are distributed and then design their
applications with this in mind. As a result, the application uses more resources than necessary.

Promotable local transactions help avert this problem by assuming all transactions are local. It
automatically promotes a local transaction to a distributed one only when more than one database
participates in a transaction.

Using ODP.NET Security Enhancements
The .NET CLR provides its own layer of security called Code Access Security (CAS). It serves as a sort of
gatekeeper to control which resources a particular piece of executing code can have access to. This
process is depicted in the diagram in Figure 2-7.

Figure 2-7. The Code Access Security framework and OraclePermission

Through the .NET configuration tool, an administrator can define a set of resource permissions for
any managed assembly. This set of permissions defines whether an assembly is allowed to access system
resources such as the filesystem (FileIOPermission), Windows registry (RegistryPermission), directory
services (DirectoryServicesPermission), and so on. ODP.NET provides the OraclePermission class that
lets your code request for permissions from CAS in the same manner when attempting to access an
Oracle database.

Organizations use CAS as an added layer of security on top of the security model provided by
standard database authentication. For instance, an organization might have just deployed a payroll
application that uses a single database account to connect to the database:

Data Source=ORCL;User Id=payrollUser;Password=admin123;

 This use of a single login can be potentially dangerous; anyone who is aware of the username and

password used by this payroll application could create an application in Visual Studio and connect to

37

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

the database over the network using the same particulars. That user would then gain access to all the
underlying tables in the database. CAS can help prevent this because it only allows access to the Oracle
database if the exact executing assembly was already granted permission to do so by the .NET
administrator.

Running Callbacks for HA Event Notifications
Most organizations need to run their databases 24 hours a day and 7 days a week with as much
resistance to failure as possible. Database downtime of even a few minutes can be disastrous to
organizations like banks or stock exchanges. The database and the application must therefore work in
tandem to

• Ensure maximum availability of service

• Reduce the impact of data loss in the event of failure

• Immediately and automatically invoke organization-defined protocols in the
event of failure or recovery from failure

One of the key strengths of the Oracle database has always been in the area of HA. To ensure
maximum availability of service, Oracle grid support (implemented via RAC) allowed a single database
to be distributed across multiple servers. This means that if one machine goes down, the load can then
be shared with the remaining servers; data availability as a whole is not impacted.

In the case of data loss due to server failure, for example, you could rewind your database back to a
certain point in time to recover your data (using Oracle Flashback technology).

Finally, Oracle provides a feature called HA event notifications. This feature allows Oracle to notify
your code (through ODP.NET) when a database service, host or instance has gone down or when it is
available again. You can achieve this by registering a callback function with ODP.NET.

You can use HA event notifications to automatically run organization-defined protocols whenever a
service failure occurs. For example, an organization may design the series of steps shown in Listing 2-6
that must be executed once a database service failure occurs.

Listing 2-6. A Sample Protocol in an Organization When the Database Service Fails

1.Alert the system administrator by e-mail
2.Automatically shut down all webservers in North American offices
3.Send an SMS (Short Messaging Service) message to the database administrator
4.Automatically log the event with the organization’s internal IT Audit software
5.Attempt an automatic restart of the database service for a maximum of three tries.

Through ODP.NET’s HA event notifications, you can write code to make your applications more
responsive to database-related disasters.

Starting Up and Shutting Down Databases
In ODP.NET 11g, you can start up or shut down a database instance using the OracleDatabase class
(assuming you have database administrator privileges). For instance, an organization with highly
sensitive information might, for security reasons, write an application to automatically shut down a
database instance entirely upon detecting suspicious user activity or intrusion attempts.

38

www.allitebooks.com

http://www.allitebooks.org

 CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Getting Started
Now that you have a feel of the sort of functionality you have access to using ODP.NET, let’s take a look
at the Oracle software that you need installed on your development machine before you can write an
ODP.NET application. I assume, in the following subsections, that you have already installed Microsoft
Visual Studio 2005/2008 and .NET Framework (Version 2.0.50727 or higher).

Installing Oracle Database 11g
The Oracle Universal Installer provides a step-by-step wizard to make installation of the Oracle database
a breeze. You can download the latest Oracle Database 11g installer from the Oracle website at this
location:
http://www.oracle.com/technology/software/products/database/index.html

After downloading the package, run the Universal installer by running the Setup application. You
can choose between two different installation methods: basic and advanced.

The basic installation allows you to select the base and home location of the Oracle database as well
as the database version (standard or enterprise) to install. It also allows you to automatically create a
starter database; you can specify a database name of your own and the password you wish to use for the
system master accounts. The advanced installation allows you to set different passwords for the system
accounts as well as other globalization settings.

Let’s select Basic Installation, as illustrated in Figure 2-8. You can change the global database name
if you wish, but the rest of the samples in this book will use the NEWDB name. Choose a database password
that you can remember.

Figure 2-8. Selecting Oracle Database 11g installation type

39

http://www.oracle.com/technology/software/products/database/index.html

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

After Oracle gathers the necessary information it needs from your PC, it will provide a brief
summary of the installation. You can begin the installation by clicking the Install button in the summary
screen shown in Figure 2-9.

Figure 2-9. Installation progress screen

After the installation is complete, Oracle will run the configuration assistants automatically
(depending on your installation options). One of these configuration assistants, the Oracle Database
Configuration Assistant (see Figure 2-10) is responsible for creating the NEWDB starter database you
specified earlier.

40

 CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Figure 2-10. The Database Configuration Assistant

After the automated installation has completed, you will see the End of Installation screen shown in
Figure 2-11.

Figure 2-11. End of Oracle Database 11g installation

41

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Do take note that this installation comes with a web-based Enterprise Manager tool, located at
http://localhost:1158/em. You can launch this tool by navigating to this URL directly in your browser or
by going to Start → All Programs → Oracle – OraDb11g_home1 → Database Control – NEWDB. When
you launch the Enterprise Manager, you will see the login screen shown in Figure 2-12.

You can try logging in with your newly created system account and password. Type SYSTEM as the
username, and type the password that you specified earlier during the installation. For the Connect As
field, you probably want to connect as the database administrator, so choose SYSDBA from the drop-
down list.

Figure 2-12. Oracle Enterprise Manager login screen

Once you have successfully logged in, you will be able to see a dashboard similar to the screenshot
in Figure 2-13 with general statistics about the database usage. There are many things you can do with
the Enterprise Manager, but covering this tool in detail is outside the scope of this book. All you need to
know at this point is that your database service is up and running and that the system account and the
password you’ve created works.

42

http://localhost:1158/em

 CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Figure 2-13. Oracle Enterprise Manager home page

Installing ODAC.NET
You are now ready to install the suite that contains the ODP.NET provider —the Oracle Data Access
Components for .NET (ODAC.NET) package. You can download the installation files from the following
URL:

http://www.oracle.com/technology/software/tech/windows/odpnet/index.html

 Note This installation package includes the ODAC.NET components as well as ODT.NET, covered in Chapters
14 and 15 of this book.

The first screen in the universal installer (shown in Figure 2-14) allows you to install ODAC.NET for
the Oracle client or server. The first option is meant to be installed on client machines accessing the
Oracle database, while the second option is meant to be installed on the server hosting the Oracle
database.

In a .NET Winforms application scenario for instance, you might have installed the Oracle database
on a server. For each client machine that needs to access the database over the network, you would need
to install ODAC for Oracle Client. ODAC for Oracle Client not only installs the ODP.NET libraries
necessary but also the Oracle client software necessary for access to the Oracle database. It can therefore
be used for installation on a clean machine.

43

http://www.oracle.com/technology/software/tech/windows/odpnet/index.html

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Figure 2-14. Selecting the ODAC.NET product to install

In the next screen (shown in Figure 2-15), you can select the install location for the ODAC.NET
software. You can use the default settings provided.

Figure 2-15. Specifying installation folders

44

 CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

The next screen (shown in Figure 2-16) allows you to select or deselect the list of ODAC.NET
components to install. Ensure that all the components are selected before proceeding.

Figure 2-16. Selecting the list of products to install

Follow through the remaining screens by clicking the Next button. You may also be requested to
specify a port number to use for the Oracle Microsoft Transaction Server (MTS) Recovery service (as
shown in Figure 2-17). You can use the default port number specified.

Figure 2-17. Configuring Oracle Services for Microsoft Transaction Server

45

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

At the end of the installation you will see a screen similar to the screenshot shown in Figure 2-18.
The ODAC setup wizard will remind you to manually run the Oracle providers for ASP.NET SQL scripts.

Figure 2-18. End of ODAC.NET installation

You’re almost there! The Oracle providers for ASP.NET, as you learned in the previous chapter,
provides a bunch of ASP.NET providers to support common web application functionality. The scripts
for these ASP.NET providers are placed in the folder shown at the End of Installation screen. To run
these scripts, you need to use the SQL*Plus tool bundled with the Oracle installation. You can launch the
SQL*Plus tool from the Windows start menu: Start → All Programs → Oracle – OraDb11g_home1 →
Application Development → SQLPlus.

You will immediately be prompted for a username and password. You can use the same SYSTEM
username and password you created earlier during the Oracle database installation to log in. After you
have successfully logged in, you will be presented with the SQL> prompt. The command to run a .sql file
is an alias character (@) followed by the full path of the SQL file.

You can install each ASP.NET provider individually by executing the individual .sql script files in
the same folder, or all in one go using the InstallAllOracleASPNetProviders.sql file. The screenshot in
Figure 2-19 shows how you can execute this .sql file in SQL*Plus.

46

 CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

Figure 2-19. Running the InstallAllOracleASPNetProviders.sql script using SQL*Plus

After executing this command a stream of text output will be displayed. A message showing
“PL/SQL procedure successfully completed” will be displayed at the end of this output if the scripts
executed successfully (as shown in Figure 2-20).

Figure 2-20. Script executed successfully screen

47

CHAPTER 2 ODP.NET: A FUNCTIONAL OVERVIEW

48

You’ve successfully installed the Oracle database, ODAC.NET (including ODT.NET) as well as the
Oracle providers for ASP.NET on your machine. You now have all the tools you need to start writing
ODP.NET applications.

Summary
In this chapter, you’ve taken a look at some of the features in the Oracle database that you can access
through ODP.NET. Most importantly, ODP.NET’s support for the basic ADO.NET classes means that you
can access the Oracle database using code familiar to you.

The Oracle database is a large software suite that extends far beyond the capabilities of a simple
RDBMS. In this chapter, you’ve seen how each major release of ODP.NET attempts to keep up with the
new technology features introduced with each new release of the Oracle database. Since ODP.NET is an
Oracle product, it is also expected to enjoy sustained support in the Oracle database releases to come.

ODP.NET provides a very comprehensive suite of libraries that go beyond the ADO.NET stack and is
designed to work tightly with the Oracle database. Through ODP.NET you will be able to tap on a larger
subset of Oracle database functionality in your .NET applications to interact better with the database.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 3

Connecting to Oracle
with ODP.NET

You now have all the basic software set up to write your first ODP.NET application. In this chapter, you
will explore the different ways to connect to an Oracle database using ODP.NET and the various
connection parameters you can use to control ODP.NET behavior. Specifically, we will explore the
following:

• How Transparent Network Substrate (TNS) works

• How you can build connection strings dynamically instead of hard-wiring them
into your code

• How to utilize Oracle’s transparent application failover feature to build robust
applications that continue to work even when database connections drop midway
in your code

Connecting via TNS
Let’s start this chapter by putting you right where the action is. In this section, you will write your first
ODP.NET application, a simple application to connect and disconnect from an Oracle database.

Start by creating a new C# Windows Forms Visual Studio project. You will need to add the
Oracle.DataAccess reference shown in Figure 3-1 to your project.

49

CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

Figure 3-1. Adding a reference to the Oracle.DataAccess (ODP.NET) library

 You will also need to import the Oracle.DataAccess.Client namespace into your form. You can do
that using the following code:

using Oracle.DataAccess.Client;

Drag a button control to the main form in your project, and name it btnConnectNow. In the Click

event handler of this button, write the code shown in Listing 3-1.

Listing 3-1. Connecting to the Oracle Database Via TNS

public void btnConnectNow_Click(System.Object sender, System.EventArgs e)
{
 OracleConnection conn = new OracleConnection();
 conn.ConnectionString = "Data Source=NEWDB;User ID=SYSTEM;Password=admin";
 try
 {
 conn.Open();
 conn.Close();
 MessageBox.Show("Connection successful!");
 }
 catch (Exception ex)
 {

50

 CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

 MessageBox.Show(ex.ToString(), "Error connecting to Oracle");
 }
}

Let’s take a closer look at what you’ve just written. The OracleConnection class is the ODP.NET class
used to establish a connection to the database. The connection string you’ve written is the standard
vanilla one and consists of three parts:

• Data Source: The net service name of the database; in this case, NEWDB, the starter
database that was created during your installation of the Oracle database in this
example

• User ID: A valid database username

• Password: A valid database password

If you run this code and click the button you’ve just created, you get the “Connection successful!”
message shown in Figure 3-2 (assuming you have installed the Oracle database correctly and set the
correct connection string). Congratulations, you have just written your first ODP.NET application!

Figure 3-2. Connecting to the Oracle database via TNS

The code you’ve written here connects to the Oracle database via what is called Transparent
Network Substrate (TNS). Let’s consider this scenario: Your Oracle database service could possibly be
sitting on a computer server at hq.sales.a_very_long_name.com, listening on a particular port number.
Instead of cramming all this information into the connection string, you could organize it in a file, stick a
shorter label on it, and use that label to refer to it in your connection string. This is precisely what TNS
does. This label is called the net service name and was what you’ve used earlier for the Data Source
attribute in your connection string.

Understanding the TNSNames.ora file
The solution in Listing 3-1 depends on a special file in your Oracle installation. This file is commonly
referred to as the TNSNames.ora file and is located in the following folder:

51

CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

<OraHome>\Network\Admin

You can edit it by hand using the Microsoft Notepad program. Inside this file, you might see one or
more blocks of configuration data that look like that in Listing 3-2.

Listing 3-2. Format of a TNS Descriptor

<Net Service Name>=
(DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(Host = <hostname>)(Port = <port>))
)
 (CONNECT_DATA =
 (SERVICE_NAME = <sid>)
)
)

The following lists the components of this descriptor:

• Net service name: This is the net service name is the label you wish to use for the
descriptor, and it is the name that you will refer to in the data source attribute of
your connection strings.

• Host name: This is the name of the machine hosting the Oracle database service,
and could be, for example, your hq.sales.a_very_long_name.com string.

• Port: This is the port number that your Oracle database service is listening on.

• SID: This is the global database name of your database. In your case it would be
NEWDB.

There is probably an entry in your TNSNames.ora file for the NEWDB database; the Oracle Universal
Installer created this entry for you when it generated the NEWDB starter database, and it was how you
could connect to the database using TNS earlier.

You can add more descriptors of your own manually. Alternatively, especially if you are not in the
mood to carefully count parentheses, you can use the GUI-based Oracle Net Configuration Assistant to
add a new descriptor to the TNSNames.ora file.

Connecting in Other Ways
You can use other settings and methods to connect to Oracle using ODP.NET. Most of these connection
methods and settings are specified through the connection string. Let’s take a look at the other different
ways to connect to Oracle in the following subsections.

Connecting Without TNSNames.ora
You can choose to connect to the Oracle database without referring to a net service name in the
TNSNames.ora file. In such a case, you can define an entire descriptor in the connection string (in the

52

 CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

same format as the descriptors in the TNSNames.ora file). Let’s take a closer look at the format of this
descriptor in Listing 3-3.

Listing 3-3. Connecting to the Database Without TNSNames.ora

public void btnConnectNow_Click(System.Object sender, System.EventArgs e)
{

 OracleConnection conn = new OracleConnection();
 conn.ConnectionString = "Data Source = " +

 "(DESCRIPTION = " +
 " (ADDRESS_LIST = " +
 " (ADDRESS = (PROTOCOL = TCP)" +
 " (HOST = 127.0.0.1) " +
 " (PORT = 1521) " +
 ")" +
 ")" +
 " (CONNECT_DATA = " +
 " (SERVICE_NAME = NEWDB)" +
 ")" +
 ");" +
 "User Id=SYSTEM;" +
 "password=admin;"
 try
 {
 conn.Open();
 conn.Close();
 MessageBox.Show("Connection successful!");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString(), "Error connecting to Oracle");
 }
}

The only difference between this inline descriptor and a descriptor in the TNSNames.ora file is that
you don’t need to define a net service name in the connection string. This method of connecting to the
Oracle database is useful if you want to dynamically generate the details of a descriptor. For example, if
the port number, host address, and service name of the database change frequently in your
organization, you might want to consider generating this type of connection string dynamically.

Connecting via EZConnect
Another way to connect to the Oracle database without any frills is to use the EZConnect method. This
method also lets the developer set the host name, port number, and service name all in one go. Unlike
the inline-descriptor method in the previous section, EZConnect is specific to TCP/IP connections. It
gives you a programmer-friendly way to specify host, port, and service name.

Listing 3-4 provides an example of the EZConnect syntax.

53

CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

Listing 3-4. Connecting to the Database Via EZConnect

public void btnConnectNow_Click(System.Object sender, System.EventArgs e)
{
 OracleConnection conn = new OracleConnection();
 conn.ConnectionString = "Data Source=EDZEHOO-PC:1521/NEWDB;
 User ID=SYSTEM;Password=admin";
 try
 {
 conn.Open();
 conn.Close();
 MessageBox.Show("Connection successful!");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString(), "Error connecting to Oracle");
 }
}

 Tip If you need to use Oracle advanced features such as connection pooling, external procedure calls, and so
on, these require additional connection parameters; EZConnect is not advisable in such a case.

Learning the ODP.NET Connection Parameters
You can tap on a rich host of Oracle functionality, such as connection pooling, integrated Windows
authentication, and statement caching, by specifying additional parameters in the connection string. In
the following sections, we take a look at some of these parameters.

Connecting with Connection Pooling Activated
As you’ve read in the previous chapter, opening a new database connection is a costly operation in terms
of performance. Connection pooling allows database connections to be cached for reuse. When a new
connection is requested, ODP.NET retrieves a connection from a cache, and when it is closed, the
connection is not physically closed but merely returned to the cache.

You can control connection pooling behavior in ODP.NET by manipulating six different attributes
in the connection string. Let’s take a look at the source code used to do this. Listing 3-5 shows an
example of connecting to a database service that implements connection pooling. The code is a
modification of that shown earlier in Listing 3-1.

54

 CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

Listing 3-5. Connecting to Oracle with Connection Pooling Activated

public void btnConnectNow_Click(System.Object sender, System.EventArgs e)
{
 OracleConnection conn = new OracleConnection();
 conn.ConnectionString = "Data Source=NEWDB;
 User ID=SYSTEM;

Password=admin;
 Min Pool Size=10;
 Max Pool Size=100;
 Connection Lifetime=120;
 Connection Timeout=60;
 Incr Pool Size=3;
 Decr Pool Size=1;"
 try
 {
 conn.Open();
 conn.Close();
 MessageBox.Show("Connection successful!");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString(), "Error connecting to Oracle");
 }
}

The six connection string attributes used are explained in Table 3-1.

Table 3-1. Connection Pool Attributes

Connection Pool Attribute Description

Min Pool Size This attribute defines the minimum number of
connections that must be kept in the pool. When the
connection pool is first created, it will attempt to open
and cache this number of connections in the pool even
if no connection request was received.

Max Pool Size This attribute defines the maximum number of
connections that can be kept in the pool.

Connection Lifetime This attribute defines the maximum duration (in
seconds) that a connection can stay cached in the pool.
It is enforced after you close the connection from your
application.

You can see why this attribute is important in the
following scenario: John has a cluster composed of two
database servers running with connection pooling

55

CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

turned on. Load balancing works perfectly, but both
servers are overworked. John decides to add a third
server to ease the load, but he finds that the third server
experiences no workload at all.

What has happened is that without the Connection
Lifetime attribute, all connections will remain cached in
the pool, and no new connections will ever need to be
created. The third server will not experience any load, as
the same physical connections that were opened earlier
(by the first and second servers) are retrieved from the
cached pool.

The Connection Lifetime attribute ensures that
connections don’t stay too long in the cache and that
they are recycled after a period of time.

Connection Timeout This is the amount of time (in seconds) that each
connection request is given to connect to the database
before it raises a time-out exception.

Incr Pool Size This attribute defines the number of new connections to
create whenever more connections are needed in the
connection pool. For instance, if there are zero
connections in the connection pool, and you’ve defined
Incr Pool Size=2, the moment your application
requests a new connection, the connection pool will
internally open and cache two new database
connections.

Decr Pool Size The connection pooling service will attempt to close
cached connections that are not in use for longer than 3
minutes. This attribute defines the maximum number of
connections that can be closed at one go.

Connection pooling is enabled by default in ODP.NET, and I recommend that you keep it enabled

for performance gains. Take note, however, that it is possible for the connection pool to get corrupted at
times and for many reasons. For example, consider the following scenario: The network connection
between your application and the database server might have dropped momentarily, and on resumption
of service, you try to reconnect to the database. You will find that any attempt to use the connection
object will result in an exception, because Oracle’s connection pooling feature is unaware that a
connection has gone bad and will keep handing you the same bad connection.

In such cases, you might wish to clear the connection pool. Fortunately, ODP.NET allows you to
clear the connection pool quite easily using the static ClearAllPools method. To try this, drag a new
button to your form, and name it btnClearPool. In the Click event of this button, write the code shown
in Listing 3-6 below to clear all connection pools.

56

 CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

Listing 3-6. Clearing All Connection Pools

public void btnClearPool_Click(System.Object sender, System.EventArgs e)
{
 try
 {
 OracleConnection.ClearAllPools();
 MessageBox.Show("Connection pools cleared!");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString(), "Error clearing connection pools");
 }
}

 Tip You can also completely disable connection pooling if you wish by setting Pooling=false in the
connection string.

Connecting via Integrated Windows Authentication
ODP.NET supports integrated Windows authentication, which allows an application to use the host
machine’s Windows logon credentials to log in to the database. The main benefit in using integrated
Windows authentication is that you do not have to store any passwords in the connection string.

However, take note that Windows authentication may require additional effort on the part of the
Oracle database administrator to ensure that all the necessary Windows users have been granted access
to the database.

You can tell ODP.NET to use integrated Windows authentication by specifying the slash character
(/) for the User ID attribute in the connection string. The code to do this is shown in Listing 3-7.

Listing 3-7. Connecting Using Integrated Windows Authentication

public void btnConnectNow_Click(System.Object sender, System.EventArgs e)
{
 OracleConnection conn = new OracleConnection();
 conn.ConnectionString = "Data Source=NEWDB;User ID=/;";
 try
 {
 conn.Open();
 conn.Close();
 MessageBox.Show("Connection successful!");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString(), "Error connecting to Oracle");
 }
}

57

CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

For the preceding code to run, you will first need to grant your Windows logon account access to the
Oracle database. You can find out what your Windows logon account is from your .NET application
using the My.User.Name property. Take note that Oracle will append a system authentication prefix to
your Windows logon account. This prefix differs from system to system. You can find out what this prefix
is on your system by running the following command in SQL*Plus:

SQL>show parameter os_authent_prefix

After appending this prefix, your Windows logon account should look something like this:

OPS$ACME\Edzehoo

You can now create this user in the database and grant it connect privileges in SQL*Plus:

SQL>CREATE USER "OPS$ACME\Edzehoo" IDENTIFIED EXTERNALLY
SQL>GRANT CONNECT TO "OPS$ACME\Edzehoo"

 Tip If you don’t wish to use the SQL*Plus command line tool, you can also create the user using the Oracle
Administration Assistant for Windows.

Connecting with Special Privileges
There is also an option that allows you to connect to the database using either one of these special roles:

• SYSOPER: Database operator

• SYSDBA: Database administrator

 The SYSOPER and SYSDBA roles grant the connection privilege to execute the special tasks shown in
Table 3-2.

Table 3-2. A Brief Comparison of SYSOPER and SYSDBA Privileges

Privileges SYSOPER SYSDBA

Start up and shut down the database. Yes Yes

Create an SPFile. Yes Yes

Create a database. No Yes

Alter the database. Yes Yes

Mount and dismount the database. Yes Yes

58

 CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

Backup and restore a database. Yes Yes

Perform archive log failure recovery. Yes Yes

Includes the RESTRICTED SESSION privilege. Yes Yes

Allows the user account to login as the SYS user. No Yes

Perform operational tasks. Yes Yes

View user-generated data. No Yes

You can use the DBA Privilege attribute to specify which of these two roles to use for a connection.

The code snippet in Listing 3-8 shows how this can be achieved.

Listing 3-8. Connecting with Special Privileges

public void btnConnectNow_Click(System.Object sender, System.EventArgs e)
{
 OracleConnection conn = new OracleConnection();
 conn.ConnectionString = "User Id=SYSTEM;Password=admin;" +
 "DBA Privilege=SYSDBA;Data Source=NEWDB;";
 try
 {
 conn.Open();
 conn.Close();
 MessageBox.Show("Connection successful!");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString(), "Error connecting to Oracle");
 }
}

Using Other Connection String Attributes
There are other connection strings attributes, of course, that you can use in combination with the ones
covered previously. Table 3-3 provides a list of common connection attributes for ODP.NET release
11.1.0.7.20.

59

CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

Table 3-3. Connection String Attributes

Attribute Name Description

Enlist Enlist allows you to decide whether or not a
connection should participate in a distributed
transaction.

HA Events This setting, if set to true, enables high
availability (HA) event notifications to be
received on the connection.

Load Balancing This feature activates load balancing of
connection requests in an RAC cluster.

Promotable Transaction This setting disables and enables promotable
transactions on the connection.

Proxy User Id This represents the username of a proxy user.

Proxy Password This represents the password of a proxy user.

Self Tuning This setting enables ODP.NET to self-tune
performance by automatically adjusting the
statement cache size.

Statement Cache Purge If this attribute is set to true, ODP.NET purges
the statement cache when the connection is
released back into the pool.

Statement Cache Size If set to a value more than 0, this setting enables
statement caching; it represents the number of
statements that will be cached.

Validate Connection This enables or disables validation of
connections retrieved from the pool.

Checking Whether ODP.NET Is Installed
In some cases, it may be a good idea to programmatically check if ODP.NET is installed on your
machine. You can do so by iterating through the DataTable object retrieved from the
System.Data.Common.DBProviderFactories.GetFactoryClasses function, which provides a full list of
database providers registered on your PC. The code to do this is shown in Listing 3-9.

60

 CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

Listing 3-9. Checking If the ODP.NET Provider Exists

private bool ODPExists()
{
 DataTable _table = System.Data.Common.DbProviderFactories.GetFactoryClasses();
 for (_counter = 0; _counter <= _table.Rows.Count - 1; _counter++)
 {
 if (Strings.StrComp(_table.Rows.Item(_counter).Item("Name"),
 "Oracle Data Provider for .NET", CompareMethod.Text) == 0)
 {
 return true;
 }
 }

return false;
}

Dynamically Building an ODP.NET Connection String
ODP.NET provides the OracleConnectionStringBuilder class for you to build a connection string from
constituent parts instead of hard-wiring it as a whole string. This can be useful if you want to store the
different parts of a connection string separately in your application. For example, you might want to
store the UserID and Password in different locations from the data source name.

Using the OracleConnectionStringBuilder Class
You can use the OracleConnectionStringBuilder class to build a connection string. Let’s take a look at
how you can rewrite the connection string (with connection pooling activated) earlier with
OracleConnectionStringBuilder in Listing 3-10.

Listing 3-10. Building a Connection String Using OracleConnectionStringBuilder

private string BuildConnectionString(string TNSName, string UserID, string
Password)
{
 OracleConnectionStringBuilder _conn = new OracleConnectionStringBuilder();
 {
 _conn.DataSource = TNSName;
 _conn.DecrPoolSize = 5;
 _conn.IncrPoolSize = 10;
 _conn.Pooling = true;
 _conn.MaxPoolSize = 100;
 _conn.MinPoolSize = 5;
 _conn.ConnectionLifeTime = 120
 _conn.ConnectionTimeout = 60
 _conn.UserID = UserID;
 _conn.Password = Password;

61

CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

 }
 return _conn.ConnectionString;
}

Retrieving Available Oracle Data Sources
Now that you can build a connection string from its pieces, it would be quite useful if could retrieve a list
of Oracle data sources registered on a machine. By doing so, users could choose which data source they
wanted to connect to from a drop-down list, for instance. The code snippet in Listing 3-11 shows how
this can be done.

Listing 3-11. Displaying the List of Oracle Data Sources Registered on the PC

using System.Data.Common;
.
.
.
DbProviderFactory _ftry;
_ftry=DbProviderFactories.GetFactory("Oracle.DataAccess.Client");
DbDataSourceEnumerator _datasourceEnum = _ftry.CreateDataSourceEnumerator;
DataTable _datasources = _datasourceEnum.GetDataSources;
for (_counter = 0; _counter <= _datasources.Rows.Count - 1; _counter++)
{
 MessageBox.Show(_datasources.Rows(_counter).Item("ServiceName"),"Service name");
}

Using the System.Data.Common.DbProviderFactories.GetFactory function, you can retrieve the
provider factory for ODP.NET and iterate through the data sources available using a
DbDataSourceEnumerator object. The ServiceName field of the data table returned gives you the service
name of the Oracle data source. You can plug this value directly into the Data Source property of your
connection strings.

Understanding Transparent Application Failover
How do developers handle connection failures midway in their applications? If you’ve never considered
this likelihood during development, it’s probably a good time to do so. Connection drops can and do
happen, especially in large deployments. For example, a system that has run out of memory might cause
live connections to fail unexpectedly. Consider the code in Listing 3-12, which runs an SQL SELECT query
against a database and iterates through its results

62

 CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

Listing 3-12. Sample .NET Code Demonstrating the Possibility of Connection Drops

public void btnDoSomething(System.Object sender, System.EventArgs e)
{
 .
 .
 .
 conn.Open();
 OracleCommand cmd= new OracleCommand('SELECT * FROM Employees',conn);
 OracleDataReader rows = cmd.ExecuteReader(CommandBehavior.CloseConnection)
 if (rows.HasRows())
 {
 rows.Read();
 txtName.text = rows("EmployeeName");
 }
 conn.Close();
}

It is possible for the live and open connection (conn) to fail midway while iterating through the rows
object. You could still protect your application from an ugly death by wrapping the whole block of code
within a try-catch block, but your end-users would likely still get a cryptic error message like “Sorry—
unexpected error occurred while retrieving the list of employees. Please refresh the page.” They would
be left guessing what had happened.

It can be sometimes difficult or even impractical to remember to wrap every single block of code
that uses an Oracle connection object within a try-catch statement. So how do you protect yourself from
a live connection dropping midway in your code?

Fortunately for us, Oracle provides a feature called transparent application failover (TAF) that
addresses this problem transparently without requiring any change in your code. TAF is an HA feature in
Oracle that does two basic tasks:

• Automatically reconnect to the database if a connection fails (preserving the
identical set of connection settings used in the original connection).

• Notify your .NET code (via function callbacks) whenever a failover occurs.

These tasks allow your application to carry on running with a newly established connection (that is
identical) if an existing one drops. This would be transparent to you, as the .NET developer, and to your
end users; it would be as if the connection had never dropped.

Enabling TAF in Your Application
Let’s see how you can enable TAF in your applications. TAF has to be enabled in the TNS descriptor. You
must include a FAILOVER_MODE parameter in the CONNECT_DATA section of your connection descriptor.
Open the TNSNames.ora file for editing in the Windows Notepad program, and add the highlighted
section in Listing 3-13 to your TNS descriptor.

63

CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

Listing 3-13. Sample TNS Descriptor with TAF Enabled to Retry a Connection

NEWDB=
(DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=tcp)
 (HOST=127.0.0.1)
 (PORT=1521)
)
 (CONNECT_DATA=
 (SERVICE_NAME=NEWDB)
 (FAILOVER_MODE=
 (TYPE=select)
 (METHOD=basic)
 (RETRIES=20)
 (DELAY=15)
)
)
)

Let’s take a look at what these settings mean. Table 3-4 describes the various attributes of the
FAILOVER_MODE parameter.

Table 3-4. Attributes in the FAILOVER_MODE Parameter

Attribute Name Description

METHOD This attribute defines how the TAF functionality is
implemented. There are two options: basic, in which
connections are not actually created until a failover
occurs, and preconnect, in which a connection is
preestablished and used when a failover occurs.

BACKUP This is the net service name of the connection to use as
the backup connection. This is used when you use the
preconnect method to preestablish backup connections.

TYPE This attribute defines the type of failover. There are
three types of failover: session, select, and none.
When session is used and a connection drops, a new
session is established; cursors opened before the
failover will not be able to continue fetching data after
the failover.
With select, cursors opened before the failover will still
be able to continue fetching data after the failover.
none means that no failover functionality is used; this is
the default setting.

64

 CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

RETRIES This is the number connect attempts after a failover.
The default is five retry attempts.

DELAY This is the delay (in seconds) between each connect
attempt. The default is one second.

There are some things that TAF can restore when a new connection is established and some that it

can’t. The following briefly lists a few features that are supported and unsupported by TAF:

• TAF cannot preserve active transactions after a failover. Any noncommited
transaction will be rolled back during the failover.

• TAF can automatically reestablish an identical connection or another designated
connection when a failover occurs

• After a failover, TAF enables applications to automatically refetch rows from a
cursor that was opened before a failover (using the select type in the
FAILOVER_MODE parameter).

• Server-side program variables (in PL/SQL) cannot be recovered after a failover.

• TAF can preserve user sessions; it automatically logs the users in to the new
connection using the same user login details in place before the failover.

• Distributed transactions are not supported when TAF is enabled.

Using TAF Callbacks
As mentioned earlier, TAF also allows your .NET to be notified via function callbacks when a failover
occurs. Listing 3-13 shows how you could implement this in your code.

Listing 3-13. Registering a Custom TAF Callback Function

public void RegisterTAFHandler()
{
 OracleConnection con = new OracleConnection();
 con.ConnectionString = "User Id=SYSTEM;Password=admin;Data Source=NEWDB;";
 con.Open();
 con.Failover += new OracleFailoverEventHandler(OnFailover);
 .
 .
 .
}

public FailoverReturnCode OnFailOver(object sender, OracleFailoverEventArgs eventArgs)
{
 switch (eventArgs.FailoverEvent)
 {
 case FailoverEvent.Begin:
 {

65

CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

 MessageBox.Show("Failover has just begun", "Notice");
 break;
 }
 case FailoverEvent.Abort:
 {
 MessageBox.Show("Failover has been aborted", "Notice");
 break;
 }
 case FailoverEvent.End:
 {
 MessageBox.Show("Failover has ended", "Service will resume");
 break;
 }
 case FailoverEvent.Reauth:
 {
 MessageBox.Show("User has been reauthenticated", "Notice");
 break;
 }
 case FailoverEvent.Error:
 {
 MessageBox.Show("Failover has encountered an error", "Error");
 return FailoverReturnCode.Retry;
 }
 default:
 {
 MessageBox.Show("Bad failover event", "Error");
 break;
 }
 }
 return FailoverReturnCode.Success;
}

 Tip To test the code in Listing 3-13, it is helpful to know how you can artificially induce a connection drop
midway through your code. You can do this by issuing a database restart command in SQL*Plus. After you’ve
connected to the database and registered the TAF callback function, open SQL*Plus in a separate window, log in
as the SYSDBA and type startup force at the SQL> prompt. This will force a database restart. After you’ve done
this, continue to run your application; you will find that it is able to continue running from where it left off without
having to reestablish a new connection.

As failovers may cause brief delays in your application, it is usually a good idea to at least let your
users know that the database connection has dropped and that the application is attempting to
reconnect. TAF callbacks allow your application to take appropriate action (such as displaying user-
friendly messages to your end users) at different stages of the failover.

Even if you do not plan to display such messages to your end users, you can still use TAF callbacks to
capture and log useful information such as connection failure frequency in your application.

66

 CHAPTER 3 CONNECTING TO ORACLE WITH ODP.NET

67

Summary
In this chapter, you’ve taken a look at some of the various ways you can use to connect to an Oracle
database via ODP.NET:

• TNS connections

• Connections without using TNSNames.ora

• Oracle’s EZConnect

You’ve also seen how you can use various connection string parameters to implement connection
pooling, integrated Windows authentication, and connections with special privileges. Last, we covered
the basic groundwork on TAF and its limitations and how you can ultimately enable it in your
application.

In the next chapter, you will take a step further and write code to transact with the Oracle database.

C H A P T E R 4

Retrieving and Manipulating Data
with ODP.NET

I was once told during a technical workshop filled with geeky programmers that “an enterprise
application is only as strong as its data tier.” The programmers loved catchy phrases like that. I’m not
sure how true that rings, but I can definitely agree with the most of them that if you don’t know your
database well enough, you’re going to build underperforming routines that the remaining 70 percent of
your application will unfortunately be based on.

A robust data tier goes a long way, and understanding the features and limits of what you can or
cannot do with ODP.NET is important. This chapter aims to lay the basic groundwork of the types of
data retrieval and manipulation possible through ODP.NET. In this chapter, you will also work with the
various basic data types available in the Oracle database, such as the

• Standard Oracle data types (VARCHAR2, NUMBER, etc.)

• LOBs and BFILEs

• RAW data types

You will also try your hand at writing applications that use the OracleDataReader,
OracleDataAdapter, OracleCommand, OracleCommandBuilder, and OracleException classes to execute SQL
queries and to iterate through their result sets. In addition, you will learn how to update disconnected
datasets and have your changes propagated to the Oracle database.

Before we begin, it’s probably a good idea to have an overview of the different data types available in
Oracle.

Understanding ODP.NET Data Types
Oracle supports quite an extensive set of native data types, and ODP.NET is able to provide support for
these data types through a set of classes in the Oracle.DataAccess.Types namespace. For example, the
OracleString class in ODP.NET provides methods to manipulate the CHAR, NCHAR, VARCHAR2, NVARCHAR2,
and LONG native data types. Let’s take a look at the various data types in Table 4-1.

69

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Table 4-1. ODP.NET Data Types

Oracle Native Data Type ODP.NET Type Description

Text Data Types

CHAR OracleString This data type stores fixed-length
character data up to a maximum of
2000 bytes. This data type is ideal
for storing short fixed-length text
such as ID values.

NCHAR OracleString This data type is the Unicode
equivalent of the CHAR data type.

VARCHAR2 OracleString This data type stores variable
length characters up to a
maximum of 4000 bytes. It is ideal
for storage of textual data that vary
in length, such as remarks or the
name of a person.

NVARCHAR2 OracleString This data type is the Unicode
equivalent of the VARCHAR2 data
type.

Numerical Data Types

NUMBER OracleDecimal This flexible data type stores a
number with a specified precision
and scale. It is ideal for storage of
general numbers, quantities, or
prices.

BINARY_DOUBLE OracleDecimal This new data type in Oracle 11g
offers better performance and
storage efficiency compared to the
NUMBER data type. However, its
accuracy is lower than the NUMBER
data type. It is hence ideal for
storage of numbers where
accuracy does not matter as much
as performance of computation.

BINARY_FLOAT OracleDecimal This is the same as the
BINARY_DOUBLE data type.

70

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Date and Time Data Types

DATE OracleDate This data type stores date values.

INTERVAL DAY TO SECOND OracleIntervalDS This data type stores a time
interval measured from days to
seconds. This can be used to store
a value such as “3 days, 2 hours, 10
minutes, and 10 seconds.”

INTERVAL YEAR TO MONTH OracleIntervalYM This data type stores a time
interval measured in years and
months. This can be used to store a
value such as “4 years, 7 months.”

TIMESTAMP OracleTimeStamp This data type captures a standard
timestamp (without the time
zone).

TIMESTAMP WITH LOCAL TIME
ZONE

OracleTimeStampLTZ This data type extends the
standard TIMESTAMP to store a
timestamp in the local time zone.

TIMESTAMP WITH TIME ZONE OracleTimeStampTZ This data type extends the
standard TIMESTAMP to allow you to
store a timestamp together with a
time zone.

Large Objects

BLOB OracleBLOB This is the binary large object type
(with a maximum size of 4GB). It is
ideal for storage of large files such
as images, video, or audio.

CLOB OracleCLOB This is the character large object
type (with a maximum size of
4GB), and it is ideal for storage of
large amounts of text.

NCLOB OracleCLOB This is the Unicode equivalent of
the CLOB data type.

BFILE OracleBFILE This data type holds a reference to
a file stored externally outside the
database. This is ideal if you want
to store documents outside the
database in the filesystem but wish

71

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

to maintain a link to that
document.

LONG OracleString This data type has been
deprecated. Its replacement is the
CLOB data type.

LONG RAW OracleBinary This data type has been
deprecated. Its replacement is the
BLOB data type.

RAW OracleBinary This is a binary data type of a
specified length. It is ideal for
storage of GUID values and small
amounts of binary data. For larger
amounts of binary data, the BLOB
data type is usually preferred.

PL/SQL Types

BINARY_INTEGER OracleString This data type is used in PL/SQL to
store signed integers. Its
performance is lower than that of
PLS_INTEGER.

PLS_INTEGER OracleDecimal This data type is identical to the
BINARY_INTEGER data type but
performs faster.

REF_CURSOR OracleRefCursor This data type is a cursor data type
that represents a result set in
Oracle. REF cursors are usually used
to obtain high performance access
to result set data in memory.

Miscellaneous Types

ROWID OracleString This data type is a binary value that
is unique only within a particular
table. It is typically used as a record
identifier.

UROWID OracleString This data type came after the ROWID
data type, and is a universal row
identifier. It can universally
identify rows in an index organized
tables (IOTs) and even non-Oracle
tables.

72

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

REF OracleRef A REF data type is usually declared
in the following manner: REF
object_type. It represents a
pointer to that specific object type.

XMLType OracleXmlType This data type stores XML-
formatted data natively and is ideal
for storage of semistructured data.

Creating a Sample Table
In the previous chapter, you accessed Oracle using the SYSTEM account, which is probably not a good
idea in a production environment. You should, therefore, create a new user account to run the samples
in this chapter. There are a few different ways for you to do this:

• Using the web-based Oracle Enterprise Manager tool

• Using the desktop-based Oracle SQL Developer tool

• Using the command-line SQL*Plus tool

You can use any one of these three tools to create the user account and sample tables necessary for
the code examples throughout this book. The Oracle Enterprise Manager and Oracle SQL Developer
tools both provide a visual interface for you to manage your database objects. These tools also allow you
to run custom SQL queries to insert, update, or delete data from the database objects you have created.

If you prefer to create a new account by hand using Data Definition Language (DDL) statements,
you can use the SQL*Plus command-line tool. You’ve had your first look at using SQL*Plus in Chapter 2.
Let’s create a new user account using SQL*Plus.

Launch SQL*Plus from the Start → All Programs → Oracle - OraDb11g_home1 →Application
Development → SQL Plus menu, and log in to the tool using the SYSTEM account you used earlier. After
doing so, type in the DDL code in Listing 4-1 at the SQL> prompt.

Listing 4-1. Creating a User

CREATE USER "EDZEHOO" PROFILE "DEFAULT" IDENTIFIED BY "PASS123"
DEFAULT TABLESPACE "EXAMPLE" ACCOUNT UNLOCK
QUOTA UNLIMITED ON "EXAMPLE";
GRANT "CONNECT" TO "EDZEHOO";
GRANT ALTER ANY TABLE TO "EDZEHOO";
GRANT CREATE ANY TABLE TO "EDZEHOO";

 Tip You can press the Enter key each time to type on a new line in SQL*Plus. The SQL statement as a whole
isn’t executed until you end a line with the semicolon (;) character.

73

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

These DDL statements will create a new user account (EDZEHOO) with the password (PASS123) and
assign this user rights to create unlimited objects on the EXAMPLE table space. These statements also
grant this user account basic rights to connect to the database, as well as the ability to issue CREATE TABLE
and ALTER TABLE SQL commands. Figure 4-1 shows a screenshot of the output from running these
statements.

Figure 4-1. Creating the user in SQL*Plus

You can try logging in with this new user account to create the sample table needed for this chapter.
Issue a CONNECT command at the SQL> prompt, and log in using your new account details. After logging
in, issue the SQL command in Listing 4-2 to create the Products table.

Listing 4-2. Creating the Example Table

CREATE TABLE "EDZEHOO"."PRODUCTS" (
"ID" VARCHAR2(10) NOT NULL,
"NAME" VARCHAR2(255),
"PRICE" NUMBER(10, 2),
"REMARKS" VARCHAR2(4000),
CONSTRAINT "PRIMKEY" PRIMARY KEY ("ID") VALIDATE);

You should see the output shown in Figure 4-2.

74

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Figure 4-2. Creating the Products table

Now that you have created a table, you will need to key in some sample data. Execute the SQL
INSERT statements shown in Listing 4-3.

Listing 4-3. Inserting Some Data into the Products Table

INSERT INTO PRODUCTS(ID, NAME, PRICE, REMARKS) VALUES('E1', 'Engine', 3000, 'Stan
dard car engine');
INSERT INTO PRODUCTS(ID, NAME, PRICE, REMARKS) VALUES('W1', 'Windshield', 500, 'Q
uality windshields');
INSERT INTO PRODUCTS(ID, NAME, PRICE, REMARKS) VALUES('R1', 'Rear Lights', 200.50
, 'Standard rear lights');

To confirm that your data has been added successfully to the table, you can run a simple SQL SELECT
statement to retrieve the products you’ve created. See Figure 4-3 for an example.

Figure 4-3. Viewing data in the Products table

You’re now ready to start writing an ODP.NET application to read data from this table!

75

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Retrieving Multiple Rows of Data
One of the simplest (and most efficient) ways to read data from a table is to use a DataReader. A
DataReader is an ADO.NET class that provides you a read-only and forward-only data stream reader to
retrieve rows from a database. Since the class is read only, you can only use the DataReader to retrieve
data from the database. You won’t be able to use it for insert, update, or delete operations.

The DataReader keeps only one record in memory at a time and allows you to iterate forward
through the records in the result set. You cannot iterate through the result set backward.

ODP.NET provides DataReader functionality in the form of the OracleDataReader class. Let’s take a
look at how you can retrieve the three rows of data you’ve keyed in earlier in the Products database. To
execute an SQL statement, you need to first create an OracleCommand object. You can obtain an
OracleCommand object by calling the CreateCommand() method in the OracleConnection object, for
example:

string connstring="Data Source=localhost/NEWDB;User Id=EDZEHOO;Password=PASS123;";
OracleConnection _connObj = new OracleConnection(_connstring);
_connObj.Open ();
OracleCommand _cmdObj = _connObj.CreateCommand ();

To retrieve data into an OracleDataReader object, write the following code.

OracleDataReader _rdrObj;
_cmdObj.CommandText = "SELECT * FROM Products";
_rdrObj = _cmdObj.ExecuteReader();

We can use the HasRows property to check if there are any rows in the execution results. If there are,
we loop through each record in the result set by calling Read() repeatedly. Each time you call Read(), the
DataReader will attempt to fetch the next record. As long as there are more rows to fetch, the Read()
method will always return true. After it fetches the last record, the Read() function will return false.
Listing 4-4 puts everything together into a working example that returns data from the Products table.

Listing 4-4. Retrieving Data Via the OracleDataReader Interface

private void btnRetrieveData_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _ID;
 string _name;
 decimal _price;
 string _remarks;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand ();
 _cmdObj.CommandText = "SELECT * FROM Products";
 OracleDataReader _rdrObj = _cmdObj.ExecuteReader();
 if (_rdrObj.HasRows)
 {

76

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

 while (_rdrObj.Read())
 {
 _ID = _rdrObj.GetString(_rdrObj.GetOrdinal ("ID"));
 _name = _rdrObj.GetString(_rdrObj.GetOrdinal ("Name"));
 _price = _rdrObj.GetDecimal (_rdrObj.GetOrdinal ("Price"));
 _remarks = _rdrObj.GetString(_rdrObj.GetOrdinal
 ("Remarks"));
 MessageBox.Show("ID: " + _ID + "\nName: " + _name +
 "\nPrice: " + _price + "\nRemarks: " +
 _remarks,"Products");
 };
 };
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

As you can see from Listing 4-4, you can retrieve typed data from each column by calling the
appropriate GetXXXXX method (GetString, GetDecimal, GetDate, GetInt32, and so on). You will need to
specify the index of the column you wish to retrieve. If you would rather refer to a column by its name,
you can use the OracleDataReader’s GetOrdinal() method to get the column index for a particular
column name.

To try this code snippet, create a form, and place a button on the form. In the click event of this
button, write the code shown in Listing 4-4. Run this form, and click the button. You will see a summary
of the data for each of the records you’ve created earlier displayed in a pop-up window (as shown in
Figure 4-4).

Figure 4-4. Displaying data retrieved using the OracleDataReader

77

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Retrieving a Single Value
If you’ve developed any database-driven application before, you’ve definitely attempted at one time or
another to retrieve a single value from the database. For example, you could be using an SQL statement
like the following to retrieve the COUNT or SUM of the data in a particular field:

SELECT COUNT(*) AS TotalRecords FROM Products
SELECT SUM(Price) AS TotalPrice FROM Products

If you know in advance that your SQL query is going to return only a single result (a single row or
column), you can consider using the OracleCommand.ExecuteScalar method instead of the ExecuteReader
method to retrieve the data. The ExecuteScalar method returns only a single result from the SQL
statement. The type of the object returned depends on the Oracle data type of the return field. Listing 4-
5 shows how you can retrieve a value using ExecuteScalar.

Listing 4-5. Retrieving the Count from the Products Table

public void GetProductCount()
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 decimal _totalRecords;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT COUNT(*) AS TotalRecords FROM Products";
 _totalRecords = (decimal)_cmdObj.ExecuteScalar();
 MessageBox.Show("Total records:" + _totalRecords);
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Running the code sample in Listing 4-5 yields the result shown in figure 4-5.

78

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Figure 4-5. Displaying total count of Products

Handling NULL Values in ODP.NET
NULL values are an inevitable evil in database programming. Developers tend to forget to handle NULL
values and end up seeing the error message shown in Figure 4-6 all too often.

Figure 4-6. NULL data exception

To check for NULL values in OracleDataReader results, you can use the IsDBNull() method. The code
in Listing 4-6 shows how NULL checking can be implemented to prevent your code from raising an ugly
exception.

Listing 4-6. Checking for NULL Values

if (_rdrObj.HasRows)
{
 if (_rdrObj.Read())
 {
 if (_rdrObj.IsDBNull(_rdrObj.GetOrdinal("Name"))==false)
 {txtName.Text = _rdrObj.GetString(_rdrObj.GetOrdinal("Name"));}

 if (_rdrObj.IsDBNull(_rdrObj.GetOrdinal("Remarks")) == false)
 {txtRemarks.Text = rdrObj.GetString(_rdrObj.GetOrdinal("Remarks"));}

 if (_rdrObj.IsDBNull(_rdrObj.GetOrdinal("Price")) == false)
 {numPrice.Value = _rdrObj.GetDecimal(_rdrObj.GetOrdinal("Price"));}
 }
}

79

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Retrieving Data into a Dataset
If you need to retrieve data and keep it in memory for subsequent update, you need to use a
DataAdapter. The DataAdapter allows data to be retrieved into a DataSet object. A DataSet object is a
placeholder in memory used to hold retrieved records. The DataAdapter handles all exchange of data
between the DataSet and the database, including the writing of changes in the DataSet back to the
database. To populate a DataSet with data, the DataAdapter provides the Fill() method.

 The OracleDataAdapter class is a DataAdapter optimized for the Oracle database. Let’s take a look at
how you can use OracleDataAdapter to fill a dataset with data from the Products table and subsequently
display the data in a DataGridView control.

To begin, you’ll first need to create a form in your project. Drag a DataGridView control onto your
form and add a button with the caption “Fill grid” to the top of the form. In the click event of this button,
write the code shown in Listing 4-7.

Listing 4-7. Retrieving Data Using the OracleDataAdapter

private DataSet _ds=null;
private void btnFillGrid_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _sql;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _ds = new DataSet();
 _connObj.Open();
 _sql = "SELECT * FROM Products";
 OracleDataAdapter _adapterObj = new OracleDataAdapter(_sql, _connObj);
 _adapterObj.Fill(_ds);
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 dataGridView1.DataSource = _ds.Tables[0];
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Run the form that you’ve just created, and click the “Fill grid” button. You will see the data from
your Products table in the DataGridView control, as shown in Figure 4-7.

80

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Figure 4-7. Displaying data retrieved through the OracleDataAdapter

Using Parameterized Queries
If you have built a database-driven search feature before, you would most definitely have encountered
cases where user input is used to build the filters for a particular SQL statement. For instance, you might
let the user pull out the full details for a product by specifying the ID of the product. You might then
build a SELECT statement as follows:

SELECT * FROM Products WHERE ID='" + txtID.text + "'"

Instead of dynamically building the SQL string yourself, you could choose to use bind variables.
Bind variables allow you to create parameterized queries that are easier to maintain in code. The
following is an example of a bind variable being used in an SQL statement:

SELECT * FROM Products WHERE ID=:IDValue

Since bind variables force you to strongly define your SQL parameters, they also allow you to avoid
common security pitfalls such as SQL injection attacks, which you will read more about in Chapter 11 of
this book. When you use bind variables in your SQL, you must define where the actual data for these
variables come from. You must create a corresponding parameter object for each bind variable that you
use in your SQL, for example:

OracleParameter _idParam = _cmdObj.CreateParameter();
_idParam.ParameterName = "IDValue";
_idParam.OracleDbType = OracleDbType.Varchar2;
_idParam.Value = txtID.Text;
_cmdObj.Parameters.Add(_idParam);

Let’s take a look at an example of bind variables in action. Create a new form and add the text boxes,
numeric boxes, labels, and buttons shown in Figure 4-8 to the form. The user is meant to type in the ID
of the product in the ID box and click “Retrieve data” to retrieve the full details of the product. The full
details of the product will be displayed in the Name, Price, and Remarks boxes.

81

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Figure 4-8. Designing the sample form used to demonstrate bind variables

In the click event of the “Retrieve data” button, write the code in Listing 4-8. Take note that the code
to create and add a new parameter to the OracleCommand object is highlighted in bold.

Listing 4-8. Using Bind Variables

private void btnRetrieveData_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _sql;
 OracleDataReader _rdrObj;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 DataSet _ds = new DataSet();
 _connObj.Open();
 _sql = "SELECT * FROM Products WHERE ID=:IDValue";
 OracleCommand _cmdObj = new OracleCommand(_sql, _connObj);
 OracleParameter _idParam = _cmdObj.CreateParameter();
 _idParam.ParameterName = "IDValue";
 _idParam.OracleDbType = OracleDbType.Varchar2;
 _idParam.Value = txtID.Text;
 _cmdObj.Parameters.Add(_idParam);
 _rdrObj = _cmdObj.ExecuteReader();
 if (_rdrObj.HasRows)
 {
 if (_rdrObj.Read())
 {
 txtName.Text = _rdrObj.GetString(_rdrObj.GetOrdinal("Name"));
 txtRemarks.Text = _rdrObj.GetString(_rdrObj.GetOrdinal("Remarks"));
 numPrice.Value = _rdrObj.GetDecimal(_rdrObj.GetOrdinal("Price"));
 }
 }

82

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

 else
 {
 MessageBox.Show("A record with a matching ID was not found");
 }
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

To test this sample, run the application, type either W1, E1, or R1 (the IDs of the products you
created earlier) in the ID box, and click the “Retrieve data” button. The full details of the matching
record will be displayed as shown in Figure 4-9.

Figure 4-9. Running the Bind Variables example

 Tip One of the most common reasons why developers use bind variables is performance. Bind variables help
improve performance by allowing SQL statements with the same structure to be cached in a shared pool. We will
cover more on bind variable performance in Chapter 12 of this book.

Updating Data
You have written ODP.NET code to retrieve data so far; now, let’s take a look in the other direction. You
can update data in the Oracle database using two common methods:

83

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

• Executing a single SQL UPDATE, INSERT, or DELETE statement

• Committing dataset changes to the database through the OracleDataAdapter class

Let’s take a look at both approaches in the sections to follow.

Executing a Single INSERT, UPDATE, or DELETE Statement
If you are planning to format your own SQL statements and just need ODP.NET to execute them as they
are, you can use the ExecuteNonQuery() method of the OracleCommand object. The ExecuteNonQuery()
method allows you to run any statement that does not return a result. These statements include SQL
INSERT, UPDATE, DELETE, ALTER TABLE, and even CREATE TABLE statements. Let’s build a sample application
to test this out. You will write some code to add a new record, update the record, and then finally delete
the record. Create a new form, and place a button on the form. In the click event of this button, write the
code in Listing 4-9.

Listing 4-9. Executing SQL INSERT, UPDATE, and DELETE Statements

private void btnRunStatements_Click(object sender, EventArgs e)
{
 string _connstring;
 _connstring = "Data Source=localhost/NEWDB;User Id=EDZEHOO;Password=PASS123;";
 int _recordsAffected;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();

 //Insert a new record
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "INSERT INTO Products(ID, Name, Price)
 VALUES(:ID,:Name,:Price)";
 _cmdObj.Parameters.Add (new OracleParameter ("ID","M1"));
 _cmdObj.Parameters.Add (new OracleParameter ("Name","Mudguards"));
 _cmdObj.Parameters.Add (new OracleParameter ("Price","250.50"));
 _recordsAffected=_cmdObj.ExecuteNonQuery();
 MessageBox.Show("Total records affected after insert:" + _recordsAffected);

 //Update an existing record
 _cmdObj.CommandText = "UPDATE Products SET Remarks=:Remarks WHERE ID=:ID";
 _cmdObj.Parameters.Clear();
 _cmdObj.Parameters.Add (new OracleParameter ("Remarks","Quality mud
 guards"));
 _cmdObj.Parameters.Add(new OracleParameter("ID", "M1"));
 _recordsAffected=_cmdObj.ExecuteNonQuery();
 MessageBox.Show("Total records affected after update:" + _recordsAffected);

 //Delete an existing record
 _cmdObj.CommandText = "DELETE FROM Products WHERE ID=:ID";
 _cmdObj.Parameters.Clear();

84

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

 _cmdObj.Parameters.Add(new OracleParameter("ID", "M1"));
 _recordsAffected = _cmdObj.ExecuteNonQuery();
 MessageBox.Show("Total records affected after delete:" + _recordsAffected);

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you now run the application, you will see the message box in Figure 4-10 appear three times, once
for each of the insert, update, and delete operations. The record count of one indicates that each SQL
statement executed successfully.

Figure 4-10. Displaying the total number of affected records

Committing Dataset Changes to the Database
What if you’ve made changes to a dataset that was retrieved through the OracleDataAdapter? How do
you get those changes in the dataset propagated back to the database? Fortunately, the
OracleDataAdapter object is able to discover the changes you’ve made to the dataset and commit them
to the database with a single method call.

Let’s take a look at how this works. A dataset can contain multiple records and, at any time, can hold
changes to more than one record. These changes can include altering a field value in an existing row,
deleting existing rows, or maybe adding entirely new rows. Figure 4-11 illustrates such a situation.

To commit all the changes from a dataset to the database, the DataAdapter object must know how to
handle each type of change. We must hence define the corresponding UpdateCommand, InsertCommand,
and DeleteCommand objects for the DataAdapter object.

85

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Figure 4-11. How the Update() method of the OracleDataAdapter works

After you have defined the UpdateCommand, InsertCommand, and DeleteCommand objects, you can pass
the dataset containing the changes to the OracleDataAdapter object and call its Update() method. The
OracleDataAdapter will then scan through each change in the dataset and use the appropriate Command
object to commit changes accordingly to the database.

Let’s begin by using the same form you created earlier in the first OracleDataAdapter example (in the
“Retrieving Data Using OracleDataAdapter” section). If you recall, that example retrieves Products data
into a DataGridView control. The DataGridView control supports in-grid editing by default, so it already
allows the user to make changes to the dataset.

You will now need to add the functionality to commit these dataset changes to the database. Add a
new button labeled “Save to database” on the same form. In the click event of the button, write the code
from Listing 4-10.

Listing 4-10. Saving Dataset Changes to the Database

private void btnSaveToDatabase_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _sql;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _commandObj = _connObj.CreateCommand();
 OracleDataAdapter _adapterObj = new OracleDataAdapter(_commandObj);

 //Manually define the UPDATE command in the OracleDataAdapter
 _sql = "UPDATE Products SET Name=:Name, Price=:Price, Remarks=:Remarks WHERE
 ID=:ID";
 _adapterObj.UpdateCommand = new OracleCommand(_sql, _connObj);
 _adapterObj.UpdateCommand.Parameters.Add (new OracleParameter("Name",
 OracleDbType.Varchar2, 255, "Name"));
 _adapterObj.UpdateCommand.Parameters.Add (new OracleParameter("Price",
 OracleDbType.Decimal, 10, "Price"));

86

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

 _adapterObj.UpdateCommand.Parameters.Add (new OracleParameter("Remarks",
 OracleDbType.Varchar2, 4000, "Remarks"));
 _adapterObj.UpdateCommand.Parameters.Add (new OracleParameter("ID",
 OracleDbType.Varchar2, 10, "ID"));

 //Manually define the INSERT command in the OracleDataAdapter
 _sql = "INSERT INTO Products(Name, Price, Remarks, ID) VALUES(:Name, :Price,
 :Remarks, :ID)";
 _adapterObj.InsertCommand = new OracleCommand(_sql, _connObj);
 _adapterObj.InsertCommand.Parameters.Add(new OracleParameter("Name",
 OracleDbType.Varchar2, 255, "Name"));
 _adapterObj.InsertCommand.Parameters.Add(new OracleParameter("Price",
 OracleDbType.Decimal, 10, "Price"));
 _adapterObj.InsertCommand.Parameters.Add(new OracleParameter("Remarks",
 OracleDbType.Varchar2, 4000, "Remarks"));
 _adapterObj.InsertCommand.Parameters.Add(new OracleParameter("ID",
 OracleDbType.Varchar2, 10, "ID"));

 //Manually define the DELETE command in the OracleDataAdapter
 _sql = "DELETE FROM Products WHERE ID=:ID";
 _adapterObj.DeleteCommand = new OracleCommand(_sql, _connObj);
 _adapterObj.DeleteCommand.Parameters.Add(new OracleParameter("ID",
 OracleDbType.Varchar2, 10, "ID"));

 //Now we pass in the dataset to the DataAdapter and request it
 //to commit the changes to the database (using the command objects above)
 _adapterObj.Update(_ds);
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 MessageBox.Show("Dataset committed!");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

To test whether DataSet changes are saved, run the form, and click the “Fill grid” button to first fill
the grid with data. After that, make as many changes as you wish to the data in the grid. Try a
combination of changes: delete a row, insert a new one, and update an existing one. After you’re done,
click the “Save to database” button. You will see a “Dataset committed!” message, as shown in Figure 4-
12. To test if the changes have really been saved to the database, you can try closing the form, reopening
it, and clicking “Fill grid” again. You will find that the data with your latest changes will be displayed.

87

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Figure 4-12. Committing DataSet changes to the database

Generating Command Objects
In most cases when you’re dealing with updates to a single table, it can be quite a hassle to define the
UpdateCommand, InsertCommand, and DeleteCommand objects for each table you wish to update, especially if
the table contains a large number of columns. Fortunately, ODP.NET provides the OracleCommandBuilder
class that can help save your time by automatically generating the UPDATE, INSERT, and DELETE commands
on its own whenever needed.

Using the same form you created earlier, add one more button next to the “Save to database”
button. Label this button “Save to database – using CommandBuilder”. In the click event of this button,
write the code shown in Listing 4-11.

Listing 4-11. Using the OracleCommandBuilder Class

private void btnSaveButtonWithCommBuilder_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _sql;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 _sql = "SELECT * FROM Products";
 OracleDataAdapter _adapterObj = new OracleDataAdapter(_sql, _connObj);
 OracleCommandBuilder _commBldrObj = new OracleCommandBuilder(_adapterObj);

88

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

 //We must specify the unique column in the dataset so that the
 //OracleCommandBuilder knows which field to use as the primary key when
 //generating the UpdateCommand and DeleteCommand objects
 _ds.Tables[0].Columns["ID"].Unique = true;

 _adapterObj.Update(_ds);
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 MessageBox.Show("Dataset committed!");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

You can test this code the same way you tested the previous example. Instead of using the “Save to
database” button, click the “Save to database – using CommandBuilder” button. You will see that you
are able to remove, edit, and insert rows despite having created no corresponding command objects. As
before, the message “Dataset committed!” indicates success; see Figure 4-13.

Figure 4-13. Committing DataSet changes to the database with CommandBuilder

Take note, however, that the OracleCommandBuilder works only with single table updates. If you have
used table joins in your SQL, using the OracleCommandBuilder will not be a viable option. You would
likely need to hand-code your own command objects.

Another reason to hand-code command objects is to achieve a greater degree of control over the
SQL statements used for updating, inserting, and deleting. For instance, let’s say you had another
column called Date Modified in the Products table. Let’s say each time you update an existing record in

89

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

this table, you wanted to capture the current timestamp in the Date Modified field. If you use the
OracleCommandBuilder object, this would not have been possible. You could, however, hand-code the
UpdateCommand object like this:

_sql = "UPDATE Products SET Name=:Name, Price=:Price, Remarks=:Remarks,
DateModified=SYSDATE() WHERE ID=:ID";
_adapterObj.UpdateCommand = new OracleCommand(_sql, _connObj);
_adapterObj.UpdateCommand.Parameters.Add (new OracleParameter("Name",
 OracleDbType.Varchar2, 255, "Name"));
_adapterObj.UpdateCommand.Parameters.Add (new OracleParameter("Price",
 OracleDbType.Decimal, 10, "Price"));
_adapterObj.UpdateCommand.Parameters.Add (new OracleParameter("Remarks",
 OracleDbType.Varchar2, 4000, "Remarks"));
_adapterObj.UpdateCommand.Parameters.Add (new OracleParameter("ID",
 OracleDbType.Varchar2, 10, "ID"));

Handling Master-Detail Relationships
Master-detail relationships between database tables are an inevitable part of database-driven
application development. From expense claims to job order processing applications, you would have
one way or another encountered applications that work with interrelated data stored in two or more
tables.

In the next few sections, you will see how you can retrieve rows from multiple tables into a single
dataset and then apply relationship constraints on these tables. Once you have done that, you will make
changes to the data and have them committed to the database in one run.

Creating a Second Table
Before you can run the sample code involving multiple tables, you’ll need to create another table in the
database—the ProductComponents table. This table stores the list of components for a particular product.
The Products table you’ve created earlier is the master, and the ProductComponents table will be the
detail. For example, the car engine product might consist of the spark plug, piston, and crankshaft
components.

To create and populate the ProductComponents table, run the commands in Listing 4-12 using
SQL*Plus.

Listing 4-12. Creating and Populating a Components Table

CREATE TABLE "EDZEHOO"."PRODUCTCOMPONENTS" (
"COMPONENTID" VARCHAR2(10) NOT NULL,
"PARENTPRODUCTID" VARCHAR2(10) NOT NULL,
"NAME" VARCHAR2(255),
“QUANTITY” NUMBER(10,2),
"REMARKS" VARCHAR2(4000),
CONSTRAINT "PRIMKEY2" PRIMARY KEY ("COMPONENTID") VALIDATE);
INSERT INTO PRODUCTCOMPONENTS(COMPONENTID, PARENTPRODUCTID, NAME, QUANTITY, REMARKS) VALUES
('C1','E1','SPARK PLUG', 1, 'The part that starts the engine');

90

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

INSERT INTO PRODUCTCOMPONENTS(COMPONENTID, PARENTPRODUCTID, NAME, QUANTITY, REMARKS) VALUES
('C2','E1','PISTON', 4, 'The part that makes the car move');
INSERT INTO PRODUCTCOMPONENTS(COMPONENTID, PARENTPRODUCTID, NAME, QUANTITY, REMARKS) VALUES
('C3','R1','LIGHT DIODES', 20, 'The part that makes the lamps blink');

Now that you have two tables, it’s time to move on and look at some examples of querying and

updating those tables.

Retrieving from Multiple Tables
First, let’s look at the problem of retrieving from multiple tables into a single DataSet. Consider a
product details form for example. The data for such a form would most likely come from two different
tables: the Products table (containing the product master information), and the ProductComponents table
(containing the list of components of the product). Since both are displayed in the same page, it would
definitely make sense to retrieve all the data in one single dataset.

We can do this by calling the OracleDataAdapter.Fill() method on the same dataset more than
once. Let’s take a look at the code to do this. The two Fill() method calls are highlighted in Listing 4-13.

Listing 4-13. Filling a Dataset with Results from Multiple Tables

private DataSet _ds=null;
private OracleCommand _productsCmdObj = null;
private OracleCommand _productComponentsCmdObj = null;
private OracleDataAdapter _productsAdpObj = null;
private OracleDataAdapter _productComponentsAdpObj = null;
private OracleConnection _connObj = null;

//In this example, we load the Product identified by the ID value of "E1"
string _productID = "E1";

private void LoadData()
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _sql;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 _ds = new DataSet();

 //Retrieve from the Products table
 _sql = "SELECT * FROM Products WHERE ID=:ID";
 _productsCmdObj = new OracleCommand(_sql, _connObj);
 _productsCmdObj.Parameters.Add(new OracleParameter("ID", _productID));
 _productsAdpObj = new OracleDataAdapter(_productsCmdObj);
 _productsAdpObj.Fill(_ds, "Products");

 //Retrieve from the ProductComponents table
 _sql = "SELECT * FROM ProductComponents WHERE

91

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

 ParentProductID=:ParentProductID";
 _productComponentsCmdObj = new OracleCommand(_sql, _connObj);
 _productComponentsCmdObj.Parameters.Add(new
 OracleParameter("ParentProductID", _productID));
 _productComponentsAdpObj = new OracleDataAdapter(_productComponentsCmdObj);
 _productComponentsAdpObj.Fill(_ds, "ProductComponents");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Binding a .NET Form to Your Dataset
To test the LoadData() method you’ve created in Listing 4-13, you need to first design a new form
(named frmProducts) to display the data. Let’s start with the form. Design a new form that looks like the
one shown in Figure 4-14. Use text boxes and numerical controls to display product master details and a
DataGridView control to display the list of components for the product.

Figure 4-14. Designing a sample form for the Data Binding example

After you’ve designed the form, you’ll need to bind the dataset to the form. Drag and drop a
BindingSource control to the form. Name this BindingSource control bsProducts. A BindingSource
control acts as an intermediary between the DataSet and the controls on the form. Let’s take a look at the
code that does the binding. You can see it in Figure 4-14.

92

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Listing 4-14. Data Binding the Products Table to the Form Controls

private void BindData()
{
 bsProducts.DataSource = _ds.Tables["Products"];
 txtName.DataBindings.Add(new Binding("Text",
 bsProducts, "Name", true));
 numPrice.DataBindings.Add(new Binding("Value",
 bsProducts, "Price", true));
 txtRemarks.DataBindings.Add(new Binding("Text",
 bsProducts, "Remarks", true));
 dgComponents.DataSource = _ds.Tables["ProductComponents"];
}

In the first line of code, you specify the Products table in your _ds DataSet as the data source for the
BindingSource control. After that, you need to tell each control on the form where to bind its display
property. Each control can (although not necessarily) bind to a different field in the Products table. As for
the dgComponents DataGridView control, we simply pass in the entire ProductComponents table, and it will
do the work of displaying the data.

To test this, add a form load event handler to your form, and call the two functions you’ve created so
far like this:

private void frmProducts_Load(object sender, EventArgs e)
{
 LoadData();
 BindData();
}

You will be able to see the details of the Engine product show up when you load the form. You
should see results as shown in Figure 4-15.

93

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Figure 4-15. Data binding in action

Committing Changes to Multiple Tables
To commit data from multiple tables to the database, you can use two separate OracleDataAdapter
objects, one for each table. You can use the OracleCommandBuilder class you learned about earlier to
generate the corresponding update, insert, and delete commands for each adapter. Using the form from
the previous section, write the code in Listing 4-15.

Listing 4-15. Updating Data from Multiple Tables

private void SaveData(string productID)
{
 bsProducts.EndEdit();
try
{
 OracleCommandBuilder _commBldrObj = new OracleCommandBuilder(_productsAdpObj);
 OracleCommandBuilder _commBldrObj2 = new
 OracleCommandBuilder(_productComponentsAdpObj);

 //Designate each primary column as unique
 _ds.Tables["Products"].Columns["ID"].Unique = true;
 _ds.Tables["ProductComponents"].Columns["ComponentID"].Unique = true;

 //Now we pass in the dataset to the DataAdapter and request it
 //to commit the changes to the database (using the command objects above)
 _productsAdpObj.Update(_ds, "Products");
 _productComponentsAdpObj.Update(_ds, "ProductComponents");

94

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

 MessageBox.Show("Dataset committed!");
}
catch (Exception ex)
{
 MessageBox.Show(ex.ToString());
}
}
private void btnSave_Click(object sender, EventArgs e)
{
 SaveData(_productID);
}

You can test the save functionality by making changes to both the data in the Components grid and
the Products master details at the same time and then clicking the Save button.

Defining Table Relationships and Constraints in a DataSet
The ADO.NET dataset object allows you to specify relationships and constraints between two tables.
This has the effect of making the DataSet check for constraints when you modify data in it. For example,
if you’ve created a foreign key constraint on the ProductComponents DataTable, the DataSet will raise an
exception every time you add a new row to the ProductComponents DataTable without specifying the
ParentProductID.

Let’s create a relationship between the Products.ID and ProductComponents.ParentProductID
columns. You can represent a relationship using the DataRelation object, as shown in the
CreateRelationships method in Listing 4-16. You should also place a call to this CreateRelationships
function from inside the Load event of your frmProducts form.

Listing 4-16. Defining Dataset Relationships and Contraints

private void CreateRelationships()
{
 DataColumn _parentColumn = _ds.Tables["Products"].Columns["ID"];
 DataColumn _childColumn =
 _ds.Tables["ProductComponents"].Columns["ParentProductID"];
 DataRelation _dr = new DataRelation
 ("ProductRelation1",_parentColumn,_childColumn,true);
 _ds.Relations.Add(_dr);
 _dr.ChildKeyConstraint.DeleteRule = Rule.Cascade;
 _dr.ChildKeyConstraint.UpdateRule = Rule.Cascade;
 _ds.EnforceConstraints = true;
}private void frmProducts_Load(object sender, EventArgs e)
{
 LoadData();
 CreateRelationships();
 BindData();
}

95

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

You can see the effect that this code has by running the form. Try to add a new row to the
ProductComponents table, and click the Save button without specifying a value for the ParentProductID.
You will see an error message that looks like the one shown in Figure 4-16.

Figure 4-16. Dataset contraints in action

You get the error in Figure 4-16 because the dataset is expecting the foreign key (ParentProductID)
to have been filled in. Since your users should not be expected to specify the foreign key, you can write
code to automatically fill in this value whenever a new row is added to the Components grid. The
following highlighted code shows what you need to change in your code to achieve this.

private void BindData()
{
 bsProducts.DataSource = _ds.Tables["Products"];
 txtName.DataBindings.Add(new Binding("Text", bsProducts, "Name", true));
 numPrice.DataBindings.Add(new Binding("Value", bsProducts, "Price", true));
 txtRemarks.DataBindings.Add(new Binding("Text", bsProducts, "Remarks", true));
 lblID.DataBindings.Add(new Binding("Text", bsProducts, "ID", true));
 dgComponents.DataSource = _ds.Tables["ProductComponents"];
 dgComponents.Columns["ParentProductID"].Visible = false;
 dgComponents.RowsAdded += new
 DataGridViewRowsAddedEventHandler(dgComponents_RowsAdded);
}

private void dgComponents_RowsAdded(object sender, DataGridViewRowsAddedEventArgs e)
{
 dgComponents.Rows[e.RowIndex - 1].Cells["ParentProductID"].Value = _productID;
}

If you run the program again, you will find that you can add a new row to the Components grid and
save the changes without having to specify the ParentProductID this time.

96

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Strongly-typed Datasets

If you’ve been using .NET and Microsoft SQL Server, you’re probably wondering by now if you can create
strongly typed datasets from an Oracle database in Visual Studio using the visual dataset designer. The
answer is yes! Oracle Developer Tools for .NET (ODT.NET) provides a rich set of tools that integrate with
the Microsoft Visual Studio IDE, one of them being the ability to design strongly typed datasets. We will
cover more on ODT.NET in Chapters 14 and 15 of this book.

Manipulating LOBs and BFILEs
Large objects (LOBs) are special data types in Oracle that allow you to store large amounts of data (up to a
maximum of about 4GB). They are commonly used to store binary data such as image, video, and audio
files or large amounts of text. There are three types of LOBs:

• BLOB: Stores binary data up to 4GB

• CLOB: Stores text (characters) data up to 4 billion characters

• NCLOB: Stores double-byte text (characters) data up to 2 billion characters

The BFILE type is another data type used by Oracle to store files. It is different from a BLOB in that
BFILEs are not stored in the database. The physical file is stored on the operating system while a
reference to the file is stored in the BFILE column. In the next few sections, we will look at how we can
manipulate these various large objects from ODP.NET.

To run the code samples in these sections, you need to first create the various BLOB, CLOB, NCLOB, and
BFILE table columns. Let’s create a new table to store these data types. To that end, execute Listing 4-17
using SQL*Plus.

Listing 4-17. Creating a Large Object Table

CREATE TABLE "EDZEHOO"."PRODUCTFILES" (
"PRODUCTID" VARCHAR2(10),
"FILEATTACHMENT" BLOB,
"FILEATTACHMENT2" BFILE,
"REMARKS" CLOB,
"REMARKSINJAPANESE" NCLOB
);

Uploading BLOB Data
To upload a file to a BLOB field, you need to read all the data from the file into a byte array and then pass
this byte array to an OracleParameter object, which will handle the rest. Let’s take a look at how this is
done. Create a new form with the layout shown in Figure 4-17. Add an OpenFileDialog control to the
form so that you can browse for a file on your system and have the full path show up in the “File to
upload” text box.

97

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Figure 4-17. Designing a sample form for the BLOB insert example

In the click event of the Insert button, write the code from Listing 4-18. The highlighted code
snippet shows how you can pass the byte array to a BLOB field using the OracleParameter class.

Listing 4-18. Inserting BLOB Data

using Oracle.DataAccess.Types;
private void btnInsert_Click(object sender, EventArgs e)
{
 //We first read the full contents of the file into a byte array
 byte[] _fileContents = System.IO.File.ReadAllBytes(txtFilepath.Text);
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 int _recordsAffected;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "INSERT INTO ProductFiles(ProductID, FileAttachment)
 VALUES(:ProductID,:FileAttachment)";
 _cmdObj.Parameters.Add (new OracleParameter
 ("ProductID",txtProductID.Text));
 OracleBlob _blob = new OracleBlob(_connObj);
 _blob.Write(_fileContents, 0, _fileContents.Length);
 _cmdObj.Parameters.Add(new OracleParameter ("FileAttachment",_blob));
 _recordsAffected = _cmdObj.ExecuteNonQuery();
 if (_recordsAffected == 1) { MessageBox.Show("File uploaded!"); }
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Try uploading an image file. You should see the “File uploaded!” message shown in Figure 4-18.

98

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Figure 4-18. Uploading data to a BLOB column

Retrieving BLOB Data
To retrieve BLOB data, you can use the OracleBlob class to retrieve the byte array for that data that you are
after. Create a new form, and place a text box for the user to type in the Product ID as well as button next
to it called “Get BLOB.” Place an enlarged PictureBox control at the bottom. The idea is to let the user
retrieve the file attachment (an image is assumed to be uploaded earlier) for the specified Product ID
and to then display it in the picture box control. The code to do this is shown in Listing 4-19.

Listing 4-19. Retrieving BLOB Data

private void btnGetBLOB_Click(object sender, EventArgs e)
{
 //We first read the full contents of the file into a byte array
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 OracleDataReader _rdrObj;
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT FileAttachment FROM ProductFiles WHERE
 ProductID=:ProductID";
 _cmdObj.Parameters.Add(new OracleParameter("ProductID", txtProductID.Text));
 _rdrObj=_cmdObj.ExecuteReader();
 if (_rdrObj.HasRows)
 {
 if (_rdrObj.Read())
 {
 OracleBlob _blobObj =
 _rdrObj.GetOracleBlob(_rdrObj.GetOrdinal("FileAttachment"));
 picProductImage.Image = Image.FromStream(new
 System.IO.MemoryStream(_blobObj.Value));
 }
 }

99

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

 else
 {
 MessageBox.Show("An item with the matching product ID was not found!");
 }
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Run the form that you’ve just created. Type the Product ID you specified earlier when you uploaded
your file. When you click “Get BLOB,” your file attachment will show in the PictureBox control. You
should see something similar to Figure 4-19.

Figure 4-19. Retrieving and displaying BLOB data

Inserting CLOB/NCLOB Data
CLOB and NCLOB data types are character-based data and are meant to store large amounts of text. You
can insert CLOB and NCLOB data pretty much the same way as you did for the BLOB using the OracleClob
class (which handles for both the CLOB and NCLOB data types). Let’s take a look at the code in Listing 4-20.

Listing 4-20. Inserting CLOB Data

using Oracle.DataAccess.Types;
private void btnInsert_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 int _recordsAffected;

100

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "INSERT INTO ProductFiles(ProductID, Remarks)
 VALUES(:ProductID,:Remarks)";
 _cmdObj.Parameters.Add (new OracleParameter
 ("ProductID",txtProductID.Text));
 OracleClob _clobObj = new OracleClob(_connObj);
 _clobObj.Write(txtRemarks.Text.ToCharArray(), 0, txtRemarks.Text.Length);
 _cmdObj.Parameters.Add (new OracleParameter("Remarks", _clobObj));
 _recordsAffected = _cmdObj.ExecuteNonQuery();
 if (_recordsAffected == 1) { MessageBox.Show("CLOB saved!"); }
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

For NCLOBs, you can use the same OracleClob class in the same manner. You will need to additionally
specify the second (whether to enable caching) and third arguments (whether this is an NCLOB) in the
constructor for the OracleClob class. The following code illustrates how this can be done (changes are
highlighted in bold):

OracleClob _clobObj = new OracleClob(_connObj, true, true);
_clobObj.Write(txtRemarks.Text.ToCharArray(), 0, txtRemarks.Text.Length);
_cmdObj.Parameters.Add (new OracleParameter("RemarksInJapanese", _clobObj));

 Note The difference between a CLOB and an NCLOB is that a CLOB is meant to store single-byte data while an
NCLOB is meant for double-byte data (for example, Unicode text)

Retrieving CLOB/NCLOB Data
To retrieve data from a CLOB field, you can use the GetOracleClob() method of the OracleClob class.
Listing 4-21 provides an example. The use of OracleCLOB is highlighted in the listing.

101

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Listing 4-21. Retrieving CLOB Data

private void btnGetCLOB_Click(object sender, EventArgs e)
{
 //We first read the full contents of the file into a byte array
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 OracleDataReader _rdrObj;
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT Remarks FROM ProductFiles WHERE
 ProductID=:ProductID";
 _cmdObj.Parameters.Add(new OracleParameter("ProductID", txtProductID.Text));
 _rdrObj=_cmdObj.ExecuteReader();
 if (_rdrObj.HasRows)
 {
 if (_rdrObj.Read())
 {
 OracleClob _clobObj =
 _rdrObj.GetOracleClob(_rdrObj.GetOrdinal("Remarks"));
 txtRemarks.text = _clobObj.Value
 }
 }
 else
 {
 MessageBox.Show("An item with the matching product ID was not found!");
 }
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Creating BFILE Directory Mappings
As I mentioned earlier, BFILEs are basically references in Oracle to files that are stored externally in the
operating system. You can define which folder these files are actually stored in. Oracle allows you to
create logical directories that map to a specific folder on your machine. Your SQL statements refer to
these folders not by path but by logical directory name. For example, you’ll need to run the following
statement in SQL*Plus:

102

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

CREATE OR REPLACE DIRECTORY "PRODUCTFILESFOLDER" AS 'C:\PRODUCTFILES';

 Note Before you can run the preceding statement, the EDZEHOO user account must first be granted
permissions to create directories. You can grant that permission from SQL*Plus by logging on with SYSDBA
privileges and running the following statement: GRANT CREATE ANY DIRECTORY TO "EDZEHOO";.

Successfully executing a CREATE DIRECTORY statement will get you a “Directory created” message.
The CREATE DIRECTORY statement in this section basically tells Oracle to map the logical directory name
ProductFilesFolder to the folder C:\ProductFiles.

Inserting BFILE Data
After creating a directory mapping, you can try your hand at inserting your first BFILE record. Oracle
provides the BFILENAME() SQL function that can generate a special type of link (called a BFILE locator)
when you pass in a logical directory name and the full name of the file. For example, the following SQL
INSERT command attempts to insert the local file at C:\ProductFiles\myfile.jpg as a BFILE in the
database:

INSERT INTO ProductFiles(FileAttachment2)
VALUES (BFILENAME('PRODUCTFILESFOLDER ', 'myfile.jpg '))

Take a look at the full code in Listing 4-22.

Listing 4-22. Inserting BFILE Data

private void btnInsert_Click(object sender, EventArgs e)
{
 //We first read the full contents of the file into a byte array
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 int _recordsAffected;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "INSERT INTO ProductFiles(ProductID, FileAttachment2)
 VALUES(:ProductID,BFILENAME('PRODUCTFILESFOLDER',:FileName))";
 _cmdObj.Parameters.Add (new OracleParameter
 ("ProductID",txtProductID.Text));
 _cmdObj.Parameters.Add(new OracleParameter("FileName",txtFilename.Text));
 _recordsAffected = _cmdObj.ExecuteNonQuery();
 if (_recordsAffected == 1) { MessageBox.Show("File uploaded!"); }
 _connObj.Close();

103

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Retrieving BFILE Data
You can retrieve a BFILE using the OracleBFile class. The great thing about the OracleBFile class is that it
returns you the actual file itself, not just a link or pointer to the file. Oracle does all the work of mapping
the BFILE locator to the on-disk file and returning you the file. Let’s take a look at the code in Listing 4-
23.

Listing 4-23. Retrieving BFILE Data

private void btnGetBFile_Click(object sender, EventArgs e)
{
 //We first read the full contents of the file into a byte array
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 byte[] _fileContents;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 OracleDataReader _rdrObj;
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT FileAttachment2 FROM ProductFiles WHERE
 ProductID=:ProductID";
 _cmdObj.Parameters.Add(new OracleParameter("ProductID", txtProductID.Text));
 _rdrObj = _cmdObj.ExecuteReader();
 if (_rdrObj.HasRows)
 {
 if (_rdrObj.Read())
 {
 OracleBFile _bfileObj = _rdrObj.GetOracleBFile
 (_rdrObj.GetOrdinal("FileAttachment2"));
 if (_bfileObj.FileExists)
 {
 _fileContents = _bfileObj.Value;

 //_fileContents now holds the array of bytes
 //representing the BFILE
 MessageBox.Show("The name of the file is: " +
 _bfileObj.FileName + "\nThe length of the
 file is :" + _bfileObj.Length);

104

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

 }
 }
 }
 else
 {
 MessageBox.Show("An item with the matching product ID was not found!");
 }
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

 Tip Obviously one of the questions that might pop into your mind is when to use BFILEs and when to use
BLOBs. The answer is simple: if you don’t wish to bloat your database size, the BFILE is a better choice since it
stores all files outside the database. On the other hand, if you prefer to keep all your files in the database for easier
backup operations, it makes more sense to use BLOBs.

Manipulating RAW Data Types
A globally unique identifier (GUID) is a 16-byte value that is guaranteed to be globally unique (it is
generated through a complex algorithm involving your network MAC address) and can be easily
generated in .NET with the System.Guid.NewGuid() method call. The fact that GUIDs are always
guaranteed to be globally unique makes them suitable to be used internally as record identifiers. It is not
uncommon to represent for example, user, customer, or invoice IDs as GUID values in the database.

Oracle does not provide a data type that can natively store GUID values. The Oracle ROWID and
UROWID data types, although sounding conspicuously like GUID data types, do not resemble a GUID in
any way: ROWIDs store the address of a particular row in a table. The closest (and most efficient) match we
have is the RAW(16) data type. The RAW data type is basically a binary data type of a configurable size.
RAW(16) suits us well; it stores all 16 bytes required for a GUID value.

Let’s try saving and loading a GUID from an Oracle table. Before you run the code sample below,
create the table shown in Listing 4-24 via SQL*Plus.

105

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Listing 4-24. Creating a Table Holding Globally Unique Identifiers

CREATE TABLE "EDZEHOO"."GUIDTEST" (
"GUID" RAW(16),
"NAME" VARCHAR2(255));

Listing 4-25 shows how you can insert in a GUID value into the RAW column in the table that you
created in Listing 4-24. The code highlighted in bold saves the GUID into the RAW column using the
OracleParameter class.

Listing 4-25. Inserting a GUID into a RAW Column

private void btnGenerate_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 int _recordsAffected;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 //Insert a new record
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "INSERT INTO GUIDTest(GUID, Name)
 VALUES(:GUID,:Name)";
 OracleParameter _rawObj = new OracleParameter("GUID", OracleDbType.Raw);
 _rawObj.Value = System.Guid.NewGuid().ToByteArray();
 _cmdObj.Parameters.Add(_rawObj);
 _cmdObj.Parameters.Add(new OracleParameter("Name", "Test1"));
 _recordsAffected = _cmdObj.ExecuteNonQuery();
 MessageBox.Show("Total records affected after insert:" + _recordsAffected);
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

You can run an SQL SELECT in SQL*PLUS to see how the GUID is stored internally in Oracle. In the
screenshot shown in Figure 4-20, the GUID value is displayed in hexadecimal form.

106

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Figure 4-20. GUID displayed in hexadecimal format

Retrieving a GUID value from a RAW column into a System.Guid class is relatively straightforward.
The highlighted code in Listing 4-26 below shows how this can be rather easily achieved using the
OracleBinary class.

Listing 4-26. Retrieving a GUID from a RAW Column

using Oracle.DataAccess.Types;
private void button1_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _sql;
 OracleDataReader _rdrObj;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 DataSet _ds = new DataSet();
 _connObj.Open();
 _sql = "SELECT GUID FROM GUIDTest";
 OracleCommand _cmdObj = new OracleCommand(_sql, _connObj);
 _rdrObj = _cmdObj.ExecuteReader();
 if (_rdrObj.HasRows)
 {
 if (_rdrObj.Read())
 {
 OracleBinary _binaryObj = _rdrObj.GetOracleBinary
 (_rdrObj.GetOrdinal("GUID"));
 System.Guid _GUIDObj = new System.Guid(_binaryObj.Value);
 MessageBox.Show("The GUID retrieved is: " + _GUIDObj.ToString());
 }
 }
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {

107

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

 MessageBox.Show(ex.ToString());
 }
}

Running the code sample in Listing 4-26 should yield the output shown in Figure 4-21.

Figure 4-21. GUID retrieved and displayed in a pop-up window

Creating Automatically Incrementing Columns
If you have ever programmed in Microsoft SQL Server or Microsoft Access before, you would be quite
familiar with the concept of the Autonumber or Identity column type. These are numerical-based
column types that increment automatically whenever you insert a new record into the table. At first
glance, you might find that Oracle does not have an equivalent data type. That is true, but Oracle
implements automatic numbers in its own way—through the use of sequences.

Sequences are objects in Oracle that can be used to generate running numbers. They must be
created explicitly. Create a sequence using the following DDL via SQL*Plus (you may need to log in as
the SYSDBA to create the sequence):

CREATE SEQUENCE "EDZEHOO"."PRODUCTIDSEQUENCE"
INCREMENT BY 1 MINVALUE 1 MAXVALUE 99999;

You can create incrementing or decrementing sequences by changing the Increment By, Minimum,
and Maximum values. Create a new table as well so that you can try out the code sample in this section.
Here is the table to create:

CREATE TABLE "EDZEHOO"."TESTPRODUCTS" (
"ID" NUMBER(10),
"NAME" VARCHAR2(255),
CONSTRAINT "PRIMKEY3" PRIMARY KEY ("ID") VALIDATE);

When you create a sequence, it is simply a stand-alone set of running numbers. To make any use of
a sequence, you need to grab the value automatically generated by the sequence and include it in your
SQL INSERT statements. The NEXTVAL() SQL function allows you to get the next running number from a
specified sequence. The following illustrates how this can be done:

INSERT INTO TESTPRODUCTS(ID, NAME) VALUES
(PRODUCTIDSEQUENCE.NEXTVAL(), 'SHOCKABSORBERS');

108

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Let’s try this sample out. Log in as EDZEHOO again, and run the SQL statement preceding code three
times consecutively. After that, run an SQL SELECT statement on the TestProducts table. You will find
three records inserted, as shown in Figure 4-22, each with a different incrementing sequence number.

Figure 4-22. Sequences inserted successfully into the TestProducts table

Executing DDL from ODP.NET
You can execute DDL statements such as CREATE TABLE and ALTER TABLE statements in ODP.NET
through the ExecuteNonQuery() method. For example, the code in Listing 4-27 allows you to
programmatically add a new column to the Products table.

Listing 4-27. Adding a New Column to a Table Using the ALTER TABLE Command

private void btnAddNewColumn_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "ALTER TABLE PRODUCTS ADD (SPECIALREMARKS
 VARCHAR2(255))";
 _cmdObj.ExecuteNonQuery();
 MessageBox.Show("New column added!");
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

109

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Discovering Schema in ODP.NET
Through ODP.NET’s GetSchema() implementation, you can retrieve a rich set of information about the
database. You can pass in the name of the desired collection to retrieve a list of the collection objects
from the database. Take a look at the sample code in Listing 4-28.

Listing 4-28. Retrieving Database Schema Information Using GetSchema()

private void btnGetSchema_Click(object sender, EventArgs e)
{
 string _connstring;
 _connstring = "Data Source=localhost/NEWDB;User Id=EDZEHOO;Password=PASS123;";
 DataTable _dt = null;
 OracleConnection myconn = new OracleConnection(_connstring);
 myconn.Open();
 _dt = myconn.GetSchema("tables");
 dataGridView1.DataSource = _dt;
}

By passing in the collection name "tables", you can retrieve the full set of tables in the Oracle
database you’re connected to. When displayed in a form, such a list might look like the one show in
Figure 4-23.

Figure 4-23. Displaying schema information for the "tables" collection

The list of common collection names you can use with GetSchema() is given in Table 4-2. There are
other collections that you can retrieve, such as the list of stored procedures, indexes, or functions
available in Oracle. You can see the full list of collections by calling GetSchema
(DbMetaDataCollectionNames.MetaDataCollections).

110

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Table 4-2. A List of Commonly Used Collection Names for GetSchema()

Collection Name Description

"Tables" A list of all tables in Oracle

"Views" A list of all views in Oracle

"Columns" A list of all table columns in Oracle

"Users" A list of all users in Oracle

System.Data.Common.DbMetaDataCollectionN
ames.MetaDataCollections

Returns a list of all the names of the
collections that can be obtained through
GetSchema()

System.Data.Common.DbMetaDataCollectionN
ames.Restrictions

Returns a list of the restrictions (filters)
that can be used with each collection type
in GetSchema

System.Data.Common.DbMetaDataCollectionN
ames.DatasourceInformation

Returns information about the data
source, such as the Oracle product version
number, and so on

System.Data.Common.DbMetaDataCollectionN
ames.DataTypes

Returns a list of all the data types in Oracle
and their column sizes

System.Data.Common.DbMetaDataCollectionN
ames.ReservedWords

Returns a list of all the reserved words in
Oracle

With most of these collections, you can further filter what you need to retrieve. For example, the

"Columns" collection is pretty vast; it retrieves every single column of every single table available in
Oracle, including the system tables. This wouldn’t be very useful. Retrieving the columns for one specific
table at a time would make much more sense. We can use restrictions to limit what you wish to retrieve
with GetSchema(). For example, the "Columns" collection allows for three types of restrictions to be
specified (in this order):

• Restriction 0: By owner name

• Restriction 1: By table name

• Restriction 2: By column name

If you wanted to retrieve metadata on all the columns in the table PRODUCTS created by the user
EDZEHOO, you could write the code in Listing 4-29.

111

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Listing 4-29. Retrieving Metadata for All Columns in a Table

private void btnGetSchema_Click(object sender, EventArgs e)
{
 string _connstring;
 _connstring = "Data Source=localhost/NEWDB;User Id=EDZEHOO;Password=PASS123;";
 DataTable _dt = null;
 OracleConnection myconn = new OracleConnection(_connstring);
 myconn.Open();

 string[] restrictions= new string[3];

 //Here we initialize all restrictions to null – take note that null is different
 //from "". To make sure a restriction is not used, set it to null
 for (int _counter = 0; _counter < 3; _counter++) { restrictions[_counter] = null; }
 restrictions[0] = "EDZEHOO";
 restrictions[1] = "PRODUCTS";
 _dt = myconn.GetSchema("columns",restrictions);
 dataGridView1.DataSource = _dt;
}

Running this code would yield results such as those in Figure 4-24.

Figure 4-24. Displaying column information for the "Products" table

There are different sets of restrictions for different collections. You can see the full list of these
restrictions by calling GetSchema (DbMetaDataCollectionNames.Restrictions).

112

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Handling ODP.NET Exceptions
The OracleException class in ODP.NET can provide error messages that are more detailed than the ones
in the standard Exception class. For example, run the code in Listing 4-30.

Listing 4-30. Error Handling Using the Standard Exception Class

private void btnRunQuery_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _sql;
 OracleDataReader _rdrObj;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 DataSet _ds = new DataSet();
 _connObj.Open();
 //Intentionally run an incorrect query
 _sql = "SELECT aaa FROM bbb WHERE ccc=ddd";
 OracleCommand _cmdObj = new OracleCommand(_sql, _connObj);
 _rdrObj = _cmdObj.ExecuteReader();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message.ToString());
 }
}

You will notice that the error message captured by the standard Exception object, and shown in
Figure 4-25, shows limited information.

Figure 4-25. Standard Exception error message

Now, try changing the earlier code to use the OracleException class. You should end up with Listing
4-31 (the changes are highlighted in bold).

113

CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

Listing 4-31. Error Handling Using the OracleException Class

private void btnRunQuery_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _sql;
 OracleDataReader _rdrObj;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 DataSet _ds = new DataSet();
 _connObj.Open();
 //Intentionally run an incorrect query
 _sql = "SELECT aaa FROM bbb WHERE ccc=ddd";
 OracleCommand _cmdObj = new OracleCommand(_sql, _connObj);
 _rdrObj = _cmdObj.ExecuteReader();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (OracleException ex)
 {
 MessageBox.Show("Oracle Error Number: " + ex.Number + "\nSource: " +
 ex.Source + "\nData source: " + ex.DataSource + "\nProcedure: " +
 ex.Procedure + "\nMessage: " + ex.Message + "\nInnerException: " +
 ex.InnerException);
 }
}

If you run this code again, you will see the error message in Figure 4-26. That error message gives
slightly more detail than the previous message in Figure 4-25.

Figure 4-26. Custom Exception error message using OracleException

114

 CHAPTER 4 RETRIEVING AND MANIPULATING DATA WITH ODP.NET

115

Summary
In this chapter, you’ve taken a look at how to read and write different types of data to and from an Oracle
database using ODP.NET. Specifically, you learned the following:

• The various data types available in ODP.NET and which Oracle native types they
map to

• How to use the OracleDataReader, OracleDataAdapter, OracleCommand, and
OracleCommandBuilder classes to read and write data in Oracle

• How to use the OracleBLOB, OracleCLOB, and OracleBFILE classes to manipulate
large data types (such as file attachments and large amounts of text) in Oracle

• How to retrieve database schema information via ODP.NET

• How to trap and handle ODP.NET exceptions in your code

With the information from this chapter, you are now well equipped to start designing applications
on top of the Oracle database, but we’re just only getting started! You will discover throughout the next
few chapters that there is more to ODP.NET than just basic data retrieval and manipulation.

In the next chapter, we will dive into the world of PL/SQL. You will learn how you can communicate
effectively with PL/SQL stored procedures from within your .NET code.

C H A P T E R 5

Using PL/SQL and .NET CLR
Stored Procedures with ODP.NET

Stored procedures remain one of the most common ways of separating the data tier from the logic tier of
an application. They shield the developer from having to make changes to the code when the underlying
database structure changes. And with stored procedures backed up by a powerful SQL dialect (PL/SQL),
it isn’t hard to see why many developers choose to stuff as much database logic as they can behind them.

In this chapter, we explore the different ways you can interact with PL/SQL code through ODP.NET.
We will particularly look at how to accomplish the following:

• Executing PL/SQL stored functions, functions, and anonymous blocks

• Passing input data and retrieve output data from PL/SQL blocks via parameters

• Handling complex input/output parameters such as associative arrays, VARRAYs,
nested tables, UDTs, REF cursors, and multiple REF cursors in your .NET code

• Creating and deploying a .NET CLR stored procedure

Understanding the Basics of PL/SQL
PL/SQL is the dialect (and extension) of SQL in Oracle. You might know your dialect as T-SQL if you’re a
Microsoft SQL Server developer. PL/SQL provides a rich set of data types that allow you to retrieve and
manipulate complex data types in an Oracle database. PL/SQL code can exist in three main forms:

• As a PL/SQL anonymous block

• As a PL/SQL stored procedure

• As a PL/SQL function

The anonymous block is the simplest form that PL/SQL code can exist in. An anonymous block is
not stored in the Oracle database, and it requires no name. Executing anonymous PL/SQL blocks is thus
a matter of directly tossing blocks of code (as strings) to ODP.NET for execution.

PL/SQL most commonly takes on the form of stored procedures. Stored procedures are named
blocks of PL/SQL code that are stored in the database. A stored procedure can be executed by
referencing its name in code.

Functions are similar to stored procedures except that they must return a value.
You can communicate with all three forms using ODP.NET’s input and output parameters. We will

look at these three forms in detail in the sections to follow.

117

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

Working with Anonymous PL/SQL Blocks
An anonymous PL/SQL block is simply an unnamed block of PL/SQL code. This means that it does not
have a header section. An anonymous PL/SQL block has the following characteristics:

• Can only be a procedure, not a function

• Has no name

• Is not stored in the database

The following is an example of an anonymous PL/SQL block:

BEGIN
 printLine('Hello World');
END;

You can pass data into an anonymous PL/SQL block and retrieve data in return through IN, OUT and
IN-OUT Oracle parameters. We will explore how we can do this in the next few sections.

Executing an Anonymous PL/SQL Block
An anonymous PL/SQL block can be treated like any other SQL statement. You can use the
ExecuteNonQuery method of the OracleCommand object to execute the statement. Let’s take a look at how
you can do this. You can use the Products table you’ve created in the previous chapter to try your code
sample. Create a new form, add a new button named btnRunPLSQL to the form, and write the code in
Listing 5-1 into the click event of that button.

 Note Developers occasionally make the wrong assumption that the OracleCommand.CommandType parameter
should be set to StoredProcedure for an anonymous PL/SQL block. This is incorrect. Anonymous PL/SQL blocks
are really text statements; the parameter should be set to (the default value) Text.

Listing 5-1. Inserting a New Record Via an Anonymous PL/SQL Block

private void btnRunPLSQL_Click(object sender, EventArgs e)
{

string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "BEGIN" +

" INSERT INTO Products(ID, NAME, PRICE," +
 " REMARKS) VALUES('B1', 'Brake Fluid'," +

118

www.wowebook.com

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 " 80.50, 'Inserted via PL/SQL');" +
 "END;";
 _cmdObj.ExecuteNonQuery();
 MessageBox.Show("New row added!");
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }

Try running this code sample! You should of course see the “New row added!” message. If you try
running a SELECT query against the Products table, you should be able to see the newly inserted product
(shown in Figure 5-1).

Figure 5-1. Newly inserted product

Passing Data into an Anonymous Block
Now let’s take a look at how we can pass input data into an anonymous PL/SQL block. Passing data into
PL/SQL is very similar to executing a parameterized query. For example, your anonymous PL/SQL block
could look like this:

BEGIN
 UPDATE Products SET Price=100 WHERE Name = :1
END;

You can pass in data by declaring OracleParameter objects and adding them to the OracleCommand
object. Given the preceding example, you could declare an OracleParameter object in this fashion:

OracleParameter _paramObj = new OracleParameter();
_paramObj.ParameterName = ":1";
_paramObj.OracleDbType = OracleDbType.Varchar2;
_paramObj.Direction = ParameterDirection.Input;
_paramObj.Value = 'Engine';

119

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

When creating a parameter, you need to set the correct parameter name as well as the correct
Oracle data type of the field. The Direction field can be set to any one of the following values:

• ParameterDirection.Input (also referred to as an IN parameter)

• ParameterDirection.InputOutput (also referred to as an IN-OUT parameter)

• ParameterDirection.Output (also referred to as an OUT parameter)

• ParameterDirection.ReturnValue (used with PL/SQL functions)

Let’s build a sample that passes in user input from a form into an anonymous PL/SQL block. Create
a form with the controls shown in Figure 5-2.

Figure 5-2. Sample form to pass data to an anonymous block

In the click event of the “Update now!’ button, write the code from Listing 5-2.

Listing 5-2. Updating a Record Via an Anonymous PL/SQL Block

private void btnUpdateNow_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "BEGIN" +
 " UPDATE Products SET Price=Price + :1 " +
 " WHERE Name = :2;" +
 "END;";
 OracleParameter _PriceParam = new OracleParameter();
 _PriceParam.ParameterName = ":1";
 _PriceParam.OracleDbType = OracleDbType.Int32;
 _PriceParam.Direction = ParameterDirection.Input;
 _PriceParam.Value = numPriceIncrement.Value;
 _cmdObj.Parameters.Add(_PriceParam);

 OracleParameter _NameParam = new OracleParameter();
 _NameParam.ParameterName = ":2";
 _NameParam.OracleDbType = OracleDbType.Varchar2;

120

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 _NameParam.Direction = ParameterDirection.Input;
 _NameParam.Value = txtProductName.Text;
 _cmdObj.Parameters.Add(_NameParam);

 _cmdObj.ExecuteNonQuery();
 MessageBox.Show("Updating done!");

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Run the form, and specify the name of an existing product in the Products table in the first text box.
Specify an increment value in the numeric control, and click the “Update Now!” button. Upon
successful execution, run a SELECT statement in SQL*Plus to check the price of the product you’ve just
updated. You should see it incremented by the amount you keyed in earlier.

Returning Data from an Anonymous Block
Let’s look at how we can pass data in the opposite direction now. To return data, we simply declare
output parameters (that is, parameters with the Direction set to ParameterDirection.Output). In
PL/SQL, the INTO keyword allows you to set the value of a parameter, as shown in the following example:

BEGIN
 SELECT COUNT(*) INTO :1 FROM Products;
END;

The INTO :1 syntax allows you to return a value from an anonymous PL/SQL block. Let’s try out this
technique by writing some code to retrieve the total number of records in the Products table using an
anonymous PL/SQL block.

Create a new form, and place a button named btnRetrieveData on the form. In the click event of this
button, write the code shown in Listing 5-3.

Listing 5-3. Returning Data Via an Anonymous PL/SQL Block

private void btnRetrieveData_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "BEGIN" +

121

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 " SELECT COUNT(*) INTO :1 FROM Products;" +
 "END;";
 OracleParameter _countParam = new OracleParameter();
 _countParam.ParameterName = ":1";
 _countParam.OracleDbType = OracleDbType.Int32;
 _countParam.Direction = ParameterDirection.Output;
 _cmdObj.Parameters.Add(_countParam);

 _cmdObj.ExecuteNonQuery();
 MessageBox.Show("Total number of records : " + _countParam.Value);

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run this code sample and click the “Retrieve Data” button, you will see the number of records
show up in a pop-up message box, as shown in Figure 5-3.

Figure 5-3. Retrieving the total number of records from an anonymous PL/SQL block

 Note Take note that this method involving the keyword INTO is used to retrieve single field values such as the
result of a SUM, COUNT, MAX, or MIN operation, or the value of a single field. To retrieve multiple rows of data, you
need to use REF cursors or arrays (covered later).

Working with PL/SQL Stored Procedures
The PL/SQL stored procedure can be said to be the equivalent of the standard T-SQL stored procedure
in Microsoft SQL Server. A PL/SQL stored procedure can be distinguished from an anonymous PL/SQL
block by the following characteristics:

122

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

• Is stored in the database

• Is declared with a header and a body section (and is therefore named)

Just like anonymous PL/SQL blocks, you can pass and retrieve data from PL/SQL stored procedures
via IN, OUT, and IN-OUT parameters. Let’s take a look at how this can be done in code.

Executing a PL/SQL Stored Procedure
To execute a PL/SQL stored procedure, you simply need to pass the name of the stored procedure to the
OracleCommand object, set its CommandType property to StoredProcedure, and then execute the statement
using the ExecuteNonQuery method (as shown in the following example):

_cmdObj.CommandText = "name_of_stored_procedure";
_cmdObj.CommandType = CommandType.StoredProcedure;
_cmdObj.ExecuteNonQuery();

Let’s try this out with a code sample. You can create the PL/SQL stored procedure in Oracle using
SQL*Plus. Take note that you must first grant yourself privileges to create and alter stored procedures by
running the following under the SYSTEM account:

GRANT CREATE ANY PROCEDURE TO "EDZEHOO";
GRANT ALTER ANY PROCEDURE TO "EDZEHOO";

Once you have done that, log in under your user account, and type the following stored procedure
declaration in SQL*Plus. Add a slash (/) character as the last line to get SQL*Plus to create your stored
procedure. (The code from CREATE to END gets sent to Oracle to create the procedure. The slash (/)
character tells SQL*Plus that you are finished typing the procedure and to send the procedure to Oracle).
CREATE OR REPLACE PROCEDURE proc_InsertProduct IS
BEGIN
 INSERT INTO Products(ID, NAME, PRICE,REMARKS) VALUES('H1', 'Hydraulics',100.00,
 'Inserted via PL/SQL stored procedure');
END;
/

Now, let’s look at the code you need to write to call this procedure. Create a new form and place a
button named btnCallStoredProc on this form. Write the code from Listing 5-4 into the click event of
this button.

123

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

Listing 5-4. Inserting a New Record Via a PL/SQL Stored Procedure

private void btnCallStoredProc_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "proc_InsertProduct";
 _cmdObj.CommandType = CommandType.StoredProcedure;
 _cmdObj.ExecuteNonQuery();

 MessageBox.Show ("Product inserted");

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Run this form, and click the button. You will see the “Product Inserted” pop-up message. You can
then check to make sure the new product was inserted by running a SELECT query on the Products table
in SQL*Plus.

Passing Data into a PL/SQL Stored Procedure
Let’s take a look at how we can pass in data to a PL/SQL stored procedure. Create another stored
procedure like the following:

CREATE OR REPLACE PROCEDURE proc_UpdateProduct
(
 decPrice IN DECIMAL,
 strProductName IN VARCHAR2
)
IS
BEGIN
 UPDATE Products SET Price=Price + decPrice WHERE Name=strProductName;
END;

124

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 Note The IN keyword declares that the parameter is meant to hold input data passed in to the stored
procedure.

Use the same form you’ve built earlier for the “Passing Data Into an Anonymous PL/SQL Block”
sample. But now change the code for the click event of the btnUpdateNow button to that shown in Listing
5-5.

Listing 5-5. Updating a Record Via a PL/SQL Stored Procedure

private void btnUpdateNow_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "proc_UpdateProduct";
 _cmdObj.CommandType = CommandType.StoredProcedure;

 OracleParameter _PriceParam = new OracleParameter();
 _PriceParam.ParameterName = "decPrice";
 _PriceParam.OracleDbType = OracleDbType.Decimal;
 _PriceParam.Direction = ParameterDirection.Input;
 _PriceParam.Value = numPriceIncrement.Value;
 _cmdObj.Parameters.Add(_PriceParam);

 OracleParameter _NameParam = new OracleParameter();
 _NameParam.ParameterName = "strProductName";
 _NameParam.OracleDbType = OracleDbType.Varchar2;
 _NameParam.Direction = ParameterDirection.Input;
 _NameParam.Value = txtProductName.Text;
 _cmdObj.Parameters.Add(_NameParam);
 _cmdObj.ExecuteNonQuery();

 MessageBox.Show ("Product updated");

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

125

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 Notice that you can also refer to stored procedure parameters by name. This is in contrast to your
use of identifiers, such as :1 and :2, when passing data into an anonymous block. After running this
example, you can query the Products table again via SQL*Plus to confirm that the changes were made to
the table.

Retrieving Data from a PL/SQL Stored Procedure
Now let’s try to get the record count of the Products table via a stored procedure. Create the following
stored procedure in the database.

CREATE OR REPLACE PROCEDURE proc_RetrieveCount
(
 intRecordCount OUT NUMBER
)
IS
BEGIN
 SELECT COUNT(*) INTO intRecordCount FROM Products;
END;

 Note In this stored procedure, we have declared the parameter as an OUT parameter rather than an IN
parameter. This means that the parameter will hold an output value.

Create a new form and place a button named btnRetrieveCount on the form. In the click event of
this button, write the code from Listing 5-6.

Listing 5-6. Retrieving the Record Count Via a PL/SQL Stored Procedure

private void btnRetrieveCount_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "proc_RetrieveCount";
 _cmdObj.CommandType = CommandType.StoredProcedure;

 OracleParameter _countParam = new OracleParameter();
 _countParam.ParameterName = "intRecordCount";
 _countParam.OracleDbType = OracleDbType.Int32;
 _countParam.Direction = ParameterDirection.Output;
 _cmdObj.Parameters.Add(_countParam);

126

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 _cmdObj.ExecuteNonQuery();
 MessageBox.Show ("Total number of records : " + _countParam.Value);

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Take note that the Direction property of the Oracle parameter is set to Output instead of Input. If
you run this code and click the “Retrieve Count” button, you will be able to see the total number of
records show in a pop-up message box.

Executing a PL/SQL Function
A PL/SQL function is similar to the PL/SQL stored procedure except that it will always return a value.
PL/SQL functions can return values of any data type, including complex data types. Just in case you’re
wondering how a PL/SQL function looks, here’s a sample one that returns the number of records in the
Products table:

CREATE OR REPLACE FUNCTION func_RetrieveCount
RETURN NUMBER
IS
 intRecordCount NUMBER;
BEGIN
 SELECT COUNT(*) INTO intRecordCount FROM Products;
 RETURN intRecordCount;
END;

To call this PL/SQL function and read its return value, you will need to declare an OracleParameter
that has the ParameterDirection.ReturnValue type instead of the ParameterDirection.Output type. Let’s
try this. Create a new form, and place a new button on the form. In the click event of the button, write
the code in Listing 5-7.

Listing 5-7. Retrieving the Record Count Via a PL/SQL Function

private void btnRetrieveCount_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();

127

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 _cmdObj.CommandText = "func_RetrieveCount";
 _cmdObj.CommandType = CommandType.StoredProcedure ;

 //Declare the return parameter
 OracleParameter _retValueParam = new OracleParameter();
 _retValueParam.ParameterName = "Any_name";
 _retValueParam.OracleDbType = OracleDbType.Int32;
 _retValueParam.Direction = ParameterDirection.ReturnValue;
 _cmdObj.Parameters.Add(_retValueParam);

 _cmdObj.ExecuteNonQuery();
 MessageBox.Show("The return value is :" + _retValueParam.Value.ToString());
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Run the form, and click the button. You should be able to see the number of records show up in a
pop-up message box.

 Tip Return values are usually used when a single value needs to be returned from a stored procedure.
Output parameters are used instead when multiple values need to be returned. You can, however, have both
output parameters and return values in the same PL/SQL function.

Handling Special IN and OUT Data Types
There are many different data types that can be passed as IN/OUT parameters to and from stored
procedures. In the sections earlier, you’ve seen examples on how to do this with simpler data types such
as the VARCHAR2 and NUMBER data types. In this section, we’ll take an in-depth look at more complex types:

• Collection data types (associative arrays, VARRAYs, and nested tables)

• Reference data types (REF cursors and multiple REF cursors)

• Custom UDTs

Using Associative Arrays
PL/SQL provides a data type called the associative array that allows you to use collections in your
PL/SQL code. This data type behaves just like any collection would—you can loop through its elements,

128

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

reference an item using an index or a key, and so on. An associative array can be thought of as the
equivalent of a hash table in .NET. It can be declared in the following format:

TYPE <ArrayName> IS TABLE OF <Element Type> INDEX BY <Key Type>;
For example, you might need to have an array of numerical elements that can be iterated through

using a numerical index. In such a case, you would declare the associative array as follows:

TYPE MyArray IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

 Tip You can also index an associative array using strings. In such a case, you would declare the associative
array as TYPE MyArray IS TABLE OF NUMBER INDEX BY VARCHAR2(255).

Let’s take a look at an example of how associative arrays can be passed in or retrieved from a
PL/SQL stored procedure.

Passing Associative Arrays to PL/SQL Code
It would be great to be able to update the prices of multiple items in the Products table in one go. You
can achieve this using two arrays: one to hold the names of the products you wanted to update and the
other to hold the corresponding prices for each product in the first array. Let’s create and declare a
stored procedure to do this.

The first step is to declare the associative arrays in a PL/SQL package. You will also need to declare a
sample stored procedure in the same package as well. You can do this by running the following script in
SQL*Plus:

CREATE OR REPLACE PACKAGE ProductsPackage IS
 TYPE DecimalArray IS TABLE OF DECIMAL INDEX BY BINARY_INTEGER;
 TYPE StringArray IS TABLE OF VARCHAR2(255) INDEX BY BINARY_INTEGER;
 PROCEDURE proc_UpdateMultiplePrices(ProdPrices IN DecimalArray, ProdNames IN
 StringArray);
END ProductsPackage;

 Note As you can see, the associative arrays are being passed as stored procedure arguments. You must
hence declare these associative arrays first. We use a PL/SQL package in this example because it lets you wrap all
these declarations in a tidy code block.

The next thing you will need to do is to create the stored procedure itself. In the
UpdateMultiplePrices stored procedure, we will loop through the ProdNames array and run an SQL
UPDATE statement to update the price for each product found (using the prices from the ProdPrices
array). Run the following PL/SQL script in SQL*Plus as well:

129

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

CREATE OR REPLACE PACKAGE BODY ProductsPackage IS
 PROCEDURE proc_UpdateMultiplePrices(ProdPrices IN DecimalArray, ProdNames IN
 StringArray)
 IS
 BEGIN
 FOR i IN 1..ProdNames.LAST
 LOOP

UPDATE Products SET Price = Price + ProdPrices(i) WHERE Name =
 ProdNames(i);

 END LOOP;
 END;
END ProductsPackage;

Now that you’ve created the PL/SQL package and the stored procedure, you can easily refer to it
using the following notation:

<Package Name>.<Stored Procedure Name>
To pass in an array created in C# or VB.NET to a PL/SQL stored procedure as an associative array,

you can use the following code:

OracleParameter _priceParam = new OracleParameter();
_priceParam.ParameterName = "ProdPrices";
_priceParam.OracleDbType = OracleDbType.Decimal;
_priceParam.Direction = ParameterDirection.Input;

//Declare the parameter as a PL/SQL Associative array
_priceParam.CollectionType = OracleCollectionType.PLSQLAssociativeArray;

//Create the array
Decimal [] decArray= new Decimal[3];
decArray[0] = 100;
decArray[1] = 300;
decArray[2] = 500;

//Pass it to the parameter object
_priceParam.Value = decArray;
_cmdObj.Parameters.Add(_priceParam);

Let’s take a look at the full code in Listing 5-8, where you will be passing two arrays (a decimal and
string array) to the PL/SQL stored procedure. Create a new form, and place a button called
btnUpdateMultiplePrices on the form. In the click event of this button, write the code shown in Listing
5-8.

Listing 5-8. Updating Multiple Prices Using Associative Arrays

private void btnUpdateMultiplePrices_Click(object sender, EventArgs e)
{
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {

130

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "ProductsPackage.proc_UpdateMultiplePrices";
 _cmdObj.CommandType = CommandType.StoredProcedure;

 OracleParameter _priceParam = new OracleParameter();
 _priceParam.ParameterName = "ProdPrices";
 _priceParam.OracleDbType = OracleDbType.Decimal;
 _priceParam.Direction = ParameterDirection.Input;
 _priceParam.CollectionType = OracleCollectionType.PLSQLAssociativeArray;
 Decimal [] decArray= new Decimal[3];
 decArray[0] = 100;
 decArray[1] = 300;
 decArray[2] = 500;
 _priceParam.Value = decArray;
 _cmdObj.Parameters.Add(_priceParam);

 OracleParameter _NameParam = new OracleParameter();
 _NameParam.ParameterName = "ProdNames";
 _NameParam.OracleDbType = OracleDbType.Varchar2;
 _NameParam.Direction = ParameterDirection.Input;
 _NameParam.CollectionType = OracleCollectionType.PLSQLAssociativeArray;
 String[] stringArray = new String[3];
 stringArray[0] = "Engine";
 stringArray[1] = "Windshield";
 stringArray[2] = "Rear Lights";
 _NameParam.Value = stringArray;
 _cmdObj.Parameters.Add(_NameParam);
 _cmdObj.ExecuteNonQuery();

 MessageBox.Show("All products updated!");

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

After running this code sample, you will find that the prices for the “Engine”, “Windshield”, and
“Rear Lights” products have increased by the amounts specified in the ProdPrices array.

Retrieving Associative Arrays from PL/SQL Code
There will definitely be occasions when you need to retrieve multiple rows of data from a stored
procedure. You can use associative arrays for this purpose. In the following code sample, you will write a

131

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

stored procedure to retrieve the names of all your products into an associative array. Title this procedure
proc_GetAllProductNames.

Before you proceed, make the following changes (highlighted in bold) to the ProductsPackage you
created earlier. Run the following scripts in SQL*Plus:

CREATE OR REPLACE PACKAGE ProductsPackage IS
 TYPE DecimalArray IS TABLE OF DECIMAL INDEX BY BINARY_INTEGER;
 TYPE StringArray IS TABLE OF VARCHAR2(255) INDEX BY BINARY_INTEGER;
 PROCEDURE proc_GetAllProductNames(ProdNames OUT StringArray);
END ProductsPackage;

CREATE OR REPLACE PACKAGE BODY ProductsPackage IS
 PROCEDURE proc_GetAllProductNames(ProdNames OUT StringArray)
 IS
 BEGIN
 SELECT Name BULK COLLECT INTO ProdNames FROM Products;
 END;
END ProductsPackage;

 Tip The BULK COLLECT INTO syntax tells Oracle to bulk bind the output from the multiple rows fetched by a
query into a PL/SQL collection.

Create a new form, and place a new button named btnGetAllProductNames on the form. In the click
event of this button, write the code from Listing 5-9.

Listing 5-9. Retrieving Multiple Rows of Data Via Associative Arrays

private void btnGetAllProductNames(object sender, EventArgs e)
{
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "ProductsPackage.proc_GetAllProductNames";
 _cmdObj.CommandType = CommandType.StoredProcedure;

 //Create an output parameter
 OracleParameter _NameParam = new OracleParameter();
 _NameParam.ParameterName = "ProdNames";
 _NameParam.OracleDbType = OracleDbType.Varchar2 ;
 _NameParam.Direction = ParameterDirection.Output;
 _NameParam.CollectionType = OracleCollectionType.PLSQLAssociativeArray;

132

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 //You must explicitly define the number of elements to return
 _NameParam.Size = 10;

 //Because you are retrieving an object with a variable size, you need to
 //define the size of the string returned. This size must be specified for
 //each element in the output result
 int[] intArray= new int[10];
 int _counter;
 for (_counter = 0; _counter < 10; _counter++) {intArray[_counter] = 255;}
 _NameParam.ArrayBindSize = intArray;

 //Execute the stored procedure
 _cmdObj.Parameters.Add(_NameParam);
 _cmdObj.ExecuteNonQuery();

 //For VARCHAR2 data types, an array of OracleString objects is returned
 String _result="";
 OracleString[] stringArray = (OracleString[])_NameParam.Value;
 for (_counter = 0; _counter <= stringArray.GetUpperBound(0); _counter++)
 {
 OracleString _outputString = stringArray[_counter];
 _result = _result + _outputString.Value + "\n";
 }
 MessageBox.Show("Product names are:\n" + _result);

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run the code in Listing 5-9, you will see the list of products retrieved in a pop-up message box,
as shown in Figure 5-4.

Figure 5-4. Retrieving associative arrays

133

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 Note When retrieving data from a stored procedure using an associative array, you must explicitly know the
maximum Size of the output array in advance. Setting a value that is lower than the actual retrieved data would
raise an exception.

Using VARRAYs
The variable-size array (VARRAY) is another type of collection object that can be used in PL/SQL in
addition to associative arrays (which you saw earlier). The VARRAY is an ordered set of elements and is
quite similar to the associative array in that it is usually used if you know the size of the array that you
need in advance.

 Tip One difference between a VARRAY and an associative array is that it is defined, not declared. You’ve seen
earlier that you can simply declare an associative array inside the body of a PL/SQL package. For VARRAYs,
however, you must explicitly define them using the CREATE OR REPLACE TYPE statement.

Let’s write a code sample to selectively delete records from the Products table by passing in a VARRAY
containing a list of IDs of the products that you wish to delete. First, create the VARRAY object in SQL*Plus
using the following statement:

CREATE OR REPLACE TYPE ProductVArray AS VARRAY(3000) OF VARCHAR2(10);
This creates a VARRAY that can contain a maximum of 3,000 elements of ten-character strings. Next,

create the following stored procedure to loop through the array and delete the corresponding products:

CREATE OR REPLACE PROCEDURE proc_DeleteProducts(arrProduct IN ProductVArray) IS
BEGIN
 FOR i IN 1..arrProduct.LAST
 LOOP
 DELETE FROM Products WHERE ID = arrProduct(i);
 END LOOP;
END;

The VARRAY is also different from associative arrays in that it can be considered a custom data type.
You cannot receive a VARRAY directly from the OracleParameter.Value property as you did earlier for
associative arrays. To be able to use it in your code, you will need to create a .NET class that encapsulates
this array. Listing 5-10 does that for you, creating the ProductVArray class referenced by the stored
procedure. This class will also need to implement the IOracleCustomType interface so that it can be
recognized by Oracle.

134

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

Listing 5-10. The ProductVArray Class

using System;
using System.Data;
using System.Collections;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

public class ProductVArray : IOracleCustomType, INullable
{
 //You will need to define a local array to hold the VARRAY elements. The data
 //type must correspond to the type declared in the VARRAY. You’ve defined a VARRAY
 //of VARCHAR2(10) values, hence your local array will hold String objects.
 [OracleArrayMapping()]
 public String[] Array;

 //The status array is used to store the status of an array index - whether the
 //element at the index is a NULL value or not.
 private OracleUdtStatus[] m_statusArray;
 public OracleUdtStatus[] StatusArray
 {
 get
 {
 return this.m_statusArray;
 }
 set
 {
 this.m_statusArray = value;
 }
 }

 private bool m_bIsNull;

 public bool IsNull
 {
 get
 {
 return m_bIsNull;
 }
 }

 public static ProductVArray Null
 {
 get
 {
 ProductVArray obj = new ProductVArray();
 obj.m_bIsNull = true;
 return obj;
 }
 }

135

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 //The ToCustomObject method is required as part of the IOracleCustomType
 //implementation. It maps the retrieved VARRAY to the local array.
 public void ToCustomObject(OracleConnection con, IntPtr pUdt)
 {
 object objectStatusArray = null;
 Array = (String[])OracleUdt.GetValue(con, pUdt, 0, out objectStatusArray);
 m_statusArray = (OracleUdtStatus[])objectStatusArray;
 }

 //The FromCustomObject method is the opposite equivalent. It maps a local array to a
 //VARRAY
 public void FromCustomObject(OracleConnection con, IntPtr pUdt)
 {
 OracleUdt.SetValue(con, pUdt, 0, Array, m_statusArray);
 }

 public override string ToString()
 {
 if (m_bIsNull)
 return "ProductVArray.Null";
 else
 {
 string rtnstr = String.Empty;
 if (m_statusArray[0] == OracleUdtStatus.Null)
 rtnstr = "NULL";
 else
 rtnstr = Array.GetValue(0).ToString();

 for (int i = 1; i < m_statusArray.Length; i++)
 {
 if (m_statusArray[i] == OracleUdtStatus.Null)
 rtnstr += "," + "NULL";
 else
 rtnstr += "," + Array.GetValue(i).ToString();
 }
 return "ProductVArray(" + rtnstr + ")";
 }
 }
}

You will also need to create another class—the factory class for your ProductVArray class. You can
create the class using the code in Listing 5-11.

Listing 5-11. The ProductVArrayFactory Class

[OracleCustomTypeMapping("EDZEHOO.PRODUCTVARRAY")]
public class ProductVArrayFactory : IOracleCustomTypeFactory, IOracleArrayTypeFactory
{
 public IOracleCustomType CreateObject()
 {
 return new ProductVArray();

136

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 }
 public Array CreateArray(int numElems)
 {
 return new String[numElems];
 }

 public Array CreateStatusArray(int numElems)
 {
 return new OracleUdtStatus[numElems];
 }
}

You will now need to write the code to instantiate the ProductVArray class, initialize it to a set of
values, and then pass it to the proc_DeleteValues stored procedure as a VARRAY. Create a new form and
place a button named btnDeleteProducts on it. In the click event of the button, write the code from
Listing 5-12.

Listing 5-12. Deleting Products Via a VARRAY

private void btnDeleteProducts_Click(object sender, EventArgs e)
{
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "proc_DeleteProducts";
 _cmdObj.CommandType = CommandType.StoredProcedure;

 //Instantiate the ProductVArray class and add two elements
 ProductVArray _products = new ProductVArray();
 _products.Array = new String[] { "E1", "C1" };

 //Create a UDT-based OracleParameter, and pass in the ProductVArray
 //object
 OracleParameter param = new OracleParameter();
 param.OracleDbType = OracleDbType.Object;
 param.Direction = ParameterDirection.Input;
 param.UdtTypeName = "EDZEHOO.PRODUCTVARRAY";
 param.Value = _products;
 _cmdObj.Parameters.Add(param);

 int _result = _cmdObj.ExecuteNonQuery();
 if (_result > 0)
 {
 MessageBox.Show("Records deleted successfully");
 }
 else
 {

137

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 MessageBox.Show("No records deleted");
 }
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you try running the preceding code, you will find the Products with the IDs E1 and C1 deleted.

Using Nested Tables
The nested table is the third type of collection object available to PL/SQL developers. It is basically a
table that is embedded in another table. A nested table, unlike the other two collection types you’ve seen
earlier, does not have a maximum size limit. It is hence commonly used when developers don’t know in
advance how big the collection needs to be.

A nested table has to be defined, not declared. The syntax to define a nested table is quite similar to
that of the associative array. You will notice however that the INDEX BY part is not defined with nested
tables, for example:

CREATE OR REPLACE TYPE ProductNestedTable AS TABLE OF VARCHAR2(10);
Let’s try rewriting the VARRAY code example from the previous section using nested tables. First,

define the nested table by running the statement above in SQL*Plus. After that, you will need to redefine
the proc_DeleteProducts stored procedure. Run the following statement next:

CREATE OR REPLACE PROCEDURE proc_DeleteProducts(tblProduct IN ProductNestedTable) IS
BEGIN
 FOR i IN 1..tblProduct.LAST
 LOOP
 DELETE FROM Products WHERE ID = tblProduct(i);
 END LOOP;
END;

The next thing you need to do is to create a new factory class for the nested table type you’ve
created. The following class will implement the IOracleArrayTypeFactory interface:

[OracleCustomTypeMappingAttribute("EDZEHOO.PRODUCTNESTEDTABLE")]
public class ProductNestedTableFactory : IOracleArrayTypeFactory
{
 public Array CreateArray(int numElems)
 {
 return new String[numElems];
 }

 public Array CreateStatusArray(int numElems)
 {
 return new OracleUdtStatus[numElems];

138

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 }
}

You must now write code to create the string array, fill it with data, and then pass the array on to
your stored procedure as a nested table type. Create a new form, and place a button on it. In the click
event of this form, write the code from Listing 5-13.

Listing 5-13. Deleting Products Via a Nested Table

private void btnDeleteProducts_Click(object sender, EventArgs e)
{
 String _connString = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connString);
 _connObj.Open();

 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "proc_DeleteProducts";
 _cmdObj.CommandType = CommandType.StoredProcedure;

 // Create a string array and populate it with the IDs of the Products you
 //wish to delete
 String[] _productsTable = new String[] { "R1", "W1" };

 //Create a parameter object and pass in the string array
 OracleParameter _productTblParam = new OracleParameter();
 _productTblParam.OracleDbType = OracleDbType.Array;
 _productTblParam.Direction = ParameterDirection.Input;
 _productTblParam.UdtTypeName = "EDZEHOO.PRODUCTNESTEDTABLE";
 _productTblParam.Value = _productsTable;
 _cmdObj.Parameters.Add(_productTblParam);

 int _result = _cmdObj.ExecuteNonQuery();
 if (_result > 0)
 {
 MessageBox.Show("Records deleted successfully");
 }
 else
 {
 MessageBox.Show("No records deleted");
 }
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (OracleException ex)
 {
 MessageBox.Show(ex.ToString());

139

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 }
}

Try running this code sample and clicking the button. You will find the products with the IDs R1 and
W1 deleted.

Using REF Cursors
A REF cursor is a pointer to a result set generated on the server from a query. REF cursors can be used, for
example, when you need to run a query in one stored procedure and have the results processed by
another stored procedure. Because it is essentially a pointer to a result set in memory, what is passed
around is the reference or pointer, not the actual result set itself.

What is important to note is that a REF cursor points to a result set existing in server memory, not
client memory. When a REF cursor-generating query executes on the server, initially only the pointer, not
the actual data, is returned to the client. Data are only returned to the client when they are requested.
This may mean additional roundtrips to the server but is better in terms of performance in cases where
you do not immediately need to use the data after running a query.

 Caution Another indirect implication of accessing a REF cursor is that (unlike a DataSet), the moment you
close the database connection, the REF cursor becomes unavailable. This is because the result set of a REF cursor
actually resides in server memory, not at the client.

A question that might instantly pop in the back of your mind is, “Why return REF cursors instead of
just returning the result set directly from the stored procedure?” There are a few reasons to favor a REF
cursor:

• You need to modify the result of a query inside a stored procedure before
returning it.

• You might be planning to pass the result set from one stored procedure directly
into another stored procedure as input, with as little overhead as possible.

• The accessing code does not have direct access to the tables.

• As mentioned earlier, the REF cursor does not immediately return data until it is
requested. This may be desirable (to reduce network traffic) under certain
circumstances.

You will see that a REF cursor can be pretty versatile. It can be used as both an IN and OUT parameter. In
the next few sections, we will explore how you can use the OracleDataReader and OracleDataAdapter
classes to retrieve a result set generated from a PL/SQL stored procedure via a REF cursor. This result set
will contain all the records in the Products table. Run the following two statements in SQL*Plus to create
this stored procedure:

CREATE OR REPLACE PACKAGE ProductsPackage IS
 TYPE refCursor IS REF CURSOR;
 PROCEDURE proc_GetProductsInfo(ProdInfo OUT refCursor);

140

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

END ProductsPackage;
CREATE OR REPLACE PACKAGE BODY ProductsPackage IS
 PROCEDURE proc_GetProductsInfo(ProdInfo OUT refCursor)
 IS
 BEGIN
 OPEN ProdInfo FOR
 SELECT * FROM Products;
 END;
END ProductsPackage;

 Tip The OPEN . . . FOR statement is used to execute a query associated with a cursor. It positions the cursor
variable before the first row in the result set.

Reading a Result Set from a REF Cursor Using the OracleDataReader
To read a result set from a REF cursor, you only need to add a REF cursor output parameter to the
OracleCommand object. When you run the ExecuteDataReader() method on this OracleCommand object,
it will create and return an OracleDataReader object that internally maps to the result set referenced by
the REF cursor.

Let’s look at the code to do this. Create a new form, and place a button named btnGetReader on it.
Write the code from Listing 5-14 in the click event of this button.

Listing 5-14. Reading from a REF Cursor Using OracleDataReader

private void btnGetReader_Click(object sender, EventArgs e)
{
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "ProductsPackage.proc_GetProductsInfo";
 _cmdObj.CommandType = CommandType.StoredProcedure;

 OracleParameter _RefParam = new OracleParameter();
 _RefParam.ParameterName = "ProdInfo";
 _RefParam.OracleDbType = OracleDbType.RefCursor;
 _RefParam.Direction = ParameterDirection.Output;
 _cmdObj.Parameters.Add(_RefParam);
 OracleDataReader _rdrObj = _cmdObj.ExecuteReader();

 //This should remind you of Chapter 4. We use an OracleDataReader object to
 //loop through the result set and display a summary of the retrieved
 //information in a popup message box

141

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 if (_rdrObj.HasRows)
 {
 while (_rdrObj.Read())
 {
 String _data="";
 _data = "ID:" + _rdrObj.GetString(_rdrObj.GetOrdinal("ID")) + "\n" +
 "Name:" + _rdrObj.GetString(_rdrObj.GetOrdinal("Name")) + "\n" +
 "Price:" + _rdrObj.GetDecimal(_rdrObj.GetOrdinal("Price"));

 MessageBox.Show(_data);
 }
 }
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

When you run the preceding code sample, you will be able to see the summary of the retrieved
information show up in a series of pop-up message boxes (one of which is shown in Figure 5-5).

Figure 5-5. Reading a result set from a REF cursor using OracleDataReader

Reading a Result Set from a REF Cursor Using the OracleDataAdapter
You can also similarly read from a REF cursor into a Dataset object using the OracleDataAdapter class.
Let’s try to also display the retrieved dataset in a Datagridview control. You can reuse the same
proc_GetProductsInfo stored procedure you’ve created earlier. Create a new form, and place a
Datagridview control named Datagridview1 on the form. Place a button on the same form. In the click
event of this button, write the code from Listing 5-14.

142

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

Listing 5-15. Reading from a REF Cursor into a Dataset

private void btnGetDataset_Click(object sender, EventArgs e)
{
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "ProductsPackage.proc_GetProductsInfo";
 _cmdObj.CommandType = CommandType.StoredProcedure;

 OracleParameter _RefParam = new OracleParameter();
 _RefParam.ParameterName = "ProdInfo";
 _RefParam.OracleDbType = OracleDbType.RefCursor;
 _RefParam.Direction = ParameterDirection.Output;
 _cmdObj.Parameters.Add(_RefParam);

 OracleDataAdapter _adapterObj = new OracleDataAdapter(_cmdObj);
 DataSet _datasetObj = new DataSet ();
 _adapterObj.Fill(_datasetObj);
 dataGridView1.DataSource = _datasetObj.Tables[0];
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

When you run the code, the DataSet will be displayed in the DataGridView control. You should see
results such as those in Figure 5-6.

143

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

Figure 5-6. Reading a result set from a REF cursor into a Dataset

Retrieving Multiple Active Result Sets
The cool thing about REF cursors is that you can also retrieve multiple active result sets (MARs) from a
single stored procedure run. You can do this by adding multiple REF cursor parameters to an
OracleCommand object. First of all, let’s change the previous section’s stored procedure slightly. Instead of
just retrieving the whole list of products, you will return two result sets—the first returning the list of
products that are below $500 dollars, and the second returning the list of products above $500. The
following highlighted code shows you what you need to change:

CREATE OR REPLACE PACKAGE ProductsPackage IS
 TYPE refCursor IS REF CURSOR;
 PROCEDURE proc_GetProductsInfo(cheapProducts OUT refCursor, expensiveProducts OUT
 refCursor);
END ProductsPackage;
CREATE OR REPLACE PACKAGE BODY ProductsPackage IS
 PROCEDURE proc_GetProductsInfo (cheapProducts OUT refCursor,
 expensiveProducts OUT refCursor)
 IS
 BEGIN
 OPEN cheapProducts FOR
 SELECT * FROM Products WHERE Price<500;
 OPEN expensiveProducts FOR
 SELECT * FROM Products WHERE Price>500;
 END;
END ProductsPackage;

If you return multiple REF cursors from your stored procedure and the OracleDataAdapter.Fill()
method to obtain a DataSet, the various result sets are populated into separate Datatable objects in the
same dataset.

Let’s build the code sample to try this out now. You can use the same form you created earlier in the
previous section. This time, you’d probably want to add another DataGridView control (named

144

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

Datagridview2) to your form to display the second result set. In the click event of the btnGetDataset
button, write the code from Listing 5-16.

Listing 5-16. Retrieving Multiple REF Cursors

private void btnGetDataset_Click(object sender, EventArgs e)
{
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "ProductsPackage.proc_GetProductsInfo";
 _cmdObj.CommandType = CommandType.StoredProcedure;

 //Create the REF cursor parameter for the products that are < $500
 OracleParameter _chpProdParam = new OracleParameter();
 _chpProdParam.ParameterName = "cheapProducts";
 _chpProdParam.OracleDbType = OracleDbType.RefCursor;
 _chpProdParam.Direction = ParameterDirection.Output;
 _cmdObj.Parameters.Add(_chpProdParam);

 //Create the REF cursor parameter for the products that are > $500
 OracleParameter _expProdParam = new OracleParameter();
 _expProdParam.ParameterName = "expensiveProducts";
 _expProdParam.OracleDbType = OracleDbType.RefCursor;
 _expProdParam.Direction = ParameterDirection.Output;
 _cmdObj.Parameters.Add(_expProdParam);

 OracleDataAdapter _adapterObj = new OracleDataAdapter(_cmdObj);
 DataSet _datasetObj = new DataSet();
 _adapterObj.Fill(_datasetObj);

 //The result sets are stored in separate Datatables in the same dataset
 dataGridView1.DataSource = _datasetObj.Tables[0];
 dataGridView2.DataSource = _datasetObj.Tables[1];

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

When you run the code from Listing 5-16, you can see the data sets in the corresponding
DataGridView controls. You should see results similar to those in Figure 5-7. In fact, there is nothing

145

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

stopping you from running stored procedures that return more than two result sets. You can increase
the performance of your application this way by reducing the number of round trips taken to the server
for each request.

Figure 5-7. Reading a result set from multiple REF cursors into multiple datatables

User Defined Types (UDT) / OBJECT Types
The Oracle database allows you to use UDTs in PL/SQL. UDTs are basically data types that allow you to
model the structure of the data in your application. For example, you can represent real-world objects
such as customers, as objects in an Oracle database using the following UDT definition:

CREATE OR REPLACE TYPE Customer AS OBJECT
(
 CustomerID VARCHAR2(10),
 CustomerName VARCHAR2(255),
 CustomerDOB DATE
);

UDTs are convenient because they extend object-oriented design into the database, making it easier
for database administrators and developers to understand how individual fields relate to each other. It
also makes for clearer and neater code; instead of passing parameters field by field to a stored
procedure, you can pass them as a single UDT. Perhaps one of the most important benefits of using
UDTs is that an Oracle UDT can map directly to a .NET class. This allows you to read from a UDT
directly into a .NET class, with each UDT column mapping to a .NET property with the same name.

Let’s take a look at how this mapping can be achieved. You will build a sample application to try to
insert a new record into the Products table (by passing its details to a stored procedure as a UDT object).
First, you must grant yourself the rights to create UDT objects. Log on under the SYSTEM account in
SQL*Plus, and run the following statement:

146

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

GRANT CREATE ANY TYPE TO "EDZEHOO";
Next, you must define the UDT object itself. Log on under your own user account in SQL*Plus, and

run the following statement:

CREATE OR REPLACE TYPE ProductType AS OBJECT
(
 ID VARCHAR2(10),
 Name VARCHAR2(255),
 Price NUMBER
);

The next thing you need to do is to create a stored procedure that will take in the UDT object and
insert its details into the Products table. You can do this by running the following script in SQL*Plus.
Notice that you can refer to the member variables of the UDT using the dot (.) separator.

CREATE OR REPLACE PROCEDURE proc_InsertProduct(udtProduct IN ProductType) IS
BEGIN
 INSERT INTO Products(ID, Name, Price) VALUES(udtProduct.ID, udtProduct.Name,
 udtProduct.Price);
END;

Now, you will need to create a class that maps to the UDT you’ve just created. Create a new class in
your project called ProductType. This class must implement the INullable and IOracleCustomType
interfaces. The code for this class follows in Listing 5-17.

Listing 5-17. The ProductType Class

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

public class PRODUCTTYPE : INullable, IOracleCustomType {
 private bool m_IsNull;
 private string m_ID;
 private string m_NAME;
 private decimal m_PRICE;
 private bool m_PRICEIsNull;

 public PRODUCTTYPE() {
 this.m_PRICEIsNull = true;
 }

 public virtual bool IsNull {
 get {
 return this.m_IsNull;
 }
 }

 public static PRODUCTTYPE Null {
 get {
 PRODUCTTYPE obj = new PRODUCTTYPE();

147

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 obj.m_IsNull = true;
 return obj;
 }
 }

 [OracleObjectMappingAttribute("ID")]
 public string ID {
 get {
 return this.m_ID;
 }
 set {
 this.m_ID = value;
 }
 }

 [OracleObjectMappingAttribute("NAME")]
 public string NAME {
 get {
 return this.m_NAME;
 }
 set {
 this.m_NAME = value;
 }
 }

 [OracleObjectMappingAttribute("PRICE")]
 public decimal PRICE {
 get {
 return this.m_PRICE;
 }
 set {
 this.m_PRICE = value;
 }
 }

 public bool PRICEIsNull {
 get {
 return this.m_PRICEIsNull;
 }
 set {
 this.m_PRICEIsNull = value;
 }
 }

 //The FromCustomObject method is required as part of the IOracleCustomType
 //interface. This function allows you to define the mapping to use when filling a
 //UDT object with data from your UDT class
 public virtual void FromCustomObject(Oracle.DataAccess.Client.OracleConnection con,
 System.IntPtr pUdt)
 {
 Oracle.DataAccess.Types.OracleUdt.SetValue(con, pUdt, "ID", this.ID);
 Oracle.DataAccess.Types.OracleUdt.SetValue(con, pUdt, "NAME", this.NAME);

148

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 if ((PRICEIsNull == false))
 {
 Oracle.DataAccess.Types.OracleUdt.SetValue(con, pUdt, "PRICE",
 this.PRICE);
 }
 }

 //This method is the opposite. It allows you to define the mapping to use when
 //populating your UDT class with data from a retrieved UDT object.
 public virtual void ToCustomObject(Oracle.DataAccess.Client.OracleConnection con,
 System.IntPtr pUdt)
 {
 this.ID = ((string)(Oracle.DataAccess.Types.OracleUdt.GetValue(con, pUdt,
 "ID")));
 this.NAME = ((string)(Oracle.DataAccess.Types.OracleUdt.GetValue(con, pUdt,
 "NAME")));
 this.PRICEIsNull = Oracle.DataAccess.Types.OracleUdt.IsDBNull(con, pUdt,
 "PRICE");
 if ((PRICEIsNull == false))
 {
 this.PRICE =
 ((decimal)(Oracle.DataAccess.Types.OracleUdt.GetValue(con,
 pUdt, "PRICE")));
 }
 }
}

 Tip Your class property names do not necessarily need to be the same as the column names in your UDT
object. You can define your own mapping and behavior in the FromCustomObject and ToCustomObject methods
in the class shown in Listing 5-17.

You will also need to create an accompanying factory class. To that end, execute the code in Listing
5-18.

Listing 5-18. The ProductTypeFactory Class

[OracleCustomTypeMappingAttribute("EDZEHOO.PRODUCTTYPE")]
public class PRODUCTTYPEFactory : IOracleCustomTypeFactory
{
 public virtual IOracleCustomType CreateObject()
 {
 PRODUCTTYPE obj = new PRODUCTTYPE();
 return obj;
 }
}

149

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

Now that you’ve done this, you can finally write the code to instantiate the UDT class and pass it to
the stored procedure you’ve created. Create a new form, place a button on the form, and in the click
event of this button, write the code from Listing 5-19.

Listing 5-19. Inserting a New Record Using a UDT

private void btnInsertProduct_Click(object sender, EventArgs e)
{
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = " proc_InsertProduct";
 _cmdObj.CommandType = CommandType.StoredProcedure;

 //Instantiate your UDT class here and specify the data for your new record
 PRODUCTTYPE _product = new PRODUCTTYPE();
 _product.NAME = "SPARETYRE";
 _product.PRICE = 400;
 _product.ID = "Y1";

 //Declare a UDT-based parameter and pass the instantiated class into this
 //parameter
 OracleParameter param = new OracleParameter();
 param.OracleDbType = OracleDbType.Object;
 param.Direction = ParameterDirection.Input;
 param.UdtTypeName = "EDZEHOO.PRODUCTTYPE";
 param.Value = _product;
 _cmdObj.Parameters.Add(param);

 int result = _cmdObj.ExecuteNonQuery();
 if (result > 0)
 {
 MessageBox.Show("Product successfully added");
 }
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

You can now run this code. You will find the SpareTyre product created in the Products table.
Retrieving a UDT object is similar; you simply reverse the ParameterDirection in your code and in the
stored procedure definition.

150

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

Handling Custom-Defined PL/SQL Errors
The PL/SQL language allows you to raise exceptions in PL/SQL code. If you think about it, that ability to
raise exceptions makes sense too. PL/SQL stored procedures take in all sorts of input parameters. A
prudent PL/SQL developer would check the input parameters before they are used. For instance, if you
wanted to update the product price in a stored procedure, you should at least check if the new Price
passed in was a negative number (which would be invalid). If the validation failed, your PL/SQL stored
procedure could then raise an error to the calling .NET code by executing a call to
RAISE_APPLICATION_ERROR, as shown in the following code:

CREATE OR REPLACE PROCEDURE proc_UpdatePrice(ProdPrice IN DECIMAL, ProdName IN
 VARCHAR2)
IS
BEGIN
 IF ProdPrice<=0 THEN
 RAISE_APPLICATION_ERROR(-20000, 'Invalid price value');
 END IF;
 UPDATE Products SET Price=ProdPrice WHERE Name=ProdName;
END;

In your .NET code, you can detect an exception using the OracleException class you learned in the
previous chapter. The highlighted code in Listing 5-20 shows how you can trap this exception and show
a message to the user based on the retrieved error number.

Listing 5-20. Handling Custom PL/SQL Errors

private void btnUpdateNow_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "proc_UpdatePrice";
 _cmdObj.CommandType = CommandType.StoredProcedure;

 OracleParameter _PriceParam = new OracleParameter();
 _PriceParam.ParameterName = "ProdPrice";
 _PriceParam.OracleDbType = OracleDbType.Int32;
 _PriceParam.Direction = ParameterDirection.Input;
 _PriceParam.Value = numPriceIncrement.Value;
 _cmdObj.Parameters.Add(_PriceParam);

 OracleParameter _NameParam = new OracleParameter();
 _NameParam.ParameterName = "ProdName";
 _NameParam.OracleDbType = OracleDbType.Varchar2;
 _NameParam.Direction = ParameterDirection.Input;
 _NameParam.Value = txtProductName.Text;

151

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

 _cmdObj.Parameters.Add(_NameParam);

 _recordsAffected = _cmdObj.ExecuteNonQuery();
 MessageBox.Show("Updating done!");

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (OracleException ex)
 {
 if (ex.Number == 20000)
 MessageBox.Show("Sorry, invalid price value!");
 else
 MessageBox.Show(ex.ToString());
 }
}

If you run this code sample and pass in a negative number as the Price, an exception will be raised.
Your application will trap and display the appropriate message, as shown in Figure 5-8.

Figure 5-8. Handling custom-defined PL/SQL errors

Creating Your First .NET CLR Stored Procedure
.NET CLR stored procedures are stored procedures that can be written in a .NET language like C# or
VB.NET, compiled into a .NET assembly (DLL file), registered with the Oracle database, and called like
any other ordinary Oracle stored procedure. Unlike a PL/SQL stored procedure, a .NET CLR stored
procedure executes outside of the Oracle database. When a call is made to execute this stored procedure,
the assembly (DLL) hosting the stored procedure is loaded as an external process. Oracle then
communicates with this external process (passing IN/OUT parameters for execution and so on).

152

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

.NET CLR stored procedures are a part of the Oracle Database Extensions for .NET package. You can
create a .NET CLR stored procedure by creating a project based on the Oracle Project type in Visual
Studio (shown in the screenshot in Figure 5-9).

Figure 5-9. Creating a new .NET CLR stored procedure

In your new project, create a new class called ProductClass. Use the code from Listing 5-21.
The class in Listing 5-21 defines a static method named UpdateProductPrice, which will be your

.NET CLR stored procedure. Let’s use this method to update the price of a product by passing in the ID
of the product you wish to update and the new price amount. Inside this method, you can use the
OracleConnection and OracleCommand objects to execute SQL statements against the database. Listing 5-
21 does exactly that.

Listing 5-21. The .NET CLR Stored Procedure

public class ProductClass
{
 public static void UpdateProductPrice(String ProdID, Decimal ProdPrice)
 {
 String _connString = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 OracleConnection _connObj = new OracleConnection(_connString);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand ();
 _cmdObj.CommandText ="UPDATE Products SET Price=" + ProdPrice + " WHERE
 ID='" + ProdID + "'";
 _cmdObj.ExecuteNonQuery ();
 _connObj.Close();
 _connObj.Dispose ();
 _connObj = null;
 }
}

153

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

That’s all there is to it! Listing 5-21 is, of course, a very basic example. You can create .NET stored
procedures of any complexity and behavior in this fashion. In the next section, we’ll take a look at how
you can deploy what you’ve just written to the Oracle database.

Deploying a .NET CLR Stored Procedure
To deploy a .NET CLR stored procedure, right click your project in the Solution window of the Visual
Studio IDE. Choose the Deploy menu option to launch the deployment wizard for your CLR stored
procedure. Figure 5-10 illustrates.

Figure 5-10. Launching the .NET CLR stored procedure deployment wizard

The first step of the deployment wizard allows you to configure an Oracle database connection to
use for the deployment. Fill in your database connection settings. After that is done, proceed to the next
step. The next window (shown in Figure 5-11) allows you to choose a deployment option. Since you will
need to copy and load the DLL to the database, select the first option.

 Note Take note that you are required to log on with SYSDBA privileges to use the .NET CLR stored procedure
deployment wizard in Visual Studio.

154

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

Figure 5-11. Choosing the deployment option

The next window (shown in Figure 5-12) allows you to specify the name of the assembly and library.
You can use the defaults provided in this window.

Figure 5-12. Specifying an assembly and library name

155

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

The subsequent step allows you to choose the assemblies to copy over to the Oracle database and
also to specify an alternate destination folder for these assemblies. Figure 5-13 shows the window
involved. Use the defaults provided in this window.

Figure 5-13. Specifying copy options

As a last step, the wizard allows you to selectively specify the methods that you wish to deploy to the
database. See Figure 5-14 for an example.

Figure 5-14. Specifying method and security details

156

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

Select your CLR stored procedure method, and change its schema to the desired schema. Click the
Next or Finish button to proceed. Your stored procedure will be generated and deployed in the Oracle
database, and you will see a message similar to that in Figure 5-15 in the output window of your Visual
Studio IDE.

Figure 5-15. .NET CLR stored procedure successfully created

 Tip You need to make sure that the ORACLECLRDIR environment variable has been configured appropriately
before attempting to deploy your CLR stored procedure. This variable points to the output CLR directory that will
house your CLR stored procedure assemblies. It typically takes on the value of $ORACLE_HOME\BIN\CLR. You can
set this value manually in SQL*Plus by executing the following command under the SYSTEM account: CREATE OR
REPLACE DIRECTORY ORACLECLRDIR AS '$ORACLE_HOME\BIN\CLR '.Replace the $ORACLE_HOME keyword with
the full Oracle home path on your system.

Executing the .NET CLR Stored Procedure
Executing a .NET CLR stored procedure from .NET code using ODP.NET is no different from executing
any other ordinary PL/SQL stored procedure. You can pass IN and OUT parameters into the .NET CLR
stored procedure the same way you did earlier. Create a new form with the layout shown in Figure 5-16.

Figure 5-16. Sample form to test your .NET CLR stored procedure

157

CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

In the click event of the “Update now!” button, you need to call the stored procedure you’ve just
created. You can reapply what you learned earlier in this chapter to achieve this. The code to do so is
shown in Listing 5-22.

Listing 5-22. Testing the .NET CLR Stored Procedure

private void btnUpdateNow_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "EDZEHOO.UpdateProductPrice";
 OracleParameter _PriceParam = new OracleParameter();
 _PriceParam.ParameterName = "ProdPrice";
 _PriceParam.OracleDbType = OracleDbType.Decimal;
 _PriceParam.Direction = ParameterDirection.Input;
 _PriceParam.Value = numNewPrice.Value;
 _cmdObj.Parameters.Add(_PriceParam);

 OracleParameter _IDParam = new OracleParameter();
 _IDParam.ParameterName = "ProdID";
 _IDParam.OracleDbType = OracleDbType.Varchar2;
 _IDParam.Direction = ParameterDirection.Input;
 _IDParam.Value = txtProductName.Text;
 _cmdObj.Parameters.Add(_IDParam);

 _cmdObj.ExecuteNonQuery();
 MessageBox.Show("Updating done!");

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Now you can try to run your code sample. You may need to ensure that the record for the product
you intend to update exists in the Products table. You will find the price of the product (ID) you’ve keyed
in updated.

158

 CHAPTER 5 USING PL/SQL AND .NET CLR STORED PROCEDURES WITH ODP.NET

159

Summary
In this chapter, you’ve taken a look at how to execute PL/SQL stored procedures, functions, and
anonymous PL/SQL blocks from your code via ODP.NET. You’ve seen how they differ from each other
and how input and output parameters can be used to pass in and retrieve data from these PL/SQL
blocks.

As far as parameters go, you’ve also taken a look at how to handle the following PL/SQL complex
data types:

• Associative arrays

• VARRAYs

• Nested tables

• UDTs

• REF cursors and multiple REF cursors

You’ve also closed this chapter by trying your hand at creating and deploying your first .NET CLR
stored procedure using the integrated Oracle wizard in Visual Studio. In the next chapter, you’ll learn
how to make use of ODP.NET’s globalization features to make your database and application work with
an international audience.

C H A P T E R 6

ODP.NET Globalization

I’ll start this chapter by relating an incident that happened at a comic book retail company in Singapore
a few years back. The headquarters in Singapore initially deployed an online marketing tool that allowed
its sales team to launch and coordinate online marketing campaigns. The system ran on an Oracle
database of course.

The problem came when the company officiated its Japanese online store. The Singaporeans
wanted the Japanese to use the same set of tools and data, so they sent it all to a translator, who
translated everything into Japanese. They were planning a hotly anticipated product launch at midnight.
What they didn’t notice, however, was that all the dates and times in the translated database were still in
the Singaporean time zone! Tokyo leads Singapore by 1 hour.

You can guess what happened next. The Japanese online store launched an hour earlier without its
Singaporean counterpart. The extra traffic to the Japanese site turned up frequent Denial of Service
messages for its visitors. Worse, buyers who bought the comics an hour earlier posted storyline spoilers
online, and that ruined the experience for many who were actually waiting for the Singaporean launch.

The bottom line is that data, especially dates and currencies, can sometimes be tightly coupled with
locality. Often, conversion needs to be done to make that data available to an international audience.
Oracle (and ODP.NET) provides classes that help do this conversion automatically for you.

In this chapter, we explore the following topics:

• Working with double byte data

• Using the OracleGlobalization class to handle currencies, dates, timestamps, and
strings in different localities

• Using safe type mapping in the OracleDataAdapter class

Storing and Retrieving Double-Byte Data
The first step in making your application work in different localities is to ensure that it supports the local
language. You probably work with single-byte languages (such as English) most of the time, so let’s give
double-byte languages (like Japanese) a try for a change.

 Tip To type East Asian characters, you can either enable the Chinese, Korean, or Japanese Input Method Editor
(IME) provided by Microsoft, or simply copy and paste East Asian text from the Internet.

161

CHAPTER 6 ODP.NET GLOBALIZATION

Technically, the only difference databasewise between using single- and double-byte characters is
that you must use the NCHAR, NVARCHAR2, and NCLOB data types to store double-byte data instead of the
usual CHAR, VARCHAR2, and CLOB data types that you use for single-byte data.

Let’s try out an example. You probably recall from one of the earlier chapters that you’ve created an
NVARCHAR2 column named RemarksInJapanese in the Products table. Let’s try to store some Japanese text
in this field. Create a new form with the layout and controls shown in Figure 6-1. When the user clicks
the Update button, the RemarksInJapanese field will be updated with the double-byte remarks for the
specified product.

Figure 6-1. Storing japanese text

In the click event of the Update button, write the code from Listing 6-1. Take note that the
RemarksInJapanese parameter is defined as an OracleDbType.NVarchar2 data type.

Listing 6-1. Writing Double-Byte Data to Oracle

private void btnUpdateNow_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 int _recordsAffected;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "UPDATE Products SET RemarksInJapanese=:DblByteRemarks
 WHERE ID=:ProdID";
 _cmdObj.CommandType = CommandType.Text;

 OracleParameter _RemarksParam = new OracleParameter();
 _RemarksParam.ParameterName = "DblByteRemarks";
 _RemarksParam.OracleDbType = OracleDbType.NVarchar2;
 _RemarksParam.Direction = ParameterDirection.Input;
 _RemarksParam.Value = txtRemarks.Text;
 _cmdObj.Parameters.Add(_RemarksParam);

162

 CHAPTER 6 ODP.NET GLOBALIZATION

 OracleParameter _NameParam = new OracleParameter();
 _NameParam.ParameterName = "ProdID";
 _NameParam.OracleDbType = OracleDbType.Varchar2;
 _NameParam.Direction = ParameterDirection.Input;
 _NameParam.Value = txtProductID.Text;
 _cmdObj.Parameters.Add(_NameParam);

 _recordsAffected = _cmdObj.ExecuteNonQuery();
 MessageBox.Show("Updating done!");

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (OracleException ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Now try running the code. Specify the ID of a product that exists in your Products table, and type
some Japanese text.

 Tip To type East Asian characters, you need to install an IME. Microsoft provides Chinese, Japanese, and
Korean IMEs. You can install them via the Regional Settings tool in the Windows Control Panel. To save time, you
could also alternatively grab some East Asian text off the Internet.

Click the Update button to save the text to the database. Now that you’ve done that, you probably
want to retrieve that same data to ensure you’ve typed them correctly. The code to retrieve double-byte
data is the same as that to retrieve single-byte data and is shown in Listing 6-2.

Listing 6-2. Reading Double-Byte Data from Oracle

private void btnGetRemarks_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _result;
 try
 {
 OracleConnection _connObj = new OracleConnection();
 _connObj.ConnectionString = _connstring;
 _connObj.Open();

 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT RemarksInJapanese FROM Products";

163

CHAPTER 6 ODP.NET GLOBALIZATION

 OracleDataReader _reader = _cmdObj.ExecuteReader();

 _result = "Results:";
 if (_reader.HasRows)
 {
 while (_reader.Read())
 {
 if (_reader.IsDBNull(_reader.GetOrdinal
 ("RemarksInJapanese")) == false)
 {
 String _price = _reader.GetString(_reader.GetOrdinal
 ("RemarksInJapanese"));
 _result = _result + "\n" + _price.ToString();
 }
 }
 }
 MessageBox.Show(_result);
 _reader.Dispose();
 _cmdObj.Dispose();
 _connObj.Dispose();
 _reader.Close();
 _connObj.Close();
 _reader = null;
 _connObj = null;
 _cmdObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run this code sample, you will see the Japanese text retrieved correctly. You should see results
similar to those in Figure 6-2.

Figure 6-2. Retrieving Japanese text

164

 CHAPTER 6 ODP.NET GLOBALIZATION

Using the OracleGlobalization class
The ODP.NET OracleGlobalization class allows you to develop multilingual applications that can be
accessed from anywhere in the world simultaneously using each country’s local language, currency,
date, time, and string formatting conventions. It provides a set of properties that allow you to control the
following locale-specific attributes:

• Language

• Date/timestamp format

• Calendar system

• Currency

• Time zone

• Text-sorting algorithm to use

Table 6-1 illustrates how OracleGlobalization attributes can be applied at different levels in your
application.

Table 6-1. OracleGlobalization Attributes at Different Scopes

Scope Description

Client level Local computer-level (read only)

Session level At the OracleConnection level (The specified
OracleGlobalization attributes are used only within
the scope of each connection, or session.)

Thread level At the thread level (The specified OracleGlobalization
attributes are used only within the scope of the
currently executing thread.)

Globalization attributes defined at the thread-level overrides those defined at the session level, and

that, in turn, overrides those defined at the client level. The globalization attributes at all levels are
initialized to the client-level settings by default.

Setting Attributes at the Client Level
At the client level, OracleGlobalization attributes are read only. They depend on your operating
system’s regional settings. You can retrieve these attributes via the following code:

OracleGlobalization info = OracleGlobalization.GetClientInfo();
MessageBox.Show("Language:" + info.Language + "\n" +
 "Currency:" + info.Currency + "\n" +
 "Calendar:" + info.Calendar + "\n" +
 "Date format:" + info.DateFormat + "\n" +

165

CHAPTER 6 ODP.NET GLOBALIZATION

 "Territory:" + info.Territory + "\n" +
 "Timezone:" + info.TimeZone);

If you run this code, you will see results similar to those in Figure 6-3.

Figure 6-3. Displaying client-level globalization settings

Setting Attributes at the Session Level
You can also specify a set of attributes that are used throughout a particular Oracle connection (that is,
the session). Once the connection is closed, the attributes are no longer used. You can set globalization
attributes on an Oracle connection via the OracleConnection.SetSessionInfo() method, as shown in the
following code that sets the language attribute for the session to Japanese:

OracleConnection _connObj = new OracleConnection();
_connObj.ConnectionString = _connstring;
_connObj.Open();

//Retrieve the globalization attributes from the local computer, and change the language to
//Japanese
OracleGlobalization info = OracleGlobalization.GetClientInfo();
info.Language = "JAPANESE";

//Save the new globalization settings to the connection object
_connObj.SetSessionInfo(info);

//Do something
.
.
.
_connObj.Close();

166

 CHAPTER 6 ODP.NET GLOBALIZATION

 Tip Setting attributes at the session level is the most common method used to define globalization settings. In
web-based applications, for instance, each connecting user would likely use a different database connection. You
can thus set the appropriate globalization settings for each database connection depending on the connecting
user’s country of origin.

Setting Attributes at the Thread Level
You can also set globalization attributes at the currently executing thread level. The globalization

settings go out of scope when the thread goes out of scope. You can set the globalization settings for the
currently executing thread using the OracleGlobalization.SetThreadInfo() method shown here:

OracleGlobalization info = OracleGlobalization.GetClientInfo();
info.Language = "JAPANESE";
OracleGlobalization.SetThreadInfo(info);

Changing the Session Language
You can easily change the language used throughout an Oracle session by setting the desired language in
the OracleGlobalization.Language property. This language change is automatically applied to month
names, error messages, notifications, and so on.

Now, let’s try to get the Invalid Identifier error message in Oracle printed in Italian. Set the
OracleGlobalization.Language property to ITALIAN (see the highlighted code in Listing 6-3). To get the
error message to show up, try to reference a nonexistent field in your SQL SELECT statement.

Listing 6-3. Changing the Language for the Session

private void btnGetPrice_Click(object sender, EventArgs e)
{
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection();
 _connObj.ConnectionString = _connstring;
 _connObj.Open();

 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.Language = "ITALIAN";
 _connObj.SetSessionInfo(info);

 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT NonExistentField FROM Products";
 OracleDataReader _reader = _cmdObj.ExecuteReader();
 _reader.Dispose();

167

CHAPTER 6 ODP.NET GLOBALIZATION

 _cmdObj.Dispose();
 _connObj.Dispose();
 _reader.Close();
 _connObj.Close();
 _reader = null;
 _connObj = null;
 _cmdObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message.ToString());
 }
}

If you try to run the code in the listing, you will see the expected error message pop up. The message
will be displayed in Italian. It should appear as in Figure 6-4.

Figure 6-4. The Invalid Identifier error in Italian

Formatting Calendar Dates
Using the OracleGlobalization class, you can define the custom format and language to use when
displaying dates and times. This is an important step to globalizing your application because different
countries have different ways of representing dates. For instance, consider the differences in date
formatting shown in Table 6-2.

Table 6-2. Date Formats in Different Countries

Country Date Format

United States MON-DD-YYYY

Southeast Asia DD-MON-YYYY

Japan YYYY-MON-DD

168

 CHAPTER 6 ODP.NET GLOBALIZATION

There are two aspects to think about when working with dates. Most commonly, we encounter
variations in formats and languages. Table 6-2 illustrates the variation in formats very well. A less
commonly encountered aspect is that of calendar systems. We’ll look at both aspects next. We begin
with formats and languages.

Displaying Various Date Formats and Languages
You can set the language to use when displaying month names using the
OracleGlobalization.DateLanguage property and the date format using the
OracleGlobalization.DateFormat property. In Listing 6-4, we will attempt to display the list of dates from
the Products table in Finnish.

Listing 6-4. Changing Date Format and Language

private void btnGetDates_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _result;
 try
 {
 OracleConnection _connObj = new OracleConnection();
 _connObj.ConnectionString = _connstring;
 _connObj.Open();

 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.DateLanguage = "FINNISH";
 info.DateFormat = "DD-MON-YYYY";
 OracleGlobalization.SetThreadInfo(info);

 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT ExpiryDate FROM Products ORDER BY ExpiryDate
 ASC";
 OracleDataReader _reader = _cmdObj.ExecuteReader();
 _result = "Results:";
 if (_reader.HasRows)
 {
 while (_reader.Read())
 {
 OracleDate _odate =
 _reader.GetOracleDate(_reader.GetOrdinal("ExpiryDate"));
 _result = _result + "\n" + _odate.ToString();
 }
 }
 MessageBox.Show(_result);
 _reader.Dispose();
 _cmdObj.Dispose();
 _connObj.Dispose();
 _reader.Close();
 _connObj.Close();

169

CHAPTER 6 ODP.NET GLOBALIZATION

 _reader = null;
 _connObj = null;
 _cmdObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run the preceding code, you will see the months January to April displayed in the Finnish
language.

Figure 6-5. “January” to “April” in Finnish

Let’s try a double-byte East Asian language next. Replace the language with JAPANESE and change the
date formats (in Japan, the year comes first followed by the month and then the day). Here is the code to
use:

OracleGlobalization info = OracleGlobalization.GetClientInfo();
info.DateLanguage = "JAPANESE";
info.DateFormat = "YYYY-MON-DD";
OracleGlobalization.SetThreadInfo(info);

Assuming you have support for East Asian languages on your operating system, you will see the
pop-up message box shown in Figure 6-6.

170

 CHAPTER 6 ODP.NET GLOBALIZATION

Figure 6-6. “January” to “April” in Japanese

Designating Calendar Systems
The Gregorian calendar is the default calendar that we all know and use every day in our lives, but there
are other calendars too. For example, the Persian calendar has 31 days for each of the first 6 months, 30
days for the next 5 months, and 29 or 30 days for the remaining month. Then there is the Buddhist
calendar, used mostly in Southeast Asia (in Cambodia, Laos, Thailand, and Myanmar), which alternates
between 29 and 30 days every month.

You can explicitly specify the calendar format to use when returning dates using the
OracleGlobalization.Calendar property. The following code sample sets the calendar to Persian. To try
this code sample, substitute the globalization section in the previous btnGetDates_Click function with
the following code:

OracleGlobalization info = OracleGlobalization.GetClientInfo();
info.Calendar = "PERSIAN";
info.DateFormat = "DD/MON/YYYY";
OracleGlobalization.SetThreadInfo(info);

Figure 6-7 shows the dates that you’ll see returned if you run the sample. Take note that the
Gregorian year 2009 translates to the Persian years 1387 and 1388—the boundary between 1387 and
1388 falls sometime during 2009.

Figure 6-7. 2009 according to the Persian calendar

171

CHAPTER 6 ODP.NET GLOBALIZATION

Representing Currencies
Oracle provides three ways to represent the currency of any country. They are summarized in Table 6-3.

Table 6-3. The Different Currency Formats and Identifiers

Country
(Oracle format
element)

Currency
(L)

ISO Currency
(C)

Secondary currency
(U)

Sweden Krona (Kr) SEK Euro

America Dollar ($) USD --

France Euro (€) EUR Euro

You can define custom symbols for each currency format and have Oracle use either one for display

via the formatting elements specified in the TO_CHAR SQL function. For instance, Listing 6-5 establishes
the yen character as the standard currency symbol for the session.

Listing 6-5. Using a Custom Currency Symbol

private void btnGetPrice_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _result;
 try
 {
 OracleConnection _connObj = new OracleConnection();
 _connObj.ConnectionString = _connstring;
 _connObj.Open();

 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.Currency = "¥";
 _connObj.SetSessionInfo(info);

 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT TO_CHAR(Price,'L99G999D99') Price FROM
 Products WHERE Price IS NOT NULL";
 OracleDataReader _reader = _cmdObj.ExecuteReader();
 _result = "Results:";
 if (_reader.HasRows)
 {
 while (_reader.Read())

172

 CHAPTER 6 ODP.NET GLOBALIZATION

 {
 String _price = _reader.GetString
 (_reader.GetOrdinal("Price"));
 _result = _result + "\n" + _price;
 }
 }
 MessageBox.Show(_result);
 _reader.Dispose();
 _cmdObj.Dispose();
 _connObj.Dispose();
 _reader.Close();
 _connObj.Close();
 _reader = null;
 _connObj = null;
 _cmdObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run the code in Listing 6-5, you will see that all retrieved currencies will be formatted with the
yen symbol (as shown in Figure 6-8).

Figure 6-8. Defining a custom currency symbol

Now, the use of a symbol such as the yen symbol that you see in Figure 6-8 might present a
problem—some countries share currency symbols. For example, both Australia and Canada share the
use of the dollar ($) symbol. Displaying currency amounts prefaced by just the $ symbol might be
dangerous, because an end user would not be able to tell the difference between 50 Australian dollars
and 50 Canadian dollars.

ISO currency abbreviations help alleviate the problem just described by assigning three-letter
symbols that uniquely identify the currency of each nation. For example, US, Australian, and
Singaporean currency would be USD, AUD, and SGD respectively. You can set a session to use a specific
ISO currency abbreviation using the OracleGlobalization.ISOCurrency property. Let’s try this out in
Listing 6-6.

173

CHAPTER 6 ODP.NET GLOBALIZATION

Listing 6-6. Using ISO Currencies

private void btnGetPrice_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _result;
 try
 {
 OracleConnection _connObj = new OracleConnection();
 _connObj.ConnectionString = _connstring;
 _connObj.Open();

 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.ISOCurrency = "AUSTRALIA";
 _connObj.SetSessionInfo(info);

 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT TO_CHAR(Price,'C99G999D99') Price FROM
 Products";
 OracleDataReader _reader = _cmdObj.ExecuteReader();
 _result = "Results:";
 if (_reader.HasRows)
 {
 while (_reader.Read())
 {
 String _price = _reader.GetString
 (_reader.GetOrdinal("Price"));
 _result = _result + "\n" + _price.ToString();
 }
 }
 MessageBox.Show(_result);
 _reader.Dispose();
 _cmdObj.Dispose();
 _connObj.Dispose();
 _reader.Close();
 _connObj.Close();
 _reader = null;
 _connObj = null;
 _cmdObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run the code sample in Listing 6-6, you should see a message box like the one shown in Figure
6-9. In it, you will see AUD instead of $. Thus, it’s clear that the amounts are in Australian dollars; the use
of “AUD” removes the ambiguity surrounding the dollar symbol.

174

 CHAPTER 6 ODP.NET GLOBALIZATION

Figure 6-9. Using ISO currencies

Displaying amounts using ISO currency abbreviations (for example, CAN) is better than using
currency symbols (for example, $) for the following reasons:

• Your application does not need to know the currency symbol of a country in
advance—just specify the country name, and Oracle will use the correct symbol.
That’s one less piece of information to track in your application.

• ISO currencies can uniquely represent each country’s currency. There are no
overlapping symbols such as the dollar symbol.

There is one more thing you need to know about currencies. Some European countries have dual
currencies. For example, Sweden uses the krona and the euro. You can specify a secondary currency
using the OracleGlobalization.DualCurrency field, as shown in the following code:

OracleGlobalization info = OracleGlobalization.GetClientInfo();
info.DualCurrency = "EUR";
_connObj.SetSessionInfo(info);

To display the secondary currency, you need to use the U formatting element like so:

_cmdObj.CommandText = "SELECT TO_CHAR(Price,'U99G999D99') Price FROM Products";
You can see a comparison between the standard currency (L) and secondary currency (U) for

Sweden shown side by side in Figure 6-10.

175

CHAPTER 6 ODP.NET GLOBALIZATION

Figure 6-10. Swedish dual currency

Formatting Numbers
In the United States (and most parts of the world), the decimal point is a period (.), whereas in France, it
is a comma (,). Therefore, $1,250 may mean entirely different things to these two countries. Needless to
say, it is especially important to present the right information to the end user when dealing with
financial data.

To specify your own custom numeric formatting, you can use the
OracleGlobalization.NumericCharacters property in the following fashion:

OracleGlobalization info = OracleGlobalization.GetClientInfo();
info.NumericCharacters = ".,";
_connObj.SetSessionInfo(info);

The first character specifies the character used for the decimal point, and the second character
specifies the character used for the thousand separator (digit grouping).

Dealing with Time Zones
You’ve seen many times how the DATE data types in Oracle can be used to store both date and time data.
Now, what if you needed a date that was heavily dependent on time zone?

Let’s say your company decides to launch a particular product on a certain date at 3 p.m. Pacific
Standard time in Los Angeles, Tokyo, and India simultaneously. If you stored the product launch date as
a DATE field, the result would be disastrous. Unless you wrote extra code to apply the correct time zone
conversion to the retrieved date or time, each country would see the product at 3 p.m. local time, which
is incorrect, since they are all in different time zones.

The following statements create a new product launch date field that stores time zone data in the
Products table. It will also set the launch date of all the products on Christmas day in 2010 at 3 p.m.
(Eastern Standard time; GMT –05:00). Run these statements in SQL*Plus:

ALTER TABLE Products ADD LaunchDate TIMESTAMP WITH TIME ZONE;
UPDATE Products SET LaunchDate=TO_TIMESTAMP_TZ('2010-12-25 15:00:00 -5:00','YYYY/MM/DD
 HH24:MI:SS TZH:TZM');

176

 CHAPTER 6 ODP.NET GLOBALIZATION

 Tip You can also specify the time zone using its representative name, like this: UPDATE Products SET
LaunchDate=TO_TIMESTAMP_TZ('2010-12-25 15:00:00 America/New_York','YYYY/MM/DD HH24:MI:SS

TZR');.

Let’s take a look at what December 25, 2010, 3 p.m. translates to in Hong Kong. Once you’ve set the
OracleGlobalization.TimeZone property to Asia/Hong_Kong, Oracle will assume Hong Kong time as the
local time throughout the session. You can convert a timestamp into the local time using the AT LOCAL
SQL predicate in Oracle. Let’s write some code to try this out. Create a new form and place a button
named btnGetTimezoneCorrectDate on the form. In the click event of the button, write the code from
Listing 6-7.

Listing 6-7. Retrieving Timezone-Correct Dates

private void btnGetTimezoneCorrectDate_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection();
 _connObj.ConnectionString = _connstring;
 _connObj.Open();

 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.Territory = "Hong Kong";
 info.TimeZone = "Asia/Hong_Kong";
 OracleGlobalization.SetThreadInfo(info);
 _connObj.SetSessionInfo(info);

 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT LaunchDate AT LOCAL LaunchDateLocal FROM
 Products";
 OracleDataReader _reader = _cmdObj.ExecuteReader();
 if (_reader.HasRows)
 {
 if (_reader.Read())
 {
 OracleTimeStampTZ _launchDate = _reader.GetOracleTimeStampTZ
 (_reader.GetOrdinal("LaunchDateLocal"));
 MessageBox.Show(_launchDate.ToString ());
 }
 }
 _reader.Dispose();
 _cmdObj.Dispose();
 _connObj.Dispose();
 _reader.Close();

177

CHAPTER 6 ODP.NET GLOBALIZATION

 _connObj.Close();
 _reader = null;
 _connObj = null;
 _cmdObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run this code sample, you will see the pop-up window shown in Figure 6-11. From this result,
it looks like the product launch date would fall on the morning of December 26, 2010, at 4 a.m. in Hong
Kong (GMT +08:00).

Figure 6-11. Displaying Hong Kong time

Sorting and Comparing Strings
When you have data in different languages, you will obviously have strings that sort and compare
differently. For example, consider the Spanish language: “CH” is actually considered a distinct character
and it comes after “C” in the alphabet. This means that words like “chiquito,” “chispa,” and “chiflar”
actually come after words like “cilantro” or “coriandro.” Another example is the Norwegian language,
where “Æ,” “Ø,” and “Å” are all part of its alphabet set, and all of them come after “Z.” East Asian
languages are yet another example; sorting order in these scripts would be based on the number of
strokes in each character.

Let’s take a look at the Spanish example. You will write a program to see the difference between a
Spanish sort and an English sort when applied to two words—“cilantro” and “chiquito.” First, you’ll
need to create these words in your Products table. Run the following statements in SQL*Plus:

INSERT INTO Products (ID, NAME) VALUES ('S1', 'Cilantro');
INSERT INTO Products (ID, NAME) VALUES ('S2', 'Chiquito');

Next, put the code from Listing 6-8 behind a button in your test application. The code retrieves the
list of products in default (English) sorted order.

178

 CHAPTER 6 ODP.NET GLOBALIZATION

Listing 6-8. Default English Sorting

private void btnGetProductsEnglishOrdering_Click(object sender, EventArgs e)
{
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _result;
 try
 {
 OracleConnection _connObj = new OracleConnection();
 _connObj.ConnectionString = _connstring;
 _connObj.Open();

 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT Name FROM Products ORDER BY Name ASC";
 OracleDataReader _reader = _cmdObj.ExecuteReader();
 _result = "Results:";
 if (_reader.HasRows)
 {
 while (_reader.Read())
 {
 String _Name = _reader.GetString
 (_reader.GetOrdinal("Name"));
 _result = _result + "\n" + _Name.ToString();
 }
 }
 MessageBox.Show(_result);
 _reader.Dispose();
 _cmdObj.Dispose();
 _connObj.Dispose();
 _reader.Close();
 _connObj.Close();
 _reader = null;
 _connObj = null;
 _cmdObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run the code from Listing 6-8, you will get the ordered list in Figure 6-12. Take note that
Cilantro correctly comes after Chiquito in the results if you use an English sort.

179

CHAPTER 6 ODP.NET GLOBALIZATION

Figure 6-12. A list sorted via default English sorting

Now, let’s enable Spanish sorting. Execute the following code before you run ExecuteReader():

OracleGlobalization info = OracleGlobalization.GetClientInfo();
info.Sort ="SPANISH_M";
_connObj.SetSessionInfo(info);

If you run the same code now, you’ll notice that Chiquito comes after Cilantro, as is the case in the
Spanish language and in the results shown in Figure 6-13.

Figure 6-13. The same list resorted using Spanish language sorting

In ODP.NET, there are essentially two different types of sorting:

• Binary sorting is based on the numeric representation of each character (as
defined by the character’s encoding scheme). This type of sorting is the fastest but
produces results that are of little value when used on foreign languages (especially
East Asian languages).

180

 CHAPTER 6 ODP.NET GLOBALIZATION

• Linguistic sorting, like the Spanish example in Figure 6-13, works by assigning a
numeric value to each character to reflect its proper linguistic order. The
algorithms used by Oracle differ between each language. In Chinese, for instance,
this numeric value constitutes the number of strokes in each character, which
defines its linguistic order.

You can apply binary sorting if you wish (although that would not be advisable if you are dealing
with a foreign language) by setting the OracleGlobalization.Sort field to BINARY:

OracleGlobalization info = OracleGlobalization.GetClientInfo();
info.Sort ="BINARY";
_connObj.SetSessionInfo(info);

Applying Country-Based Formatting
One convenient way to have Oracle automatically use the correct date, currency, time, and string
settings for each country is to set OracleGlobalization.Territory and OracleGlobalization.Language to
the desired country and language respectively.

Setting the OracleGlobalization.Territory property automatically defines the following settings
internally:

• Date format

• Decimal character or group separator

• Local, ISO, and dual currency symbol

• First day of week

• Credit and debit symbols

• List separators

At minimum, you need to set both territory and language properties; setting the
OracleGlobalization.Territory alone is not enough due to the existence of multilingual countries. For
instance, although defining India as the territory allows Oracle to correctly default to the rupee as its
currency, it has no clue of the language you intend to use—India has 11 different languages and dialects
in total, including Malayalam, Marathi, Punjabi, Tamil, Telugu, and Hindi.

Setting the territory and language is, in fact, the best way for your application to handle locale-
specific formatting. You can let Oracle determine the correct sorting algorithm, and currency, date, and
time formats to use. Let’s take a look at how these two settings can influence the formatting of various
data types. Create a new form and place a button named btnGetCulturedData on the form. In the click
event of the button, write the code shown in Listing 6-9.

Listing 6-9. Specifying the Territory and Language

private void btnGetCulturedData_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _result;

181

CHAPTER 6 ODP.NET GLOBALIZATION

 try
 {
 OracleConnection _connObj = new OracleConnection();
 _connObj.ConnectionString = _connstring;
 _connObj.Open();

 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.Territory = "Sweden";
 info.Language = "Swedish";
 OracleGlobalization.SetThreadInfo(info);
 _connObj.SetSessionInfo(info);

 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT TO_CHAR(Price,'L99G999D99') PriceDefCurrency,
 TO_CHAR(Price,'U99G999D99') PriceDualCurrency, TO_CHAR(ExpiryDate,
 'DL') ExpiryDate FROM Products WHERE ID='B1'";
 OracleDataReader _reader = _cmdObj.ExecuteReader();
 if (_reader.HasRows)
 {
 if (_reader.Read())
 {
 String _priceDefCurrency = _reader.GetString
 (_reader.GetOrdinal("PriceDefCurrency"));
 String _priceDualCurrency = _reader.GetString
 (_reader.GetOrdinal("PriceDualCurrency"));
 String _expiryDate = _reader.GetString
 (_reader.GetOrdinal("ExpiryDate"));
 _result = _priceDefCurrency + "\n" +
 _priceDualCurrency + "\n" +
 _expiryDate;
 MessageBox.Show(_result);
 }
 }
 _reader.Dispose();
 _cmdObj.Dispose();
 _connObj.Dispose();
 _reader.Close();
 _connObj.Close();
 _reader = null;
 _connObj = null;
 _cmdObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run this code sample, you can see the message box shown Figure 6-14. That message box
shows all the appropriately formatted data for Sweden.

182

 CHAPTER 6 ODP.NET GLOBALIZATION

Figure 6-14. Territory-specific data

Safely Mapping to .NET Data Types
When populating data from Oracle into an ADO.NET Dataset object, the OracleDataAdapter class
attempts to map Oracle native data types to .NET data types. This conversion can sometimes be lossy
because not all the data types are supported natively in the Dataset class. Globalization actually makes
this issue a bigger one than it otherwise might be. For example, time zone information gets lost when
you try to load an Oracle timestamp containing a time zone into a Dataset. This can lead to the display of
incorrect dates or time in your application!

In another example, the NUMBER data type in Oracle holds up to 38 digits of precision, while the .NET
equivalent, the Decimal data type, can only hold up to 28 digits. The full list of fields that suffer from this
or a similar predicament follows:

 NUMBER

 DATE

 TIMESTAMP

 TIMESTAMP WITH LOCAL TIME ZONE

 TIMESTAMP WITH TIME ZONE

 INTERVAL DAY TO SECOND

Because of the precision and related problems, Oracle decided that the best way to store these types
of data in a Dataset object without losing any detail would be either as a byte array or a string. The only
downside is that you have to manually define this mapping. Oracle provides the
OracleDataAdapter.SafeMapping property that allows you to define whether to map one of the data types
listed previously to a byte array or to a string in this fashion:

_myAdapter.SafeMapping.Add("LaunchDate", typeof(string));
_myAdapter.SafeMapping.Add("ExpiryDate", typeof(byte[]));

Let’s write some code to see how safe type mapping works. You can use the LaunchDate field you
created earlier (which is a TIMESTAMP WITH TIME ZONE data type). The idea is simple: If you don’t define
any safe type mapping, you will lose time zone detail in your Dataset. If safe mapping was defined, you
would be able to retrieve time zone data. Create a new form; place a button named btnSafeTypeMapping
on the form, and write the code from Listing 6-10 in the click event of the button.

183

CHAPTER 6 ODP.NET GLOBALIZATION

Listing 6-10. Retrieving Timestamp (with Time Zone Data) With and Without Safe Type Mapping

private void btnSafeTypeMapping_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection();
 _connObj.ConnectionString = _connstring;
 _connObj.Open();

 OracleCommand _cmdObj = _connObj.CreateCommand();
 DataSet _datasetObj = new DataSet();
 _cmdObj.CommandText = "SELECT LaunchDate FROM Products WHERE LaunchDate IS
 NOT NULL";

 //Without safe mapping
 OracleDataAdapter _adapterObj = new OracleDataAdapter(_cmdObj);
 _adapterObj.Fill(_datasetObj);

 //Display the data type name and the data
 MessageBox.Show("Type:" + _datasetObj.Tables[0].Rows[0]
 ["LaunchDate"].GetType().ToString () + "\nData:" + Convert.ToString
 (_datasetObj.Tables[0].Rows[0]["LaunchDate"]));

 //With safe mapping
 _datasetObj = new DataSet();
 _adapterObj.SafeMapping.Add("LAUNCHDATE", typeof(string));
 _adapterObj.Fill(_datasetObj);

 //Display the data type name and the data again
 MessageBox.Show("Type:" + _datasetObj.Tables[0].Rows[0]
 ["LaunchDate"].GetType().ToString () + "\nData:" + Convert.ToString
 (_datasetObj.Tables[0].Rows[0]["LaunchDate"]));

 _adapterObj.Dispose();
 _cmdObj.Dispose();
 _connObj.Dispose();
 _connObj.Close();
 _adapterObj = null;
 _connObj = null;
 _cmdObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

184

 CHAPTER 6 ODP.NET GLOBALIZATION

 Note The name of the field passed in to OracleDataAdapter.SafeMapping is case sensitive. The mapping will
not be applied if you use the wrong case format.

When you run the code in Listing 6-10, you will first see the message in Figure 6-15, indicating that
OracleDataAdapter has decided to use the System.Date data type to store your timestamp. Take note that
the time zone detail is missing.

Figure 6-15. Retrieving a timestamp (with timezone) value without safe type mapping

You will then see the message box in Figure 6-16 (which is displayed after you have applied safe
mapping). Take note that this time, the specified System.String data type was used to store your
timestamp. As a result, it was able to capture the time zone information.

Figure 6-16. Retrieving a timestamp (with timezone) value with safe type mapping

Summary
In this chapter, you’ve taken an overall look at how you can create applications that are locale sensitive.
You have seen how you can use the features in ODP.NET’s OracleGlobalization class to

• Store and retrieve double-byte data.

• Change the language for a particular session.

• Handle custom calendar dates, currencies, strings, and timestamps.

185

CHAPTER 6 ODP.NET GLOBALIZATION

186

You’ve also taken a look at how you can use the SafeMapping property of OracleDataAdapter to
define safe type mappings for Oracle data types that don’t have a .NET equivalent.

In the next chapter, we’ll move on to the topic of Oracle transactions and how you can run multiple
database commands together as a single unit of transaction.

C H A P T E R 7

Transactions with ODP.NET

When programming systems with data distributed in different locations, your application must take on
the responsibility of managing data integrity. In complex systems, such as those of a financial
institution, applications have to frequently update data that resides in different databases. If something
goes wrong somewhere in the chain, chaos can ensue if nothing is done to ensure that data integrity is
maintained.

For example, if you were updating the address of a customer in three different databases, the
operation can only be considered complete if all three databases were updated. If any one of these three
updates failed, the updates that were successfully done on the other two databases must also be undone.
If this were not done, a scenario would arise where you have the correct address in two databases but an
incorrect one in the remaining database. In financial systems, and when you are dealing with monetary
amounts instead of addresses, this requirement is not only important but a necessity to the correct
functioning of the system.

When you pool multiple commands into single unit of execution, this unit is called a transaction.
Oracle provides transactional support through the OracleTransaction class, which we will cover in detail
via the following topics:

• An introduction to transactions and the OracleTransaction class

• Using save points in a transaction and how to use a partial rollback

• Running distributed transactions

• An introduction to promotable transactions and how this setting can be
configured via the ODP.NET connection string

Understanding Transactions and the OracleTransaction Class
A transaction is simply a block of code that needs to be executed as one single unit; if any part of it fails,
the entire block of code will be considered to have failed. It follows the “all or nothing” principle—either
all operations in the transaction succeed or all of them fail. In such cases, transaction managers usually
provide rollback functionality to undo parts of the transaction that were successful up to the point where
it failed.

Applying this concept to the database, let’s consider the example of a master-detail table
relationship. If you’ve worked in any business, you will be familiar with invoices. An invoice is a legally
binding document issued by a seller to a buyer indicating the products or items delivered to a buyer and
the amount that the buyer must now pay the seller. The screenshot in Figure 7-1 shows a sample invoice.

187

CHAPTER 7 TRANSACTIONS WITH ODP.NET

Figure 7-1. A sample invoice

When you attempt to create an invoice record in the database, it is obvious that if any part of the
invoice (such as one of the invoice detail rows) was not created successfully in the database, the half-
complete invoice should be discarded from the database, and a new attempt should be made.

Your code can create an invoice via a transaction. The inserting of data records into the invoice
master table and the invoice details child table can be done under the same transaction. This means that
if any one of the INSERT statements fail, whatever changes that were made to the database up to that
point will be rolled back.

The OracleTransaction class is ODP.NET’s transaction class. It will allow you to achieve our
example scenario rather easily. For your information, this class is also synonymous with the
System.Transactions.Transaction class provided by Microsoft for the SQL Server database. Through
OracleTransaction, you can commit, roll back, or create a save point in a transaction. The standard
usage of this class is shown in Listing 7-1.

Listing 7-1. Standard Usage of the OracleTransaction Class

OracleTransaction.BeginTransaction();
try
{
 //Do something
 .
 .
 .
 //Successful so far, so we can signal a commit
 OracleTransaction.Commit();

188

 CHAPTER 7 TRANSACTIONS WITH ODP.NET

}
else
{
 //An error has occurred, initiate a rollback
 OracleTransaction.Rollback();
}

Before you write any code to start trying out transactions, set up the following tables in your
database via SQL*Plus. The Invoice table will be the master table that holds the master invoice record,
while the InvoiceDetails table is the child table that will hold the details of the invoice (such as the
items ordered and their quantities).

CREATE TABLE "EDZEHOO"."INVOICE" (
"INVID" VARCHAR2(10) NOT NULL,
"INVDATE" DATE,
"REMARKS" VARCHAR2(4000),
CONSTRAINT "INVOICEPRIMKEY" PRIMARY KEY ("INVID") VALIDATE);

CREATE TABLE "EDZEHOO"."INVOICEDETAILS" (
"INVID" VARCHAR2(10) NOT NULL,
"DESCRIPTION" VARCHAR2(255),
"QUANTITY" NUMBER(10,2),
"UNITPRICE" NUMBER(10,2));

Executing Your First Transaction
You will now write an application that demonstrates a transaction. As shown earlier, you can signal the
start of a transaction using the OracleConnection.BeginTransaction method. You will attempt to write a
record to each of the Invoice and InvoiceDetails tables. If any of these two SQL statements fail, it will
initiate a rollback. Execute the code shown in Listing 7-2.

Listing 7-2. Executing Your First Transaction

private void btnInsert_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 OracleTransaction _tranObj;
 _connObj.Open();
 _tranObj=_connObj.BeginTransaction();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 try
 {
 //Insert a record into the Invoice table
 _cmdObj.CommandText = "INSERT INTO Invoice(InvID, InvDate, Remarks)
 VALUES(:InvID, SYSDATE, :Remarks)";

189

CHAPTER 7 TRANSACTIONS WITH ODP.NET

 _cmdObj.Parameters.Add(new OracleParameter("InvID", "A01"));
 _cmdObj.Parameters.Add(new OracleParameter("Remarks", "Sample
 invoice"));
 _cmdObj.ExecuteNonQuery();

 //Insert a record into the InvoiceDetails table
 _cmdObj.CommandText = "INSERT INTO InvoiceDetails(InvID,
 Description, Quantity, UnitPrice) VALUES(:InvID,
 :Description, :Quantity, :UnitPrice)";
 _cmdObj.Parameters.Clear();
 _cmdObj.Parameters.Add(new OracleParameter("InvID", "A01"));
 _cmdObj.Parameters.Add(new OracleParameter("Description", "Exhaust
 pipe"));
 _cmdObj.Parameters.Add(new OracleParameter("Quantity", "5"));
 _cmdObj.Parameters.Add(new OracleParameter("UnitPrice", "99.50"));
 _cmdObj.ExecuteNonQuery();
 _tranObj.Commit();
 MessageBox.Show("Records inserted successfully");
 }
 catch (Exception)
 {
 MessageBox.Show("Uh oh, rollback initiated...");
 _tranObj.Rollback();
 }
 finally
 {
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run the form, you will notice that it generates a single record in each of the Invoice and
InvoiceDetails tables. Now, let’s see what happens if we intentionally cause the second SQL statement
(on the InvoiceDetails table) to fail. Change the second SQL statement in the code to the following:

_cmdObj.CommandText = "INSERT INTO NonExistentTable(InvID,
 Description, Quantity, UnitPrice) VALUES(:InvID,
 :Description, :Quantity, :UnitPrice)";

Now, clear both the Invoice and InvoiceDetails tables of any data. Run the code sample again (this
time with the changes). You will find at the end that no records were inserted in either table even though
only the second statement failed. This is because both statements are part of a transaction. If the second
SQL statement fails, it will roll back the changes made by the first.

190

 CHAPTER 7 TRANSACTIONS WITH ODP.NET

Executing Stored Procedures in a Transaction
Transactions can also involve other types of commands, such as stored procedures. You can roll back
the changes made via a stored procedure. To test this, create the following stored procedure in your
database via SQL*Plus. This stored procedure will insert two records in the InvoiceDetails table.

CREATE OR REPLACE PROCEDURE proc_InsertSamplePODetails IS
BEGIN
 INSERT INTO InvoiceDetails(InvID, Description, Quantity, UnitPrice)
 VALUES('A02','Seatbelts',100,50.00);
 INSERT INTO InvoiceDetails(InvID, Description, Quantity, UnitPrice)
 VALUES('A02','Gearstick',50,30.00);
END;

Now, write the code shown in Listing 7-3. This function will first call the preceding stored procedure
and subsequently insert a record into the Invoice table.

Listing 7-3. Including a Stored Procedure in a Transaction

private void btnInsertData_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 OracleTransaction _tranObj;
 _connObj.Open();
 _tranObj = _connObj.BeginTransaction();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 try
 {
 _cmdObj.CommandText = "proc_InsertSamplePODetails";
 _cmdObj.CommandType = CommandType.StoredProcedure;
 _cmdObj.Parameters.Clear();
 _cmdObj.ExecuteNonQuery();

 _cmdObj.CommandText = "INSERT INTO Invoice(InvID, InvDate,
 Remarks) VALUES(:InvID, SYSDATE, :Remarks)";
 _cmdObj.CommandType = CommandType.Text;
 _cmdObj.Parameters.Clear();
 _cmdObj.Parameters.Add(new OracleParameter("InvID", "A02"));
 _cmdObj.Parameters.Add(new OracleParameter("Remarks", "Sample
 invoice 2"));
 _cmdObj.ExecuteNonQuery();

 _tranObj.Commit();
 MessageBox.Show("Records inserted successfully");
 }
 catch (Exception ex)

191

CHAPTER 7 TRANSACTIONS WITH ODP.NET

 {
 MessageBox.Show(ex.ToString());
 MessageBox.Show("Uh oh, rollback initiated...");
 _tranObj.Rollback();
 }
 finally
 {
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Clear both the Invoice and InvoiceDetails tables, and run the code in Listing 7-3. You will notice
that one record is written in the Invoice table and two records in the InvoiceDetails table. Now, change
the second SQL statement to the following:

_cmdObj.CommandText = "INSERT INTO NonExistentTable(InvID, InvDate, Remarks) VAL
UES(:InvID, SYSDATE, :Remarks)";

Clear both the Invoice and InvoiceDetails tables, and run this code sample again. You will notice

that this time, none of the records are written into either table. The error encountered with the second
SQL statement initiated a rollback, which rolled back the changes made by the stored procedure.

Performing Partial Rollbacks
There might also be times when you need a partial rollback instead of a full one. For example, consider
the following transaction:

1. Create invoice master record.

2. Create invoice detail records.

3. Create receipt record.

Step 1 might take the longest in terms of processing time. To improve performance, instead of
rolling back all three steps completely when something goes wrong, you could have the transaction roll
back to the state it was right after step 1. You can create these save points anywhere in a transaction
using the Save function and designate each one with a name. To roll back to a particular save-point, you
simply need to pass the name of the save point to the Rollback function. You can try this by writing the
code in Listing 7-4.

192

 CHAPTER 7 TRANSACTIONS WITH ODP.NET

Listing 7-4. Performing a Partial Rollback

private void btnSavepoints_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 OracleTransaction _tranObj;
 _connObj.Open();
 _tranObj = _connObj.BeginTransaction();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 try
 {
 _cmdObj.CommandText = "INSERT INTO Invoice(InvID, InvDate, Remarks)
 VALUES(:InvID, SYSDATE, :Remarks)";
 _cmdObj.Parameters.Add(new OracleParameter("InvID", "A01"));
 _cmdObj.Parameters.Add(new OracleParameter("Remarks", "Sample
 invoice"));
 _cmdObj.ExecuteNonQuery();
 _tranObj.Save("MySavepoint1");

 _cmdObj.CommandText = "INSERT INTO InvoiceDetails(InvID,
 Description, Quantity, UnitPrice) VALUES(:InvID,
 :Description, :Quantity, :UnitPrice)";
 _cmdObj.Parameters.Clear();
 _cmdObj.Parameters.Add(new OracleParameter("InvID", "A01"));
 _cmdObj.Parameters.Add(new OracleParameter("Description", "Exhaust
 pipe"));
 _cmdObj.Parameters.Add(new OracleParameter("Quantity", "5"));
 _cmdObj.Parameters.Add(new OracleParameter("UnitPrice", "99.50"));
 _cmdObj.ExecuteNonQuery();
 _tranObj.Save("MySavepoint2");

 _cmdObj.CommandText = "INSERT INTO NonExistentTable(InvID,
 Description, Quantity, UnitPrice) VALUES(:InvID,
 :Description, :Quantity, :UnitPrice)";
 _cmdObj.Parameters.Clear();
 _cmdObj.Parameters.Add(new OracleParameter("InvID", "B01"));
 _cmdObj.Parameters.Add(new OracleParameter("Description",
 "Windshield wipers"));
 _cmdObj.Parameters.Add(new OracleParameter("Quantity", "20"));
 _cmdObj.Parameters.Add(new OracleParameter("UnitPrice", "25.50"));
 _cmdObj.ExecuteNonQuery();
 _tranObj.Save("MySavepoint3");
 _tranObj.Commit();
 MessageBox.Show("Records inserted successfully");
 }
 catch (Exception)

193

CHAPTER 7 TRANSACTIONS WITH ODP.NET

 {
 MessageBox.Show("Uh oh, rollback initiated...");
 _tranObj.Rollback("MySavepoint1");
 _tranObj.Commit();
 }
 finally
 {
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Before running this code sample, clear both the Invoice and InvoiceDetails tables. Take note that
we intentionally cause the third SQL statement to fail by using a table name that does not exist. The
exception will be caught, and a rollback will occur. We pass the name MySavepoint1 to the RollBack
method, so it will roll back to the state it was right after the first SQL statement.

Based on the rollback logic in Listing 7-4, you will find that only the invoice record is written to the
Invoice table. None of the invoice details will be written to the database because the rollback skips these
sections, as demonstrated in Figure 7-2.

Figure 7-2. A partial rollback

Working with Distributed Transactions
There are times when you might need to update two or more database instances as part of a single
transaction. For example, a large organization might keep outgoing invoices in one database instance
and the corresponding receipts in another database instance. Thus, whenever the application creates an
invoice record in the first database, it must always create a corresponding receipt record in the second
database. If creation of the receipt fails, we must roll back the creation of the invoice as well. This
process is depicted in Figure 7-3.

194

 CHAPTER 7 TRANSACTIONS WITH ODP.NET

Figure 7-3. A distributed transaction

Through the use of transactions, you can preserve data integrity in a system across multiple
databases. Given Figure 7-3’s scenario, you will always be sure that there is a receipt record for every
corresponding invoice record. Now, let’s take a look at what you need to do to run and test distributed
transactions on Oracle.

Creating a Second Database Instance
First, you need to create a second database instance to use for the examples to follow. You can create a
new database instance by navigating to $ORACLE_HOME → Configuration and Migration Tools →
Database Configuration Assistant from the Windows Start menu. A window like the one shown in Figure
7-4 will appear.

Figure 7-4. Creating a new database instance

195

CHAPTER 7 TRANSACTIONS WITH ODP.NET

In the next screen, choose to "Create a new database". You will need to click the Next button
through 14 additional pages before Oracle creates the database instance for you. You can use most of the
default settings given in this wizard. One of the important screens is at step 3, shown in Figure 7-5,
where the wizard allows you to define a name for the second database. For the examples in this book, I
choose the name SECONDDB.

Figure 7-5. Specifying the name of the new database instance

At step 5, take note that you will be prompted to specify the password for various system accounts.
For the sake of brevity, choose to use the same password for all accounts. In my code example, I went
with the password admin (See Figure 7-6).

After all these steps are completed, the new database instance will be created. You can immediately
connect to it via ODP.NET or SQL*Plus.

196

 CHAPTER 7 TRANSACTIONS WITH ODP.NET

Figure 7-6. Specifying the system password for the new database instance

You will now need to create the Receipt table in the SECONDDB database. Log in to SQL*Plus, and
issue the following command:

CONNECT SYSTEM@SECONDDB AS SYSDBA
Because the NEWDB instance was first created when you installed Oracle, it has become the local

database for the machine. To connect to the second database, you must explicitly specify the second
database with the CONNECT SQL*Plus command. After running the preceding command, Oracle will
prompt you for a password. Enter the password you’ve specified earlier in the wizard for the system
account.

After you’ve done that, you need to create the Receipt table by running the following code:

CREATE TABLE "SYSTEM"."RECEIPT" (
"RECEIPTID" VARCHAR2(10) NOT NULL,
"RECEIPTDATE" DATE,
"TOTALAMOUNT" NUMBER(10,2),
"REMARKS" VARCHAR2(4000),
CONSTRAINT "RECEIPTPRIMKEY" PRIMARY KEY ("RECEIPTID") VALIDATE);

Before running the examples in the sections that follow, you should also clear the Invoice and
InvoiceDetail tables of data. As a last step, you will need to ensure that OracleMTSRecoveryService has
started. You can see the list of services on your machine from the Start → Control Panel →
Administrative Tools → Services menu in Windows. You’ll see a list similar to the one shown in Figure
7-7.

197

CHAPTER 7 TRANSACTIONS WITH ODP.NET

Figure 7-7. Ensuring that the OracleMTSRecoveryService has started

 Note OracleMTSRecoveryService allows the Oracle database to store recovery information in the Oracle
database. It is also required for executing transactions in distributed environments, where the Microsoft
Transaction Server (MTS) is used as an application server.

Executing Implicit Distributed Transactions
An implicit transaction is one where you don’t have to interact with the transaction object itself. The
System.Transactions.TransactionScope class provided by the .NET Framework allows you to mark a
block of code as being part of a transaction. The rest of the work, including the rollback, is all handled
automatically by this class—hence the term “implicit.”

To use the TransactionScope class, you must first add a reference to the System.Transactions
library. Figure 7-8 shows how to do that.

198
www.wowebook.com

 CHAPTER 7 TRANSACTIONS WITH ODP.NET

Figure 7-8. Importing the System.Transactions library

To designate a block of code as part of a transaction, you can place it inside a using tag, as shown
here:

using (TransactionScope _ts = new TransactionScope())
{
 //Your code goes here...
 _ts.Complete();
}

That is all there is to it. You need to call the TransactionScope.Complete() method to signal a
commit. Unlike the previous examples, however, you do not need to specify a rollback. If the
TransactionScope.Complete() method is called, the transaction is committed, but if it isn’t called, the
transaction will automatically roll back after the TransactionScope object is disposed.

Let’s try this out. Using the same invoice and receipt scenario outlined earlier, we will attempt to
write a record into the Invoice and Receipt tables (on different database instances) as part of a
transaction. Create a new form, and place a button on the form. In the click event of the button, write the
code from Listing 7-5.

199

CHAPTER 7 TRANSACTIONS WITH ODP.NET

Listing 7-5. Performing an Implicit Distributed Transaction

private void btnCreateInvoiceAndReceipt_Click(object sender, EventArgs e)
{
 using (TransactionScope _ts = new TransactionScope())
 {
 try
 {
 //Connect to the first database instance and create a new record in
 //the Invoice table
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "INSERT INTO Invoice(InvID, InvDate, Remarks)
 VALUES(:InvID, SYSDATE, :Remarks)";
 _cmdObj.Parameters.Add(new OracleParameter("InvID", "B01"));
 _cmdObj.Parameters.Add(new OracleParameter("Remarks", "Sample
 invoice"));
 _cmdObj.ExecuteNonQuery();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;

 //Connect to the second database instance and create a new record in
 //the Receipt table
 _connstring = "Data Source=localhost/SECONDDB;User
 Id=SYSTEM;Password=admin;";
 _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "INSERT INTO Receipt(ReceiptID, ReceiptDate,
 Remarks) VALUES(:ReceiptID, SYSDATE, :Remarks)";
 _cmdObj.Parameters.Add(new OracleParameter("ReceiptID", "R01"));
 _cmdObj.Parameters.Add(new OracleParameter("Remarks", "Sample
 receipt"));
 _cmdObj.ExecuteNonQuery();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 _ts.Complete();
 MessageBox.Show("Records inserted successfully");
 }
 catch(Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }
}

200

 CHAPTER 7 TRANSACTIONS WITH ODP.NET

If you run the code sample in Listing 7-5, you will notice that a record is created in each of the
Invoice and Receipt tables. Now, let’s see what happens if we intentionally cause the second SQL
statement to fail. Change the INSERT statement for the Receipt table to the following:

INSERT INTO NonExistentTable (ReceiptID, ReceiptDate, Remarks) VALUES
(:ReceiptID, SYSDATE, :Remarks)

Clear both the Invoice and Receipt tables, and run the same code sample again. This time, you will
find that no data was written to both the Invoice and Receipt tables (although only the Receipt table
SQL was incorrect). This demonstrates that these two operations (across multiple database instances)
executed as a single transaction.

Executing Explicit Distributed Transactions
The second type of distributed transaction is explicit. This means that you have to explicitly designate
each connection as part of a transaction. The concept is simple: You first create a
System.Transactions.CommittableTransaction object. You can then designate any OracleConnection
object as part of this transaction using the OracleConnection.EnlistTransaction method. Any
commands that execute under this connection will be part of the transaction. Listing 7-6 gives an
example of an explicit distributed transaction.

Listing 7-6. Performing an Explicit Distributed Transaction

private void btn_CreateInvoiceAndReceipt_Click(object sender, EventArgs e)
{
 CommittableTransaction _cmtTran = new CommittableTransaction();
 try
 {
 //Connect to the first database instance and create a new record in
 //the Invoice table
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 _connObj.EnlistTransaction(_cmtTran);
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "INSERT INTO Invoice(InvID, InvDate, Remarks)
 VALUES(:InvID, SYSDATE, :Remarks)";
 _cmdObj.Parameters.Add(new OracleParameter("InvID", "B01"));
 _cmdObj.Parameters.Add(new OracleParameter("Remarks", "Sample invoice"));
 _cmdObj.ExecuteNonQuery();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;

 //Connect to the second database instance and create a new record in
 //the Receipt table
 _connstring = "Data Source=localhost/SECONDDB;User
 Id=SYSTEM;Password=admin;";

201

CHAPTER 7 TRANSACTIONS WITH ODP.NET

 _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 _connObj.EnlistTransaction(_cmtTran);
 _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "INSERT INTO Receipt(ReceiptID, ReceiptDate, Remarks)
 VALUES(:ReceiptID, SYSDATE, :Remarks)";
 _cmdObj.Parameters.Add(new OracleParameter("ReceiptID", "R01"));
 _cmdObj.Parameters.Add(new OracleParameter("Remarks", "Sample receipt"));
 _cmdObj.ExecuteNonQuery();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 _cmtTran.Commit();
 MessageBox.Show("Records inserted successfully");
 }
 catch (Exception ex)
 {
 _cmtTran.Rollback();
 MessageBox.Show(ex.ToString());
 }
}

You will notice that you need to explicitly specify when to Commit and Rollback. You can test out this
code the same way as before. First, clear the Invoice and Receipt tables. After running the code sample,
you will find both tables populated with one record each. Clear these two tables again. If you now
intentionally change the second SQL statement (for the Receipt table) so that it fails and run the same
code sample again, you will find that neither record is created.

 Tip Choosing when to use implicit or explicit transactions depends entirely on your code structure. For
example, if you wish to use the same transaction across multiple function calls or threads, you will need to use
explicit transactions.

Executing Promotable Transactions
Sometimes, it is difficult to know beforehand whether a transaction is going to be local or distributed. In
such cases, developers usually assume that a transaction is distributed by default. This assumption
consumes more resources than necessary.

Oracle supports the concept of a promotable transaction. When you have support for promotable
transactions enabled, all transactions are assumed to be local but are automatically promoted to
distributed if more than one database instance is found to be involved in a transaction.

By default, a connection is opened in promotable mode. You can override that default by setting a
connection to be only local or distributed in the following fashion:

string _connstring = "Data Source=localhost/NEWDB;User Id=EDZEHOO;Password=PASS
123; Promotable Transaction=LOCAL";

202

 CHAPTER 7 TRANSACTIONS WITH ODP.NET

203

Transactions are promotable by default so that Oracle can operate in minimal resource usage mode
when it is a local transaction, yet still cater for distributed transactions when the need arises. However, if
you know for certain that your transactions will always be local, you can further optimize performance
by specifying the transaction as LOCAL, as shown in the preceding code snippet.

 Note Oracle does not support transactions, local or distributed, in .NET stored procedures, so you cannot start,
commit, or roll back any transaction in a .NET stored procedure. However, the execution of a .NET stored
procedure can still be part of a transaction; it will inherit the current transaction of an Oracle connection.

Summary
In this chapter, you’ve taken an overall look at the following:

• Using the OracleTransaction class

• Performing a partial rollback using save points

• Running distributed transactions

In the next chapter, we’ll move on to the topic of database change notifications, and you'll see how
your code can be automatically notified when your data changes.

C H A P T E R 8

Oracle Database Change
Notifications with ODP.NET

Imagine that you’re eagerly anticipating a parcel to be delivered to your home. You keep looking out
your window to see if the mail man has arrived. Besides being extremely inefficient, you can’t
concentrate on your work, and you get a sore neck from all that craning. Wouldn’t it be nice if the mail
man could call you on your phone when the parcel was delivered? Many scenarios in the workplace are
similar. You have to keep checking every day to see if your colleague has already created that sales
quotation. Your e-mail program has to keep checking the mail server to see if you have any new e-mail.

Similarly, in the database, your application has no idea of knowing if data has changed. Take an
electronic terminal displaying a list of flight schedules for example. The only way for you to keep this
display updated is to continuously poll the database for changes and to periodically refresh the display.
This approach (often referred to as the pull approach) raises some disadvantages, such as a constant
performance hit on the server, even when there is no change in data.

The Oracle database offers a push alternative via database change notifications. This exciting
technology allows Oracle to alert your application through ODP.NET when any changes are detected on
a query set or database object.

In this chapter, you will learn how you can

• Register your application to receive change notifications on a table or on a query
result set

• Register multiple change notifications in one go

• Retrieve detailed change notification information

• Apply change notification technology to real-world usage scenarios

• Adopt best practices when using change notification technology

Understanding Database Change Notification
ODP.NET change notification uses the Continuous Query Notification feature in the Oracle database.
The following lists some of the core features of Oracle change notification technology:

• Notifications are supported only on Oracle database versions 10.2 and above.

• Database change notifications happen instantaneously. The moment data is
altered, the database raises the notification.

205

CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

• Notifications provide information about the type of change in the data—whether
they are INSERT, UPDATE, DELETE, or ALTER statements.

• Notifications are initiated from within the Oracle database. ODP.NET is merely
used to register these notifications.

• There are generally two types of change notifications that can be registered:

• Query-based notifications

• Object-based notifications

Query-based change notification is actually a new feature introduced with version 11.1 of the Oracle
database. With query-based notifications, you can configure Oracle in such a way that if a particular
result set changes in any way, a notification will be raised. With this type of notification, you can choose,
for example, to watch a particular record and only be notified when it is updated or deleted.

Object-based notifications work on a wider scale; they are based on changes in a table as a whole.
When any change (INSERT, DELETE, or UPDATE) occurs on a table, a notification is raised. In the following
sections, we will explore how to register both types of change notifications.

 Note Although you can use database change notifications in your .NET code, take note that you cannot use
them from within a .NET stored procedure. They can be used in PL/SQL stored procedures, but their setup and
invocation is not configured through ODP.NET, and thus falls outside the scope of this book.

Registering for Query-Based Change Notifications
Before you can register for any change notifications, you must grant the CHANGE NOTIFICATION privilege
to the accessing user account. Remember to log in under the SYSTEM account so that you are able to grant
this privilege. Here is the GRANT statement:

GRANT CHANGE NOTIFICATION TO EDZEHOO;
ODP.NET provides the OracleDependency class, which lets you register for change notifications with

an OracleCommand object. The registration process for change notifications consists roughly of the
following steps:

1. Create an OracleDependency instance.

2. Bind it to an OracleCommand object.

3. Add an event handler to handle notifications.

4. Register for change notifications, and start the notification listener.

In the first two steps, you need to create an OracleDependency instance and bind it to an
OracleCommand object in the following manner; you can specify an active command object to bind to in
the constructor of the OracleDependency instance:

206

 CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

OracleDependency.Port = 1200;
OracleDependency _dep = new OracleDependency(_cmdObj);

The port number specifies a port number for the notification listener to listen to. By default, this
port number is set to –1. If you do not define any port number, ODP.NET will randomly pick a port
number when you attempt to register a change notification.

 Tip You should ensure that the port number used for the OracleDependency object is not obstructed by any
firewall installed on your system.

In the second line of code, an OracleNotificationRequest object is internally created and assigned
to the OracleCommand.Notification property. You can change the details of this notification request by
accessing this property directly.

The next thing you need to do is to register an event handler for the change notification. Whenever a
notification is raised, your event handler will be called. You can do this with the following code:

_dep.OnChange += new OnChangeEventHandler(OnNotificationReceived);

//Change notification handler
public static void OnNotificationReceived(object src, OracleNotificationEventArgs arg)
{
 MessageBox.Show("Notification Received");
}

In this notification handler, you can access the details of the change notification via the
OracleNotificationEventArgs object. We will explore more on this later. The next thing you need to do is
to register a query. The query will allow you to define a result set that you wish to register notifications
for. For example, the following SQL query will raise a notification only when a change occurs on the
ACME record:

SELECT * FROM Customers WHERE CustomerID= 'ACME'
You can also register notifications on result sets containing multiple records. For example, the

following SQL query will raise a notification when changes occur to any customer record that has a
name beginning with the letter “A.” A separate notification will be received for each record (in this result
set) that is altered.

SELECT * FROM Customers WHERE CustomerName LIKE 'A%'
There are some requirements to register query-based change notifications successfully:

• First, you can register most query types except for the following:

• Queries on fixed tables or views: For example, many of the Oracle internal
configuration data are stored using fixed tables.

• Queries over materialized views: These are also known as snapshots in
previous Oracle releases. Materialized views are commonly used in
replication environments to make local copies of remotely located data.

207

CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

• You need to have at least version 11.1 of the Oracle database installed.

• Also, the SELECT list must not contain data types other than VARCHAR2 and NUMBER. For
this same reason, only use SELECT * FROM XXXX when you know that all the columns
returned are either of these two data types.

• The COMPATIBLE initialization parameter of the database is set to at least 11.0.0 (this is
set by default).

• Finally, Automatic Undo Management (AUM) must be enabled (this is enabled by
default).

If the second and third criteria are not met, the change notification will default to an object-based
change notification, which means that it will track all changes on the table instead of just the query set. If
the fourth and fifth criteria are not met, you will not even be able to register the change notification.

To register the query, you can run the following code:

_cmdObj.CommandText = "SELECT * FROM Customers WHERE CustomerID= 'ACME'";
_cmdObj.ExecuteNonQuery();

When you call the ExecuteNonQuery() method, ODP.NET will internally register the change
notification on the result set and also set up a notification listener on the specified port number. The
notification listener is only set up once (on the first successful registration). Once this is done, you can
no longer change the port number.

That’s all you need to do. After this, anytime you make any changes to the customer record 'ACME'
(whether from a different application or directly in the database), your event handler will be
automatically called.

 Note If you drop a registered table from the database and re-create another table with the same name, you will
still need to reregister the table to receive database change notifications.

Now, let’s take a look at the full code you need to write to test this. Create a form, and place two
buttons on the form. Make them like those in Figure 8-1.

Figure 8-1. Your first change notification application

You will now need to write the code to register the change notification event handler. You can see
how to do this in Listing 8-1.

208

 CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

Listing 8-1. Raising a Query-Based Change Notification

//Declare a global variable to indicate whether the notification has been raised
private static bool _NotificationRaised=false;
private void btnRegisterChangeNotifications(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 //Register the change notification
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT Price FROM Products WHERE ID='LD1'";
 OracleDependency.Port = 1200;
 OracleDependency _dep = new OracleDependency(_cmdObj);
 _dep.OnChange += new OnChangeEventHandler(OnNotificationReceived);
 _cmdObj.ExecuteNonQuery();

 //Wait in a loop for the notification
 while (_NotificationRaised==false)
 {
 Application.DoEvents();
 }

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

//The event handler for the change notification
public static void OnNotificationReceived(object src, OracleNotificationEventArgs arg)
{
 DataTable changeDetails = arg.Details;

_NotificationRaised = true;
MessageBox.Show("Table has changed: " + changeDetails.Rows[0]["ResourceName"]);

}

private void btnUpdateTable_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj2 = new OracleConnection(_connstring);

209

CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

 _connObj2.Open();
 OracleTransaction _txn = _connObj2.BeginTransaction();

 //Update the particular record that we’ve registered the change notification
 //for
 string _sql = "UPDATE Products SET Price=550 WHERE ID='LD1'";
 OracleCommand _cmdObj2 = new OracleCommand(_sql, _connObj2);
 _cmdObj2.ExecuteNonQuery();
 _txn.Commit();
 _connObj2.Close();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

To try running this code sample, click the first button to register the change notification. You will
see a message showing that the change notification was registered. That message should look like the
one shown in Figure 8-2.

Figure 8-2. Change notification successfully registered

Once that is done, click the second button. Your change notification event handler will be instantly
called; you will see a message appear displaying the name of the table that was modified, as in Figure
8-3.

Figure 8-3. Displaying the name of the changed table

210

 CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

Registering for Object-Based Change Notifications
If you tried to change the UPDATE SQL query in the previous section’s source code into an INSERT query,
you will have found that the notification is not raised. The reason is simple—a query-based notification
only keeps track of changes to the data in the query result set. How do you go about tracking changes in
the table as a whole?

Object-based change notification is the default type of change notification request in the Oracle
database. With object-based change notifications, you can track any changes made to the data (using
INSERT, UPDATE, or DELETE) and schema (using ALTER) of a table.

To register object-based change notifications, you need to set the QueryBasedNotification property
of the OracleDependency object to false, as shown below:

_dep.QueryBasedNotification = false;

 Note If you are using an Oracle database earlier than version 11.1, you will be automatically defaulted to
object-based change notifications. Take note that if your SQL select list contains columns other than columns of
type VARCHAR2 and NUMBER, you will also be automatically defaulted to object-based change notifications.

The changes you need to make to your code are highlighted in bold in Listing 8-2. This time, try
doing an INSERT instead of an UPDATE in the second button on the form.

Listing 8-2. Raising an Object-Based Change Notification

private void btnRegisterChangeNotifications(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 //Register the change notification
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT * FROM Products";
 OracleDependency.Port = 1200;
 OracleDependency _dep = new OracleDependency(_cmdObj);
 _dep.QueryBasedNotification = false;
 _dep.OnChange += new OnChangeEventHandler(OnNotificationReceived);
 _cmdObj.ExecuteNonQuery();

 //Wait in a loop for the notification
 while (_NotificationRaised==false)
 {
 Application.DoEvents();
 }

211

CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

private void btnUpdateTable_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj2 = new OracleConnection(_connstring);
 _connObj2.Open();
 OracleTransaction _txn = _connObj2.BeginTransaction();

 //Insert a new record into the table
 string _sql = "INSERT INTO Products (ID, Price, Name) VALUES('ZL1', 300,
 'TestProduct')";
 OracleCommand _cmdObj2 = new OracleCommand(_sql, _connObj2);
 _cmdObj2.ExecuteNonQuery();
 _txn.Commit();
 _connObj2.Close();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

You will find that a notification is raised after you click the second button, indicating that the INSERT
operation has successfully triggered a notification.

Grouping Multiple Notification Requests
You can add more than one notification request in a single registration using the
AddCommandDependency() method of the OracleDependency object. You might decide to do group requests
when you need to listen on a few OracleCommand objects at the same time. Listing 8-3 shows how.

Listing 8-3. Adding Multiple Notification Requests in a Single Registration

OracleConnection _connObj = new OracleConnection(_connstring);
_connObj.Open();

//Here we create three different query sets

212

 CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

OracleCommand _cmdObj = _connObj.CreateCommand();
_cmdObj.CommandText = "SELECT Price FROM Products WHERE ID='LD1'";
OracleCommand _cmdObj2 = _connObj.CreateCommand();
_cmdObj2.CommandText = "SELECT CustName FROM Customer WHERE CustName LIKE 'A%'";
OracleCommand _cmdObj3 = _connObj.CreateCommand();
_cmdObj3.CommandText = "SELECT TotalAmount FROM Sales WHERE SaleMonth ='FEB'";
OracleDependency.Port = 1200;

//We register all three OracleCommand objects with the OracleDependency object
OracleDependency _dep = new OracleDependency(_cmdObj);
_dep.AddCommandDependency(_cmdObj2);
_dep.AddCommandDependency(_cmdObj3);

You will notice that after registering the change notifications once via the code in Listing 8-3, you
will receive a notification when you try to update any of the three tables. The
OracleNotificationEventArgs property will provide information on the row or table that has changed.

Removing a Registration
Removing a registration is a simple and straightforward process. There are three ways to remove a
registration:

• Explicitly removing a registration by code

• Specifying a timeout for the registration

• Specifying that notifications should only be raised once

You can explicitly remove a registration via code by simply calling the RemoveRegistration()
method of the OracleDependency object. You need to specify the connection object that you’ve registered
the notification on earlier as the first argument of this method, for example:

_dep.RemoveRegistration(_cmdObj);
Besides explicitly removing the registration by code, you can also set a timeout value on each

registration. After you’ve bound the OracleCommand object to the OracleDependency object, you can access
the OracleCommand.Notification.Timeout property to set this timeout value (in seconds). The code to do
this follows:

OracleDependency _dep = new OracleDependency(_cmdObj);
//Listen for changes for only 10 seconds
_cmdObj.Notification.Timeout = 10;

You can also specify that the notification is raised only once. The notification registration will be
automatically removed after this happens. The code to do this follows.

OracleDependency _dep = new OracleDependency(_cmdObj);
_cmdObj.Notification.IsNotifiedOnce = true;

213

CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

Retrieving Change Notification Information
The OracleNotificationEventArgs object passed to the event handler of your change notification
contains information about the specific change. It represents the invalidation message generated for the
notification—called so because when a query set is externally changed, it is said to be invalidated.

The OracleNotificationEventArgs.Details property returns a DataTable object containing detailed
information about the particular change, such as the row and the names of the tables that were changed.
To see what it contains, let’s plug this DataTable into a DataGridView control. Add a DataGridView control
to your form. You will also need to make some changes to the OnNotificationReceived event handler.
These changes are highlighted in bold in Listing 8-4.

Listing 8-4. Retrieving Detailed Change Notification Information

public void OnNotificationReceived(object src, OracleNotificationEventArgs arg)
{
 DataTable changeDetails = arg.Details;
 _NotificationRaised = true;
 DisplayDataInGrid(changeDetails);
}

//You need to write some extra code below because .NET will not allow you to update a
//DataGridView control directly from a callback function

private delegate void DisplayDataInGridDelegate(DataTable sourceData);
private void DisplayDataInGrid(DataTable sourceData)
{
 if (this.InvokeRequired)
 {
 DisplayDataInGridDelegate _displayDataFunc = new
 DisplayDataInGridDelegate(DisplayDataInGrid);
 this.BeginInvoke(_displayDataFunc,sourceData);
 return;
 }
 //This is the code that displays the OracleNotificationEventArgs object in the
 //DataGridView control
 dataGridView1.DataSource = sourceData;
 dataGridView1.Refresh();
}

If you run your code again, instead of a pop-up message box, you will see the details of the change
notification show in the DataGridView control. Your output should look like Figure 8-4.

214

 CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

Figure 8-4. Retrieving change notification details

There are a few useful pieces of information you can retrieve from this DataTable. They are outlined
in Table 8-1.

Table 8-1. Information Stored in OracleNotificationEventArgs

Field name Description

ResourceName This is the name of the invalidated table that raised the
notification.

Info This field indicates the type of change that has occurred,
and can take any one of the following values:
Insert: A new record was inserted.
Delete: A record was deleted.
Update: A record was updated.
Startup: A database was started.
Shutdown: A database was shut down.
Shutdown_Any: A database instance in an RAC was shut
down.
Alter: A database object was altered.
Drop: An object or database was dropped.
End: A registration was removed.
Error: A notification error has occurred.

RowID The RowID for the invalidated table row. You can use this
field to find out which records have changed in a query set
containing more than one record.

QueryID This field contains the query ID, an internal Oracle value
that is maintained by ODP.NET and retrieved when
running the SELECT query.

215

CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

Choosing to Poll
If you don’t wish to be automatically notified when a change notification occurs, you can also consider
using the OracleDependency class to poll for changes. There are a couple of reasons why you would
choose to poll for changes instead of using a callback:

• You need fine-grained control over the amount of network traffic generated.
Callbacks are raised whenever any change is detected, and the resulting traffic can
be unpredictable. Using a poll every fixed number of minutes cuts down this
uncertainty and lets you calculate estimated network traffic more accurately. This
can be a crucial cost-controlling factor in certain scenarios where bandwidth is
chargeable by the amount of network traffic generated.

• The database table is expected to change very frequently over time. In such a case,
using a callback is bad, since it will be called very frequently, putting unnecessary
load on the database. By polling every few minutes, for example, you can
significantly reduce the load on the database.

You can poll the database for changes by checking the OracleDependency.HasChanges property. For
example, the code in Listing 8-5 shows how you can use a timer to keep polling for changes every second
using the HasChanges property. To test this code, create a form, and drop two buttons
(btnRegisterNotificationWithTimer and btnInsertData) and a timer control onto the form.

Listing 8-5. Using the OracleDependency.HasChanges Property

//Declare a global OracleDependency object
private static OracleDependency _globalDep;
private void btnRegisterNotificationWithTimer_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT * FROM Products";
 OracleDependency.Port = 1200;
 _globalDep = new OracleDependency(_cmdObj);
 _cmdObj.ExecuteNonQuery();
 MessageBox.Show("Change Notification Registered!");
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }

216

 CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

 //Start a timer to keep polling for changes in the table every 1 second
 timer1.Tick += new EventHandler(TimerTick);
 timer1.Start();
}

//The timer tick event handler. Show a message if a change is detected
private static void TimerTick(object sender,EventArgs e)
{
 if (_globalDep.HasChanges)
 {
 MessageBox.Show("Change detected!");
 }
}

private void btnInsertData(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj2 = new OracleConnection(_connstring);
 _connObj2.Open();
 OracleTransaction _txn = _connObj2.BeginTransaction();
 string _sql = "INSERT INTO Products(ID, Name, Price) VALUES('AZ1','Test
 Product',300)";
 OracleCommand _cmdObj2 = new OracleCommand(_sql, _connObj2);
 _cmdObj2.ExecuteNonQuery();
 _txn.Commit();
 _connObj2.Close();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Run the sample in Listing 8-5, and click the btnRegisterNotificationWithTimer button. You should
see a message prompt showing that the registration was successful. This would also kick off the timer to
poll the database for changes every second. Now, click the btnInsertData button. You should be able to
see the “Change detected!” message box displayed.

Considering Typical Usage Scenarios
You can realize the full benefits of change notifications when it is used under the correct conditions.
Table 8-2 describes a few scenarios where change notifications can help create smarter and more
responsive applications.

217

CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

Table 8-2. Sample Usage Scenarios for Change Notifications

Usage Scenario Description

A data grid that automatically updates
itself

This is the most common use for change
notifications and is suitable for terminals that
need to always display the latest data.
Examples include stock price displays, flight
schedule terminals, and job boxes.

A system that alerts the administrator
when the database schema has changed

Change notifications can also be used to
ensure database integrity. When a table
crucial to an application is deleted, for
example, the administrator can be
automatically notified, or a database repair
operation can be automatically initiated.

A system that drives information flow or a
business process

 Another creative use of change notifications is
to drive information flow. For example, a clerk
receives a purchase order from a customer
and creates a purchase order record in the
database. Through change notification, this
may automatically generate a corresponding
sales order record in the sales order database,
and so on, creating a chain of automatically
triggered INSERT commands.

A data cache that automatically
invalidates and refreshes itself

When used in caching, change notification
can effectively ensure that your cache is
always up to date, increasing the hit/miss
ratio.

One of the more useful applications arising from the use of database change notifications is the self-

updating data grid. The concept is simple: You bind a DataGridView control to a table and register a
change notification on this table. When any data inside this table changes, your application is notified. It
can then repopulate the grid with the latest data. The code to do this is detailed in Listing 8-6.

Listing 8-6. Building a Self-Updating Data Grid Control

private bool _BoundToDB = false;
private int _globalID = 1;

//The event handler for the change notification. Here we initiate a refresh of the grid data
public void OnNotificationReceived(object src, OracleNotificationEventArgs arg)
{
 RefreshGrid();
}

218

 CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

//Extra code to update the DataGridView control from a callback thread
private delegate void RefreshGridDelegate();
private void RefreshGrid()
{
 if (this.InvokeRequired)
 {
 RefreshGridDelegate _displayDataFunc = new RefreshGridDelegate(RefreshGrid);
 this.BeginInvoke(_displayDataFunc);
 return;
 }

 //Write the code to populate the DataGridView control with latest data from the
 //Products table
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT * FROM Products";
 OracleDataAdapter _adapObj = new OracleDataAdapter (_cmdObj);
 DataSet _products = new DataSet();
 _adapObj.Fill(_products);
 dataGridView1.DataSource =_products.Tables[0];
 dataGridView1.Refresh();
 _cmdObj.Dispose();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 _cmdObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

//Clicking on the Bind button registers change notification for the Products table
private void btnBind_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "SELECT * FROM Products";
 OracleDependency.Port = 1200;
 OracleDependency _dep = new OracleDependency(_cmdObj);

219

CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

 //Set notification settings
 _dep.QueryBasedNotification = false;
 _cmdObj.Notification.IsNotifiedOnce = false;

 _dep.OnChange += new OnChangeEventHandler(OnNotificationReceived);
 _cmdObj.ExecuteNonQuery();
 MessageBox.Show("Change Notification Registered!");
 _BoundToDB = true;

 //Populate the DataGridView with data from the Products table
 RefreshGrid();
 while (_BoundToDB == true)
 {
 Application.DoEvents();
 }
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

//Quit the listening loop initiated in btnBind_Click
private void btnUnBind_Click(object sender, EventArgs e)
{
 _BoundToDB = false;
}

//Insert a new record directly into the Products table – calling this function should cause
//the notification to be raised and the DataGridView control to refresh itself automatically
private void btnInsert_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 _globalID += 1;
 try
 {
 OracleConnection _connObj2 = new OracleConnection(_connstring);
 _connObj2.Open();
 OracleTransaction _txn = _connObj2.BeginTransaction();
 string _sql = "INSERT INTO Products(ID, Name, Price) VALUES('TP" +
 _globalID.ToString() + "','Test Product',100)";
 OracleCommand _cmdObj2 = new OracleCommand(_sql, _connObj2);
 _cmdObj2.ExecuteNonQuery();
 _txn.Commit();
 _connObj2.Close();
 }
 catch (Exception ex)
 {

220

 CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

 MessageBox.Show(ex.ToString());
 }
}

You can try running the code in Listing 8-6 by clicking the “Bind to Database” button. Once you’ve
done that, the DataGridView control will be populated with data from the Products table. After that, click
the “Insert a new product” button to insert a new product into the Products table. Because change
notification is already set up, the DataGridView control will instantaneously refresh its list of data. To quit
the application, click the “Unbind from Database” button, and close the window. You can see a
screenshot of this application in action in Figure 8-5.

Figure 8-5. A self-updating data grid control

Thinking About Performance
There are certain performance caveats when using change notifications. You can probably foresee that
for a database that is frequently updated, you will get a large number of notifications, and your event
handler will be invoked many times. Needless to say, it is not a good idea to stuff heavy processing or
blocking calls in your event handler. For example, it’s a bad idea to try to generate a report file in your
notification event handler, especially if you know in advance that the table will be updated frequently.

Outside your code, you should also take note that notifications do take up space and processing
power in the Oracle database internally. Oracle recommends the following best practices when using
change notifications:

• Use change notifications with mostly read-only tables.

• When updating a change-registered table, try to update as little rows as possible.

• Limit the number of change notification registrations for the same query.

All three approaches attempt to reduce the number of notifications raised. Large numbers of
notifications require a lot of space in the invalidation queue. For example, consider a database table

221

CHAPTER 8 ORACLE DATABASE CHANGE NOTIFICATIONS WITH ODP.NET

222

containing the list of products of a company. This is a good candidate to register for change
notifications, since product listings don’t usually change by the minute.

The rationale behind the second best practice listed is that too many rows being updated in a single
transaction may cause the size of an invalidation message to become very large. Therefore, it is a good
idea to keep the number of rows updated to a minimum in a single transaction when working with
change-registered tables.

You should also try to limit the number of change notification registrations for the same query
whenever possible. For example, it is convenient to register change notifications for every client that
connects to the database so that they can be notified when the data changes. In scenarios with
thousands of clients connecting to the database, this can quickly lead to a significant performance drain
on the database. A better approach is to consolidate change notification registrations at the server
instead to minimize the number of notifications raised.

Summary
In this chapter, you’ve taken an overall look at the following areas:

• Using the OracleDependency class to register both query-based and object-based
change notifications

• Retrieving information about a notification via the OracleNotificationEventArgs
object

• Configuring change notification properties via the OracleNotificationRequest
object

In the next chapter, you’ll learn how to use Oracle’s Advanced Queuing (AQ) functionality to
implement wait queues.

C H A P T E R 9

Using Oracle Database Streams
Advanced Queuing with ODP.NET

The landscape of enterprise software today is populated with thousands of different systems that need to
talk to each other reliably. I’m not specifically referring to the communication standards or protocols
that allow heterogeneous applications to share data, but rather to the underlying technologies that these
applications use to send and receive data. Even homogeneous applications residing in the same server
would command the same necessity. For example, sending data between two processes, a Windows
Service and a web application. Most developers have learned that this task might not turn out to be as
simple as they’d thought it to be.

In the past, developers would open TCP/IP sockets between two applications so that they could
send data to one another. Pipes were another alternative provided by Microsoft. These various methods
suffered from various problems—the biggest complaint being that they were extremely messy and
difficult to program.

When Microsoft introduced message queuing via the Microsoft Messaging Queue (MSMQ) server
component, it provided developers another interesting concept for data sharing: an application would
send a message to a remote queue server (via the MSMQ API), and the intended recipient could then
retrieve it from this queue. This simple idea allowed applications to receive data even when they were
offline because the messages could be temporarily stored in a queue and read any time the intended
application went online.

Oracle provides a similar feature, known as Advanced Queuing (AQ) that extends this same concept
to the database: it uses the Oracle database as a temporary storage area for queue messages. Since these
messages are stored in a table like any other ordinary table in Oracle, all the features of the Oracle
database (for instance, indexing) could be applied on this message store.

In this chapter, you will learn the basics of using AQ to send and receive messages between different
applications, specifically:

• How to create queues via SQL*Plus

• How to pass data from one application to another using ODP.NET’s enqueue and
dequeue functionality

• How to use RAW, XML, and UDT data types for messaging queuing

• How to dequeue a message synchronously and asynchronously

223

CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

Understanding the Basics of AQ
In the world of AQ, there are two basic terms you will need to be familiar with: enqueue and dequeue.
Enqueuing refers to the act of adding (or sending) a message to a queue. Dequeuing refers to the act of
removing or retrieving the message from a queue.

Figure 9-1 briefly summarizes how AQ works.

Figure 9-1. An overview of AQ

 An application can enqueue any number of messages to a queue (stored in an Oracle table). The
intended recipients (subscribers) of the queue will be able to retrieve these messages when they connect
to the queue. As an analogy, the queue can be said to be somewhat the equivalent of a mail server, and
the dequeuing process the equivalent of a mail client connecting to the mail server to retrieve e-mail.

The important point underlying this concept is that you do not have to be connected to your mail
server 24 hours a day to receive mail. This is the same for AQ.

Creating a Single-Consumer Queue
You can use a single-consumer queue if you know in advance that there will only be one single sender
and one single receiver (also known as a point-to-point scenario). A single-consumer queue is one of the
simplest queues to set up and is typically used in single-user environments. For example, a job order
system that might need to trigger a message to a backend processing system for each incoming job order
could make use of a single-consumer queue.

Setting Up a Single-Consumer Queue
Before you can set up a queue or run any of the examples in this chapter, you must first grant
permissions to the database user to use the DBMS_AQADM package. This PL/SQL package contains the
routines that allow you to create and manage queues in Oracle. You can grant this permission by logging
on as the SYSTEM account and executing the following in SQL*Plus:

GRANT EXECUTE on DBMS_AQADM to EDZEHOO;

224

 CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

You are now ready to create your first queue. You must always fulfill these three steps before you
attempt to use a queue:

1. Create the table to hold the queue messages.

2. Create the queue.

3. Start the queue.

You can accomplish these steps by logging on to SQL*Plus again under your user account and
running the following PL/SQL block:

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table=>'EDZEHOO.MY_JOBS_QUEUE_TABLE',
 queue_payload_type=>'RAW',
 multiple_consumers=>FALSE);

 DBMS_AQADM.CREATE_QUEUE(
 queue_name=>'EDZEHOO.MY_JOBS_QUEUE',
 queue_table=>'EDZEHOO.MY_JOBS_QUEUE_TABLE');
 DBMS_AQADM.START_QUEUE(queue_name=>'EDZEHOO.MY_JOBS_QUEUE');
END;
/

Take note that there are a few parameters that must be defined in the PL/SQL block. These are listed
in Table 9-1.

Table 9-1. Queue Creation Parameters

Parameter Name What It Represents

queue_table Defines the name of the table used to store
queue messages

queue_payload_type The data type of the payload (the data
carried in the message), which can be RAW
(byte array), UDT (user defined type), or XML
(XML data)

multiple_consumers Specifies whether this queue supports
multiple consumers

queue_name The name of the queue

 Tip You can also create and manage queues via a GUI within the Visual Studio environment by way of the
Oracle Developer Tools (ODT.NET) suite. You can read more about this in Chapters 14 and 15 of this book.

225

CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

Enqueuing and Dequeuing a Single Message
Once you’ve created a queue, you can start to enqueue a message. The process of enqueuing a message
usually follows these steps:

1. Connect to the database.

2. Create an OracleAQQueue object that points to a desired queue.

3. Create an OracleAQMessage object, and load the payload data into the
message.

4. Call the OracleAQQueue.Enqueue method.

5. Disconnect from the database.

To be able to send messages to a queue from your .NET code, you must first create an OracleAQQueue
object. You can do this with the following code. The first argument is the name of the queue that you
created earlier via SQL*Plus. The second argument is an open database connection. You must also
inform ODP.NET that you wish to send byte data (RAW) to this queue.

OracleAQQueue _queueObj = new OracleAQQueue("EDZEHOO.MY_JOBS_QUEUE", _connObj);
_queueObj.MessageType = OracleAQMessageType.Raw;

The next step is to create an OracleAQMessage object and load the data you wish to send into the
Payload property of this object:

OracleAQMessage _msg = new OracleAQMessage();
String Data = "HELLO, HOW ARE YOU!";
_msg.Payload = ConvertToByteArray(Data);

As the last step, you will need to call the Enqueue method to send this message to the queue:

_queueObj.Enqueue(_msg);

That wasn’t difficult at all, was it? Let’s begin to write your first AQ application. Create a new form,
and place a single button on it (btnEnqueue). Write the code from Listing 9-1.

Listing 9-1. Enqueuing a Single Message

using System.Text;

private void btnEnqueue_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);

 // Create a new queue object
 OracleAQQueue _queueObj = new OracleAQQueue("EDZEHOO.MY_JOBS_QUEUE",

226

 CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

 _connObj);
 _connObj.Open();
 OracleTransaction _txn = _connObj.BeginTransaction();

 // Set payload type to RAW (byte array)
 _queueObj.MessageType = OracleAQMessageType.Raw;

 // Create a new message object
 OracleAQMessage _msg = new OracleAQMessage();

 String Data = "HELLO, HOW ARE YOU!";
 _msg.Payload = ConvertToByteArray(Data);

 //You can also attach additional custom data to a message via the
 //Correlation property
 _msg.Correlation = "MY ADDITIONAL MISC DATA";

 //The Visibility property OnCommit makes the enqueue part of a transaction
 _queueObj.EnqueueOptions.Visibility = OracleAQVisibilityMode.OnCommit;

 // Enqueue the message
 _queueObj.Enqueue(_msg);

 // Display the payload data that was enqueued
 MessageBox.Show("Payload Data : " + Data + "\n" +
 "Payload Hex value : " + ConvertToHexString((byte[])_msg.Payload) +
 "\n" + "Message ID : " + ConvertToHexString(_msg.MessageId) + "\n" +
 "Correlation : " + _msg.Correlation);
 _txn.Commit();

 _queueObj.Dispose();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

// Converts a byte array to a Hexadecimal string
static private string ConvertToHexString(byte[] Data)
{
 StringBuilder _stringObj = new StringBuilder();
 for (int i = 0; i < Data.Length; i++)
 {
 _stringObj.Append((int.Parse(Data[i].ToString())).ToString("X"));
 }
 return _stringObj.ToString();
}

227

CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

// Converts a String to a byte array
static private byte[] ConvertToByteArray(String Data)
{
 char[] _charArray = Data.ToCharArray();
 byte[] _byteArray = new byte[Data.Length];
 for (int i = 0; i < _charArray.Length; i++)
 {
 _byteArray[i] = (byte)_charArray[i];
 }
 return _byteArray;
}

Now that you have the enqueue function ready, you need to do the opposite equivalent—the
dequeue. Since you probably want to test the sending of messages across different processes, you can
create a new project and new form for the dequeue. In this form, create a button with the name
btnDequeue. Write the code shown in Listing 9-2 for this button.

Listing 9-2. Dequeuing a Single Message

private void btnDequeue_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);

 // Create a new queue object
 OracleAQQueue _queueObj = new OracleAQQueue("EDZEHOO.MY_JOBS_QUEUE",
 _connObj);
 _connObj.Open();
 OracleTransaction _txn = _connObj.BeginTransaction();

 //The Visibility property OnCommit makes the dequeue part of the transaction
 //The Wait property specifies the number of seconds to wait for the Dequeue.
 //The default value of this property is set to wait forever
 _queueObj.DequeueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 _queueObj.DequeueOptions.Wait = 10;

 // Dequeue the message.
 OracleAQMessage _deqMsg = _queueObj.Dequeue();

 MessageBox.Show("Dequeued Payload Data: " +
 ConvertFromByteArray((byte[])_deqMsg.Payload) + "\n"
 + "Dequeued Payload Hex: " +
 ConvertToHexString((byte[])_deqMsg.Payload) + "\n"
 + "Message ID of Dequeued Payload : " +
 ConvertToHexString(_deqMsg.MessageId) + "\n" +
 "Correlation : " + _deqMsg.Correlation);

228

 CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

 _txn.Commit();
 _queueObj.Dispose();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

// Converts a byte array to a String
static private String ConvertFromByteArray(byte[] Data)
{
 StringBuilder _stringObj = new StringBuilder();
 for (int i = 0; i < Data.Length; i++)
 {
 _stringObj.Append((char)Data[i]);
 }
 return _stringObj.ToString();
}

 Note The Correlation property behaves much like a Tag property; it allows you to attach additional custom
data to a message. As sample usage scenario, you could mark each outgoing message with an ID number specific
to your application (a job ID for example).

Now, let’s try this application! Launch the Enqueue application, and click the Enqueue button. Your
application will display the details of the message that was enqueued. You can now close this
application. If you now launch the Dequeue application and click the Dequeue button, you will instantly
be presented with a pop-up message like the one shown in Figure 9-2 containing the details of the
enqueued message.

Figure 9-2. Dequeued message

229

CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

Through AQ, this simple test demonstrates that you can send a message from one application to
another, even when the second application is not running at the same time.

Enqueuing and Dequeuing Multiple Messages
As you create applications that handle substantial business traffic, you will find that you might need to
send more than one message at one time. It is possible to enqueue more than one message at one go.
The EnqueueArray method allows you to pass in multiple messages (as a single array) for enqueuing.
Listing 9-3 demonstrates this.

Listing 9-3. Enqueuing Multiple Messages

private void btnEnqueueMultiple_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);

 // Create a new queue object
 OracleAQQueue _queueObj = new OracleAQQueue("EDZEHOO.MY_JOBS_QUEUE",
 _connObj);
 _connObj.Open();
 OracleTransaction _txn = _connObj.BeginTransaction();

 // Set payload type
 _queueObj.MessageType = OracleAQMessageType.Raw;

 // Create an array of OracleAQMessage objects
 OracleAQMessage[] _msgs = new OracleAQMessage[2];

 // Fill the array with strings
 String[] Data = new String[2];
 Data[0] = "HELLO, HOW ARE YOU!";
 Data[1] = "... AND WHAT'S YOUR NAME?";
 _msgs[0] = new OracleAQMessage(ConvertToByteArray(Data[0]));
 _msgs[1] = new OracleAQMessage(ConvertToByteArray(Data[1]));

 // Enqueue the message - take note that we're using the EnqueueArray
 // function now
 _queueObj.EnqueueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 _queueObj.EnqueueArray(_msgs);

 // Display the payload data that was enqueued
 for (int i = 0; i < 2; i++)
 {
 MessageBox.Show("Payload Data : " + Data[i] + "\n" +
 "Payload Hex value : " +
 ConvertToHexString((byte[])_msgs[i].Payload) + "\n" +

230

 CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

 "Message ID : " + ConvertToHexString(_msgs[i].MessageId));
 }
 _txn.Commit();
 _queueObj.Dispose();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

You can also dequeue multiple messages at once if you know in advance how many messages are
waiting in a queue. You can do this via the DequeueArray method. This method returns an array of
OracleAQMessage objects that you can use to inspect each retrieved message, and the code to use it is in
Listing 9-4.

Listing 9-4. Dequeuing Multiple Messages

private void btnDequeueMultiple_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);

 // Create a new queue object
 OracleAQQueue _queueObj = new OracleAQQueue("EDZEHOO.MY_JOBS_QUEUE",
 _connObj);
 _connObj.Open();
 OracleTransaction _txn = _connObj.BeginTransaction();
 _queueObj.DequeueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 _queueObj.DequeueOptions.Wait = 10;
 _queueObj.DequeueOptions.ProviderSpecificType = true;

 // Dequeue the messages – take note that you can specify the number of
 // messages you wish to retrieve from the queue
 OracleAQMessage[] _deqMsgs = _queueObj.DequeueArray(2);

 for (int i = 0; i < _deqMsgs.Length ; i++)
 {
 // If you enqueued a byte array, the dequeued object is an
 // OracleBinary object. You can retrieve the byte array using the
 // OracleBinary.Value property

 OracleBinary _payload = (OracleBinary)_deqMsgs[i].Payload;
 MessageBox.Show("Dequeued Payload Data: " +
 ConvertFromByteArray(_payload.Value) + "\n"

231

CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

 + "Dequeued Payload Hex: " +
 ConvertToHexString(_payload.Value) + "\n");
 }

 _txn.Commit();
 _queueObj.Dispose();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

You can test the code from Listing 9-4 in the same fashion. Take note that, this time, you will receive
two pop-up notifications when you press each of the Enqueue and Dequeue buttons. The second pop-
up notification is shown in Figure 9-3.

Figure 9-3. The second pop-up notification message

 Tip You don’t have to execute a multiple message enqueue to perform a multiple message dequeue. For
instance, you could execute a single message enqueue routine five consecutive times and, after that, perform a
multiple message dequeue with the number of messages set to 5: OracleAQQueue.DequeueArray(5).

Creating a Multiple-Consumer Queue
Now that you’ve seen how single-consumer queues work, let’s take a look at one that is meant for a
multiuser environment. For instance, you might want to setup a jobs queue, where multiple technicians
might need to retrieve jobs from this queue.

Multiple-consumer queues in Oracle work like this: you must explicitly define the recipients for the
queue. Only the defined recipients would be able to dequeue messages from the queue. There are two
ways to define recipients:

232

 CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

• At the queue level: During the creation of a multiple-consumer queue, you can use
the DBMS_AQADM package to add a subscriber to the queue.

• At the message level: You can also define a list of recipients for each message that
you enqueue.

The same name defined for the subscriber or recipient must be specified in the
OracleAQQueue.DequeueOptions.ConsumerName property during dequeuing. This allows Oracle to know
who’s attempting to dequeue.

Defining Recipients at the Queue Level
Before you proceed with the examples in this section, you must first create a multiple-consumer queue.
Again, you can use SQL*Plus for this. Take note that you will also be adding a subscriber with the name
JOHNDALY to the queue and then mapping this subscriber to a database user. When you do this, you are
defining the recipients at the queue-level. Execute the code in Listing 9-5.

Listing 9-5. Defining Recipients at the Queue Level

DECLARE
 SUBSCRIBER SYS.AQ$_AGENT;
BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE
 (
 queue_table => 'EDZEHOO.JobsQueue_Table',
 queue_payload_type => 'RAW',
 sort_list => 'ENQ_TIME',
 message_grouping => DBMS_AQADM.NONE,
 compatible => '10.0',
 comment => '',
 multiple_consumers => TRUE,
 secure => TRUE
);

 DBMS_AQADM.CREATE_QUEUE
 (
 queue_name => 'EDZEHOO.JobsQueue',
 queue_table => 'EDZEHOO.JobsQueue_Table',
 queue_type => DBMS_AQADM.NORMAL_QUEUE,
 max_retries => 0,
 retry_delay => 0,
 retention_time => 0,
 comment => ''
);

 SUBSCRIBER := SYS.AQ$_AGENT('JOHNDALY', NULL, NULL);
 DBMS_AQADM.ADD_SUBSCRIBER
 (
 queue_name => 'EDZEHOO.JobsQueue',
 subscriber => SUBSCRIBER,

233

CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

 queue_to_queue => FALSE,
 delivery_mode => DBMS_AQADM.PERSISTENT
);

 DBMS_AQADM.ENABLE_DB_ACCESS
 (
 agent_name => 'JOHNDALY',
 db_username => 'EDZEHOO'
);

 DBMS_AQADM.start_queue(queue_name=>'EDZEHOO.JobsQueue');
END;
/

Some of the properties used in the preceding listing are described in Table 9-2.

Table 9-2. Properties Used in ADD_SUBSCRIBER and ENABLE_DB_ACCESS

Property Name What It Represents

queue_name This property is the name of the queue to
add a subscriber to.

subscriber This property is the name of the agent
subscribing to the queue.

queue_to_queue This one specifies whether to enable queue
to queue propagation for the subscriber
(propagating a messaging from a queue to
another).

delivery_mode This specifies whether to use BUFFERED or
PERSISTENT delivery of messages for the
subscriber. Buffered messaging is faster
than persistent messaging, because the
messages reside in shared memory and are
written to disk only when the shared
memory limit is approached. The
downside of buffered messaging is reduced
reliability; if the Oracle instance crashed,
for instance, messages that were not
written to disk are lost.

agent_name This property tells the name of the
subscribing agent.

db_username This one is the name of the database user
to map to.

234

 CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

You can now write the full code for the enqueue function as shown in Listing 9-6. For multiple-
consumer queues, you are required to define the sender ID. You can set it to any name you wish.

Listing 9-6. Recipient-Specific Enqueuing

private void btnEnqueueMCQ_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);

 // Create a new queue object
 OracleAQQueue _queueObj = new OracleAQQueue("EDZEHOO.JobsQueue", _connObj);
 _connObj.Open();
 OracleTransaction _txn = _connObj.BeginTransaction();

 // Set payload type
 _queueObj.MessageType = OracleAQMessageType.Raw;

 // Create a new message object
 OracleAQMessage _msg = new OracleAQMessage();

 String Data = "HELLO, HOW ARE YOU!";
 _msg.Payload = ConvertToByteArray(Data);

 // Define the sender ID and enqueue the message
 _queueObj.EnqueueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 _msg.SenderId = new OracleAQAgent("EDZEHOO");
 _queueObj.Enqueue(_msg);

 // Display the payload data that was enqueued
 MessageBox.Show("Payload Data : " + Data + "\n" +
 "Payload Hex value : " + ConvertToHexString((byte[])_msg.Payload) + "\n" +
 "Message ID : " + ConvertToHexString(_msg.MessageId));
 _txn.Commit();

 _queueObj.Dispose();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

The code for the corresponding dequeue function is shown in Listing 9-7. Take note that you will be
declaring who you are to ODP.NET (by defining the ConsumerName).

235

CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

Listing 9-7. Recipient-Specific Dequeuing

private void btnDequeueMCQ_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);

 // Create a new queue object
 OracleAQQueue _queueObj = new OracleAQQueue("EDZEHOO.JobsQueue", _connObj);
 _connObj.Open();
 OracleTransaction _txn = _connObj.BeginTransaction();

 // Dequeue the message.
 _queueObj.DequeueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 _queueObj.DequeueOptions.Wait = 10;

 // Here set the consumer name to the registered queue subscriber
 // This queue subscriber was registered when you setup the queue
 // in SQL*Plus
 _queueObj.DequeueOptions.ConsumerName = "JOHNDALY";
 OracleAQMessage _deqMsg = _queueObj.Dequeue();

 MessageBox.Show("Dequeued Payload Data: " +
 ConvertFromByteArray((byte[])_deqMsg.Payload) + "\n"
 + "Dequeued Payload Hex: " +
 ConvertToHexString((byte[])_deqMsg.Payload) + "\n"
 + "Message ID of Dequeued Payload : " +
 ConvertToHexString(_deqMsg.MessageId));

 _txn.Commit();
 _queueObj.Dispose();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Now, what’s interesting is that if you change the consumer name in the dequeue code to another
person, as illustrated here, you will find that there are no messages found in the queue:

_queueObj.DequeueOptions.ConsumerName = "RONFRICKE";

The reason is simple—only subscribers to a queue will be able to access messages enqueued in that
queue, which could be useful, for example, in the following scenario: You could set up multiple

236

 CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

announcement boards (with each board represented by a queue) and a list of subscribers for each
announcement board. The subscribers will only receive announcements for the boards they are
subscribed to.

Defining Recipients at the Message Level
In some cases, your application cannot know in advance who the subscribers to a queue are. Or you
might need the list of recipients to be different for each message in the same queue. You can set different
recipients for each message in the same queue by defining recipients at the message level using the
OracleAQMessage.Recipients property. The code for this enqueue function is in Listing 9-8.

Listing 9-8. Defining Recipients at the Message Level

private void btnEnqueueRecipients_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);

 // Create a new queue object
 OracleAQQueue _queueObj = new OracleAQQueue("EDZEHOO.JobsQueue", _connObj);
 _connObj.Open();
 OracleTransaction _txn = _connObj.BeginTransaction();

 // Set payload type
 _queueObj.MessageType = OracleAQMessageType.Raw;

 // Create a new message object
 OracleAQMessage _msg = new OracleAQMessage();

 String Data = "HELLO, HOW ARE YOU!";
 _msg.Payload = ConvertToByteArray(Data);

 // Enqueue the message
 _queueObj.EnqueueOptions.Visibility = OracleAQVisibilityMode.OnCommit;

 // Register the subscriber at the message-level using the
 // OracleAQMessage.Recipients property
 OracleAQAgent[] agent = new OracleAQAgent[1];
 agent[0] = new OracleAQAgent("RONFRICKE");
 _msg.Recipients = agent;
 _msg.SenderId = new OracleAQAgent("EDZEHOO");

 _queueObj.Enqueue(_msg);

 // Display the payload data that was enqueued
 MessageBox.Show("Payload Data : " + Data + "\n" +
 "Payload Hex value : " + ConvertToHexString((byte[])_msg.Payload) + "\n" +

237

CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

 "Message ID : " + ConvertToHexString(_msg.MessageId));
 _txn.Commit();

 _queueObj.Dispose();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

You can use the same code (in btnDequeueMCQ_Click) for the dequeue function. Ensure that the
ConsumerName property has been set to RONFRICKE. If you run this code sample, you will find that even
though RONFRICKE isn’t a subscriber to the queue, he will be able to receive the particular message
(because he is on the recipient list of that message).

 Note Recipients defined at the message level override the subscribers defined at the queue level.

Enqueuing and Dequeuing Various Data Types in AQ
AQ allows for three different types of data to be enqueued or dequeued:

• RAW: Data consisting of a stream of binary data

• UDT: Values of a user-defined type

• XML: Data formatted as an XML document

In the previous sections, you’ve been working with RAW data types, which are pretty much byte
arrays. In this section, let’s explore how you can use UDT or XML data types.

Using UDT Data Types
You’ve seen and worked with UDTs earlier on in Chapter 5 of this book. UDTs are a great way to pass
entire business objects from one application to another (without the need to do any serialization), since
Oracle can represent UDTs natively in the database.

Let’s first define the UDT object via SQL*Plus:

CREATE TYPE EDZEHOO.Jobs_Type AS object(
 JobID VARCHAR2(10),
 JobName VARCHAR2(255),
 JobPrice NUMBER,
 JobDescription VARCHAR2(255));
/

238

 CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

You will also need to create a new queue, with the payload type set to the name of the UDT you’ve
just created. Run the following PL/SQL block in SQL*Plus:

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table=>'EDZEHOO.SmallJobs_table',
 queue_payload_type=>'EDZEHOO.Jobs_Type',
 multiple_consumers=>FALSE);

 DBMS_AQADM.CREATE_QUEUE(
 queue_name=>'EDZEHOO.SmallJobs',
 queue_table=>'EDZEHOO.SmallJobs_table');
 DBMS_AQADM.START_QUEUE(queue_name=>'EDZEHOO.SmallJobs');
END;
/

You must now create the .NET class that represents this UDT object you’ve created. Listing 9-9 does
that for you. This class must inherit from the INullable and IOracleCustomType interfaces. Each field in
the UDT object must be exposed as a property in this class. You must use the
[OracleObjectMappingAttribute("FieldName")] directive to tell ODP.NET how to map each property to
its represented UDT field. The ToCustomObject and FromCustomObject interface methods allow you to
define how the UDT object in the database is read into your UDT class, and vice versa.

Listing 9-9. Defining the UDT Class

using System;
using System.Text;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

public class JobClass : INullable, IOracleCustomType
{
 private bool _isNull;
 private int _jobPrice;
 private string _jobDescription;
 private string _jobID;
 private string _jobName;

 public virtual bool IsNull
 {
 get
 {
 return _isNull;
 }
 }

 [OracleObjectMappingAttribute("JOBPRICE")]
 public int JobPrice
 {
 get
 {

239

CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

 return _jobPrice;
 }
 set
 {
 _jobPrice = value;
 }
 }

 [OracleObjectMappingAttribute("JOBNAME")]
 public string JobName
 {
 get
 {
 return _jobName;
 }
 set
 {
 _jobName = value;
 }
 }

 [OracleObjectMappingAttribute("JOBID")]
 public string JobID
 {
 get
 {
 return _jobID;
 }
 set
 {
 _jobID = value;
 }
 }

 [OracleObjectMappingAttribute("JOBDESCRIPTION")]
 public string JobDescription
 {
 get
 {
 return _jobDescription;
 }
 set
 {
 _jobDescription = value;
 }
 }

 // IOracleCustomType.FromCustomObject() implementation
 // Writes a JobClass object into the JOBS_TYPE Oracle UDT
 public virtual void FromCustomObject(OracleConnection con, IntPtr pUdt)
 {
 if (_jobID != null)

240

 CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

 {
 OracleUdt.SetValue(con, pUdt, "JOBID", _jobID);
 }
 if (_jobName != null)
 {
 OracleUdt.SetValue(con, pUdt, "JOBNAME", _jobName);
 }
 if (_jobPrice != null)
 {
 OracleUdt.SetValue(con, pUdt, "JOBPRICE", _jobPrice);
 }
 if (_jobDescription != null)
 {
 OracleUdt.SetValue(con, pUdt, "JOBDESCRIPTION", _jobDescription);
 }
 }

 // IOracleCustomType.ToCustomObject() implementation
 // Writes a JOBS_TYPE Oracle UDT into a JobClass object
 public virtual void ToCustomObject(OracleConnection con, IntPtr pUdt)
 {
 _jobID = (string) OracleUdt.GetValue(con, pUdt, "JOBID");
 _jobName = (string)OracleUdt.GetValue(con, pUdt, "JOBNAME");
 _jobDescription = (string)OracleUdt.GetValue(con, pUdt, "JOBDESCRIPTION");
 _jobPrice = (int)OracleUdt.GetValue(con, pUdt, "JOBPRICE");
 }

 // Prints out a summary of the job record this object represents
 public override string ToString()
 {
 return "Job ID : " + _jobID + "\n"
 + "Job Name : " + _jobName + "\n"
 + "Job Description : " + _jobDescription + "\n"
 + "Job Price : " + _jobPrice;
 }
}

The next step is to create the factory class that generates instances of your JobClass class. Here’s the
code to write:

//JobClass factory class
[OracleCustomTypeMappingAttribute("EDZEHOO.JOBS_TYPE")]
public class OrderFactory : IOracleCustomTypeFactory
{
 // Implementation of IOracleCustomTypeFactory.CreateObject()
 public IOracleCustomType CreateObject()
 {
 return new JobClass();
 }
}

241

CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

Finally, with that out of the way, you can now write the code shown in Listing 9-10 for your enqueue
function. The payload this time is an instance of your UDT class.

Listing 9-10. Enqueuing a UDT Object

private void btnEnqueueUDT_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);

 // Create a new queue object
 OracleAQQueue _queueObj = new OracleAQQueue("EDZEHOO.SmallJobs", _connObj);
 _connObj.Open();
 OracleTransaction _txn = _connObj.BeginTransaction();

 // Set the payload type to your UDT
 _queueObj.MessageType = OracleAQMessageType.Udt;
 _queueObj.UdtTypeName = "EDZEHOO.JOBS_TYPE";

 // Create a new message object
 OracleAQMessage _msg = new OracleAQMessage();

 // Create an instance of JobClass and pass it in as the payload for the
 // message
 JobClass _job = new JobClass();
 _job.JobID = "J1234";
 _job.JobName = "Feed Snuppy";
 _job.JobPrice = 15;
 _job.JobDescription = "Feed Rice Crispies twice a day";
 _msg.Payload = _job;

 // Enqueue the message
 _queueObj.EnqueueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 _queueObj.Enqueue(_msg);

 // Display the payload data that was enqueued
 MessageBox.Show("Payload Data : " + _job.ToString());
 _txn.Commit();

 _queueObj.Dispose();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

242

 CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

The code for the dequeue function follows in Listing 9-11. You can dequeue directly into an instance
of your UDT class.

Listing 9-11. Dequeuing a UDT Object

private void btnDequeueUDT_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);

 // Create a new queue object
 OracleAQQueue _queueObj = new OracleAQQueue("EDZEHOO.SmallJobs", _connObj);

 // Set the payload type to your UDT
 _queueObj.MessageType = OracleAQMessageType.Udt;
 _queueObj.UdtTypeName = "EDZEHOO.JOBS_TYPE";

 _connObj.Open();
 OracleTransaction _txn = _connObj.BeginTransaction();

 // Dequeue the message.
 _queueObj.DequeueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 _queueObj.DequeueOptions.Wait = 10;
 OracleAQMessage _deqMsg = _queueObj.Dequeue();
 JobClass _Data = (JobClass)_deqMsg.Payload;
 MessageBox.Show(_Data.ToString ());

 _txn.Commit();
 _queueObj.Dispose();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run the code samples from the previous two listings, you will see the pop-up shown in Figure
9-4 displayed when you perform the dequeue.

243

CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

Figure 9-4. Dequeued UDT object

Using XML Data Types
Now, let’s turn to XML data types. You will need to define a new queue (via SQL*Plus) with the payload
type set to SYS.XMLType, for example:

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table=>'EDZEHOO.JobsXML_table',
 queue_payload_type=>'SYS.XMLType',
 multiple_consumers=>FALSE);

 DBMS_AQADM.CREATE_QUEUE(
 queue_name=>'EDZEHOO.JobsXML',
 queue_table=>'EDZEHOO.JobsXML_table');

 DBMS_AQADM.START_QUEUE(queue_name=>'EDZEHOO.JobsXML');
END;
/

The enqueue function for XML data follows in Listing 9-12. ODP.NET provides the OracleXmlType
class, which you must use to encapsulate the raw XML data you wish to send.

Listing 9-12. Enqueuing XML Data

private void btnEnqueueXML_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);

 // Create a new queue object
 OracleAQQueue _queueObj = new OracleAQQueue("EDZEHOO.JobsXML", _connObj);

244

 CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

 _connObj.Open();
 OracleTransaction _txn = _connObj.BeginTransaction();

 // Set payload type to XML
 _queueObj.MessageType = OracleAQMessageType.Xml;

 // Create a new message object
 OracleAQMessage _msg = new OracleAQMessage();
 OracleXmlType _jobXML = new OracleXmlType(_connObj ,
 "<JOB><JOBID>J1234</JOBID><JOBNAME>Feed Snuppy</JOBNAME></JOB>");
 _msg.Payload = _jobXML;

 // Enqueue the message
 _queueObj.EnqueueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 _queueObj.Enqueue(_msg);

 // Display the payload data that was enqueued
 MessageBox.Show("Payload Data : \n" + _jobXML.Value);
 _txn.Commit();

 _queueObj.Dispose();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

To dequeue the message, write the code in Listing 9-13. You can access the XML data (as a String)
via the OracleXmlType.Value property.

Listing 9-13. Dequeuing XML Data

private void btnDequeueXML_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);

 // Create a new queue object
 OracleAQQueue _queueObj = new OracleAQQueue("EDZEHOO.JobsXML", _connObj);

 // Set the payload type to XML
 _queueObj.MessageType = OracleAQMessageType.Xml;

 _connObj.Open();

245

CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

 OracleTransaction _txn = _connObj.BeginTransaction();

 // Dequeue the message.
 _queueObj.DequeueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 _queueObj.DequeueOptions.Wait = 10;
 _queueObj.DequeueOptions.ProviderSpecificType = true;

 OracleAQMessage _deqMsg = _queueObj.Dequeue();
 OracleXmlType _jobXML = (OracleXmlType)_deqMsg.Payload;
 MessageBox.Show("Dequeued Payload Data: \n" + _jobXML.Value);

 _txn.Commit();
 _queueObj.Dispose();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run the code sample from Listing 9-13, you will see the pop-up shown in Figure 9-5.

Figure 9-5. Dequeued XML data

Waiting for Incoming Messages
So far, you have been manually retrieving messages from queues. You retrieve a message by clicking the
Dequeue button, because you know there’s a message in the queue. But when your application goes live,
how does it know if there’s something in the queue? There are two approaches to take:

• Do a synchronous (blocking) call that waits for an incoming message.

• Get notified via an asynchronous callback function when there is an incoming
message.

246

 CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

Dequeuing Messages Synchronously (Blocking)
You can get your code to wait indefinitely for an incoming message by calling the OracleAQQueue.Listen
method. This function does not return until a message is detected in the queue. The code to do this
follows in Listing 9-14.

Listing 9-14. Listening for Incoming Messages

private void btnStartListener_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);

 // Create a new queue object
 OracleAQQueue _queueObj = new OracleAQQueue("EDZEHOO.MY_JOBS_QUEUE",
 _connObj);
 _connObj.Open();

 // The Listen function is a blocking call - it will wait
 // indefinitely until a message is received.
 _queueObj.Listen(null);

 // Once we're here this means a message has been detected in the queue.
 // We can now proceed to dequeue that message
 OracleTransaction _txn = _connObj.BeginTransaction();

 // Dequeue the message.
 _queueObj.DequeueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 _queueObj.DequeueOptions.Wait = 10;
 OracleAQMessage _deqMsg = _queueObj.Dequeue();

 MessageBox.Show("Dequeued Payload Data: " +
 ConvertFromByteArray((byte[])_deqMsg.Payload) + "\n"
 + "Dequeued Payload Hex: " +
 ConvertToHexString((byte[])_deqMsg.Payload) + "\n"
 + "Message ID of Dequeued Payload : " +
 ConvertToHexString(_deqMsg.MessageId) + "\n" +
 "Correlation : " + _deqMsg.Correlation);

 _txn.Commit();
 _queueObj.Dispose();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {

247

CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

 MessageBox.Show(ex.ToString());
 }
}

The OracleAQQueue.Listen method may choke up your UI, since it is a blocking call. To test this, run
two instances of your application, so that you could set one instance to listen indefinitely for messages
and then run an enqueue on the second instance. You will find that the moment you’ve enqueued a
message via the second instance, the listening instance would return immediately from the blocking call.
The dequeued message is then subsequently displayed.

Although the use of (nonblocking) asynchronous notifications would seem to be useful for most
applications, synchronous notifications might make development easier sometimes. Take, for example,
an application that needs to wait for a particular sequence of messages to arrive before it can do
something. This would be easier to set up by just calling the Listen method a specified consecutive
number of times, rather than setting up callback functions (where you must then worry about sorting
the messages that come through the callback).

 Tip You can prevent the UI from choking every time you call the blocking OracleAQQueue.Listen method by
placing it inside a thread.

Dequeuing Messages Asynchronously (Nonblocking)
As I highlighted in the previous chapter, notifications are useful by nature because they adopt a push
approach rather than a pull approach. You can also be automatically notified by callback when a
message arrives at a particular queue. Listing 9-15 shows some code that implements this nonblocking
approach to dequeuing. For the enqueue functionality, you can reuse the code from the
btnEnqueue_Click button in Listing 9-1.

Listing 9-15. Registering an Asynchronous Callback

private static bool _notified = false;
private void btnDequeueNotification_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);

 // Create a new queue object
 OracleAQQueue _queueObj = new OracleAQQueue("EDZEHOO.MY_JOBS_QUEUE",
 _connObj);
 _connObj.Open();
 OracleTransaction _txn = _connObj.BeginTransaction();

 _queueObj.DequeueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 _queueObj.DequeueOptions.Wait = 10;

248

 CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

 //Register the callback function
 _queueObj.MessageAvailable += new
 OracleAQMessageAvailableEventHandler(IncomingMessageCallback);

 _txn.Commit();

 MessageBox.Show("Notification registered. Entering loop...");

 // Loop while waiting for notification
 while (_notified == false)
 {
 System.Threading.Thread.Sleep(2000);
 }

 _queueObj.Dispose();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Listing 9-16 shows the code for the callback function. You can retrieve a myriad of information
about the incoming message via the OracleAQMessageAvailableEventArgs object.

Listing 9-16. The Callback Function

static void IncomingMessageCallback(object src, OracleAQMessageAvailableEventAr
gs arg)
{
 try
 {
 MessageBox.Show("Notification Received...\n" +
 "QueueName : " + arg.QueueName + "\n" +
 "Notification Type : " + arg.NotificationType);
 _notified = true;
 }
 catch (Exception e)
 {
 MessageBox.Show("Error : " + e.ToString());
 }
}

To test asynchronous dequeuing, launch two instances of the same application (just like you did
earlier for the synchronous example). Click the Dequeue Notification button in the first instance to
register the callback. After that, click the Enqueue button in the second instance. You will find that the
message in the callback function is immediately displayed, as shown in Figure 9-6.

249

CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

Figure 9-6. Callback function message box

Understanding the Useful OracleAQMessage Properties
Several properties of the OracleAQMessage class are worth a look. They give you control over how
messages are stored and delivered. Table 9-3 summarizes some of the useful properties of this class.

Table 9-3. Miscellaneous Properties of the OracleAQMessage Class

Property Name What It Represents

Delay This specifies the delay (in seconds)
between an enqueue and a subsequent
dequeue attempt, which allows the
developer to delay immediate
consumption of an enqueued message.

DeliveryMode This specifies the delivery mode of the
message and can take one of two different
values: buffered or persistent.
Buffered delivery, a new feature in Oracle
Streams AQ 10.2, allows messages to be
stored in a shared memory are, making it
faster than persistent delivery (which
stores messages in the database). The
downside to using buffered delivery is that
messages stored in this memory area
would be lost if the server shutdown
unexpectedly.
Persistent delivery is more reliable but
performs slower.

DequeueAttempts This property returns the number of
attempts at dequeuing a particular
message.

250

 CHAPTER 9 USING ORACLE DATABASE STREAMS ADVANCED QUEUING WITH ODP.NET

251

EnqueueTime This property specifies the time the
message was enqueued.

ExceptionQueue This specifies the name of a queue that a
message will be automatically moved to if
either one of the following conditions are
met: the message has expired, or the
number of unsuccessful dequeue attempts
exceeds the max_retries counter
configured for the queue.

Expiration This property specifies the duration (in
seconds) that a message will remain
enqueued in a queue.

Priority This specifies the priority of a message
(with smaller numbers representing higher
priority). It is used when dequeuing
messages based on priority.

Summary
In this chapter, you’ve taken a look at the following:

• Using DDL statements to create a queue

• Using the OracleAQQueue and OracleAQMessage classes to enqueue and dequeue
messages to and from a queue

• Enqueuing messages with RAW, XML, and UDT data types

• Using the OracleAQQueue.Listen method to wait for messages synchronously

• Implementing an asynchronous callback function with OracleAQQueue’s automatic
notification capability

In the next chapter, you’ll learn how Oracle natively handles XML data types and the various
functions provided by ODP.NET to manipulate XML data.

C H A P T E R 10

Oracle XML Support

XML, short for Extensible Markup Language has become one of the most widely used formats in the
business world to represent data since it was first published by the World Wide Web Consortium (W3C)
in 1996. XML provides a representation for semistructured data that is human readable and platform
independent yet flexible enough to overcome the rigidity of two-dimensional data representation
models (such as the standard relational databases we all know today).

To get an idea of how XML can be effectively used, consider the following example, which captures
the details of a purchase order in a structured fashion and is highly portable to other systems:

<PurchaseOrder PoNumber="PO0001">
 <InitiatedBy>Preston Cole</InitiatedBy>
 <DateIssued>25 Dec 2009</DateIssued>
 <Supplier>
 <Name>ACME Ammunition Co.</Name>
 <Address>
 <Street>20 Depot Road</Street>
 <City>Singapore</City>
 <State>NA</State>
 <Postcode>806110</Postcode>
 </Address>
 </Supplier>
 <PODetails>
 <Item>
 <Name>M5 Minigun</Name>
 <UnitPrice>50.00</UnitPrice>
 <Qty>20</Qty>
 </Item>
 <Item>
 <Name>Frag Grenade</Name>
 <UnitPrice>8.00</UnitPrice>
 <Qty>10</Qty>
 </Item>
 </PODetails>
</PurchaseOrder>

If you tried to represent the same thing using a relational database, you would need three separate
tables, one each to store the purchase order, purchase order details, and supplier details respectively. On
top of that, you would have to define the join relationships between these tables and maintain a set of
indices and a set of data constraints to ensure data integrity.

Life can be made simpler when dealing with XML data, and your application can be made to
perform faster by storing data as XML natively in the database. The Oracle database provides support for

253

CHAPTER 10 ORACLE XML SUPPORT

native XML data storage. In addition, it even allows you to generate XML from relational record sets.
ODP.NET allows you to access these features from within your .NET applications. In this chapter, you
will learn how to:

• Retrieve and manipulate native XML data (stored in XMLTYPE columns) in the
Oracle database

• Pass XML data to and from PL/SQL stored procedures

• Use XSLT to transform raw XML data from one schema to another

• Retrieve and manipulate relational data using XML

• Use XQuery to perform XML-aware search in the database

Accessing Native XML Data (XMLTYPE)
The XMLTYPE data type is an Oracle data type that stores XML data natively in the database. XMLTYPE is
essentially made out of a CLOB, so it has a large size limit, allowing you to store a large amount of XML
data in it.

Storing data objects natively as XML is a good idea if you don’t expect the individual constituents of
that data object to be reused in any way. For instance, in the purchase order example introduced earlier,
the purchase order details will always be retrieved together with their master Purchase Order record –
there is hardly any use of retrieving just the purchase order details on their own. However, consider
another scenario where you have a customer, and each customer has 1:many invoices. You might be
tempted to store this relationship (one record for each customer) in the database as follows:

<Customer Name='ABC Co.'>
 <Invoice ID='Inv001'>
 .
 .
 </Invoice>
 <Invoice ID='Inv002'>
 .
 .
 </Invoice>
</Customer>

In such a case, using XML may not be advisable, since at some point in your application, you will
likely need to pull out the list of available invoices across all customers.

When done in the right context, storing an entire business object whole in XML can yield better
performance than if you were to represent it using separate relational tables. In the sections to follow,
you will explore how to manipulate XMLTYPE data using three different objects: Microsoft’s
System.Xml.XmlReader class, ODP.NET’s OracleXmlType class, and last but not least, ODP.NET’s
OracleString class.

Creating an XMLTYPE Column
Before you proceed to those sections, let’s create a new table that contains an XMLTYPE column and insert
some test data. This table, Product_ExtraInfo, will contain additional information about a product such

254

 CHAPTER 10 ORACLE XML SUPPORT

as the category it belongs to, the person in charge, and pricing information for different regions. You can
do this by running the following statements in SQL*Plus:

CREATE TABLE "EDZEHOO"."PRODUCT_EXTRAINFO" (
"ID" VARCHAR2(10) NOT NULL,
"INFO" XMLTYPE,
CONSTRAINT "EXTRAINFO_PRIMKEY" PRIMARY KEY ("ID") VALIDATE);

INSERT INTO PRODUCT_EXTRAINFO (ID, INFO)
VALUES('E1','<PRODUCT><CATEGORY>Engines</CATEGORY>
<PERSON_IN_CHARGE>Johnson Adams</PERSON_IN_CHARGE>
<REGIONAL_PRICING><EASTASIA>45.00</EASTASIA><AMERICAS>20.00</AMERICAS>
</REGIONAL_PRICING></PRODUCT>');

INSERT INTO PRODUCT_EXTRAINFO (ID, INFO)
VALUES('R1','<PRODUCT><CATEGORY>Lamps</CATEGORY>
<PERSON_IN_CHARGE>Kathy Wick</PERSON_IN_CHARGE>
<REGIONAL_PRICING><EASTASIA>50.00</EASTASIA><AMERICAS>15.00</AMERICAS>
</REGIONAL_PRICING></PRODUCT>');

Receiving XMLTYPE Data with XMLReader
The XMLReader class belongs to System.Xml namespace in the .NET Framework. You can use the
GetXmlReader method of the OracleDataReader object to read a column in a table using the XMLReader
class, as shown in the following code:

string _sql = "SELECT INFO FROM PRODUCT_EXTRAINFO";
OracleCommand _cmdObj = new OracleCommand(_sql, _connObj);
OracleDataReader _rdrObj = _cmdObj.ExecuteReader ();
XmlReader _xmlRdr = _rdrObj.GetXmlReader(_rdrObj.GetOrdinal("INFO"));

To iterate through the elements of the XML and individually retrieve its values, you will need to use
an XMLDocument object (which also belongs to the System.Xml namespace). You can do this using the
following code:

XmlDocument _xmlDoc = new XmlDocument();
_xmlDoc.Load(_xmlRdr);

Let’s take a look at the full example in code. You will attempt to read an XMLTYPE column into an
XmlReader object, pass that into an XMLDocument object to retrieve each individual element, and finally,
display them in a pop-up message box. Create a new form, and place a button on it. In the click event of
that button, write the code shown in Listing 10-1.

Listing 10-1. Using the XmlReader Class

private void btnXMLReader_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";

255

CHAPTER 10 ORACLE XML SUPPORT

 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 string _sql = "SELECT INFO FROM PRODUCT_EXTRAINFO";
 OracleCommand _cmdObj = new OracleCommand(_sql, _connObj);
 OracleDataReader _rdrObj = _cmdObj.ExecuteReader ();
 if (_rdrObj.HasRows) {
 while (_rdrObj.Read())
 {
 String _message ="";
 String _regionalprices="";
 XmlReader _xmlRdr = _rdrObj.GetXmlReader
 (_rdrObj.GetOrdinal("INFO"));

 //Now that we have an XMLReader object, we create an XMLDocument
 //object so that we can manipulate its elements
 XmlDocument _xmlDoc = new XmlDocument();
 _xmlDoc.Load(_xmlRdr);
 XmlNode _xmlRoot = _xmlDoc.FirstChild;
 XmlNode _xmlCategory = _xmlRoot.SelectSingleNode("CATEGORY");
 XmlNode _xmlPerson = _xmlRoot.SelectSingleNode
 ("PERSON_IN_CHARGE");
 XmlNode _xmlRegionalPricing =_xmlRoot.SelectSingleNode
 ("REGIONAL_PRICING");
 for (int i = 0; i < _xmlRegionalPricing.ChildNodes.Count; i++)
 {
 XmlNode _xmlRegion = _xmlRegionalPricing.ChildNodes.Item(i);
 if (_regionalprices.Length > 0) _regionalprices += ",";
 _regionalprices += _xmlRegion.Name + " : " +
 _xmlRegion.InnerText;
 }
 _message = "Category name:\t" + _xmlCategory.InnerText + "\n" +
 "Person in charge:\t" + _xmlPerson.InnerText + "\n" +
 "Regional Pricing:\t" + _regionalprices + "\n" +
 "Raw XML:\n" + _xmlDoc.OuterXml;
 MessageBox.Show(_message);
 }
 }
 _rdrObj.Close();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

256

 CHAPTER 10 ORACLE XML SUPPORT

If you run this code sample, you will see the message box shown in Figure 10-1 displaying the
retrieved values of the individual XML elements.

Figure 10-1. Individual XML elements of an XML

Receiving XMLTYPE Data with OracleXMLType
You can also use ODP.NET’s OracleXmlType class to receive data from an XMLTYPE column. In much the
same way, you start off with an OracleDataReader object and then use its GetOracleXmlType method to
return an OracleXmlType object.

string _sql = "SELECT INFO FROM PRODUCT_EXTRAINFO";
OracleCommand _cmdObj = new OracleCommand(_sql, _connObj);
OracleDataReader _rdrObj = _cmdObj.ExecuteReader ();
OracleXmlType _oracleXmlType = _rdrObj.GetOracleXmlType(_rdrObj.GetOrdinal("INFO"));

The OracleXmlType class contains a set of useful methods, such as the ability to extract individual
elements from the XML without the need to create an XMLDocument object, or to check if an element is
present in the XML. Let’s take a look at some of these functions in Table 10-1.

Table 10-1. Useful Methods and Properties in the OracleXmlType Class

Method/Property Definition Description

IsExists(xpathExpr, nsMap) This function takes in an XPath expression (and
namespace) and checks if the requested element exists.
For example, you could run
IsExists("/PRODUCT/CATEGORY", null) to check if the
CATEGORY element was present in the XML.

IsEmpty This property returns true or false and indicates

257

CHAPTER 10 ORACLE XML SUPPORT

whether the current OracleXmlType object holds any
data.

GetXmlReader() This function returns an XMLReader object that allows
you to read a stream of XML from the XMLTYPE column.

GetXMLDocument() This function returns an XMLDocument object directly
that allows you to access and manipulate individual
elements in the XML

Extract(xpathExpr, nsMap) This function extracts the element specified by the
XPath expression. The extracted element is returned in
a new OracleXmlType object.

Update(xpathExpr, nsMap, Value) This function updates the element specified by the
XPath expression with a new OracleXmlType or String
value.

Let’s take a look at some of these functions in action. In Listing 10-2, you will attempt to read the

XMLTYPE data into an OracleXmlType object, extract the CATEGORY element of each product and display it
alongside the full raw XML.

Listing 10-2. Using the OracleXmlType Class

private void btnOracleXMLType_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 string _sql = "SELECT INFO FROM PRODUCT_EXTRAINFO";
 string _message="";
 OracleCommand _cmdObj = new OracleCommand(_sql, _connObj);
 OracleDataReader _rdrObj = _cmdObj.ExecuteReader();
 if (_rdrObj.HasRows)
 {

while (_rdrObj.Read())
{

 OracleXmlType _oracleXmlType = _rdrObj.GetOracleXmlType
 (_rdrObj.GetOrdinal("INFO"));
 if (!_oracleXmlType.IsNull)
 {
 string _xPath = "/PRODUCT/CATEGORY";
 string _nsMap = null;
 if (_oracleXmlType.IsExists(_xPath, _nsMap))
 {
 OracleXmlType _oracleXmlTypeNode =

258

 CHAPTER 10 ORACLE XML SUPPORT

 _oracleXmlType.Extract(_xPath,
 _nsMap);
 if (!_oracleXmlTypeNode.IsEmpty)
 {
 _message = "Category tag:\t" +
 _oracleXmlTypeNode.Value;
 }
 }
 _message += "Raw XML:\n" + _oracleXmlType.Value;
 MessageBox.Show(_message);
 }
 }
 }
 _rdrObj.Close();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Running the code in Listing 10-2 would yield the message box display shown in Figure 10-2.

Figure 10-2. A tag extracted using the OracleXmlType Extract method

259

CHAPTER 10 ORACLE XML SUPPORT

Receiving XMLTYPE Data as a String
If all you need is to read data from the XMLTYPE column and output it somewhere without parsing or
checking its individual elements, you can also choose to retrieve it as a flat string object. The code to do
this is relatively simple: just use the GetOracleString function instead of the GetXmlReader or
GetOracleXmlType functions. This will return you an OracleString object, as illustrated below in Listing
10-3.

Listing 10-3. Retrieving XMLTYPE Data as an OracleString

string _sql = "SELECT INFO FROM PRODUCT_EXTRAINFO";
OracleCommand _cmdObj = new OracleCommand(_sql, _connObj);
OracleDataReader _rdrObj = _cmdObj.ExecuteReader();
if (_rdrObj.HasRows)
{
 while (_rdrObj.Read())
 {
 OracleString _oracleStrRdr =
 _rdrObj.GetOracleString(_rdrObj.GetOrdinal("INFO"));
 if (!_oracleStrRdr.IsNull)
 {
 MessageBox.Show(_oracleStrRdr.Value);
 }
 }
}

Passing XML Data to and from PL/SQL Stored Procedures
If you use XMLTYPE columns in your database, you will (sooner or later) encounter the need to pass XML
data to and from PL/SQL stored procedures. You can declare XMLTYPE data types as input, output, or
return parameters just like any other data type. Before you try out the code in this section, you will need
to create the relevant stored procedures first by running these statements in SQL*Plus:

CREATE OR REPLACE PROCEDURE proc_GetProdInfo
(
 ProductID IN VARCHAR2,
 xmlProductInfo OUT XMLTYPE
)
IS
BEGIN
 SELECT INFO INTO xmlProductInfo FROM Product_ExtraInfo WHERE ID=ProductID;
END;
/

CREATE OR REPLACE PROCEDURE proc_InsertProdInfo
(
 ProductID IN VARCHAR2,
 xmlProductInfo IN XMLTYPE
)

260

 CHAPTER 10 ORACLE XML SUPPORT

IS
BEGIN
 INSERT INTO Product_ExtraInfo(ID, INFO) VALUES(ProductID,xmlProductInfo);
END;
/

You can pass XML data around by encapsulating it in the OracleXmlType class. For example, you can
retrieve XML from a stored procedure by declaring an output parameter and setting its type to
OracleDbType.XmlType. This is illustrated in Listing 10-4.

Listing 10-4. Retrieving XML from a Stored Procedure

private void btnGetProductInfo_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = new OracleCommand("proc_GetProdInfo", _connObj);
 _cmdObj.CommandType = CommandType.StoredProcedure;

 //Define the first parameter – we want to retrieve the XML info for the
 //product with the ID "E1"
 OracleParameter _ProductIDParam = new OracleParameter("ProductID",
 OracleDbType.Varchar2);
 _ProductIDParam.Value = "E1";
 _cmdObj.Parameters.Add(_ProductIDParam);

 //Define the output parameter that receives the XMLType data
 OracleParameter _ProductInfoParam = new OracleParameter("ProductInfo",
 OracleDbType.XmlType);
 _ProductInfoParam.Direction = ParameterDirection.Output;
 _cmdObj.Parameters.Add(_ProductInfoParam);
 _cmdObj.ExecuteNonQuery();
 OracleXmlType _returnValue = (OracleXmlType)_ProductInfoParam.Value;
 MessageBox.Show(_returnValue.Value);

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

You can also send XML in the opposite direction the same way. This is illustrated in Listing 10-5.

261

CHAPTER 10 ORACLE XML SUPPORT

Listing 10-5. Passing XML into a Stored Procedure

private void btnInsertProdInfo_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = new OracleCommand("proc_InsertProdInfo", _connObj);
 _cmdObj.CommandType = CommandType.StoredProcedure;

 //Define first input parameter
 OracleParameter _ProductIDParam = new OracleParameter("ProductID",
 OracleDbType.Varchar2);
 _ProductIDParam.Value = "W1";
 _cmdObj.Parameters.Add(_ProductIDParam);

 //Define the second input parameter
 OracleParameter _ProductInfoParam = new OracleParameter("ProductInfo",
 OracleDbType.XmlType);
 OracleXmlType _ProductInfoXML = new OracleXmlType(_connObj,
 "<PRODUCT><CATEGORY>Accessories</CATEGORY><PERSON_IN_CHARGE>Mary
 Sabbath</PERSON_IN_CHARGE><REGIONAL_PRICING><EASTASIA>3.00
 </EASTASIA><AMERICAS>8.00</AMERICAS></REGIONAL_PRICING></PRODUCT>");
 _ProductInfoParam.Value = _ProductInfoXML;
 _cmdObj.Parameters.Add(_ProductInfoParam);

 _cmdObj.ExecuteNonQuery();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 MessageBox.Show("Product inserted");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Validating Against XML Schema
XML represents not just data but also schema (the structure of the data). However, the Oracle database
does not automatically check the validity of incoming XML that you store in a column. The responsibility
of ensuring that a given XML document conforms to its schema falls to you. For instance, consider the
following XML:

262

 CHAPTER 10 ORACLE XML SUPPORT

<FRUITS>
<APPLE>
 <RETAIL_PRICE>5.50</RETAIL_PRICE >
 <WHOLESALER_PRICE>3.00</WHOLESALER_PRICE>
</APPLE>
<DURIAN>
 <RETAIL_PRICE>8.00</RETAIL_PRICE >
 <WHOLESALER_PRICE>4.50</WHOLESALER_PRICE>
</DURIAN>

</FRUITS>

This XML doesn’t just tell you the price of different fruits but also that each fruit is expected to have
two different prices—retail and wholesale. If one of these fruits was missing a wholesale price, for
example, the XML would be incorrect.

Oracle allows you to validate XML against a schema using the OracleXmlType.Validate function.
This function validates XML data against a schema defined in the XML Schema Definition (XSD) format.
A rough overview of how you can use this function follows:

1. Create an XSD schema.

2. Register the schema.

3. Call the OracleXmlType.Validate function to validate all incoming XML.

Before you can register a schema with Oracle, you will need to grant some rights to your user
account. Login as the SYSTEM account and run the following statements in SQL*Plus:

GRANT RESOURCE TO EDZEHOO;
GRANT ALTER SESSION TO EDZEHOO;
GRANT CREATE VIEW TO EDZEHOO;

After that, log in again under your own user account. You will now need to declare the XSD schema.

 Note XSD is a schema language published by the World Wide Web Consortium (W3C) and is used to define a
set of rules that an XML must conform to so that it can be considered valid. We will not cover the specifics and
syntax of the XSD language in this book. For more information on XSD syntax, please visit
http://www.w3.org/TR/xmlschema-0/.

Listing 10-6 defines a schema named PRODUCT.xsd that enforces a structure such that a <PRODUCT> tag
must contain the <CATEGORY>, <PERSON_IN_CHARGE>, and <REGIONAL_PRICING> tags, and that <EASTASIA>
and <AMERICAS> tag is a subtag of the <REGIONAL_PRICING> tag. After defining this schema, you will need to
register it. You can do that using the RegisterSchema method in the DBMS_XMLSCHEMA PL/SQL package. We,
therefore, place the entire operation in a single PL/SQL block that you can easily run off SQL*Plus:

263

http://www.w3.org/TR/xmlschema-0

CHAPTER 10 ORACLE XML SUPPORT

Listing 10-6. Defining and Registering an XSD Schema

DECLARE
 SCHEMASTRING VARCHAR2(4000);
BEGIN

SCHEMASTRING:= '<schema xmlns="http://www.w3.org/2001/XMLSchema" ' ||
 'targetNamespace="PRODUCT.xsd" ' ||
 'xmlns:PRODUCT="PRODUCT.xsd" ' ||
 'xmlns:xdb="http://xmlns.oracle.com/xdb" ' ||
 'elementFormDefault="qualified" version="1.0"> ' ||
 '<complexType name = "PRODUCTTYPE"> ' ||
 '<sequence> ' ||
 ' <element name = "CATEGORY" type="string"/> ' ||
 ' <element name = "PERSON_IN_CHARGE" type="string"/> ' ||
 ' <element name = "REGIONAL_PRICING"> ' ||
 ' <complexType>' ||
 ' <sequence>' ||
 ' <element name = "EASTASIA" type="float"/> ' ||
 ' <element name = "AMERICAS" type="float"/> ' ||
 ' </sequence>' ||
 ' </complexType>' ||
 ' </element>' ||
 '</sequence> ' ||
 '</complexType> ' ||
 '<element name = "PRODUCT" type="PRODUCT:PRODUCTTYPE"/> ' ||
 '</schema>';

 DBMS_XMLSCHEMA.RegisterSchema('PRODUCT.xsd', SCHEMASTRING, true, true, false);
END;
/

After running the PL/SQL block from Listing 10-6, you will see a “PL/SQL procedure successfully
completed” message. For your additional reference, you can also unregister a schema using the
following PL/SQL block (if you need to):

BEGIN
 dbms_xmlschema.DeleteSchema('PRODUCT.xsd', DBMS_XMLSCHEMA.DELETE_CASCADE);
END;
/

After you’ve registered the schema, you can refer to it from your .NET application at any time using
the OracleXmlType.Validate function. You simply need to pass in the name of your schema
(PRODUCT.xsd) as the sole argument to the Validate function. It will check the data held in the
OracleXmlType object against this schema and return either a true (if it conforms to the schema) or
false.

264

http://www.w3.org/2001/XMLSchema
http://xmlns.oracle.com/xdb

 CHAPTER 10 ORACLE XML SUPPORT

 Note You have to make sure that the XML data being validated declares the XSD as its namespace (using the
xmlns tag). If this is not done the Validate method will return false.

In Listing 10-7, we pass in a block of XML data to validate against the schema you have registered.

Listing 10-7. Validating Against an XSD Schema

private void btnValidateXML_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();

 string _data = "";
 _data = "<PRODUCT xmlns=\"PRODUCT.xsd\">" +
 " <CATEGORY>Slipspace drives</CATEGORY>" +
 " <PERSON_IN_CHARGE>Fujikawa</PERSON_IN_CHARGE>" +
 " <REGIONAL_PRICING>" +
 " <EASTASIA>5000</EASTASIA>" +
 " <AMERICAS>8000</AMERICAS>" +
 " </REGIONAL_PRICING> " +
 "</PRODUCT>";

 OracleXmlType _oracleXmlType = new OracleXmlType(_connObj, _data);
 MessageBox.Show("Validation result is : " +
 _oracleXmlType.Validate("PRODUCT.xsd"));

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run the preceding code, you will notice that it first returns true, indicating that the XML data
conforms to the schema. Now, try changing the XML data slightly; intentionally misspell or remove one
of the tags (as highlighted in bold):

_data = "<PRODUCT xmlns=\"PRODUCT.xsd\">" +
 " <CATEGORY_NAME>Slipspace drives</CATEGORY_NAME>" +
 " <PERSON_IN_CHARGE>Fujikawa</PERSON_IN_CHARGE>" +

265

CHAPTER 10 ORACLE XML SUPPORT

 " <REGIONAL_PRICING>" +
 " <EASTASIA>5000</EASTASIA>" +
 " <AMERICAS>8000</AMERICAS>" +
 " </REGIONAL_PRICING> " +
 "</PRODUCT>";

Try running the same validation routine again. Although the XML is well formed and correct, its
structure does not conform to the specified schema, and the Validation function ultimately returns
false.

Using XSLT to Transform XML Data
Extensible Stylesheet Language Transformations (XSLT) is yet another tool that you will need to be
familiar with if you are going to manipulate XML data. XSLT is commonly used to transform the existing
schema of an XML into a different one. For instance, let’s consider your PRODUCT XML again:

<PRODUCT>
<CATEGORY>Engines</CATEGORY>
<PERSON_IN_CHARGE>John Malcolm</PERSON_IN_CHARGE>
<REGIONAL_PRICING>

<EASTASIA>45.00</EASTASIA>
<AMERICAS>20.00</AMERICAS>

</REGIONAL_PRICING>
</PRODUCT>

This is all fine and dandy, but what if you wanted your schema to look like the following instead (so
that it could be exported to some other system, for example).

<ProductExtraInfo>
<CategoryName>Engines</CategoryName>
<EastAsianPrice>45.00</EastAsianPrice>
<AmericaPrice>20.00</AmericaPrice>

</ProductExtraInfo >

You could either write code to iterate through the original XML using the XMLDocument class and then
rebuild a new one element by element, or you could just use XSLT. XSLT allows you to define a set of
mappings to convert the schema of an XML to a different one.

 Note XSLT is published by the World Wide Web Consortium. We will not cover the specifics and syntax of XSLT
in this book. For more information on XSLT, you can visit http://www.w3.org/TR/xslt.

The code in Listing 10-8 shows how you can define an XSL block to map the original tag names to a
set of new ones and to also break the <EASTASIA> and <AMERICAS> tags out of the <REGIONAL_PRICING> tag.
Notice that the <PERSON_IN_CHARGE> tag is intentionally left out; the transformed XML will not include
this information. After you’ve defined your XSL block, you can use the OracleXmlType.Transform method

266

http://www.w3.org/TR/xslt

 CHAPTER 10 ORACLE XML SUPPORT

to initiate the transform. You will, of course, need to pass in the XSL to use for the transformation. The
full code to do this follows in Listing 10-8.

Listing 10-8. Using XSLT to Transform the Schema of an XML Block

private void btnTranslateXML_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";

try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 string _sql = "SELECT INFO FROM PRODUCT_EXTRAINFO";
 OracleCommand _cmdObj = new OracleCommand(_sql, _connObj);
 OracleDataReader _rdrObj = _cmdObj.ExecuteReader();

 if (_rdrObj.HasRows)
 {
 while (_rdrObj.Read())
 {
 OracleXmlType _oracleXmlType =
 _rdrObj.GetOracleXmlType(_rdrObj.GetOrdinal("INFO"));
 string _xsl;

_xsl = "<?xml version=\"1.0\"?>" +
 "<xsl:stylesheet version=\"1.0\" " +

" xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\">" +
 " <xsl:template match=\"/\">" +

" <ProductExtraInfo>" +
" <xsl:apply-templates select=\"PRODUCT\"/>" +
" </ProductExtraInfo>" +
" </xsl:template>" +
" <xsl:template match=\"PRODUCT\">" +
" <xsl:apply-templates select=\"CATEGORY\"/>" +
" <xsl:apply-templates select=\"REGIONAL_PRICING\"/>"+
" </xsl:template>" +
" <xsl:template match=\"CATEGORY\">" +
" <CategoryName>" +
" <xsl:value-of select=\".\"/>" +
" </CategoryName>" +
" </xsl:template>" +
" <xsl:template match=\"REGIONAL_PRICING\">" +
" <xsl:apply-templates select=\"EASTASIA\"/>" +
" <xsl:apply-templates select=\"AMERICAS\"/>" +
" </xsl:template>" +
" <xsl:template match=\"EASTASIA\">" +
" <EastAsianPrice>" +
" <xsl:value-of select=\".\"/>" +
" </EastAsianPrice>" +
" </xsl:template>" +
" <xsl:template match=\"AMERICAS\">" +

267

http://www.w3.org/1999/XSL/Transform\

CHAPTER 10 ORACLE XML SUPPORT

" <AmericanPrice>" +
" <xsl:value-of select=\".\"/>" +
" </AmericanPrice>" +
" </xsl:template>" +
"</xsl:stylesheet>";

 OracleXmlType _transformedXML = _oracleXmlType.Transform(_xsl, "");
 MessageBox.Show(_transformedXML.Value);
 }
 }
 _rdrObj.Close();
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run this code sample, you will see the transformed XML display in a pop-up message box (as
shown in Figure 10-3).

Figure 10-3. Transformed XML

 Tip You can even use XSLT to transform XML directly into a HTML document. XSLT syntax allows you to
transform tag names into tag attributes and vice versa, insert completely new tags (such as the <TR> and <TD>
tags used in a HTML table) and so on. XSLT is a powerful language that allows you to segregate transformation
rules from code and should be used whenever possible.

268

 CHAPTER 10 ORACLE XML SUPPORT

Retrieving Relational Data as XML
In the examples so far in this chapter, you’ve been manipulating native XML data within the confines of
the XMLTYPE data type. The Oracle database supports yet another cool feature—the ability to read and
manipulate relational data as XML!

 Note Relational data, as opposed to hierarchical data, refers to the standard two dimensional table-column
data format that you are familiar with. The ADO.NET DataSet object, for example holds relational data. The
XMLTYPE column holds hierarchical data.

This means that you can run an SQL query on any table in Oracle and have it return XML instead of a
record set, for instance. You can also do this in the opposite direction—inserting records into a table by
passing the data in as XML. There are three different ways that you can retrieve relational data as XML, of
which you will learn in the following individual sections:

• Using the XMLCommandType property

• Using the Dataset.GetXML method

• Using the DBMS_XMLGEN.GETXML stored procedure

Using the XMLCommandType property
Retrieving relational data as XML consists of two steps:

1. Define the Root and Row tags to use for the generated raw XML.

2. Define an XSLT to transform the raw XML to the desired schema and format.

To tell ODP.NET to retrieve relational data as XML, you must first set the XmlCommandType property of
the OracleCommand object:

_cmdObj.XmlCommandType = OracleXmlCommandType.Query;
The OracleCommand object also contains an XmlQueryProperties object, which allows you to define a

set of rules that govern the query. There are four main properties to set in this object. These properties
are explained in Table 10-2.

Table 10-2. Properties in the XMLQueryProperties Object

Property Definition Description

MaxRows This is the maximum number of rows to retrieve in the
query. To retrieve all rows, leave this value as the
default (–1).

269

CHAPTER 10 ORACLE XML SUPPORT

RootTag and RowTag These two properties define the name of the root tag
and row tag to use when the raw XML is generated.

Xslt This property allows you to set the XSLT to use to
transform the raw XML into the desired schema and
format.

As mentioned earlier, the RootTag and RowTag properties allow you to define the name of the root

and row XML tags to use when generating raw XML. For instance, if you set them to MYRECORDSET and
MYROW respectively, the raw generated XML from the PRODUCTS table might look something like this:

<MYRECORDSET>
 <MYROW>
 <ID>E1</ID>
 <NAME>Engine</NAME>
 <PRICE>50.00</PRICE>
 </MYROW>
 <MYROW>
 <ID>R1</ID>
 <NAME>Rear mirror</NAME>
 <PRICE>5.00</PRICE>
 </MYROW>
</MYRECORDSET>

Listing 10-9 shows how you can retrieve a maximum of two records from the PRODUCTS table and
have it formatted nicely with their appropriate tags in XML.

Listing 10-9. Retrieving Relational Data As XML

private void btnXMLQuery_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _xsltString = "";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 OracleCommand _cmdObj = new OracleCommand("SELECT * FROM Products",
 _connObj);
 _connObj.Open();
 _cmdObj.BindByName = true;
 _cmdObj.XmlCommandType = OracleXmlCommandType.Query;
 _cmdObj.XmlQueryProperties.MaxRows = 2;
 _cmdObj.XmlQueryProperties.RootTag = "MYRECORDSET";
 _cmdObj.XmlQueryProperties.RowTag = "MYRECORD";

 //Define the XSL to transform the relational dataset to XML
 _xsltString = "<?xml version=\"1.0\"?>" +
 "<xsl:stylesheet version=\"1.0\" " +

270

 CHAPTER 10 ORACLE XML SUPPORT

 " xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\">" +
 " <xsl:output encoding=\"utf-8\"/>\n" +
 " <xsl:template match=\"/\">" +
 " <Products>" +
 " <xsl:apply-templates select=\"MYRECORDSET\"/>" +
 " </Products>" +
 " </xsl:template>" +
 " <xsl:template match=\"MYRECORDSET\">" +
 " <xsl:apply-templates select=\"MYRECORD\"/>" +
 " </xsl:template>" +
 " <xsl:template match=\"MYRECORD\">" +
 " <Product>" +
 " <ID>" +
 " <xsl:value-of select=\"ID\"/>" +
 " </ID>" +
 " <Name>" +
 " <xsl:value-of select=\"NAME\"/>" +
 " </Name>" +
 " <Price>" +
 " <xsl:value-of select=\"PRICE\"/>" +
 " </Price>" +
 " <Remarks>" +
 " <xsl:value-of select=\"REMARKS\"/>" +
 " </Remarks>" +
 " </Product>" +
 " </xsl:template>" +
 "</xsl:stylesheet>";

 _cmdObj.XmlQueryProperties.Xslt = _xsltString;
 XmlReader xmlReader = _cmdObj.ExecuteXmlReader();
 XmlDocument xmlDocument = new XmlDocument();
 xmlDocument.PreserveWhitespace = true;
 xmlDocument.Load(xmlReader);
 MessageBox.Show(xmlDocument.OuterXml);

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run the preceding code, you will see the message box shown in Figure 10-4 displaying the
result set as formatted XML.

271

http://www.w3.org/1999/XSL/Transform\

CHAPTER 10 ORACLE XML SUPPORT

Figure 10-4. The data from the Products table retrieved as XML

Using the Dataset.GetXML Method
While reading the previous section, you might have realized that you could also do the same thing using
the ADO.NET record set object. You can do so using the GetXml method of the ADO.NET DataSet object,
as shown in Listing 10-10. There are two disadvantages to using this method:

• You have to write additional code to transform the XML.

• Since the GetXml method is available only in the DataSet object, you need to use
OracleDataAdapter, which is slower in comparison to XmlReader.

Listing 10-10. Using GetXml() to Format a Relational dataset as XML

private void btnADOGetXML_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _sql;
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _ds = new DataSet();
 _connObj.Open();
 _sql = "SELECT * FROM Products";
 OracleDataAdapter _adapterObj = new OracleDataAdapter(_sql, _connObj);

272

 CHAPTER 10 ORACLE XML SUPPORT

 _adapterObj.Fill(_ds);
 MessageBox.Show(_ds.GetXml());
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Using the DBMS_XMLGEN.GETXML Stored Procedure
Another method that you can use to do the same thing is through the DBMS_XMLGEN PL/SQL package. This
package easily converts the results of an SQL statement into XML:

SELECT DBMS_XMLGEN.GETXML('<YOUR_SQL_STATEMENT_GOES_HERE>') FROM DUAL;

 Note You need to have Oracle XML DB installed to have access to the DBMS_XMLGEN package.

You can try this by running the following PL/SQL block in SQL*Plus:

//Set some display settings in the SQL*Plus console window so that you can see the
//full generated XML
SET PAGES 0
SET LONG 9999999
SET HEAD OFF

//Run the query
SELECT DBMS_XMLGEN.GETXML('SELECT * FROM PRODUCTS') FROM DUAL;

You will be able to see the output shown in Figure 10-5.

273

CHAPTER 10 ORACLE XML SUPPORT

Figure 10-5. Output of the DBMS_XMLGEN.GETXML method

Manipulating Relational Data as XML
In this next section, you will explore the transformation between relational and XML data in the opposite
direction—inserting, updating, and deleting data via XML.

Inserting Relational Data Using XML
You will now learn how to insert records to the PRODUCTS table using XML. Inserting relational data via
XML consists of four steps:

1. Define the update columns list, the set of columns that will be updated in the
table during the insert operation.

2. Define an XSL block to transform the incoming XML into the raw XML format
that Oracle recognizes so that the insert operation can be performed.

3. Set the various properties in the OracleCommand.XmlSaveProperties object for
the insert operation.

274

 CHAPTER 10 ORACLE XML SUPPORT

4. Assign the XML data (that you wish to insert) to the CommandText property of
the OracleCommand object, and call the ExecuteNonQuery method.

Take note that you also need to change the XmlCommandType property to denote an insert:

_cmdObj.XmlCommandType = OracleXmlCommandType.Insert;

Next, you have to define the set of columns that you will be updating during the insert operation.
This can be easily done by setting up an array in the following fashion:

string[] _updColList = new string[4];
_updColList[0] = "ID";
_updColList[1] = "NAME";
_updColList[2] = "PRICE";
_updColList[3] = "REMARKS";
_cmdObj.XmlSaveProperties.UpdateColumnsList = _updColList;

After that, you need to define the properties outlined in Table 10-3.

Table 10-3. Properties in the XMLSaveProperties Object

Property Definition Description

UpdateColumnsList This is a list of names of the columns that you will be
updating in the table

KeyColumnsList This is only used for UPDATE and DELETE operations,
where the columns used as the identifier for each
record must be specified.

RowTag This property denotes the name of the tag identifying
each row in the XML. When you transform the
incoming XML, each row will need to begin with this
tag name. Take note that the RootTag property is no
longer required.

Table This is the name of the underlying Oracle table that
you will be updating.

Xslt This property allows you to set the XSL to use to
transform the incoming XML into the raw XML
recognized by Oracle.

The next step is to define the XSLT so that you can map the incoming XML into the raw XML format

that Oracle needs to update the table. The tag names in the raw XML format usually correlates with the
actual Oracle table and column names.

Listing 10-11 shows how you can declare two new records (in XML) and insert them at one go to the
Products table.

275

CHAPTER 10 ORACLE XML SUPPORT

Listing 10-11. Inserting Multiple Records to the Products Table via XML

private void btnXMLManipulate_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _xsltString = "";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 OracleCommand _cmdObj = new OracleCommand("", _connObj);
 _connObj.Open();

 string[] _updColList = new string[4];
 _updColList[0] = "ID";
 _updColList[1] = "NAME";
 _updColList[2] = "PRICE";
 _updColList[3] = "REMARKS";

 //The XSL used to transform the incoming XML data into the raw XML format
 //that Oracle recognizes to perform the Insert.
 _xsltString = "<?xml version=\"1.0\"?>" +
 "<xsl:stylesheet version=\"1.0\" " +
 " xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\">" +
 " <xsl:output encoding=\"utf-8\"/>\n" +
 " <xsl:template match=\"/\">" +
 " <RECORDSET>" +
 " <xsl:apply-templates select=\"MYPRODUCTS\"/>" +
 " </RECORDSET>" +
 " </xsl:template>" +
 " <xsl:template match=\"MYPRODUCTS\">" +
 " <xsl:apply-templates select=\"MYPRODUCT\"/>" +
 " </xsl:template>" +
 " <xsl:template match=\"MYPRODUCT\">" +
 " <RECORD>" +
 " <ID>" +
 " <xsl:value-of select=\"PROD_ID\"/>" +
 " </ID>" +
 " <NAME>" +
 " <xsl:value-of select=\"PROD_NAME\"/>" +
 " </NAME>" +
 " <PRICE>" +
 " <xsl:value-of select=\"PROD_PRICE\"/>" +
 " </PRICE>" +
 " <REMARKS>" +
 " <xsl:value-of select=\"PROD_REMARKS\"/>" +
 " </REMARKS>" +
 " </RECORD>" +
 " </xsl:template>" +
 "</xsl:stylesheet>";

276

http://www.w3.org/1999/XSL/Transform\

 CHAPTER 10 ORACLE XML SUPPORT

 _cmdObj.BindByName = true;
 _cmdObj.XmlCommandType = OracleXmlCommandType.Insert;
 _cmdObj.XmlSaveProperties.RowTag = "RECORD";
 _cmdObj.XmlSaveProperties.Table = "PRODUCTS";
 _cmdObj.XmlSaveProperties.KeyColumnsList = null;
 _cmdObj.XmlSaveProperties.UpdateColumnsList = _updColList;
 _cmdObj.XmlSaveProperties.Xslt = _xsltString;

 //Declare two records in XML to insert
 _cmdObj.CommandText = "<?xml version=\"1.0\"?>\n" +
 "<MYPRODUCTS>\n" +
 " <MYPRODUCT>\n" +
 " <PROD_ID>G1</PROD_ID>\n" +
 " <PROD_NAME>Grille</PROD_NAME>\n" +
 " <PROD_PRICE>30.20</PROD_PRICE>\n" +
 " <PROD_REMARKS>The front grille of the
 car</PROD_REMARKS>\n" +
 " </MYPRODUCT>\n" +
 " <MYPRODUCT>\n" +
 " <PROD_ID>M1</PROD_ID>\n" +
 " <PROD_NAME>Mirrors</PROD_NAME>\n" +
 " <PROD_PRICE>50.50</PROD_PRICE>\n" +
 " <PROD_REMARKS>Front mirrors of the
 car</PROD_REMARKS>\n" +
 " </MYPRODUCT>\n" +
 "</MYPRODUCTS>";

 int _result = _cmdObj.ExecuteNonQuery();
 MessageBox.Show("Rows Inserted:" + _result);

 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

After you run the code in Listing 10-11, you will see the message box shown in Figure 10-6, denoting
that two records were inserted successfully. You can cross-check this by running a query on the PRODUCTS
table in SQL*Plus.

277

CHAPTER 10 ORACLE XML SUPPORT

Figure 10-6. Records inserted successfully

Updating Relational Data Using XML
Performing an update operation on relational data using XML is rather similar to performing an insert. It
consists of the following steps:

1. Define the update columns list, the set of columns that will be updated in the
table during the update operation.

2. Define the key columns list, the set of columns to use as the identifier for each
record. This is typically set to the primary key of the table.

3. Define an XSL block to transform the incoming XML into the raw XML format
that Oracle recognizes so that the update operation can be performed.

4. Set the various properties in the OracleCommand.XmlSaveProperties object for
the update operation.

5. Assign the XML data (that you wish to update) to the CommandText property of
the OracleCommand object, and call the ExecuteNonQuery method.

The differences here are that you need to set the XmlCommandType property to denote an update:

_cmdObj.XmlCommandType = OracleXmlCommandType.Update;

Next, you need to define the key list:

string[] _keyColList = new string[1];
_keyColList[0] = "ID";
_cmdObj.XmlSaveProperties.KeyColumnsList = _keyColList;

You can reuse the same XSL to transform the incoming data. The full code to execute the update is
shown in Listing 10-12.

Listing 10-12. Updating Multiple Records in the Products Table via XML

private void btnUpdate_Click(object sender, EventArgs e)
{

string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";

278
www.wowebook.com

 CHAPTER 10 ORACLE XML SUPPORT

 string _xsltString = "";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 OracleCommand _cmdObj = new OracleCommand("", _connObj);
 _connObj.Open();

 // Set the Update Column List
 string[] _updColList = new string[2];
 _updColList[0] = "NAME";
 _updColList[1] = "PRICE";

 // Set the Key List
 string[] _keyColList = new string[1];
 _keyColList[0] = "ID";

 _xsltString = "<?xml version=\"1.0\"?>" +
 "<xsl:stylesheet version=\"1.0\" " +
 " xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\">" +
 " <xsl:output encoding=\"utf-8\"/>\n" +
 " <xsl:template match=\"/\">" +
 " <RECORDSET>" +
 " <xsl:apply-templates select=\"MYPRODUCTS\"/>" +
 " </RECORDSET>" +
 " </xsl:template>" +
 " <xsl:template match=\"MYPRODUCTS\">" +
 " <xsl:apply-templates select=\"MYPRODUCT\"/>" +
 " </xsl:template>" +
 " <xsl:template match=\"MYPRODUCT\">" +
 " <RECORD>" +
 " <ID>" +
 " <xsl:value-of select=\"PROD_ID\"/>" +
 " </ID>" +
 " <NAME>" +
 " <xsl:value-of select=\"PROD_NAME\"/>" +
 " </NAME>" +
 " <PRICE>" +
 " <xsl:value-of select=\"PROD_PRICE\"/>" +
 " </PRICE>" +
 " <REMARKS>" +
 " <xsl:value-of select=\"PROD_REMARKS\"/>" +
 " </REMARKS>" +
 " </RECORD>" +
 " </xsl:template>" +
 "</xsl:stylesheet>";

 _cmdObj.BindByName = true;
 _cmdObj.XmlCommandType = OracleXmlCommandType.Update ;
 _cmdObj.XmlSaveProperties.RowTag = "RECORD";
 _cmdObj.XmlSaveProperties.Table = "PRODUCTS";
 _cmdObj.XmlSaveProperties.KeyColumnsList = _keyColList;
 _cmdObj.XmlSaveProperties.UpdateColumnsList = _updColList;

279

http://www.w3.org/1999/XSL/Transform\

CHAPTER 10 ORACLE XML SUPPORT

 _cmdObj.XmlSaveProperties.Xslt = _xsltString;

 //Notice that you don’t have to include all the fields – only the fields you
 //wish to update (together with the record identifiers)
 _cmdObj.CommandText = "<?xml version=\"1.0\"?>\n" +
 "<MYPRODUCTS>\n" +
 " <MYPRODUCT>\n" +
 " <PROD_ID>G1</PROD_ID>\n" +
 " <PROD_NAME>Grille Revision 2</PROD_NAME>\n" +
 " <PROD_PRICE>50.00</PROD_PRICE>\n" +
 " </MYPRODUCT>\n" +
 " <MYPRODUCT>\n" +
 " <PROD_ID>M1</PROD_ID>\n" +
 " <PROD_NAME>Titanium Enforced
 Mirror</PROD_NAME>\n" +
 " <PROD_PRICE>60.50</PROD_PRICE>\n" +
 " </MYPRODUCT>\n" +
 "</MYPRODUCTS>";

 int _result = _cmdObj.ExecuteNonQuery();
 MessageBox.Show("Rows Updated:" + _result);
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Deleting Relational Data Using XML
A delete operation is also somewhat similar. It consists of the following steps:

1. Define the key columns list, the set of columns to use as the identifier for each
record. This is typically set to the primary key of the table.

2. Define an XSL block to transform the incoming XML into the raw XML format
that Oracle recognizes so that the delete operation can be performed.

3. Set the various properties in the OracleCommand.XmlSaveProperties object for
the delete operation.

4. Assign the XML data (that you wish to delete) to the CommandText property of
the OracleCommand object, and call the ExecuteNonQuery method.

You need to set the XmlCommandType property to denote a delete:

_cmdObj.XmlCommandType = OracleXmlCommandType.Delete;

280

 CHAPTER 10 ORACLE XML SUPPORT

Since a delete does not update any columns in a table, you will not need to define an update
columns list. You need to define only a key columns list. The full code to perform the delete operation is
shown in Listing 10-13.

Listing 10-13. Deleting Multiple Records in the Products Table via XML

private void btnDelete_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 string _xsltString = "";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 OracleCommand _cmdObj = new OracleCommand("", _connObj);
 _connObj.Open();

 // Define the Key Columns List
 string[] _keyColList = new string[1];
 _keyColList[0] = "ID";

 _xsltString = "<?xml version=\"1.0\"?>" +
 "<xsl:stylesheet version=\"1.0\" " +
 " xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\">" +
 " <xsl:output encoding=\"utf-8\"/>\n" +
 " <xsl:template match=\"/\">" +
 " <RECORDSET>" +
 " <xsl:apply-templates select=\"MYPRODUCTS\"/>" +
 " </RECORDSET>" +
 " </xsl:template>" +
 " <xsl:template match=\"MYPRODUCTS\">" +
 " <xsl:apply-templates select=\"MYPRODUCT\"/>" +
 " </xsl:template>" +
 " <xsl:template match=\"MYPRODUCT\">" +
 " <RECORD>" +
 " <ID>" +
 " <xsl:value-of select=\"PROD_ID\"/>" +
 " </ID>" +
 " <NAME>" +
 " <xsl:value-of select=\"PROD_NAME\"/>" +
 " </NAME>" +
 " <PRICE>" +
 " <xsl:value-of select=\"PROD_PRICE\"/>" +
 " </PRICE>" +
 " <REMARKS>" +
 " <xsl:value-of select=\"PROD_REMARKS\"/>" +
 " </REMARKS>" +
 " </RECORD>" +
 " </xsl:template>" +
 "</xsl:stylesheet>";

281

http://www.w3.org/1999/XSL/Transform\

CHAPTER 10 ORACLE XML SUPPORT

 _cmdObj.BindByName = true;
 _cmdObj.XmlCommandType = OracleXmlCommandType.Delete;
 _cmdObj.XmlSaveProperties.RowTag = "RECORD";
 _cmdObj.XmlSaveProperties.Table = "PRODUCTS";
 _cmdObj.XmlSaveProperties.KeyColumnsList = _keyColList;
 _cmdObj.XmlSaveProperties.UpdateColumnsList = null;
 _cmdObj.XmlSaveProperties.Xslt = _xsltString;

 //Define the records to delete. Only the record identifier field is needed
 _cmdObj.CommandText = "<?xml version=\"1.0\"?>\n" +
 "<MYPRODUCTS>\n" +
 " <MYPRODUCT>\n" +
 " <PROD_ID>G1</PROD_ID>\n" +
 " </MYPRODUCT>\n" +
 " <MYPRODUCT>\n" +
 " <PROD_ID>M1</PROD_ID>\n" +
 " </MYPRODUCT>\n" +
 "</MYPRODUCTS>";

 int _result = _cmdObj.ExecuteNonQuery();
 MessageBox.Show("Rows Deleted:" + _result);
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Using XQuery to Query Data
XQuery is yet another powerful language introduced by the W3C. Whereas an SQL LIKE statement can
only match phrases in a string, XQuery gives you the ability to do an XML-aware search. For instance,
consider the PRODUCT_EXTRAINFO table you’ve been using throughout this chapter. The INFO column
contains XML data describing the product category, person in charge, and so on. How would you, for
example, issue a query to retrieve all products belonging to the ENGINES category? You could, of course,
argue that it could be done with the following SQL:

SELECT * FROM PRODUCT_EXTRAINFO WHERE INFO LIKE '%ENGINES%'

However, this solution is crude and inelegant. What if the XML stored in the INFO column contained
the word ENGINES in the <PERSON_IN_CHARGE> tag instead of the <CATEGORY> tag? For instance, the person
in charge could have a name like GONZALEZ MENGINES. Your query would then retrieve the (logically)
wrong results. It is obvious you need a way to perform an XML-element aware search.

282

 CHAPTER 10 ORACLE XML SUPPORT

 Note XQuery is a standard defined by the W3C. We will not cover the specifics and syntax of XQuery in this
book. To read more on XQuery, please visit http://www.w3.org/TR/xquery/.

XQuery fits this job like a glove. Its syntax might seem a little cryptic to newcomers, but underlying
it, there is enough flexibility to allow for a large number of powerful queries. Consider the following
XQuery for example:

for $i in ora:view("PRODUCT_EXTRAINFO")
where $i/ROW/INFO/PRODUCT/CATEGORY = $MyCategory
return $i'
PASSING :MyCategory AS \"MyCategory\"
RETURNING CONTENT

The for loop iterates through each row in the PRODUCT_EXTRAINFO table and is able to extend its reach
right into the <PRODUCT><CATEGORY> tag inside the INFO XMLTYPE column. It is then able to do a direct
comparison on the value held in the <CATEGORY> tag. The PASSING keyword allows you to pass in an
external parameter that can be used in the XQuery statement. The matching results are then returned as
XML.

 To run the XQuery statement, you need to encapsulate it within an SQL statement:

SELECT XMLQuery(<YOUR_XQUERY_STMT_GOES_HERE>) FROM DUAL;
To see how all this fits in to your .NET application, take a look at the code in Listing 10-14.

Listing 10-14. Using XQuery to Retrieve All Products Belonging to the ENGINES Category

private void btnXQuery_Click(object sender, EventArgs e)
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 OracleCommand _cmdObj = new OracleCommand("", _connObj);
 _connObj.Open();
 _cmdObj.CommandType = CommandType.Text;
 string _sql;
 _sql = "SELECT XMLQuery('" +
 "for $i in ora:view(\"PRODUCT_EXTRAINFO\") " +
 "where $i/ROW/INFO/PRODUCT/CATEGORY = $MyID " +
 "return $i' " +
 "PASSING :MyID AS \"MyID\" RETURNING CONTENT) " +
 "FROM DUAL";
 _cmdObj.CommandText = _sql;

 //Pass in “Engines” as the category to search for
 _cmdObj.Parameters.Add("MyID", OracleDbType.Varchar2, "Engines",
 ParameterDirection.Input);

283

http://www.w3.org/TR/xquery

CHAPTER 10 ORACLE XML SUPPORT

 OracleDataReader _rdrObj = _cmdObj.ExecuteReader();
 _rdrObj.Read();
 OracleXmlType xml = _rdrObj.GetOracleXmlType(0);
 MessageBox.Show(xml.Value);
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run the code in Listing 10-14, you will see the message box shown in Figure 10-7.

Figure 10-7. Records retrieved through XQuery

Summary
You’ve seen in this chapter that the hierarchical organization of XML may be better suited for certain
scenarios compared to relational models and that ODP.NET provides a set of powerful XML functions
and packages to manipulate XML data in the database. In this chapter, you’ve taken a specific look at the
following:

• Manipulating XMLTYPE data using the XmlReader, OracleXmlType, and OracleString
classes

284

 CHAPTER 10 ORACLE XML SUPPORT

285

• Passing XML data to and from PL/SQL stored procedures via the OracleXmlType
object

• Validating OracleXmlType objects against an XSD schema

• Using OracleXmlType and XSLT to transform the schema of an XML to a different
one

• Retrieving and manipulating relational data as XML

In the next chapter, you’ll learn how to protect your .NET applications via ODP.NET’s security
model.

C H A P T E R 11

ODP.NET Security Features

“Security” is a big word conjuring up images of hackers working away late at night in their seedy offices
trying to crack through your application to get at that precious financial data. As exciting as it sounds,
most developers seem to pay the least attention to security, preferring to work first on getting the flashy
features of an application running.

In fact, many seasoned development teams don’t even start out with any proper security plan in
place; the scene of a team of developers deploying their application on a security hardened server only
to find that half their application does not work because it ran afoul of the local security policies isn’t
uncommon. Just like you can’t play poker without knowing your hand, it is important to know every bit
of your deployment environment upfront even before you start developing your application! This allows
you to formulate a security strategy that lets you choose the security model most suitable for your
application early, thus avoiding last-minute surprises and clunky workarounds.

This chapter intends to highlight the areas of a typical ODP.NET application where security would
matter. In this chapter, you will learn the following:

• The security stack of a typical ODP.NET application

• The different authentication modes available to you in Oracle

• The .NET code access security mechanism and how you can use it to secure your
ODP.NET applications

• How to secure your ASP.NET applications using trust levels

• Best practices you can adopt in your code to avoid exposing common
vulnerabilities

Securing Your .NET Applications
When you design any database-driven application, you should think about which security technology to
employ for each of the following aspects of database programming:

• Authentication

• Code security

• Data access

• Data storage

• Data transmission

287

CHAPTER 11 ODP.NET SECURITY FEATURES

Authentication is the most basic concern. Any application that needs to use a database needs to
authenticate its users against the database. There are a few different modes of authentication to choose
from (we’ll look at these in detail in the next section).

Code access security is a security model introduced with the .NET Framework. Because all .NET
code runs in a managed environment, system administrators can prevent parts of the code from
accessing a particular resource (in this case, the Oracle database) by externally configuring the allowed
permissions for a machine or user at the .NET Framework level. ODP.NET provides you classes that
allow you to build applications that conform to this security model. Using code access security, you can
ensure that only trusted code assemblies can gain access to the Oracle database.

Security for data access, data storage, and data transmission can be configured at the database level.
For example, to properly access data in the database, you need to ensure that the appropriate rights for
each database object have been granted to the appropriate roles or users.

When you store data in the Oracle database, you should also consider activating Transparent Data
Encryption (TDE), a feature that allows you to apply encryption on your data at the database level
without having to write a single line of code.

Finally, when the database passes any data to your application over the network, you should also
consider encrypting the data before it is transmitted over the network, by means of Secure Sockets Layer
(SSL) or some other encryption method.

The security stack for a typical ODP.NET application may look like Figure 11-1.

Figure 11-1. Security stack of a typical ODP.NET application

288

 CHAPTER 11 ODP.NET SECURITY FEATURES

In the following sections, we will take a look at the various security options that you can implement
at the application level: authentication, code access security, and best practices to overcome common
database vulnerabilities in your code.

Authenticating Data
When embarking on building your application, it is always a good idea to decide on the mode of
authentication for your application. The Oracle database supports three different modes of
authentication:

• Standard username/password authentication

• Proxy authentication

• Windows authentication

It is important to know the drawbacks of each mode so that you can choose the one most suitable
for your project. For example, if your concerns are stronger audit trails in the database, you should
consider Windows authentication or proxy authentication over standard username/password
authentication. On the other hand, if all you need is to get your database application up and running
quickly with as little code as possible, standard username/password authentication is a better choice. In
the following sections, you will learn the reasons behind this logic.

Implementing Username/Password Authentication
You’ve been using standard username/password authentication in most of the examples in this book.
The following shows how you could pass a user ID and password in the connection string:

Data Source=localhost/NEWDB;User Id=EDZEHOO;Password=PASS123;

The obvious benefit of this mode of authentication is its simplicity. You need only manage a single
database account in Oracle (the EDZEHOO account). All the users of your application will be made to
access the database through this single database account. You can also almost immediately spot the
problem with this arrangement—since everyone goes through the same database account, the database
has no idea who the actual users are. Audit trails will always reflect EDZEHOO, regardless of whether the
accessing user is really Jane, John, or Thomas.

Implementing Proxy Authentication
Proxy authentication addresses the anonymity problem with standard username/password
authentication. The solution is simple—since Oracle has no idea of knowing who the actual users are,
why not just declare the actual users in the connection string as well!

In proxy authentication, two user accounts are passed in via the connection string for
authentication: the actual user’s credentials and the pooled (proxy) user’s credentials. It adds two new
keywords to the connection string: Proxy User ID and Proxy Password. For example, if Thomas accesses
the database, he will use the following connection string:

289

CHAPTER 11 ODP.NET SECURITY FEATURES

Data Source=localhost/NEWDB;User Id=Thomas;Password=THOM123; Proxy User
ID=EDZEHOO;Proxy Password=PASS123;

 Note Take careful note that the pooled database account is now declared as the proxy user, and the User ID
and Password fields are set to the actual user’s credentials.

The User ID and Password, for example, can be retrieved from an application’s login page and the
connection string dynamically constructed using these credentials. Before you can log in using proxy
authentication for a particular user, you must grant that user rights to do this. You can grant these rights
by running the following command in SQL*Plus:

ALTER USER Thomas GRANT CONNECT THROUGH EDZEHOO;

The benefit of using proxy authentication is that it can maintain the same connection pool (through
the proxy account) yet produce accurate audit trails (since it knows who the actual users are).

 Tip You can also choose not to specify a password for the actual user in the connection string. If this is done,
no authentication is performed on the User ID field. User ID simply becomes an identifier field to distinguish
different users (when audit trails are generated). In such a case, you can assign any string you wish to the User
ID field.

Implementing ClientId-Based Username/Password Authentication
Another way to specify the actual users when you are using standard username/password
authentication is by programmatically setting the ClientId property for each OracleConnection object to
any string (preferably a unique identifier for each user), as shown in the highlighted code in Listing 11-1.

Listing 11-1. Programmatically Setting the ClientId

string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
try
{
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 _connObj.ClientId = "THIS_IS_THOMAS";
 //Do something
 _connObj.Close();
 _connObj.Dispose ();
}

290

 CHAPTER 11 ODP.NET SECURITY FEATURES

catch (Exception ex)
{
 MessageBox.Show(ex.ToString());
}

When you do this, all updates made to the database under this connection will be made under the
name specified in the ClientId property, which will be reflected in the audit trail records.

You can use any unique identifier for the ClientId property: social security numbers, employee IDs,
network IP addresses, or even Window credentials (such as MYCOMPANY\THOMAS).

You might also come across the need to retrieve the current ClientId for a particular session. You
can do so using the following SQL statement:

SELECT SYS_CONTEXT('USERENV','CLIENT_IDENTIFIER') FROM DUAL;

You can retrieve the audit trail records for a specific table and specific ClientId by running the SQL
in Listing 11-2 through SQL*Plus.

Listing 11-2. Retrieving Audit Trails Using the Client Identifier

SELECT * FROM dba_audit_object
WHERE username = 'EDZEHOO'
AND client_id = 'THIS_IS_THOMAS'
AND OBJ_NAME = 'Products'

Implementing Windows Authentication
As you saw in Chapter 3, you can also authenticate users against the Oracle database using integrated
Windows authentication. You can log on via Windows authentication using the following connection
string:

Data Source=localhost/NEWDB;User Id=/;

The benefit of using Windows authentication is the ability to achieve single sign-on functionality
with the database, but the downside is that you also have to ensure that each Windows user account has
been explicitly given access to the desired objects in the database.

 Tip The ClientId property behaves the same way for both username/password authenticated and Windows-
authenticated sessions.

Understanding Code Access Security
Back in the old days, when unmanaged code ran, the system resources it could access was restricted only
by the user account it ran under—all that was needed to get access to these resources was to be given the

291

CHAPTER 11 ODP.NET SECURITY FEATURES

appropriate permissions in their access control lists (ACLs). This simple form of security worked but had
its limitations. Any user with high enough privileges could execute malicious code (with or without
intention) on the system and end up damaging the file system, registry, or database.

The objective of CAS is to provide another security layer; it allows (or disallows) managed code to
execute based not only on the user account the code ran under but also other attributes such as the
originating publisher of the code, the zone it executed in, the strong name of the code, and so on. In the
following sections, we will cover some of the basic concepts and terminology of CAS.

Using Code Groups
Through the .NET Framework Configuration tool, the system administrator can create a code group. A
code group can declare a set of membership conditions; any assembly that matches these conditions
will belong to that specific code group. Figure 11-2 shows multiple code groups in the Configuration
tool.

Figure 11-2. Code groups in the configuration tool

Table 11-1 lists some of the membership conditions that can be set on a code group.

292

 CHAPTER 11 ODP.NET SECURITY FEATURES

Table 11-1. Various Code Group Membership Conditions

Membership Condition Description

Hash Any assembly that matches the specified
hash

Publisher Any assembly that matches the specified
publisher’s name, issuer name, and hash

Site Any assembly that originates from the
specified site name

Strong name Any assembly that matches the specified
strong name (and public key)

URL Any assembly that originates from the
specified URL

Zone Any assembly that originates from the
specified zone (e.g., Internet, Intranet, My
Computer, Trusted Sites, or Untrusted
Sites)

The administrator can grant each code group a set of permissions (also called a PermissionSet). A

typical PermissionSet, for example, specifies if the code group has access to the file system, registry, or
Windows events log.

Using Permission Sets
As I mentioned earlier, a permission set defines a list of permissions for each specific type of resource
present on the system. For instance, a permission set for a highly secure code group may only contain
user interface (UI) permissions, while a permission set for a less secure one might contain file I/O
permissions, UI permissions, registry permissions, Oracle database access permissions, sockets access
permissions, and so on. Figure 11-3 shows the list of permissions in a particular permission set.

293

CHAPTER 11 ODP.NET SECURITY FEATURES

Figure 11-3. List of permissions in a code group permission set

Any assembly in a code group will automatically inherit the permission set assigned to the code
group.

Resolving Permissions in .NET
You might have noticed in Figure 11-2 that you could configure code groups at three different policy
levels: Enterprise, Machine, and User. How would CAS behave if you gave a user permission to access
the Oracle database at the machine level but denied access at the enterprise level? Or what happens
when your application, by way of membership conditions, falls into two different code groups (at the
same policy level) with contradicting permissions? You will explore how CAS permission arithmetic
works in detail in this section.

 Note There is also a fourth policy level (AppDomain) that is controlled by code rather than by the .NET
Framework Configuration tool.

Within the same policy level, your application could fall into more than one code group if it matches
the membership conditions of multiple code groups. When this happens, the permission sets of these
code groups are collectively added together. This becomes the total permission set available to your
application at that policy level. Figure 11-4 illustrates this concept.

294

 CHAPTER 11 ODP.NET SECURITY FEATURES

Figure 11-4. Summation of permission sets from multiple code groups at a policy level

This same process occurs at all three policy levels. After that, CAS would need to finally combine the
permission sets from each of these three policy levels. This time, the combining is done differently from
before. Instead of taking the sum of the permission sets from the three policy levels, CAS takes the
intersection of these three policy level permission sets, which means that if your application needs
access to Oracle (for instance), Oracle permissions must be granted at all three policy levels. Denying
this permission at any one of these policy levels would prevent your application from accessing Oracle.
This is visually represented as a Venn diagram shown in Figure 11-5. The intersection is highlighted in
gray.

Figure 11-5. How the permission sets from the three policy levels are combined

It is important to note that the default CAS policy configuration gives the All_Code code group
FullTrust permissions at the user and enterprise policy levels. What this means is that the machine
policy level effectively becomes the control policy; the permission set at this policy level ultimately
defines which resources your application has access to. You could, of course, change this behavior by
changing the permission sets at the user and enterprise policy levels, but you should always proceed
with caution since using the wrong settings might break applications that otherwise work fine.

Seeing CAS in Action
The diagram in Figure 11-6 shows how a set of CAS security policies can be configured by the
administrator and used when your application’s assembly loads up. The .NET Common Language

295

CHAPTER 11 ODP.NET SECURITY FEATURES

Runtime (CLR) will determine which code group your assembly belongs to and grant the corresponding
permissions (defined in the permission set) to the assembly.

Figure 11-6. Configuring and using CAS security policies

Let’s say you wanted your assembly to access an Oracle database. You can force your assembly to
check against CAS to ensure that your assembly has the OraclePermission permission. You can do this
using ODP.NET’s OraclePermission class, as shown here:

OraclePermission _perm = new OraclePermission(PermissionState.Unrestricted);
_perm.Demand();

If the permission was found in the permission set, your code is allowed to run. Otherwise, an
exception is raised, as Figure 11-7 depicts in detail.

Figure 11-7. Requesting permissions

296

 CHAPTER 11 ODP.NET SECURITY FEATURES

You will notice that a stack walk is triggered when you call the Demand method. It is important to note
that each assembly might be called by several higher assemblies. For example, take a look at Figure 11-8.
When the DataLayerFunctions.dll assembly attempts to access the Oracle database, a Demand method
call placed there would trigger a stack walk upward to check the permissions of each calling assembly.
This makes sense, because if CustomDataGrid.dll, for example, was not given permissions to access the
Oracle database, the request in the DataLayerFunctions.dll assembly should ultimately fail.

Figure 11-8. The stack walk

Configuring CAS Policies
The usage of CAS consists of two polarities. One side is the configuring of CAS policies (typically done by
system administrators), and the other side is the requesting of permissions from within your application.
CAS policies can be configured via a couple different ways: an administrator could do it manually using
the .NET Framework configuration tool or programmatically using the OraclePermission class.

Configuring CAS Policies via the GUI
You can configure CAS policies manually using the .NET Framework Configuration tool. You can launch
the .NET Framework Configuration tool by selecting Start Control Panel Administrative Tools
.NET Framework 2.0 Configuration Tool.

297

CHAPTER 11 ODP.NET SECURITY FEATURES

 Note You may have noticed that the .NET Framework Configuration tool shows as Microsoft .NET Framework
2.0 Configuration on your machine. Do not be alarmed by the version number; this tool can also be used to
manage CAS policies for the .NET Framework 3.0 and 3.5. If you cannot see this specific version of the tool on
your machine, you can install it by installing the .NET Framework 2.0 SDK.

The .NET Configuration tool window is depicted in Figure 11-9. You can define a security policy at
the Enterprise, Machine, or User level.

Figure 11-9. The .NET Configuration Tool main window

If you expand the User node, you can see the main code group (All_Code); its permission set has
been set to Full Trust. This means that it has unrestricted access to all system resources. Change the
permission set to Everything instead. The Everything permission set has a list of permissions defined for
most of the basic resources on the system. You can see this list of permissions by navigating to the
Everything permission set under the Permission Sets node. Click the Change Permissions link in the
right panel. You will see a list of permissions similar to the one shown in Figure 11-10.

298

 CHAPTER 11 ODP.NET SECURITY FEATURES

Figure 11-10. Permissions in the Everything permission set

But wait—you don’t see OraclePermission anywhere in the list! This is so because OraclePermission
is a custom permission and will not show by default. You can use the Import button to import a custom
permission into that list. Before you can do that, you must first define an XML file for OraclePermission.
Create a text file (using Notepad or a similar editing program) and write the following declaration in the
file:

<IPermission class="Oracle.DataAccess.Client.OraclePermission, Oracle.DataAccess,
Version=2.111.7.20, Culture=neutral, PublicKeyToken=89b483f429c47342"
version="1"
Unrestricted="true"/>

Save this file as an XML file (using any filename you wish). On the Everything permission set
window, click the Import button, and browse for this XML file. When you’ve clicked Open, you will be
able to see the new entry for OraclePermission added to the list on the right (as shown in Figure 11-11).

 Caution Be careful when making any changes to the CAS security policies via the .NET Framework
Configuration tool. If you remove too many privileges, you may find that you cannot launch any application on your
system (including the .NET Framework Configuration tool itself!). Always set the security policies back to their
original values after testing, or use sandboxing to create a test environment for your applications.

299

CHAPTER 11 ODP.NET SECURITY FEATURES

Figure 11-11. The newly added OraclePermission

 Note The Unrestricted keyword in the XML declaration means that you are granting the assembly full access
to the Oracle database, as opposed to being partially restricted (in which you can define certain restrictions, such
as “Connection string must not contain blank passwords” or “Connection string cannot have any keywords other
than User ID, Password, and Datasource”).

Instead of granting full, unrestricted access to the Oracle database, you can also choose to grant
access with some restrictions. For example, you might restrict the connection string used to connect to
the database to the User ID, Password, and Datasource keywords and not allow blank passwords. In such
an example, any code that attempts to connect to the database using a connection string like this would
fail (since the Pooling keyword violates the restriction):

Data Source=localhost/NEWDB;User Id=EDZEHOO;Password=PASS123;Pooling=true;

You can declare such a restriction by rewriting the XML used in the preceding line as follows:

<IPermission class="Oracle.DataAccess.Client.OraclePermission, Oracle.DataAccess,
Version=2.111.7.20, Culture=neutral, PublicKeyToken=89b483f429c47342"
version="1" AllowBlankPassword="False">
 <add ConnectionString="Data Source=localhost/NEWDB;"
 KeyRestrictions="Data Source=;User ID=;Password=;"
 KeyRestrictionBehavior="AllowOnly" />
</IPermission>

 Tip KeyRestrictionBehavior can be either AllowOnly or PreventUsage. Both behaviors apply to the
keywords defined in the KeyRestrictions attribute. The ConnectionString attribute lets you define the data
sources that an assembly is allowed to connect to. You can, of course, define multiple <add> entries in the
permission.

300

 CHAPTER 11 ODP.NET SECURITY FEATURES

Configuring CAS Policies Programmatically
You can also write code to programmatically configure CAS policies using the OraclePermission class. To
enforce the same restrictions on the connection strings, you can use the OraclePermission.Add method,
as shown here:

OraclePermission _perm = new OraclePermission(PermissionState.Unrestricted);
_perm.AllowBlankPassword = false;
_perm.Add("Data Source=localhost/NEWDB;", "Data Source=;User Id=;Password=;",
 KeyRestrictionBehavior.AllowOnly);

The first, second, and third arguments to the OraclePermission.Add method correspond to the
ConnectionString, KeyRestrictions, and KeyRestrictionBehavior attributes covered earlier.

Requesting Permissions
Now, let’s explore the other end of CAS. You can request permissions in one of two ways from your
managed code: declaratively and imperatively. Let’s take a look at how you can perform each one.

Requesting Permissions Declaratively
You can request permission to access Oracle via the OraclePermission class at the assembly level. When
your application is first loaded by the CLR, it will check to ensure you are granted this permission. If the
permission is not granted, an exception is thrown, and your application will fail to even load. You can
enforce permission checking at the assembly level by declaring the highlighted tag shown in Listing 11-3
at the top of the main class in your application.

Listing 11-3. Requesting Permissions Declaratively at the Assembly Level

using System;
using System.Collections.Generic;
using System.Windows.Forms;
using Oracle.DataAccess.Client;
using System.Security;
using System.Security.Permissions;
using System.IO;

[assembly: OraclePermission(SecurityAction.RequestMinimum, Unrestricted = true)]
namespace MyNamespace
{
 static class Program
 {
 [STAThread]
 static void Main()
 {
 ConnectToDatabase();
 }

301

CHAPTER 11 ODP.NET SECURITY FEATURES

 private static void ConnectToDatabase()
 {
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new
 OracleConnection(_connstring);
 _connObj.Open();
 _connObj.Close();
 _connObj.Dispose ();
 MessageBox.Show("The database was just opened and closed
 successfully!");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }
 }
}

You can try this code by explicitly removing OraclePermission from the PermissionSet of the
Everyone code group in the User node (via the .NET Framework Configuration tool). When you try
running your application, it will show an error message similar to the one in Figure 11-12 (assuming you
tried to run your application from within Visual Studio).

Figure 11-12. Security exception thrown at the assembly level

Instead of checking at the assembly level, you can also opt to do this checking at each individual
method, as shown in Listing 11-4. Take note that you must use the SecurityAction.Demand action at the
method level.

302

 CHAPTER 11 ODP.NET SECURITY FEATURES

Listing 11-4. Requesting Permissions Declaratively at the Method Level

using System;
using System.Collections.Generic;
using System.Windows.Forms;
using Oracle.DataAccess.Client;
using System.Security;
using System.Security.Permissions;
using System.IO;

namespace MyNamespace
{
 static class Program
 {
 [STAThread]
 static void Main()
 {
 ConnectToDatabase();
 }

 [method: OraclePermissionAttribute(SecurityAction.Demand , Unrestricted =
 true)]
 private static void ConnectToDatabase()
 {
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new
 OracleConnection(_connstring);
 _connObj.Open();
 _connObj.Close();
 _connObj.Dispose ();
 MessageBox.Show("The database was just opened and closed
 successfully!");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }
 }
}

When you run the preceding code in Visual Studio, (assuming you have removed OraclePermission),
you will see an error message similar to the one shown in Figure 11-13.

303

CHAPTER 11 ODP.NET SECURITY FEATURES

Figure 11-13. Security exception thrown at the method level

Requesting Permissions Imperatively
You can also request permissions imperatively (programmatically), as you’ve seen earlier, using the
following code:

OraclePermission _perm = new OraclePermission(PermissionState.Unrestricted);
_perm.Demand();

Let’s see how this looks like in the big picture (Listing 11-5).

Listing 11-5. Requesting Permissions Programmatically at the Method Level

using System;
using System.Collections.Generic;
using System.Windows.Forms;
using Oracle.DataAccess.Client;
using System.Security;
using System.Security.Permissions;
using System.IO;

namespace MyNamespace
{
 static class Program
 {
 [STAThread]
 static void Main()
 {
 ConnectToDatabase();
 }

304

 CHAPTER 11 ODP.NET SECURITY FEATURES

 private static void ConnectToDatabase()
 {
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 //If the request fails, an exception is raised, and the
 //error message will be displayed
 OraclePermission _perm = new
 OraclePermission(PermissionState.Unrestricted);
 _perm.Demand();

 OracleConnection _connObj = new
 OracleConnection(_connstring);
 _connObj.Open();
 _connObj.Close();
 _connObj.Dispose ();
 MessageBox.Show("The database was just opened and closed
 successfully!");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message());
 }
 }
 }
}

If you run the code in Listing 11-5, you will see an error message similar to the one shown in Figure
11-14.

Figure 11-14. Security exception caught at the method level

Ensuring That an Assembly Can Never Access Oracle
Let’s say you’ve created a DLL component that will never need to access the Oracle database. When you
deploy such a component in a highly sensitive environment (where any slight change to the database

305

CHAPTER 11 ODP.NET SECURITY FEATURES

would bring dire consequences), how do you ensure that your DLL will never be able to access the
Oracle database? After all, it is quite possible for a malicious application to misuse your DLL.

The safest way is to prevent your application code (at the .NET Framework level) from ever being
given these Oracle permissions. You can insert a declaration in your assembly to do so.

Preventing access to Oracle can be useful, for instance, when you’ve written a multivendor database
manager tool, but you don’t want your users to ever use this tool to attempt a connection to the Oracle
databases on the network (maybe because the tool is used for mission-critical purposes).

There are three ways to achieve this in your application:

• Refusing permissions at the assembly level

• Denying permissions at the method level

• Denying permissions programmatically at runtime

Refusing Permissions Declaratively at the Assembly Level
Using the RequestRefuse security action, you can prevent an assembly from ever being given the
FileIOPermission permission using the following declaration:

[assembly: FileIOPermission(SecurityAction.RequestRefuse , Unrestricted = true)]

You can refuse permissions by writing the highlighted declaration shown in Listing 11-6 at the top of
the assembly.

Listing 11-6. Refusing Permissions Declaratively at the Assembly Level

using System;
using System.Collections.Generic;
using System.Windows.Forms;
using Oracle.DataAccess.Client;
using System.Security;
using System.Security.Permissions;
using System.IO;

[assembly: OraclePermission(SecurityAction.RequestRefuse, Unrestricted = true)]
namespace MyNamespace
{
 static class Program
 {
 [STAThread]
 static void Main()
 {
 ConnectToDatabase();
 }

 private static void ConnectToDatabase()
 {
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";

306

 CHAPTER 11 ODP.NET SECURITY FEATURES

 try
 {
 OracleConnection _connObj = new
 OracleConnection(_connstring);
 _connObj.Open();
 _connObj.Close();
 _connObj.Dispose ();
 MessageBox.Show("The database was just opened and closed
 successfully!");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }
 }
}

Denying Permissions Declaratively at the Method Level
In some cases, preventing an entire assembly from accessing the Oracle database might be a little too
wide in scope. You might prefer to narrow down the restriction to a particular method (for instance, a
method that is exposed to calling applications). You can do this by declaring the restriction at the
beginning of the method instead using the Deny security action, as shown in Listing 11-7.

Listing 11-7. Denying Permissions Declaratively at the Method Level

[method: OraclePermissionAttribute(SecurityAction.Deny, Unrestricted = true)]
private static void ConnectToDatabase()
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 _connObj.Close();
 _connObj.Dispose ();
 MessageBox.Show("The database was just opened and closed successfully!");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

307

CHAPTER 11 ODP.NET SECURITY FEATURES

Denying Permissions Imperatively at the Method Level
You can also deny Oracle permissions at runtime using the OraclePermission.Deny method call. You can
do this by writing the highlighted code shown in Listing 11-8.

Listing 11-8. Denying Permissions Programmatically at the Method Level

private static void ConnectToDatabase()
{
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 //Deny Oracle Permissions
 OraclePermission _perm = new OraclePermission(PermissionState.Unrestricted);
 _perm.Deny();

 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 _connObj.Close();
 _connObj.Dispose ();
 MessageBox.Show("The database was just opened and closed successfully!");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Using CAS with ASP.NET Applications
By default, when you create ASP.NET applications, they run with full trust—your web-based
applications, as far as security is concerned, only need to ensure that they have the appropriate ACL
permissions to the various objects they are accessing. There is no security layer between your ASP.NET
application and the Oracle database other than the basic database authentication feature.

 Note ASP.NET applications, unlike Windows Form applications, fall under the application domain security
policy. The application domain security policy cannot be configured using the .NET Framework Configuration tool.

You can introduce an additional layer of security by having your web applications operate in
medium trust. There are five default trust levels in total (in order of most privileges to least):

• Full

• High

308

 CHAPTER 11 ODP.NET SECURITY FEATURES

• Medium

• Low

• Minimal

You can set the desired trust level in the web.config file of each individual ASP.NET application or in
the machine-level web.config file (so that it can apply generally to all web sites deployed on the
machine). When you run a web site in medium trust, your web site is immediately subject to the security
restrictions shown in Table 11-2.

Table 11-2. Medium Trust Security Restrictions

Security Privilege Granted? Description

OleDbPermission Not granted Your application cannot make use of the Active Data
Objects (ADO.NET) and Object Linking and Embedding,
Database (OLEDB) data provider to access any database.

EventLogPermission Not granted Your application cannot access the Windows event logs.

ReflectionPermission Not granted Your application cannot use the .NET reflection features.

RegistryPermission Not granted Your application cannot access the registry.

OraclePermission Not granted Your application cannot access the Oracle database using
ODP.NET.

FileIOPermission Limited grant Your application can only access files in the same virtual
folder (and subfolders) of your ASP.NET application.

WebPermission Limited grant Your application can only communicate with addresses
defined in the <trust> element.

You can view the individual filenames for each different security policy in the machine level

web.config file located in the following folder:

\<Windows Folder>\Microsoft.NET\Framework\<Framework Version>\CONFIG
You will notice a section that looks like the following:

<location allowOverride="true">
 <system.web>
 <securityPolicy>
 <trustLevel name="Full" policyFile="internal"/>
 <trustLevel name="High" policyFile="web_hightrust.config"/>
 <trustLevel name="Medium" policyFile="web_mediumtrust.config"/>
 <trustLevel name="Low" policyFile="web_lowtrust.config"/>
 <trustLevel name="Minimal" policyFile="web_minimaltrust.config"/>
 </securityPolicy>

309

CHAPTER 11 ODP.NET SECURITY FEATURES

 <trust level="Full" originUrl=""/>
 </system.web>
</location>

You can see that the trust level for all applications is currently set to Full. You should now change
the trust level to Medium in the following manner:

<trust level="Medium" originUrl=""/>

 Tip Besides the five default trust levels, you can also create your own custom trust levels. You can declare your
own custom trust level by adding another <trustLevel> tag (that points to a custom policy file) to the list. You can
use any name you wish for the trust level (and policy file name) as long as the <trust> tag points to that same
name.

The allowOverride keyword in the <location> tag allows you to specify whether an application-level
web.config file can override the trust level and policies specified in this machine-level web.config file.
For instance, you might want to prevent your individual ASP.NET developers from granting themselves
full trust to their web applications. You can do this by setting allowOverride=false in the machine-level
web.config file in the following manner:

<location allowOverride="false">

To see all the permissions available to the medium trust policy, you can view the
web_mediumtrust.config file. If you scroll down this file a little bit, you should be able to see a section
similar to the one shown in Listing 11-9. This section declares the allowed permissions for medium trust.
Notice that OraclePermission is nowhere in this list! You will encounter problems if you try to connect to
Oracle from your ASP.NET application at this time.

Listing 11-9. The ASP.Net Permission Set Declaration in the web_mediumtrust.config File

<PermissionSet class="NamedPermissionSet" version="1" Name="ASP.Net">
 <IPermission class="AspNetHostingPermission" version="1" Level="Medium"/>
 <IPermission class="DnsPermission" version="1" Unrestricted="true"/>
 <IPermission class="EnvironmentPermission" version="1"
 Read="TEMP;TMP;USERNAME;OS;COMPUTERNAME"/>
 <IPermission class="FileIOPermission" version="1" Read="$AppDir$" Write="$AppDir$"
 Append="$AppDir$" PathDiscovery="$AppDir$"/>
 <IPermission class="IsolatedStorageFilePermission" version="1"
 Allowed="AssemblyIsolationByUser" UserQuota="9223372036854775807"/>
 <IPermission class="PrintingPermission" version="1" Level="DefaultPrinting"/>
 <IPermission class="SecurityPermission" version="1" Flags="Assertion, Execution,
 ControlThread, ControlPrincipal, RemotingConfiguration"/>
 <IPermission class="SmtpPermission" version="1" Access="Connect"/>
 <IPermission class="SqlClientPermission" version="1" Unrestricted="true"/>
 <IPermission class="WebPermission" version="1">

310

 CHAPTER 11 ODP.NET SECURITY FEATURES

 <ConnectAccess>
 <URI uri="$OriginHost$"/>
 </ConnectAccess>
 </IPermission>
 <IPermission class="ReflectionPermission" version="1"
 Flags="RestrictedMemberAccess"/>
</PermissionSet>

You now need to add the relevant OraclePermission entries to this file. Add an entry to declare the
OraclePermission security class under the <SecurityClasses> tag:

<SecurityClass Name="OraclePermission"
Description="Oracle.DataAccess.Client.OraclePermission, Oracle.DataAccess.Clien
t, Version=2.111.7.20, Culture=neutral, PublicKeyToken=89b483f429c47342"/>

Under the ASP.Net permission set, add the following <IPermission> declaration:

<IPermission class="OraclePermission" version="1" Unrestricted="true"/>

The contents of your web_mediumtrust.config file should now look something like the one shown in
Listing 11-10 (changes are highlighted in bold).

Listing 11-10. The web_mediumtrust.config file After Adding OraclePermission

<configuration>
 <mscorlib>
 <security>
 <policy>
 <PolicyLevel version="1">
 <SecurityClasses>
 <SecurityClass Name="AllMembershipCondition"
 Description="System.Security.Policy.AllMembershipCondition,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"/>
 <SecurityClass Name="AspNetHostingPermission"
 Description="System.Web.AspNetHostingPermission, System,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
 <SecurityClass Name="DnsPermission" Description="System.Net.DnsPermission,
 System, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"/>
 <SecurityClass Name="OraclePermission"
 Description="Oracle.DataAccess.Client.OraclePermission,
 Oracle.DataAccess.Client, Version=2.111.7.20, Culture=neutral,
 PublicKeyToken=89b483f429c47342"/>
 </SecurityClasses>
 <NamedPermissionSets>
 <PermissionSet class="NamedPermissionSet" version="1"
 Unrestricted="true" Name="FullTrust" Description="Allows
 full access to all resources"/>
 <PermissionSet class="NamedPermissionSet" version="1" Name="Nothing"

311

CHAPTER 11 ODP.NET SECURITY FEATURES

 Description="Denies all resources, including the right to
 execute"/>
 <PermissionSet class="NamedPermissionSet" version="1"
 Name="ASP.Net">
 <IPermission class="AspNetHostingPermission" version="1"
 Level="Medium"/>
 <IPermission class="DnsPermission" version="1"
 Unrestricted="true"/>
 <IPermission class="OraclePermission" version="1"
 Unrestricted="true"/>
 <IPermission class="EnvironmentPermission" version="1"
 Read="TEMP;TMP;USERNAME;OS;COMPUTERNAME"/>
 <IPermission class="FileIOPermission" version="1"
 Read="$AppDir$" Write="$AppDir$" Append="$AppDir$"
 PathDiscovery="$AppDir$"/>
 <IPermission class="IsolatedStorageFilePermission"
 version="1" Allowed="AssemblyIsolationByUser"
 UserQuota="9223372036854775807"/>
 <IPermission class="PrintingPermission" version="1"
 Level="DefaultPrinting"/>
 <IPermission class="SecurityPermission" version="1"
 Flags="Assertion, Execution, ControlThread,
 ControlPrincipal, RemotingConfiguration"/>
 <IPermission class="SmtpPermission" version="1"
 Access="Connect"/>
 <IPermission class="SqlClientPermission" version="1"
 Unrestricted="true"/>
 <IPermission class="WebPermission" version="1">
 <ConnectAccess>
 <URI uri="$OriginHost$"/>
 </ConnectAccess>
 </IPermission>
 <IPermission class="ReflectionPermission" version="1"
 Flags="RestrictedMemberAccess"/>
 </PermissionSet>
 </NamedPermissionSets>
 <CodeGroup class="FirstMatchCodeGroup" version="1" PermissionSetName="Nothing">
 .
 .
 .
 </CodeGroup>
 </PolicyLevel>
 </policy>
 </security>
 </mscorlib>
</configuration>

If you now try to access the Oracle database from your web application, you should be able to do so
without any further problem. Now that the security policies for Oracle have been configured, your
ASP.NET applications can also demand or refuse permissions (as you did in the earlier sections) using
the OraclePermission object.

312

 CHAPTER 11 ODP.NET SECURITY FEATURES

Implementing Best Practices
It is important to note that the biggest security flaws in your application can most often be avoided by
simply keeping to best practices when writing code to access the database. For example, SQL injection
attacks are one of the most common forms of attack involving the database, and they can be easily
avoided just by using parameterized queries instead of dynamically generated SQL statements. In the
following sections, you’ll see how SQL injection attacks work and how you can write better code to
reduce the chances of it happening.

Preventing SQL Injection Attacks
An SQL injection attack is an ingenious method of injecting malicious SQL code directly into your
application by way of input-collecting text boxes. When you create a login page that looks like the
screenshot shown in Figure 11-15, for example, your code expects the user to type in a username and a
password.

Figure 11-15. A typical login window

If you dynamically construct your SQL statement by directly incorporating input from the user, a
malicious user could manipulate this SQL statement by typing in carefully formatted data through the
text boxes. For example, let’s say that your application builds up the SQL statement using the following
code:

_cmdObj.CommandText = "SELECT * FROM Useraccounts WHERE UserID='" +
 txtUsername.Text + "' AND Password='" + txtPassword.Text + "'";
OracleDataReader _rdrObj = _cmdObj.ExecuteReader();
if (_rdrObj.HasRows)
{
 MessageBox.Show("Access Granted!");
}

Now, think about what happens if your user types in exactly the following in the Username text box:

' OR UserID<>'
and the following in the Password text box:

' OR Password<>'

313

CHAPTER 11 ODP.NET SECURITY FEATURES

When these pieces of data are used to construct the final SQL, your final SQL becomes:

SELECT * FROM Useraccounts WHERE UserID='' OR UserID<>'' AND Password='' OR Pass
word<>''

This SQL statement will now return every single user account in the system, and the malicious user
will always have access to your application.

As shown in this example, this problem stems mostly from not formatting the input data
appropriately. It could be avoided, for example, by having your application look for a single apostrophe
in the input data and stripping out or replacing any that it finds. A safer way, however, is to pass input to
an SQL statement as parameters instead of directly appending them as strings.

For example, you could stamp out SQL injection attacks by simply rewriting the code snippet as
follows:

_cmdObj.CommandText = "SELECT * FROM Useraccounts WHERE UserID=:UserID AND
 Password=:Password";
_cmdObj.Parameters.Add(new OracleParameter("UserID", txtUsername.Text));
_cmdObj.Parameters.Add(new OracleParameter("Password", txtPassword.Text));

It is always better to use parameterized queries or PL/SQL stored procedures to pass user input
safely to an SQL. In scenarios where dynamically generated SQL is unavoidable, parse and check all
input for special characters and escape them appropriately before appending them to any SQL
statement.

Preventing Nonpersistent Cross-Site Scripting Attacks
Nonpersistent cross-site scripting (XSS) is a type of attack that targets web-based applications that send
data from one webpage to another via form POST or through the query string segment of the URL of a
requested web page.

For instance, consider a web page that generates a list of products for display, each product
represented by a harmless-looking link:

http://localhost/myapp/viewproduct.aspx?ProductID=333888

Let’s assume that the viewproduct.aspx.vb page contained the following code:

_cmdObj.CommandText = "SELECT * FROM Products WHERE ProductID='"
+ Request.QueryString["ProductID"] + "'";

A malicious user could replace the ProductID in the URL with the following:

http://localhost/myapp/viewproduct.aspx?ProductID=' UNION SELECT * FROM Prohibi
tedProducts WHERE ProhibitedProductID=100 AND ProhibitedProductID<>'

When this ProductID value is eventually plugged into the SQL statement, your SQL will read as
follows:

SELECT * FROM Products WHERE ProductID='' UNION SELECT * FROM ProhibitedProducts
WHERE ProhibitedProductID=100 AND ProhibitedProductID<>''

314

http://localhost/myapp/viewproduct.aspx?ProductID=333888
http://localhost/myapp/viewproduct.aspx?ProductID=

 CHAPTER 11 ODP.NET SECURITY FEATURES

315

The malicious user is now able to access data in a prohibited table that would otherwise be normally
inaccessible.

 Note As you can see from this example, users can still introduce malicious code even when you don’t expect
them to pass in any input data. If your application passes any data internally, it is important to ensure that the
receiving web pages validate and check any incoming data appropriately before usage.

The following are precautions that you can take to prevent nonpersistent XSS attacks:

• Always scramble or encrypt the query string portion of a URL.

• Always double-check input data. For example, if the product ID is a number, you
should check if the incoming product ID is a numerical value.

• Whenever possible, place checks on a web page to ensure that the currently
logged-on user has rights to view the desired page and its data.

• Input data that is eventually fed into an SQL statement should always be passed in
as parameters.

Summary
You’ve seen in this chapter how you could create secure ODP.NET applications through three different
methods:

• Authentication

• Code access security

• Adopting best practices when accessing the database

• You’ve learned the following in detail:

• The three different authentication modes available in Oracle and when to use
each one

• How to use the OraclePermission and OraclePermissionAttribute classes to
request and refuse permissions to the Oracle database in your code (declaratively
and imperatively)

• How to secure your ASP.NET applications by changing the trust level associated
with your web application

• How to prevent your ODP.NET code from being exploited in SQL Injection and
non-persistent cross-site scripting attacks

In the next chapter, you’ll learn how to optimize your ODP.NET code for performance.

C H A P T E R 12

ODP.NET Performance

My gym instructor (who’s a self-professed authority on the ninja arts) once remarked that the sharpest
blade in the world is useless if one cannot wield it fast enough. Extending these wise words into the
realm of ODP.NET, I find that the same can be said of development teams that frequently make the
mistake of classifying performance optimization as something optional to do after development rather
than as a habit that is practiced from the very first line of code.

A lack of knowledge about the inner workings of the Oracle database and best performance
practices can lead development teams to write tons of code affixed to a particular style that make it
difficult to alter later on in the project without rewriting the entire data layer. You need to master this
knowledge before you even embark on your first ODP.NET project.

In the world of Oracle, your sword is ODP.NET, your training the skill set you possess, and your
enemy time. In this chapter, you will conquer the following techniques to write lightning fast ODP.NET
applications:

• Enable the ODP.NET performance counters and programmatically measure
performance in your code.

• Establish faster connections.

• Perform faster floating point arithmetic.

• Execute SQL statements more efficiently.

• Pass parameters more efficiently.

• Manage large objects (LOBs) more efficiently.

• Retrieve data more efficiently.

• Load bulk data into Oracle more efficiently.

• Obtain detailed performance statistics for each of the techniques outlined.

Measuring Performance
Carrying on the wisdom of my gym instructor, you cannot beat down an opponent that you don’t know
enough about. In your case, you need to know how your code fares against time. There are generally two
ways to check on the performance of your application. One way is to inspect the set of performance
counters published by ODP.NET, and the other is to programmatically time your code using a high-
resolution timer.

317

CHAPTER 12 ODP.NET PERFORMANCE

Enabling the Performance Counters
The ODP.NET performance counters are a set of counters that tell you the number of connections active,
closed, and so on at any point in time. This tool allows you, for example, to detect connection leaks
where your code unintentionally leaves database connections unclosed.

For example, you might run a particular function in your application, check the total number of new
connections, and then cross-check that with the number of connections closed. If the numbers do not
match over repeated experimentation, you can conclude you have a connection leak. You can also hook
these performance counters up to the Windows Reliability and Performance Monitor, which allows you
to visualize different aspects of database performance as a set of time graphs. You could, for instance
use, them to analyze correlations between CPU and database utilization peaks by overlaying different
charts together.

 Note The Oracle performance counters are not installed by default. You can install them anytime by choosing
the Custom installation option and selecting the Oracle for Windows Performance option in the Oracle installer.

You will need to perform one more step before you can use the performance counters. The Oracle
performance counters are setup to monitor only one database instance. You need to register your
database instance with it. Oracle provides the command-line Operfcfg.exe tool (in the ORACLE_HOME\BIN
folder) that allows you to do this via the following syntax:

operfcfg U <system> P <password> D <instancename>

For instance, you can register the NEWDB database instance by running the following at the command
line:

operfcfg U SYSTEM P admin D localhost\NEWDB

Once you have done that, you should also ensure that all the performance counters are enabled.
Using the Windows Registry Editor (regedit.exe) tool, navigate to the following key:

HKEY_LOCAL_MACHINE\Software\ORACLE\ODP.NET\2.111.7.20\PerformanceCounters

This key will be set to 0 (disabled). To enable all the counters, change this value to 4095. You will
next need to restart the Oracle database instance. As mentioned earlier, you can also view the
performance counters visually in the Reliability and Performance Monitor tool provided by Windows in
the Start Control Panel Administrative Tools area.

Launch the monitoring tool, highlight the Performance Monitor node, and click the Add Counters
menu item. This will pop open a window showing a list of counters. Locate the Oracle Data Provider for
.NET counter, and move all the counters into the Added Counters list, as shown in Figure 12-1.

318

 CHAPTER 12 ODP.NET PERFORMANCE

Figure 12-1. ODP.NET performance counters in the Reliability and Performance Monitor tool

Click the OK button to confirm. You will see the ODP.NET counters show up in the time graph area.
Table 12-1 shows the list of performance counters available in Oracle and what each counter represents.

Table 12-1. List of Performance Counters in Oracle

Performance Counter Description

HardConnectsPerSecond Total number of new database sessions established each
second

HardDisconnectsPerSecond Total number of database sessions closed each second

SoftConnectsPerSecond Total number of cached connections retrieved from the
connection pool

SoftDisconnectsPerSecond Total number of cached connections released into the
connection pool

NumberOfActiveConnectionPools Total number of active connection pools

NumberOfInactiveConnectionPools Total number of inactive connection pools

NumberOfActiveConnections Total number of connections in use

NumberOfFreeConnections Total number of connections available across all connection
pools

319

CHAPTER 12 ODP.NET PERFORMANCE

NumberOfPooledConnections Total number of pooled active (open) connections

NumberOfNonPooledConnections Total number of non-pooled active (open) connections

NumberOfReclaimedConnections Total number of connections internally disposed of by the
garbage collector

NumberOfStasisConnections Total number of connections that have been closed by the
user but are in stasis—awaiting release back into the
connection pool

Measuring Performance Programmatically
Measuring code performance has changed little over the years—you record the time before and after an
event and calculate its delta. To achieve this, you need a high-resolution timer, one that can measure the
time accurately to the millisecond. The .NET Framework, starting with version 2.0, provides a (in my
opinion, well-named) StopWatch class that fits this job perfectly.

The StopWatch class attempts to use a hardware-based high-resolution timer (if one is found) or falls
back on the system timer otherwise. The StopWatch class actually makes use of kernel32.dll’s
QueryPerformanceCounter Windows API call to retrieve the time, so these two are functionally
interchangeable. It is, of course, a better practice to use the StopWatch class since it is managed code.

You can use the StopWatch class in the following manner:

Stopwatch _stopwatch = new Stopwatch();
_stopwatch.Start();

// Do the task...

_stopwatch.Stop();
MessageBox.Show(_stopwatch.Elapsed.TotalSeconds.ToString () + " seconds");

This code StopWatch.Elapsed.TotalSeconds property can be used to retrieve the elapsed time. This
will be displayed in the following format:

0.0917097 seconds

Take note that if you attempt to use the same StopWatch instance again after you have timed an
event, you will need to call the StopWatch.Reset method to reset the total elapsed time internally stored
in the object, as illustrated here:

Stopwatch _stopwatch = new Stopwatch();
_stopwatch.Start();
// Do first task ...
_stopwatch.Stop();
_stopwatch.Reset();
_stopwatch.Start();
//Do second task ...
_stopwatch.Stop();

320

 CHAPTER 12 ODP.NET PERFORMANCE

 Tip When measuring performance, it is usually not a good idea to take the measurement on the first run of the
test code. When you run your code for the first time, you may have a lot of background-level loading, caching, and
initialization going on, and all this can contribute to a larger time delta. A single, off-target measurement can
drastically affect the measured average and produce inaccurate results.

Speeding Up Connections with Connection Pooling
In the lifetime of an application, especially a web-based one, a large number of database connection
instances will be opened and closed. To illustrate a case scenario, a web page may open two database
connections on average. Assuming this web page receives 100 hits a minute (a realistic figure in the case
of high-volume applications in some large organizations), that comes up to about 200 connections
opened on the database every minute, a fairly large number for any database.

Connection pooling is Oracle’s way of handling large number of connection requests. Opening a
new connection to the database is usually a very slow and resource-intensive task. Connection pooling
works by not destroying a connection object after it has been closed. It is merely kept in an “inactive”
state until a new connection request arrives, whereby it is then reused. This allows the database to avoid
the expensive operation of opening a totally new connection.

You can specify whether to enable or disable connection pooling in the connection string itself
(although it is enabled by default). In fact, if you recall earlier from Chapter 3, there were a few other
parameters that you could tweak in the connection string to adjust the performance of the connection
pool. In this section, you will directly measure the performance difference between a code sample that
uses connection pooling and one that doesn’t. You can do this by measuring the time taken to open and
close ten connections, in one case with connection pooling enabled and in the other case disabled.
Create a new form, place a button on the form, and write the code shown in Listing 12-1.

Listing 12-1. Opening and Closing Ten Connections With and Without Connection Pooling

private void btnConnectionPooling_Click(object sender, EventArgs e)
{
 Stopwatch _stopwatch = new Stopwatch();
 String _Results;
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;Pooling=false";
 try
 {
 //Open and close connections 10 times without connection pooling enabled
 OracleConnection _connObj = new OracleConnection(_connstring);
 _stopwatch.Start();
 for (int i = 1; i <= 10; i++)
 {
 _connObj.Open();
 _connObj.Close();
 }
 _stopwatch.Stop();
 _Results = "Without connection pooling:\t" +

321

CHAPTER 12 ODP.NET PERFORMANCE

 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";

 //Open and close connections 10 times with connection pooling enabled
 _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;Pooling=true";
 _connObj = new OracleConnection(_connstring);
 _stopwatch.Reset();
 _stopwatch.Start();
 for (int i = 1; i <= 10; i++)
 {
 _connObj.Open();
 _connObj.Close();
 }
 _stopwatch.Stop();
 _Results = _Results + "With connection pooling:\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";
 MessageBox.Show(_Results);
 _connObj.Close();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run this form and click the button, you will see a pop-up message showing you the elapsed
time with connection pooling turned on and turned off. Note down these numbers, and run the same
code again, but change the number of iterations from 10 to 50. If you repeat these steps with 100, 500,
and 1,000 iterations, you will be able to tabulate results similar to the following:

Iterations Without connection With connection Performance
 pooling pooling boost

10 0.4485831 0.2239234 x 2.00

50 1.5553226 0.0757786 x 20.52

100 3.0455792 0.0816510 x 37.30

500 13.8253361 0.1356212 x 101.94

1,000 25.8209253 0.2001342 x 129.02

You can calculate the performance boost simply by dividing the elapsed time without connection
pooling by the elapsed time with connection pooling. The preceding results indicate that by turning on
connection pooling, the performance is twice as fast for ten iterations with connection pooling turned
on than without.

Analyzing the results in more detail, you also find that the performance boost is, in fact, not linear,
and the more connections that are opened and closed, the better the performance gain. This proves that

322

 CHAPTER 12 ODP.NET PERFORMANCE

connection pooling does indeed help and that it should always be used, even when you are not opening
many connections to the database.

Use connection pooling in the following scenarios:

• When you need to open and close connections frequently, as in the case of web-
based applications. Connection pooling can greatly reduce the amount of time
required to establish subsequent connections to the database.

• It is always a good idea to keep connection pooling enabled, unless you have an
always-connected application and you need full control over your database
connections.

Performing Faster Floating Point Arithmetic
One of the improvements of Oracle 10g was the introduction of the BINARY_FLOAT and BINARY_DOUBLE
data types. These data types use machine arithmetic, which means that the computation works is passed
to the operating system, and this makes them extremely efficient in handling floating point numbers.

You can gauge the performance of BINARY_FLOAT and BINARY_DOUBLE against the performance of the
NUMBER data type. Create another button on the same form earlier, and write the code shown in Listing
12-2.

Listing 12-2. One Million Additions Using BINARY_FLOAT, BINARY_DOUBLE, and NUMBER

private void btnMeasureNumbers(object sender, EventArgs e)
{
 Stopwatch _stopwatch = new Stopwatch();
 String _Results;
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();

 //Adding NUMBERs
 _cmdObj.CommandText = "DECLARE" +
 " Number1 NUMBER:=1;" +
 " Number2 NUMBER:=1;" +
 "BEGIN" +
 " FOR i IN 1 .. 1000000 LOOP" +
 " Number1:=Number1 + Number2;" +
 " END LOOP;" +
 "END;";
 _stopwatch.Start();
 _cmdObj.ExecuteNonQuery();
 _stopwatch.Stop();

323

CHAPTER 12 ODP.NET PERFORMANCE

 _Results = "Adding NUMBERs:\t" + _stopwatch.Elapsed.TotalSeconds.ToString()
 + " seconds\n";

 //Adding BINARY_FLOAT numbers
 _cmdObj.CommandText = "DECLARE" +
 " BinaryFloat1 BINARY_FLOAT:=1;" +
 " BinaryFloat2 BINARY_FLOAT:=1;" +
 "BEGIN" +
 " FOR i IN 1 .. 1000000 LOOP" +
 " BinaryFloat1:=BinaryFloat1 + BinaryFloat2;" +
 " END LOOP;" +
 "END;";
 _stopwatch.Reset();
 _stopwatch.Start();
 _cmdObj.ExecuteNonQuery();
 _stopwatch.Stop();
 _Results = _Results + "Adding BINARY_FLOATs:\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";

 //Adding BINARY_DOUBLE numbers
 _cmdObj.CommandText = "DECLARE" +
 " BinaryDouble1 BINARY_DOUBLE:=1;" +
 " BinaryDouble2 BINARY_DOUBLE:=1;" +
 "BEGIN" +
 " FOR i IN 1 .. 1000000 LOOP" +
 " BinaryDouble1:=BinaryDouble1 + " +
 " BinaryDouble2;" +
 " END LOOP;" +
 "END;";
 _stopwatch.Reset();
 _stopwatch.Start();
 _cmdObj.ExecuteNonQuery();
 _stopwatch.Stop();
 _Results = _Results + "Adding BINARY_DOUBLEs:\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";

 MessageBox.Show(_Results);
 _connObj.Close();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you record the elapsed times obtained for the following iterations in the same manner as before,
you will roughly end up with the following results:

324

 CHAPTER 12 ODP.NET PERFORMANCE

Iterations NUMBER BINARY_FLOAT Performance BINARY_DOUBLE Performance
 boost over boost over
 NUMBER type NUMBER type

100 0.0004525 0.0001705 x 2.65 0.0001590 x 2.85

5,000 0.0008028 0.0003621 x 2.22 0.0003468 x 2.31

100,000 0.0084713 0.0043564 x 1.94 0.0050087 x 1.69

1,000,000 0.0779376 0.0397637 x 1.96 0.0522518 x 1.49

10,000,000 0.9389645 0.4426459 x 2.12 0.5081020 x 1.85

The test I’ve done on my PC shows that BINARY_FLOAT and BINARY_DOUBLE data types are consistently
twice as fast (on average) as using NUMBER data types, even for a small number of iterations. It is therefore
a good practice to always opt for BINARY_FLOAT and BINARY_DOUBLE data types when dealing with floating
point numbers.

Use BINARY_FLOAT and BINARY_DOUBLE when you need performance over accuracy. Although they are
fast, BINARY_FLOAT and BINARY_DOUBLE may not always represent fractional values accurately. If accuracy
is important in your application, the NUMBER data type is a better choice.

Executing Statements Faster
There are usually two performance bottlenecks when it comes to executing an SQL command. First, the
SQL statement must be sent over the network to the Oracle server for processing before the results are
returned. This sequence of events is commonly referred to as a database round-trip and is, by far, the
most undesirable bottleneck, since it is subject to unknown variables such as network latency. Second,
the SQL statement needs to be parsed by Oracle before it can actually be executed.

In the following sections, you will explore how to write code that improves the performance of these
two tasks.

Batching Your SQL Statements Together For Execution
One of the golden rules of improving data access performance is to reduce as much as possible the
number of round-trips required to the database. This is because the amount of time required to send
your SQL statements across the network is usually orders of magnitude higher than the amount of time
needed to run the query at the server. There are two ways to reduce the number of database round trips:

• Placing multiple SQL statements in a single stored procedure on the server: This
way, only a single round-trip is needed (to invoke the stored procedure) instead of
making a round trip for each separate SQL statement.

• Encasing multiple SQL statements within an anonymous PL/SQL block: This is
similar to the first method, except that you have the freedom of generating an
anonymous PL/SQL block on the fly.

325

CHAPTER 12 ODP.NET PERFORMANCE

The following code sample shows how you can place multiple SQL statements within an
anonymous PL/SQL block:

BEGIN
 UPDATE Products SET Price=100 WHERE ID='E1';

UPDATE Products SET Price=200 WHERE ID='K1';
DELETE FROM Products WHERE ID='A1';

END;

The entire preceding code snippet can simply be passed in as the CommandText property of an
OracleCommand object. Let’s take a look at the full code in detail. You will compare the performance of
making one single database round trip (via a batched query) against the performance of making a
separate database round trip for each SQL statement. Write the code shown in Listing 12-3.

Listing 12-3. Updating 10,000 Records As Separate and Batched Commands

private void btnBatchSQL(object sender, EventArgs e)
{
 Stopwatch _stopwatch = new Stopwatch();
 String _Results;
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();

 //Update 10,000 products in separate statements
 _stopwatch.Start();
 for (int i = 1; i <= 10000; i++)
 {
 _cmdObj.CommandText = "UPDATE Products SET Name='Test" +
 Convert.ToString(i) + "' WHERE ID='E1'";
 _cmdObj.ExecuteNonQuery();
 }
 _stopwatch.Stop();
 _Results = "Without Batch SQL:\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";

 //Update 10,000 products in batch
 _cmdObj.CommandText = "BEGIN" +
 " FOR i IN 1 .. 10000 LOOP" +
 " UPDATE Products SET Name='Test' || i WHERE"+
 " ID='E1';" +
 " END LOOP;" +
 "END;";
 _stopwatch.Reset();
 _stopwatch.Start();
 _cmdObj.ExecuteNonQuery();
 _stopwatch.Stop();

326

 CHAPTER 12 ODP.NET PERFORMANCE

 _Results = _Results + "With Batch SQL:\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";

 MessageBox.Show(_Results);
 _connObj.Close();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

If you run the preceding code sample for the different iterations shown here, you will roughly obtain
the following results:

No. of SQL As separate Batched in a single Performance boost
commands statements execution

10 0.0013589 0.0007924 x 1.71

100 0.0242765 0.0040843 x 5.94

1,000 0.2767377 0.0347016 x 7.97

5,000 4.4956063 0.2117111 x 21.23

10,000 10.6515809 0.3819980 x 27.88

By looking at these results, you can see that, even with a small number of SQL statements, you can
already realize significant performance gains by batching your SQL commands together. The
performance gains are more prominent if you batch more SQL commands together. The number of SQL
commands you can batch together is limited by an internal size limit (which you can control in Oracle).
If your application logic allows, always try to batch as many SQL commands as you can in a single
database round-trip.

 Note The actual performance gains are, in fact, higher than the results shown in the results table, because you
are most likely running your code samples in the same machine as your Oracle database. You will see much
higher performance gains if your code accesses a database server across the network. For this reason, it is a good
idea to try to replicate your production environment as much as possible when you do performance testing. This
will allow you to obtain performance measurements that are more reflective of your deployment environment.

Batch your SQL statements together in the following situations:

327

CHAPTER 12 ODP.NET PERFORMANCE

• When you have different SQL statements that you need to execute together in a
group: If you have just a single SQL statement that you need to run repeatedly on a
batch of data, you should consider using bind arrays instead (which will be
covered later in this chapter).

• When you don’t have the option of placing the SQL statements in a stored
procedure: In terms of performance, stored procedures are always better since
your SQL exists in compiled form. However, if your SQL statements need to be
dynamically generated, you might want to consider using SQL statement
batching.

Using Statement Caching
Every time Oracle receives your SQL statement at the server, it will attempt to parse the statement and
create the necessary cursors. It has to repeat this task for every SQL statement that it receives even if two
statements are exactly the same. Now imagine having a long and complex SQL statement like this:

SELECT * FROM Products INNER JOIN ProductFiles ON
Products.ID=ProductFiles.ProductID
 INNER JOIN ProductComponents ON Products.ID=ProductComponents.ProductID
 INNER JOIN ProductImages ON Products.ID=ProductImages.ProductID
 WHERE Products.ID IN (SELECT ID FROM PurchasedProducts WHERE Amount>:Amount)

If this statement was executed many times (on every web page hit, for example), there would be a lot
of wasted cycles parsing and processing the same thing over and over again. Statement caching allows
the Oracle database to cache a statement, so that the next time it sees the same exact SQL, it will use the
copy cached in memory instead of having to rebuild one from scratch. The result is better performance.

The statement cache can store a limited number of statements and push out the least recently used
(LRU) statement when it is full. Take note that statement caching also works well with parameterized
queries. For example, the following query is regarded as the same SQL statement regardless of the
different parameters that are passed in, and will only take up one slot in the statement cache:

SELECT * FROM Products WHERE ID=:1 AND Name=:2

You can enable statement caching via a few methods. For example, you can enable it at the registry-
level or at the connection instance level (in the connection string). Statement caching is enabled by
default in ODP.NET, and the statement cache size (the maximum number of statements that the cache
can hold), is set to 10 by default.

For example, to set the statement cache size of a particular connection to 20, you can declare it in
the connection string as follows:

Data Source=localhost/NEWDB;User Id=EDZEHOO;Password=PASS123;Statement Cache Si
ze=20;Self Tuning=false;

328

 CHAPTER 12 ODP.NET PERFORMANCE

 Tip Self-tuning is a feature of the Oracle database (enabled by default) that can dynamically adjust the
statement cache size on its own to improve application performance. When it is enabled, the automatically
determined statement cache size will overwrite any other statement cache size setting. For this reason, you must
set it to false if you want to define a fixed statement cache size of your own.

You can also control the statement cache programmatically through ODP.NET. For example, you
might have enabled statement caching on a connection instance but do not wish to cache a particular
statement (maybe because it is rarely called, and you prefer not to have it take up any cache slots). You
can tell ODP.NET whether to add a statement to the cache or not by setting the
OracleCommand.AddToStatementCache property to either true or false, in the fashion shown here:

OracleCommand _cmdObj = _connObj.CreateCommand();
_cmdObj.AddToStatementCache = false;
_cmdObj.CommandText = "SELECT * FROM Products";
_cmdObj.ExecuteNonQuery();

The code in Listing 12-4 shows the performance gains when you turn on statement caching. It
attempts to run the same query 10,000 times on the Products table in two scenarios, one with statement
caching disabled and the other with it enabled.

Listing 12-4. Executing 10,000 Queries with Statement Caching Disabled and Enabled

private void btnStatementCaching(object sender, EventArgs e)
{
 Stopwatch _stopwatch = new Stopwatch();
 String _Results;

 try
 {
 //Retrieve 10,000 products with statement caching disabled
 //Setting a cache size of 0 automatically disables the statement cache
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;Statement Cache Size=0;Self
 Tuning=false;";
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _stopwatch.Start();
 _cmdObj.CommandText = "SELECT * FROM Products WHERE ID=:IDValue";
 OracleParameter _paramObj =
 _cmdObj.Parameters.Add("IDValue",OracleDbType.Varchar2);
 for (int i = 1; i <= 10000; i++)
 {
 _paramObj.Value = "E" + Convert.ToString(i);
 OracleDataReader _rdrObj = _cmdObj.ExecuteReader();
 _rdrObj.Dispose();
 }
 _stopwatch.Stop();

329

CHAPTER 12 ODP.NET PERFORMANCE

 _Results = "Without Statement Caching:\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";
 _cmdObj.Dispose();
 _connObj.Close();

 //Retrieve 10,000 products with statement caching enabled
 _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;Statement Cache Size=5;Self
 Tuning=false;";
 _connObj.ConnectionString = _connstring;
 _connObj.Open();
 _cmdObj = _connObj.CreateCommand();
 _stopwatch.Reset();
 _stopwatch.Start();
 _cmdObj.CommandText = "SELECT * FROM Products WHERE ID=:IDValue";
 _paramObj = _cmdObj.Parameters.Add("IDValue", OracleDbType.Varchar2);
 for (int i = 1; i <= 10000; i++)
 {
 _paramObj.Value = "E" + Convert.ToString(i);
 OracleDataReader _rdrObj = _cmdObj.ExecuteReader();
 _rdrObj.Dispose();
 }
 _stopwatch.Stop();
 _Results = _Results + "With Statement Caching:\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";
 _cmdObj.Dispose();
 _connObj.Close();
 MessageBox.Show(_Results);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Running this form will produce the following results:

Iterations Without statement With statement Performance boost
 caching caching

10 0.0058024 0.0021162 x 2.74

100 0.0694805 0.0208891 x 3.33

5,000 2.1803009 0.7888571 x 2.76

10,000 5.0760874 1.6864191 x 3.01

50,000 22.7099379 8.3316285 x 2.73

330

 CHAPTER 12 ODP.NET PERFORMANCE

You can observe that statement caching will consistently yield a performance gain if the executing
statement is found in the cache.

Use statement caching when you have a small bunch of SQL statements that will be called very
frequently in your application. Even if you have widely differing set of SQL statements, you can still
enable statement caching (together with the self-tuning option) since Oracle will dynamically adjust the
size of the statement cache for you.

REF Cursors and Multiple Active Resultsets (MARs)
You took your first look at REF cursors and multiple active results (MARs) in Chapter 5. Essentially, these
two features allow you to reduce the number of round-trips to the server by executing multiple
statements and returning multiple datasets in a single round-trip to Oracle. They may not seem to
contribute to any performance difference if your code and database resides on the same machine, but
when accessing the database over the network, the performance gain becomes visibly higher.

Passing Parameters More Efficiently
As mentioned earlier, one of the most common ways of improving performance is to reduce the number
of round-trips required to the database server. One idea that has arisen from this objective thought is to
pass a large number of parameters in bulk to the server in a single round-trip and have the SQL at the
server side work on each row of data in the parameter set.

For instance, you might want to insert five records into a table. Instead of running five separate
queries (five round-trips), you could put all five records into an array, send it to the server in a single
round-trip, and have the SQL INSERT command work on each of the records at the server.

There are two ways to pass such arrays to the server: via bind arrays and PL/SQL associative arrays.

Using Bind Arrays to Pass Parameters in Bulk
The bind array feature allows you to bind a standard .NET array to an OracleParameter object instead of
the usual VARCHAR2 or DECIMAL data types. To bind an array, simply pass in any .NET array to the
OracleParameter.Value, and set the OracleCommand.ArrayBindCount property to the number of elements
in the array. The code in Listing 12-5 shows how you can update the prices for three different products
by specifying the data via a bind array.

Listing 12-5. Updating the Prices for Three Different Products via a Bind Array

//Declare the arrays and the SQL command
int[] _priceArray = new int[3] { 100, 300, 500 };
String[] _IDArray = new String[3] {"E1","E2","E3"};
OracleCommand _cmdObj = _connObj.CreateCommand();
_cmdObj.CommandText = "UPDATE Products SET Price=:Price WHERE ID=:ID";

//Declare the parameters
OracleParameter _priceParam = new OracleParameter("Price", OracleDbType.Decimal);
_priceParam.Value = _priceArray;
_cmdObj.Parameters.Add(_priceParam);
OracleParameter _IDParam = new OracleParameter("ID", OracleDbType.Varchar2);

331

CHAPTER 12 ODP.NET PERFORMANCE

_IDParam.Value = _IDArray;
_cmdObj.Parameters.Add(_IDParam);

//Define the number of elements in the arrays
_cmdObj.ArrayBindCount = 3;
_cmdObj.ExecuteNonQuery();

Now, let’s take a look at the performance gains when you use bind arrays. You will insert three
records into the Products table using a bind array and iterate this task 10,000 times. The results will be
compared against a scenario in which three separate ExecuteNonQuery calls are executed to insert each of
the three records. The code in Listing 12-6 shows the full code for this sample.

Listing 12-6. Updating the Prices for Three Different Products via a Bind Array

private void btnBindArray_Click(object sender, EventArgs e)
{
 Stopwatch _stopwatch = new Stopwatch();
 String _Results;
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();

 //Clear the table
 OracleCommand _cmdDelObj = _connObj.CreateCommand();
 _cmdDelObj.CommandText = "DELETE FROM Products";
 _cmdDelObj.ExecuteNonQuery();

 //Perform 10,000 iterations, inserting 3 records in every iteration without
 //using bind arrays
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "INSERT INTO Products(ID, Name, Price) VALUES(:ID,
 :Name, :Price)";
 OracleParameter _IDParam = new OracleParameter("ID", OracleDbType.Varchar2);
 _cmdObj.Parameters.Add(_IDParam);
 OracleParameter _nameParam = new OracleParameter("Name",
 OracleDbType.Varchar2);
 _cmdObj.Parameters.Add(_nameParam);
 OracleParameter _priceParam = new OracleParameter("Price",
 OracleDbType.Decimal);
 _cmdObj.Parameters.Add(_priceParam);

 _stopwatch.Start();
 for (int i = 1; i <= 10000; i++)
 {
 _IDParam.Value = "EN" + Convert.ToString(i);
 _nameParam.Value = "Engine" + Convert.ToString(i);
 _priceParam.Value = 100;
 _cmdObj.ExecuteNonQuery();

332

 CHAPTER 12 ODP.NET PERFORMANCE

 _IDParam.Value = "WS" + Convert.ToString(i);
 _nameParam.Value = "Windshield" + Convert.ToString(i);
 _priceParam.Value = 300;
 _cmdObj.ExecuteNonQuery();

 _IDParam.Value = "RL" + Convert.ToString(i);
 _nameParam.Value = "Rear Lights" + Convert.ToString(i);
 _priceParam.Value = 500;
 _cmdObj.ExecuteNonQuery();
 }
 _stopwatch.Stop();
 _Results = "Without bind arrays:\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";

 //Clear the table again
 _cmdDelObj.ExecuteNonQuery();
 _cmdDelObj.Dispose();

 //Perform 10,000 iterations, inserting 3 records in every iteration using
 //bind arrays
 _cmdObj.ArrayBindCount = 3;
 _stopwatch.Reset ();
 _stopwatch.Start();
 for (int i = 1; i <= 10000; i++)
 {
 int[] _priceArray = new int[3] { 100, 300, 500 };
 String[] _nameArray = new String[3] { "Engine" +
 Convert.ToString(i), "Windshield" + Convert.ToString(i),
 "Rear Lights" + Convert.ToString(i) };
 String[] _IDArray = new String[3] { "EN" + Convert.ToString(i), "WS"
 + Convert.ToString(i), "RL" + Convert.ToString(i) };
 _IDParam.Value = _IDArray;
 _nameParam.Value = _nameArray;
 _priceParam.Value = _priceArray;
 _cmdObj.ExecuteNonQuery();
 }
 _stopwatch.Stop();
 _cmdObj.Dispose();
 _Results = _Results + "With Bind Arrays:\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";

 MessageBox.Show(_Results);
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

333

CHAPTER 12 ODP.NET PERFORMANCE

By repeating the test with different iterations, you will roughly obtain the following results:

Iterations Using 3 separate 1 single query via Performance boost
 statements bind arrays

10 0.0282477 0.0083203 x 3.40

500 1.0320563 0.4317347 x 2.39

1,000 2.1718022 0.8851226 x 2.45

5,000 11.7337222 4.7723287 x 2.46

10,000 25.3184049 11.7804309 x 2.15

As you can see, there is a consistent performance gain greater than a factor of two even for a small
number of iterations. This performance gain observed should be greater in a production environment
where the database server sits on a different machine from your executing code.

Use bind arrays in the following scenarios:

• When you have a single SQL statement that you need to run repeatedly many
times on a large set of data, a bind array would be suitable.

• Bind arrays, as opposed to PL/SQL associative arrays (which you will read about in
the next section) support a larger number of data types (including LOB and
XMLType). Use bind arrays when you need to pass in arrays that are based on these
data types.

• Bind arrays are also faster than PL/SQL associative arrays. A bind array is copied
as a chunk directly to the SQL engine, whereas a PL/SQL associative array first
makes it into the PL/SQL engine as a chunk but is then sent to the SQL engine one
row at a time.

Using PL/SQL Associative Arrays
You first encountered PL/SQL associative arrays in Chapter 5. You’ve seen how you could pass a
standard .NET array to a PL/SQL stored procedure as an associative array. This section aims to show the
performance gains that arise from using associative arrays. The code shown in Listing 12-7 will first
update three records in the Products table using three individual statements (repeated 10,000 times),
and then perform the same function using associative arrays. For this sample, you will be making use of
the ProductsPackage.proc_UpdateMultiplePrices package that you’ve created earlier in Chapter 5.

Listing 12-7. Updating Three Records 10,000 times With and Without Associative Arrays

private void btnAssociativeArrays(object sender, EventArgs e)
{
 Stopwatch _stopwatch = new Stopwatch();

334

 CHAPTER 12 ODP.NET PERFORMANCE

 String _Results;
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 //Perform 10,000 iterations, updating 3 records in each iteration without
 //using associative arrays
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "UPDATE Products SET Price = Price + :ProdPrice WHERE
 Name = :ProdName";
 OracleParameter _priceParam = new
 OracleParameter("ProdPrice",OracleDbType.Decimal);
 _cmdObj.Parameters.Add(_priceParam);
 OracleParameter _nameParam = new OracleParameter("ProdName",
 OracleDbType.Varchar2);
 _cmdObj.Parameters.Add(_nameParam);

 _stopwatch.Start();
 for (int i = 1; i <= 10000; i++)
 {
 _priceParam.Value = 100;
 _nameParam.Value = "Engine";
 _cmdObj.ExecuteNonQuery();

 _priceParam.Value = 300;
 _nameParam.Value = "Windshield";
 _cmdObj.ExecuteNonQuery();

 _priceParam.Value = 500;
 _nameParam.Value = "Rear Lights";
 _cmdObj.ExecuteNonQuery();
 }
 _stopwatch.Stop();
 _cmdObj.Dispose();
 _Results = "Without arrays:\t" + _stopwatch.Elapsed.TotalSeconds.ToString()
 + " seconds\n";

 //Perform 10,000 iterations, updating 3 records in each iteration using
 //associative arrays
 _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "ProductsPackage.proc_UpdateMultiplePrices";
 _cmdObj.CommandType = CommandType.StoredProcedure;

 //Declare first parameter
 _priceParam = new OracleParameter();
 _priceParam.ParameterName = "ProdPrices";
 _priceParam.OracleDbType = OracleDbType.Decimal;
 _priceParam.Direction = ParameterDirection.Input;
 _priceParam.CollectionType = OracleCollectionType.PLSQLAssociativeArray;
 _cmdObj.Parameters.Add(_priceParam);

335

CHAPTER 12 ODP.NET PERFORMANCE

 //Declare second parameter
 _nameParam = new OracleParameter();
 _nameParam.ParameterName = "ProdNames";
 _nameParam.OracleDbType = OracleDbType.Varchar2;
 _nameParam.Direction = ParameterDirection.Input;
 _nameParam.CollectionType = OracleCollectionType.PLSQLAssociativeArray;
 _cmdObj.Parameters.Add(_nameParam);

 _stopwatch.Reset();
 _stopwatch.Start();
 for (int i = 1; i <= 10000; i++)
 {
 Decimal[] decArray = new Decimal[3];
 decArray[0] = 100;
 decArray[1] = 300;
 decArray[2] = 500;
 _priceParam.Value = decArray;

 String[] stringArray = new String[3];
 stringArray[0] = "Engine";
 stringArray[1] = "Windshield";
 stringArray[2] = "Rear Lights";
 _nameParam.Value = stringArray;

 _cmdObj.ExecuteNonQuery();
 }
 _stopwatch.Stop();
 _cmdObj.Dispose();
 _Results = _Results + "With Associative Arrays:\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";

 MessageBox.Show(_Results);
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

As you can see from the following results (after running the same test for different each number of
iterations), there is a consistent performance gain. This performance gain will be greater if data access is
made over the network.

336

 CHAPTER 12 ODP.NET PERFORMANCE

Iterations Using 3 separate 1 single query via Performance boost
 statements associative arrays

10 0.0284687 0.0105727 x 2.69

100 0.2164235 0.1016446 x 2.13

1,000 2.3103020 1.0773094 x 2.14

5,000 16.7329752 7.7061877 x 2.17

10,000 26.1693986 12.1299475 x 2.16

Use PL/SQL associative arrays when you need a high level of control in a stored procedure. PL/SQL
associative arrays are powerful collection objects that let you do much more in PL/SQL. For instance,
you could refer to the elements of an associative array using an index of any desired data type. It could,
therefore, double as a lookup table. If you need this type of control in your stored procedure, passing
your data to a stored procedure via a PL/SQL associative array would be better than a bind array.

Managing LOBs More Efficiently
The official documentation from Oracle suggests using the large object data types (BLOB, CLOB, and NCLOB)
instead of the LONG or LONG RAW data types when storing large objects (greater than 2GB) in the database,
because the Oracle LOB data types yield better performance.

When using LOB data types, however, it is still possible to further boost performance in the following
two ways:

• Enabling the LOB cache

• Setting the InitialLOBFetchSize property

Enabling the LOB Cache
When you enable LOB caching on a LOB column, the data in that column is cached in a database buffer
cache. You can immediately see the pros and cons of such an approach. If you cache a LOB column
containing large amounts of stored data, this would frequently force other data blocks out of the cache.
For this reason, LOB caching is disabled by default.

LOB caching is useful when you have small LOB objects that are retrieved very frequently. For
example, you might have a bunch of 5-KB employee photos stored in a LOB column that you need very
fast access to. However, if you were planning on storing 2-MB photos in the LOB column, disabling the
LOB cache would be a better idea.

You can enable LOB caching on a LOB column by running the following query in SQL*Plus:

ALTER TABLE ProductFiles MODIFY LOB(FileAttachment) (CACHE);

337

CHAPTER 12 ODP.NET PERFORMANCE

To disable caching, run the same query but substitute CACHE with NOCACHE. The code in Listing 12-8
shows the performance gain when you enable LOB caching. You will first disable caching on the
FileAttachment BLOB column in the ProductFiles table. After doing so, you will read the full length of the
BLOB data from a record and repeat this task 100 times. The second part of the code does the same thing
with LOB caching enabled.

Listing 12-8. Retrieving LOB Data with LOB Caching Disabled and Enabled

private void btnLOBS_Click(object sender, EventArgs e)
{
 //We first read the full contents of the file into a byte array
 Stopwatch _stopwatch = new Stopwatch();
 String _Results;
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 OracleDataReader _rdrObj;
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();

 //Disable the Cache
 _cmdObj.CommandText = "ALTER TABLE ProductFiles MODIFY LOB(FileAttachment)
 (NOCACHE)";
 _cmdObj.ExecuteNonQuery();
 _cmdObj.CommandText = "SELECT FileAttachment FROM ProductFiles WHERE
 ProductID=:ProductID";
 _cmdObj.Parameters.Add(new OracleParameter("ProductID", "Z1"));
 _stopwatch.Start();
 for (int i = 1; i <= 100; i++)
 {
 _rdrObj = _cmdObj.ExecuteReader();
 if (_rdrObj.HasRows)
 {
 if (_rdrObj.Read())
 {
 OracleBlob _blobObj =
 _rdrObj.GetOracleBlob(_rdrObj.GetOrdinal
 ("FileAttachment"));
 byte[] dest = new byte[_blobObj.Length];
 _blobObj.Read(dest, 0, (int)_blobObj.Length);
 }
 }
 else
 {
 MessageBox.Show("The BLOB was not found!");
 }
 }
 _stopwatch.Stop();
 _cmdObj.Dispose();

338

 CHAPTER 12 ODP.NET PERFORMANCE

 _Results = "Without LOB caching:\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";

 //Enable the Cache
 _cmdObj = _connObj.CreateCommand();
 _cmdObj.CommandText = "ALTER TABLE ProductFiles MODIFY LOB(FileAttachment)
 (CACHE)";
 _cmdObj.ExecuteNonQuery();
 _cmdObj.CommandText = "SELECT FileAttachment FROM ProductFiles WHERE
 ProductID=:ProductID";
 _cmdObj.Parameters.Add(new OracleParameter("ProductID", "Z1"));
 _stopwatch.Reset();
 _stopwatch.Start();
 for (int i = 1; i <= 100; i++)
 {
 _rdrObj = _cmdObj.ExecuteReader();
 if (_rdrObj.HasRows)
 {
 if (_rdrObj.Read())
 {
 OracleBlob _blobObj =
 _rdrObj.GetOracleBlob(_rdrObj.GetOrdinal
 ("FileAttachment"));
 byte[] dest = new byte[_blobObj.Length];
 _blobObj.Read(dest, 0, (int)_blobObj.Length);
 }
 }
 else
 {
 MessageBox.Show("The BLOB was not found!");
 }
 }
 _stopwatch.Stop();
 _Results = _Results + "With LOB Caching:\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";
 MessageBox.Show(_Results);
 _connObj.Close();
 _connObj.Dispose();
 _connObj = null;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

Before you run the preceding form, you will need to ensure that you have loaded a record (together
with the BLOB data) into the ProductFiles table. Running the test yields the following result, showing that
there is a consistent performance gain when LOB caching is enabled:

339

CHAPTER 12 ODP.NET PERFORMANCE

Iterations Without LOB caching With LOB caching Performance boost

1 0.2171803 0.0838123 x 2.59

10 0.5357599 0.3057165 x 1.75

50 2.2895203 1.3499337 x 1.70

100 4.8449798 2.7377508 x 1.77

Enable the LOB cache when you have small LOB objects that are retrieved very frequently from the
database.

Setting the InitialLOBFetchSize Property
The second way to boost LOB performance is to change the InitialLOBFetchSize property. This property
defines the amount of LOB column data (in bytes) to fetch (and cache) from the database during an
OracleDataReader.Read invocation. By default, this property is set to 0. If you know the size (or size limit)
of your LOB data in advance, you can set this property to that size or a higher value to give your code a
performance boost.

You can set the InitialLOBFetchSize in the manner illustrated in Listing 12-9.

Listing 12-9. Setting the InitialLOBFetchSize Property

OracleConnection _connObj = new OracleConnection(_connstring);
OracleDataReader _rdrObj;
_connObj.Open();
OracleCommand _cmdObj = _connObj.CreateCommand();
//Set the LOB Fetch Size to 100,000 bytes
_cmdObj.InitialLOBFetchSize = 100000
_cmdObj.CommandText = "SELECT FileAttachment FROM ProductFiles WHERE
 ProductID=:ProductID";
_rdrObj = _cmdObj.ExecuteReader();
if (_rdrObj.HasRows)
{

if (_rdrObj.Read())
 {
 OracleBlob _blobObj = _rdrObj.GetOracleBlob(_rdrObj.GetOrdinal
 ("FileAttachment"));
 }
}
_connObj.Close();
_connObj.Dispose();

340

 CHAPTER 12 ODP.NET PERFORMANCE

 Note The official Oracle documentation recommends that you set the InitialLOBFetchSize property to the
LOB size that is encountered 80 percent of the time. For example, in a table of 1,000 rows where 800 rows have
LOB data sizes of 15KB and the other 200 rows 100KB, you should set the InitialLOBFetchSize property to
15KB.

Change the InitialLOBCacheSize property if you know in advance the size of the LOB objects you are
frequently fetching from the database.

Retrieving Data More Efficiently
After you’ve established a cursor to your data source, data retrieval can also be a performance-intensive
affair. The objective of performance optimization in this area would be to cut down on as much round-
trips to the server as possible to retrieve the data you need. This can be done via two methods:

• Changing the FetchSize property

• Enabling the client result cache

Changing the FetchSize Property
The FetchSize property, as its name indicates, represents the size of the data to fetch during each round-
trip made to the server. It directly affects the performance of the OracleDataReader object. The FetchSize
property is set to 64KB by default. You can change this value if you would like to retrieve more data than
this amount during each round-trip to the server.

The OracleCommand property also provides a RowSize property, which can come in pretty handy when
you need to set the FetchSize. Rather than simply guessing a number to use for FetchSize, you can
specify the amount to fetch in terms of number of rows instead. This can be done using this rather
simple formula:

OracleDataReader.FetchSize = OracleCommand.RowSize * rowsNeeded;

In Listing 12-10, you can see performance gains when you attempt to retrieve 10,000 rows from the
Products table when you change your FetchSize to fetch for instance, all 10,000 rows in one round-trip.

Listing 12-10. Fetching 10,000 Rows from the Database with Different FetchSizes

private void btnFetchData_Click(object sender, EventArgs e)
{
 Stopwatch _stopwatch = new Stopwatch();
 String _Results;
 string _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {

341

CHAPTER 12 ODP.NET PERFORMANCE

 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();

 //Insert 10,000 dummy records into the Products table
 _cmdObj.CommandText = "DELETE FROM Products";
 _cmdObj.ExecuteNonQuery();
 for (int i = 1; i <= 10000; i++)
 {
 _cmdObj.CommandText = "INSERT INTO Products(ID, Name, Remarks)
 VALUES('E" + Convert.ToString(i) + "','TestData','')";
 _cmdObj.ExecuteNonQuery();
 }
 MessageBox.Show("10,000 products inserted");

 //Read all 10,000 products from the same table using the default FetchSize
 //of 64K
 _cmdObj.CommandText = "SELECT * FROM Products";
 _stopwatch.Start();
 OracleDataReader _rdrObj = _cmdObj.ExecuteReader();
 while (_rdrObj.Read()) { }
 _stopwatch.Stop();
 _Results = "Default Fetchsize (64Kb):\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";

 //Set the FetchSize to accommodate for 10,000 rows and execute the same
 //query again
 _stopwatch.Reset();
 _stopwatch.Start();
 _rdrObj = _cmdObj.ExecuteReader();
 long _newFetchSize = _rdrObj.RowSize * 10000;
 _rdrObj.FetchSize = _newFetchSize;
 while (_rdrObj.Read()) { }
 _stopwatch.Stop();
 _Results = _Results + "Fetchsize (" + Convert.ToString (_newFetchSize) +
 "):\t" + _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";

 MessageBox.Show(_Results);
 _connObj.Close();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

After you run this test, you will notice that performance gains become gradually higher as you
attempt to retrieve more rows, because the first portion of the test is limited by its default fetch size of
64KB. Just like the earlier examples, you will also notice higher performance gains if your test runs with
the database accessed across the network; this is due to the reduced numbered of round-trips to the
server.

342

 CHAPTER 12 ODP.NET PERFORMANCE

Rows to Default Fetchsize Setting Fetchsize to full Performance boost
retrieve (64K) size of recordset

100 0.0042696 0.0033354 x 1.28

500 0.0091752 0.0062257 x 1.47

1,000 0.0158941 0.0083665 x 1.90

5,000 0.0653888 0.0296861 x 2.20

10,000 0.1405070 0.0553485 x 2.54

Change the FetchSize property if you know in advance how many rows you need from the database.
For instance, if you know that you need the entire set of records from the Products table, and you know
that you have about 800 products, you can attempt to fetch 1,000 rows from this table by changing the
FetchSize property accordingly.

Using the Client Result Cache
Unlike the earlier forms of caching, a client result cache is performed at the client side to cache query
results, which means that data could be readily retrieved from the client cache instead of having to make
a round-trip to the server. The client result cache is also automatically invalidated and refreshed by the
server. Whenever data at the server changes, the client automatically receives a notification that updates
the client-side cache. This is all done under the hood without requiring a single line of change to your
code.

The client result cache is disabled by default and can only be enabled via the init.ora file. This file
is the initialization file for your Oracle instance and can either be edited manually or via SQL*Plus. In
both cases, a restart of your Oracle database instance is required. To enable the client result cache, you
need to specify a size for the cache. You can enable it by typing the following in SQL*Plus under the
SYSTEM account:

ALTER SYSTEM SET client_result_cache_size=64000 scope=spfile;

The scope=spfile keyword is mandatory; it tells SQL*Plus to make the changes directly to the SPFile
(init.ora). After doing this, restart your Oracle database instance under Administrative Tools Services.
When your database instance is back up, you can check to see if the client result cache size reflects the
new size by typing the following commands in SQL*Plus:

SHOW PARAMETER client_result_cache_size;
SHOW PARAMETER result_cache_mode;

You should see the screenshot shown in Figure 12-2.

343

CHAPTER 12 ODP.NET PERFORMANCE

Figure 12-2. Retrieving the result_cache_mode and client_result_cache_size parameters

The result cache mode specifies whether statements should use the client result cache always or
only when manually specified in the SQL statement itself. If this value is set to MANUAL, you can get an
SQL statement to use the client result cache by specifying the /*+ result_cache */ hint in the following
manner:

SELECT /*+ result_cache */ ID,Name FROM Products

Let’s measure the performance gains of using the client result cache. The code in Listing 12-11
measures the performance when 1,000 rows are retrieved from the Products table with the client result
cache first disabled and then enabled.

Listing 12-11. Fetching 1,000 Rows with Client Result Cache Disabled and Enabled

private void btnClientResultCache_Click(object sender, EventArgs e)
{
 Stopwatch _stopwatch = new Stopwatch();
 String _Results;
 String _connstring = "Data Source=localhost/NEWDB;User
 Id=EDZEHOO;Password=PASS123;";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = _connObj.CreateCommand();

 //Insert 1,000 dummy records into the Products table
 _cmdObj.CommandText = "DELETE FROM Products";
 _cmdObj.ExecuteNonQuery();
 for (int i = 1; i <= 1000; i++)

344

 CHAPTER 12 ODP.NET PERFORMANCE

 {
 _cmdObj.CommandText = "INSERT INTO Products(ID, Name, Remarks)
 VALUES('E" + Convert.ToString(i) + "','TestData','')";
 _cmdObj.ExecuteNonQuery();
 }
 MessageBox.Show("1,000 products inserted");

 //Retrieve 1,000 rows without using the client result cache
 _cmdObj.CommandText = "SELECT * FROM Products";
 _stopwatch.Start();
 for (int i = 1; i <=1000; i++)
 {
 OracleDataReader _rdrObj = _cmdObj.ExecuteReader();
 while (_rdrObj.Read()) { }
 _rdrObj.Close();
 }
 _stopwatch.Stop();
 _Results = "No client result cache:\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";

 //Retrieve 1,000 rows using the client result cache
 _cmdObj.CommandText = "SELECT /*+ result_cache */ * FROM Products";
 _stopwatch.Reset();
 _stopwatch.Start();
 for (int i = 1; i <= 1000; i++)
 {
 OracleDataReader _rdrObj = _cmdObj.ExecuteReader();
 while (_rdrObj.Read()) { }
 _rdrObj.Close();
 }
 _stopwatch.Stop();
 _Results = _Results + "With client result cache:\t" +
 _stopwatch.Elapsed.TotalSeconds.ToString() + " seconds\n";

 MessageBox.Show(_Results);
 _connObj.Close();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
}

The results show that a consistent performance gain when the client result cache is enabled:

Iterations Without client result With client result Performance boost
 caching caching

10 0.0364982 0.0166926 x 2.19

50 0.1925042 0.1326922 x 1.45

345

CHAPTER 12 ODP.NET PERFORMANCE

100 0.3760727 0.1593220 x 2.36

500 1.8196209 0.7860007 x 2.32

1000 3.7780752 2.2051182 x 1.71

Use the client result cache in the following situations:

• When you have queries that are repeatedly executed and that you know are

Imp t
ckly upload a large amount of data to the
uotes like “Mine did 50,000 rows in 2 seconds flat”
 administrators.

irectly

leBulkLoader class.

Ora

_bulkCopy.WriteToServer(SourceDataTable);

n the source DataTable and the target table, you can
Loader class to put the data in the right destination. The

code in Listing 12-12 measures the performance when 50,000 records are loaded into the Products table
first

private void btnOracleBulkCopy_Click(object sender, EventArgs e)

 Stopwatch _stopwatch = new Stopwatch();

 String _connstring = "Data Source=localhost/NEWDB;User

onnection(_connstring);
nObj.Open();

 OracleCommand _cmdObj = _connObj.CreateCommand();

s from the Products table

expected to produce the same results set

• When you are reading from tables containing mostly read-only data

or ing Data More Efficiently
The Oracle bulk loader was designed to let the user qui
database. It was responsible for many over-the-table q
during my casual lunch meetings with Oracle database

The Oracle bulk loader could load data so fast because it bypassed the entire SQL layer and d
wrote data into proprietary Oracle data blocks (via the Oracle Call Interface (OCI) layer). ODP.NET
fortunately provides us with this same power, exposed through the Orac

You can load data through this class from a variety of sources—from a DataReader or from a
DataTable, for instance. The following code snippet shows how this can be easily done:

cleBulkCopy _bulkCopy = new OracleBulkCopy(_connObj);
_bulkCopy.DestinationTableName = "Products";

Even if the column names don’t match betwee
specify column mappings using the OracleBulk

 via standard SQL and then OracleBulkLoader.

Listing 12-12. Inserting 50,000 Records into the Table via Standard SQL and OracleBulkLoader

{

 String _Results;

 Id=EDZEHOO;Password=PASS123;";
 try
 {

 OracleConnection _connObj = new OracleC
 _con

 //Clear all record
 _cmdObj.CommandText = "DELETE FROM Products";

346

 CHAPTER 12 ODP.NET PERFORMANCE

 _cmdObj.ExecuteNonQuery();

 using 50,000 individual SQL

 _cmdObj.CommandText = "INSERT INTO Products(ID, Name, Price) VALUES(:ID,

ram = new OracleParameter("ID", OracleDbType.Varchar2);

OracleParameter("Name",

e = "E" + Convert.ToString(i);
roduct" + Convert.ToString(i);

_priceParam.Value = 100;

sults = "Without Oracle Bulk Copy:\t" +
lapsed.TotalSeconds.ToString() + " seconds\n";

 _cmdObj.CommandText = "DELETE FROM Products";

nto the Products table using OracleBulkCopy
taTable to hold the source data

 DataTable _dataTbl = new DataTable("SourceTable");

));

;

 _dataTbl.NewRow();
ToString (i);

 _newrow["Name"] = "Test Product" + Convert.ToString(i);

 //Insert 50,000 records into the Products table
 //statements

 :Name, :Price)";
 OracleParameter _IDPa
 _cmdObj.Parameters.Add(_IDParam);
 OracleParameter _nameParam = new
 OracleDbType.Varchar2);
 _cmdObj.Parameters.Add(_nameParam);
 OracleParameter _priceParam = new OracleParameter("Price",
 OracleDbType.Decimal);
 _cmdObj.Parameters.Add(_priceParam);
 _stopwatch.Start();
 for (int i = 1; i <= 50000; i++)
 {
 _IDParam.Valu
 _nameParam.Value = "Test P

 _cmdObj.ExecuteNonQuery();
 }
 _stopwatch.Stop();
 _cmdObj.Dispose();
 _Re
 _stopwatch.E

 //Clear the Products table again
 _cmdObj = _connObj.CreateCommand();

 _cmdObj.ExecuteNonQuery();
 _cmdObj.Dispose();

 //Inserting 50,000 records i
 //First, create a Da

 _dataTbl.Columns.Add(new DataColumn("ID",
 System.Type.GetType("System.String")));
 _dataTbl.Columns.Add(new DataColumn("Name",
 System.Type.GetType("System.String")
 _dataTbl.Columns.Add(new DataColumn("Price",
 System.Type.GetType("System.String")))
 _stopwatch.Reset();
 _stopwatch.Start();
 for (int i = 1; i <= 50000; i++)
 {
 DataRow _newrow =
 _newrow["ID"] = "E" + Convert.

 _newrow["Price"] = 100;
 _dataTbl.Rows.Add(_newrow);
 }

347

CHAPTER 12 ODP.NET PERFORMANCE

_stopwatch.Stop();
acleBulkCopy(_connObj);

lkCopy.DestinationTableName = "Products";

cle Bulk Copy:\t" +
nds.ToString() + " seconds\n";

ts);

}

ssageBox.Show(ex.ToString());

rements show that, for large amounts of data, OracleBulkCopy is extremely
ctive, offering performance gains up to 30 times that of using individual SQL INSERT commands:

OracleBulkCopy _bulkCopy = new Or
_bu

 _stopwatch.Start();
 _bulkCopy.WriteToServer(_dataTbl);
 _stopwatch.Stop();

_Results += "With Ora
_stopwatch.Elapsed.TotalSeco

 _bulkCopy.Close();
 _bulkCopy.Dispose();
 _bulkCopy = null;

MessageBox.Show(_Resul
 _connObj.Close();

catch (Exception ex)
 {

Me
 }
}

The following measu
effe

Records to load Using individual Using OracleBulkCopy Performance
 statements boost

rma e
drain)

5,000 3.4043001 0.1925245 x 17.68

10,000 8.3390993 0.3059878 x 27.25

50,000 50.8451298 1.5958709 x 31.86

100 0.0917097 0.1652669 x 0.55 (perfo nc

1000 0.6572200 0.0689074 x 9.54

Use the Oracle bulk loader when you have a very large number of external records to insert into an
Oracle table. As you can see from the performance results, small numbers of records may even cause a
performance drain when using the bulk loader.

ractices
As I’ve hinted in the introduction to this chapter, performance optimization is a habit that begins with
the first line of code you write. There are a few best practices and mindsets that, if consistently adopted,

Applying Optimization Best P

348
www.wowebook.com

 CHAPTER 12 ODP.NET PERFORMANCE

could ensure optimal performance to your ODP.NET code. Some
the techniques outlined earlier in this chapter) are described in brief here.

 of these best practices (in addition to

 generally faster than
dynamic queries simply because they exist in precompiled form. This means that your data

ips the parsing work required for
d-trips required for a particular

task.
tional

g the Right Data Access Object
rm the DataAdapter object, because a

DataAdapter object needs to spend additional time creating the dataset object and populating it. This
nly access to data, such as

p-down list, you should always consider using
the OracleDataReader object over the OracleDataAdapter object.

In this chapter, you’ve taken a look at the various performance techniques and tips to adopt when
building your application. You’ve written code to see the performance gains that you can squeeze from

ith each of the following techniques:

Using connection pooling for more efficient database connections

arrays

 properties for efficient data retrieval

trieval

to the Oracle database

In ow the Gang of
Four (G) design patterns can be applied to your ODP.NET projects.

Using Stored Procedures Whenever Possible
Stored procedures (although not the ultimate solution for performance) are

manipulation commands are processed more efficiently since Oracle sk
dynamic queries. It also reduces network traffic and the number of roun

There are also many other nonperformance benefits to using stored procedures, such as addi
security and separation of database code from business logic.

Usin
For most databases, the DataReader object will always outperfo

holds true for the Oracle database as well. Whenever you need read-o
populating a display-only grid or reading data into a dro

Summary

your application w

•

• Using the BINARY_FLOAT and BINARY_DOUBLE floating point data types

• Batching SQL together for faster execution

• Using statement caching to cache frequently used SQL statements

• Passing data in bulk via bind arrays

• Passing data in bulk via PL/SQL associative

• Managing large objects

• Changing the FetchSize and RowSize

• Enabling the client result cache for efficient data re

• Importing data in bulk in

 the next chapter, we will move on to the topic of design patterns. We will learn h
oF

349

C H A P T E R 13

Design Patterns and
Considerations in Using ODP.NET

In October 1994, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides published a book they
wrote on the topic of software engineering, identifying common problems in software design and
classifying their solutions in groups of design patterns. After 500,000 copies sold in 13 different
languages around the world, the original authors would come to be famously known as the Gang of Four
(GoF), and their design patterns have since made it into countless articles, journals, books and software
development kits (SDKs).

The idea is that most complex software consists of small recurring pieces of code that have a similar
structure, or pattern. For example, the GoF noticed that a linked list, collection, and array would each
work very differently under the hood, and programmers would typically create separate
implementations of the same algorithm (for instance a search) for each type of data structure. The GoF
realized that rather than having to iterate through each data structure differently like this:

//Searching a linked list
MyLinkedList.MoveFirst();
while (MyLinkedList.EOF()==false)
{
 if (MyLinkedList.GetItemByIndex(i)=='x') return true;
 MyLinkedList.Next();
}
//Searching a collection
for (i=0;<MyCollection.Count;i++) {if (MyCollection.item(i)=='x') return true;}
//Searching an array
for (i=0; i<UBound(MyArray);i++) { if (MyArray[i]=='x') return true;}

these data structures could implement an Iterator, which could shield the underlying implementation
of the search for each data structure from the programmer. The previous could thus be rewritten like so:

public bool Search(Iterator objIterator)
{
 objIterator.First();
 for (Item item = objIterator.First(); objIterator.IsDone; item = objIterator.Next())

{if (item =='x') return true;}
}

Search(MyLinkedList.GetIterator());
Search(MyCollection.GetIterator());
Search(MyArray.GetIterator());

351

CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

This approach leads to improved clarity and flexibility of code. If you ever needed to search a new
type of data structure, you would never need to change your Search implementation. You need only
implement an Iterator for the new data structure.

The GoF identify 23 such design patterns in their book. In this chapter, you will only take a look at
the design patterns that specifically apply to the data layer and how you can make use of them in your
ODP.NET projects. Specifically, we will cover the following:

• Various design patterns and concepts relevant to the data tier

• Best practices to adopt to maintain clear separation of business logic from the
data tier

• Using the data access application block in the Microsoft Enterprise Library to
establish a robust data layer that you can readily use for your ODP.NET
applications

Programming to an Interface Instead of an Implementation
One of the main tenets of the GoF design principles is that two parts of an application never need to be
aware of each other’s underlying implementation. When these parts of the application need to
communicate with each other, it is done through an interface.

By decoupling an underlying implementation from the calling code, changes pertaining to the
underlying implementation can be localized to that layer alone. You wouldn’t need to change any part of
the calling code.

For instance, imagine that you’ve been using the ODP.NET classes (for example, OracleConnection,
OracleCommand, OracleDataAdapter, and OracleDataReader) directly in your application code. In fact, you
have been doing this since the early chapters of this book. Let’s assume that you’ve peppered these
classes throughout your entire application. Everything works fine, until your chief technical officer steps
in to tell you that you now need to have your application support an Oracle Open Database Connectivity
(ODBC) driver because the customer (for some reason) does not want the ODP.NET drivers installed.

Without an abstract interface definition for data access, you will find the task of changing from
ODP.NET to ODBC extremely time consuming. You would have to make changes everywhere in your
application code to manually change the ODP.NET references to ODBC ones. Let’s not forget the long
regression testing phase needed to make sure everything still works. For complex systems, the task may
even turn out to be technically and financially unfeasible.

If you had defined an interface between the application and the database, this task would have been
nothing more than just creating another implementation, as shown in Figure 13-1.

352

 CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

Figure 13-1. An example of how an interface can be used to segregate business logic from the data tier

Using the Data Access Object
The data access object (DAO) is a design concept that abstracts and encapsulates access to a data source.
The code that calls the DAO is hence shielded from the underlying implementation details of the data
source. This is usually achieved by defining an interface between the data and logic tiers.

The DAO also does the plumbing work required to communicate with the underlying data source it
represents. Figure 13-2 illustrates how the DAO typically fits into the design architecture of an
application.

353

CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

Figure 13-2. How DAOs are created by the Abstract Factory

The DAO makes use of two GoF patterns, the Factory Method and Abstract Factory patterns. The
Abstract Factory pattern encapsulates a group of similarly themed individual factories. It can be used by
calling code to create specific concrete objects. Since the calling code will always work with generic
objects, and not the specific objects themselves, it never needs to be aware of the details of their
implementation.

For example, an abstract factory might generate specific SQL Server or Oracle DAO objects (via the
appropriate factory methods) depending on certain arguments provided, but what is handed back to the
calling code is always a generic DAO object. This allows the calling code to access the underlying
database (without having to care which type of database it is) through a generic interface.

In the following few sections we take a look at Microsoft’s Enterprise library, which implements a
Microsoft SQL Server DAO and an Oracle DAO (based on Microsoft’s Oracle Provider).

Using Microsoft’s Enterprise Library
Microsoft’s huge research and development team comprises a division called the Patterns and Practices
group. They’ve released version 4.1 of the Microsoft Enterprise Library (dated October 2008), which is
basically a collection of reusable software components (termed application blocks) based on what they
believe to be best practices. These application blocks implement a mixture of GoF design patterns and
other design concepts. One of these application blocks is the data access application block (DAAB),
which we will look at shortly.

You can download (and install) the library from this location:
http://www.microsoft.com/downloads/details.aspx?FamilyId=1643758B-2986-47F7-B529-
3E41584B6CE5&displaylang=en.

354

http://www.microsoft.com/downloads/details.aspx?FamilyId=1643758B-2986-47F7-B529-3E41584B6CE5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=1643758B-2986-47F7-B529-3E41584B6CE5&displaylang=en

 CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

The DAAB is Microsoft’s implementation of the DAO design concept. The DAAB is useful for the
following reasons:

• It shields the underlying implementation of database-specific tasks from
application code. For instance, instead of calling the OracleAQQueue class directly
in your application code, you could place it in the DAAB and expose its
functionality through a more abstract interface. This way, if Oracle changes or
enhances the implementation of OracleAQQueue, you wouldn’t need to make
changes everywhere in your application code. The changes would only be
localized to the DAAB.

• It handles all the plumbing required for the configuration and encryption of
connection strings, provider types, and so on.

• It is highly reusable and extensible; for example, you can create extensions to the
DAAB to support other database types like MySQL or DB2.

• It already conforms to best practices, is well-tested code, and comes with full
source code available for you to tweak.

The DAAB comes with three DAOs by default: a SQL Server DAO, an Oracle DAO (based on
Microsoft’s Oracle Provider) and a generic database DAO. In the sections to follow, you will learn how to
extend the DAAB to include the ODP.NET DAO, which we will refer to as Oracle.NET throughout the rest
of this chapter.

Creating Oracle.NET
The Microsoft Enterprise Library fortunately comes with full source code. You can open the source code
for the DAAB in Visual Studio by opening the C# project file located in the following folder:

<Installation Drive>\EntLib41Src\Blocks\Data\Src\Data\

The SQL Server and Oracle DAO classes are located in the Sql and Oracle folders of the project
respectively. You can copy and paste the code from one of the existing DAOs to create your new
ODP.NET DAO. Besides these core classes, you will also need to modify some of the factory classes used
by the DAAB to generate DAOs. The full set of steps includes the following:

1. Create the ODP.NET DAO classes.

2. Modify the DBProviderMapping class to register the Oracle.DataAccess.Client
provider name.

3. Modify the DatabaseConfigurationView class to create a mapping between the
Oracle.DataAccess.Client provider name and the ODP.NET DAO object.

Creating the ODP.NET DAO Class
You first need to add a reference to the ODP.NET libraries in the DAAB project. After doing so, locate the
SqlDatabase.cs and SqlDatabaseAssembler.cs files. You will base your ODP.NET DAO on these SQL
Server DAOs. Make a copy of each of these files, and name them OracleNETDatabase.cs and

355

CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

OracleNETDatabaseAssembler.cs correspondingly. Open the OracleNETDatabase.cs file, and make the
changes highlighted in bold in Listing 13-1.

 Note You will notice that the default DAO classes provided by Microsoft come with a number of grayed-out
comments that look like XML tags. Those aren’t exactly comments; they’re directives used to generate
documentation. For ease of readability, these comments have been removed from the code shown in Listing 13-1,
but I recommend that you keep them in your code for documentation purposes.

Listing 13-1. Modifying the OracleNETDatabase.cs File

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;
using System.Security.Permissions;
using System.Transactions;
using System.Xml;
using Microsoft.Practices.EnterpriseLibrary.Common.Configuration.Unity;
using Microsoft.Practices.EnterpriseLibrary.Data.Configuration;
using Microsoft.Practices.EnterpriseLibrary.Data.Configuration.Unity;
using Microsoft.Practices.EnterpriseLibrary.Data.Properties;

namespace Microsoft.Practices.EnterpriseLibrary.Data.OracleNET
{

[OraclePermission(SecurityAction.Demand)]
[DatabaseAssembler(typeof(OracleNETDatabaseAssembler))]
[ContainerPolicyCreator(typeof(OracleNETDatabasePolicyCreator))]
public class OracleNETDatabase : Database
{
 public OracleNETDatabase(string connectionString)
 : base(connectionString, OracleClientFactory.Instance)
 {
 }

 protected char ParameterToken
 {
 get { return '@'; }
 }

 public XmlReader ExecuteXmlReader(OracleCommand command)
 {
 OracleCommand OracleCommand = CheckIfOracleCommand(command);
 ConnectionWrapper wrapper = GetOpenConnection(false);
 PrepareCommand(command, wrapper.Connection);

356

 CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

 return DoExecuteXmlReader(OracleCommand);
 }

 public XmlReader ExecuteXmlReader(OracleCommand command, OracleTransaction
 transaction)
 {
 OracleCommand OracleCommand = CheckIfOracleCommand(command);
 PrepareCommand(OracleCommand, transaction);
 return DoExecuteXmlReader(OracleCommand);
 }

 private XmlReader DoExecuteXmlReader(OracleCommand OracleCommand)
 {
 try
 {
 DateTime startTime = DateTime.Now;
 XmlReader reader = OracleCommand.ExecuteXmlReader();
 instrumentationProvider.FireCommandExecutedEvent(startTime);
 return reader;
 }
 catch (Exception e)
 {
 instrumentationProvider.FireCommandFailedEvent
 (OracleCommand.CommandText, ConnectionStringNoCredentials,
 e);
 throw;
 }
 }

 private static OracleCommand CheckIfOracleCommand(OracleCommand command)
 {
 OracleCommand OracleCommand = command as OracleCommand;
 if (OracleCommand == null) throw new
 ArgumentException(Resources.ExceptionCommandNotSqlCommand,
 "command");
 return OracleCommand;
 }

 private void OnSqlRowUpdated(object sender, OracleRowUpdatedEventArgs
 rowThatCouldNotBeWritten)
 {
 if (rowThatCouldNotBeWritten.RecordsAffected == 0)
 {
 if (rowThatCouldNotBeWritten.Errors != null)
 {
 rowThatCouldNotBeWritten.Row.RowError =
 Resources.ExceptionMessageUpdateDataSetRowFailure;
 rowThatCouldNotBeWritten.Status =
 UpdateStatus.SkipCurrentRow;
 }
 }

357

CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

 }

 protected override void DeriveParameters(DbCommand discoveryCommand)
 {
 OracleCommandBuilder.DeriveParameters((OracleCommand)discoveryCommand);
 }

 protected override int UserParametersStartIndex()
 {
 return 1;
 }

 public override string BuildParameterName(string name)
 {
 if (name[0] != this.ParameterToken)
 {
 return name.Insert(0, new string(this.ParameterToken, 1));
 }
 return name;
 }

 protected override void SetUpRowUpdatedEvent(DbDataAdapter adapter)
 {
 ((OracleDataAdapter)adapter).RowUpdated += OnSqlRowUpdated;
 }

 protected override bool SameNumberOfParametersAndValues(DbCommand command,
 object[] values)
 {
 int returnParameterCount = 1;
 int numberOfParametersToStoredProcedure = command.Parameters.Count –
 returnParameterCount;
 int numberOfValuesProvidedForStoredProcedure = values.Length;
 return numberOfParametersToStoredProcedure ==
 numberOfValuesProvidedForStoredProcedure;
 }

 public virtual void AddParameter(OracleCommand command, string name, OracleDbType
 dbType, int size, ParameterDirection direction, bool nullable, byte
 precision, byte scale, string sourceColumn, DataRowVersion sourceVersion,
 object value)
 {
 OracleParameter parameter = CreateParameter(name, dbType, size, direction,
 nullable, precision, scale, sourceColumn, sourceVersion, value);
 command.Parameters.Add(parameter);
 }

 public void AddParameter(OracleCommand command, string name, OracleDbType dbType,
 ParameterDirection direction, string sourceColumn, DataRowVersion
 sourceVersion, object value)
 {

358

 CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

 AddParameter(command, name, dbType, 0, direction, false, 0, 0, sourceColumn,
 sourceVersion, value);
 }

 public void AddOutParameter(OracleCommand command, string name, OracleDbType dbType,
 int size)
 {
 AddParameter(command, name, dbType, size, ParameterDirection.Output, true,
 0, 0, String.Empty, DataRowVersion.Default, DBNull.Value);
 }

 public void AddInParameter(OracleCommand command, string name, OracleDbType dbType)
 {
 AddParameter(command, name, dbType, ParameterDirection.Input, String.Empty,
 DataRowVersion.Default, null);
 }

 public void AddInParameter(OracleCommand command, string name, OracleDbType dbType,
 object value)
 {
 AddParameter(command, name, dbType, ParameterDirection.Input, String.Empty,
 DataRowVersion.Default, value);
 }

 public void AddInParameter(OracleCommand command, string name, OracleDbType dbType,
 string sourceColumn, DataRowVersion sourceVersion)
 {
 AddParameter(command, name, dbType, 0, ParameterDirection.Input, true, 0, 0,
 sourceColumn, sourceVersion, null);
 }

 protected OracleParameter CreateParameter(string name, OracleDbType dbType, int
 size, ParameterDirection direction, bool nullable, byte precision, byte
 scale, string sourceColumn, DataRowVersion sourceVersion, object value)
 {
 OracleParameter param = CreateParameter(name) as OracleParameter;
 ConfigureParameter(param, name, dbType, size, direction, nullable,
 precision, scale, sourceColumn, sourceVersion, value);
 return param;
 }

 protected virtual void ConfigureParameter(OracleParameter param, string name,
 OracleDbType dbType, int size, ParameterDirection direction, bool nullable,
 byte precision, byte scale, string sourceColumn, DataRowVersion
 sourceVersion, object value)
 {
 param.OracleDbType = dbType;
 param.Size = size;
 param.Value = (value == null) ? DBNull.Value : value;
 param.Direction = direction;
 param.IsNullable = nullable;

359

CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

 param.SourceColumn = sourceColumn;
 param.SourceVersion = sourceVersion;
 }
}
}

You will also need to have a factory to represent the building of an instance of an OracleNETDatabase
object. This is the OracleNETDatabaseAssembler class. Make the changes highlighted in bold to the
OracleNETDatabaseAssembler.cs file as shown in Listing 13-2.

Listing 13-2. Modifying the OracleNETDatabaseAssembler.cs File

using System;
using System.Configuration;
using Microsoft.Practices.EnterpriseLibrary.Common.Configuration;
using Microsoft.Practices.EnterpriseLibrary.Data.Configuration;

namespace Microsoft.Practices.EnterpriseLibrary.Data.OracleNET
{
public class OracleNETDatabaseAssembler : IDatabaseAssembler
{
 public Database Assemble(string name, ConnectionStringSettings
 connectionStringSettings, IConfigurationSource configurationSource)
 {
 return new OracleNETDatabase(connectionStringSettings.ConnectionString);
 }
}
}

You will need to create one more file—the OracleNETDatabasePolicyCreator class. Add a new class
to your project, and name the file OracleNETDatabasePolicyCreator.cs. Write the code shown in Listing
13-3 in this file.

Listing 13-3. The OracleNETDatabasePolicyCreator.cs File

using System.Configuration;
using Microsoft.Practices.EnterpriseLibrary.Common.Configuration;
using Microsoft.Practices.EnterpriseLibrary.Common.Configuration.Unity;
using Microsoft.Practices.EnterpriseLibrary.Data.Sql;
using Microsoft.Practices.ObjectBuilder2;

namespace Microsoft.Practices.EnterpriseLibrary.Data.Configuration.Unity
{
 public class OracleNETDatabasePolicyCreator : IContainerPolicyCreator
 {
 void IContainerPolicyCreator.CreatePolicies(
 IPolicyList policyList,
 string instanceName,
 ConfigurationElement configurationObject,
 IConfigurationSource configurationSource)

360

 CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

 {
 ConnectionStringSettings castConfigurationObject =
 (ConnectionStringSettings)configurationObject;

 new PolicyBuilder<SqlDatabase, ConnectionStringSettings>
 (instanceName, castConfigurationObject, c => new
 SqlDatabase(c.ConnectionString))

 .AddPoliciesToPolicyList(policyList);
 }
 }
}

Modifying the DBProviderMapping Class
The DBProviderMapping class in the DAAB holds the full name constants of the ADO.NET providers used
in the Microsoft Enterprise Library. You will now need to add a constant for the ODP.NET provider to
this class. Locate and open the DBProviderMapping.cs file in the DAAB project, and make the changes
highlighted in bold in Listing 13-4.

Listing 13-4. Modifying the DBProviderMapping.cs File

using System;
using System.Collections.Generic;
using System.Text;
using System.Configuration;
using System.ComponentModel;
using Oracle.DataAccess.Client;
using Microsoft.Practices.EnterpriseLibrary.Common.Configuration;

namespace Microsoft.Practices.EnterpriseLibrary.Data.Configuration
{
/// <summary>
/// Represents the mapping from an ADO.NET provider to an Enterprise Library <see
/// cref="Database"/>.
/// </summary>
/// <remarks>
/// <para>
/// The Enterprise Library data access application block leverages the ADO.NET 2.0 provider
/// factories. To determine what type of <see cref="Database"/> matches a given provider
/// factory type, the optional <see cref="DbProviderMapping"/> configuration objects can be
/// defined in the block's configuration section.
/// </para>
/// <para>
/// If a mapping is not present for a given provider type, sensible defaults will be used:
/// <list type="bullet">
/// <item>For provider name "System.Data.SqlClient", or for a provider of type <see
/// cref="System.Data.SqlClient.SqlClientFactory"/>, the
/// <see cref="Microsoft.Practices.EnterpriseLibrary.Data.Sql.SqlDatabase"/> will be

361

CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

/// used.</item>
/// <item>For provider name "System.Data.OracleClient", or for a provider of type <see
/// cref="System.Data.OracleClient.OracleClientFactory"/>, the
/// <see cref="Microsoft.Practices.EnterpriseLibrary.Data.Oracle.OracleDatabase"/> will be
/// used.</item>
/// <item>For provider name "Oracle.DataAccess.Client", or for a provider of type <see
/// cref="OracleClientFactory"/>, the <see
/// cref="Microsoft.Practices.EnterpriseLibrary.Data.OracleNET.OracleNETDatabase"/> will be
/// used.</item>
/// <item>In any other case, the <see cref="GenericDatabase"/> will be used.</item>
/// </list>
/// </para>
/// </remarks>
/// <seealso cref="DatabaseConfigurationView.GetProviderMapping(string, string)"/>
/// <seealso cref="System.Data.Common.DbProviderFactory"/>
. . .

In the same class, search for the section shown in Listing 13-5. Add a new constant for the ODP.NET
assembly name, which is shown in bold here.

Listing 13-5. Adding a New Constant in the DBProviderMapping.cs File

public class DbProviderMapping : NamedConfigurationElement
{
 private static AssemblyQualifiedTypeNameConverter typeConverter = new
 AssemblyQualifiedTypeNameConverter();

 /// <summary>
 /// Default name for the Sql managed provider.
 /// </summary>
 public const string DefaultSqlProviderName = "System.Data.SqlClient";

 /// <summary>
 /// Default name for the Oracle managed provider.
 /// </summary>
 public const string DefaultOracleProviderName = "System.Data.OracleClient";

 /// <summary>
 /// Default name for the ODP.NET managed provider.
 /// </summary>
 public const string DefaultOracleNETProviderName = "Oracle.DataAccess.Client";
. . .
}

Modifying the DatabaseConfigurationView Class
In the DatabaseConfigurationView.cs file, you will need to map the Oracle.DataAccess.Client provider
name to the Oracle.NET DAO you’ve created earlier. Make the changes (highlighted in bold) to the file as

362

 CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

shown in Listing 13-6. In the same file, add the additional entry highlighted in bold, as shown in Listing
13-7.

Listing 13-6. Modifying the DatabaseConfigurationView.cs File

using System;
using System.Collections.Generic;
using System.Configuration;
using System.Data.Common;
using System.Data.SqlClient;
using Oracle.DataAccess.Client;
using Microsoft.Practices.EnterpriseLibrary.Common.Configuration;
using Microsoft.Practices.EnterpriseLibrary.Data.Configuration;

//Comment out Microsoft.Practices.EnterpriseLibrary.Data.Oracle since the Oracle
//classes might conflict with the ones in Oracle.DataAccess.Client due to similar
//naming

//COMMENTED OUT : using Microsoft.Practices.EnterpriseLibrary.Data.Oracle;
using Microsoft.Practices.EnterpriseLibrary.Data.Properties;
using Microsoft.Practices.EnterpriseLibrary.Data.Sql;

namespace Microsoft.Practices.EnterpriseLibrary.Data
{
 /// <summary>
 /// <para>Represents a view for navigating the <see cref="DatabaseSettings"/>
 /// configuration data.</para>
 /// </summary>
 public class DatabaseConfigurationView
 {
 private static readonly DbProviderMapping defaultSqlMapping = new
 DbProviderMapping(DbProviderMapping.DefaultSqlProviderName,
 typeof(SqlDatabase));
 private static readonly DbProviderMapping defaultOracleMapping = new
 DbProviderMapping(DbProviderMapping.DefaultOracleProviderName,
 typeof(Microsoft.Practices.EnterpriseLibrary
 .Data.Oracle.OracleDatabase));
 private static readonly DbProviderMapping defaultOracleNETMapping = new
 DbProviderMapping(DbProviderMapping.DefaultOracleNETProviderName,
 typeof(Microsoft.Practices.EnterpriseLibrary.Data.
 OracleNET.OracleNETDatabase));
 private static readonly DbProviderMapping defaultGenericMapping = new
 DbProviderMapping(DbProviderMapping.DefaultGenericProviderName,
 typeof(GenericDatabase));
 private readonly IConfigurationSource configurationSource;

Listing 13-7. Adding the Entry for the ODP.NET DAO in the DatabaseConfigurationView.cs File

private DbProviderMapping GetDefaultMapping(string name, string dbProviderName)
{

363

CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

 // try to short circuit by default name
 if (DbProviderMapping.DefaultSqlProviderName.Equals(dbProviderName))
 return defaultSqlMapping;
 if (DbProviderMapping.DefaultOracleProviderName.Equals(dbProviderName))
 return defaultOracleMapping;
 if (DbProviderMapping.DefaultOracleNETProviderName.Equals(dbProviderName))
 return defaultOracleNETMapping;

 // get the default based on type
 DbProviderFactory providerFactory = DbProviderFactories.GetFactory(dbProviderName);
 ValidateDbProviderFactory(name, providerFactory);

 if (SqlClientFactory.Instance == providerFactory) return defaultSqlMapping;
 if (System.Data.OracleClient.OracleClientFactory.Instance == providerFactory)
 return defaultOracleMapping;

 if (OracleClientFactory.Instance == providerFactory) return defaultOracleMapping;
 return null;
}

Compiling the New DAAB
Now that you’re done, compile the new DAAB. Assuming you’ve put in the appropriate documentation-
generating XML tags, you should be able successfully build the library. This will output the new DAAB
library at this location:

<Installation Drive>
\EntLib41Src\Blocks\Data\Src\Data\bin\Release\Microsoft.Practices.EnterpriseLibrary.Data.dll

Using the ODP.NET DAO
You’re now ready to use the ODP.NET DAO in your projects. The first thing you need to do is to create a
new Windows Forms Application project. After that, add two references to the project:

• Microsoft.Practices.EnterpriseLibrary.Common

• Microsoft.Practices.EnterpriseLibrary.Data (or browse for the new assembly you’ve just

created)

These references contain the changes you’ve made earlier. The Microsoft Enterprise Library also
uses an application configuration file (app.config) to store the database connection details such as the
connection string and provider name. You don’t actually have to edit this file by hand; the Microsoft
Enterprise Library comes with an Enterprise Library Configuration tool that allows you to generate the
entries needed for the DAAB to work.

364

 CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

Editing the Application Configuration File
First, add an Application Configuration File to the project. Right-click the app.config file in Visual
Studio, and choose the Edit Enterprise Library Configuration menu item. This will pop open a new frame
in the right pane.

 Note You can also edit the app.config file using the Enterprise Library Configuration tool at Start All
Programs Microsoft patterns & practices Enterprise Library 4.1 – October 2008 Enterprise Library
Configuration.

You will see your application as a node in the right pane with the Data Access Application Block
node directly under it. You need to create a connection string entry so that you can connect to Oracle.
Expand your Data Access Application Block node, and right-click the Connection Strings node. Choose
the New Connection String menu item in the ensuing pop-up menu to generate a new connection
string entry. In the properties window shown in Figure 13-3, change the Name field to
ProductsDatabase, choose Oracle.DataAccess.Client as the ProviderName, and specify your full
ODP.NET connection string. You can use the same connection string you’ve been using for the earlier
chapters of this book.

 Note You can also create multiple connection string entries. You will be able to choose which connection you
wish to use later on in code. You can also specify the default database in the right pane of the tool window when
you highlight the Data Access Application Block node.

365

CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

Figure 13-3. Editing the app.config file using the Enterprise Library Configuration tool

You can also specify to encrypt the app.config file, if you wish, by highlighting the Data Access
Application Block node and choosing an encryption provider from the right pane under the
ProtectionProvider field. When you’ve completed all your changes, remember to save them using the
File Save Application menu item. You can open your app.config in text mode using Visual Studio to
view the changes that have been made to the file. You will notice that your connection strings have been
encrypted in this file.

 Note Visual Studio might automatically put in Version and PublicKeyToken entries for
Microsoft.Practices.EnterpriseLibrary.Data in the app.config file every time you make changes via the
Edit Enterprise Library Configuration menu. This may raise exceptions in your code later on. It is a good idea to
manually remove this information from the app.config file by hand.

Accessing Data via the DAAB
When you use the DAAB, you access the database a bit differently than you would under ODP.NET. For
instance, you have to use a factory class to hand yourself a connection object instead of instantiating one

366

 CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

using the OracleConnection object directly. Let’s now look at how you can perform common ODP.NET
tasks via the DAAB.

First, add a new form to your project. Design the form to look roughly similar to the screenshot in
Figure 13-4. Place a DataGridView control in the middle of the form and three buttons on the left side.

Figure 13-4. The interface for the data access application block samples

Reading Multiple Rows into a Dataset
The first button in this form will use the ODP.NET DAO to read some data from the Oracle database into
a dataset and then display it in the grid on the right. When you use the DAAB, you do not need to
manually create and open a connection yourself. You simply ask the DatabaseFactory class to hand you
one. This can be done using the DatabaseFactory.CreateDatabase method call. The argument passed in
to this method is the name of the connection string entry you’ve created earlier in the app.config file. If
you do not pass in any arguments, the default connection string will be used.

To run a query that returns a DataSet object, you no longer need to build the DataAdapter object
manually. The DAAB abstracts these steps by representing them with a single function call,
ExecuteDataSet. This method takes in a command object and returns a DataSet filled with the execution
results. The full code to do this is shown in Listing 13-8.

Listing 13-8. Reading Multiple Rows into a Dataset

private void btnReadDataset_Click(object sender, EventArgs e)
{
 Database _db = DatabaseFactory.CreateDatabase("ProductsDatabase");
 if (_db == null)
 {
 MessageBox.Show("Failed to create the database");
 }
 DbCommand _cmdObj = _db.GetSqlStringCommand("SELECT * FROM Products");
 DataSet _datasetObj = _db.ExecuteDataSet(_cmdObj);
 _datasetObj.Tables[0].TableName = "Products";
 dgProducts.DataSource = _datasetObj.Tables[0];
}

367

CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

 Note You will notice in the code snippet in Listing 13-8 that you are using generic objects such as Database
and DbCommand instead of the OracleNETDatabase or OracleCommand classes in your code. As you learned earlier,
an Abstract Factory patterned class creates the specific (concrete) DAOs internally but hands you a generic DAO.
By using the generic DAO in your code, you keep the details of the underlying data source separate from your
code. You could now technically go to the app.config file and change your connection string and provider type to
point to a Microsoft SQL Server database, and assuming the Products table is there, your code would still work
without requiring any modification.

Updating Multiple Rows from a Dataset
To commit changes in a dataset back to the database, you have to first create the relevant UPDATE, INSERT,
and DELETE command objects. You can create a Command object that calls a stored procedure using the
Database.GetStoredProcCommand method. You will need to pass the name of the stored procedure to this
method. After defining the relevant Command objects, you will need to call the Database.UpdateDataset
method, passing in the DataSet object, Command objects and the name of the table to update. The full code
to do all this is shown in Listing 13-9.

Listing 13-9. Updating Multiple Rows from a Dataset

private void btnUpdateFromDataset_Click(object sender, EventArgs e)
{
 Database _db = DatabaseFactory.CreateDatabase("ProductsDatabase");
 if (_db == null)
 {
 MessageBox.Show("Failed to create the database");
 }
 DataTable _dataTableObj = (DataTable)dgProducts.DataSource;
 DataSet _datasetObj = _dataTableObj.DataSet;

 //Create the INSERT command
 DbCommand _insertCommand = _db.GetStoredProcCommand("proc_InsertProduct_DAB");
 _db.AddInParameter(_insertCommand, "Price", DbType.Decimal, "Price",
 DataRowVersion.Current);
 _db.AddInParameter(_insertCommand, "Name", DbType.String, "Name",
 DataRowVersion.Current);
 _db.AddInParameter(_insertCommand, "ID", DbType.String , "ID",
 DataRowVersion.Current);

 //Create the DELETE command
 DbCommand _deleteCommand =
 (DbCommand)_db.GetStoredProcCommand("proc_DeleteProduct_DAB");
 db.AddInParameter(_deleteCommand, "ID", DbType.String, "ID",
 DataRowVersion.Current);

 //Create the UPDATE command

368

 CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

 DbCommand _updateCommand =
 (DbCommand)_db.GetStoredProcCommand("proc_UpdateProduct_DAB");
 _db.AddInParameter(_updateCommand, "Price", DbType.Decimal, "Price",
 DataRowVersion.Current);
 _db.AddInParameter(_updateCommand, "Name", DbType.String, "Name",
 DataRowVersion.Current);
 _db.AddInParameter(_updateCommand, "ID", DbType.String, "ID",
 DataRowVersion.Current);

 int _rowsUpdated = _db.UpdateDataSet (_datasetObj,"Products",_insertCommand,
 _updateCommand ,_deleteCommand, UpdateBehavior.Standard);
 MessageBox.Show(_rowsUpdated.ToString() + " row(s) updated");
}

Reading Data Using a DataReader
You can also retrieve data using a DataReader object with the DAAB. Simply call the
Database.ExecuteReader method to return a DataReader object. You can use the IDataReader interface to
access the DataReader functionality. The full code to do this is shown in Listing 13-10.

Listing 13-10. Reading Data Using a DataReader

private void btnReadViaDataReader_Click(object sender, EventArgs e)
{
 Database _db = DatabaseFactory.CreateDatabase("ProductsDatabase");
 if (_db == null)
 {
 MessageBox.Show("Failed to create the database");
 }
 DbCommand _cmdObj = _db.GetSqlStringCommand("SELECT * FROM Products");
 IDataReader _rdrObj = _db.ExecuteReader (_cmdObj);
 String _productNames;
 _productNames = "";
 while (_rdrObj.Read())
 {
 _productNames += _rdrObj.GetString(_rdrObj.GetOrdinal("Name"));
 }
 MessageBox.Show(_productNames);
}

 Note There is, of course, much more that you can do with the DAAB. This section serves merely as a starter to
get you up and running with the basics. You can also extend the ODP.NET DAO to include more ODP.NET-specific
functionality such as advanced queuing and database notifications.

369

CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

Considering Best Practices
As I mentioned in Chapter 4, the data layer is one of the most fundamental parts of any application,
since it drives all data access between your application and the data source. For example, a data tier that
is too rigid would make the introduction of changes difficult. On the other hand, one that implements
too many abstraction layers would make the code unreadable and unnecessarily complex. The following
sections describe some considerations to keep in mind when designing your data tier.

Planning for Multiple Data Sources
Your data source may be based on an Oracle database today, but that might change to become a DB2 or
MySQL database tomorrow. The nature of business requirements today more often than not requires
integration with a multitude of data sources, some of which you cannot foresee during development. By
implementing an additional layer of abstraction (via interfaces) between your data layer and the data
source, you can make your data layer extensible and allow new data sources to be easily snapped in to
your framework.

Keeping Provider-Specific Code Within the Data Tier
Passing provider-specific classes around in the application tier can be tempting sometimes. For
example, you might decide to wrap a live OracleDataReader object in a business object and pass that
business object around to other functions. This practice is, of course, a bad idea. It makes the life of the
object harder to trace. Also, if you had to change the provider to a different one, like ODBC.NET, you
would have to go through the entire application looking for these objects.

Outputting Business Objects, Not Datasets
Many developers are fond of simply getting the data layer to pass back raw datasets into the logic tier.
After all, DataSets are pretty versatile objects and can be easily passed around. From a software design
perspective, however, this practice is not desirable, since datasets (sometimes) contain raw data that has
not been converted into the right types. Take the System.Guid .NET data type for example. A developer
may decide to store a globally unique identifier (GUID) value in the Oracle database as a RAW(16) data
type. When this data is retrieved into a dataset, it exists as a byte array, not a readily usable System.Guid
object.

A better alternative would be to encapsulate each retrieved DataSet within a business object and to
pass the business object to the logic tier. The business object would handle the mapping of the raw data
structures to application-level entities. This way, the logic tier would never need to bother itself with the
underlying conversions and formatting necessary before consuming the data.

Deciding How to Map Data Source Structures to Business Objects
As mentioned in the previous section, raw data structures retrieved from a data source should be
mapped to an application entity such as a business object. You should formulate a strategy for each
mapping since it may not always be a 1:1 correlation. Tables with master-detail relationships in the
database, for instance, must be mapped to the corresponding business objects with this relationship
intact.

370

 CHAPTER 13 DESIGN PATTERNS AND CONSIDERATIONS IN USING ODP.NET

371

This mapping must also account for any formatting and type conversions necessary in both
directions, when taking in and returning data.

Deciding How to Manage Data Source Settings
Since the data layer effectively manages all underlying data sources, it must be able to manage data
source settings, such as connection strings and provider types. As connection settings are typically
stored outside the data layer (for example, in the registry or an external file such as app.config), you
should also think of a good security model to use to protect this information.

Summary
In this chapter, you’ve taken a look at some of the design concepts and patterns you can adopt to write
data layers that adapt better to changing business requirements:

• The data access object (DAO) design concept and how it applies to the data layer

• Extending the data access application block in the Microsoft Enterprise Library

• Creating and using an ODP.NET DAO

In the next chapter, you will explore how to use the tools in the Oracle Developer Tools.NET
package to improve your productivity.

C H A P T E R 14

ODT.NET Tool Basics

With every major release of the Visual Studio tool, Oracle released a free set of tools, called Oracle
Developer Tools.NET (ODT.NET), which integrated tightly with the Visual Studio IDE. These tools
greatly enhanced the productivity of .NET developers working on the Oracle database. With ODT.NET,
you could, for instance, visually manage your Oracle tables right within the Visual Studio IDE! Or
seamlessly jump in and out of PL/SQL stored procedures from your .NET code during debugging. Or
even automatically generate entire blocks of code and classes out of an Oracle data source.

ODT.NET is supported on Visual Studio .NET 2003, 2005, and 2008 and will most likely see a new
version released for Visual Studio 2010 as well. At the time of this writing, the latest version of ODT.NET
is the recently released version 11.1.0.7.20. The last two chapters of this book will aim to cover both the
basic and advanced features of ODT.NET, with this chapter focusing on the various tasks that you can
perform using ODT.NET and the last chapter focusing on building applications quickly using the code-
generation features of ODT.NET.

In this chapter, you will learn how to perform the following tasks within the Visual Studio IDE:

• Browse and manage the Oracle database schema.

• Manage database users, roles, and privileges.

• Edit and debug PL/SQL code.

• Manage Oracle SQL scripts.

• Create and manage AQ queues and queue tables.

• Import tables and data from external data sources into Oracle.

First, let’s look at how to install ODT.NET. Then, we’ll look at performing the various tasks.

Installing ODT.NET
You have already installed ODT.NET earlier in Chapter 2. If, for some reason, you did not install
ODT.NET earlier, you can still do it later via the Oracle Universal Installer. You can launch the Oracle
Universal Installer from the Windows Start menu by selecting Start All Programs ORACLE_HOME
Oracle Installation Products Universal Installer.

When the Oracle Universal Installer launches, click the Next button to follow through the various
installation screens in the wizard (as you’ve done in Chapter 2). The default installation of ODP.NET will
automatically install the ODT.NET package.

373

CHAPTER 14 ODT.NET TOOL BASICS

Managing the Database Schema
With ODT.NET, you can browse and manage your Oracle database schemas from within the Visual
Studio IDE. This ability can increase your productivity since you can create, edit, and delete tables or
columns without leaving the Visual Studio IDE.

An Oracle schema can be managed within the Server Explorer window of the Visual Studio IDE. The
first thing you need to do is add a new connection to the Oracle database. Open the Server Explorer
window by clicking the View Server Explorer menu item. Right-click the Data Connections node, and
choose the Add Connection menu item shown in Figure 14-1.

Figure 14-1. Adding a connection to the server explorer

The window shown in Figure 14-2 will appear. Select the “Oracle Database (Oracle ODP.NET)” data
source, and specify the connection details to your database. You can try logging in using your username
and password (in line with the examples in this book, that would be the EDZEHOO account). You can also
use the Test Connection button to check if you can successfully connect to the database with the
specified settings.

374

 CHAPTER 14 ODT.NET TOOL BASICS

Figure 14-2. Connecting to the Oracle database

After you click OK, you will be able to see the full list of tables show under the Tables node. You
should also be able to see the Products table, which you’ve been using throughout the earlier chapters of
the book. If you right-click this table and select the Design menu item, you should be able to view and
edit the schema of this table. This step is shown in Figure 14-3.

375

CHAPTER 14 ODT.NET TOOL BASICS

Figure 14-3.Viewing and editing the schema for the Products table

You can also run an SQL query against the database within the Visual Studio IDE. Right-click the
database node, and choose the Query Window menu item. You can type your SQL in the top-right pane.
Click the first icon in the toolbar (the green play button) to run the query. You should be able to see the
results show in the bottom pane, as shown in Figure 14-4.

Figure 14-4. Executing the SQL Query in the Query Window tool

376

 CHAPTER 14 ODT.NET TOOL BASICS

 Tip The number of records retrieved in the query window is limited to a default maximum of 100. You can
increase or remove this limit by navigating to Tools Options in the Visual Studio IDE, clicking the Show All
Settings check box, and changing the settings at the Oracle Developer Tools General page.

The following list contains some of the main reasons why you might want to use the ODT.NET
database schema feature in your project.

• You can manage your database and run SQL queries without having to leave the
Visual Studio IDE.

• You can manage and reuse connection settings across multiple projects in the
Server Explorer.

• You can manipulate your database objects without having to type longwinded
DDL statements.

Managing Users, Roles, and Object Privileges
You can also manage your database users, roles, and permissions within the same Server Explorer
window. You might first need to grant your user account the ability to create and manage other users.
You can do so by logging in as the SYSTEM account and executing the following commands in SQL*Plus:

GRANT CREATE USER, ALTER USER, DROP USER TO EDZEHOO;
GRANT CREATE ROLE, ALTER ANY ROLE, DROP ANY ROLE TO EDZEHOO;

In the Server Explorer, expand the Users node. You should be able to see the list of database users
show under this node. Let’s try creating a new database user. Right-click the Users node, and choose the
New User menu item, shown in Figure 14-5.

Figure 14-5. Creating a new user

A new window will pop up in the main frame of your Visual Studio IDE (see Figure 14-6). In this
window, you can specify the details of the user account you wish to create. When you are done, click the
Save button to create the user.

377

CHAPTER 14 ODT.NET TOOL BASICS

Figure 14-6. Specifying the details of the new user account

You can similarly manage and create new roles via the Roles node in the server explorer. Next, we
will take a look at how you can set the privileges for a specific table. Right-click the Products table, and
choose the Privileges menu item (shown in Figure 14-7).

Figure 14-7. Specifying the details of the account

378

 CHAPTER 14 ODT.NET TOOL BASICS

Doing so will launch the Grant/Revoke Privileges window shown in Figure 14-8. You can set the
privileges for each user shown in the User drop-down list. You can also preview the DDL statements
generated from your settings by clicking the Preview SQL button. When you are finished with your
changes, click the Apply or OK button. The privileges you’ve configured will automatically be applied on
the selected object.

Figure 14-8. Setting privileges for the Products table

The following list contains some of the main reasons why you might want to use the ODT.NET roles
and privileges feature in your project:

379

CHAPTER 14 ODT.NET TOOL BASICS

• You can easily create test user accounts easily for sandbox testing and delete them
afterward. Being able to see the full list of user accounts visually also allows for
better management of your users and roles.

• In SQL*Plus, you had to remember the name of each privilege when attempting to
write the DDL to grant or revoke a certain privilege. Having a visual checklist
makes this task so much easier.

Editing and Debugging PL/SQL Code
Over the course of your ODP.NET development, you will definitely find yourself writing PL/SQL code.
You can use the SQL*Plus tool, as you’ve done in the earlier chapters, to create PL/SQL stored
procedures and functions, but if you’re like me, you probably found it difficult to write a large PL/SQL
stored procedure inside a command line window. Without color-coding to distinguish keywords from
object names and without proper line formatting, the reduced readability of code can quickly dampen
your productivity.

Fortunately, ODT.NET provides a GUI that lets you easily generate skeleton code for a stored
procedure and provide a PL/SQL editor built into the Visual Studio IDE to let you further edit the stored
procedure. It even provides you the tools to debug your PL/SQL code just as you would your .NET code,
allowing the debugger to seamlessly jump from .NET code into a PL/SQL block and back!

Creating a PL/SQL Procedure
To create a PL/SQL procedure, scroll down the list of objects in your Oracle connection in the server
explorer. You will find a node named Procedures. You can create a new PL/SQL procedure by right
clicking this node and selecting the New PL/SQL Procedure menu item (as shown in Figure14-9).

Figure 14-9. Creating a new PL/SQL Procedure

When you have done this, you should instantly see the window shown in Figure 14-10. This window
allows you to generate the skeleton code for a stored procedure. This skeleton code includes the
procedure declaration sections and the procedure arguments. You can also preview the SQL code for
this task by clicking the Preview SQL button.

380

CHAPTER 14 ODT.NET TOOL BASICS

Figure 14-10. Specifying the details of the new PL/SQL procedure

When you are finished, click the OK button. This will create an empty stored procedure with the
details you’ve specified and show the skeleton code in the main window pane of the IDE (as shown in
Figure 14-11). You can see your stored procedure in the list of stored procedures (in the Server Explorer
window).

Figure 14-11. The generated PL/SQL stored procedure

381
www.wowebook.com

CHAPTER 14 ODT.NET TOOL BASICS

After you’ve filled in the body of the PL/SQL stored procedure, you probably need to know if there is
anything wrong with the syntax of the procedure. You can compile your stored procedure by right-
clicking the desired stored procedure in the Server Explorer and choosing the Compile menu option (as
shown in Figure 14-12).

Figure 14-12. Compiling a PL/SQL stored procedure

You might want to intentionally write an incorrect SQL statement so that you know the compile
feature is doing its job. When you compile the incorrect stored procedure, you should see errors being
thrown in the Visual Studio IDE. These errors provide precise detail down to the exact line number
where the error occurred. You can see this in Figure 14-13.

Figure 14-13. Errors in the PL/SQL stored procedure syntax

382

 CHAPTER 14 ODT.NET TOOL BASICS

The ODT.NET tool set makes it easier than ever to create PL/SQL stored procedures and functions
the same way. In the next section, we will take a look at creating a PL/SQL package.

Creating a PL/SQL Package
To create a PL/SQL package, look for the Packages node in the Server Explorer, right-click it and choose
the New Package menu item (as shown in Figure 14-14).

Figure 14-14. Creating a new package

You will now see the window shown in Figure 14-15 that lets you specify the details of the package.
The concept behind these GUI windows are the same; they are meant to make it as convenient as
possible for you to generate the stubs and skeleton code necessary to get going.

Figure 14-15. Specifying the details of the PL/SQL package.

383

CHAPTER 14 ODT.NET TOOL BASICS

You will notice from this window that there is a table that allows you to define the PL/SQL methods
in this package. You can click the Add button to add a new method to the package. When you have done
that, the window shown in Figure 14-16 will be displayed. You will be able to specify the list of
arguments for the stored procedure or function.

Figure 14-16. Specifying the details of a PL/SQL package method.

When this is done, click the OK buttons in both windows. ODT.NET will then create the PL/SQL
package according to your specified settings, as shown in Figure 14-17. It will then be up to you to fill in
the meat for these stored procedures.

Figure 14-17. The generated PL/SQL package skeleton code

384

 CHAPTER 14 ODT.NET TOOL BASICS

In the following section, we will take a look at how you can debug PL/SQL code within the Visual
Studio IDE.

Debugging PL/SQL stored procedures
Before you can debug PL/SQL code within the Visual Studio IDE, you need to do some setup. The first
thing you need to do is to prevent the Visual Studio hosting process from getting in the way. You can
disable it by navigating to the Project Project Properties menu item in Visual Studio, clicking the
Debug tab, and unselecting the Enable Visual Studio hosting process check box (as shown in Figure 14-
18).

Figure 14-18. Disabling the Visual Studio hosting process

After that, you should also grant your user account rights to debug a stored procedure. Log in using
the SYSTEM account, and run the following statements in SQL*Plus:

GRANT DEBUG ANY PROCEDURE TO EDZEHOO;
GRANT DEBUG CONNECT SESSION TO EDZEHOO;

Next, you will need to specify an Oracle database connection for the PL/SQL debugger. Navigate to
the Tools Options menu item in Visual Studio. A window similar to the one shown in Figure 14-19
below will be displayed. Select the Oracle Developer Tools PL/SQL Debugging menu option, and
select the Oracle connection you wish to use for the PL/SQL debugger.

 Tip If you don’t see the Oracle Developer Tools menu item at first, select the “Show all settings” check box at
the bottom of the window.

385

CHAPTER 14 ODT.NET TOOL BASICS

Figure 14-19. Specifying a database connection for the PL/SQL debugger

The next step is to enable Oracle Application Debugging itself. You can do this by placing a tick next
to the Tools Oracle Application Debugging menu item. Look closely at Figure 14-20. You’ll see the
check mark to the left of the second menu item from the bottom.

Figure 14-20. Enabling Oracle Application Debugging

386

 CHAPTER 14 ODT.NET TOOL BASICS

You are now all set. Let’s create a stored procedure to debug. Using what you learned earlier, create
the stored procedure in Listing 14-1. This stored procedure will simply add two numbers together and
place the result in a variable named TotalValue.

Listing 14-1. The TestProcedure Stored Procedure

PROCEDURE "TESTPROCEDURE" (Number1 IN NUMBER, Number2 IN NUMBER)
AS
 -- Declare constants and variables in this section.
 -- Example: <Variable Identifier> <DATATYPE>
 -- <Variable Identifier> CONSTANT <DATATYPE>
 -- varEname VARCHAR2(40);
 -- varComm REAL;
 -- varSalary CONSTANT NUMBER:=1000;
 -- comm_missing EXCEPTION;

 TotalValue NUMBER(11,2);

BEGIN

 -- executable part starts here
 TotalValue:=Number1 + Number2;
 TotalValue:=TotalValue * 30;
END;

Now, add a form to your project, place a button on the form, and write the code shown in Listing 14-
2 in the click event of this button.

Listing 14-2. Calling the TestProcedure PL/SQL Stored Procedure

private void btnAddNumbers(object sender, EventArgs e)
{
 DataSet _datasetObj = new DataSet();
 string _connstring = "Data Source=localhost/NEWDB;User Id=EDZEHOO;Password=PASS123";
 try
 {
 OracleConnection _connObj = new OracleConnection(_connstring);
 _connObj.Open();
 OracleCommand _cmdObj = new OracleCommand("TESTPROCEDURE", _connObj);
 _cmdObj.CommandType = CommandType.StoredProcedure;

 //Pass in two arbitrary numbers to this stored procedure
 _cmdObj.Parameters.Add("Number1", 30);
 _cmdObj.Parameters.Add("Number2", 50);
 _cmdObj.ExecuteNonQuery();
 _connObj.Close();
 MessageBox.Show("Done!");
 }
 catch (Exception ex)

387

CHAPTER 14 ODT.NET TOOL BASICS

 {
 MessageBox.Show(ex.ToString());
 }
}

Now place breakpoints at the locations in your code shown in Figure 14-21.

Figure 14-21. Placing breakpoints in the btnAddNumbers function

ODT.NET allows you to place breakpoints within your PL/SQL function as well. This allows you to
inspect individual variables inside the PL/SQL function as you would any other .NET variable. Place
breakpoints inside your PL/SQL function as shown in Figure 14-22.

Figure 14-22. Placing breakpoints in the TESTPROCEDURE stored procedure

388

 CHAPTER 14 ODT.NET TOOL BASICS

You will next need to place the stored procedure in debug mode. You can do this by right-clicking
your stored procedure, and choosing the Compile Debug menu item, as shown in Figure 14-23. The icon
for your stored procedure will now change into a slightly different icon (with the DBG tag).

Figure 14-23. Placing your stored procedure in Debug mode

Now, run your project in debug mode. The execution will halt at the first breakpoint you’ve defined
(at the ExecuteNonQuery method). Press the F5 button to proceed. The application will continue to
execute until the next breakpoint (which is inside your PL/SQL stored procedure!). If you open the
Locals window to inspect the values of the variables, you will see the window shown in Figure 14-24. You
can observe that the values held in the Number1 and Number2 variables, which are PL/SQL variables are
shown in the Locals window.

Figure 14-24. Inspecting PL/SQL variables in debug mode

389

CHAPTER 14 ODT.NET TOOL BASICS

If you press the F5 button one more time, execution will halt at the next breakpoint. You should see
that the TotalValue variable now carries a value of 80, which was the sum of the two numbers earlier.
Figure 14-25 illustrates this.

Figure 14-25. The second breakpoint in the PL/SQL stored procedure

A final press of the F5 button would move execution to the next breakpoint, which is back in your
.NET application at the _connObj.Close() line. What you have just witnessed is the seamless integration
of PL/SQL code debugging together with .NET code debugging. The ease at which the debugger can
jump from .NET code to PL/SQL code and back makes debugging your ODP.NET applications an easier
and more intuitive task.

The following list contains some of the main reasons why you might want to use the ODT.NET
debugging feature in your project:

• You now have the tools to debug your PL/SQL routines in a debugger
environment familiar to you.

• You can debug both .NET and PL/SQL code as if they were one, whereas with
external tools such as the Oracle Developer tool, you could only debug PL/SQL.

• You can improve your productivity by not having to launch a separate application
to debug PL/SQL; everything can be done in the comfort of the Visual Studio IDE.

390

 CHAPTER 14 ODT.NET TOOL BASICS

Managing Oracle SQL Scripts
When you deploy your application at a customer installation, you might sometimes choose to deploy
your database as a series of SQL scripts that you can simply run on the server to rebuild the database
objects required.

Some developers start off by hand-coding the DDL statements manually; they then use this to
generate the actual database objects used for development and testing. ODT.NET allows you to also do it
the other way around.

ODT.NET allows you to generate SQL scripts from existing database objects. This can sometimes be
convenient; it frees you from having to manually keep track of your DDL statements every time you
make changes to the database. You could visually edit your database as you wish via ODT.NET, and
when the time comes for you to deploy your application, you could just generate SQL scripts from each
of these database objects.

Let’s try to generate the SQL script for the Products table. Browse for this table in the Server Explorer
window, right-click on it, and choose the Generate Create Script menu item (as shown in Figure 14-26).

Figure 14-26. Generating the Create Script for the Products table

When you have done this, you will be prompted to specify a location to save the generated script
file. Specify a location and filename to save your script to. After that is done, you can try opening the
script file in a text editor like notepad.exe. You should be able to see something similar to Listing 14-3.

Listing 14-3. The Contents of the Generated Script File for the Products Table

-- ****** Object: Table EDZEHOO.PRODUCTS Script Date: 2/17/2010 1:38:51 AM ******
CREATE TABLE "PRODUCTS" (
 "ID" VARCHAR2(10 BYTE),
 "NAME" VARCHAR2(255 BYTE),
 "PRICE" NUMBER(10,2),
 "REMARKS" VARCHAR2(4000 BYTE),
 "FILEATTACHMENT" BLOB,
 "EXPIRYDATE" DATE,
 "REMARKSINJAPANESE" NVARCHAR2(1000),
 "RELEASEDATE" TIMESTAMP(6) WITH TIME ZONE,
 "LAUNCHDATE" TIMESTAMP(6) WITH TIME ZONE)
 STORAGE (

391

CHAPTER 14 ODT.NET TOOL BASICS

 NEXT 1048576)
/
CREATE UNIQUE INDEX "PRIMKEY"
 ON "PRODUCTS" (
 "ID")
/
ALTER TABLE "PRODUCTS" ADD (
 CONSTRAINT "SYS_C0010349"
 CHECK ("ID" IS NOT NULL)
 ENABLE
 VALIDATE)
/
ALTER TABLE "PRODUCTS" ADD (
 CONSTRAINT "PRIMKEY"
 PRIMARY KEY ("ID")
 USING INDEX "PRIMKEY"
 ENABLE
 VALIDATE)
/

 Tip The Generate Create Script option is available for other database object types as well, such as queues,
users, roles, stored procedures, packages, and so on. You can also use the Generate Create Script option at a
parent node, such as the Tables node. This will generate a single script file containing the CREATE statements for
all the tables under that node.

You can execute this generated script file within the Visual Studio IDE as well. For example, you
might want to restore a table that you have deleted earlier from a generated script file.

To try this out, delete the Products table from your database. After that, you will run the generated
SQL script to rebuild this table. You can do this by navigating to the Tools Run SQL*Plus script menu
item in Visual Studio. The window shown in Figure 14-27 will appear. Specify the path of the script file
you wish to execute, and a database connection to use to execute the script file. When you have done
that, click the Run button to execute the script. This will rebuild your Products table in the database.

392

 CHAPTER 14 ODT.NET TOOL BASICS

Figure 14-27. Executing an SQL*Plus script file

 Tip The errors and results from executing an SQL*Plus script file are shown in the Visual Studio Output
Window.

The following list contains some of the main reasons why you might want to use the ODT.NET SQL
scripting feature in your project:

• You can quickly make hot backups of your database objects.

• If you wanted to create a particular type of database object programmatically, you
don’t need to look up the DDL statement—just generate the SQL script using this
feature. This can save you research time.

• You can easily clone database objects among Oracle databases; simply run the
generated script on another database to rebuild the database object.

393

CHAPTER 14 ODT.NET TOOL BASICS

Managing Advanced Queues
If you recall from Chapter 9, creating a queue consists of two steps—creating the queue table to store
queue messages and registering the actual queue itself. ODT.NET makes this process easier as well by
providing GUIs to create and manage these queue objects.

You can create a queue table by navigating to the Advanced Queues Queue Tables node in the
Server Explorer, right-clicking it, and choosing the New Queue Table menu item. This will display the
window shown in Figure 14-28. The Payload Type box allows you to choose between XML, RAW, and
UDT-type payloads. The Storage tab allows you to specify detailed size dynamics for the queue table.
Through this window, you can also specify if the queue supports multiple consumers.

Figure 14-28. Creating an AQ queue table

After you have created an AQ queue table, you will need to create and register a queue (and its
subscribers). You probably recall doing all this via SQL*Plus in Chapter 9. ODT.NET provides a single
window that allows you to do all this visually.

In the Server Explorer window, right-click the Advanced Queues Queues node, and choose the
New Queue menu item to display the window shown in Figure 14-29. You are given the option to create
a totally new queue table or to use an existing one. Since you’ve created one earlier, choose the Existing
radio button, and select the queue table you created earlier. Notice that when you do this, certain other
options gray out in this screen. The reason is that these options are already defined in your queue table
earlier and will be used for the queue.

394

 CHAPTER 14 ODT.NET TOOL BASICS

Figure 14-29. Creating and registering an AQ queue

You can also specify a list of subscribers for this queue via the Subscribers tab, as shown in Figure
14-30.

Figure 14-30. Specifying the list of subscribers for a queue

395

CHAPTER 14 ODT.NET TOOL BASICS

The following list contains some of the main reasons why you might want to use the ODT.NET AQ
features in your project:

• You can save time not having to manually write the DDL to create a queue, queue
table, agent and subscriber.

• You can visually browse and explore the queues you have hosted in your database
at any point in time.

Importing Tables and Data from External Data Sources
ODT.NET also provides the ability for you to import data from external data sources into your Oracle
database, all within the Visual Studio IDE. This is better than using any command line tool, since it
provides you a step by step wizard to do so.

To begin an import, right-click the master Oracle database node in the Server Explorer window, and
choose the Import Table menu item. When you have done this, the wizard shown in Figure 14-31 will be
displayed.

Figure 14-31. The Import Table wizard

You will next be prompted to select the data source containing the source tables and data to import.
If you click the New Connection button, you will be able to specify the connection details for a data
source. This can be a Microsoft SQL Server database, Microsoft Access MDB file, Microsoft Excel file, or
any other registered database that has a corresponding driver. Choose the desired data source, and click
the Next button. In the example here, I use a Microsoft SQL Server database as the data source.

396

 CHAPTER 14 ODT.NET TOOL BASICS

The next step of the wizard shows the list of tables contained in the data source. Tick the tables that
you wish to import. You can choose to import data along with the schema by ticking the check box in the
Import Data column, which is shown in Figure 14-32.

Figure 14-32. Selecting the list of tables you wish to import

The next window in the wizard (shown in Figure 14-33) shows a description of the columns in each
table. This allows you to modify the table schema before it is created in Oracle. The changes done here
will only affect the table in the target database, not the source database.

397

CHAPTER 14 ODT.NET TOOL BASICS

Figure 14-33. Editing the table schema before importing

Click the Finish button after you are satisfied with your changes. You should be able to see a
message showing that the table was imported successfully. If you refresh the list of tables in your Server
Explorer, you should be able to see your newly imported table (as shown in Figure 14-34).

Figure 14-34. The successfully imported Documents table

398

 CHAPTER 14 ODT.NET TOOL BASICS

399

The following list contains some of the main reasons why you might want to use the ODT.NET data
import features in your project.

• Easily transfer data objects from other non-Oracle databases into your Oracle
database. This can save you time, since you don’t have to create the fields one by
one. The convenience becomes more noticeable when you need to transfer large
tables with hundreds of fields.

• You can even define source and target column type mappings visually, allowing
you to easily map external data types into Oracle ones.

• You can import objects from a large variety of external OLEDB data sources,
including Microsoft Excel sheets and even Microsoft Access (.mdb) databases.

Summary
In this chapter, you’ve taken a look at some of the basics of the ODT.NET package. You’ve learned how
to do the following:

• Browse Oracle table schema using ODT.NET.

• Create and manage users, roles, and table privileges using ODT.NET.

• Create, debug, and manage PL/SQL stored procedures, packages and functions.

• Create and manage queue tables and queues using ODT.NET.

• Import external tables and data into the Oracle database using the ODT.NET
Import Data wizard.

In the next chapter, which is also the last chapter of this book, you will learn how to use the code-
generation features of ODT.NET to quickly build Winforms and ASP.NET applications.

C H A P T E R 15

Building Data-Driven Applications
with ODT.NET

Oracle, like any powerful software, has always carried the unfortunate stigma of being complex,
unproductive, and generally difficult to use among .NET developers. Although the Oracle database is
clearly a superior product, the tightly knit nature of the Microsoft SQL Server database and the .NET
Framework easily made SQL Server the database of choice among developers who were given a choice
between the two.

ODT.NET is Oracle’s answer to this problem. One of the benefits of ODT.NET is that it bridges
Oracle’s powerful technology with the ease of use that you would expect from Microsoft. Gone are the
days when you had to do everything in a tiny command line window. As you’ve seen in the previous
chapter, ODT.NET is effectively an enterprise database manager tool built right into the Visual Studio
IDE, with additional code generation features similar to those available for the SQL Server database.
When used together with ODP.NET, you will be able to create .NET applications more productively
without even leaving the Visual Studio environment.

In this chapter, you will learn a few more features of ODT.NET. You will see how you can achieve
better productivity by performing the following tasks within the Visual Studio IDE:

• Visually designing an Oracle database query

• Generating strongly typed DataSet objects from Oracle tables

• Generating UI and data access code for .NET Winforms projects quickly

• Generating UI and data access code for ASP.NET projects quickly

• Generating user defined type (UDT) classes from UDT objects and using them
directly in your projects

Designing Queries Visually
You’ve seen in the previous chapter that you could run an Oracle query from within the Visual Studio
IDE. ODT.NET takes this one step further by allowing you to visually design an SQL query via drag and
drop.

Visual design is useful in cases where you have large tables with many columns. Sifting through
these columns to look for their foreign keys and relationships with other tables without a visual designer
can be a messy and troublesome affair. With ODT.NET, you can do that work without leaving the
comfort of the Visual Studio IDE. To start designing a query, right-click a connection that you created in
the previous chapter. In the pop-up menu, select the New Query menu item, as shown in Figure 15-1.

401

CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Figure 15-1. Launching the visual query designer

A new window will appear. This window allows you to select the tables that you want to include in
the visual query designer. We will attempt to create an INNER JOIN query between the Products and
ProductComponents tables using this visual designer.

 Note You can still add tables after you’ve closed the Add Table window. Do not worry that it represents your
one and only chance to include a table in a query. You can add a new table at any time.

Select both the Products and ProductsComponents tables as shown in Figure 15-2, and click the Add
button followed by the Close button.

Figure 15-2. Adding tables to the visual query designer

402

 CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Once you’ve closed the Add Table window, you can see the visual query designer show underneath.
The two tables are represented as two small windows in the designer area. You can drag these windows
around as you wish. You can also form a relationship between two columns by dragging a column and
dropping it on another column in the other table.

In the current example, you need to form an INNER JOIN relationship between the ParentProductID
column of the ProductComponents table and the ID column of the Products table. Drag the
ParentProductID column, and drop it on the ID column in the Products table. A link will instantly form
between these two fields. This is shown in Figure 15-3. You can also see that the full SQL query is
automatically regenerated each time you make any changes in the visual designer area. You can run the
generated query by right-clicking the SQL query area and selecting the Execute SQL item (the one with
the red exclamation point icon) in the ensuing pop-up menu.

Figure 15-3. Using the visual query designer

The following list contains some of the main reasons why you might want to use the ODT.NET
visual design feature in your project:

• Create complex SQL queries faster via drag and drop; you no longer have to
remember column names when specifying table joins.

• Viewing relationships between multiple tables in a single query is easier.

403

CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Generating Strongly Typed DataSet Objects
A DataSet is said to be strongly typed when the data type of its columns are predefined and fixed. In
Chapter 4, you dealt mostly with generic DataSet objects. Consider the following code that accesses a
date column in a DataSet:

_PODate = _DataSet.Tables[0].Rows[0].Item(“PurchaseOrderDate”);

This type of DataSet, a weakly typed DataSet, suffers from the following problems:

• You must remember and correctly specify the name of the desired column.

• It lacks IntelliSense support for column and table names.

• It lacks type checking. If you assign the PurchaseOrderDate value (which was
created as a DATE object in the database) to an integer variable, for example, the
resulting type mismatch will not be caught during compile time. Instead, your
statement will throw an exception during run time.

• It lacks built-in NULL checking; you need to write your own code to handle NULL
values in the PurchaseOrderDate column.

With a strongly typed DataSet on the other hand, you can write a simple assignment statement such
as the following, and you’ll detect any and all of the previously mentioned errors early, during compile
time.

_PODate = PurchaseOrderDataSet.PURCHASEORDERS.PURCHASEORDERSROW.PurchaseOrderDate;

 Note One of the biggest advantages of strongly typing DataSet objects is that the names and columns of a
table are already predefined, and hence appear inside the IntelliSense menus (the menus that pop up frequently in
Visual Studio as you type to help you look for a particular function or property). Having column names and types
appear in those menus reduces the problem of human error when specifying column names.

To create a strongly typed DataSet, you must first setup a data source. Click the Data Add New
Data Source menu item in the Visual Studio IDE. You will see the window in Figure 15-4 displayed.
Choose to create a database object. Click the Next button to proceed.

404

 CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Figure 15-4. Creating a data source

In the next window, you will be required to select a data connection to use for the data source.
Choose the data connection that you’ve created in the previous chapter (as shown in Figure 15-5).

Figure 15-5. Selecting a data connection

405

CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

The Data Source Configuration Wizard can also save the connection string automatically in the
app.config file of your project. This gives users the flexibility of changing their connection strings later
from the app.config file. Select the “Yes, save the connection as” option, and give the connection string
entry a name. In the sample screenshot shown in Figure 15-6, I use the name MyOracleConnection.

Figure 15-6. Saving the connection to the app.config file

Next, the wizard will bring you to the screen shown in Figure 15-7. Here, you can choose which
database objects to include in the strongly typed dataset.

 Tip Do keep in mind that a single DataSet object can be composed of multiple table objects.

Since your strongly typed DataSet will only contain the Products table, select the PRODUCTS item.
You can also give your DataSet object a name. Do take note that this is the name that you will be using to
refer to your DataSet class from code.

406

 CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Figure 15-7. Including the Products table in the strongly typed dataset

Next, you will be able to see the Products DataSet in your Data Sources window. At this point, you
might need to edit the generated DataSet object. For example, if you proceed to use the DataSet you have
created up to this point, the DataAdapter and Command objects that ODT.NET automatically generates for
you later on will, by default, retrieve all data from the specified table. Your query is basically equivalent
to:

SELECT * FROM PRODUCTS

However, you might wish for a more specific query. For example, you might wish for only Product
IDs that begin with the letter “E”, as would be returned by the following statement:

SELECT * FROM PRODUCTS WHERE PRODUCTID LIKE 'E%'

Fortunately ODT.NET allows you to edit a generated DataSet and its accompanying adapter
objects. You can do so by right-clicking your DataSet in the Data Sources window and choosing the “Edit
DataSet with Designer” menu item (as shown in Figure 15-8).

407

CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Figure 15-8. Editing a generated DataSet

You will be brought to the window shown in Figure 15-9 where you can visually see the details of the
DataSet object. As you can see, there is already an adapter object created for the DataSet. This adapter
object retrieves all rows from the table by default. Right-click it, and choose the Configure menu item.

Figure 15-9. Configuring TableAdapter settings

When you have done that, a new window will be displayed. You will initially see that the default SQL
retrieves all results from the table. Add a filter (a WHERE clause) to the SQL statement, as shown in Figure
15-10. When you have done that, click the Finish button. Visual Studio will regenerate the corresponding
data access objects.

408

 CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Figure 15-10. Editing the TableAdapter SQL query

It’s now time to use your strongly typed DataSet! Add a new form to your project. Let’s say you
wanted to display the data in a DataGridView control. How do you go about that? Simply drag the DataSet
from the Data Sources window into the form!

Once you drag the DataSet into your form, you will notice that ODT.NET has created a nice
DataGridView control for you, complete with record navigation controls, a button to insert new data to
the table, a button to delete existing data from the table, and even a Save button to save updates made in
the grid. This can be seen in Figure 15-11. What is even cooler is that ODT.NET has done all the
underlying work of mapping the DataSet to the grid! You can in fact run this form as it is without having
to write any further line of code.

409

CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Figure 15-11. Data access controls automatically generated by ODT.NET

If you open the code-behind file of this form, you will be able to see the code generated by ODT.NET
to power this interface (shown in Figure 15-12). You can still freely edit this code if you wish to tweak the
behavior of the form further.

Figure 15-12. Data access code auto-generated by ODT.NET

410

 CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

If you try running this form without any changes, you will immediately see your data displayed in
the grid control, as shown in Figure 15-13. Take note that only records with Product IDs beginning with
the letter “E” are displayed (based on what you specified earlier).

Figure 15-13. Running the automatically generated UI

You can even try adding a new record via this automatically generated interface. Click the yellow
plus button. A new row will appear in the grid. Specify some dummy data in the various columns. I will
use a product named “Sample record keyed in via UI” in my example. When you are finished, click the
blue disk Save icon. This will prompt the TableAdapter object to run an INSERT statement against the
Products table. You can verify that the record was created by running a SELECT query against the
Products table via SQL*Plus, as shown in Figure 15-14.

Figure 15-14. Verifying that the new record was inserted correctly

At this point, you have yet to use the strongly typed DataSet in your code. Now, you will write some
code to insert a new product manually via code using the strongly typed DataSet. Add a new button to
the form, and in the click event of this button, write the code shown in Listing 15-1.

Listing 15-1. Adding a New Product Programmatically via a Strongly Typed DataSet

private void btnAddNewProduct_Click(object sender, EventArgs e)
{
 Products _myDataSet = new Products();

411

CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

 this.pRODUCTSTableAdapter.Fill(_myDataSet.PRODUCTS);

 //Create and add a new product to the DataSet
 Products.PRODUCTSRow _newProduct = _myDataSet.PRODUCTS.NewPRODUCTSRow();
 _newProduct.ID = "C5";
 _newProduct.NAME = "Cleaner Fluid";
 _newProduct.PRICE = 250;
 _newProduct.REMARKS = "Added via a strong typed dataset";
 _myDataSet.PRODUCTS.AddPRODUCTSRow(_newProduct);

 int _Result = this.pRODUCTSTableAdapter.Update(_myDataSet);
 MessageBox.Show(_Result.ToString() + " rows updated in Products table");
}

When you typed the code in Listing 15-1, you would have realized a few things:

• Column and table names would instantly appear in the IntelliSense pop-up
windows. This makes the locating of table columns easier and cuts out human
error (for example, specifying the wrong table column name).

• The NULL check functions are readily available for each column in the DataSet.

• All columns are strongly typed. For instance, you cannot assign a string object to a
numerical-based column. This lets you detect data mismatch errors at compile
time rather than at run time.

If you run the form and click the button, you will see the pop-up message shown in Figure 15-15,
denoting that the row was successfully inserted into the Products table.

Figure 15-15. A row successfully inserted into the Products table.

The following list contains some of the main reasons why you might want to use the ODT.NET
strongly typed DataSet feature in your project:

• Easy to code: Table and column names appear in IntelliSense.

• Data type checking: Data mismatch errors are caught at compile time rather than
at run time.

• Less room for human error: The possibility of column and table names being
wrongly spelled or typed is eliminated.

412

 CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

• Saves time via code generation: Strongly typed datasets work tightly with the .NET
DataAdapter class. Visual Studio automatically generates the Fill and Update
functions in these adapters.

Generating UDT Classes
As you’ve seen in Chapter 5, creating a class to represent a UDT object is not particularly difficult, but it
can be a rather tedious job. This problem is magnified when you have tables containing large numbers
of columns. Human error may also arise if you frequently hand-code such classes, unnecessarily wasting
time in debugging these classes later on.

Fortunately, ODT.NET provides you a way to visually define UDT objects and to generate the
corresponding .NET classes from these UDT objects. In this section, you will create a sample application
to display a list of jobs from the database. This list of jobs will utilize an EMPLOYEE UDT as the data type
for one of its fields. You will learn how to use ODT.NET to create this UDT and also generate the code to
read the values of this UDT.

Designing a UDT Object Visually
To visually create a UDT object, expand the data connection and right-click the User-Defined Types
node in the Server Explorer. In the ensuing pop-up menu, select the New Object Type item shown in
Figure 15-16.

Figure 15-16. Creating a new UDT visually

When you have done that, the screen shown in Figure 15-17 will appear. It allows you to visually
define the properties and attributes of the UDT. You can specify the name of the UDT under the “Type
name” field. Create the attributes of the UDT as shown in Figure 15-17. Try to use a mix of NVARCHAR2 and
NUMBER data types.

413

CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

You can also click the Preview SQL button to look at the corresponding SQL syntax generated to
create the UDT. When you have finished designing the UDT, click the OK button to create it. You will be
able to see the created UDT in the User-Defined Types node in the Server Explorer.

Figure 15-17. Creating a new UDT visually

Creating the UDT Object Table Visually
Creating the Employee UDT is not enough to begin using it. You must create a corresponding object table
to store Employee UDT objects.

 Note An object table is different from a standard relational table. Object tables are used to store UDT objects
instead of relational data. In an object table, each row represents an object, referred to as a row object.

414

 CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

To create an object table, right-click the Tables node in the Server Explorer, and choose the New
Object Table menu item (as shown in Figure 15-18).

Figure 15-18. Creating a new object table

You will now see the object table designer (shown in Figure 15-19), where you can specify the name
of the table and the UDT of the objects it will store. In this same window, you will be able to specify other
attributes of the table such as constraints, indexes (if any) and storage parameters. Specify EMPLOYEE_TAB
as the name of the table, and select the EMPLOYEE UDT you’ve created earlier as the object type.

Figure 15-19. Specifying the details of the object table

When you are finished, click the Save button to generate the object table. You will be able to see the
EMPLOYEE_TAB table displayed in the Server Explorer.

Creating the OVERSEAS_JOBS Table
Our little sample application will try to display a list of jobs in the database. Each job will have a Person
in Charge column, and its data type would be the EMPLOYEE UDT you’ve created earlier. You will need to
create a new relational table to store the job records.

Right-click the Tables node in the Server Explorer, and choose the New Relational Table menu item
to create a new relational table. Specify OVERSEAS_JOBS as the name of this table. Create the columns as

415

CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

shown in Figure 15-20 . Take note that the PERSON_IN_CHARGE column should be created as an EMPLOYEE
UDT.

Figure 15-20. Defining the OVERSEAS_JOBS table

Click the Save button to continue. This will generate the corresponding table, which you can see in
the Server Explorer window. If you expand the PERSON_IN_CHARGE column, you will be able to see the
details and attributes of the UDT, as shown in Figure 15-21.

Figure 15-21. The OVERSEAS_JOBS table

416

 CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

To run the code samples later on, you will need to key in some data into the OVERSEAS_JOBS table. To
insert a UDT object, you can specify it in this format:

UDT_NAME(<fieldvalue1>, <fieldvalue2>, <fieldvalue3>)

Run the following SQL statements either through the ODT.NET query window or through SQL*Plus:

INSERT INTO OVERSEAS_JOBS(JOBNAME,JOBID,PERSON_IN_CHARGE)
VALUES ('DELIVERY JOB',1,EMPLOYEE('EDZEHOO',1234,'Fifth Avenue HQ',9000));
INSERT INTO OVERSEAS_JOBS(JOBNAME,JOBID,PERSON_IN_CHARGE)
VALUES ('DELIVERY JOB',2,EMPLOYEE('GREGYAP',5678,'Nanjing Road Shanghai',9000));
INSERT INTO OVERSEAS_JOBS(JOBNAME,JOBID,PERSON_IN_CHARGE)
VALUES ('CLEANING JOB',3,EMPLOYEE('HUISHEN',3338,'Ishimura Doori Tokyo',6000));

Generating the UDT Classes
Now that you have gone through all the preceding setup, you need to be able to access these UDT
objects in your .NET code. ODT.NET supports the ability to automatically generate .NET classes from
existing UDT objects.

To generate the needed UDT classes, expand the User-Defined Types node in the Server Explorer,
and right-click the EMPLOYEE UDT object. Select the Generate Custom Class menu item in the ensuing
pop-up window, as shown in Figure15-22.

Figure 15-22. Generating the UDT classes

Once you have done that, you will be able to see the wizard shown in Figure 15-23. This wizard will
generate .NET classes in a variety of languages for Oracle UDTs.

417

CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Figure 15-23. The UDT Custom Class Wizard

Click the Next button to proceed. You should be able to see the screen displayed in Figure 15-24.
This screen allows you to specify the name of the class and class files that will be generated by ODT.NET.

Figure 15-24. Specifying the class details for the UDT

418

 CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Click the Next button again to proceed. This time ,the wizard will allow you to map each UDT
attribute to the desired .NET data type, as shown in Figure 15-25. This can be useful when you want to
pass a string to a property in the UDT class, for example, but have it save and retrieve data to and from
the underlying UDT as an integer.

Figure 15-25. Specifying property details

After you are finished, click the Next button to complete the wizard. A UDT class file named
Employee.cs will be generated in your project. If you open this file, you will see something similar to
Figure 15-26. Notice that the UDT attributes are represented as properties in this class.

Figure 15-26. Generated UDT class

419

CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Using the UDT in Your Project
Now for the last step—this is where it all comes together. You will list all the jobs from the OVERSEAS_JOBS
table in a DataGridView control. The purpose of doing this is to see if you can retrieve the data from the
PERSON_IN_CHARGE column (the EMPLOYEE UDT) and display it appropriately. If you recall from the earlier
sections, you could easily generate the UI for any table using ODT.NET. You will use the same method to
generate the Jobs grid.

Add a new data source to your project (like how you’ve done earlier in this chapter), and include the
OVERSEAS_JOBS table in the new DataSet. Specify Overseas_Jobs as the name of the DataSet, as shown in
Figure 15-27 .

Figure 15-27. Creating a data source from the OVERSEAS_JOBS table

Now, add a new form to your project. Drag the Overseas_Jobs data source from the Data Sources
window into the form (as you’ve done earlier in this chapter). This will generate the data grid and all the
accompanying controls, as shown in Figure 15-28.

420

 CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Figure 15-28. The generated UI for the Overseas_Jobs data source

Now, if you were to run this form, you can see that it will list the three records you’ve inserted
earlier, as shown in Figure 15-29. Notice however, that the PERSON_IN_CHARGE column shows nothing!
This is because the generated UDT class does not have a ToString() method defined yet, so it is unable
to represent the UDT class as a string (which is needed to display an object in a grid).

Figure 15-29. The OVERSEAS_JOBS records displayed in the data grid

You will now write some code in this ToString() method. Open the Employee.cs class file, and write
the highlighted code shown in Listing 15-2. This will tell the UDT object to represent itself using the Name,
ID, and Salary fields of the employee.

421

CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Listing 15-2. Defining the ToString() Method in the UDT Class File

public override string ToString()
{
 // TODO : Return a string that represents the current object
 return "Name:" + m_EMPLOYEENAME + "\n" +
 "ID:" + m_EMPLOYEEID + "\n" +
 "Salary:" + m_EMPLOYEESALARY;
}

Now try running the same form again. This time, you will see some data appear in the
PERSON_IN_CHARGE column, as shown in Figure 15-30. If you mouse-over the data, you will be able to see
the individual properties of the UDT (as you’ve defined via the ToString() function).

Figure 15-30. The details of the PERSON_IN_CHARGE column

What’s important to note from this exercise is that you could individually refer to each attribute of
the UDT as a class property in your .NET code. UDT classes have the benefit of strongly-typing UDT
objects in the database—they allow you to pass UDT objects around in your code and to manipulate
them just like any other class.

Attribute names are strongly typed, which reduces human error and improves integration with
IntelliSense. On top of that, ODT.NET now makes it easier than ever to generate .NET classes from large
UDT objects, removing the mundane and tedious parts of your ODP.NET development experience.

The following list contains some of the main reasons why you might want to use the ODT.NET UDT
class generation features in your project:

• Saves time: Generating UDT classes is much easier than coding them by hand.

• Less prone to human error: Letting ODT.NET generate the code from a UDT object
reduces potential problems arising from human error.

• Easier to manage and more flexible: You can visually map each UDT attribute to a
.NET data type. This makes it easier to specify how your UDT attributes are
represented in the generated .NET class.

422

 CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Generating ASP.NET Code
If you are an ASP.NET developer working with the SQL Server database, at one point or another you
would definitely have come across a feature in Visual Studio that allows you to generate an ASP.NET
GridView by specifying a SQL Server–based data source. Visual Studio will generate the code to bind your
grid to the DataAdapter and Command objects of the data source.

When you install ODT.NET, this feature will also work together with the ODP.NET provider. What
this means is that you will be able to easily generate ASP.NET GridView objects (via a few clicks) by
specifying an Oracle-based data source. In this section, we will create a simple application to
demonstrate this.

Start by creating a new ASP.NET web application. Drag a GridView control to the default web page.
Click the little arrow in the top-right corner of this control, and choose to create a new data source, as
shown in Figure 15-31.

Figure 15-31. Creating a new data source for the GridView control

After you have done this, the screen shown in Figure 15-32 will appear. You will be able to choose a
data source type. Select the Database icon, and specify an ID for the data source. You can use any name
you wish.

423

CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Figure 15-32. Creating the Oracle data source

After you click the OK button, you will see the window shown in Figure 15-33. This window allows
you to pick the database object to use as a data source. Let’s try to display the list of products from the
Products table. You probably don’t want to display all the columns, so check only the first four columns.
Take note that you can also define the WHERE and ORDER BY clauses of the SQL statement using the
buttons on the right.

424

 CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Figure 15-33. Configuring the SQL SELECT statement for the data source

After you click the Next button to proceed, you can observe that Visual Studio has done the binding
between the data source and the grid. The names of the columns you have selected will appear in the
header of the grid, as shown in Figure 15-34.

425

CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

Figure 15-34. The data source-bound grid.

Save the project, and try running the web site. You will see that the data grid is automatically
populated with data from the PRODUCTS table, as shown in Figure 15-35.

Figure 15-35. The populated data grid displayed in the browser

The following list contains some of the main reasons why you might want to use the ODT.NET
ASP.NET code generation features in your project:

• You can save time by not having to write code to handle simple data entry and row
display screens. This feature works great when your SQL queries are
straightforward, and you have many tables to display in your website.

• It reduces the learning curve for SqlConnection users. If you are familiar with
generating ASP.NET interfaces and code using the SqlConnection data source
model provided by ASP.NET, using OracleConnection is no different, since it plugs
in to this framework seamlessly.

426

 CHAPTER 15 BUILDING DATA-DRIVEN APPLICATIONS WITH ODT.NET

427

Summary
In this final chapter, you’ve taken a look at the advanced code generation functionality in the ODT.NET
package. You’ve learned how to use ODT.NET to accomplish the following:

• Visually design a query within the Visual Studio IDE

• Generate strongly typed DataSet objects

• Visually design a UDT object

• Generate .NET classes from UDT objects

• Generate ASP.NET code from Oracle objects

In conclusion, ODP.NET and ODT.NET make a powerful product combination that harnesses the
power of the Oracle database and exposes them to you in the familiar .NET environment. We’ve now
reached the end of this book, and I hope these pages have given you deeper insight into a tool that will
help you build compelling Oracle database applications that run faster, more securely, and do much
more.

Index

message queues, 34
 A multiple messages, dequeuing, 231

multiple messages, enqueuing, 230
Abstract Factory pattern, 354 multiple-consumer queue, creating, 232
access control lists (ACLs), 292 OracleAQMessage class, 226, 231, 250
ADD_SUBSCRIBER, 234 OracleAQQueue class, 226
ADO.NET OracleXmlType class, 244

features supported by ODP.NET, table of,
22

overview of, 224
point-to-point scenario, 224

Advanced Queuing (AQ) queue creation parameters, table of, 225
ADD_SUBSCRIBER and

ENABLE_DB_ACCESS, table of
properties, 234

queues and subscribers, 224
Recipients property, 237
recipient-specific dequeuing, code listing,

235 benefits of using, 35
callback function, code listing, 249 recipient-specific enqueuing, code listing,

235 Correlation property, 229
data types, enqueuing and dequeuing, 238 registering an asynchronous callback, code

listing, 248 DBMS_AQADM package, 224
defining a UDT class, code listing, 239 single message, dequeuing, 228
defining recipients at the message level,

code listing, 237
single message, enqueuing, 226
single-consumer queue, set-up procedure,

224 defining recipients at the queue level, code
listing, 233 testing asynchronous dequeuing, 249

DequeueArray(), 231 user defined types (UDTs), 238
dequeuing a UDT object, code listing, 243 allowOverride keyword, 310
dequeuing messages asynchronously

(nonblocking), 248
ALTER TABLE statement, 84
anonymous blocks

dequeuing messages synchronously
(blocking), 247

characteristics of, 118
definition of, 117

dequeuing XML data types, code listing,
245

Direction field, setting, 120
ExecuteNonQuery(), 118

dequeuing, definition of, 224 executing an anonymous PL/SQL block, 118
Enqueue(), 226 inserting a new record with, code listing,

118 EnqueueArray(), 230
enqueuing a UDT object, code listing, 242 INTO keyword, 121
enqueuing XML data types, code listing, 244 OracleParameter object, declaring, 119
enqueuing, definition of, 224 output parameters, declaring, 121
JobClass class, 241 passing data into, 119
Listen(), 247–248 returning data from, code listing, 121
listening for incoming messages, code

listing, 247
updating a record with, code listing, 120

429

 INDEX

app.config file, 406
editing with the Enterprise Library

Configuration tool, 365
encrypting, 366
opening in text mode using Visual Studio,

366
ArrayBindCount property, 331
ASP.NET

ASP.NET code, generating, 423–426
ASP.NET GridView objects, generating, 423
ODT.NET ASP.NET code generation,

advantages of, 426
Oracle Providers for ASP.NET, table of, 14

associative arrays
comparing to VARRAYs, 134
declaring, 129
indexing using strings, 129
knowing the maximum Size of the output

array, 134
passing to PL/SQL code, 129
passing two arrays to a PL/SQL stored

procedure, 130
retrieving from PL/SQL code, 131
retrieving multiple rows of data, code

listing, 132
updating multiple prices, code listing, 130
See also VARRAYs

audit trails, 291
authentication

audit trail records, retrieving, 291
ClientId property, setting programmatically,

290
ClientId-based username/password

authentication, 290
connection string, 289
modes of, supported by the Oracle

database, 289
OracleConnection class, 290
proxy authentication, 289
Proxy Password keyword, 289
Proxy User ID keyword, 289
username/password authentication, 289
Windows authentication, 291
See also code access security (CAS); security

Automatic Undo Management (AUM), 208

 B
BeginTransaction(), 189
BFILENAME(), 103

BFILEs, 20, 97
BFILENAME(), 103
definition of, 102
inserting BFILE data, 103
OracleBFile class, 104
retrieving BFILE data, 104

binary sorting, 180
BINARY_DOUBLE data type, 24, 323
BINARY_FLOAT data type, 24, 323
bind variables

example code listing, 82
parameterized queries, creating, 81
performance advantages of using, 83
running the example application, 83
SQL injection attacks, avoiding, 81

BindingSource control, 92
BLOBs, 20

BLOB data, retrieving, 99
OracleBlob class, 99
uploading a file to a BLOB field, 97

btnConnectNow button, 50

 C
calendar format, specifying, 171
Calendar property, 171
callback function, code listing, 249
change notifications

Automatic Undo Management (AUM), 208
best practices for using, 221
building a self-updating data grid, code

listing, 218
CHANGE NOTIFICATION privilege,

granting, 206
COMPATIBLE initialization parameter, 208
event handler, registering, 207
ExecuteNonQuery(), 208
features of, in Oracle databases, 205
HasChanges property, code listing, 216
multiple notification requests, grouping,

212
object-based notifications, definition of, 206
object-based notifications, registering for,

211
OracleDependency class, 206, 216
OracleNotificationEventArgs class, 207, 214
polling for changes, 216
pull approach, 205
query, registering, 207

430

 INDEX

431

query-based notifications, registering for,
206

query-based notifications, requirements
and restrictions, 207

raising a query-based change notification,
code listing, 208

raising an object-based change notification,
code listing, 211

registration, removing, 213
RemoveRegistration(), 213
retrieving detailed change notification

information, code listing, 214
usage scenarios, table of, 217

ClearAllPools(), 28, 56
ClearPool(), 28
client identifiers, specifying, 26
client result cache, enabling, 343
ClientId property, 26

setting programmatically, 290
unique identifiers, using, 291

CLOBs, 20
CLOB data, inserting, 100
CLOB data, retrieving, 101
GetOracleClob(), 101
OracleClob class, 100–101
See also data types

code access security (CAS)
access control lists (ACLs), 292
allowOverride keyword, 310
best practices, implementing, 313
CAS policies, configuring programmatically,

301
CAS policies, configuring via the GUI, 297
code groups, creating, 292
code groups, table of membership

conditions, 292
ConnectionString attribute, 301
custom trust levels, creating, 310
Demand(), 297
five default trust levels, 308
KeyRestrictionBehavior attribute, 301
KeyRestrictions attribute, 300
medium trust, running a web site in, 308
medium trust, table of security restrictions,

309
.NET Configuration tool, 292, 298
nonpersistent cross-site scripting (XSS),

preventing, 314
objective of, 292
OraclePermission class, 296, 301
permission sets, 293

permission sets, combining by intersection,
295

permission sets, combining by summation,
294

permissions, denying declaratively at the
method level, 307

permissions, denying programmatically at
the method level, 308

permissions, refusing declaratively at the
assembly level, 306

permissions, requesting declaratively at the
assembly level, 301

permissions, requesting declaratively at the
method level, 302

permissions, requesting imperatively at the
method level, 304

permissions, resolving in .NET, 294
policy levels, 294
security policies, configuring, 295
SQL injection attack, preventing, 313
stack walk, 297
using with ASP.NET applications, 308
web.config file, 309–310
web_mediumtrust.config file, after adding

OraclePermission, 311
web_mediumtrust.config file, list of

available permissions, 310
See also authentication; security

columns, automatically incrementing, 108
command automatic timeout feature, 25
command cancellation feature, 25
CommandText property, 326
CommandType property, setting, 123
COMPATIBLE initialization parameter, 208
Complete(), 199
Component Object Model (COM), 4
CONNECT command, 197
connection pooling

activating, 54
ClearAllPools(), 28, 56
clearing after corruption, 56
ClearPool(), 28
disabling, 57
modifying, 28
optimizing for RAC, 28
REF cursors, 29
speeding up database connections with, 321
connection string attributes, table of, 55

ConnectionString attribute, 301
Continuous Query Notification, 205
Correlation property, 229

 INDEX

432

CREATE DIRECTORY statement, 103
CREATE TABLE statement, 84
CreateCommand(), 76
creating a new user account, 73
creating a sample table, 74
creating a second database instance, procedure

for, 195–196
currencies

currency formats and identifiers, table of,
172

handling countries with dual currencies,
175

OracleGlobalization class, DualCurrency
field, 175

representing, 172
using a custom currency symbol, code

listing, 172
using ISO currency abbreviations, code

listing, 173
when countries share currency symbols, 173

 D
data access application block (DAAB)

adding a new constant in the
DBProviderMapping.cs file, code
listing, 362

benefits of using, 355
compiling, 364
creating the

OracleNETDatabasePolicyCreator.cs
file, code listing, 360

DatabaseFactory class, 367
ExecuteReader(), 369
GetStoredProcCommand(), 368
modifying some of the factory classes, 355
modifying the

DatabaseConfigurationView.cs file,
code listing, 363

modifying the DBProviderMapping.cs file,
code listing, 361

modifying the OracleNETDatabase.cs file,
code listing, 356

modifying the
OracleNETDatabaseAssembler.cs file,
code listing, 360

ODP.NET DAO class, creating, 355
Oracle DAO class, 355
performing common ODP.NET tasks via the

DAAB, 366

reading data using a DataReader, code
listing, 369

reading multiple rows into a dataset, code
listing, 367

source code, opening, 355
SQL Server class, 355
UpdateDataset(), 368
updating multiple rows from a dataset, code

listing, 368
data access object (DAO)

Abstract Factory pattern, 354
Factory Method pattern, 354

data access providers
choosing, 3
third-party data providers, 4

Data Definition Language (DDL)
creating a new user account, 73
executing DDL statements in ODP.NET, 109

data integrity, maintaining, 187
Data Source Configuration Wizard, 406
data types

Dataset class, 183
NCHAR, 162
NCLOB, 162
NVARCHAR2, 162
OracleDataAdapter class, 183
retrieving a timestamp with and without

safe type mapping, 183
safely mapping to .NET data types, 183
SafeMapping property, 183
See also CLOBs; double-byte data; LOBs;

RAW data types
DataAdapter class

DeleteCommand, defining, 85
OracleDataAdapter class and, 80
retrieving data into a DataSet object, 80
UpdateCommand, defining, 85

database change notifications
comparing to database triggers, 27
uses for, 27

database round-trips, reducing, 325, 341
DatabaseConfigurationView.cs file, code listing,

363
DatabaseFactory class, 367
DataGridView control, 86
DataReader

database data, retrieving, 76
OracleDataReader class, 76

Dataset class, 183
Datasource keyword, 300
DateFormat property, 169

 INDEX

433

DateLanguage property, 169
DBA Privilege attribute, 59
DBMS_AQADM package, 224
DBProviderMapping.cs file, code listing, 361–

362
DELETE statement, 84
DeleteCommand, defining, 85
Demand(), 297
DequeueArray(), 231
dequeuing, definition of, 224
DeriveParameters method, 26
design patterns and concepts

Abstract Factory pattern, 354
best practices for designing a data tier, 370–

371
data access application block (DAAB), 354
data access object (DAO), 353
decoupling an underlying implementation

from the calling code, 352
defining an interface between the

application and database, 352
Factory Method pattern, 354
Gang of Four (GoF), 351
Iterator, implementing, 351
Microsoft Enterprise Library, using, 354

Details property, 214
developers

.NET and, 1
ODP.NET and, 1
transitioning from SQL Server 2008 to

Oracle 11g, 2
Direction property, 127
distributed transactions, running and testing,

194
double-byte data

Input Method Editors (IMEs), installing, 163
NCHAR data type, 162
NCLOB data type, 162
NVARCHAR2 data type, 162
RemarksInJapanese field, updating, 162
retrieving double-byte data from Oracle,

code listing, 163
writing double-byte data to Oracle, code

listing, 162
See also data types

DualCurrency field, 175

 E
Employee.cs, 419

ENABLE_DB_ACCESS, 234
Enqueue(), 226
EnqueueArray(), 230
enqueuing, definition of, 224
Enterprise Library Configuration tool, 364
Enterprise Manager, 42
Everything permission set, 298
ExecuteDataReader(), 141
ExecuteNonQuery(), 84, 109, 118, 123, 208,

389
ExecuteReader(), 369
explicit distributed transaction, code listing,

201
Extensible Stylesheet Language

Transformations (XSLT), 266, 268
EZConnect

connecting to the Oracle database, code
example, 53

 F
Factory Method pattern, 354
FAILOVER_MODE parameter, table of

attributes, 64
FetchSize property, 29

performance gains from changing, code
listing, 341

when to change, 343
Fill(), 91
floating point data types, 24
forcing a database restart, 66
formatting a relational dataset as XML, 272
frmProducts form, creating, 92
Full Trust permission set, 298
function, definition of, 117

 G
Gang of Four (GoF), 351
Generate Create Script option, 391
GetOracleClob(), 101
GetOracleString(), 260
GetOracleXmlType(), 257
GetOrdinal(), 77
GetSchema(), 110

common collection names, table of, 110
restrictions, using, 111
retrieving metadata for all table columns,

code listing, 111
GetStoredProcCommand(), 368

 INDEX

434

GetXml(), 272
GetXmlReader(), 255
globalization and the OracleGlobalization class,

161
globally unique identifier (GUID)

definition of, 105
inserting a GUID value into a RAW column,

105
retrieving a GUID value from a RAW

column, 107
Gregorian calendar, 171
grid computing

benefits of, 23
definition of, 23
Oracle’s implementation of via RAC, 23

 H
HA event notifications, 38
HasChanges property, code listing, 216
HasRows property, 76
high-resolution timer, using, 320
Home Selector, changing the primary Oracle

home, 23

 I
implicit distributed transaction, code listing,

199
IN keyword, 125
IN parameter, 126
init.ora file, 343
InitialLOBFetchSize property, setting, 340
Input Method Editors (IMEs), installing, 163
INSERT statement, 75, 84
installing ODAC.NET, 43–48
installing Oracle Database 11g, 39–42
integrated Windows authentication, 57
IntelliSense, 404
INTO keyword, 121
INullable class, 147, 239
Invoice table, 189
InvoiceDetails table, 189
IOracleArrayTypeFactory class, 138
IOracleCustomType class, 147, 239
IsDBNull(), 79
ISO currency abbreviations, using, 173
Iterator, implementing, 351

 J
JobClass class, 241

 K
KeyRestrictionBehavior attribute, 301
KeyRestrictions attribute, 300
keywords

allowOverride, 310
Datasource, 300
IN, 125
INTO, 121
Password, 300
Pooling, 300
Proxy Password, 289
Proxy User ID, 289
Unrestricted, 300
User ID, 300

 L
Language property, 167, 181
language strings

retrieving a product list using English
sorting, code listing, 178

retrieving a product list using Spanish
sorting, code listing, 180

sorting and comparing, 178
least recently used (LRU) statement, 328
linguistic sorting, 181
Listen(), 247–248
LoadData(), testing, 92
LOBs

InitialLOBFetchSize property, setting, 340
LOB caching, enabling, 337
LOB data types, 2
manipulating in the Oracle database, 20
types of, 97
See also data types

 M
machine arithmetic, 323
machine.config, 30
managed code

accessing Oracle from, 8
System.Data.Odbc namespace, 10

 INDEX

435

using ODBC.NET in, 9
using ODP.NET in, 11
using OLEDB.NET in, 8
using the Microsoft .NET Managed Provider

for Oracle, 11
master-detail relationships, 90
message queues, 34
Microsoft .NET Managed Provider for Oracle

architectural overview of, 11
deprecation of, 11

Microsoft Access, 396
Microsoft ADO, using its libraries, 4
Microsoft Data Access Components (MDAC), 4
Microsoft Enterprise Library

app.config file, editing, 365
data access application block (DAAB), 354
downloading and installing, 354
Enterprise Library Configuration tool, 364

Microsoft Excel, 396
Microsoft Jet OLEDB provider, 5
Microsoft Messaging Queue (MSMQ), 34, 223
Microsoft ODBC for Oracle, deprecation of, 7
Microsoft OLEDB Provider for Oracle

(MSDAORA), deprecation of, 6
Microsoft Transaction Server (MTS), 198
multiple active results (MARs), 331
multiple notification requests, grouping, 212
multiple rows of data, retrieving, 76
multiple-consumer queue

ADD_SUBSCRIBER and
ENABLE_DB_ACCESS, table of
properties, 234

creating, 232
defining recipients at the message level,

code listing, 237
defining recipients at the queue level, code

listing, 233
Recipients property, 237
recipient-specific dequeuing, code listing,

235
recipient-specific enqueuing, code listing,

235
See also single-consumer queue

 N
namespaces

Oracle.Data.Client, 12
Oracle.DataAccess.Client, 50

Oracle.DataAccess.Types, 69
System.Data.Odbc, 10

NCHAR data type, 162
NCLOBs, 20, 101, 162
nested tables

defining, 138
deleting products with, code listing, 139

.NET CLR stored procedures
definition of, 152
executing, code listing, 158
generating and deploying, procedure for,

154–157
Oracle Database Extensions for .NET

package, 153
ORACLECLRDIR environment variable,

configuring, 157
ProductClass class, creating, 153
See also stored procedures

.NET Common Language Runtime (CLR),
26

.NET Configuration tool, 292
Datasource keyword, 300
defining a security policy, 298
Everything permission set, 298
Full Trust permission set, 298
importing a custom permission, 299
main window, 298
OraclePermission, 299
Password keyword, 300
Pooling keyword, 300
Unrestricted keyword, 300
User ID keyword, 300

.NET Managed Provider for Oracle
deprecation of, 1
Microsoft’s release of, 1

net service name, definition of, 51
NEXTVAL(), 108
nonpersistent cross-site scripting (XSS),

preventing, 314
Notification property, 207
NULL

checking for NULL values in
OracleDataReader results, 79

IsDBNull(), 79
NULL data exception, 79

NUMBER data type, 325
numbers, formatting, 176
NumericCharacters property, 176
NVARCHAR2 data type, 162

 INDEX

436

 O
object-based notifications

definition of, 206
QueryBasedNotification property, 211
raising an object-based change notification,

code listing, 211
registering for, 211

ODAC.NET
installation procedure, 43–48
ODAC for Oracle Client, 43
SQL*Plus, 46

ODBC
client and driver components, 6
comparing to OLEDB, 4
Microsoft ODBC for Oracle, 7
ODBC.NET, architectural overview of, 9
ODBC.NET, sample code listing, 10
Oracle ODBC driver, code example, 6
using in unmanaged code, 6

ODP.NET
accessing data, sample code listing, 13
ADO.NET supported features, table of, 22
advantages of, 11
architectural overview of, 12
automatically incrementing columns,

creating, 108
binary sorting, 180
BLOB data, retrieving, 99
change notifications, 205
checking whether ODP.NET is installed, 60
choosing the correct version to use, 19
ClearAllPools(), 56
ClientID property, 26
CLOB data, inserting, 100
CLOB data, retrieving, 101
common collection names used with

GetSchema(), table of, 110
common connection strings attributes,

table of, 59
comparing classes in

Oracle.DataAccess.Client to
System.Data.SqlClient, 12

connecting via EZConnect, 53
connecting via integrated Windows

authentication, 57
connecting with special privileges, 58
connecting without TNSNames.ora, 52
connection failures, handling, 62

connection methods and settings, types of,
52

connection pooling, activating, 54
connection string attributes, table of, 55
connection string, building dynamically, 61
Continuous Query Notification, 205
converting dates and currencies for an

international audience, 161
CreateCommand(), 76
creating and populating a second database

table, 90
data access classes, 12
database schema information, retrieving,

110
dataset relationships and constraints,

defining, 95
DBA Privilege attribute, 59
developers and, 1
error handling, 113
ExecuteNonQuery(), 84, 109
executing DDL statements in, 109
GetSchema(), 110
incrementing or decrementing sequences,

creating, 108
linguistic sorting, 181
master-detail relationships between

database tables, 90
NCLOB data, inserting, 101
NULL values, handling, 79
Oracle native data types, table of, 69
Oracle.Data.Client namespace, 12
Oracle.DataAccess.Types namespace, 69
Oracle’s release of, 1
OracleBlob class, 21, 99
OracleClob class, 100
OracleCommand class, 13
OracleCommand object, creating, 76
OracleCommandBuilder class, 88
OracleConnection class, 13, 26, 51
OracleConnectionStringBuilder class, 61
OracleDataAdapter class, 13, 80
OracleDataReader class, 29, 76
OracleException class, 113
OracleGlobalization class, using, 165
OracleParameter class, 21, 98
OracleString class, 69
OracleTransaction class, 188
OracleXmlType class, code listing, 258
OracleXmlType class, table of methods and

properties, 257

 INDEX

437

performance optimization techniques, 15
PL/SQL associative array binding, 21
Real Application Clusters, 11
REF cursors, 11
retrieving a list of registered Oracle data

sources, 62
retrieving a single database value, 78
retrieving data from multiple tables into a

single DataSet, 91
retrieving data into a DataSet object, 80
sequences, definition of, 108
specifying additional parameters in the

connection string, 54
SQL*Plus, 58
SYSOPER and SYSDBA privileges,

comparing, 58
transparent application failover (TAF), 62
types of sorting, 180
updating data from multiple tables, 94
updating database data, code listing, 84
uploading a file to a BLOB field, 97
User ID attribute, 57
using in ASP.NET projects, 13
using in managed code, 11
version 10 key features, accessing, 22
version 11 key features, accessing, 30
version 9 key features, accessing, 19
Windows logon account, 58
XML databases, 11
See also performance (ODP.NET); version 9

(ODP.NET); version 10 (ODP.NET);
version 11 (ODP.NET)

ODP.NET DAO
app.config file, editing, 365
creating, 355

OLEDB
comparing to ODBC, 4
definition of, 5
drivers for, 5
Microsoft SQL Server provider, 5
OLEDB.NET, architectural overview of, 8
OLEDB.NET, sample code listing, 9
Oracle provider for OLEDB, 5
using in unmanaged code, 5

OO4O, 3
connection string, sample code listing, 7
library of COM components, 4
Oracle-specific functionality, list of, 7
using in unmanaged code, 7

OpenFileDialog control, 97
Operfcfg.exe tool, 318

Oracle Call Interface (OCI), 346
API, 1, 4

Oracle Custom Class Wizard, 417
Oracle DAO class, 355
Oracle Database 11g

Basic Installation, selecting, 39
differences between Oracle and SQL Server,

table of, 2
Enterprise Manager, 42
installation procedure, 39–42
LOB data types, 2
Oracle Database Configuration Assistant, 40
PL/SQL, 2
transitioning developers away from SQL

Server 2008, 2
Transparent Data Encryption, 2
See also SQL Server 2008

Oracle Database Extensions for .NET package,
26, 153

Oracle Developer Tools for .NET (ODT.NET)
advanced queues, managing, 394–396
app.config file, 406
ASP.NET code, generating, 423–426
calling the TestProcedure stored procedure,

code listing, 387
comparing an object table to a relational

table, 414
Data Source Configuration Wizard, 406
designing SQL queries visually within the

Visual Studio IDE, 401–403
editing a generated DataSet and its adapter

objects, 407
Employee.cs, 419
ExecuteNonQuery(), 389
Generate Create Script option, 391
importing tables and data from external

data sources, 396–399
installing, 373
Microsoft Access, 396
Microsoft Excel, 396
NULL checking, 404
ODT.NET ASP.NET code generation,

advantages of, 426
Oracle Application Debugging, enabling,

386
Oracle Custom Class Wizard, 417
Oracle database schemas, managing, 374–

377
OVERSEAS_JOBS table, creating, 415–417
PL/SQL package, creating, 383–385

 INDEX

438

Oracle Developer Tools for .NET (ODT.NET)
(cont.)
PL/SQL stored procedures, creating, 380–

383
PL/SQL stored procedures, debugging, 385–

390
placing breakpoints within a PL/SQL

function, 388
SQL scripts, generating, 391–393
strongly typed DataSet objects, advantages

of, 404, 412
strongly typed DataSet objects, generating,

97, 404–413
TableAdapter object, 411
TestProcedure stored procedure, code

listing, 387
ToString(), 421
UDT class generation, advantages of, 422
UDT classes, generating, 417–419
UDT object table, creating visually, 414–415
users, roles, and permissions, managing,

377–379
using the UDT in a project, 420–422
Visual Studio IDE, integration with, 373
weakly typed DataSet objects,

disadvantages of, 404
Oracle Microsoft Transaction Server (MTS)

Recovery service, 45
Oracle Net Configuration Assistant, 52
Oracle Providers for ASP.NET, table of, 14
Oracle SQL*Loader, 32
Oracle Universal Installer, 31, 39, 52

launching from the Windows Start menu,
373

Oracle.DataAccess, adding to the Visual Studio
project, 49

OracleAQMessage class, 226, 231
useful properties, table of, 250

OracleAQQueue class, 226
OracleBFile class, 104
OracleBlob class, 21, 99
OracleBulkCopy class, 32
OracleBulkLoader class, 346
OracleClob class, 100–101
ORACLECLRDIR environment variable,

configuring, 157
OracleCommand class, Notification property,

207
OracleCommand object, creating, 76
OracleCommand property, 341
OracleCommandBuilder class, 26

command objects, generating, 88
command objects, hand-coding, 89
updating data from multiple tables, 94
using with single table updates, 89

OracleConnection class, 26, 51, 290
OracleConnectionStringBuilder class, 61
OracleDataAdapter class, 142

committing dataset changes to the
database, 85–87

Fill(), 91
retrieving data with, 80
SafeMapping property, 183
Update(), 86

OracleDatabase class, 38
OracleDataReader class, 29, 141

GetOracleXmlType(), 257
GetOrdinal(), 77
GetXmlReader(), 255
HasRows property, 76
Read(), 76
retrieving data into, 76

OracleDependency class, 206, 216
QueryBasedNotification property, 211

OracleException class, 113, 151
OracleGlobalization class

attributes, table of, 165
calendar dates, formatting, 168
calendar format, specifying, 171
Calendar property, 171
changing the date format and language,

code listing, 169
changing the session language, code listing,

167
client-level attributes, setting, 165
DateFormat property, 169
DateLanguage property, 169
DualCurrency field, 175
Gregorian calendar, 171
Language property, 167, 181
NumericCharacters property, 176
Persian calendar, 171
properties, list of, 165
session-level attributes, setting, 166
SetSessionInfo(), 166
SetThreadInfo(), 167
specifying territory and language, code

listing, 181
Territory property, 181
thread-level attributes, setting, 167
TimeZone property, 177

OracleMTSRecoveryService, 197

 INDEX

439

OracleNETDatabase.cs file, code listing, 356
OracleNETDatabaseAssembler.cs file, code

listing, 360
OracleNETDatabasePolicyCreator.cs file, code

listing, 360
OracleNotificationEventArgs class, 207

Details property, 214
information stored in, table of, 215

OracleParameter class, 21, 98
OraclePermission class, 37, 296, 301
OracleString class, 69

GetOracleString(), 260
OracleTransaction class

BeginTransaction(), 189
functions of, 188
standard usage of, 188

OracleXmlType class, 244
code listing, 258
encapsulating XML data, 261
methods and properties, table of, 257

OraOLEDB
connection string, sample code listing, 5
features and benefits of, 5

OUT parameter, 126

 P
parameter context caching, 31
parameterized queries, creating, 81
Password keyword, 300
performance (ODP.NET)

ArrayBindCount property, 331
BINARY_DOUBLE data type, 323
BINARY_FLOAT data type, 323
bind arrays, when to use, 334
client result cache, enabling, 343
client result cache, when to use, 346
CommandText property, 326
comparing standard SQL and

OracleBulkLoader, code listing, 346
connection pooling, speeding up

connections with, 321
connection pooling, when to use, 323
database round-trips, reducing, 325, 341
DataReader and DataAdapter objects,

comparing, 349
detecting connection leaks, 318
FetchSize property, when to change, 343
gauging floating point calculations, code

listing, 323

guidelines for batching and executing SQL
statements, 325, 327

high-resolution timer, using, 320
importing data more efficiently and quickly,

346
init.ora file, 343
InitialLOBFetchSize property, setting, 340
least recently used (LRU) statement, 328
LOB caching, enabling, 337
machine arithmetic, 323
measuring code performance

programmatically, 320
multiple active results (MARs), 331
NUMBER data type, 325
Operfcfg.exe tool, 318
optimization best practices, 348
Oracle Call Interface (OCI), 346
OracleBulkLoader class, 346
OracleCommand property, 341
performance bottlenecks when executing

SQL commands, 325
performance counters, enabling, 318–319
performance counters, table of, 319
performance gains from changing the

FetchSize property, code listing, 341
performance gains when specifying data via

a bind array, code listing, 332
performance when the client result cache is

disabled and enabled, code listing, 344
performance when turning connection

pooling on and off, code listing, 321
PL/SQL associative arrays, when to use, 337
REF cursors, 331
regedit.exe, 318
registering a database instance, 318
retrieving LOB data with LOB caching

disabled and enabled, code listing, 338
RowSize property, 341
self-tuning, setting, 329
statement caching, controlling

programmatically, 329
statement caching, enabling, 328
StopWatch class, 320
testing statement caching, code listing, 329
updating records as separate and batched

commands, code listing, 326
updating records with and without

associative arrays, code listing, 334
using bind arrays to pass parameters in

bulk, 331

 INDEX

440

performance (ODP.NET) (cont.)
using LOBs to boost performance, 337
using PL/SQL associative arrays, 334
Windows Registry Editor, 318
Windows Reliability and Performance

Monitor, 318
See also ODP.NET; version 9 (ODP.NET);

version 10 (ODP.NET); version 11
(ODP.NET)

permission sets
combining by intersection, 295
combining by summation, 294

Persian calendar, 171
PL/SQL

anonymous blocks, characteristics of, 118
anonymous blocks, definition of, 117
associative array binding, 21
associative arrays, using, 128
DBMS_AQADM package, 224
definition of, 117
forms of, 117
functions, definition of, 117
handling custom-defined errors, code

listing, 151
IN and OUT data types, handling, 128
nested tables, using, 138
OracleException class, 151
PL/SQL function, executing, 127
PL/SQL stored procedures, passing XML

data to and from, 260
PL/SQL stored procedures, working with,

122
REF cursors, using, 140
return values, 128
user defined types (UDTs), using, 146
VARRAYs, using, 134
See also SQL

point-to-point scenario, 224
policy levels, 294
Pooling keyword, 300
proc_DeleteProducts stored procedure, 138
product suites (Oracle), table of, 15
PRODUCT.xsd, 263
Product_ExtraInfo table, creating, 254
ProductClass class, creating, 153
ProductType class, code listing, 147
ProductTypeFactory class, creating, 149
ProductVArray class, code listing, 134
ProductVArrayFactory class, code listing, 136
promotable local transactions, 35
promotable transactions, executing, 202

proxy authentication, 289
Proxy Password keyword, 289
Proxy User ID keyword, 289
pull approach, 205

 Q
query-based notifications

definition of, 206
raising a query-based change notification,

code listing, 208
registering for, 206
requirements and restrictions, 207

QueryBasedNotification property, 211
queues, 224

 R
RAW data types

globally unique identifier (GUID), definition
of, 105

inserting a GUID value into a RAW column,
105

manipulating, 105
retrieving a GUID value from a RAW

column, 107
See also data types

Read(), 76
Real Application Clusters (RAC), 11, 22
Receipt table, creating, 197
Recipients property, 237
REF cursors, 11, 331

advantages of, 140
definition of, 29, 140
ExecuteDataReader(), 141
reading a result set using the

OracleDataAdapter class, code listing,
142

reading a result set using the
OracleDataReader class, code listing,
141

result set and server memory, 140
retrieving multiple active result sets (MARs),

code listing, 145
using as an input or output parameter in a

stored procedure, 29
regedit.exe, 318
RemoveRegistration(), 213
Reset(), 320
restrictions, using with GetSchema(), 111

 INDEX

441

return values, 128
rollbacks, 187

performing a partial rollback, code listing,
192

RootTag property, 270
ROWID data type, 105
RowSize property, 29, 341
RowTag property, 270

 S
SafeMapping property, 183
schema

definition of, 262
PRODUCT.xsd, 263
Validate(), 263–266
XSD schema, defining and registering, 263
XSD schema, validating against, 265
See also XML data

Secure Sockets Layer (SSL), 288
security

authentication, 288
code access security (CAS), 288
configuring at the database level, 288
formulating a strategy for, 287
Secure Sockets Layer (SSL), 288
securing .NET applications, 287
security stack for a typical ODP.NET

application, 288
Transparent Data Encryption (TDE), 288
See also authentication; code access security

(CAS)
SELECT statement, 75
self-tuning, setting, 329
self-updating data grid, code listing, 218
semistructured data, definition of, 20
sequences

definition of, 108
incrementing or decrementing sequences,

creating, 108
Server Explorer, 374
SetSessionInfo(), 166
SetThreadInfo(), 167
single-consumer queue

Correlation property, 229
DequeueArray(), 231
Enqueue(), 226
EnqueueArray(), 230
multiple messages, dequeuing, 231
multiple messages, enqueuing, 230

OracleAQMessage class, 226, 231, 250
OracleAQQueue class, 226
queue creation parameters, table of, 225
set-up procedure, 224
single message, dequeuing, 228
single message, enqueuing, 226
See also multiple-consumer queue

SiteMapNode objects, 14
slash (/) character, 123
SQL

ALTER TABLE statement, 84
BFILENAME(), 103
CREATE DIRECTORY statement, 103
CREATE TABLE statement, 84
DELETE statement, 84
guidelines for batching and executing SQL

statements, 325, 327
INSERT statement, 75, 84
least recently used (LRU) statement, 328
NEXTVAL(), 108
performance bottlenecks when executing

SQL commands, 325
PL/SQL, 2, 117
SELECT statement, 75
statement caching, 24, 328–329
syntax differences between SQL Server 2008

and Oracle 11g, 2
testing statement caching, code listing, 329
T-SQL, 2, 117
UPDATE statement, 84
updating records as separate and batched

commands, code listing, 326
See also PL/SQL

SQL injection attack, 313
SQL Server 2008

differences between Oracle and SQL Server,
table of, 2

System.Transactions.Transaction class, 188
transitioning developers to Oracle 11g, 2
Transparent Data Encryption, 2
T-SQL, 2
See also Oracle Database 11g

SQL Server class, 355
SQL*Plus, 46, 58

CONNECT command, 197
creating a new user account, 73
forcing a database restart, 66
slash (/) character, 123

stack walk, 297
statement caching and performance boosts, 24

 INDEX

442

StopWatch class
code example, 320
Reset(), 320
StopWatch.Elapsed.TotalSeconds property,

320
stored procedures

characteristics of, 122
CommandType property, setting, 123
DBMS_XMLGEN.GETXML stored

procedure, using, 273
definition of, 117
Direction property, 127
ExecuteNonQuery(), 123
executing, 123
IN keyword, 125
IN parameter, 126
inserting a new record with, code listing,

123
.NET CLR stored procedures, creating, 152
OUT parameter, 126
passing data into, 124
passing two arrays to, 130
PL/SQL stored procedures, passing XML

data to and from, 260
proc_DeleteProducts, 138
referring to stored procedure parameters by

name, 126
retrieving the record count with, code

listing, 126
UpdateMultiplePrices, 129
updating a record with, code listing, 125
writing, 26
See also .NET CLR stored procedures

strongly typed datasets, creating, 97
subscribers, 224
SYSDBA role, 58
SYSOPER role, 58
System (Shared) Global Area (SGA), 24
System.Data.Odbc namespace, 10
System.Transactions.Transaction class, 188

 T
TableAdapter object, 411
tables

automatically incrementing columns,
creating, 108

dataset relationships and constraints,
defining, 95

multiple rows of data, retrieving, 76

OracleCommand object, creating, 76
ProductComponents table, creating and

populating, 90
Products table, creating, 74
retrieving the count from the Products

table, 78
sample data, inserting, 75
updating database data, code listing, 84

Territory property, 181
time zones

handling, 176
retrieving timezone-correct dates, code

listing, 177
TimeZone property, 177

ToString(), 421
transactions

BeginTransaction(), 189
creating a second database instance,

procedure for, 195–196
creating an invoice via a transaction, 188
definition of, 35, 187
distributed transactions, running and

testing, 194
executing a first transaction, 189
including a stored procedure in a

transaction, code listing, 191
Invoice table, 189
InvoiceDetails table, 189
local and distributed transactions, 36
OracleMTSRecoveryService, 197
OracleTransaction class, 188
performing a partial rollback, code listing,

192
performing an explicit distributed

transaction, code listing, 201
performing an implicit distributed

transaction, code listing, 199
promotable transactions, executing, 202
Receipt table, creating, 197
rollbacks, 187
rolling back changes made by a stored

procedure, 191
System.Transactions library, importing, 198
TransactionScope class, 198
using tag, 199

TransactionScope class, Complete(), 199
transparent application failover (TAF)

enabling, 63
FAILOVER_MODE parameter, table of

attributes, 64

 INDEX

443

registering a custom TAF callback function,
code listing, 65

supported and unsupported features, list of,
65

tasks performed, 63
Transparent Data Encryption (TDE), 2, 288
Transparent Network Substrate (TNS)

application project for connecting to an
Oracle database, 49

btnConnectNow button, adding, 50
connecting without TNSNames.ora, 52
connection string, components of, 51
net service name, definition of, 51
Oracle.DataAccess, adding to the Visual

Studio project, 49
Oracle.DataAccess.Client namespace,

importing, 50
OracleConnection class, 51
TNS descriptor, format of, 52
TNSNames.ora file, location of, 51

T-SQL, 2, 117

 U
unmanaged code

accessing Oracle from, 4
architectural overview of providers, 4
using ODBC in, 6
using OLEDB in, 5
using OO4O in, 7

Unrestricted keyword, 300
UPDATE statement, 84
Update(), 86
UpdateCommand, defining, 85
UpdateDataset(), 368
UpdateMultiplePrices stored procedure, 129
UROWID data type, 105
user account, creating, 73
user defined types (UDTs)

Advanced Queuing (AQ) and, 238
advantages of, 146
defining a UDT class, code listing, 239
definition of, 146
dequeuing a UDT object, code listing, 243
enqueuing a UDT object, code listing, 242
inserting a new record with, code listing,

150
mapping directly to a .NET class, 146
ProductType class, code listing, 147
ProductTypeFactory class, creating, 149

retrieving a UDT object, 150
User ID attribute, 57
User ID keyword, 300
username/password authentication, 289
using tag, 199

 V
Validate(), 263–266
VARRAYs

comparing to associative arrays, 134
creating a .NET class for encapsulation, 134
definition of, 134
deleting products with, code listing, 137
ProductVArray class, code listing, 134
ProductVArrayFactory class, code listing,

136
See also associative arrays

version 9 (ODP.NET)
key features, accessing, 19
LOBs, manipulating, 20
LOBs, types of, 20
XML data, manipulating, 20
See also ODP.NET; performance

(ODP.NET); version 10 (ODP.NET);
version 11 (ODP.NET)

version 10 (ODP.NET)
BINARY_DOUBLE data type, 24
BINARY_FLOAT data type, 24
ClearAllPools(), 28
ClearPool(), 28
client identifiers, specifying, 26
command automatic timeout feature, 25
command cancellation feature, 25
configuring via .NET configuration files, 30
connection pooling, 28
database change notifications, 27
DeriveParameters(), 26
FetchSize property, 29
floating point data types, 24
Home Selector, 23
key features, accessing, 22
machine.config, 30
multiple Oracle homes, support for, 23
Oracle Database Extensions for .NET, 26
Oracle grids, architecture of, 23
OracleCommandBuilder class, 26
preserving user identity in database

sessions, 26
Real Application Clusters (RAC), 22

 INDEX

444

version 10 (ODP.NET) (cont.)
RowSize property, 29
statement caching, 24
stored procedures, writing, 26
using the 64-bit version of, 29
web.config, 30
See also ODP.NET; performance

(ODP.NET); version 9 (ODP.NET);
version 11 (ODP.NET)

version 11 (ODP.NET)
AQ, 34
bulk copy operations, performing, 32
Code Access Security (CAS), 37
HA event notifications, 38
key features, accessing, 30
message queues, 34
Oracle SQL*Loader, 32
OracleBulkCopy class, 32
OracleDatabase class, 38
OraclePermission class, 37
parameter context caching, 31
performance counters, table of, 33
performance enhancements in, 31
promotable local transactions, 35
security enhancements, 37
self-tuning for applications, 34
starting up or shutting down a database, 38
user defined types (UDTs), 31
Windows login credentials, using for

database authentication, 32
Windows Performance Monitoring

(Perfmon), 33
xcopy command, 31
See also ODP.NET; performance

(ODP.NET); version 9 (ODP.NET);
version 10 (ODP.NET)

Visual Studio
designing SQL queries visually within the

Visual Studio IDE, 401–403
disabling the Visual Studio hosting process,

385
IntelliSense, 404
Server Explorer, 374

 W
Web Parts, 14
web.config file, 30, 309–310
web_mediumtrust.config file, 310–311
Windows authentication, 291

Windows logon account, 58
Windows Performance Monitoring (Perfmon),

33
Windows Registry Editor, 318
Windows Reliability and Performance Monitor,

318

 X
xcopy command, 31
XML data

DBMS_XMLGEN.GETXML stored
procedure, using, 273

deleting multiple records via XML, code
listing, 281

deleting relational data using XML,
procedure for, 280

dequeuing XML data types, code listing,
245

differentiating relational and hierarchical
data, 269

enqueuing XML data types, code listing, 244
Extensible Stylesheet Language

Transformations (XSLT), 266, 268
GetXmlReader(), 255
inserting multiple records via XML, code

listing, 275
inserting relational data using XML,

procedure for, 274
Oracle’s support for, 20
OracleDataReader class, 255, 257
OracleXmlType class, 244, 257–258
passing XML data into a stored procedure,

code listing, 261
passing XML data to and from PL/SQL

stored procedures, 260
PRODUCT.xsd, 263
Product_ExtraInfo table, creating, 254
purchase order example, code listing, 253
reading an XMLTYPE column into an

XmlReader object, 255
retrieving relational data as XML, code

listing, 270
retrieving XML data from a stored

procedure, code listing, 261
retrieving XMLTYPE data as an OracleString

object, 260
RootTag property, 270
RowTag property, 270

 INDEX

445

storing native XML data in an Oracle
database, 254

updating multiple records via XML, code
listing, 278

updating relational data using XML,
procedure for, 278

using GetXml() to format a relational
dataset as XML, 272

using the XmlReader Class, code listing, 255
using XQuery to retrieve records, code

listing, 283
using XSLT to transform the schema of an

XML block, code listing, 267
Validate(), 263–266
validating against XML schema, 262

World Wide Web Consortium (W3C), 253
XML databases, 11
XML Schema Definition (XSD), 263
XmlCommandType property, 269, 275, 278,

280
XMLDocument object, 255
XmlQueryProperties object, table of

properties, 269
XMLSaveProperties object, table of

properties, 275
XMLTYPE column, creating, 254
XMLTYPE data type, 254
XSD schema, defining and registering, 263
XSD schema, validating against, 265
See also schema

www.wowebook.com

	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction to Oracle .NET Connectivity
	Making the Transition from SQL Server to Oracle
	Introducing Oracle Connectivity
	Accessing Oracle from Unmanaged Code
	Using OLEDB in Unmanaged Code
	Oracle Provider for OLEDB
	MS OLEDB Provider for Oracle
	Using ODBC in Unmanaged Code
	Oracle ODBC Driver
	Microsoft ODBC for Oracle
	Using OO4O in Unmanaged Code

	Accessing Oracle from Managed Code
	Using OLEDB.NET in Managed Code
	Using ODBC.NET in Managed Code
	Using the Microsoft .NET Managed Provider for Oracle

	Introducing ODP.NET
	Understanding the ODP.NET Architecture
	Understanding the ODP.NET Classes
	Accessing Data using ODP.NET
	Using ODP.NET in ASP.NET Projects
	Considering ODP.NET Performance

	Introducing the Oracle Suite of Products
	Summary

	ODP.NET: A Functional Overview
	Exploring Oracle Features Accessible in ODP.NET Version 9
	Manipulating XML
	Manipulating LOBs
	Using PL/SQL Associative Array Binding
	Supporting Active Data Objects (ADO.NET) 2.0

	Accessing Oracle Features from ODP.NET Version 10
	Supporting Oracle Grids
	Supporting Multiple Oracle Homes
	Using Floating Point Data Types
	Using Statement Caching
	Supporting Command Cancellation and Timeout
	Retrieving Parameters Programmatically
	Supporting .NET Stored Procedures
	Using Client Identifiers
	Using Database Change Notifications
	Managing Connection Pools
	Optimizing Connection Pools for RAC
	Using a REF Cursor as an IN/OUT Parameter
	Using 64-bit ODP.NET
	Controlling the FetchSize Property
	Configuring ODP.NET

	Accessing Oracle Features from ODP.NET Version 11
	Enhancing Performance
	Deploying ODP.NET Using xcopy
	Supporting Oracle User Defined Types (UDTs)
	Performing Bulk Copy Operations
	Using Windows Authenticated User Connections Pooling
	Publishing Connection Pool Performance Counters
	Supporting Self-Tuning for Applications
	Using Oracle Streaming AQ
	Supporting Promotable Local Transactions
	Using ODP.NET Security Enhancements
	Running Callbacks for HA Event Notifications
	Starting Up and Shutting Down Databases

	Getting Started
	Installing Oracle Database 11g
	Installing ODAC.NET

	Summary

	Connecting to Oracle with ODP.NET
	Connecting via TNS
	Understanding the TNSNames.ora file
	Connecting in Other Ways
	Connecting Without TNSNames.ora
	Connecting via EZConnect

	Learning the ODP.NET Connection Parameters
	Connecting with Connection Pooling Activated
	Connecting via Integrated Windows Authentication
	Connecting with Special Privileges
	Using Other Connection String Attributes

	Checking Whether ODP.NET Is Installed
	Dynamically Building an ODP.NET Connection String
	Using the OracleConnectionStringBuilder Class
	Retrieving Available Oracle Data Sources

	Understanding Transparent Application Failover
	Enabling TAF in Your Application
	Using TAF Callbacks

	Summary

	Retrieving and Manipulating Data with ODP.NET
	Understanding ODP.NET Data Types
	Creating a Sample Table
	Retrieving Multiple Rows of Data
	Retrieving a Single Value
	Handling NULL Values in ODP.NET
	Retrieving Data into a Dataset
	Using Parameterized Queries
	Updating Data
	Executing a Single INSERT, UPDATE, or DELETE Statement
	Committing Dataset Changes to the Database
	Generating Command Objects

	Handling Master-Detail Relationships
	Creating a Second Table
	Retrieving from Multiple Tables
	Binding a .NET Form to Your Dataset
	Committing Changes to Multiple Tables
	Defining Table Relationships and Constraints in a DataSet

	Manipulating LOBs and BFILEs
	Uploading BLOB Data
	Retrieving BLOB Data
	Inserting CLOB/NCLOB Data
	Retrieving CLOB/NCLOB Data
	Creating BFILE Directory Mappings
	Inserting BFILE Data
	Retrieving BFILE Data

	Manipulating RAW Data Types
	Creating Automatically Incrementing Columns
	Executing DDL from ODP.NET
	Discovering Schema in ODP.NET
	Handling ODP.NET Exceptions
	Summary

	Using PL/SQL and .NET CLR Stored Procedures with ODP.NET
	Understanding the Basics of PL/SQL
	Working with Anonymous PL/SQL Blocks
	Executing an Anonymous PL/SQL Block
	Passing Data into an Anonymous Block
	Returning Data from an Anonymous Block

	Working with PL/SQL Stored Procedures
	Executing a PL/SQL Stored Procedure
	Passing Data into a PL/SQL Stored Procedure
	Retrieving Data from a PL/SQL Stored Procedure

	Executing a PL/SQL Function
	Handling Special IN and OUT Data Types
	Using Associative Arrays
	Passing Associative Arrays to PL/SQL Code
	Retrieving Associative Arrays from PL/SQL Code
	Using VARRAYs
	Using Nested Tables
	Using REF Cursors
	Reading a Result Set from a REF Cursor Using the OracleDataReader
	Reading a Result Set from a REF Cursor Using the OracleDataAdapter
	Retrieving Multiple Active Result Sets
	User Defined Types (UDT) / OBJECT Types

	Handling Custom-Defined PL/SQL Errors
	Creating Your First .NET CLR Stored Procedure
	Deploying a .NET CLR Stored Procedure
	Executing the .NET CLR Stored Procedure

	Summary

	ODP.NET Globalization
	Storing and Retrieving Double-Byte Data
	Using the OracleGlobalization class
	Setting Attributes at the Client Level
	Setting Attributes at the Session Level
	Setting Attributes at the Thread Level

	Changing the Session Language
	Formatting Calendar Dates
	Displaying Various Date Formats and Languages
	Designating Calendar Systems

	Representing Currencies
	Formatting Numbers
	Dealing with Time Zones
	Sorting and Comparing Strings
	Applying Country-Based Formatting
	Safely Mapping to .NET Data Types
	Summary

	Transactions with ODP.NET
	Understanding Transactions and the OracleTransaction Class
	Executing Your First Transaction
	Executing Stored Procedures in a Transaction

	Performing Partial Rollbacks
	Working with Distributed Transactions
	Creating a Second Database Instance
	Executing Implicit Distributed Transactions
	Executing Explicit Distributed Transactions
	Executing Promotable Transactions

	Summary

	Oracle Database Change Notifications with ODP.NET
	Understanding Database Change Notification
	Registering for Query-Based Change Notifications
	Registering for Object-Based Change Notifications
	Grouping Multiple Notification Requests
	Removing a Registration
	Retrieving Change Notification Information
	Choosing to Poll
	Considering Typical Usage Scenarios
	Thinking About Performance
	Summary

	Using Oracle Database Streams Advanced Queuing with ODP.NET
	Understanding the Basics of AQ
	Creating a Single-Consumer Queue
	Setting Up a Single-Consumer Queue
	Enqueuing and Dequeuing a Single Message
	Enqueuing and Dequeuing Multiple Messages

	Creating a Multiple-Consumer Queue
	Defining Recipients at the Queue Level
	Defining Recipients at the Message Level

	Enqueuing and Dequeuing Various Data Types in AQ
	Using UDT Data Types
	Using XML Data Types

	Waiting for Incoming Messages
	Dequeuing Messages Synchronously (Blocking)
	Dequeuing Messages Asynchronously (Nonblocking)

	Understanding the Useful OracleAQMessage Properties
	Summary

	Oracle XML Support
	Accessing Native XML Data (XMLTYPE)
	Creating an XMLTYPE Column
	Receiving XMLTYPE Data with XMLReader
	Receiving XMLTYPE Data with OracleXMLType
	Receiving XMLTYPE Data as a String

	Passing XML Data to and from PL/SQL Stored Procedures
	Validating Against XML Schema
	Using XSLT to Transform XML Data
	Retrieving Relational Data as XML
	Using the XMLCommandType property
	Using the Dataset.GetXML Method
	Using the DBMS_XMLGEN.GETXML Stored Procedure

	Manipulating Relational Data as XML
	Inserting Relational Data Using XML
	Updating Relational Data Using XML
	Deleting Relational Data Using XML

	Using XQuery to Query Data
	Summary

	ODP.NET Security Features
	Securing Your .NET Applications
	Authenticating Data
	Implementing Username/Password Authentication
	Implementing Proxy Authentication
	Implementing ClientId-Based Username/Password Authentication
	Implementing Windows Authentication

	Understanding Code Access Security
	Using Code Groups
	Using Permission Sets
	Resolving Permissions in .NET
	Seeing CAS in Action

	Configuring CAS Policies
	Configuring CAS Policies via the GUI
	Configuring CAS Policies Programmatically

	Requesting Permissions
	Requesting Permissions Declaratively
	Requesting Permissions Imperatively

	Ensuring That an Assembly Can Never Access Oracle
	Refusing Permissions Declaratively at the Assembly Level
	Denying Permissions Declaratively at the Method Level
	Denying Permissions Imperatively at the Method Level

	Using CAS with ASP.NET Applications
	Implementing Best Practices
	Preventing SQL Injection Attacks
	Preventing Nonpersistent Cross-Site Scripting Attacks

	Summary

	ODP.NET Performance
	Measuring Performance
	Enabling the Performance Counters
	Measuring Performance Programmatically

	Speeding Up Connections with Connection Pooling
	Performing Faster Floating Point Arithmetic
	Executing Statements Faster
	Batching Your SQL Statements Together For Execution
	Using Statement Caching
	REF Cursors and Multiple Active Resultsets (MARs)

	Passing Parameters More Efficiently
	Using Bind Arrays to Pass Parameters in Bulk
	Using PL/SQL Associative Arrays

	Managing LOBs More Efficiently
	Enabling the LOB Cache
	Setting the InitialLOBFetchSize Property

	Retrieving Data More Efficiently
	Changing the FetchSize Property
	Using the Client Result Cache

	Importing Data More Efficiently
	Applying Optimization Best Practices
	Using Stored Procedures Whenever Possible
	Using the Right Data Access Object

	Summary

	Design Patterns and Considerations in Using ODP.NET
	Programming to an Interface Instead of an Implementation
	Using the Data Access Object
	Using Microsoft’s Enterprise Library
	Creating Oracle.NET
	Creating the ODP.NET DAO Class
	Modifying the DBProviderMapping Class
	Modifying the DatabaseConfigurationView Class
	Compiling the New DAAB

	Using the ODP.NET DAO
	Editing the Application Configuration File
	Accessing Data via the DAAB
	Reading Multiple Rows into a Dataset
	Updating Multiple Rows from a Dataset
	Reading Data Using a DataReader

	Considering Best Practices
	Planning for Multiple Data Sources
	Keeping Provider-Specific Code Within the Data Tier
	Outputting Business Objects, Not Datasets
	Deciding How to Map Data Source Structures to Business Objects
	Deciding How to Manage Data Source Settings

	Summary

	ODT.NET Tool Basics
	Installing ODT.NET
	Managing the Database Schema
	Managing Users, Roles, and Object Privileges
	Editing and Debugging PL/SQL Code
	Creating a PL/SQL Procedure
	Creating a PL/SQL Package
	Debugging PL/SQL stored procedures

	Managing Oracle SQL Scripts
	Managing Advanced Queues
	Importing Tables and Data from External Data Sources
	Summary

	Building Data-Driven Applications with ODT.NET
	Designing Queries Visually
	Generating Strongly Typed DataSet Objects
	Generating UDT Classes
	Designing a UDT Object Visually
	Creating the UDT Object Table Visually
	Creating the OVERSEAS_JOBS Table
	Generating the UDT Classes
	Using the UDT in Your Project

	Generating ASP.NET Code
	Summary

	Index
	A
	C
	B
	D
	F
	G
	E
	J
	K
	H
	L
	I
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	U
	X
	W

